1 /* 2 * Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family. 3 * 4 * Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation, version 2. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/i2c.h> 12 #include <linux/mutex.h> 13 14 #include "dvb_math.h" 15 #include "dvb_frontend.h" 16 17 #include "dib9000.h" 18 #include "dibx000_common.h" 19 20 static int debug; 21 module_param(debug, int, 0644); 22 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); 23 24 #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB9000: "); printk(args); printk("\n"); } } while (0) 25 #define MAX_NUMBER_OF_FRONTENDS 6 26 27 struct i2c_device { 28 struct i2c_adapter *i2c_adap; 29 u8 i2c_addr; 30 u8 *i2c_read_buffer; 31 u8 *i2c_write_buffer; 32 }; 33 34 struct dib9000_pid_ctrl { 35 #define DIB9000_PID_FILTER_CTRL 0 36 #define DIB9000_PID_FILTER 1 37 u8 cmd; 38 u8 id; 39 u16 pid; 40 u8 onoff; 41 }; 42 43 struct dib9000_state { 44 struct i2c_device i2c; 45 46 struct dibx000_i2c_master i2c_master; 47 struct i2c_adapter tuner_adap; 48 struct i2c_adapter component_bus; 49 50 u16 revision; 51 u8 reg_offs; 52 53 enum frontend_tune_state tune_state; 54 u32 status; 55 struct dvb_frontend_parametersContext channel_status; 56 57 u8 fe_id; 58 59 #define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff 60 u16 gpio_dir; 61 #define DIB9000_GPIO_DEFAULT_VALUES 0x0000 62 u16 gpio_val; 63 #define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff 64 u16 gpio_pwm_pos; 65 66 union { /* common for all chips */ 67 struct { 68 u8 mobile_mode:1; 69 } host; 70 71 struct { 72 struct dib9000_fe_memory_map { 73 u16 addr; 74 u16 size; 75 } fe_mm[18]; 76 u8 memcmd; 77 78 struct mutex mbx_if_lock; /* to protect read/write operations */ 79 struct mutex mbx_lock; /* to protect the whole mailbox handling */ 80 81 struct mutex mem_lock; /* to protect the memory accesses */ 82 struct mutex mem_mbx_lock; /* to protect the memory-based mailbox */ 83 84 #define MBX_MAX_WORDS (256 - 200 - 2) 85 #define DIB9000_MSG_CACHE_SIZE 2 86 u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS]; 87 u8 fw_is_running; 88 } risc; 89 } platform; 90 91 union { /* common for all platforms */ 92 struct { 93 struct dib9000_config cfg; 94 } d9; 95 } chip; 96 97 struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; 98 u16 component_bus_speed; 99 100 /* for the I2C transfer */ 101 struct i2c_msg msg[2]; 102 u8 i2c_write_buffer[255]; 103 u8 i2c_read_buffer[255]; 104 struct mutex demod_lock; 105 u8 get_frontend_internal; 106 struct dib9000_pid_ctrl pid_ctrl[10]; 107 s8 pid_ctrl_index; /* -1: empty list; -2: do not use the list */ 108 }; 109 110 static const u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 111 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112 0, 0, 0, 0, 0, 0, 0, 0 113 }; 114 115 enum dib9000_power_mode { 116 DIB9000_POWER_ALL = 0, 117 118 DIB9000_POWER_NO, 119 DIB9000_POWER_INTERF_ANALOG_AGC, 120 DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, 121 DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD, 122 DIB9000_POWER_INTERFACE_ONLY, 123 }; 124 125 enum dib9000_out_messages { 126 OUT_MSG_HBM_ACK, 127 OUT_MSG_HOST_BUF_FAIL, 128 OUT_MSG_REQ_VERSION, 129 OUT_MSG_BRIDGE_I2C_W, 130 OUT_MSG_BRIDGE_I2C_R, 131 OUT_MSG_BRIDGE_APB_W, 132 OUT_MSG_BRIDGE_APB_R, 133 OUT_MSG_SCAN_CHANNEL, 134 OUT_MSG_MONIT_DEMOD, 135 OUT_MSG_CONF_GPIO, 136 OUT_MSG_DEBUG_HELP, 137 OUT_MSG_SUBBAND_SEL, 138 OUT_MSG_ENABLE_TIME_SLICE, 139 OUT_MSG_FE_FW_DL, 140 OUT_MSG_FE_CHANNEL_SEARCH, 141 OUT_MSG_FE_CHANNEL_TUNE, 142 OUT_MSG_FE_SLEEP, 143 OUT_MSG_FE_SYNC, 144 OUT_MSG_CTL_MONIT, 145 146 OUT_MSG_CONF_SVC, 147 OUT_MSG_SET_HBM, 148 OUT_MSG_INIT_DEMOD, 149 OUT_MSG_ENABLE_DIVERSITY, 150 OUT_MSG_SET_OUTPUT_MODE, 151 OUT_MSG_SET_PRIORITARY_CHANNEL, 152 OUT_MSG_ACK_FRG, 153 OUT_MSG_INIT_PMU, 154 }; 155 156 enum dib9000_in_messages { 157 IN_MSG_DATA, 158 IN_MSG_FRAME_INFO, 159 IN_MSG_CTL_MONIT, 160 IN_MSG_ACK_FREE_ITEM, 161 IN_MSG_DEBUG_BUF, 162 IN_MSG_MPE_MONITOR, 163 IN_MSG_RAWTS_MONITOR, 164 IN_MSG_END_BRIDGE_I2C_RW, 165 IN_MSG_END_BRIDGE_APB_RW, 166 IN_MSG_VERSION, 167 IN_MSG_END_OF_SCAN, 168 IN_MSG_MONIT_DEMOD, 169 IN_MSG_ERROR, 170 IN_MSG_FE_FW_DL_DONE, 171 IN_MSG_EVENT, 172 IN_MSG_ACK_CHANGE_SVC, 173 IN_MSG_HBM_PROF, 174 }; 175 176 /* memory_access requests */ 177 #define FE_MM_W_CHANNEL 0 178 #define FE_MM_W_FE_INFO 1 179 #define FE_MM_RW_SYNC 2 180 181 #define FE_SYNC_CHANNEL 1 182 #define FE_SYNC_W_GENERIC_MONIT 2 183 #define FE_SYNC_COMPONENT_ACCESS 3 184 185 #define FE_MM_R_CHANNEL_SEARCH_STATE 3 186 #define FE_MM_R_CHANNEL_UNION_CONTEXT 4 187 #define FE_MM_R_FE_INFO 5 188 #define FE_MM_R_FE_MONITOR 6 189 190 #define FE_MM_W_CHANNEL_HEAD 7 191 #define FE_MM_W_CHANNEL_UNION 8 192 #define FE_MM_W_CHANNEL_CONTEXT 9 193 #define FE_MM_R_CHANNEL_UNION 10 194 #define FE_MM_R_CHANNEL_CONTEXT 11 195 #define FE_MM_R_CHANNEL_TUNE_STATE 12 196 197 #define FE_MM_R_GENERIC_MONITORING_SIZE 13 198 #define FE_MM_W_GENERIC_MONITORING 14 199 #define FE_MM_R_GENERIC_MONITORING 15 200 201 #define FE_MM_W_COMPONENT_ACCESS 16 202 #define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17 203 static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len); 204 static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len); 205 206 static u16 to_fw_output_mode(u16 mode) 207 { 208 switch (mode) { 209 case OUTMODE_HIGH_Z: 210 return 0; 211 case OUTMODE_MPEG2_PAR_GATED_CLK: 212 return 4; 213 case OUTMODE_MPEG2_PAR_CONT_CLK: 214 return 8; 215 case OUTMODE_MPEG2_SERIAL: 216 return 16; 217 case OUTMODE_DIVERSITY: 218 return 128; 219 case OUTMODE_MPEG2_FIFO: 220 return 2; 221 