1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * To obtain the license, point your browser to
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
28 
29 #include <media/dvb_frontend.h>
30 #include "drxd.h"
31 #include "drxd_firm.h"
32 
33 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
34 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
35 
36 #define CHUNK_SIZE 48
37 
38 #define DRX_I2C_RMW           0x10
39 #define DRX_I2C_BROADCAST     0x20
40 #define DRX_I2C_CLEARCRC      0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS     0xC0
43 #define DRX_I2C_FLAGS         0xF0
44 
45 #define DEFAULT_LOCK_TIMEOUT    1100
46 
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW  2
50 
51 #define DRX_LOCK_MPEG  1
52 #define DRX_LOCK_FEC   2
53 #define DRX_LOCK_DEMOD 4
54 
55 /****************************************************************************/
56 
57 enum CSCDState {
58 	CSCD_INIT = 0,
59 	CSCD_SET,
60 	CSCD_SAVED
61 };
62 
63 enum CDrxdState {
64 	DRXD_UNINITIALIZED = 0,
65 	DRXD_STOPPED,
66 	DRXD_STARTED
67 };
68 
69 enum AGC_CTRL_MODE {
70 	AGC_CTRL_AUTO = 0,
71 	AGC_CTRL_USER,
72 	AGC_CTRL_OFF
73 };
74 
75 enum OperationMode {
76 	OM_Default,
77 	OM_DVBT_Diversity_Front,
78 	OM_DVBT_Diversity_End
79 };
80 
81 struct SCfgAgc {
82 	enum AGC_CTRL_MODE ctrlMode;
83 	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
84 	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
85 	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
86 	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
87 	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
88 
89 	u16 R1;
90 	u16 R2;
91 	u16 R3;
92 };
93 
94 struct SNoiseCal {
95 	int cpOpt;
96 	short cpNexpOfs;
97 	short tdCal2k;
98 	short tdCal8k;
99 };
100 
101 enum app_env {
102 	APPENV_STATIC = 0,
103 	APPENV_PORTABLE = 1,
104 	APPENV_MOBILE = 2
105 };
106 
107 enum EIFFilter {
108 	IFFILTER_SAW = 0,
109 	IFFILTER_DISCRETE = 1
110 };
111 
112 struct drxd_state {
113 	struct dvb_frontend frontend;
114 	struct dvb_frontend_ops ops;
115 	struct dtv_frontend_properties props;
116 
117 	const struct firmware *fw;
118 	struct device *dev;
119 
120 	struct i2c_adapter *i2c;
121 	void *priv;
122 	struct drxd_config config;
123 
124 	int i2c_access;
125 	int init_done;
126 	struct mutex mutex;
127 
128 	u8 chip_adr;
129 	u16 hi_cfg_timing_div;
130 	u16 hi_cfg_bridge_delay;
131 	u16 hi_cfg_wakeup_key;
132 	u16 hi_cfg_ctrl;
133 
134 	u16 intermediate_freq;
135 	u16 osc_clock_freq;
136 
137 	enum CSCDState cscd_state;
138 	enum CDrxdState drxd_state;
139 
140 	u16 sys_clock_freq;
141 	s16 osc_clock_deviation;
142 	u16 expected_sys_clock_freq;
143 
144 	u16 insert_rs_byte;
145 	u16 enable_parallel;
146 
147 	int operation_mode;
148 
149 	struct SCfgAgc if_agc_cfg;
150 	struct SCfgAgc rf_agc_cfg;
151 
152 	struct SNoiseCal noise_cal;
153 
154 	u32 fe_fs_add_incr;
155 	u32 org_fe_fs_add_incr;
156 	u16 current_fe_if_incr;
157 
158 	u16 m_FeAgRegAgPwd;
159 	u16 m_FeAgRegAgAgcSio;
160 
161 	u16 m_EcOcRegOcModeLop;
162 	u16 m_EcOcRegSncSncLvl;
163 	u8 *m_InitAtomicRead;
164 	u8 *m_HiI2cPatch;
165 
166 	u8 *m_ResetCEFR;
167 	u8 *m_InitFE_1;
168 	u8 *m_InitFE_2;
169 	u8 *m_InitCP;
170 	u8 *m_InitCE;
171 	u8 *m_InitEQ;
172 	u8 *m_InitSC;
173 	u8 *m_InitEC;
174 	u8 *m_ResetECRAM;
175 	u8 *m_InitDiversityFront;
176 	u8 *m_InitDiversityEnd;
177 	u8 *m_DisableDiversity;
178 	u8 *m_StartDiversityFront;
179 	u8 *m_StartDiversityEnd;
180 
181 	u8 *m_DiversityDelay8MHZ;
182 	u8 *m_DiversityDelay6MHZ;
183 
184 	u8 *microcode;
185 	u32 microcode_length;
186 
187 	int type_A;
188 	int PGA;
189 	int diversity;
190 	int tuner_mirrors;
191 
192 	enum app_env app_env_default;
193 	enum app_env app_env_diversity;
194 
195 };
196 
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
200 
201 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
202 {
203 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
204 
205 	if (i2c_transfer(adap, &msg, 1) != 1)
206 		return -1;
207 	return 0;
208 }
209 
210 static int i2c_read(struct i2c_adapter *adap,
211 		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
212 {
213 	struct i2c_msg msgs[2] = {
214 		{
215 			.addr = adr, .flags = 0,
216 			.buf = msg, .len = len
217 		}, {
218 			.addr = adr, .flags = I2C_M_RD,
219 			.buf = answ, .len = alen
220 		}
221 	};
222 	if (i2c_transfer(adap, msgs, 2) != 2)
223 		return -1;
224 	return 0;
225 }
226 
227 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
228 {
229 	u64 tmp64;
230 
231 	tmp64 = (u64)a * (u64)b;
232 	do_div(tmp64, c);
233 
234 	return (u32) tmp64;
235 }
236 
237 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
238 {
239 	u8 adr = state->config.demod_address;
240 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
241 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
242 	};
243 	u8 mm2[2];
244 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
245 		return -1;
246 	if (data)
247 		*data = mm2[0] | (mm2[1] << 8);
248 	return mm2[0] | (mm2[1] << 8);
249 }
250 
251 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
252 {
253 	u8 adr = state->config.demod_address;
254 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
255 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
256 	};
257 	u8 mm2[4];
258 
259 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
260 		return -1;
261 	if (data)
262 		*data =
263 		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
264 	return 0;
265 }
266 
267 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
268 {
269 	u8 adr = state->config.demod_address;
270 	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
271 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
272 		data & 0xff, (data >> 8) & 0xff
273 	};
274 
275 	if (i2c_write(state->i2c, adr, mm, 6) < 0)
276 		return -1;
277 	return 0;
278 }
279 
280 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
281 {
282 	u8 adr = state->config.demod_address;
283 	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
284 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
285 		data & 0xff, (data >> 8) & 0xff,
286 		(data >> 16) & 0xff, (data >> 24) & 0xff
287 	};
288 
289 	if (i2c_write(state->i2c, adr, mm, 8) < 0)
290 		return -1;
291 	return 0;
292 }
293 
294 static int write_chunk(struct drxd_state *state,
295 		       u32 reg, u8 *data, u32 len, u8 flags)
296 {
297 	u8 adr = state->config.demod_address;
298 	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
299 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
300 	};
301 	int i;
302 
303 	for (i = 0; i < len; i++)
304 		mm[4 + i] = data[i];
305 	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
306 		printk(KERN_ERR "error in write_chunk\n");
307 		return -1;
308 	}
309 	return 0;
310 }
311 
312 static int WriteBlock(struct drxd_state *state,
313 		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
314 {
315 	while (BlockSize > 0) {
316 		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
317 
318 		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
319 			return -1;
320 		pBlock += Chunk;
321 		Address += (Chunk >> 1);
322 		BlockSize -= Chunk;
323 	}
324 	return 0;
325 }
326 
327 static int WriteTable(struct drxd_state *state, u8 * pTable)
328 {
329 	int status = 0;
330 
331 	if (!pTable)
332 		return 0;
333 
334 	while (!status) {
335 		u16 Length;
336 		u32 Address = pTable[0] | (pTable[1] << 8) |
337 		    (pTable[2] << 16) | (pTable[3] << 24);
338 
339 		if (Address == 0xFFFFFFFF)
340 			break;
341 		pTable += sizeof(u32);
342 
343 		Length = pTable[0] | (pTable[1] << 8);
344 		pTable += sizeof(u16);
345 		if (!Length)
346 			break;
347 		status = WriteBlock(state, Address, Length * 2, pTable, 0);
348 		pTable += (Length * 2);
349 	}
350 	return status;
351 }
352 
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
356 
357 static int ResetCEFR(struct drxd_state *state)
358 {
359 	return WriteTable(state, state->m_ResetCEFR);
360 }
361 
362 static int InitCP(struct drxd_state *state)
363 {
364 	return WriteTable(state, state->m_InitCP);
365 }
366 
367 static int InitCE(struct drxd_state *state)
368 {
369 	int status;
370 	enum app_env AppEnv = state->app_env_default;
371 
372 	do {
373 		status = WriteTable(state, state->m_InitCE);
374 		if (status < 0)
375 			break;
376 
377 		if (state->operation_mode == OM_DVBT_Diversity_Front ||
378 		    state->operation_mode == OM_DVBT_Diversity_End) {
379 			AppEnv = state->app_env_diversity;
380 		}
381 		if (AppEnv == APPENV_STATIC) {
382 			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
383 			if (status < 0)
384 				break;
385 		} else if (AppEnv == APPENV_PORTABLE) {
386 			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
387 			if (status < 0)
388 				break;
389 		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
390 			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
391 			if (status < 0)
392 				break;
393 		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
394 			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
395 			if (status < 0)
396 				break;
397 		}
398 
399 		/* start ce */
400 		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
401 		if (status < 0)
402 			break;
403 	} while (0);
404 	return status;
405 }
406 
407 static int StopOC(struct drxd_state *state)
408 {
409 	int status = 0;
410 	u16 ocSyncLvl = 0;
411 	u16 ocModeLop = state->m_EcOcRegOcModeLop;
412 	u16 dtoIncLop = 0;
413 	u16 dtoIncHip = 0;
414 
415 	do {
416 		/* Store output configuration */
417 		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
418 		if (status < 0)
419 			break;
420 		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421 		state->m_EcOcRegSncSncLvl = ocSyncLvl;
422 		/* m_EcOcRegOcModeLop = ocModeLop; */
423 
424 		/* Flush FIFO (byte-boundary) at fixed rate */
425 		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
426 		if (status < 0)
427 			break;
428 		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
429 		if (status < 0)
430 			break;
431 		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
432 		if (status < 0)
433 			break;
434 		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
435 		if (status < 0)
436 			break;
437 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
