1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA
21  * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <linux/i2c.h>
31 #include <asm/div64.h>
32 
33 #include "dvb_frontend.h"
34 #include "drxd.h"
35 #include "drxd_firm.h"
36 
37 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
38 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
39 
40 #define CHUNK_SIZE 48
41 
42 #define DRX_I2C_RMW           0x10
43 #define DRX_I2C_BROADCAST     0x20
44 #define DRX_I2C_CLEARCRC      0x80
45 #define DRX_I2C_SINGLE_MASTER 0xC0
46 #define DRX_I2C_MODEFLAGS     0xC0
47 #define DRX_I2C_FLAGS         0xF0
48 
49 #ifndef SIZEOF_ARRAY
50 #define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
51 #endif
52 
53 #define DEFAULT_LOCK_TIMEOUT    1100
54 
55 #define DRX_CHANNEL_AUTO 0
56 #define DRX_CHANNEL_HIGH 1
57 #define DRX_CHANNEL_LOW  2
58 
59 #define DRX_LOCK_MPEG  1
60 #define DRX_LOCK_FEC   2
61 #define DRX_LOCK_DEMOD 4
62 
63 /****************************************************************************/
64 
65 enum CSCDState {
66 	CSCD_INIT = 0,
67 	CSCD_SET,
68 	CSCD_SAVED
69 };
70 
71 enum CDrxdState {
72 	DRXD_UNINITIALIZED = 0,
73 	DRXD_STOPPED,
74 	DRXD_STARTED
75 };
76 
77 enum AGC_CTRL_MODE {
78 	AGC_CTRL_AUTO = 0,
79 	AGC_CTRL_USER,
80 	AGC_CTRL_OFF
81 };
82 
83 enum OperationMode {
84 	OM_Default,
85 	OM_DVBT_Diversity_Front,
86 	OM_DVBT_Diversity_End
87 };
88 
89 struct SCfgAgc {
90 	enum AGC_CTRL_MODE ctrlMode;
91 	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
92 	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
93 	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
94 	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
95 	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
96 
97 	u16 R1;
98 	u16 R2;
99 	u16 R3;
100 };
101 
102 struct SNoiseCal {
103 	int cpOpt;
104 	short cpNexpOfs;
105 	short tdCal2k;
106 	short tdCal8k;
107 };
108 
109 enum app_env {
110 	APPENV_STATIC = 0,
111 	APPENV_PORTABLE = 1,
112 	APPENV_MOBILE = 2
113 };
114 
115 enum EIFFilter {
116 	IFFILTER_SAW = 0,
117 	IFFILTER_DISCRETE = 1
118 };
119 
120 struct drxd_state {
121 	struct dvb_frontend frontend;
122 	struct dvb_frontend_ops ops;
123 	struct dtv_frontend_properties props;
124 
125 	const struct firmware *fw;
126 	struct device *dev;
127 
128 	struct i2c_adapter *i2c;
129 	void *priv;
130 	struct drxd_config config;
131 
132 	int i2c_access;
133 	int init_done;
134 	struct mutex mutex;
135 
136 	u8 chip_adr;
137 	u16 hi_cfg_timing_div;
138 	u16 hi_cfg_bridge_delay;
139 	u16 hi_cfg_wakeup_key;
140 	u16 hi_cfg_ctrl;
141 
142 	u16 intermediate_freq;
143 	u16 osc_clock_freq;
144 
145 	enum CSCDState cscd_state;
146 	enum CDrxdState drxd_state;
147 
148 	u16 sys_clock_freq;
149 	s16 osc_clock_deviation;
150 	u16 expected_sys_clock_freq;
151 
152 	u16 insert_rs_byte;
153 	u16 enable_parallel;
154 
155 	int operation_mode;
156 
157 	struct SCfgAgc if_agc_cfg;
158 	struct SCfgAgc rf_agc_cfg;
159 
160 	struct SNoiseCal noise_cal;
161 
162 	u32 fe_fs_add_incr;
163 	u32 org_fe_fs_add_incr;
164 	u16 current_fe_if_incr;
165 
166 	u16 m_FeAgRegAgPwd;
167 	u16 m_FeAgRegAgAgcSio;
168 
169 	u16 m_EcOcRegOcModeLop;
170 	u16 m_EcOcRegSncSncLvl;
171 	u8 *m_InitAtomicRead;
172 	u8 *m_HiI2cPatch;
173 
174 	u8 *m_ResetCEFR;
175 	u8 *m_InitFE_1;
176 	u8 *m_InitFE_2;
177 	u8 *m_InitCP;
178 	u8 *m_InitCE;
179 	u8 *m_InitEQ;
180 	u8 *m_InitSC;
181 	u8 *m_InitEC;
182 	u8 *m_ResetECRAM;
183 	u8 *m_InitDiversityFront;
184 	u8 *m_InitDiversityEnd;
185 	u8 *m_DisableDiversity;
186 	u8 *m_StartDiversityFront;
187 	u8 *m_StartDiversityEnd;
188 
189 	u8 *m_DiversityDelay8MHZ;
190 	u8 *m_DiversityDelay6MHZ;
191 
192 	u8 *microcode;
193 	u32 microcode_length;
194 
195 	int type_A;
196 	int PGA;
197 	int diversity;
198 	int tuner_mirrors;
199 
200 	enum app_env app_env_default;
201 	enum app_env app_env_diversity;
202 
203 };
204 
205 /****************************************************************************/
206 /* I2C **********************************************************************/
207 /****************************************************************************/
208 
209 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
210 {
211 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
212 
213 	if (i2c_transfer(adap, &msg, 1) != 1)
214 		return -1;
215 	return 0;
216 }
217 
218 static int i2c_read(struct i2c_adapter *adap,
219 		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
220 {
221 	struct i2c_msg msgs[2] = {
222 		{
223 			.addr = adr, .flags = 0,
224 			.buf = msg, .len = len
225 		}, {
226 			.addr = adr, .flags = I2C_M_RD,
227 			.buf = answ, .len = alen
228 		}
229 	};
230 	if (i2c_transfer(adap, msgs, 2) != 2)
231 		return -1;
232 	return 0;
233 }
234 
235 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
236 {
237 	u64 tmp64;
238 
239 	tmp64 = (u64)a * (u64)b;
240 	do_div(tmp64, c);
241 
242 	return (u32) tmp64;
243 }
244 
245 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
246 {
247 	u8 adr = state->config.demod_address;
248 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
249 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
250 	};
251 	u8 mm2[2];
252 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
253 		return -1;
254 	if (data)
255 		*data = mm2[0] | (mm2[1] << 8);
256 	return mm2[0] | (mm2[1] << 8);
257 }
258 
259 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
260 {
261 	u8 adr = state->config.demod_address;
262 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
263 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
264 	};
265 	u8 mm2[4];
266 
267 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
268 		return -1;
269 	if (data)
270 		*data =
271 		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
272 	return 0;
273 }
274 
275 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
276 {
277 	u8 adr = state->config.demod_address;
278 	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
279 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
280 		data & 0xff, (data >> 8) & 0xff
281 	};
282 
283 	if (i2c_write(state->i2c, adr, mm, 6) < 0)
284 		return -1;
285 	return 0;
286 }
287 
288 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
289 {
290 	u8 adr = state->config.demod_address;
291 	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
292 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
293 		data & 0xff, (data >> 8) & 0xff,
294 		(data >> 16) & 0xff, (data >> 24) & 0xff
295 	};
296 
297 	if (i2c_write(state->i2c, adr, mm, 8) < 0)
298 		return -1;
299 	return 0;
300 }
301 
302 static int write_chunk(struct drxd_state *state,
303 		       u32 reg, u8 *data, u32 len, u8 flags)
304 {
305 	u8 adr = state->config.demod_address;
306 	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
307 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
308 	};
309 	int i;
310 
311 	for (i = 0; i < len; i++)
312 		mm[4 + i] = data[i];
313 	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
314 		printk(KERN_ERR "error in write_chunk\n");
315 		return -1;
316 	}
317 	return 0;
318 }
319 
320 static int WriteBlock(struct drxd_state *state,
321 		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
322 {
323 	while (BlockSize > 0) {
324 		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
325 
326 		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
327 			return -1;
328 		pBlock += Chunk;
329 		Address += (Chunk >> 1);
330 		BlockSize -= Chunk;
331 	}
332 	return 0;
333 }
334 
335 static int WriteTable(struct drxd_state *state, u8 * pTable)
336 {
337 	int status = 0;
338 
339 	if (pTable == NULL)
340 		return 0;
341 
342 	while (!status) {
343 		u16 Length;
344 		u32 Address = pTable[0] | (pTable[1] << 8) |
345 		    (pTable[2] << 16) | (pTable[3] << 24);
346 
347 		if (Address == 0xFFFFFFFF)
348 			break;
349 		pTable += sizeof(u32);
350 
351 		Length = pTable[0] | (pTable[1] << 8);
352 		pTable += sizeof(u16);
353 		if (!Length)
354 			break;
355 		status = WriteBlock(state, Address, Length * 2, pTable, 0);
356 		pTable += (Length * 2);
357 	}
358 	return status;
359 }
360 
361 /****************************************************************************/
362 /****************************************************************************/
363 /****************************************************************************/
364 
365 static int ResetCEFR(struct drxd_state *state)
366 {
367 	return WriteTable(state, state->m_ResetCEFR);
368 }
369 
370 static int InitCP(struct drxd_state *state)
371 {
372 	return WriteTable(state, state->m_InitCP);
373 }
374 
375 static int InitCE(struct drxd_state *state)
376 {
377 	int status;
378 	enum app_env AppEnv = state->app_env_default;
379 
380 	do {
381 		status = WriteTable(state, state->m_InitCE);
382 		if (status < 0)
383 			break;
384 
385 		if (state->operation_mode == OM_DVBT_Diversity_Front ||
386 		    state->operation_mode == OM_DVBT_Diversity_End) {
387 			AppEnv = state->app_env_diversity;
388 		}
389 		if (AppEnv == APPENV_STATIC) {
390 			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
391 			if (status < 0)
392 				break;
393 		} else if (AppEnv == APPENV_PORTABLE) {
394 			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
395 			if (status < 0)
396 				break;
397 		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
398 			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
399 			if (status < 0)
400 				break;
401 		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
402 			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
403 			if (status < 0)
404 				break;
405 		}
406 
407 		/* start ce */
408 		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
409 		if (status < 0)
410 			break;
411 	} while (0);
412 	return status;
413 }
414 
415 static int StopOC(struct drxd_state *state)
416 {
417 	int status = 0;
418 	u16 ocSyncLvl = 0;
419 	u16 ocModeLop = state->m_EcOcRegOcModeLop;
420 	u16 dtoIncLop = 0;
421 	u16 dtoIncHip = 0;
422 
423 	do {
424 		/* Store output configuration */
425 		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
426 		if (status < 0)
427 			break;
428 		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
429 		state->m_EcOcRegSncSncLvl = ocSyncLvl;
430 		/* m_EcOcRegOcModeLop = ocModeLop; */
431 