case OUTMODE_ANALOG_ADC: 222 return 1; 223 default: 224 return 0; 225 } 226 } 227 228 static u16 dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 * b, u32 len, u16 attribute) 229 { 230 u32 chunk_size = 126; 231 u32 l; 232 int ret; 233 234 if (state->platform.risc.fw_is_running && (reg < 1024)) 235 return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len); 236 237 memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); 238 state->msg[0].addr = state->i2c.i2c_addr >> 1; 239 state->msg[0].flags = 0; 240 state->msg[0].buf = state->i2c_write_buffer; 241 state->msg[0].len = 2; 242 state->msg[1].addr = state->i2c.i2c_addr >> 1; 243 state->msg[1].flags = I2C_M_RD; 244 state->msg[1].buf = b; 245 state->msg[1].len = len; 246 247 state->i2c_write_buffer[0] = reg >> 8; 248 state->i2c_write_buffer[1] = reg & 0xff; 249 250 if (attribute & DATA_BUS_ACCESS_MODE_8BIT) 251 state->i2c_write_buffer[0] |= (1 << 5); 252 if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) 253 state->i2c_write_buffer[0] |= (1 << 4); 254 255 do { 256 l = len < chunk_size ? len : chunk_size; 257 state->msg[1].len = l; 258 state->msg[1].buf = b; 259 ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 2) != 2 ? -EREMOTEIO : 0; 260 if (ret != 0) { 261 dprintk("i2c read error on %d", reg); 262 return -EREMOTEIO; 263 } 264 265 b += l; 266 len -= l; 267 268 if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) 269 reg += l / 2; 270 } while ((ret == 0) && len); 271 272 return 0; 273 } 274 275 static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg) 276 { 277 struct i2c_msg msg[2] = { 278 {.addr = i2c->i2c_addr >> 1, .flags = 0, 279 .buf = i2c->i2c_write_buffer, .len = 2}, 280 {.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD, 281 .buf = i2c->i2c_read_buffer, .len = 2}, 282 }; 283 284 i2c->i2c_write_buffer[0] = reg >> 8; 285 i2c->i2c_write_buffer[1] = reg & 0xff; 286 287 if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) { 288 dprintk("read register %x error", reg); 289 return 0; 290 } 291 292 return (i2c->i2c_read_buffer[0] << 8) | i2c->i2c_read_buffer[1]; 293 } 294 295 static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg) 296 { 297 if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 0) != 0) 298 return 0; 299 return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; 300 } 301 302 static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute) 303 { 304 if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 305 attribute) != 0) 306 return 0; 307 return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; 308 } 309 310 #define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) 311 312 static u16 dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 * buf, u32 len, u16 attribute) 313 { 314 u32 chunk_size = 126; 315 u32 l; 316 int ret; 317 318 if (state->platform.risc.fw_is_running && (reg < 1024)) { 319 if (dib9000_risc_apb_access_write 320 (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0) 321 return -EINVAL; 322 return 0; 323 } 324 325 memset(&state->msg[0], 0, sizeof(struct i2c_msg)); 326 state->msg[0].addr = state->i2c.i2c_addr >> 1; 327 state->msg[0].flags = 0; 328 state->msg[0].buf = state->i2c_write_buffer; 329 state->msg[0].len = len + 2; 330 331 state->i2c_write_buffer[0] = (reg >> 8) & 0xff; 332 state->i2c_write_buffer[1] = (reg) & 0xff; 333 334 if (attribute & DATA_BUS_ACCESS_MODE_8BIT) 335 state->i2c_write_buffer[0] |= (1 << 5); 336 if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) 337 state->i2c_write_buffer[0] |= (1 << 4); 338 339 do { 340 l = len < chunk_size ? len : chunk_size; 341 state->msg[0].len = l + 2; 342 memcpy(&state->i2c_write_buffer[2], buf, l); 343 344 ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0; 345 346 buf += l; 347 len -= l; 348 349 if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) 350 reg += l / 2; 351 } while ((ret == 0) && len); 352 353 return ret; 354 } 355 356 static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) 357 { 358 struct i2c_msg msg = { 359 .addr = i2c->i2c_addr >> 1, .flags = 0, 360 .buf = i2c->i2c_write_buffer, .len = 4 361 }; 362 363 i2c->i2c_write_buffer[0] = (reg >> 8) & 0xff; 364 i2c->i2c_write_buffer[1] = reg & 0xff; 365 i2c->i2c_write_buffer[2] = (val >> 8) & 0xff; 366 i2c->i2c_write_buffer[3] = val & 0xff; 367 368 return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; 369 } 370 371 static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val) 372 { 373 u8 b[2] = { val >> 8, val & 0xff }; 374 return dib9000_write16_attr(state, reg, b, 2, 0); 375 } 376 377 static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute) 378 { 379 u8 b[2] = { val >> 8, val & 0xff }; 380 return dib9000_write16_attr(state, reg, b, 2, attribute); 381 } 382 383 #define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0) 384 #define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) 385 #define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute)) 386 387 #define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0) 388 #define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0) 389 390 #define MAC_IRQ (1 << 1) 391 #define IRQ_POL_MSK (1 << 4) 392 393 #define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) 394 #define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) 395 396 static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading) 397 { 398 u8 b[14] = { 0 }; 399 400 /* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */ 401 /* b[0] = 0 << 7; */ 402 b[1] = 1; 403 404 /* b[2] = 0; */ 405 /* b[3] = 0; */ 406 b[4] = (u8) (addr >> 8); 407 b[5] = (u8) (addr & 0xff); 408 409 /* b[10] = 0; */ 410 /* b[11] = 0; */ 411 b[12] = (u8) (addr >> 8); 412 b[13] = (u8) (addr & 0xff); 413 414 addr += len; 415 /* b[6] = 0; */ 416 /* b[7] = 0; */ 417 b[8] = (u8) (addr >> 8); 418 b[9] = (u8) (addr & 0xff); 419 420 dib9000_write(state, 1056, b, 14); 421 if (reading) 422 dib9000_write_word(state, 1056, (1 << 15) | 1); 423 state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */ 424 } 425 426 static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd) 427 { 428 struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f]; 429 /* decide whether we need to "refresh" the memory controller */ 430 if (state->platform.risc.memcmd == cmd && /* same command */ 431 !