438 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
439 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
440 		if (status < 0)
441 			break;
442 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
443 		if (status < 0)
444 			break;
445 
446 		msleep(1);
447 		/* Output pins to '0' */
448 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
449 		if (status < 0)
450 			break;
451 
452 		/* Force the OC out of sync */
453 		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
454 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
455 		if (status < 0)
456 			break;
457 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
458 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
459 		ocModeLop |= 0x2;	/* Magically-out-of-sync */
460 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
461 		if (status < 0)
462 			break;
463 		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
464 		if (status < 0)
465 			break;
466 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
467 		if (status < 0)
468 			break;
469 	} while (0);
470 
471 	return status;
472 }
473 
474 static int StartOC(struct drxd_state *state)
475 {
476 	int status = 0;
477 
478 	do {
479 		/* Stop OC */
480 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
481 		if (status < 0)
482 			break;
483 
484 		/* Restore output configuration */
485 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
486 		if (status < 0)
487 			break;
488 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
489 		if (status < 0)
490 			break;
491 
492 		/* Output pins active again */
493 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
494 		if (status < 0)
495 			break;
496 
497 		/* Start OC */
498 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
499 		if (status < 0)
500 			break;
501 	} while (0);
502 	return status;
503 }
504 
505 static int InitEQ(struct drxd_state *state)
506 {
507 	return WriteTable(state, state->m_InitEQ);
508 }
509 
510 static int InitEC(struct drxd_state *state)
511 {
512 	return WriteTable(state, state->m_InitEC);
513 }
514 
515 static int InitSC(struct drxd_state *state)
516 {
517 	return WriteTable(state, state->m_InitSC);
518 }
519 
520 static int InitAtomicRead(struct drxd_state *state)
521 {
522 	return WriteTable(state, state->m_InitAtomicRead);
523 }
524 
525 static int CorrectSysClockDeviation(struct drxd_state *state);
526 
527 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
528 {
529 	u16 ScRaRamLock = 0;
530 	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
531 				    SC_RA_RAM_LOCK_FEC__M |
532 				    SC_RA_RAM_LOCK_DEMOD__M);
533 	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
534 				   SC_RA_RAM_LOCK_DEMOD__M);
535 	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
536 
537 	int status;
538 
539 	*pLockStatus = 0;
540 
541 	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
542 	if (status < 0) {
543 		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
544 		return status;
545 	}
546 
547 	if (state->drxd_state != DRXD_STARTED)
548 		return 0;
549 
550 	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
551 		*pLockStatus |= DRX_LOCK_MPEG;
552 		CorrectSysClockDeviation(state);
553 	}
554 
555 	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
556 		*pLockStatus |= DRX_LOCK_FEC;
557 
558 	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
559 		*pLockStatus |= DRX_LOCK_DEMOD;
560 	return 0;
561 }
562 
563 /****************************************************************************/
564 
565 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
566 {
567 	int status;
568 
569 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
570 		return -1;
571 
572 	if (cfg->ctrlMode == AGC_CTRL_USER) {
573 		do {
574 			u16 FeAgRegPm1AgcWri;
575 			u16 FeAgRegAgModeLop;
576 
577 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
578 			if (status < 0)
579 				break;
580 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
581 			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
582 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
583 			if (status < 0)
584 				break;
585 
586 			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
587 						  FE_AG_REG_PM1_AGC_WRI__M);
588 			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
589 			if (status < 0)
590 				break;
591 		} while (0);
592 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
593 		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
594 		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
595 		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
596 		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
597 		    )
598 			return -1;
599 		do {
600 			u16 FeAgRegAgModeLop;
601 			u16 FeAgRegEgcSetLvl;
602 			u16 slope, offset;
603 
604 			/* == Mode == */
605 
606 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
607 			if (status < 0)
608 				break;
609 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
610 			FeAgRegAgModeLop |=
611 			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
612 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
613 			if (status < 0)
614 				break;
615 
616 			/* == Settle level == */
617 
618 			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
619 						  FE_AG_REG_EGC_SET_LVL__M);
620 			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
621 			if (status < 0)
622 				break;
623 
624 			/* == Min/Max == */
625 
626 			slope = (u16) ((cfg->maxOutputLevel -
627 					cfg->minOutputLevel) / 2);
628 			offset = (u16) ((cfg->maxOutputLevel +
629 					 cfg->minOutputLevel) / 2 - 511);
630 
631 			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
632 			if (status < 0)
633 				break;
634 			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
635 			if (status < 0)
636 				break;
637 
638 			/* == Speed == */
639 			{
640 				const u16 maxRur = 8;
641 				static const u16 slowIncrDecLUT[] = {
642 					3, 4, 4, 5, 6 };
643 				static const u16 fastIncrDecLUT[] = {
644 					14, 15, 15, 16,
645 					17, 18, 18, 19,
646 					20, 21, 22, 23,
647 					24, 26, 27, 28,
648 					29, 31
649 				};
650 
651 				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
652 				    (maxRur + 1);
653 				u16 fineSpeed = (u16) (cfg->speed -
654 						       ((cfg->speed /
655 							 fineSteps) *
656 							fineSteps));
657 				u16 invRurCount = (u16) (cfg->speed /
658 							 fineSteps);
659 				u16 rurCount;
660 				if (invRurCount > maxRur) {
661 					rurCount = 0;
662 					fineSpeed += fineSteps;
663 				} else {
664 					rurCount = maxRur - invRurCount;
665 				}
666 
667 				/*
668 				   fastInc = default *
669 				   (2^(fineSpeed/fineSteps))
670 				   => range[default...2*default>
671 				   slowInc = default *
672 				   (2^(fineSpeed/fineSteps))
673 				 */
674 				{
675 					u16 fastIncrDec =
676 					    fastIncrDecLUT[fineSpeed /
677 							   ((fineSteps /
678 							     (14 + 1)) + 1)];
679 					u16 slowIncrDec =
680 					    slowIncrDecLUT[fineSpeed /
681 							   (fineSteps /
682 							    (3 + 1))];
683 
684 					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
685 					if (status < 0)
686 						break;
687 					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
688 					if (status < 0)
689 						break;
690 					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
691 					if (status < 0)
692 						break;
693 					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
694 					if (status < 0)
695 						break;
696 					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
697 					if (status < 0)
698 						break;
699 				}
700 			}
701 		} while (0);
702 
703 	} else {
704 		/* No OFF mode for IF control */
705 		return -1;
706 	}
707 	return status;
708 }
709 
710 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
711 {
712 	int status = 0;
713 
714 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
715 		return -1;
716 
717 	if (cfg->ctrlMode == AGC_CTRL_USER) {
718 		do {
719 			u16 AgModeLop = 0;
720 			u16 level = (cfg->outputLevel);
721 
722 			if (level == DRXD_FE_CTRL_MAX)
723 				level++;
724 
725 			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
726 			if (status < 0)
727 				break;
728 
729 			/*==== Mode ====*/
730 
731 			/* Powerdown PD2, WRI source */
732 			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
733 			state->m_FeAgRegAgPwd |=
734 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
735 			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
736 			if (status < 0)
737 				break;
738 
739 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
740 			if (status < 0)
741 				break;
742 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
743 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
744 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
745 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
746 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
747 			if (status < 0)
748 				break;
749 
750 			/* enable AGC2 pin */
751 			{
752 				u16 FeAgRegAgAgcSio = 0;
753 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
754 				if (status < 0)
755 					break;
756 				FeAgRegAgAgcSio &=
757 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
758 				FeAgRegAgAgcSio |=
759 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
760 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
761 				if (status < 0)
762 					break;
763 			}
764 
765 		} while (0);
766 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
767 		u16 AgModeLop = 0;
768 
769 		do {
770 			u16 level;
771 			/* Automatic control */
772 			/* Powerup PD2, AGC2 as output, TGC source */
773 			(state->m_FeAgRegAgPwd) &=
774 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
775 			(state->m_FeAgRegAgPwd) |=
776 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
777 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
778 			if (status < 0)
779 				break;
780 
781 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
782 			if (status < 0)
783 				break;
784 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
785 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
786 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
787 				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
788 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