432 		/* Flush FIFO (byte-boundary) at fixed rate */
433 		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
434 		if (status < 0)
435 			break;
436 		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
437 		if (status < 0)
438 			break;
439 		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
440 		if (status < 0)
441 			break;
442 		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
443 		if (status < 0)
444 			break;
445 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
446 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
447 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
448 		if (status < 0)
449 			break;
450 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
451 		if (status < 0)
452 			break;
453 
454 		msleep(1);
455 		/* Output pins to '0' */
456 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
457 		if (status < 0)
458 			break;
459 
460 		/* Force the OC out of sync */
461 		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
462 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
463 		if (status < 0)
464 			break;
465 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
466 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
467 		ocModeLop |= 0x2;	/* Magically-out-of-sync */
468 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
469 		if (status < 0)
470 			break;
471 		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
472 		if (status < 0)
473 			break;
474 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
475 		if (status < 0)
476 			break;
477 	} while (0);
478 
479 	return status;
480 }
481 
482 static int StartOC(struct drxd_state *state)
483 {
484 	int status = 0;
485 
486 	do {
487 		/* Stop OC */
488 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
489 		if (status < 0)
490 			break;
491 
492 		/* Restore output configuration */
493 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
494 		if (status < 0)
495 			break;
496 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
497 		if (status < 0)
498 			break;
499 
500 		/* Output pins active again */
501 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
502 		if (status < 0)
503 			break;
504 
505 		/* Start OC */
506 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
507 		if (status < 0)
508 			break;
509 	} while (0);
510 	return status;
511 }
512 
513 static int InitEQ(struct drxd_state *state)
514 {
515 	return WriteTable(state, state->m_InitEQ);
516 }
517 
518 static int InitEC(struct drxd_state *state)
519 {
520 	return WriteTable(state, state->m_InitEC);
521 }
522 
523 static int InitSC(struct drxd_state *state)
524 {
525 	return WriteTable(state, state->m_InitSC);
526 }
527 
528 static int InitAtomicRead(struct drxd_state *state)
529 {
530 	return WriteTable(state, state->m_InitAtomicRead);
531 }
532 
533 static int CorrectSysClockDeviation(struct drxd_state *state);
534 
535 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
536 {
537 	u16 ScRaRamLock = 0;
538 	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
539 				    SC_RA_RAM_LOCK_FEC__M |
540 				    SC_RA_RAM_LOCK_DEMOD__M);
541 	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
542 				   SC_RA_RAM_LOCK_DEMOD__M);
543 	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
544 
545 	int status;
546 
547 	*pLockStatus = 0;
548 
549 	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
550 	if (status < 0) {
551 		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
552 		return status;
553 	}
554 
555 	if (state->drxd_state != DRXD_STARTED)
556 		return 0;
557 
558 	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
559 		*pLockStatus |= DRX_LOCK_MPEG;
560 		CorrectSysClockDeviation(state);
561 	}
562 
563 	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
564 		*pLockStatus |= DRX_LOCK_FEC;
565 
566 	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
567 		*pLockStatus |= DRX_LOCK_DEMOD;
568 	return 0;
569 }
570 
571 /****************************************************************************/
572 
573 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
574 {
575 	int status;
576 
577 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
578 		return -1;
579 
580 	if (cfg->ctrlMode == AGC_CTRL_USER) {
581 		do {
582 			u16 FeAgRegPm1AgcWri;
583 			u16 FeAgRegAgModeLop;
584 
585 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
586 			if (status < 0)
587 				break;
588 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
589 			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
590 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
591 			if (status < 0)
592 				break;
593 
594 			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
595 						  FE_AG_REG_PM1_AGC_WRI__M);
596 			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
597 			if (status < 0)
598 				break;
599 		} while (0);
600 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
601 		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
602 		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
603 		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
604 		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
605 		    )
606 			return -1;
607 		do {
608 			u16 FeAgRegAgModeLop;
609 			u16 FeAgRegEgcSetLvl;
610 			u16 slope, offset;
611 
612 			/* == Mode == */
613 
614 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
615 			if (status < 0)
616 				break;
617 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
618 			FeAgRegAgModeLop |=
619 			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
620 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
621 			if (status < 0)
622 				break;
623 
624 			/* == Settle level == */
625 
626 			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
627 						  FE_AG_REG_EGC_SET_LVL__M);
628 			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
629 			if (status < 0)
630 				break;
631 
632 			/* == Min/Max == */
633 
634 			slope = (u16) ((cfg->maxOutputLevel -
635 					cfg->minOutputLevel) / 2);
636 			offset = (u16) ((cfg->maxOutputLevel +
637 					 cfg->minOutputLevel) / 2 - 511);
638 
639 			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
640 			if (status < 0)
641 				break;
642 			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
643 			if (status < 0)
644 				break;
645 
646 			/* == Speed == */
647 			{
648 				const u16 maxRur = 8;
649 				const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
650 				const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
651 					17, 18, 18, 19,
652 					20, 21, 22, 23,
653 					24, 26, 27, 28,
654 					29, 31
655 				};
656 
657 				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
658 				    (maxRur + 1);
659 				u16 fineSpeed = (u16) (cfg->speed -
660 						       ((cfg->speed /
661 							 fineSteps) *
662 							fineSteps));
663 				u16 invRurCount = (u16) (cfg->speed /
664 							 fineSteps);
665 				u16 rurCount;
666 				if (invRurCount > maxRur) {
667 					rurCount = 0;
668 					fineSpeed += fineSteps;
669 				} else {
670 					rurCount = maxRur - invRurCount;
671 				}
672 
673 				/*
674 				   fastInc = default *
675 				   (2^(fineSpeed/fineSteps))
676 				   => range[default...2*default>
677 				   slowInc = default *
678 				   (2^(fineSpeed/fineSteps))
679 				 */
680 				{
681 					u16 fastIncrDec =
682 					    fastIncrDecLUT[fineSpeed /
683 							   ((fineSteps /
684 							     (14 + 1)) + 1)];
685 					u16 slowIncrDec =
686 					    slowIncrDecLUT[fineSpeed /
687 							   (fineSteps /
688 							    (3 + 1))];
689 
690 					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
691 					if (status < 0)
692 						break;
693 					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
694 					if (status < 0)
695 						break;
696 					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
697 					if (status < 0)
698 						break;
699 					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
700 					if (status < 0)
701 						break;
702 					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
703 					if (status < 0)
704 						break;
705 				}
706 			}
707 		} while (0);
708 
709 	} else {
710 		/* No OFF mode for IF control */
711 		return -1;
712 	}
713 	return status;
714 }
715 
716 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
717 {
718 	int status = 0;
719 
720 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
721 		return -1;
722 
723 	if (cfg->ctrlMode == AGC_CTRL_USER) {
724 		do {
725 			u16 AgModeLop = 0;
726 			u16 level = (cfg->outputLevel);
727 
728 			if (level == DRXD_FE_CTRL_MAX)
729 				level++;
730 
731 			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
732 			if (status < 0)
733 				break;
734 
735 			/*==== Mode ====*/
736 
737 			/* Powerdown PD2, WRI source */
738 			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
739 			state->m_FeAgRegAgPwd |=
740 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
741 			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
742 			if (status < 0)
743 				break;
744 
745 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
746 			if (status < 0)
747 				break;
748 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
749 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
750 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
751 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
752 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
753 			if (status < 0)
754 				break;
755 
756 			/* enable AGC2 pin */
757 			{
758 				u16 FeAgRegAgAgcSio = 0;
759 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
760 				if (status < 0)
761 					break;
762 				FeAgRegAgAgcSio &=
763 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
764 				FeAgRegAgAgcSio |=
765 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
766 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
767 				if (status < 0)
768 					break;
769 			}
770 
771 		} while (0);
772 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
773 		u16 AgModeLop = 0;
774 
775 		do {
776 			u16 level;
777 			/* Automatic control */
778 			/* Powerup PD2, AGC2 as output, TGC source */
779 			(state->m_FeAgRegAgPwd) &=
780 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
781 			(state->m_FeAgRegAgPwd) |=
782 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
783 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