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */ 432 return; 433 dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80); 434 state->platform.risc.memcmd = cmd; 435 } 436 437 static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len) 438 { 439 if (!state->platform.risc.fw_is_running) 440 return -EIO; 441 442 if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) { 443 dprintk("could not get the lock"); 444 return -EINTR; 445 } 446 dib9000_risc_mem_setup(state, cmd | 0x80); 447 dib9000_risc_mem_read_chunks(state, b, len); 448 mutex_unlock(&state->platform.risc.mem_lock); 449 return 0; 450 } 451 452 static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b) 453 { 454 struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd]; 455 if (!state->platform.risc.fw_is_running) 456 return -EIO; 457 458 if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) { 459 dprintk("could not get the lock"); 460 return -EINTR; 461 } 462 dib9000_risc_mem_setup(state, cmd); 463 dib9000_risc_mem_write_chunks(state, b, m->size); 464 mutex_unlock(&state->platform.risc.mem_lock); 465 return 0; 466 } 467 468 static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len) 469 { 470 u16 offs; 471 472 if (risc_id == 1) 473 offs = 16; 474 else 475 offs = 0; 476 477 /* config crtl reg */ 478 dib9000_write_word(state, 1024 + offs, 0x000f); 479 dib9000_write_word(state, 1025 + offs, 0); 480 dib9000_write_word(state, 1031 + offs, key); 481 482 dprintk("going to download %dB of microcode", len); 483 if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) { 484 dprintk("error while downloading microcode for RISC %c", 'A' + risc_id); 485 return -EIO; 486 } 487 488 dprintk("Microcode for RISC %c loaded", 'A' + risc_id); 489 490 return 0; 491 } 492 493 static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id) 494 { 495 u16 mbox_offs; 496 u16 reset_reg; 497 u16 tries = 1000; 498 499 if (risc_id == 1) 500 mbox_offs = 16; 501 else 502 mbox_offs = 0; 503 504 /* Reset mailbox */ 505 dib9000_write_word(state, 1027 + mbox_offs, 0x8000); 506 507 /* Read reset status */ 508 do { 509 reset_reg = dib9000_read_word(state, 1027 + mbox_offs); 510 msleep(100); 511 } while ((reset_reg & 0x8000) && --tries); 512 513 if (reset_reg & 0x8000) { 514 dprintk("MBX: init ERROR, no response from RISC %c", 'A' + risc_id); 515 return -EIO; 516 } 517 dprintk("MBX: initialized"); 518 return 0; 519 } 520 521 #define MAX_MAILBOX_TRY 100 522 static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr) 523 { 524 u8 *d, b[2]; 525 u16 tmp; 526 u16 size; 527 u32 i; 528 int ret = 0; 529 530 if (!state->platform.risc.fw_is_running) 531 return -EINVAL; 532 533 if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) { 534 dprintk("could not get the lock"); 535 return -EINTR; 536 } 537 tmp = MAX_MAILBOX_TRY; 538 do { 539 size = dib9000_read_word_attr(state, 1043, attr) & 0xff; 540 if ((size + len + 1) > MBX_MAX_WORDS && --tmp) { 541 dprintk("MBX: RISC mbx full, retrying"); 542 msleep(100); 543 } else 544 break; 545 } while (1); 546 547 /*dprintk( "MBX: size: %d", size); */ 548 549 if (tmp == 0) { 550 ret = -EINVAL; 551 goto out; 552 } 553 #ifdef DUMP_MSG 554 dprintk("--> %02x %d ", id, len + 1); 555 for (i = 0; i < len; i++) 556 dprintk("%04x ", data[i]); 557 dprintk("\n"); 558 #endif 559 560 /* byte-order conversion - works on big (where it is not necessary) or little endian */ 561 d = (u8 *) data; 562 for (i = 0; i < len; i++) { 563 tmp = data[i]; 564 *d++ = tmp >> 8; 565 *d++ = tmp & 0xff; 566 } 567 568 /* write msg */ 569 b[0] = id; 570 b[1] = len + 1; 571 if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) { 572 ret = -EIO; 573 goto out; 574 } 575 576 /* update register nb_mes_in_RX */ 577 ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr); 578 579 out: 580 mutex_unlock(&state->platform.risc.mbx_if_lock); 581 582 return ret; 583 } 584 585 static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr) 586 { 587 #ifdef DUMP_MSG 588 u16 *d = data; 589 #endif 590 591 u16 tmp, i; 592 u8 size; 593 u8 mc_base; 594 595 if (!state->platform.risc.fw_is_running) 596 return 0; 597 598 if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) { 599 dprintk("could not get the lock"); 600 return 0; 601 } 602 if (risc_id == 1) 603 mc_base = 16; 604 else 605 mc_base = 0; 606 607 /* Length and type in the first word */ 608 *data = dib9000_read_word_attr(state, 1029 + mc_base, attr); 609 610 size = *data & 0xff; 611 if (size <= MBX_MAX_WORDS) { 612 data++; 613 size--; /* Initial word already read */ 614 615 dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr); 616 617 /* to word conversion */ 618 for (i = 0; i < size; i++) { 619 tmp = *data; 620 *data = (tmp >> 8) | (tmp << 8); 621 data++; 622 } 623 624 #ifdef DUMP_MSG 625 dprintk("<-- "); 626 for (i = 0; i < size + 1; i++) 627 dprintk("%04x ", d[i]); 628 dprintk("\n"); 629 #endif 630 } else { 631 dprintk("MBX: message is too big for message cache (%d), flushing message", size); 632 size--; /* Initial word already read */ 633 while (size--) 634 dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr); 635 } 636 /* Update register nb_mes_in_TX */ 637 dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr); 638 639 mutex_unlock(&state->platform.risc.mbx_if_lock); 640 641 return size + 1; 642 } 643 644 static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size) 645 { 646 u32 ts = data[1] << 16 | data[0]; 647 char *b = (char *)&data[2]; 648 649 b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */ 650 if (*b == '~') { 651 b++; 652 dprintk("%s", b); 653 } else 654 dprintk("RISC%d: %d.