789 			if (status < 0)
790 				break;
791 			/* Settle level */
792 			level = (((cfg->settleLevel) >> 4) &
793 				 FE_AG_REG_TGC_SET_LVL__M);
794 			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
795 			if (status < 0)
796 				break;
797 
798 			/* Min/max: don't care */
799 
800 			/* Speed: TODO */
801 
802 			/* enable AGC2 pin */
803 			{
804 				u16 FeAgRegAgAgcSio = 0;
805 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
806 				if (status < 0)
807 					break;
808 				FeAgRegAgAgcSio &=
809 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
810 				FeAgRegAgAgcSio |=
811 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
812 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
813 				if (status < 0)
814 					break;
815 			}
816 
817 		} while (0);
818 	} else {
819 		u16 AgModeLop = 0;
820 
821 		do {
822 			/* No RF AGC control */
823 			/* Powerdown PD2, AGC2 as output, WRI source */
824 			(state->m_FeAgRegAgPwd) &=
825 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
826 			(state->m_FeAgRegAgPwd) |=
827 			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
828 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
829 			if (status < 0)
830 				break;
831 
832 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
833 			if (status < 0)
834 				break;
835 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
836 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
837 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
838 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
839 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
840 			if (status < 0)
841 				break;
842 
843 			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
844 			{
845 				u16 FeAgRegAgAgcSio = 0;
846 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
847 				if (status < 0)
848 					break;
849 				FeAgRegAgAgcSio &=
850 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
851 				FeAgRegAgAgcSio |=
852 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
853 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
854 				if (status < 0)
855 					break;
856 			}
857 		} while (0);
858 	}
859 	return status;
860 }
861 
862 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
863 {
864 	int status = 0;
865 
866 	*pValue = 0;
867 	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
868 		u16 Value;
869 		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
870 		Value &= FE_AG_REG_GC1_AGC_DAT__M;
871 		if (status >= 0) {
872 			/*           3.3V
873 			   |
874 			   R1
875 			   |
876 			   Vin - R3 - * -- Vout
877 			   |
878 			   R2
879 			   |
880 			   GND
881 			 */
882 			u32 R1 = state->if_agc_cfg.R1;
883 			u32 R2 = state->if_agc_cfg.R2;
884 			u32 R3 = state->if_agc_cfg.R3;
885 
886 			u32 Vmax, Rpar, Vmin, Vout;
887 
888 			if (R2 == 0 && (R1 == 0 || R3 == 0))
889 				return 0;
890 
891 			Vmax = (3300 * R2) / (R1 + R2);
892 			Rpar = (R2 * R3) / (R3 + R2);
893 			Vmin = (3300 * Rpar) / (R1 + Rpar);
894 			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
895 
896 			*pValue = Vout;
897 		}
898 	}
899 	return status;
900 }
901 
902 static int load_firmware(struct drxd_state *state, const char *fw_name)
903 {
904 	const struct firmware *fw;
905 
906 	if (request_firmware(&fw, fw_name, state->dev) < 0) {
907 		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
908 		return -EIO;
909 	}
910 
911 	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
912 	if (!state->microcode) {
913 		release_firmware(fw);
914 		return -ENOMEM;
915 	}
916 
917 	state->microcode_length = fw->size;
918 	release_firmware(fw);
919 	return 0;
920 }
921 
922 static int DownloadMicrocode(struct drxd_state *state,
923 			     const u8 *pMCImage, u32 Length)
924 {
925 	u8 *pSrc;
926 	u32 Address;
927 	u16 nBlocks;
928 	u16 BlockSize;
929 	u32 offset = 0;
930 	int i, status = 0;
931 
932 	pSrc = (u8 *) pMCImage;
933 	/* We're not using Flags */
934 	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
935 	pSrc += sizeof(u16);
936 	offset += sizeof(u16);
937 	nBlocks = (pSrc[0] << 8) | pSrc[1];
938 	pSrc += sizeof(u16);
939 	offset += sizeof(u16);
940 
941 	for (i = 0; i < nBlocks; i++) {
942 		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
943 		    (pSrc[2] << 8) | pSrc[3];
944 		pSrc += sizeof(u32);
945 		offset += sizeof(u32);
946 
947 		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
948 		pSrc += sizeof(u16);
949 		offset += sizeof(u16);
950 
951 		/* We're not using Flags */
952 		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
953 		pSrc += sizeof(u16);
954 		offset += sizeof(u16);
955 
956 		/* We're not using BlockCRC */
957 		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
958 		pSrc += sizeof(u16);
959 		offset += sizeof(u16);
960 
961 		status = WriteBlock(state, Address, BlockSize,
962 				    pSrc, DRX_I2C_CLEARCRC);
963 		if (status < 0)
964 			break;
965 		pSrc += BlockSize;
966 		offset += BlockSize;
967 	}
968 
969 	return status;
970 }
971 
972 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
973 {
974 	u32 nrRetries = 0;
975 	int status;
976 
977 	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
978 	if (status < 0)
979 		return status;
980 
981 	do {
982 		nrRetries += 1;
983 		if (nrRetries > DRXD_MAX_RETRIES) {
984 			status = -1;
985 			break;
986 		}
987 		status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
988 	} while (status != 0);
989 
990 	if (status >= 0)
991 		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
992 	return status;
993 }
994 
995 static int HI_CfgCommand(struct drxd_state *state)
996 {
997 	int status = 0;
998 
999 	mutex_lock(&state->mutex);
1000 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1001 	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1002 	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1003 	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1004 	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1005 
1006 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1007 
1008 	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1009 	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1010 		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1011 				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1012 	else
1013 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1014 	mutex_unlock(&state->mutex);
1015 	return status;
1016 }
1017 
1018 static int InitHI(struct drxd_state *state)
1019 {
1020 	state->hi_cfg_wakeup_key = (state->chip_adr);
1021 	/* port/bridge/power down ctrl */
1022 	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1023 	return HI_CfgCommand(state);
1024 }
1025 
1026 static int HI_ResetCommand(struct drxd_state *state)
1027 {
1028 	int status;
1029 
1030 	mutex_lock(&state->mutex);
1031 	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1032 			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1033 	if (status == 0)
1034 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1035 	mutex_unlock(&state->mutex);
1036 	msleep(1);
1037 	return status;
1038 }
1039 
1040 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1041 {
1042 	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1043 	if (bEnableBridge)
1044 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1045 	else
1046 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1047 
1048 	return HI_CfgCommand(state);
1049 }
1050 
1051 #define HI_TR_WRITE      0x9
1052 #define HI_TR_READ       0xA
1053 #define HI_TR_READ_WRITE 0xB
1054 #define HI_TR_BROADCAST  0x4
1055 
1056 #if 0
1057 static int AtomicReadBlock(struct drxd_state *state,
1058 			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1059 {
1060 	int status;
1061 	int i = 0;
1062 
1063 	/* Parameter check */
1064 	if ((!pData) || ((DataSize & 1) != 0))
1065 		return -1;
1066 
1067 	mutex_lock(&state->mutex);
1068 
1069 	do {
1070 		/* Instruct HI to read n bytes */
1071 		/* TODO use proper names forthese egisters */
1072 		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1073 		if (status < 0)
1074 			break;
1075 		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1076 		if (status < 0)
1077 			break;
1078 		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1079 		if (status < 0)
1080 			break;
1081 		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1082 		if (status < 0)
1083 			break;
1084 		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1085 		if (status < 0)
1086 			break;
1087 
1088 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1089 		if (status < 0)
1090 			break;
1091 
1092 	} while (0);
1093 
1094 	if (status >= 0) {
1095 		for (i = 0; i < (DataSize / 2); i += 1) {
1096 			u16 word;
1097 
1098 			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1099 					&word, 0);
1100 			if (status < 0)
1101 				break;
1102 			pData[2 * i] = (u8) (word & 0xFF);
1103 			pData[(2 * i) + 1] = (u8) (word >> 8);
1104 		}
1105 	}
1106 	mutex_unlock(&state->mutex);
1107 	return status;
1108 }
1109 
1110 static int AtomicReadReg32(struct drxd_state *state,
1111 			   u32 Addr, u32 *pData, u8 Flags)
1112 {
1113 	u8 buf[sizeof(u32)];
1114 	int status;
1115 
1116 	if (!pData)
1117 		return -1;
1118 	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1119 	*pData = (((u32) buf[0]) << 0) +
1120 	    (((u32) buf[1]) << 8) +
1121 	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1122 	return status;
1123 }
1124 #endif
1125 
1126 static int StopAllProcessors(struct drxd_state *state)
1127 {
1128 	return Write16(state, HI_COMM_EXEC__A,
1129 		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1130 }
1131 
1132 static int EnableAndResetMB(struct drxd_state *state)
1133 {
1134 	if (state->type_A) {
1135 		/* disable? monitor bus observe @ EC_OC */
1136 		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1137 	}
1138 
1139 	/* do inverse broadcast, followed by explicit write to HI */
1140 	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1141 	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1142 	return 0;
1143 }
1144 
1145 static int InitCC(struct drxd_state *state)
1146 {
1147 	int status = 0;
1148 
1149 	if (state->osc_clock_freq == 0 ||
1150 	    state->osc_clock_freq > 20000 ||