784 			if (status < 0)
785 				break;
786 
787 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
788 			if (status < 0)
789 				break;
790 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
791 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
792 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
793 				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
794 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
795 			if (status < 0)
796 				break;
797 			/* Settle level */
798 			level = (((cfg->settleLevel) >> 4) &
799 				 FE_AG_REG_TGC_SET_LVL__M);
800 			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
801 			if (status < 0)
802 				break;
803 
804 			/* Min/max: don't care */
805 
806 			/* Speed: TODO */
807 
808 			/* enable AGC2 pin */
809 			{
810 				u16 FeAgRegAgAgcSio = 0;
811 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
812 				if (status < 0)
813 					break;
814 				FeAgRegAgAgcSio &=
815 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
816 				FeAgRegAgAgcSio |=
817 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
818 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
819 				if (status < 0)
820 					break;
821 			}
822 
823 		} while (0);
824 	} else {
825 		u16 AgModeLop = 0;
826 
827 		do {
828 			/* No RF AGC control */
829 			/* Powerdown PD2, AGC2 as output, WRI source */
830 			(state->m_FeAgRegAgPwd) &=
831 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
832 			(state->m_FeAgRegAgPwd) |=
833 			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
834 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
835 			if (status < 0)
836 				break;
837 
838 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
839 			if (status < 0)
840 				break;
841 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
842 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
843 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
844 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
845 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
846 			if (status < 0)
847 				break;
848 
849 			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
850 			{
851 				u16 FeAgRegAgAgcSio = 0;
852 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
853 				if (status < 0)
854 					break;
855 				FeAgRegAgAgcSio &=
856 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
857 				FeAgRegAgAgcSio |=
858 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
859 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
860 				if (status < 0)
861 					break;
862 			}
863 		} while (0);
864 	}
865 	return status;
866 }
867 
868 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
869 {
870 	int status = 0;
871 
872 	*pValue = 0;
873 	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
874 		u16 Value;
875 		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
876 		Value &= FE_AG_REG_GC1_AGC_DAT__M;
877 		if (status >= 0) {
878 			/*           3.3V
879 			   |
880 			   R1
881 			   |
882 			   Vin - R3 - * -- Vout
883 			   |
884 			   R2
885 			   |
886 			   GND
887 			 */
888 			u32 R1 = state->if_agc_cfg.R1;
889 			u32 R2 = state->if_agc_cfg.R2;
890 			u32 R3 = state->if_agc_cfg.R3;
891 
892 			u32 Vmax, Rpar, Vmin, Vout;
893 
894 			if (R2 == 0 && (R1 == 0 || R3 == 0))
895 				return 0;
896 
897 			Vmax = (3300 * R2) / (R1 + R2);
898 			Rpar = (R2 * R3) / (R3 + R2);
899 			Vmin = (3300 * Rpar) / (R1 + Rpar);
900 			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
901 
902 			*pValue = Vout;
903 		}
904 	}
905 	return status;
906 }
907 
908 static int load_firmware(struct drxd_state *state, const char *fw_name)
909 {
910 	const struct firmware *fw;
911 
912 	if (request_firmware(&fw, fw_name, state->dev) < 0) {
913 		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
914 		return -EIO;
915 	}
916 
917 	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
918 	if (state->microcode == NULL) {
919 		release_firmware(fw);
920 		printk(KERN_ERR "drxd: firmware load failure: no memory\n");
921 		return -ENOMEM;
922 	}
923 
924 	state->microcode_length = fw->size;
925 	release_firmware(fw);
926 	return 0;
927 }
928 
929 static int DownloadMicrocode(struct drxd_state *state,
930 			     const u8 *pMCImage, u32 Length)
931 {
932 	u8 *pSrc;
933 	u32 Address;
934 	u16 nBlocks;
935 	u16 BlockSize;
936 	u32 offset = 0;
937 	int i, status = 0;
938 
939 	pSrc = (u8 *) pMCImage;
940 	/* We're not using Flags */
941 	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
942 	pSrc += sizeof(u16);
943 	offset += sizeof(u16);
944 	nBlocks = (pSrc[0] << 8) | pSrc[1];
945 	pSrc += sizeof(u16);
946 	offset += sizeof(u16);
947 
948 	for (i = 0; i < nBlocks; i++) {
949 		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
950 		    (pSrc[2] << 8) | pSrc[3];
951 		pSrc += sizeof(u32);
952 		offset += sizeof(u32);
953 
954 		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
955 		pSrc += sizeof(u16);
956 		offset += sizeof(u16);
957 
958 		/* We're not using Flags */
959 		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
960 		pSrc += sizeof(u16);
961 		offset += sizeof(u16);
962 
963 		/* We're not using BlockCRC */
964 		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
965 		pSrc += sizeof(u16);
966 		offset += sizeof(u16);
967 
968 		status = WriteBlock(state, Address, BlockSize,
969 				    pSrc, DRX_I2C_CLEARCRC);
970 		if (status < 0)
971 			break;
972 		pSrc += BlockSize;
973 		offset += BlockSize;
974 	}
975 
976 	return status;
977 }
978 
979 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
980 {
981 	u32 nrRetries = 0;
982 	u16 waitCmd;
983 	int status;
984 
985 	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
986 	if (status < 0)
987 		return status;
988 
989 	do {
990 		nrRetries += 1;
991 		if (nrRetries > DRXD_MAX_RETRIES) {
992 			status = -1;
993 			break;
994 		}
995 		status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
996 	} while (waitCmd != 0);
997 
998 	if (status >= 0)
999 		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
1000 	return status;
1001 }
1002 
1003 static int HI_CfgCommand(struct drxd_state *state)
1004 {
1005 	int status = 0;
1006 
1007 	mutex_lock(&state->mutex);
1008 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1009 	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1010 	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1011 	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1012 	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1013 
1014 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1015 
1016 	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1017 	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1018 		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1019 				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1020 	else
1021 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, 0);
1022 	mutex_unlock(&state->mutex);
1023 	return status;
1024 }
1025 
1026 static int InitHI(struct drxd_state *state)
1027 {
1028 	state->hi_cfg_wakeup_key = (state->chip_adr);
1029 	/* port/bridge/power down ctrl */
1030 	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1031 	return HI_CfgCommand(state);
1032 }
1033 
1034 static int HI_ResetCommand(struct drxd_state *state)
1035 {
1036 	int status;
1037 
1038 	mutex_lock(&state->mutex);
1039 	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1040 			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1041 	if (status == 0)
1042 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, 0);
1043 	mutex_unlock(&state->mutex);
1044 	msleep(1);
1045 	return status;
1046 }
1047 
1048 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1049 {
1050 	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1051 	if (bEnableBridge)
1052 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1053 	else
1054 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1055 
1056 	return HI_CfgCommand(state);
1057 }
1058 
1059 #define HI_TR_WRITE      0x9
1060 #define HI_TR_READ       0xA
1061 #define HI_TR_READ_WRITE 0xB
1062 #define HI_TR_BROADCAST  0x4
1063 
1064 #if 0
1065 static int AtomicReadBlock(struct drxd_state *state,
1066 			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1067 {
1068 	int status;
1069 	int i = 0;
1070 
1071 	/* Parameter check */
1072 	if ((!pData) || ((DataSize & 1) != 0))
1073 		return -1;
1074 
1075 	mutex_lock(&state->mutex);
1076 
1077 	do {
1078 		/* Instruct HI to read n bytes */
1079 		/* TODO use proper names forthese egisters */
1080 		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1081 		if (status < 0)
1082 			break;
1083 		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1084 		if (status < 0)
1085 			break;
1086 		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1087 		if (status < 0)
1088 			break;
1089 		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1090 		if (status < 0)
1091 			break;
1092 		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1093 		if (status < 0)
1094 			break;
1095 
1096 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1097 		if (status < 0)
1098 			break;
1099 
1100 	} while (0);
1101 
1102 	if (status >= 0) {
1103 		for (i = 0; i < (DataSize / 2); i += 1) {
1104 			u16 word;
1105 
1106 			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1107 					&word, 0);
1108 			if (status < 0)
1109 				break;
1110 			pData[2 * i] = (u8) (word & 0xFF);
1111 			pData[(2 * i) + 1] = (u8) (word >> 8);
1112 		}
1113 	}
1114 	mutex_unlock(&state->mutex);
1115 	return status;
1116 }
1117 
1118 static int AtomicReadReg32(struct drxd_state *state,
1119 			   u32 Addr, u32 *pData, u8 Flags)
1120 {
1121 	u8 buf[sizeof(u32)];
1122 	int status;
1123 
1124 	if (!pData)
1125 		return -1;
1126 	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1127 	*pData = (((u32) buf[0]) << 0) +
1128 	    (((u32) buf[1]) << 8) +
1129 	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1130 	return status;
1131 }
1132 #endif
1133 
1134 static int StopAllProcessors(struct drxd_state *state)
1135 {
1136 	return Write16(state, HI_COMM_EXEC__A,
1137 		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1138 }
1139 
1140 static int EnableAndResetMB(struct drxd_state *state)
1141 {
1142 	if (state->type_A) {
1143 		/* disable? monitor bus observe @ EC_OC */