%04d %s", state->fe_id, ts / 10000, ts % 10000, *b ? b : "<empty>"); 655 return 1; 656 } 657 658 static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr) 659 { 660 int i; 661 u8 size; 662 u16 *block; 663 /* find a free slot */ 664 for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { 665 block = state->platform.risc.message_cache[i]; 666 if (*block == 0) { 667 size = dib9000_mbx_read(state, block, 1, attr); 668 669 /* dprintk( "MBX: fetched %04x message to cache", *block); */ 670 671 switch (*block >> 8) { 672 case IN_MSG_DEBUG_BUF: 673 dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */ 674 *block = 0; /* free the block */ 675 break; 676 #if 0 677 case IN_MSG_DATA: /* FE-TRACE */ 678 dib9000_risc_data_process(state, block + 1, size); 679 *block = 0; 680 break; 681 #endif 682 default: 683 break; 684 } 685 686 return 1; 687 } 688 } 689 dprintk("MBX: no free cache-slot found for new message..."); 690 return -1; 691 } 692 693 static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr) 694 { 695 if (risc_id == 0) 696 return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */ 697 else 698 return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */ 699 } 700 701 static int dib9000_mbx_process(struct dib9000_state *state, u16 attr) 702 { 703 int ret = 0; 704 705 if (!state->platform.risc.fw_is_running) 706 return -1; 707 708 if (mutex_lock_interruptible(&state->platform.risc.mbx_lock) < 0) { 709 dprintk("could not get the lock"); 710 return -1; 711 } 712 713 if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */ 714 ret = dib9000_mbx_fetch_to_cache(state, attr); 715 716 dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */ 717 /* if (tmp) */ 718 /* dprintk( "cleared IRQ: %x", tmp); */ 719 mutex_unlock(&state->platform.risc.mbx_lock); 720 721 return ret; 722 } 723 724 static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr) 725 { 726 u8 i; 727 u16 *block; 728 u16 timeout = 30; 729 730 *msg = 0; 731 do { 732 /* dib9000_mbx_get_from_cache(); */ 733 for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { 734 block = state->platform.risc.message_cache[i]; 735 if ((*block >> 8) == id) { 736 *size = (*block & 0xff) - 1; 737 memcpy(msg, block + 1, (*size) * 2); 738 *block = 0; /* free the block */ 739 i = 0; /* signal that we found a message */ 740 break; 741 } 742 } 743 744 if (i == 0) 745 break; 746 747 if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */ 748 return -1; 749 750 } while (--timeout); 751 752 if (timeout == 0) { 753 dprintk("waiting for message %d timed out", id); 754 return -1; 755 } 756 757 return i == 0; 758 } 759 760 static int dib9000_risc_check_version(struct dib9000_state *state) 761 { 762 u8 r[4]; 763 u8 size; 764 u16 fw_version = 0; 765 766 if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0) 767 return -EIO; 768 769 if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0) 770 return -EIO; 771 772 fw_version = (r[0] << 8) | r[1]; 773 dprintk("RISC: ver: %d.%02d (IC: %d)", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]); 774 775 if ((fw_version >> 10) != 7) 776 return -EINVAL; 777 778 switch (fw_version & 0x3ff) { 779 case 11: 780 case 12: 781 case 14: 782 case 15: 783 case 16: 784 case 17: 785 break; 786 default: 787 dprintk("RISC: invalid firmware version"); 788 return -EINVAL; 789 } 790 791 dprintk("RISC: valid firmware version"); 792 return 0; 793 } 794 795 static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB) 796 { 797 /* Reconfig pool mac ram */ 798 dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */ 799 dib9000_write_word(state, 1226, 0x05); 800 801 /* Toggles IP crypto to Host APB interface. */ 802 dib9000_write_word(state, 1542, 1); 803 804 /* Set jump and no jump in the dma box */ 805 dib9000_write_word(state, 1074, 0); 806 dib9000_write_word(state, 1075, 0); 807 808 /* Set MAC as APB Master. */ 809 dib9000_write_word(state, 1237, 0); 810 811 /* Reset the RISCs */ 812 if (codeA != NULL) 813 dib9000_write_word(state, 1024, 2); 814 else 815 dib9000_write_word(state, 1024, 15); 816 if (codeB != NULL) 817 dib9000_write_word(state, 1040, 2); 818 819 if (codeA != NULL) 820 dib9000_firmware_download(state, 0, 0x1234, codeA, lenA); 821 if (codeB != NULL) 822 dib9000_firmware_download(state, 1, 0x1234, codeB, lenB); 823 824 /* Run the RISCs */ 825 if (codeA != NULL) 826 dib9000_write_word(state, 1024, 0); 827 if (codeB != NULL) 828 dib9000_write_word(state, 1040, 0); 829 830 if (codeA != NULL) 831 if (dib9000_mbx_host_init(state, 0) != 0) 832 return -EIO; 833 if (codeB != NULL) 834 if (dib9000_mbx_host_init(state, 1) != 0) 835 return -EIO; 836 837 msleep(100); 838 state->platform.risc.fw_is_running = 1; 839 840 if (dib9000_risc_check_version(state) != 0) 841 return -EINVAL; 842 843 state->platform.risc.memcmd = 0xff; 844 return 0; 845 } 846 847 static u16 dib9000_identify(struct i2c_device *client) 848 { 849 u16 value; 850 851 value = dib9000_i2c_read16(client, 896); 852 if (value != 0x01b3) { 