1151 	    (state->osc_clock_freq % 4000) != 0) {
1152 		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1153 		return -1;
1154 	}
1155 
1156 	status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1157 	status |= Write16(state, CC_REG_PLL_MODE__A,
1158 				CC_REG_PLL_MODE_BYPASS_PLL |
1159 				CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1160 	status |= Write16(state, CC_REG_REF_DIVIDE__A,
1161 				state->osc_clock_freq / 4000, 0);
1162 	status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1163 				0);
1164 	status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1165 
1166 	return status;
1167 }
1168 
1169 static int ResetECOD(struct drxd_state *state)
1170 {
1171 	int status = 0;
1172 
1173 	if (state->type_A)
1174 		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1175 	else
1176 		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1177 
1178 	if (!(status < 0))
1179 		status = WriteTable(state, state->m_ResetECRAM);
1180 	if (!(status < 0))
1181 		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1182 	return status;
1183 }
1184 
1185 /* Configure PGA switch */
1186 
1187 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1188 {
1189 	int status;
1190 	u16 AgModeLop = 0;
1191 	u16 AgModeHip = 0;
1192 	do {
1193 		if (pgaSwitch) {
1194 			/* PGA on */
1195 			/* fine gain */
1196 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1197 			if (status < 0)
1198 				break;
1199 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1200 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1201 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1202 			if (status < 0)
1203 				break;
1204 
1205 			/* coarse gain */
1206 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1207 			if (status < 0)
1208 				break;
1209 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1210 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1211 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1212 			if (status < 0)
1213 				break;
1214 
1215 			/* enable fine and coarse gain, enable AAF,
1216 			   no ext resistor */
1217 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1218 			if (status < 0)
1219 				break;
1220 		} else {
1221 			/* PGA off, bypass */
1222 
1223 			/* fine gain */
1224 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1225 			if (status < 0)
1226 				break;
1227 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1228 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1229 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1230 			if (status < 0)
1231 				break;
1232 
1233 			/* coarse gain */
1234 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1235 			if (status < 0)
1236 				break;
1237 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1238 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1239 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1240 			if (status < 0)
1241 				break;
1242 
1243 			/* disable fine and coarse gain, enable AAF,
1244 			   no ext resistor */
1245 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1246 			if (status < 0)
1247 				break;
1248 		}
1249 	} while (0);
1250 	return status;
1251 }
1252 
1253 static int InitFE(struct drxd_state *state)
1254 {
1255 	int status;
1256 
1257 	do {
1258 		status = WriteTable(state, state->m_InitFE_1);
1259 		if (status < 0)
1260 			break;
1261 
1262 		if (state->type_A) {
1263 			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1264 					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1265 					 0);
1266 		} else {
1267 			if (state->PGA)
1268 				status = SetCfgPga(state, 0);
1269 			else
1270 				status =
1271 				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1272 					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1273 					    0);
1274 		}
1275 
1276 		if (status < 0)
1277 			break;
1278 		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1279 		if (status < 0)
1280 			break;
1281 		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1282 		if (status < 0)
1283 			break;
1284 
1285 		status = WriteTable(state, state->m_InitFE_2);
1286 		if (status < 0)
1287 			break;
1288 
1289 	} while (0);
1290 
1291 	return status;
1292 }
1293 
1294 static int InitFT(struct drxd_state *state)
1295 {
1296 	/*
1297 	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1298 	   SC stuff
1299 	 */
1300 	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1301 }
1302 
1303 static int SC_WaitForReady(struct drxd_state *state)
1304 {
1305 	int i;
1306 
1307 	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1308 		int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1309 		if (status == 0)
1310 			return status;
1311 	}
1312 	return -1;
1313 }
1314 
1315 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1316 {
1317 	int status = 0, ret;
1318 	u16 errCode;
1319 
1320 	status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1321 	if (status < 0)
1322 		return status;
1323 
1324 	SC_WaitForReady(state);
1325 
1326 	ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1327 
1328 	if (ret < 0 || errCode == 0xFFFF) {
1329 		printk(KERN_ERR "Command Error\n");
1330 		status = -1;
1331 	}
1332 
1333 	return status;
1334 }
1335 
1336 static int SC_ProcStartCommand(struct drxd_state *state,
1337 			       u16 subCmd, u16 param0, u16 param1)
1338 {
1339 	int ret, status = 0;
1340 	u16 scExec;
1341 
1342 	mutex_lock(&state->mutex);
1343 	do {
1344 		ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1345 		if (ret < 0 || scExec != 1) {
1346 			status = -1;
1347 			break;
1348 		}
1349 		SC_WaitForReady(state);
1350 		status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1351 		status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1352 		status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1353 
1354 		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1355 	} while (0);
1356 	mutex_unlock(&state->mutex);
1357 	return status;
1358 }
1359 
1360 static int SC_SetPrefParamCommand(struct drxd_state *state,
1361 				  u16 subCmd, u16 param0, u16 param1)
1362 {
1363 	int status;
1364 
1365 	mutex_lock(&state->mutex);
1366 	do {
1367 		status = SC_WaitForReady(state);
1368 		if (status < 0)
1369 			break;
1370 		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1371 		if (status < 0)
1372 			break;
1373 		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1374 		if (status < 0)
1375 			break;
1376 		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1377 		if (status < 0)
1378 			break;
1379 
1380 		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1381 		if (status < 0)
1382 			break;
1383 	} while (0);
1384 	mutex_unlock(&state->mutex);
1385 	return status;
1386 }
1387 
1388 #if 0
1389 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1390 {
1391 	int status = 0;
1392 
1393 	mutex_lock(&state->mutex);
1394 	do {
1395 		status = SC_WaitForReady(state);
1396 		if (status < 0)
1397 			break;
1398 		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1399 		if (status < 0)
1400 			break;
1401 		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1402 		if (status < 0)
1403 			break;
1404 	} while (0);
1405 	mutex_unlock(&state->mutex);
1406 	return status;
1407 }
1408 #endif
1409 
1410 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1411 {
1412 	int status;
1413 
1414 	do {
1415 		u16 EcOcRegIprInvMpg = 0;
1416 		u16 EcOcRegOcModeLop = 0;
1417 		u16 EcOcRegOcModeHip = 0;
1418 		u16 EcOcRegOcMpgSio = 0;
1419 
1420 		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1421 
1422 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1423 			if (bEnableOutput) {
1424 				EcOcRegOcModeHip |=
1425 				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1426 			} else
1427 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1428 			EcOcRegOcModeLop |=
1429 			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1430 		} else {
1431 			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1432 
1433 			if (bEnableOutput)
1434 				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1435 			else
1436 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1437 
1438 			/* Don't Insert RS Byte */
1439 			if (state->insert_rs_byte) {
1440 				EcOcRegOcModeLop &=
1441 				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1442 				EcOcRegOcModeHip &=
1443 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1444 				EcOcRegOcModeHip |=
1445 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1446 			} else {
1447 				EcOcRegOcModeLop |=
1448 				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1449 				EcOcRegOcModeHip &=
1450 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1451 				EcOcRegOcModeHip |=
1452 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1453 			}
1454 
1455 			/* Mode = Parallel */
1456 			if (state->enable_parallel)
1457 				EcOcRegOcModeLop &=
1458 				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1459 			else
1460 				EcOcRegOcModeLop |=
1461 				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1462 		}
1463 		/* Invert Data */
1464 		/* EcOcRegIprInvMpg |= 0x00FF; */
1465 		EcOcRegIprInvMpg &= (~(0x00FF));
1466 
1467 		/* Invert Error ( we don't use the pin ) */
1468 		/*  EcOcRegIprInvMpg |= 0x0100; */
1469 		EcOcRegIprInvMpg &= (~(0x0100));
1470 
1471 		/* Invert Start ( we don't use the pin ) */
1472 		/* EcOcRegIprInvMpg |= 0x0200; */
1473 		EcOcRegIprInvMpg &= (~(0x0200));
1474 
1475 		/* Invert Valid ( we don't use the pin ) */
1476 		/* EcOcRegIprInvMpg |= 0x0400; */
1477 		EcOcRegIprInvMpg &= (~(0x0400));
1478 
1479 		/* Invert Clock */
1480 		/* EcOcRegIprInvMpg |= 0x0800; */
1481 		EcOcRegIprInvMpg &= (~(0x0800));
1482 
1483 		/* EcOcRegOcModeLop =0x05; */
1484 		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1485 		if (status < 0)
1486 			break;
1487 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1488 		if (status < 0)
1489 			break;
1490 		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1491 		if (status < 0)
1492 			break;
1493 		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1494 		if (status < 0)
1495 			break;
1496 	} while (0);
1497 	return status;
1498 }
1499 
1500 static int SetDeviceTypeId(struct drxd_state *state)
1501 {
1502 	int status = 0;
1503 	u16 deviceId = 0;
1504 
1505 	do {