1144 		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1145 	}
1146 
1147 	/* do inverse broadcast, followed by explicit write to HI */
1148 	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1149 	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1150 	return 0;
1151 }
1152 
1153 static int InitCC(struct drxd_state *state)
1154 {
1155 	if (state->osc_clock_freq == 0 ||
1156 	    state->osc_clock_freq > 20000 ||
1157 	    (state->osc_clock_freq % 4000) != 0) {
1158 		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1159 		return -1;
1160 	}
1161 
1162 	Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1163 	Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1164 		CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1165 	Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1166 	Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1167 	Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1168 
1169 	return 0;
1170 }
1171 
1172 static int ResetECOD(struct drxd_state *state)
1173 {
1174 	int status = 0;
1175 
1176 	if (state->type_A)
1177 		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1178 	else
1179 		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1180 
1181 	if (!(status < 0))
1182 		status = WriteTable(state, state->m_ResetECRAM);
1183 	if (!(status < 0))
1184 		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1185 	return status;
1186 }
1187 
1188 /* Configure PGA switch */
1189 
1190 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1191 {
1192 	int status;
1193 	u16 AgModeLop = 0;
1194 	u16 AgModeHip = 0;
1195 	do {
1196 		if (pgaSwitch) {
1197 			/* PGA on */
1198 			/* fine gain */
1199 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1200 			if (status < 0)
1201 				break;
1202 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1203 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1204 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1205 			if (status < 0)
1206 				break;
1207 
1208 			/* coarse gain */
1209 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1210 			if (status < 0)
1211 				break;
1212 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1213 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1214 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1215 			if (status < 0)
1216 				break;
1217 
1218 			/* enable fine and coarse gain, enable AAF,
1219 			   no ext resistor */
1220 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1221 			if (status < 0)
1222 				break;
1223 		} else {
1224 			/* PGA off, bypass */
1225 
1226 			/* fine gain */
1227 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1228 			if (status < 0)
1229 				break;
1230 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1231 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1232 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1233 			if (status < 0)
1234 				break;
1235 
1236 			/* coarse gain */
1237 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1238 			if (status < 0)
1239 				break;
1240 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1241 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1242 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1243 			if (status < 0)
1244 				break;
1245 
1246 			/* disable fine and coarse gain, enable AAF,
1247 			   no ext resistor */
1248 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1249 			if (status < 0)
1250 				break;
1251 		}
1252 	} while (0);
1253 	return status;
1254 }
1255 
1256 static int InitFE(struct drxd_state *state)
1257 {
1258 	int status;
1259 
1260 	do {
1261 		status = WriteTable(state, state->m_InitFE_1);
1262 		if (status < 0)
1263 			break;
1264 
1265 		if (state->type_A) {
1266 			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1267 					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1268 					 0);
1269 		} else {
1270 			if (state->PGA)
1271 				status = SetCfgPga(state, 0);
1272 			else
1273 				status =
1274 				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1275 					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1276 					    0);
1277 		}
1278 
1279 		if (status < 0)
1280 			break;
1281 		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1282 		if (status < 0)
1283 			break;
1284 		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1285 		if (status < 0)
1286 			break;
1287 
1288 		status = WriteTable(state, state->m_InitFE_2);
1289 		if (status < 0)
1290 			break;
1291 
1292 	} while (0);
1293 
1294 	return status;
1295 }
1296 
1297 static int InitFT(struct drxd_state *state)
1298 {
1299 	/*
1300 	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1301 	   SC stuff
1302 	 */
1303 	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1304 }
1305 
1306 static int SC_WaitForReady(struct drxd_state *state)
1307 {
1308 	u16 curCmd;
1309 	int i;
1310 
1311 	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1312 		int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1313 		if (status == 0 || curCmd == 0)
1314 			return status;
1315 	}
1316 	return -1;
1317 }
1318 
1319 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1320 {
1321 	int status = 0;
1322 	u16 errCode;
1323 
1324 	Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1325 	SC_WaitForReady(state);
1326 
1327 	Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1328 
1329 	if (errCode == 0xFFFF) {
1330 		printk(KERN_ERR "Command Error\n");
1331 		status = -1;
1332 	}
1333 
1334 	return status;
1335 }
1336 
1337 static int SC_ProcStartCommand(struct drxd_state *state,
1338 			       u16 subCmd, u16 param0, u16 param1)
1339 {
1340 	int status = 0;
1341 	u16 scExec;
1342 
1343 	mutex_lock(&state->mutex);
1344 	do {
1345 		Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1346 		if (scExec != 1) {
1347 			status = -1;
1348 			break;
1349 		}
1350 		SC_WaitForReady(state);
1351 		Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1352 		Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1353 		Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1354 
1355 		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1356 	} while (0);
1357 	mutex_unlock(&state->mutex);
1358 	return status;
1359 }
1360 
1361 static int SC_SetPrefParamCommand(struct drxd_state *state,
1362 				  u16 subCmd, u16 param0, u16 param1)
1363 {
1364 	int status;
1365 
1366 	mutex_lock(&state->mutex);
1367 	do {
1368 		status = SC_WaitForReady(state);
1369 		if (status < 0)
1370 			break;
1371 		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1372 		if (status < 0)
1373 			break;
1374 		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1375 		if (status < 0)
1376 			break;
1377 		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1378 		if (status < 0)
1379 			break;
1380 
1381 		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1382 		if (status < 0)
1383 			break;
1384 	} while (0);
1385 	mutex_unlock(&state->mutex);
1386 	return status;
1387 }
1388 
1389 #if 0
1390 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1391 {
1392 	int status = 0;
1393 
1394 	mutex_lock(&state->mutex);
1395 	do {
1396 		status = SC_WaitForReady(state);
1397 		if (status < 0)
1398 			break;
1399 		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1400 		if (status < 0)
1401 			break;
1402 		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1403 		if (status < 0)
1404 			break;
1405 	} while (0);
1406 	mutex_unlock(&state->mutex);
1407 	return status;
1408 }
1409 #endif
1410 
1411 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1412 {
1413 	int status;
1414 
1415 	do {
1416 		u16 EcOcRegIprInvMpg = 0;
1417 		u16 EcOcRegOcModeLop = 0;
1418 		u16 EcOcRegOcModeHip = 0;
1419 		u16 EcOcRegOcMpgSio = 0;
1420 
1421 		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1422 
1423 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1424 			if (bEnableOutput) {
1425 				EcOcRegOcModeHip |=
1426 				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1427 			} else
1428 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1429 			EcOcRegOcModeLop |=
1430 			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1431 		} else {
1432 			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1433 
1434 			if (bEnableOutput)
1435 				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1436 			else
1437 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1438 
1439 			/* Don't Insert RS Byte */
1440 			if (state->insert_rs_byte) {
1441 				EcOcRegOcModeLop &=
1442 				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1443 				EcOcRegOcModeHip &=
1444 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1445 				EcOcRegOcModeHip |=
1446 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1447 			} else {
1448 				EcOcRegOcModeLop |=
1449 				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1450 				EcOcRegOcModeHip &=
1451 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1452 				EcOcRegOcModeHip |=
1453 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1454 			}
1455 
1456 			/* Mode = Parallel */
1457 			if (state->enable_parallel)
1458 				EcOcRegOcModeLop &=
1459 				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1460 			else
1461 				EcOcRegOcModeLop |=
1462 				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1463 		}
1464 		/* Invert Data */
1465 		/* EcOcRegIprInvMpg |= 0x00FF; */
1466 		EcOcRegIprInvMpg &= (~(0x00FF));
1467 
1468 		/* Invert Error ( we don't use the pin ) */
1469 		/*  EcOcRegIprInvMpg |= 0x0100; */
1470 		EcOcRegIprInvMpg &= (~(0x0100));
1471 
1472 		/* Invert Start ( we don't use the pin ) */
1473 		/* EcOcRegIprInvMpg |= 0x0200; */
1474 		EcOcRegIprInvMpg &= (~(0x0200));
1475 
1476 		/* Invert Valid ( we don't use the pin ) */
1477 		/* EcOcRegIprInvMpg |= 0x0400; */
1478 		EcOcRegIprInvMpg &= (~(0x0400));
1479 
1480 		/* Invert Clock */
1481 		/* EcOcRegIprInvMpg |= 0x0800; */
1482 		EcOcRegIprInvMpg &= (~(0x0800));
1483 
1484 		/* EcOcRegOcModeLop =0x05; */
1485 		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1486 		if (status < 0)
1487 			break;
1488 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1489 		if (status < 0)
1490 			break;
1491 		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1492 		if (status < 0)
1493 			break;
1494 		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1495 		if (status < 0)
1496 			break;