853 dprintk("wrong Vendor ID (0x%x)", value); 854 return 0; 855 } 856 857 value = dib9000_i2c_read16(client, 897); 858 if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) { 859 dprintk("wrong Device ID (0x%x)", value); 860 return 0; 861 } 862 863 /* protect this driver to be used with 7000PC */ 864 if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) { 865 dprintk("this driver does not work with DiB7000PC"); 866 return 0; 867 } 868 869 switch (value) { 870 case 0x4000: 871 dprintk("found DiB7000MA/PA/MB/PB"); 872 break; 873 case 0x4001: 874 dprintk("found DiB7000HC"); 875 break; 876 case 0x4002: 877 dprintk("found DiB7000MC"); 878 break; 879 case 0x4003: 880 dprintk("found DiB9000A"); 881 break; 882 case 0x4004: 883 dprintk("found DiB9000H"); 884 break; 885 case 0x4005: 886 dprintk("found DiB9000M"); 887 break; 888 } 889 890 return value; 891 } 892 893 static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode) 894 { 895 /* by default everything is going to be powered off */ 896 u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906; 897 u8 offset; 898 899 if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005) 900 offset = 1; 901 else 902 offset = 0; 903 904 reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */ 905 906 /* now, depending on the requested mode, we power on */ 907 switch (mode) { 908 /* power up everything in the demod */ 909 case DIB9000_POWER_ALL: 910 reg_903 = 0x0000; 911 reg_904 = 0x0000; 912 reg_905 = 0x0000; 913 reg_906 = 0x0000; 914 break; 915 916 /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ 917 case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ 918 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); 919 break; 920 921 case DIB9000_POWER_INTERF_ANALOG_AGC: 922 reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); 923 reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); 924 reg_906 &= ~((1 << 0)); 925 break; 926 927 case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: 928 reg_903 = 0x0000; 929 reg_904 = 0x801f; 930 reg_905 = 0x0000; 931 reg_906 &= ~((1 << 0)); 932 break; 933 934 case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD: 935 reg_903 = 0x0000; 936 reg_904 = 0x8000; 937 reg_905 = 0x010b; 938 reg_906 &= ~((1 << 0)); 939 break; 940 default: 941 case DIB9000_POWER_NO: 942 break; 943 } 944 945 /* always power down unused parts */ 946 if (!state->platform.host.mobile_mode) 947 reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); 948 949 /* P_sdio_select_clk = 0 on MC and after */ 950 if (state->revision != 0x4000) 951 reg_906 <<= 1; 952 953 dib9000_write_word(state, 903 + offset, reg_903); 954 dib9000_write_word(state, 904 + offset, reg_904); 955 dib9000_write_word(state, 905 + offset, reg_905); 956 dib9000_write_word(state, 906 + offset, reg_906); 957 } 958 959 static int dib9000_fw_reset(struct dvb_frontend *fe) 960 { 961 struct dib9000_state *state = fe->demodulator_priv; 962 963 dib9000_write_word(state, 1817, 0x0003); 964 965 dib9000_write_word(state, 1227, 1); 966 dib9000_write_word(state, 1227, 0); 967 968 switch ((state->revision = dib9000_identify(&state->i2c))) { 969 case 0x4003: 970 case 0x4004: 971 case 0x4005: 972 state->reg_offs = 1; 973 break; 974 default: 975 return -EINVAL; 976 } 977 978 /* reset the i2c-master to use the host interface */ 979 dibx000_reset_i2c_master(&state->i2c_master); 980 981 dib9000_set_power_mode(state, DIB9000_POWER_ALL); 982 983 /* unforce divstr regardless whether i2c enumeration was done or not */ 984 dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1)); 985 dib9000_write_word(state, 1796, 0); 986 dib9000_write_word(state, 1805, 0x805); 987 988 /* restart all parts */ 989 dib9000_write_word(state, 898, 0xffff); 990 dib9000_write_word(state, 899, 0xffff); 991 dib9000_write_word(state, 900, 0x0001); 992 dib9000_write_word(state, 901, 0xff19); 993 dib9000_write_word(state, 902, 0x003c); 994 995 dib9000_write_word(state, 898, 0); 996 dib9000_write_word(state, 899, 0); 997 dib9000_write_word(state, 900, 0); 998 dib9000_write_word(state, 901, 0); 999 dib9000_write_word(state, 902, 0); 1000 1001 dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives); 1002 1003 dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY); 1004 1005 return 0; 1006 } 1007 1008 static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len) 1009 { 1010 u16 mb[10]; 1011 u8 i, s; 1012 1013 if (address >= 1024 || !state->platform.risc.fw_is_running) 1014 return -EINVAL; 1015 1016 /* dprintk( "APB access thru rd fw %d %x", address, attribute); */ 1017 1018 mb[0] = (u16) address; 1019 mb[1] = len / 2; 1020 dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute); 1021 switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) { 1022 case 1: 1023 s--; 1024 for (i = 0; i < s; i++) { 1025 b[i * 2] = (mb[i + 1] >> 8) & 0xff; 1026 b[i * 2 + 1] = (mb[i + 1]) & 0xff; 1027 } 1028 return 0; 1029 default: 1030 return -EIO; 1031 } 1032 return -EIO; 1033 } 1034 1035 static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len) 1036 { 1037 u16 mb[10]; 1038 u8 s, i; 1039 1040 if (address >= 1024 || !state->platform.risc.fw_is_running) 1041 return -EINVAL; 1042 1043 if (len > 18) 1044 return -EINVAL; 1045 1046 /* dprintk( "APB access thru wr fw %d %x", address, attribute); */ 1047 1048 mb[0] = (u16)address; 1049 for (i = 0; i + 1 < len; i += 2) 1050 mb[1 + i / 2] = b[i] << 8 | b[i + 1]; 1051 if (len & 1) 1052 mb[1 + len / 2] = b[len - 1] << 8; 1053 1054 dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, (3 + len) / 2, attribute); 1055 return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL; 