1506 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1507 		if (status < 0)
1508 			break;
1509 		/* TODO: why twice? */
1510 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1511 		if (status < 0)
1512 			break;
1513 		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1514 
1515 		state->type_A = 0;
1516 		state->PGA = 0;
1517 		state->diversity = 0;
1518 		if (deviceId == 0) {	/* on A2 only 3975 available */
1519 			state->type_A = 1;
1520 			printk(KERN_INFO "DRX3975D-A2\n");
1521 		} else {
1522 			deviceId >>= 12;
1523 			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1524 			switch (deviceId) {
1525 			case 4:
1526 				state->diversity = 1;
1527 				/* fall through */
1528 			case 3:
1529 			case 7:
1530 				state->PGA = 1;
1531 				break;
1532 			case 6:
1533 				state->diversity = 1;
1534 				/* fall through */
1535 			case 5:
1536 			case 8:
1537 				break;
1538 			default:
1539 				status = -1;
1540 				break;
1541 			}
1542 		}
1543 	} while (0);
1544 
1545 	if (status < 0)
1546 		return status;
1547 
1548 	/* Init Table selection */
1549 	state->m_InitAtomicRead = DRXD_InitAtomicRead;
1550 	state->m_InitSC = DRXD_InitSC;
1551 	state->m_ResetECRAM = DRXD_ResetECRAM;
1552 	if (state->type_A) {
1553 		state->m_ResetCEFR = DRXD_ResetCEFR;
1554 		state->m_InitFE_1 = DRXD_InitFEA2_1;
1555 		state->m_InitFE_2 = DRXD_InitFEA2_2;
1556 		state->m_InitCP = DRXD_InitCPA2;
1557 		state->m_InitCE = DRXD_InitCEA2;
1558 		state->m_InitEQ = DRXD_InitEQA2;
1559 		state->m_InitEC = DRXD_InitECA2;
1560 		if (load_firmware(state, DRX_FW_FILENAME_A2))
1561 			return -EIO;
1562 	} else {
1563 		state->m_ResetCEFR = NULL;
1564 		state->m_InitFE_1 = DRXD_InitFEB1_1;
1565 		state->m_InitFE_2 = DRXD_InitFEB1_2;
1566 		state->m_InitCP = DRXD_InitCPB1;
1567 		state->m_InitCE = DRXD_InitCEB1;
1568 		state->m_InitEQ = DRXD_InitEQB1;
1569 		state->m_InitEC = DRXD_InitECB1;
1570 		if (load_firmware(state, DRX_FW_FILENAME_B1))
1571 			return -EIO;
1572 	}
1573 	if (state->diversity) {
1574 		state->m_InitDiversityFront = DRXD_InitDiversityFront;
1575 		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1576 		state->m_DisableDiversity = DRXD_DisableDiversity;
1577 		state->m_StartDiversityFront = DRXD_StartDiversityFront;
1578 		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1579 		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1580 		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1581 	} else {
1582 		state->m_InitDiversityFront = NULL;
1583 		state->m_InitDiversityEnd = NULL;
1584 		state->m_DisableDiversity = NULL;
1585 		state->m_StartDiversityFront = NULL;
1586 		state->m_StartDiversityEnd = NULL;
1587 		state->m_DiversityDelay8MHZ = NULL;
1588 		state->m_DiversityDelay6MHZ = NULL;
1589 	}
1590 
1591 	return status;
1592 }
1593 
1594 static int CorrectSysClockDeviation(struct drxd_state *state)
1595 {
1596 	int status;
1597 	s32 incr = 0;
1598 	s32 nomincr = 0;
1599 	u32 bandwidth = 0;
1600 	u32 sysClockInHz = 0;
1601 	u32 sysClockFreq = 0;	/* in kHz */
1602 	s16 oscClockDeviation;
1603 	s16 Diff;
1604 
1605 	do {
1606 		/* Retrieve bandwidth and incr, sanity check */
1607 
1608 		/* These accesses should be AtomicReadReg32, but that
1609 		   causes trouble (at least for diversity */
1610 		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1611 		if (status < 0)
1612 			break;
1613 		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1614 		if (status < 0)
1615 			break;
1616 
1617 		if (state->type_A) {
1618 			if ((nomincr - incr < -500) || (nomincr - incr > 500))
1619 				break;
1620 		} else {
1621 			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1622 				break;
1623 		}
1624 
1625 		switch (state->props.bandwidth_hz) {
1626 		case 8000000:
1627 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1628 			break;
1629 		case 7000000:
1630 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1631 			break;
1632 		case 6000000:
1633 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1634 			break;
1635 		default:
1636 			return -1;
1637 			break;
1638 		}
1639 
1640 		/* Compute new sysclock value
1641 		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1642 		incr += (1 << 23);
1643 		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1644 		sysClockFreq = (u32) (sysClockInHz / 1000);
1645 		/* rounding */
1646 		if ((sysClockInHz % 1000) > 500)
1647 			sysClockFreq++;
1648 
1649 		/* Compute clock deviation in ppm */
1650 		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1651 					     (s32)
1652 					     (state->expected_sys_clock_freq)) *
1653 					    1000000L) /
1654 					   (s32)
1655 					   (state->expected_sys_clock_freq));
1656 
1657 		Diff = oscClockDeviation - state->osc_clock_deviation;
1658 		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1659 		if (Diff >= -200 && Diff <= 200) {
1660 			state->sys_clock_freq = (u16) sysClockFreq;
1661 			if (oscClockDeviation != state->osc_clock_deviation) {
1662 				if (state->config.osc_deviation) {
1663 					state->config.osc_deviation(state->priv,
1664 								    oscClockDeviation,
1665 								    1);
1666 					state->osc_clock_deviation =
1667 					    oscClockDeviation;
1668 				}
1669 			}
1670 			/* switch OFF SRMM scan in SC */
1671 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1672 			if (status < 0)
1673 				break;
1674 			/* overrule FE_IF internal value for
1675 			   proper re-locking */
1676 			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1677 			if (status < 0)
1678 				break;
1679 			state->cscd_state = CSCD_SAVED;
1680 		}
1681 	} while (0);
1682 
1683 	return status;
1684 }
1685 
1686 static int DRX_Stop(struct drxd_state *state)
1687 {
1688 	int status;
1689 
1690 	if (state->drxd_state != DRXD_STARTED)
1691 		return 0;
1692 
1693 	do {
1694 		if (state->cscd_state != CSCD_SAVED) {
1695 			u32 lock;
1696 			status = DRX_GetLockStatus(state, &lock);
1697 			if (status < 0)
1698 				break;
1699 		}
1700 
1701 		status = StopOC(state);
1702 		if (status < 0)
1703 			break;
1704 
1705 		state->drxd_state = DRXD_STOPPED;
1706 
1707 		status = ConfigureMPEGOutput(state, 0);
1708 		if (status < 0)
1709 			break;
1710 
1711 		if (state->type_A) {
1712 			/* Stop relevant processors off the device */
1713 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1714 			if (status < 0)
1715 				break;
1716 
1717 			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1718 			if (status < 0)
1719 				break;
1720 			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1721 			if (status < 0)
1722 				break;
1723 		} else {
1724 			/* Stop all processors except HI & CC & FE */
1725 			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726 			if (status < 0)
1727 				break;
1728 			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729 			if (status < 0)
1730 				break;
1731 			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1732 			if (status < 0)
1733 				break;
1734 			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1735 			if (status < 0)
1736 				break;
1737 			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1738 			if (status < 0)
1739 				break;
1740 			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1741 			if (status < 0)
1742 				break;
1743 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1744 			if (status < 0)
1745 				break;
1746 		}
1747 
1748 	} while (0);
1749 	return status;
1750 }
1751 
1752 #if 0	/* Currently unused */
1753 static int SetOperationMode(struct drxd_state *state, int oMode)
1754 {
1755 	int status;
1756 
1757 	do {
1758 		if (state->drxd_state != DRXD_STOPPED) {
1759 			status = -1;
1760 			break;
1761 		}
1762 
1763 		if (oMode == state->operation_mode) {
1764 			status = 0;
1765 			break;
1766 		}
1767 
1768 		if (oMode != OM_Default && !state->diversity) {
1769 			status = -1;
1770 			break;
1771 		}
1772 
1773 		switch (oMode) {
1774 		case OM_DVBT_Diversity_Front:
1775 			status = WriteTable(state, state->m_InitDiversityFront);
1776 			break;
1777 		case OM_DVBT_Diversity_End:
1778 			status = WriteTable(state, state->m_InitDiversityEnd);
1779 			break;
1780 		case OM_Default:
1781 			/* We need to check how to
1782 			   get DRXD out of diversity */
1783 		default:
1784 			status = WriteTable(state, state->m_DisableDiversity);
1785 			break;
1786 		}
1787 	} while (0);
1788 
1789 	if (!status)
1790 		state->operation_mode = oMode;
1791 	return status;
1792 }
1793 #endif
1794 
1795 static int StartDiversity(struct drxd_state *state)
1796 {
1797 	int status = 0;
1798 	u16 rcControl;
1799 
1800 	do {
1801 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1802 			status = WriteTable(state, state->m_StartDiversityFront);
1803 			if (status < 0)
1804 				break;
1805 		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
1806 			status = WriteTable(state, state->m_StartDiversityEnd);
1807 			if (status < 0)
1808 				break;
1809 			if (state->props.bandwidth_hz == 8000000) {
1810 				status = WriteTable(state, state->m_DiversityDelay8MHZ);
1811 				if (status < 0)
1812 					break;
1813 			} else {
1814 				status = WriteTable(state, state->m_DiversityDelay6MHZ);
1815 				if (status < 0)
1816 					break;
1817 			}
1818 
1819 			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1820 			if (status < 0)
1821 				break;
1822 			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1823 			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1824 			    /*  combining enabled */
1825 			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1826 			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1827 			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1828 			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1829 			if (status < 0)
1830 				break;
1831 		}
1832 	} while (0);
1833 	return status;
1834 }
1835 
1836 static int SetFrequencyShift(struct drxd_state *state,
1837 			     u32 offsetFreq, int channelMirrored)
1838 {
1839 	int negativeShift = (state->tuner_mirrors == channelMirrored);
1840 
1841 	/* Handle all mirroring
1842 	 *
1843 	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1844 	 * feFsRegAddInc to 28 bits below
1845 	 * (if the result before masking is more than 28 bits, this means
1846 	 *  that the ADC is mirroring.