1497 	} while (0);
1498 	return status;
1499 }
1500 
1501 static int SetDeviceTypeId(struct drxd_state *state)
1502 {
1503 	int status = 0;
1504 	u16 deviceId = 0;
1505 
1506 	do {
1507 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1508 		if (status < 0)
1509 			break;
1510 		/* TODO: why twice? */
1511 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1512 		if (status < 0)
1513 			break;
1514 		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1515 
1516 		state->type_A = 0;
1517 		state->PGA = 0;
1518 		state->diversity = 0;
1519 		if (deviceId == 0) {	/* on A2 only 3975 available */
1520 			state->type_A = 1;
1521 			printk(KERN_INFO "DRX3975D-A2\n");
1522 		} else {
1523 			deviceId >>= 12;
1524 			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1525 			switch (deviceId) {
1526 			case 4:
1527 				state->diversity = 1;
1528 			case 3:
1529 			case 7:
1530 				state->PGA = 1;
1531 				break;
1532 			case 6:
1533 				state->diversity = 1;
1534 			case 5:
1535 			case 8:
1536 				break;
1537 			default:
1538 				status = -1;
1539 				break;
1540 			}
1541 		}
1542 	} while (0);
1543 
1544 	if (status < 0)
1545 		return status;
1546 
1547 	/* Init Table selection */
1548 	state->m_InitAtomicRead = DRXD_InitAtomicRead;
1549 	state->m_InitSC = DRXD_InitSC;
1550 	state->m_ResetECRAM = DRXD_ResetECRAM;
1551 	if (state->type_A) {
1552 		state->m_ResetCEFR = DRXD_ResetCEFR;
1553 		state->m_InitFE_1 = DRXD_InitFEA2_1;
1554 		state->m_InitFE_2 = DRXD_InitFEA2_2;
1555 		state->m_InitCP = DRXD_InitCPA2;
1556 		state->m_InitCE = DRXD_InitCEA2;
1557 		state->m_InitEQ = DRXD_InitEQA2;
1558 		state->m_InitEC = DRXD_InitECA2;
1559 		if (load_firmware(state, DRX_FW_FILENAME_A2))
1560 			return -EIO;
1561 	} else {
1562 		state->m_ResetCEFR = NULL;
1563 		state->m_InitFE_1 = DRXD_InitFEB1_1;
1564 		state->m_InitFE_2 = DRXD_InitFEB1_2;
1565 		state->m_InitCP = DRXD_InitCPB1;
1566 		state->m_InitCE = DRXD_InitCEB1;
1567 		state->m_InitEQ = DRXD_InitEQB1;
1568 		state->m_InitEC = DRXD_InitECB1;
1569 		if (load_firmware(state, DRX_FW_FILENAME_B1))
1570 			return -EIO;
1571 	}
1572 	if (state->diversity) {
1573 		state->m_InitDiversityFront = DRXD_InitDiversityFront;
1574 		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1575 		state->m_DisableDiversity = DRXD_DisableDiversity;
1576 		state->m_StartDiversityFront = DRXD_StartDiversityFront;
1577 		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1578 		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1579 		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1580 	} else {
1581 		state->m_InitDiversityFront = NULL;
1582 		state->m_InitDiversityEnd = NULL;
1583 		state->m_DisableDiversity = NULL;
1584 		state->m_StartDiversityFront = NULL;
1585 		state->m_StartDiversityEnd = NULL;
1586 		state->m_DiversityDelay8MHZ = NULL;
1587 		state->m_DiversityDelay6MHZ = NULL;
1588 	}
1589 
1590 	return status;
1591 }
1592 
1593 static int CorrectSysClockDeviation(struct drxd_state *state)
1594 {
1595 	int status;
1596 	s32 incr = 0;
1597 	s32 nomincr = 0;
1598 	u32 bandwidth = 0;
1599 	u32 sysClockInHz = 0;
1600 	u32 sysClockFreq = 0;	/* in kHz */
1601 	s16 oscClockDeviation;
1602 	s16 Diff;
1603 
1604 	do {
1605 		/* Retrieve bandwidth and incr, sanity check */
1606 
1607 		/* These accesses should be AtomicReadReg32, but that
1608 		   causes trouble (at least for diversity */
1609 		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1610 		if (status < 0)
1611 			break;
1612 		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1613 		if (status < 0)
1614 			break;
1615 
1616 		if (state->type_A) {
1617 			if ((nomincr - incr < -500) || (nomincr - incr > 500))
1618 				break;
1619 		} else {
1620 			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1621 				break;
1622 		}
1623 
1624 		switch (state->props.bandwidth_hz) {
1625 		case 8000000:
1626 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1627 			break;
1628 		case 7000000:
1629 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1630 			break;
1631 		case 6000000:
1632 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1633 			break;
1634 		default:
1635 			return -1;
1636 			break;
1637 		}
1638 
1639 		/* Compute new sysclock value
1640 		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1641 		incr += (1 << 23);
1642 		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1643 		sysClockFreq = (u32) (sysClockInHz / 1000);
1644 		/* rounding */
1645 		if ((sysClockInHz % 1000) > 500)
1646 			sysClockFreq++;
1647 
1648 		/* Compute clock deviation in ppm */
1649 		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1650 					     (s32)
1651 					     (state->expected_sys_clock_freq)) *
1652 					    1000000L) /
1653 					   (s32)
1654 					   (state->expected_sys_clock_freq));
1655 
1656 		Diff = oscClockDeviation - state->osc_clock_deviation;
1657 		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1658 		if (Diff >= -200 && Diff <= 200) {
1659 			state->sys_clock_freq = (u16) sysClockFreq;
1660 			if (oscClockDeviation != state->osc_clock_deviation) {
1661 				if (state->config.osc_deviation) {
1662 					state->config.osc_deviation(state->priv,
1663 								    oscClockDeviation,
1664 								    1);
1665 					state->osc_clock_deviation =
1666 					    oscClockDeviation;
1667 				}
1668 			}
1669 			/* switch OFF SRMM scan in SC */
1670 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1671 			if (status < 0)
1672 				break;
1673 			/* overrule FE_IF internal value for
1674 			   proper re-locking */
1675 			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1676 			if (status < 0)
1677 				break;
1678 			state->cscd_state = CSCD_SAVED;
1679 		}
1680 	} while (0);
1681 
1682 	return status;
1683 }
1684 
1685 static int DRX_Stop(struct drxd_state *state)
1686 {
1687 	int status;
1688 
1689 	if (state->drxd_state != DRXD_STARTED)
1690 		return 0;
1691 
1692 	do {
1693 		if (state->cscd_state != CSCD_SAVED) {
1694 			u32 lock;
1695 			status = DRX_GetLockStatus(state, &lock);
1696 			if (status < 0)
1697 				break;
1698 		}
1699 
1700 		status = StopOC(state);
1701 		if (status < 0)
1702 			break;
1703 
1704 		state->drxd_state = DRXD_STOPPED;
1705 
1706 		status = ConfigureMPEGOutput(state, 0);
1707 		if (status < 0)
1708 			break;
1709 
1710 		if (state->type_A) {
1711 			/* Stop relevant processors off the device */
1712 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1713 			if (status < 0)
1714 				break;
1715 
1716 			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717 			if (status < 0)
1718 				break;
1719 			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720 			if (status < 0)
1721 				break;
1722 		} else {
1723 			/* Stop all processors except HI & CC & FE */
1724 			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1725 			if (status < 0)
1726 				break;
1727 			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1728 			if (status < 0)
1729 				break;
1730 			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1731 			if (status < 0)
1732 				break;
1733 			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1734 			if (status < 0)
1735 				break;
1736 			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1737 			if (status < 0)
1738 				break;
1739 			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1740 			if (status < 0)
1741 				break;
1742 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1743 			if (status < 0)
1744 				break;
1745 		}
1746 
1747 	} while (0);
1748 	return status;
1749 }
1750 
1751 int SetOperationMode(struct drxd_state *state, int oMode)
1752 {
1753 	int status;
1754 
1755 	do {
1756 		if (state->drxd_state != DRXD_STOPPED) {
1757 			status = -1;
1758 			break;
1759 		}
1760 
1761 		if (oMode == state->operation_mode) {
1762 			status = 0;
1763 			break;
1764 		}
1765 
1766 		if (oMode != OM_Default && !state->diversity) {
1767 			status = -1;
1768 			break;
1769 		}
1770 
1771 		switch (oMode) {
1772 		case OM_DVBT_Diversity_Front:
1773 			status = WriteTable(state, state->m_InitDiversityFront);
1774 			break;
1775 		case OM_DVBT_Diversity_End:
1776 			status = WriteTable(state, state->m_InitDiversityEnd);
1777 			break;
1778 		case OM_Default:
1779 			/* We need to check how to
1780 			   get DRXD out of diversity */
1781 		default:
1782 			status = WriteTable(state, state->m_DisableDiversity);
1783 			break;
1784 		}
1785 	} while (0);
1786 
1787 	if (!status)
1788 		state->operation_mode = oMode;
1789 	return status;
1790 }
1791 
1792 static int StartDiversity(struct drxd_state *state)
1793 {
1794 	int status = 0;
1795 	u16 rcControl;
1796 
1797 	do {
1798 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1799 			status = WriteTable(state, state->m_StartDiversityFront);
1800 			if (status < 0)
1801 				break;
1802 		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
1803 			status = WriteTable(state, state->m_StartDiversityEnd);
1804 			if (status < 0)
1805 				break;
1806 			if (state->props.bandwidth_hz == 8000000) {
1807 				status = WriteTable(state, state->m_DiversityDelay8MHZ);
1808 				if (status < 0)
1809 					break;
1810 			} else {
1811 				status = WriteTable(state, state->m_DiversityDelay6MHZ);
1812 				if (status < 0)
1813 					break;
1814 			}
1815 
1816 			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1817 			if (status < 0)
1818 				break;
1819 			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1820 			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1821 			    /*  combining enabled */
1822 			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1823 			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1824 			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1825 			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1826 			if (status < 0)
1827 				break;
1828 		}
1829 	} while (0);
1830 	return status;
1831 }
1832 
1833 static int SetFrequencyShift(struct drxd_state *state,
1834 			     u32 offsetFreq, int channelMirrored)
1835 {
1836 	int negativeShift = (state->tuner_mirrors == channelMirrored);
1837 
1838 	/* Handle all mirroring
1839 	 *
1840 	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1841 	 * feFsRegAddInc to 28 bits below
1842 	 * (if the result before masking is more than 28 bits, this means
1843 	 *  that the ADC is mirroring.