1056 } 1057 1058 static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i) 1059 { 1060 u8 index_loop = 10; 1061 1062 if (!state->platform.risc.fw_is_running) 1063 return 0; 1064 dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i); 1065 do { 1066 dib9000_risc_mem_read(state, FE_MM_RW_SYNC, state->i2c_read_buffer, 1); 1067 } while (state->i2c_read_buffer[0] && index_loop--); 1068 1069 if (index_loop > 0) 1070 return 0; 1071 return -EIO; 1072 } 1073 1074 static int dib9000_fw_init(struct dib9000_state *state) 1075 { 1076 struct dibGPIOFunction *f; 1077 u16 b[40] = { 0 }; 1078 u8 i; 1079 u8 size; 1080 1081 if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0) 1082 return -EIO; 1083 1084 /* initialize the firmware */ 1085 for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) { 1086 f = &state->chip.d9.cfg.gpio_function[i]; 1087 if (f->mask) { 1088 switch (f->function) { 1089 case BOARD_GPIO_FUNCTION_COMPONENT_ON: 1090 b[0] = (u16) f->mask; 1091 b[1] = (u16) f->direction; 1092 b[2] = (u16) f->value; 1093 break; 1094 case BOARD_GPIO_FUNCTION_COMPONENT_OFF: 1095 b[3] = (u16) f->mask; 1096 b[4] = (u16) f->direction; 1097 b[5] = (u16) f->value; 1098 break; 1099 } 1100 } 1101 } 1102 if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0) 1103 return -EIO; 1104 1105 /* subband */ 1106 b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */ 1107 for (i = 0; i < state->chip.d9.cfg.subband.size; i++) { 1108 b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz; 1109 b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask; 1110 b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction; 1111 b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value; 1112 } 1113 b[1 + i * 4] = 0; /* fe_id */ 1114 if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0) 1115 return -EIO; 1116 1117 /* 0 - id, 1 - no_of_frontends */ 1118 b[0] = (0 << 8) | 1; 1119 /* 0 = i2c-address demod, 0 = tuner */ 1120 b[1] = (0 << 8) | (0); 1121 b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff); 1122 b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff); 1123 b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff); 1124 b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff); 1125 b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff); 1126 b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff); 1127 b[29] = state->chip.d9.cfg.if_drives; 1128 if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0) 1129 return -EIO; 1130 1131 if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0) 1132 return -EIO; 1133 1134 if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0) 1135 return -EIO; 1136 1137 if (size > ARRAY_SIZE(b)) { 1138 dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size, 1139 (int)ARRAY_SIZE(b)); 1140 return -EINVAL; 1141 } 1142 1143 for (i = 0; i < size; i += 2) { 1144 state->platform.risc.fe_mm[i / 2].addr = b[i + 0]; 1145 state->platform.risc.fe_mm[i / 2].size = b[i + 1]; 1146 } 1147 1148 return 0; 1149 } 1150 1151 static void dib9000_fw_set_channel_head(struct dib9000_state *state) 1152 { 1153 u8 b[9]; 1154 u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000; 1155 if (state->fe_id % 2) 1156 freq += 101; 1157 1158 b[0] = (u8) ((freq >> 0) & 0xff); 1159 b[1] = (u8) ((freq >> 8) & 0xff); 1160 b[2] = (u8) ((freq >> 16) & 0xff); 1161 b[3] = (u8) ((freq >> 24) & 0xff); 1162 b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff); 1163 b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff); 1164 b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff); 1165 b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff); 1166 b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */ 1167 if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT) 1168 b[8] |= 1; 1169 dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b); 1170 } 1171 1172 static int dib9000_fw_get_channel(struct dvb_frontend *fe) 1173 { 1174 struct dib9000_state *state = fe->demodulator_priv; 1175 struct dibDVBTChannel { 1176 s8 spectrum_inversion; 1177 1178 s8 nfft; 1179 s8 guard; 1180 s8 constellation; 1181 1182 s8 hrch; 1183 s8 alpha; 1184 s8 code_rate_hp; 1185 s8 code_rate_lp; 1186 s8 select_hp; 1187 1188 s8 intlv_native; 1189 }; 1190 struct dibDVBTChannel *ch; 1191 int ret = 0; 1192 1193 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { 1194 dprintk("could not get the lock"); 1195 return -EINTR; 1196 } 1197 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { 1198 ret = -EIO; 1199 goto error; 1200 } 1201 1202 dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, 1203 state->i2c_read_buffer, sizeof(struct dibDVBTChannel)); 1204 ch = (struct dibDVBTChannel *)state->i2c_read_buffer; 1205 1206 1207 switch (ch->spectrum_inversion & 0x7) { 1208 case 1: 1209 state->fe[0]->dtv_property_cache.inversion = INVERSION_ON; 1210 break; 1211 case 0: 1212 state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF; 1213 break; 1214 default: 1215 case -1: 1216 state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO; 1217 break; 1218 } 1219 switch (ch->nfft) { 1220 case 0: 1221 state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K; 1222 break; 1223 case 2: 1224 state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K; 1225 break; 1226 case 1: 1227 state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; 1228 break; 1229 default: 1230 case -1: 1231 state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO; 1232 break; 1233 } 1234 switch (ch->guard) { 1235 case 0: 1236 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32; 1237 break; 1238 case 1: 1239 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16; 