1847 	 * The masking is in fact the aliasing of the ADC)
1848 	 *
1849 	 */
1850 
1851 	/* Compute register value, unsigned computation */
1852 	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1853 					 offsetFreq,
1854 					 1 << 28, state->sys_clock_freq);
1855 	/* Remove integer part */
1856 	state->fe_fs_add_incr &= 0x0FFFFFFFL;
1857 	if (negativeShift)
1858 		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1859 
1860 	/* Save the frequency shift without tunerOffset compensation
1861 	   for CtrlGetChannel. */
1862 	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1863 					     1 << 28, state->sys_clock_freq);
1864 	/* Remove integer part */
1865 	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1866 	if (negativeShift)
1867 		state->org_fe_fs_add_incr = ((1L << 28) -
1868 					     state->org_fe_fs_add_incr);
1869 
1870 	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1871 		       state->fe_fs_add_incr, 0);
1872 }
1873 
1874 static int SetCfgNoiseCalibration(struct drxd_state *state,
1875 				  struct SNoiseCal *noiseCal)
1876 {
1877 	u16 beOptEna;
1878 	int status = 0;
1879 
1880 	do {
1881 		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1882 		if (status < 0)
1883 			break;
1884 		if (noiseCal->cpOpt) {
1885 			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1886 		} else {
1887 			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1888 			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1889 			if (status < 0)
1890 				break;
1891 		}
1892 		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1893 		if (status < 0)
1894 			break;
1895 
1896 		if (!state->type_A) {
1897 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1898 			if (status < 0)
1899 				break;
1900 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1901 			if (status < 0)
1902 				break;
1903 		}
1904 	} while (0);
1905 
1906 	return status;
1907 }
1908 
1909 static int DRX_Start(struct drxd_state *state, s32 off)
1910 {
1911 	struct dtv_frontend_properties *p = &state->props;
1912 	int status;
1913 
1914 	u16 transmissionParams = 0;
1915 	u16 operationMode = 0;
1916 	u16 qpskTdTpsPwr = 0;
1917 	u16 qam16TdTpsPwr = 0;
1918 	u16 qam64TdTpsPwr = 0;
1919 	u32 feIfIncr = 0;
1920 	u32 bandwidth = 0;
1921 	int mirrorFreqSpect;
1922 
1923 	u16 qpskSnCeGain = 0;
1924 	u16 qam16SnCeGain = 0;
1925 	u16 qam64SnCeGain = 0;
1926 	u16 qpskIsGainMan = 0;
1927 	u16 qam16IsGainMan = 0;
1928 	u16 qam64IsGainMan = 0;
1929 	u16 qpskIsGainExp = 0;
1930 	u16 qam16IsGainExp = 0;
1931 	u16 qam64IsGainExp = 0;
1932 	u16 bandwidthParam = 0;
1933 
1934 	if (off < 0)
1935 		off = (off - 500) / 1000;
1936 	else
1937 		off = (off + 500) / 1000;
1938 
1939 	do {
1940 		if (state->drxd_state != DRXD_STOPPED)
1941 			return -1;
1942 		status = ResetECOD(state);
1943 		if (status < 0)
1944 			break;
1945 		if (state->type_A) {
1946 			status = InitSC(state);
1947 			if (status < 0)
1948 				break;
1949 		} else {
1950 			status = InitFT(state);
1951 			if (status < 0)
1952 				break;
1953 			status = InitCP(state);
1954 			if (status < 0)
1955 				break;
1956 			status = InitCE(state);
1957 			if (status < 0)
1958 				break;
1959 			status = InitEQ(state);
1960 			if (status < 0)
1961 				break;
1962 			status = InitSC(state);
1963 			if (status < 0)
1964 				break;
1965 		}
1966 
1967 		/* Restore current IF & RF AGC settings */
1968 
1969 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
1970 		if (status < 0)
1971 			break;
1972 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1973 		if (status < 0)
1974 			break;
1975 
1976 		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1977 
1978 		switch (p->transmission_mode) {
1979 		default:	/* Not set, detect it automatically */
1980 			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1981 			/* fall through - try first guess DRX_FFTMODE_8K */
1982 		case TRANSMISSION_MODE_8K:
1983 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1984 			if (state->type_A) {
1985 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1986 				if (status < 0)
1987 					break;
1988 				qpskSnCeGain = 99;
1989 				qam16SnCeGain = 83;
1990 				qam64SnCeGain = 67;
1991 			}
1992 			break;
1993 		case TRANSMISSION_MODE_2K:
1994 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1995 			if (state->type_A) {
1996 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1997 				if (status < 0)
1998 					break;
1999 				qpskSnCeGain = 97;
2000 				qam16SnCeGain = 71;
2001 				qam64SnCeGain = 65;
2002 			}
2003 			break;
2004 		}
2005 
2006 		switch (p->guard_interval) {
2007 		case GUARD_INTERVAL_1_4:
2008 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2009 			break;
2010 		case GUARD_INTERVAL_1_8:
2011 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2012 			break;
2013 		case GUARD_INTERVAL_1_16:
2014 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2015 			break;
2016 		case GUARD_INTERVAL_1_32:
2017 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2018 			break;
2019 		default:	/* Not set, detect it automatically */
2020 			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2021 			/* try first guess 1/4 */
2022 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2023 			break;
2024 		}
2025 
2026 		switch (p->hierarchy) {
2027 		case HIERARCHY_1:
2028 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2029 			if (state->type_A) {
2030 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2031 				if (status < 0)
2032 					break;
2033 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2034 				if (status < 0)
2035 					break;
2036 
2037 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2038 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2039 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2040 
2041 				qpskIsGainMan =
2042 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2043 				qam16IsGainMan =
2044 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2045 				qam64IsGainMan =
2046 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2047 
2048 				qpskIsGainExp =
2049 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2050 				qam16IsGainExp =
2051 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2052 				qam64IsGainExp =
2053 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2054 			}
2055 			break;
2056 
2057 		case HIERARCHY_2:
2058 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2059 			if (state->type_A) {
2060 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2061 				if (status < 0)
2062 					break;
2063 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2064 				if (status < 0)
2065 					break;
2066 
2067 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2068 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2069 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2070 
2071 				qpskIsGainMan =
2072 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2073 				qam16IsGainMan =
2074 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2075 				qam64IsGainMan =
2076 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2077 
2078 				qpskIsGainExp =
2079 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2080 				qam16IsGainExp =
2081 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2082 				qam64IsGainExp =
2083 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2084 			}
2085 			break;
2086 		case HIERARCHY_4:
2087 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2088 			if (state->type_A) {
2089 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2090 				if (status < 0)
2091 					break;
2092 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2093 				if (status < 0)
2094 					break;
2095 
2096 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2097 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2098 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2099 
2100 				qpskIsGainMan =
2101 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2102 				qam16IsGainMan =
2103 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2104 				qam64IsGainMan =
2105 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2106 
2107 				qpskIsGainExp =
2108 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2109 				qam16IsGainExp =
2110 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2111 				qam64IsGainExp =
2112 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2113 			}
2114 			break;
2115 		case HIERARCHY_AUTO:
2116 		default:
2117 			/* Not set, detect it automatically, start with none */
2118 			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2119 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2120 			if (state->type_A) {
2121 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2122 				if (status < 0)
2123 					break;
2124 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2125 				if (status < 0)
2126 					break;
2127 
2128 				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2129 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2130 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2131 
2132 				qpskIsGainMan =
2133 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2134 				qam16IsGainMan =
2135 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2136 				qam64IsGainMan =
2137 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2138 
2139 				qpskIsGainExp =
2140 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2141 				qam16IsGainExp =
2142 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2143 				qam64IsGainExp =
2144 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2145 			}
2146 			break;
2147 		}
2148 		if (status < 0)
2149 			break;
2150 
2151 		switch (p->modulation) {
2152 		default:
2153 			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2154 			/* fall through - try first guess DRX_CONSTELLATION_QAM64 */
2155 		case QAM_64:
2156 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2157 			if (state->type_A) {
2158 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2159 				if (status < 0)
2160 					break;
2161 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2162 				if (status < 0)
2163 					break;
2164 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2165 				if (status < 0)
2166 					break;
2167 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2168 				if (status < 0)
2169 					break;
2170 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2171 				if (status < 0)
2172 					break;
2173 
2174 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2175 				if (status < 0)
2176 					break;
2177 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2178 				if (status < 0)
2179 					break;
2180 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2181 				if (status < 0)
2182 					break;
2183 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2184 				if (status < 0)
2185 					break;
2186 			}
2187 			break;
2188 		case QPSK:
2189 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2190 			if (state->type_A) {
2191 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2192 				if (status < 0)
2193 					break;
2194 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2195 				if (status < 0)
2196 					break;
2197 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2198 				if (status < 0)
2199 					break;
2200 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2201 				if (status < 0)
2202 					break;
2203 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2204 				if (status < 0)
2205 					break;
2206 
2207 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2208 				if (status < 0)
2209 					break;
2210 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2211 				if (status < 0)