1844 	 * The masking is in fact the aliasing of the ADC)
1845 	 *
1846 	 */
1847 
1848 	/* Compute register value, unsigned computation */
1849 	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1850 					 offsetFreq,
1851 					 1 << 28, state->sys_clock_freq);
1852 	/* Remove integer part */
1853 	state->fe_fs_add_incr &= 0x0FFFFFFFL;
1854 	if (negativeShift)
1855 		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1856 
1857 	/* Save the frequency shift without tunerOffset compensation
1858 	   for CtrlGetChannel. */
1859 	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1860 					     1 << 28, state->sys_clock_freq);
1861 	/* Remove integer part */
1862 	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1863 	if (negativeShift)
1864 		state->org_fe_fs_add_incr = ((1L << 28) -
1865 					     state->org_fe_fs_add_incr);
1866 
1867 	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1868 		       state->fe_fs_add_incr, 0);
1869 }
1870 
1871 static int SetCfgNoiseCalibration(struct drxd_state *state,
1872 				  struct SNoiseCal *noiseCal)
1873 {
1874 	u16 beOptEna;
1875 	int status = 0;
1876 
1877 	do {
1878 		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1879 		if (status < 0)
1880 			break;
1881 		if (noiseCal->cpOpt) {
1882 			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1883 		} else {
1884 			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1885 			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1886 			if (status < 0)
1887 				break;
1888 		}
1889 		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1890 		if (status < 0)
1891 			break;
1892 
1893 		if (!state->type_A) {
1894 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1895 			if (status < 0)
1896 				break;
1897 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1898 			if (status < 0)
1899 				break;
1900 		}
1901 	} while (0);
1902 
1903 	return status;
1904 }
1905 
1906 static int DRX_Start(struct drxd_state *state, s32 off)
1907 {
1908 	struct dtv_frontend_properties *p = &state->props;
1909 	int status;
1910 
1911 	u16 transmissionParams = 0;
1912 	u16 operationMode = 0;
1913 	u16 qpskTdTpsPwr = 0;
1914 	u16 qam16TdTpsPwr = 0;
1915 	u16 qam64TdTpsPwr = 0;
1916 	u32 feIfIncr = 0;
1917 	u32 bandwidth = 0;
1918 	int mirrorFreqSpect;
1919 
1920 	u16 qpskSnCeGain = 0;
1921 	u16 qam16SnCeGain = 0;
1922 	u16 qam64SnCeGain = 0;
1923 	u16 qpskIsGainMan = 0;
1924 	u16 qam16IsGainMan = 0;
1925 	u16 qam64IsGainMan = 0;
1926 	u16 qpskIsGainExp = 0;
1927 	u16 qam16IsGainExp = 0;
1928 	u16 qam64IsGainExp = 0;
1929 	u16 bandwidthParam = 0;
1930 
1931 	if (off < 0)
1932 		off = (off - 500) / 1000;
1933 	else
1934 		off = (off + 500) / 1000;
1935 
1936 	do {
1937 		if (state->drxd_state != DRXD_STOPPED)
1938 			return -1;
1939 		status = ResetECOD(state);
1940 		if (status < 0)
1941 			break;
1942 		if (state->type_A) {
1943 			status = InitSC(state);
1944 			if (status < 0)
1945 				break;
1946 		} else {
1947 			status = InitFT(state);
1948 			if (status < 0)
1949 				break;
1950 			status = InitCP(state);
1951 			if (status < 0)
1952 				break;
1953 			status = InitCE(state);
1954 			if (status < 0)
1955 				break;
1956 			status = InitEQ(state);
1957 			if (status < 0)
1958 				break;
1959 			status = InitSC(state);
1960 			if (status < 0)
1961 				break;
1962 		}
1963 
1964 		/* Restore current IF & RF AGC settings */
1965 
1966 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
1967 		if (status < 0)
1968 			break;
1969 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1970 		if (status < 0)
1971 			break;
1972 
1973 		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1974 
1975 		switch (p->transmission_mode) {
1976 		default:	/* Not set, detect it automatically */
1977 			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1978 			/* fall through , try first guess DRX_FFTMODE_8K */
1979 		case TRANSMISSION_MODE_8K:
1980 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1981 			if (state->type_A) {
1982 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1983 				if (status < 0)
1984 					break;
1985 				qpskSnCeGain = 99;
1986 				qam16SnCeGain = 83;
1987 				qam64SnCeGain = 67;
1988 			}
1989 			break;
1990 		case TRANSMISSION_MODE_2K:
1991 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1992 			if (state->type_A) {
1993 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1994 				if (status < 0)
1995 					break;
1996 				qpskSnCeGain = 97;
1997 				qam16SnCeGain = 71;
1998 				qam64SnCeGain = 65;
1999 			}
2000 			break;
2001 		}
2002 
2003 		switch (p->guard_interval) {
2004 		case GUARD_INTERVAL_1_4:
2005 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2006 			break;
2007 		case GUARD_INTERVAL_1_8:
2008 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2009 			break;
2010 		case GUARD_INTERVAL_1_16:
2011 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2012 			break;
2013 		case GUARD_INTERVAL_1_32:
2014 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2015 			break;
2016 		default:	/* Not set, detect it automatically */
2017 			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2018 			/* try first guess 1/4 */
2019 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2020 			break;
2021 		}
2022 
2023 		switch (p->hierarchy) {
2024 		case HIERARCHY_1:
2025 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2026 			if (state->type_A) {
2027 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2028 				if (status < 0)
2029 					break;
2030 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2031 				if (status < 0)
2032 					break;
2033 
2034 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2035 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2036 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2037 
2038 				qpskIsGainMan =
2039 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2040 				qam16IsGainMan =
2041 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2042 				qam64IsGainMan =
2043 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2044 
2045 				qpskIsGainExp =
2046 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2047 				qam16IsGainExp =
2048 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2049 				qam64IsGainExp =
2050 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2051 			}
2052 			break;
2053 
2054 		case HIERARCHY_2:
2055 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2056 			if (state->type_A) {
2057 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2058 				if (status < 0)
2059 					break;
2060 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2061 				if (status < 0)
2062 					break;
2063 
2064 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2065 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2066 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2067 
2068 				qpskIsGainMan =
2069 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2070 				qam16IsGainMan =
2071 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2072 				qam64IsGainMan =
2073 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2074 
2075 				qpskIsGainExp =
2076 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2077 				qam16IsGainExp =
2078 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2079 				qam64IsGainExp =
2080 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2081 			}
2082 			break;
2083 		case HIERARCHY_4:
2084 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2085 			if (state->type_A) {
2086 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2087 				if (status < 0)
2088 					break;
2089 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2090 				if (status < 0)
2091 					break;
2092 
2093 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2094 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2095 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2096 
2097 				qpskIsGainMan =
2098 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2099 				qam16IsGainMan =
2100 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2101 				qam64IsGainMan =
2102 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2103 
2104 				qpskIsGainExp =
2105 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2106 				qam16IsGainExp =
2107 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2108 				qam64IsGainExp =
2109 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2110 			}
2111 			break;
2112 		case HIERARCHY_AUTO:
2113 		default:
2114 			/* Not set, detect it automatically, start with none */
2115 			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2116 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2117 			if (state->type_A) {
2118 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2119 				if (status < 0)
2120 					break;
2121 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2122 				if (status < 0)
2123 					break;
2124 
2125 				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2126 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2127 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2128 
2129 				qpskIsGainMan =
2130 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2131 				qam16IsGainMan =
2132 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2133 				qam64IsGainMan =
2134 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2135 
2136 				qpskIsGainExp =
2137 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2138 				qam16IsGainExp =
2139 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2140 				qam64IsGainExp =
2141 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2142 			}
2143 			break;
2144 		}
2145 		status = status;
2146 		if (status < 0)
2147 			break;
2148 
2149 		switch (p->modulation) {
2150 		default:
2151 			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2152 			/* fall through , try first guess
2153 			   DRX_CONSTELLATION_QAM64 */
2154 		case QAM_64:
2155 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2156 			if (state->type_A) {
2157 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2158 				if (status < 0)
2159 					break;
2160 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2161 				if (status < 0)
2162 					break;
2163 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2164 				if (status < 0)
2165 					break;
2166 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2167 				if (status < 0)
2168 					break;
2169 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2170 				if (status < 0)
2171 					break;
2172 
2173 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2174 				if (status < 0)
2175 					break;
2176 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2177 				if (status < 0)
2178 					break;
2179 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2180 				if (status < 0)
2181 					break;
2182 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2183 				if (status < 0)
2184 					break;
2185 			}
2186 			break;
2187 		case QPSK:
2188 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2189 			if (state->type_A) {
2190 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2191 				if (status < 0)
2192 					break;
2193 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2194 				if (status < 0)
2195 					break;
2196 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2197 				if (status < 0)
2198 					break;
2199 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2200 				if (status < 0)
2201 					break;
2202 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2203 				if (status < 0)
2204 					break;
2205 
2206 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2207 				if (status < 0)
2208 					break;
2209 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2210 				if (status < 0)
2211 					break;
2212 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2213 				if (status < 0)
2214 					break;
2215 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2216 				if (status < 0)