1240 break; 1241 case 2: 1242 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; 1243 break; 1244 case 3: 1245 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4; 1246 break; 1247 default: 1248 case -1: 1249 state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO; 1250 break; 1251 } 1252 switch (ch->constellation) { 1253 case 2: 1254 state->fe[0]->dtv_property_cache.modulation = QAM_64; 1255 break; 1256 case 1: 1257 state->fe[0]->dtv_property_cache.modulation = QAM_16; 1258 break; 1259 case 0: 1260 state->fe[0]->dtv_property_cache.modulation = QPSK; 1261 break; 1262 default: 1263 case -1: 1264 state->fe[0]->dtv_property_cache.modulation = QAM_AUTO; 1265 break; 1266 } 1267 switch (ch->hrch) { 1268 case 0: 1269 state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE; 1270 break; 1271 case 1: 1272 state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1; 1273 break; 1274 default: 1275 case -1: 1276 state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO; 1277 break; 1278 } 1279 switch (ch->code_rate_hp) { 1280 case 1: 1281 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2; 1282 break; 1283 case 2: 1284 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3; 1285 break; 1286 case 3: 1287 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4; 1288 break; 1289 case 5: 1290 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6; 1291 break; 1292 case 7: 1293 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8; 1294 break; 1295 default: 1296 case -1: 1297 state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO; 1298 break; 1299 } 1300 switch (ch->code_rate_lp) { 1301 case 1: 1302 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2; 1303 break; 1304 case 2: 1305 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3; 1306 break; 1307 case 3: 1308 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4; 1309 break; 1310 case 5: 1311 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6; 1312 break; 1313 case 7: 1314 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8; 1315 break; 1316 default: 1317 case -1: 1318 state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO; 1319 break; 1320 } 1321 1322 error: 1323 mutex_unlock(&state->platform.risc.mem_mbx_lock); 1324 return ret; 1325 } 1326 1327 static int dib9000_fw_set_channel_union(struct dvb_frontend *fe) 1328 { 1329 struct dib9000_state *state = fe->demodulator_priv; 1330 struct dibDVBTChannel { 1331 s8 spectrum_inversion; 1332 1333 s8 nfft; 1334 s8 guard; 1335 s8 constellation; 1336 1337 s8 hrch; 1338 s8 alpha; 1339 s8 code_rate_hp; 1340 s8 code_rate_lp; 1341 s8 select_hp; 1342 1343 s8 intlv_native; 1344 }; 1345 struct dibDVBTChannel ch; 1346 1347 switch (state->fe[0]->dtv_property_cache.inversion) { 1348 case INVERSION_ON: 1349 ch.spectrum_inversion = 1; 1350 break; 1351 case INVERSION_OFF: 1352 ch.spectrum_inversion = 0; 1353 break; 1354 default: 1355 case INVERSION_AUTO: 1356 ch.spectrum_inversion = -1; 1357 break; 1358 } 1359 switch (state->fe[0]->dtv_property_cache.transmission_mode) { 1360 case TRANSMISSION_MODE_2K: 1361 ch.nfft = 0; 1362 break; 1363 case TRANSMISSION_MODE_4K: 1364 ch.nfft = 2; 1365 break; 1366 case TRANSMISSION_MODE_8K: 1367 ch.nfft = 1; 1368 break; 1369 default: 1370 case TRANSMISSION_MODE_AUTO: 1371 ch.nfft = 1; 1372 break; 1373 } 1374 switch (state->fe[0]->dtv_property_cache.guard_interval) { 1375 case GUARD_INTERVAL_1_32: 1376 ch.guard = 0; 1377 break; 1378 case GUARD_INTERVAL_1_16: 1379 ch.guard = 1; 1380 break; 1381 case GUARD_INTERVAL_1_8: 1382 ch.guard = 2; 1383 break; 1384 case GUARD_INTERVAL_1_4: 1385 ch.guard = 3; 1386 break; 1387 default: 1388 case GUARD_INTERVAL_AUTO: 1389 ch.guard = -1; 1390 break; 1391 } 1392 switch (state->fe[0]->dtv_property_cache.modulation) { 1393 case QAM_64: 1394 ch.constellation = 2; 1395 break; 1396 case QAM_16: 1397 ch.constellation = 1; 1398 break; 1399 case QPSK: 1400 ch.constellation = 0; 1401 break; 1402 default: 1403 case QAM_AUTO: 1404 ch.constellation = -1; 1405 break; 1406 } 1407 switch (state->fe[0]->dtv_property_cache.hierarchy) { 1408 case HIERARCHY_NONE: 1409 ch.hrch = 0; 1410 break; 1411 case HIERARCHY_1: 1412 case HIERARCHY_2: 1413 case HIERARCHY_4: 1414 ch.hrch = 1; 1415 break; 1416 default: 1417 case HIERARCHY_AUTO: 1418 ch.hrch = -1; 1419 break; 1420 } 1421 ch.alpha = 1; 1422 switch (state->fe[0]->dtv_property_cache.code_rate_HP) { 1423 case FEC_1_2: 1424 ch.code_rate_hp = 1; 1425 break; 1426 case FEC_2_3: 1427 ch.code_rate_hp = 2; 1428 break; 1429 case FEC_3_4: 1430 ch.code_rate_hp = 3; 1431 break; 1432 case FEC_5_6: 1433 ch.code_rate_hp = 5; 1434 break; 1435 case FEC_7_8: 1436 ch.code_rate_hp = 7; 1437 break; 1438 default: 1439 case FEC_AUTO: 1440 ch.code_rate_hp = -1; 1441 break; 1442 } 1443 switch (state->fe[0]->dtv_property_cache.code_rate_LP) { 1444 case FEC_1_2: 1445 ch.code_rate_lp = 1; 1446 break; 1447 case FEC_2_3: 1448 ch.code_rate_lp = 2; 1449 break; 1450 case FEC_3_4: 1451 ch.code_rate_lp = 3; 1452 break; 1453 case FEC_5_6: 1454 ch.code_rate_lp = 5; 1455 break; 1456 case FEC_7_8: 1457 ch.code_rate_lp = 7; 1458 break; 1459 default: 1460 case FEC_AUTO: 1461 ch.code_rate_lp = -1; 1462 break; 1463 } 1464 ch.select_hp = 1; 1465 ch.intlv_native = 1; 1466 1467 dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch); 1468 1469 return 0; 1470 } 1471 1472 static int dib9000_fw_tune(struct dvb_frontend *fe) 1473 { 1474 struct dib9000_state *state = fe->demodulator_priv; 1475 int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN; 1476 s8 i; 1477 1478 switch (state->tune_state) { 1479 case CT_DEMOD_START: 1480 dib9000_fw_set_channel_head(state); 