2212 					break;
2213 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2214 				if (status < 0)
2215 					break;
2216 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2217 				if (status < 0)
2218 					break;
2219 			}
2220 			break;
2221 
2222 		case QAM_16:
2223 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2224 			if (state->type_A) {
2225 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2226 				if (status < 0)
2227 					break;
2228 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2229 				if (status < 0)
2230 					break;
2231 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2232 				if (status < 0)
2233 					break;
2234 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2235 				if (status < 0)
2236 					break;
2237 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2238 				if (status < 0)
2239 					break;
2240 
2241 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2242 				if (status < 0)
2243 					break;
2244 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2245 				if (status < 0)
2246 					break;
2247 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2248 				if (status < 0)
2249 					break;
2250 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2251 				if (status < 0)
2252 					break;
2253 			}
2254 			break;
2255 
2256 		}
2257 		if (status < 0)
2258 			break;
2259 
2260 		switch (DRX_CHANNEL_HIGH) {
2261 		default:
2262 		case DRX_CHANNEL_AUTO:
2263 		case DRX_CHANNEL_LOW:
2264 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2265 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2266 			break;
2267 		case DRX_CHANNEL_HIGH:
2268 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2269 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2270 			break;
2271 		}
2272 
2273 		switch (p->code_rate_HP) {
2274 		case FEC_1_2:
2275 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2276 			if (state->type_A)
2277 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2278 			break;
2279 		default:
2280 			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2281 			/* fall through */
2282 		case FEC_2_3:
2283 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2284 			if (state->type_A)
2285 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2286 			break;
2287 		case FEC_3_4:
2288 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2289 			if (state->type_A)
2290 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2291 			break;
2292 		case FEC_5_6:
2293 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2294 			if (state->type_A)
2295 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2296 			break;
2297 		case FEC_7_8:
2298 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2299 			if (state->type_A)
2300 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2301 			break;
2302 		}
2303 		if (status < 0)
2304 			break;
2305 
2306 		/* First determine real bandwidth (Hz) */
2307 		/* Also set delay for impulse noise cruncher (only A2) */
2308 		/* Also set parameters for EC_OC fix, note
2309 		   EC_OC_REG_TMD_HIL_MAR is changed
2310 		   by SC for fix for some 8K,1/8 guard but is restored by
2311 		   InitEC and ResetEC
2312 		   functions */
2313 		switch (p->bandwidth_hz) {
2314 		case 0:
2315 			p->bandwidth_hz = 8000000;
2316 			/* fall through */
2317 		case 8000000:
2318 			/* (64/7)*(8/8)*1000000 */
2319 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2320 
2321 			bandwidthParam = 0;
2322 			status = Write16(state,
2323 					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2324 			break;
2325 		case 7000000:
2326 			/* (64/7)*(7/8)*1000000 */
2327 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2328 			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
2329 			status = Write16(state,
2330 					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2331 			break;
2332 		case 6000000:
2333 			/* (64/7)*(6/8)*1000000 */
2334 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2335 			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
2336 			status = Write16(state,
2337 					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2338 			break;
2339 		default:
2340 			status = -EINVAL;
2341 		}
2342 		if (status < 0)
2343 			break;
2344 
2345 		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2346 		if (status < 0)
2347 			break;
2348 
2349 		{
2350 			u16 sc_config;
2351 			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2352 			if (status < 0)
2353 				break;
2354 
2355 			/* enable SLAVE mode in 2k 1/32 to
2356 			   prevent timing change glitches */
2357 			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2358 			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
2359 				/* enable slave */
2360 				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2361 			} else {
2362 				/* disable slave */
2363 				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2364 			}
2365 			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2366 			if (status < 0)
2367 				break;
2368 		}
2369 
2370 		status = SetCfgNoiseCalibration(state, &state->noise_cal);
2371 		if (status < 0)
2372 			break;
2373 
2374 		if (state->cscd_state == CSCD_INIT) {
2375 			/* switch on SRMM scan in SC */
2376 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2377 			if (status < 0)
2378 				break;
2379 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2380 			state->cscd_state = CSCD_SET;
2381 		}
2382 
2383 		/* Now compute FE_IF_REG_INCR */
2384 		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2385 		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2386 		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2387 				    (1ULL << 21), bandwidth) - (1 << 23);
2388 		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2389 		if (status < 0)
2390 			break;
2391 		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2392 		if (status < 0)
2393 			break;
2394 		/* Bandwidth setting done */
2395 
2396 		/* Mirror & frequency offset */
2397 		SetFrequencyShift(state, off, mirrorFreqSpect);
2398 
2399 		/* Start SC, write channel settings to SC */
2400 
2401 		/* Enable SC after setting all other parameters */
2402 		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2403 		if (status < 0)
2404 			break;
2405 		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2406 		if (status < 0)
2407 			break;
2408 
2409 		/* Write SC parameter registers, operation mode */
2410 #if 1
2411 		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2412 				 SC_RA_RAM_OP_AUTO_GUARD__M |
2413 				 SC_RA_RAM_OP_AUTO_CONST__M |
2414 				 SC_RA_RAM_OP_AUTO_HIER__M |
2415 				 SC_RA_RAM_OP_AUTO_RATE__M);
2416 #endif
2417 		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2418 		if (status < 0)
2419 			break;
2420 
2421 		/* Start correct processes to get in lock */
2422 		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2423 		if (status < 0)
2424 			break;
2425 
2426 		status = StartOC(state);
2427 		if (status < 0)
2428 			break;
2429 
2430 		if (state->operation_mode != OM_Default) {
2431 			status = StartDiversity(state);
2432 			if (status < 0)
2433 				break;
2434 		}
2435 
2436 		state->drxd_state = DRXD_STARTED;
2437 	} while (0);
2438 
2439 	return status;
2440 }
2441 
2442 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2443 {
2444 	u32 ulRfAgcOutputLevel = 0xffffffff;
2445 	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
2446 	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
2447 	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
2448 	u32 ulRfAgcSpeed = 0;	/* Currently unused */
2449 	u32 ulRfAgcMode = 0;	/*2;   Off */
2450 	u32 ulRfAgcR1 = 820;
2451 	u32 ulRfAgcR2 = 2200;
2452 	u32 ulRfAgcR3 = 150;
2453 	u32 ulIfAgcMode = 0;	/* Auto */
2454 	u32 ulIfAgcOutputLevel = 0xffffffff;
2455 	u32 ulIfAgcSettleLevel = 0xffffffff;
2456 	u32 ulIfAgcMinLevel = 0xffffffff;
2457 	u32 ulIfAgcMaxLevel = 0xffffffff;
2458 	u32 ulIfAgcSpeed = 0xffffffff;
2459 	u32 ulIfAgcR1 = 820;
2460 	u32 ulIfAgcR2 = 2200;
2461 	u32 ulIfAgcR3 = 150;
2462 	u32 ulClock = state->config.clock;
2463 	u32 ulSerialMode = 0;
2464 	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
2465 	u32 ulHiI2cDelay = HI_I2C_DELAY;
2466 	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2467 	u32 ulHiI2cPatch = 0;
2468 	u32 ulEnvironment = APPENV_PORTABLE;
2469 	u32 ulEnvironmentDiversity = APPENV_MOBILE;
2470 	u32 ulIFFilter = IFFILTER_SAW;
2471 
2472 	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2473 	state->if_agc_cfg.outputLevel = 0;
2474 	state->if_agc_cfg.settleLevel = 140;
2475 	state->if_agc_cfg.minOutputLevel = 0;
2476 	state->if_agc_cfg.maxOutputLevel = 1023;
2477 	state->if_agc_cfg.speed = 904;
2478 
2479 	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2480 		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2481 		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2482 	}
2483 
2484 	if (ulIfAgcMode == 0 &&
2485 	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2486 	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2487 	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2488 	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2489 		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2490 		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2491 		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2492 		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2493 		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2494 	}
2495 
2496 	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2497 	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2498 	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2499 
2500 	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2501 	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2502 	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2503 
2504 	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2505 	/* rest of the RFAgcCfg structure currently unused */
2506 	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2507 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2508 		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2509 	}
2510 
2511 	if (ulRfAgcMode == 0 &&
2512 	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2513 	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2514 	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2515 	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2516 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2517 		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2518 		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2519 		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2520 		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2521 	}
2522 
2523 	if (ulRfAgcMode == 2)
2524 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2525 
2526 	if (ulEnvironment <= 2)
2527 		state->app_env_default = (enum app_env)
2528 		    (ulEnvironment);
2529 	if (ulEnvironmentDiversity <= 2)
2530 		state->app_env_diversity = (enum app_env)
2531 		    (ulEnvironmentDiversity);
2532 
2533 	if (ulIFFilter == IFFILTER_DISCRETE) {
2534 		/* discrete filter */
2535 		state->noise_cal.cpOpt = 0;
2536 		state->noise_cal.cpNexpOfs = 40;
2537 		state->noise_cal.tdCal2k = -40;
2538 		state->noise_cal.tdCal8k = -24;
2539 	} else {
2540 		/* SAW filter */
2541 		state->noise_cal.cpOpt = 1;
2542 		state->noise_cal.cpNexpOfs = 0;
2543 		state->noise_cal.tdCal2k = -21;
2544 		state->noise_cal.tdCal8k = -24;
2545 	}
2546 	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2547 
2548 	state->chip_adr = (state->config.demod_address << 1) | 1;
2549 	switch (ulHiI2cPatch) {
2550 	case 1:
2551 		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2552 		break;
2553 	case 3:
2554 		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2555 		break;
2556 	default:
2557 		state->m_HiI2cPatch = NULL;
2558 	}
2559 
2560 	/* modify tuner and clock attributes */
2561 	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2562 	/* expected system clock frequency in kHz */
2563 	state->expected_sys_clock_freq = 48000;
2564 	/* real system clock frequency in kHz */
2565 	state->sys_clock_freq = 48000;
2566 	state->osc_clock_freq = (u16) ulClock;
2567 	state->osc_clock_deviation = 0;
2568 	state->cscd_state = CSCD_INIT;
2569 	state->drxd_state = DRXD_UNINITIALIZED;
2570 
2571 	state->PGA = 0;
2572 	state->type_A = 0;
2573 	state->tuner_mirrors = 0;
2574 
2575 	/* modify MPEG output attributes */
2576 	state->insert_rs_byte = state->config.insert_rs_byte;
2577 	state->enable_parallel = (ulSerialMode != 1);
2578 
2579 	/* Timing div, 250ns/Psys */
2580 	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2581 
2582 	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2583 					  ulHiI2cDelay) / 1000;
2584 	/* Bridge delay, uses oscilator clock */
2585 	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2586 	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2587 					    ulHiI2cBridgeDelay) / 1000;
2588 
2589 	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2590 	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2591 	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2592 	return 0;
2593 }
2594 
2595 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2596 {
2597 	int status = 0;
2598 	u32 driverVersion;
2599 
2600 	if (state->init_done)
2601 		return 0;
2602 
2603 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2604 
2605 	do {
2606 		state->operation_mode = OM_Default;
2607 
2608 		status = SetDeviceTypeId(state);
2609 		if (status < 0)
2610 			break;
2611 
2612 		/* Apply I2c address patch to B1 */
2613 		if (!state->type_A && state->m_HiI2cPatch) {
2614 			status = WriteTable(state, state->m_HiI2cPatch);
2615 			if (status < 0)
2616 				break;
2617 		}
2618 
2619 		if (state->type_A) {
2620 			/* HI firmware patch for UIO readout,
2621 			   avoid clearing of result register */
2622 			status = Write16(state, 0x43012D, 0x047f, 0);
2623 			if (status < 0)
2624 				break;
2625 		}
2626 
2627 		status = HI_ResetCommand(state);
2628 		if (status < 0)
2629 			break;
2630 
2631 		status = StopAllProcessors(state);
2632 		if (status < 0)
2633 			break;
2634 		status = InitCC(state);
2635 		if (status < 0)
2636 			break;
2637 
2638 		state->osc_clock_deviation = 0;
2639 
2640 		if (state->config.osc_deviation)
2641 			state->osc_clock_deviation =
2642 			    state->config.osc_deviation(state->priv, 0, 0);
2643 		{
2644 			/* Handle clock deviation */
2645 			s32 devB;
2646 			s32 devA = (s32) (state->osc_clock_deviation) *
2647 			    (s32) (state->expected_sys_clock_freq);
2648 			/* deviation in kHz */
2649 			s32 deviation = (devA / (1000000L));
2650 			/* rounding, signed */
2651 			if (devA > 0)
2652 				devB = (2);
2653 			else
2654 				devB = (-2);
2655 			if ((devB * (devA % 1000000L) > 1000000L)) {
2656 				/* add +1 or -1 */
2657 				deviation += (devB / 2);
2658 			}
2659 
2660 			state->sys_clock_freq =
2661 			    (u16) ((state->expected_sys_clock_freq) +
2662 				   deviation);
2663 		}
2664 		status = InitHI(state);
2665 		if (status < 0)
2666 			break;
2667 		status = InitAtomicRead(state);
2668 		if (status < 0)
2669 			break;
2670 
2671 		status = EnableAndResetMB(state);
2672 		if (status < 0)
2673 			break;
2674 		if (state->type_A) {
2675 			status = ResetCEFR(state);
2676 			if (status < 0)
2677 				break;
2678 		}
2679 		if (fw) {
2680 			status = DownloadMicrocode(state, fw, fw_size);
2681 			if (status < 0)
2682 				break;
2683 		} else {
2684 			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2685 			if (status < 0)
2686 				break;
2687 		}
2688 
2689 		if (state->PGA) {
2690 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2691 			SetCfgPga(state, 0);	/* PGA = 0 dB */
2692 		} else {
2693 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2694 		}
2695 
2696 		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2697 
2698 		status = InitFE(state);
2699 		if (status < 0)
2700 			break;
2701 		status = InitFT(state);
2702 		if (status < 0)
2703 			break;
2704 		status = InitCP(state);
2705 		if (status < 0)
2706 			break;
2707 		status = InitCE(state);
2708 		if (status < 0)
2709 			break;
2710 		status = InitEQ(state);
2711 		if (status < 0)
2712 			break;
2713 		status = InitEC(state);
2714 		if (status < 0)
2715 			break;
2716 		status = InitSC(state);
2717 		if (status < 0)
2718 			break;
2719 
2720 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
2721 		if (status < 0)
2722 			break;
2723 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2724 		if (status < 0)
2725 			break;
2726 
2727 		state->cscd_state = CSCD_INIT;
2728 		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2729 		if (status < 0)
2730 			break;
2731 		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2732 		if (status < 0)
2733 			break;
2734 
2735 		driverVersion = (((VERSION_MAJOR / 10) << 4) +
2736 				 (VERSION_MAJOR % 10)) << 24;
2737 		driverVersion += (((VERSION_MINOR / 10) << 4) +
2738 				  (VERSION_MINOR % 10)) << 16;
2739 		driverVersion += ((VERSION_PATCH / 1000) << 12) +
2740 		    ((VERSION_PATCH / 100) << 8) +
2741 		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2742 
2743 		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2744 		if (status < 0)
2745 			break;
2746 
2747 		status = StopOC(state);
2748 		if (status < 0)
2749 			break;
2750 
2751 		state->drxd_state = DRXD_STOPPED;
2752 		state->init_done = 1;
2753 		status = 0;
2754 	} while (0);
2755 	return status;
2756 }
2757 
2758 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2759 {
2760 	DRX_GetLockStatus(state, pLockStatus);
2761 
2762 	/*if (*pLockStatus&DRX_LOCK_MPEG) */
2763 	if (*pLockStatus & DRX_LOCK_FEC) {
2764 		ConfigureMPEGOutput(state, 1);
2765 		/* Get status again, in case we have MPEG lock now */
2766 		/*DRX_GetLockStatus(state, pLockStatus); */
2767 	}
2768 
2769 	return 0;
2770 }
2771 
2772 /****************************************************************************/
2773 /****************************************************************************/
2774 /****************************************************************************/
2775 
2776 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2777 {
2778 	struct drxd_state *state = fe->demodulator_priv;
2779 	u32 value;
2780 	int res;
2781 
2782 	res = ReadIFAgc(state, &value);
2783 	if (res < 0)
2784 		*strength = 0;
2785 	else
2786 		*strength = 0xffff - (value << 4);
2787 	return 0;
2788 }
2789 
2790 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2791 {
2792 	struct drxd_state *state = fe->demodulator_priv;
2793 	u32 lock;
2794 
2795 	DRXD_status(state, &lock);
2796 	*status = 0;
2797 	/* No MPEG lock in V255 firmware, bug ? */
2798 #if 1
2799 	if (lock & DRX_LOCK_MPEG)
2800 		*status |= FE_HAS_LOCK;
2801 #else
2802 	if (lock & DRX_LOCK_FEC)
2803 		*status |= FE_HAS_LOCK;
2804 #endif
2805 	if (lock & DRX_LOCK_FEC)
2806 		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2807 	if (lock & DRX_LOCK_DEMOD)
2808 		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2809 
2810 	return 0;
2811 }
2812 
2813 static int drxd_init(struct dvb_frontend *fe)
2814 {
2815 	struct drxd_state *state = fe->demodulator_priv;
2816 
2817 	return DRXD_init(state, NULL, 0);
2818 }
2819 
2820 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2821 {
2822 	struct drxd_state *state = fe->demodulator_priv;
2823 
2824 	if (state->config.disable_i2c_gate_ctrl == 1)
2825 		return 0;
2826 
2827 	return DRX_ConfigureI2CBridge(state, onoff);
2828 }
2829 
2830 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2831 				  struct dvb_frontend_tune_settings *sets)
2832 {
2833 	sets->min_delay_ms = 10000;
2834 	sets->max_drift = 0;
2835 	sets->step_size = 0;
2836 	return 0;
2837 }
2838 
2839 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2840 {
2841 	*ber = 0;
2842 	return 0;
2843 }
2844 
2845 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2846 {
2847 	*snr = 0;
2848 	return 0;
2849 }
2850 
2851 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2852 {
2853 	*ucblocks = 0;
2854 	return 0;
2855 }
2856 
2857 static int drxd_sleep(struct dvb_frontend *fe)
2858 {
2859 	struct drxd_state *state = fe->demodulator_priv;
2860 
2861 	ConfigureMPEGOutput(state, 0);
2862 	return 0;
2863 }
2864 
2865 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2866 {
2867 	return drxd_config_i2c(fe, enable);
2868 }
2869 
2870 static int drxd_set_frontend(struct dvb_frontend *fe)
2871 {
2872 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2873 	struct drxd_state *state = fe->demodulator_priv;
2874 	s32 off = 0;
2875 
2876 	state->props = *p;
2877 	DRX_Stop(state);
2878 
2879 	if (fe->ops.tuner_ops.set_params) {
2880 		fe->ops.tuner_ops.set_params(fe);
2881 		if (fe->ops.i2c_gate_ctrl)
2882 			fe->ops.i2c_gate_ctrl(fe, 0);
2883 	}
2884 
2885 	msleep(200);
2886 
2887 	return DRX_Start(state, off);
2888 }
2889 
2890 static void drxd_release(struct dvb_frontend *fe)
2891 {
2892 	struct drxd_state *state = fe->demodulator_priv;
2893 
2894 	kfree(state);
2895 }
2896 
2897 static const struct dvb_frontend_ops drxd_ops = {
2898 	.delsys = { SYS_DVBT},
2899 	.info = {
2900 		 .name = "Micronas DRXD DVB-T",
2901 		 .frequency_min_hz =  47125 * kHz,
2902 		 .frequency_max_hz = 855250 * kHz,
2903 		 .frequency_stepsize_hz = 166667,
2904 		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2905 		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2906 		 FE_CAN_FEC_AUTO |
2907 		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2908 		 FE_CAN_QAM_AUTO |
2909 		 FE_CAN_TRANSMISSION_MODE_AUTO |
2910 		 FE_CAN_GUARD_INTERVAL_AUTO |
2911 		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2912 
2913 	.release = drxd_release,
2914 	.init = drxd_init,
2915 	.sleep = drxd_sleep,
2916 	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2917 
2918 	.set_frontend = drxd_set_frontend,
2919 	.get_tune_settings = drxd_get_tune_settings,
2920 
2921 	.read_status = drxd_read_status,
2922 	.read_ber = drxd_read_ber,
2923 	.read_signal_strength = drxd_read_signal_strength,
2924 	.read_snr = drxd_read_snr,
2925 	.read_ucblocks = drxd_read_ucblocks,
2926 };
2927 
2928 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2929 				 void *priv, struct i2c_adapter *i2c,
2930 				 struct device *dev)
2931 {
2932 	struct drxd_state *state = NULL;
2933 
2934 	state = kzalloc(sizeof(*state), GFP_KERNEL);
2935 	if (!state)
2936 		return NULL;
2937 
2938 	state->ops = drxd_ops;
2939 	state->dev = dev;
2940 	state->config = *config;
2941 	state->i2c = i2c;
2942 	state->priv = priv;
2943 
2944 	mutex_init(&state->mutex);
2945 
2946 	if (Read16(state, 0, NULL, 0) < 0)
2947 		goto error;
2948 
2949 	state->frontend.ops = drxd_ops;
2950 	state->frontend.demodulator_priv = state;
2951 	ConfigureMPEGOutput(state, 0);
2952 	/* add few initialization to allow gate control */
2953 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2954 	InitHI(state);
2955 
2956 	return &state->frontend;
2957 
2958 error:
2959 	printk(KERN_ERR "drxd: not found\n");
2960 	kfree(state);
2961 	return NULL;
2962 }
2963 EXPORT_SYMBOL(drxd_attach);
2964 
2965 MODULE_DESCRIPTION("DRXD driver");
2966 MODULE_AUTHOR("Micronas");
2967 MODULE_LICENSE("GPL");
2968