2217 					break;
2218 			}
2219 			break;
2220 
2221 		case QAM_16:
2222 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2223 			if (state->type_A) {
2224 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2225 				if (status < 0)
2226 					break;
2227 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2228 				if (status < 0)
2229 					break;
2230 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2231 				if (status < 0)
2232 					break;
2233 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2234 				if (status < 0)
2235 					break;
2236 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2237 				if (status < 0)
2238 					break;
2239 
2240 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2241 				if (status < 0)
2242 					break;
2243 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2244 				if (status < 0)
2245 					break;
2246 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2247 				if (status < 0)
2248 					break;
2249 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2250 				if (status < 0)
2251 					break;
2252 			}
2253 			break;
2254 
2255 		}
2256 		status = status;
2257 		if (status < 0)
2258 			break;
2259 
2260 		switch (DRX_CHANNEL_HIGH) {
2261 		default:
2262 		case DRX_CHANNEL_AUTO:
2263 		case DRX_CHANNEL_LOW:
2264 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2265 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2266 			if (status < 0)
2267 				break;
2268 			break;
2269 		case DRX_CHANNEL_HIGH:
2270 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2271 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2272 			if (status < 0)
2273 				break;
2274 			break;
2275 
2276 		}
2277 
2278 		switch (p->code_rate_HP) {
2279 		case FEC_1_2:
2280 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2281 			if (state->type_A) {
2282 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2283 				if (status < 0)
2284 					break;
2285 			}
2286 			break;
2287 		default:
2288 			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2289 		case FEC_2_3:
2290 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2291 			if (state->type_A) {
2292 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2293 				if (status < 0)
2294 					break;
2295 			}
2296 			break;
2297 		case FEC_3_4:
2298 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2299 			if (state->type_A) {
2300 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2301 				if (status < 0)
2302 					break;
2303 			}
2304 			break;
2305 		case FEC_5_6:
2306 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2307 			if (state->type_A) {
2308 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2309 				if (status < 0)
2310 					break;
2311 			}
2312 			break;
2313 		case FEC_7_8:
2314 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2315 			if (state->type_A) {
2316 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2317 				if (status < 0)
2318 					break;
2319 			}
2320 			break;
2321 		}
2322 		status = status;
2323 		if (status < 0)
2324 			break;
2325 
2326 		/* First determine real bandwidth (Hz) */
2327 		/* Also set delay for impulse noise cruncher (only A2) */
2328 		/* Also set parameters for EC_OC fix, note
2329 		   EC_OC_REG_TMD_HIL_MAR is changed
2330 		   by SC for fix for some 8K,1/8 guard but is restored by
2331 		   InitEC and ResetEC
2332 		   functions */
2333 		switch (p->bandwidth_hz) {
2334 		case 0:
2335 			p->bandwidth_hz = 8000000;
2336 			/* fall through */
2337 		case 8000000:
2338 			/* (64/7)*(8/8)*1000000 */
2339 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2340 
2341 			bandwidthParam = 0;
2342 			status = Write16(state,
2343 					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2344 			break;
2345 		case 7000000:
2346 			/* (64/7)*(7/8)*1000000 */
2347 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2348 			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
2349 			status = Write16(state,
2350 					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2351 			break;
2352 		case 6000000:
2353 			/* (64/7)*(6/8)*1000000 */
2354 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2355 			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
2356 			status = Write16(state,
2357 					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2358 			break;
2359 		default:
2360 			status = -EINVAL;
2361 		}
2362 		if (status < 0)
2363 			break;
2364 
2365 		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2366 		if (status < 0)
2367 			break;
2368 
2369 		{
2370 			u16 sc_config;
2371 			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2372 			if (status < 0)
2373 				break;
2374 
2375 			/* enable SLAVE mode in 2k 1/32 to
2376 			   prevent timing change glitches */
2377 			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2378 			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
2379 				/* enable slave */
2380 				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2381 			} else {
2382 				/* disable slave */
2383 				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2384 			}
2385 			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2386 			if (status < 0)
2387 				break;
2388 		}
2389 
2390 		status = SetCfgNoiseCalibration(state, &state->noise_cal);
2391 		if (status < 0)
2392 			break;
2393 
2394 		if (state->cscd_state == CSCD_INIT) {
2395 			/* switch on SRMM scan in SC */
2396 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2397 			if (status < 0)
2398 				break;
2399 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2400 			state->cscd_state = CSCD_SET;
2401 		}
2402 
2403 		/* Now compute FE_IF_REG_INCR */
2404 		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2405 		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2406 		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2407 				    (1ULL << 21), bandwidth) - (1 << 23);
2408 		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2409 		if (status < 0)
2410 			break;
2411 		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2412 		if (status < 0)
2413 			break;
2414 		/* Bandwidth setting done */
2415 
2416 		/* Mirror & frequency offset */
2417 		SetFrequencyShift(state, off, mirrorFreqSpect);
2418 
2419 		/* Start SC, write channel settings to SC */
2420 
2421 		/* Enable SC after setting all other parameters */
2422 		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2423 		if (status < 0)
2424 			break;
2425 		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2426 		if (status < 0)
2427 			break;
2428 
2429 		/* Write SC parameter registers, operation mode */
2430 #if 1
2431 		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2432 				 SC_RA_RAM_OP_AUTO_GUARD__M |
2433 				 SC_RA_RAM_OP_AUTO_CONST__M |
2434 				 SC_RA_RAM_OP_AUTO_HIER__M |
2435 				 SC_RA_RAM_OP_AUTO_RATE__M);
2436 #endif
2437 		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2438 		if (status < 0)
2439 			break;
2440 
2441 		/* Start correct processes to get in lock */
2442 		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2443 		if (status < 0)
2444 			break;
2445 
2446 		status = StartOC(state);
2447 		if (status < 0)
2448 			break;
2449 
2450 		if (state->operation_mode != OM_Default) {
2451 			status = StartDiversity(state);
2452 			if (status < 0)
2453 				break;
2454 		}
2455 
2456 		state->drxd_state = DRXD_STARTED;
2457 	} while (0);
2458 
2459 	return status;
2460 }
2461 
2462 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2463 {
2464 	u32 ulRfAgcOutputLevel = 0xffffffff;
2465 	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
2466 	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
2467 	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
2468 	u32 ulRfAgcSpeed = 0;	/* Currently unused */
2469 	u32 ulRfAgcMode = 0;	/*2;   Off */
2470 	u32 ulRfAgcR1 = 820;
2471 	u32 ulRfAgcR2 = 2200;
2472 	u32 ulRfAgcR3 = 150;
2473 	u32 ulIfAgcMode = 0;	/* Auto */
2474 	u32 ulIfAgcOutputLevel = 0xffffffff;
2475 	u32 ulIfAgcSettleLevel = 0xffffffff;
2476 	u32 ulIfAgcMinLevel = 0xffffffff;
2477 	u32 ulIfAgcMaxLevel = 0xffffffff;
2478 	u32 ulIfAgcSpeed = 0xffffffff;
2479 	u32 ulIfAgcR1 = 820;
2480 	u32 ulIfAgcR2 = 2200;
2481 	u32 ulIfAgcR3 = 150;
2482 	u32 ulClock = state->config.clock;
2483 	u32 ulSerialMode = 0;
2484 	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
2485 	u32 ulHiI2cDelay = HI_I2C_DELAY;
2486 	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2487 	u32 ulHiI2cPatch = 0;
2488 	u32 ulEnvironment = APPENV_PORTABLE;
2489 	u32 ulEnvironmentDiversity = APPENV_MOBILE;
2490 	u32 ulIFFilter = IFFILTER_SAW;
2491 
2492 	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2493 	state->if_agc_cfg.outputLevel = 0;
2494 	state->if_agc_cfg.settleLevel = 140;
2495 	state->if_agc_cfg.minOutputLevel = 0;
2496 	state->if_agc_cfg.maxOutputLevel = 1023;
2497 	state->if_agc_cfg.speed = 904;
2498 
2499 	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2500 		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2501 		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2502 	}
2503 
2504 	if (ulIfAgcMode == 0 &&
2505 	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2506 	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2507 	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2508 	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2509 		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2510 		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2511 		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2512 		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2513 		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2514 	}
2515 
2516 	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2517 	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2518 	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2519 
2520 	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2521 	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2522 	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2523 
2524 	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2525 	/* rest of the RFAgcCfg structure currently unused */
2526 	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2527 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2528 		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2529 	}
2530 
2531 	if (ulRfAgcMode == 0 &&
2532 	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2533 	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2534 	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2535 	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2536 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2537 		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2538 		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2539 		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2540 		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2541 	}
2542 
2543 	if (ulRfAgcMode == 2)
2544 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2545 
2546 	if (ulEnvironment <= 2)
2547 		state->app_env_default = (enum app_env)
2548 		    (ulEnvironment);
2549 	if (ulEnvironmentDiversity <= 2)
2550 		state->app_env_diversity = (enum app_env)
2551 		    (ulEnvironmentDiversity);
2552 
2553 	if (ulIFFilter == IFFILTER_DISCRETE) {
2554 		/* discrete filter */
2555 		state->noise_cal.cpOpt = 0;
2556 		state->noise_cal.cpNexpOfs = 40;
2557 		state->noise_cal.tdCal2k = -40;
2558 		state->noise_cal.tdCal8k = -24;
2559 	} else {
2560 		/* SAW filter */
2561 		state->noise_cal.cpOpt = 1;
2562 		state->noise_cal.cpNexpOfs = 0;
2563 		state->noise_cal.tdCal2k = -21;
2564 		state->noise_cal.tdCal8k = -24;
2565 	}
2566 	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2567 
2568 	state->chip_adr = (state->config.demod_address << 1) | 1;
2569 	switch (ulHiI2cPatch) {
2570 	case 1:
2571 		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2572 		break;
2573 	case 3:
2574 		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2575 		break;
2576 	default:
2577 		state->m_HiI2cPatch = NULL;
2578 	}
2579 
2580 	/* modify tuner and clock attributes */
2581 	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2582 	/* expected system clock frequency in kHz */
2583 	state->expected_sys_clock_freq = 48000;
2584 	/* real system clock frequency in kHz */
2585 	state->sys_clock_freq = 48000;
2586 	state->osc_clock_freq = (u16) ulClock;
2587 	state->osc_clock_deviation = 0;
2588 	state->cscd_state = CSCD_INIT;
2589 	state->drxd_state = DRXD_UNINITIALIZED;
2590 
2591 	state->PGA = 0;
2592 	state->type_A = 0;
2593 	state->tuner_mirrors = 0;
2594 
2595 	/* modify MPEG output attributes */
2596 	state->insert_rs_byte = state->config.insert_rs_byte;
2597 	state->enable_parallel = (ulSerialMode != 1);
2598 
2599 	/* Timing div, 250ns/Psys */
2600 	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2601 
2602 	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2603 					  ulHiI2cDelay) / 1000;
2604 	/* Bridge delay, uses oscilator clock */
2605 	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2606 	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2607 					    ulHiI2cBridgeDelay) / 1000;
2608 
2609 	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2610 	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2611 	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2612 	return 0;
2613 }
2614 
2615 int DRXD_init(struct drxd_state *state, const u8 * fw, u32 fw_size)
2616 {
2617 	int status = 0;
2618 	u32 driverVersion;
2619 
2620 	if (state->init_done)
2621 		return 0;
2622 
2623 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2624 
2625 	do {
2626 		state->operation_mode = OM_Default;
2627 
2628 		status = SetDeviceTypeId(state);
2629 		if (status < 0)
2630 			break;
2631 
2632 		/* Apply I2c address patch to B1 */
2633 		if (!state->type_A && state->m_HiI2cPatch != NULL)
2634 			status = WriteTable(state, state->m_HiI2cPatch);
2635 			if (status < 0)
2636 				break;
2637 
2638 		if (state->type_A) {
2639 			/* HI firmware patch for UIO readout,
2640 			   avoid clearing of result register */
2641 			status = Write16(state, 0x43012D, 0x047f, 0);
2642 			if (status < 0)
2643 				break;
2644 		}
2645 
2646 		status = HI_ResetCommand(state);
2647 		if (status < 0)
2648 			break;
2649 
2650 		status = StopAllProcessors(state);
2651 		if (status < 0)
2652 			break;
2653 		status = InitCC(state);
2654 		if (status < 0)
2655 			break;
2656 
2657 		state->osc_clock_deviation = 0;
2658 
2659 		if (state->config.osc_deviation)
2660 			state->osc_clock_deviation =
2661 			    state->config.osc_deviation(state->priv, 0, 0);
2662 		{
2663 			/* Handle clock deviation */
2664 			s32 devB;
2665 			s32 devA = (s32) (state->osc_clock_deviation) *
2666 			    (s32) (state->expected_sys_clock_freq);
2667 			/* deviation in kHz */
2668 			s32 deviation = (devA / (1000000L));
2669 			/* rounding, signed */
2670 			if (devA > 0)
2671 				devB = (2);
2672 			else
2673 				devB = (-2);
2674 			if ((devB * (devA % 1000000L) > 1000000L)) {
2675 				/* add +1 or -1 */
2676 				deviation += (devB / 2);
2677 			}
2678 
2679 			state->sys_clock_freq =
2680 			    (u16) ((state->expected_sys_clock_freq) +
2681 				   deviation);
2682 		}
2683 		status = InitHI(state);
2684 		if (status < 0)
2685 			break;
2686 		status = InitAtomicRead(state);
2687 		if (status < 0)
2688 			break;
2689 
2690 		status = EnableAndResetMB(state);
2691 		if (status < 0)
2692 			break;
2693 		if (state->type_A)
2694 			status = ResetCEFR(state);
2695 			if (status < 0)
2696 				break;
2697 
2698 		if (fw) {
2699 			status = DownloadMicrocode(state, fw, fw_size);
2700 			if (status < 0)
2701 				break;
2702 		} else {
2703 			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2704 			if (status < 0)
2705 				break;
2706 		}
2707 
2708 		if (state->PGA) {
2709 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2710 			SetCfgPga(state, 0);	/* PGA = 0 dB */
2711 		} else {
2712 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2713 		}
2714 
2715 		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2716 
2717 		status = InitFE(state);
2718 		if (status < 0)
2719 			break;
2720 		status = InitFT(state);
2721 		if (status < 0)
2722 			break;
2723 		status = InitCP(state);
2724 		if (status < 0)
2725 			break;
2726 		status = InitCE(state);
2727 		if (status < 0)
2728 			break;
2729 		status = InitEQ(state);
2730 		if (status < 0)
2731 			break;
2732 		status = InitEC(state);
2733 		if (status < 0)
2734 			break;
2735 		status = InitSC(state);
2736 		if (status < 0)
2737 			break;
2738 
2739 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
2740 		if (status < 0)
2741 			break;
2742 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2743 		if (status < 0)
2744 			break;
2745 
2746 		state->cscd_state = CSCD_INIT;
2747 		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2748 		if (status < 0)
2749 			break;
2750 		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2751 		if (status < 0)
2752 			break;
2753 
2754 		driverVersion = (((VERSION_MAJOR / 10) << 4) +
2755 				 (VERSION_MAJOR % 10)) << 24;
2756 		driverVersion += (((VERSION_MINOR / 10) << 4) +
2757 				  (VERSION_MINOR % 10)) << 16;
2758 		driverVersion += ((VERSION_PATCH / 1000) << 12) +
2759 		    ((VERSION_PATCH / 100) << 8) +
2760 		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2761 
2762 		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2763 		if (status < 0)
2764 			break;
2765 
2766 		status = StopOC(state);
2767 		if (status < 0)
2768 			break;
2769 
2770 		state->drxd_state = DRXD_STOPPED;
2771 		state->init_done = 1;
2772 		status = 0;
2773 	} while (0);
2774 	return status;
2775 }
2776 
2777 int DRXD_status(struct drxd_state *state, u32 * pLockStatus)
2778 {
2779 	DRX_GetLockStatus(state, pLockStatus);
2780 
2781 	/*if (*pLockStatus&DRX_LOCK_MPEG) */
2782 	if (*pLockStatus & DRX_LOCK_FEC) {
2783 		ConfigureMPEGOutput(state, 1);
2784 		/* Get status again, in case we have MPEG lock now */
2785 		/*DRX_GetLockStatus(state, pLockStatus); */
2786 	}
2787 
2788 	return 0;
2789 }
2790 
2791 /****************************************************************************/
2792 /****************************************************************************/
2793 /****************************************************************************/
2794 
2795 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2796 {
2797 	struct drxd_state *state = fe->demodulator_priv;
2798 	u32 value;
2799 	int res;
2800 
2801 	res = ReadIFAgc(state, &value);
2802 	if (res < 0)
2803 		*strength = 0;
2804 	else
2805 		*strength = 0xffff - (value << 4);
2806 	return 0;
2807 }
2808 
2809 static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
2810 {
2811 	struct drxd_state *state = fe->demodulator_priv;
2812 	u32 lock;
2813 
2814 	DRXD_status(state, &lock);
2815 	*status = 0;
2816 	/* No MPEG lock in V255 firmware, bug ? */
2817 #if 1
2818 	if (lock & DRX_LOCK_MPEG)
2819 		*status |= FE_HAS_LOCK;
2820 #else
2821 	if (lock & DRX_LOCK_FEC)
2822 		*status |= FE_HAS_LOCK;
2823 #endif
2824 	if (lock & DRX_LOCK_FEC)
2825 		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2826 	if (lock & DRX_LOCK_DEMOD)
2827 		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2828 
2829 	return 0;
2830 }
2831 
2832 static int drxd_init(struct dvb_frontend *fe)
2833 {
2834 	struct drxd_state *state = fe->demodulator_priv;
2835 	int err = 0;
2836 
2837 /*	if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2838 	return DRXD_init(state, 0, 0);
2839 
2840 	err = DRXD_init(state, state->fw->data, state->fw->size);
2841 	release_firmware(state->fw);
2842 	return err;
2843 }
2844 
2845 int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2846 {
2847 	struct drxd_state *state = fe->demodulator_priv;
2848 
2849 	if (state->config.disable_i2c_gate_ctrl == 1)
2850 		return 0;
2851 
2852 	return DRX_ConfigureI2CBridge(state, onoff);
2853 }
2854 EXPORT_SYMBOL(drxd_config_i2c);
2855 
2856 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2857 				  struct dvb_frontend_tune_settings *sets)
2858 {
2859 	sets->min_delay_ms = 10000;
2860 	sets->max_drift = 0;
2861 	sets->step_size = 0;
2862 	return 0;
2863 }
2864 
2865 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2866 {
2867 	*ber = 0;
2868 	return 0;
2869 }
2870 
2871 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2872 {
2873 	*snr = 0;
2874 	return 0;
2875 }
2876 
2877 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2878 {
2879 	*ucblocks = 0;
2880 	return 0;
2881 }
2882 
2883 static int drxd_sleep(struct dvb_frontend *fe)
2884 {
2885 	struct drxd_state *state = fe->demodulator_priv;
2886 
2887 	ConfigureMPEGOutput(state, 0);
2888 	return 0;
2889 }
2890 
2891 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2892 {
2893 	return drxd_config_i2c(fe, enable);
2894 }
2895 
2896 static int drxd_set_frontend(struct dvb_frontend *fe)
2897 {
2898 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2899 	struct drxd_state *state = fe->demodulator_priv;
2900 	s32 off = 0;
2901 
2902 	state->props = *p;
2903 	DRX_Stop(state);
2904 
2905 	if (fe->ops.tuner_ops.set_params) {
2906 		fe->ops.tuner_ops.set_params(fe);
2907 		if (fe->ops.i2c_gate_ctrl)
2908 			fe->ops.i2c_gate_ctrl(fe, 0);
2909 	}
2910 
2911 	msleep(200);
2912 
2913 	return DRX_Start(state, off);
2914 }
2915 
2916 static void drxd_release(struct dvb_frontend *fe)
2917 {
2918 	struct drxd_state *state = fe->demodulator_priv;
2919 
2920 	kfree(state);
2921 }
2922 
2923 static struct dvb_frontend_ops drxd_ops = {
2924 	.delsys = { SYS_DVBT},
2925 	.info = {
2926 		 .name = "Micronas DRXD DVB-T",
2927 		 .frequency_min = 47125000,
2928 		 .frequency_max = 855250000,
2929 		 .frequency_stepsize = 166667,
2930 		 .frequency_tolerance = 0,
2931 		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2932 		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2933 		 FE_CAN_FEC_AUTO |
2934 		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2935 		 FE_CAN_QAM_AUTO |
2936 		 FE_CAN_TRANSMISSION_MODE_AUTO |
2937 		 FE_CAN_GUARD_INTERVAL_AUTO |
2938 		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2939 
2940 	.release = drxd_release,
2941 	.init = drxd_init,
2942 	.sleep = drxd_sleep,
2943 	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2944 
2945 	.set_frontend = drxd_set_frontend,
2946 	.get_tune_settings = drxd_get_tune_settings,
2947 
2948 	.read_status = drxd_read_status,
2949 	.read_ber = drxd_read_ber,
2950 	.read_signal_strength = drxd_read_signal_strength,
2951 	.read_snr = drxd_read_snr,
2952 	.read_ucblocks = drxd_read_ucblocks,
2953 };
2954 
2955 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2956 				 void *priv, struct i2c_adapter *i2c,
2957 				 struct device *dev)
2958 {
2959 	struct drxd_state *state = NULL;
2960 
2961 	state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
2962 	if (!state)
2963 		return NULL;
2964 	memset(state, 0, sizeof(*state));
2965 
2966 	memcpy(&state->ops, &drxd_ops, sizeof(struct dvb_frontend_ops));
2967 	state->dev = dev;
2968 	state->config = *config;
2969 	state->i2c = i2c;
2970 	state->priv = priv;
2971 
2972 	mutex_init(&state->mutex);
2973 
2974 	if (Read16(state, 0, 0, 0) < 0)
2975 		goto error;
2976 
2977 	memcpy(&state->frontend.ops, &drxd_ops,
2978 	       sizeof(struct dvb_frontend_ops));
2979 	state->frontend.demodulator_priv = state;
2980 	ConfigureMPEGOutput(state, 0);
2981 	return &state->frontend;
2982 
2983 error:
2984 	printk(KERN_ERR "drxd: not found\n");
2985 	kfree(state);
2986 	return NULL;
2987 }
2988 EXPORT_SYMBOL(drxd_attach);
2989 
2990 MODULE_DESCRIPTION("DRXD driver");
2991 MODULE_AUTHOR("Micronas");
2992 MODULE_LICENSE("GPL");
2993