1481 1482 /* write the channel context - a channel is initialized to 0, so it is OK */ 1483 dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info); 1484 dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info); 1485 1486 if (search) 1487 dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0); 1488 else { 1489 dib9000_fw_set_channel_union(fe); 1490 dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0); 1491 } 1492 state->tune_state = CT_DEMOD_STEP_1; 1493 break; 1494 case CT_DEMOD_STEP_1: 1495 if (search) 1496 dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, state->i2c_read_buffer, 1); 1497 else 1498 dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, state->i2c_read_buffer, 1); 1499 i = (s8)state->i2c_read_buffer[0]; 1500 switch (i) { /* something happened */ 1501 case 0: 1502 break; 1503 case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */ 1504 if (search) 1505 state->status = FE_STATUS_DEMOD_SUCCESS; 1506 else { 1507 state->tune_state = CT_DEMOD_STOP; 1508 state->status = FE_STATUS_LOCKED; 1509 } 1510 break; 1511 default: 1512 state->status = FE_STATUS_TUNE_FAILED; 1513 state->tune_state = CT_DEMOD_STOP; 1514 break; 1515 } 1516 break; 1517 default: 1518 ret = FE_CALLBACK_TIME_NEVER; 1519 break; 1520 } 1521 1522 return ret; 1523 } 1524 1525 static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff) 1526 { 1527 struct dib9000_state *state = fe->demodulator_priv; 1528 u16 mode = (u16) onoff; 1529 return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1); 1530 } 1531 1532 static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode) 1533 { 1534 struct dib9000_state *state = fe->demodulator_priv; 1535 u16 outreg, smo_mode; 1536 1537 dprintk("setting output mode for demod %p to %d", fe, mode); 1538 1539 switch (mode) { 1540 case OUTMODE_MPEG2_PAR_GATED_CLK: 1541 outreg = (1 << 10); /* 0x0400 */ 1542 break; 1543 case OUTMODE_MPEG2_PAR_CONT_CLK: 1544 outreg = (1 << 10) | (1 << 6); /* 0x0440 */ 1545 break; 1546 case OUTMODE_MPEG2_SERIAL: 1547 outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ 1548 break; 1549 case OUTMODE_DIVERSITY: 1550 outreg = (1 << 10) | (4 << 6); /* 0x0500 */ 1551 break; 1552 case OUTMODE_MPEG2_FIFO: 1553 outreg = (1 << 10) | (5 << 6); 1554 break; 1555 case OUTMODE_HIGH_Z: 1556 outreg = 0; 1557 break; 1558 default: 1559 dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe[0]); 1560 return -EINVAL; 1561 } 1562 1563 dib9000_write_word(state, 1795, outreg); 1564 1565 switch (mode) { 1566 case OUTMODE_MPEG2_PAR_GATED_CLK: 1567 case OUTMODE_MPEG2_PAR_CONT_CLK: 1568 case OUTMODE_MPEG2_SERIAL: 1569 case OUTMODE_MPEG2_FIFO: 1570 smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1); 1571 if (state->chip.d9.cfg.output_mpeg2_in_188_bytes) 1572 smo_mode |= (1 << 5); 1573 dib9000_write_word(state, 295, smo_mode); 1574 break; 1575 } 1576 1577 outreg = to_fw_output_mode(mode); 1578 return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1); 1579 } 1580 1581 static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 1582 { 1583 struct dib9000_state *state = i2c_get_adapdata(i2c_adap); 1584 u16 i, len, t, index_msg; 1585 1586 for (index_msg = 0; index_msg < num; index_msg++) { 1587 if (msg[index_msg].flags & I2C_M_RD) { /* read */ 1588 len = msg[index_msg].len; 1589 if (len > 16) 1590 len = 16; 1591 1592 if (dib9000_read_word(state, 790) != 0) 1593 dprintk("TunerITF: read busy"); 1594 1595 dib9000_write_word(state, 784, (u16) (msg[index_msg].addr)); 1596 dib9000_write_word(state, 787, (len / 2) - 1); 1597 dib9000_write_word(state, 786, 1); /* start read */ 1598 1599 i = 1000; 1600 while (dib9000_read_word(state, 790) != (len / 2) && i) 1601 i--; 1602 1603 if (i == 0) 1604 dprintk("TunerITF: read failed"); 1605 1606 for (i = 0; i < len; i += 2) { 1607 t = dib9000_read_word(state, 785); 1608 msg[index_msg].buf[i] = (t >> 8) & 0xff; 1609 msg[index_msg].buf[i + 1] = (t) & 0xff; 1610 } 1611 if (dib9000_read_word(state, 790) != 0) 1612 dprintk("TunerITF: read more data than expected"); 1613 } else { 1614 i = 1000; 1615 while (dib9000_read_word(state, 789) && i) 1616 i--; 1617 if (i == 0) 1618 dprintk("TunerITF: write busy"); 1619 1620 len = msg[index_msg].len; 1621 if (len > 16) 1622 len = 16; 1623 1624 for (i = 0; i < len; i += 2) 1625 dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]); 1626 dib9000_write_word(state, 784, (u16) msg[index_msg].addr); 1627 dib9000_write_word(state, 787, (len / 2) - 1); 1628 dib9000_write_word(state, 786, 0); /* start write */ 1629 1630 i = 1000; 1631 while (dib9000_read_word(state, 791) > 0 && i) 1632 i--; 1633 if (i == 0) 1634 dprintk("TunerITF: write failed"); 1635 } 1636 } 1637 return num; 1638 } 1639 1640 int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed) 1641 { 1642 struct dib9000_state *state = fe->demodulator_priv; 1643 1644 state->component_bus_speed = speed; 1645 return 0; 1646 } 1647 EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed); 1648 1649 static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 1650 { 1651 struct dib9000_state *state = i2c_get_adapdata(i2c_adap); 1652 u8 type = 0; /* I2C */ 1653 u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4; 1654 u16 scl = state->component_bus_speed; /* SCL frequency */ 1655 struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER]; 1656 u8 p[13] = { 0 }; 1657 1658 p[0] = type; 1659 p[1] = port; 1660 p[2] = msg[0].addr << 1; 1661 1662 p[3] = (u8) scl & 0xff; /* scl */ 1663 p[4] = (u8) (scl >> 8); 1664 1665 p[7] = 0; 1666 p[8] = 0; 1667 1668 p[9] = (u8) (msg[0].len); 1669 p[10] = (u8) (msg[0].len >> 8); 1670 if ((num > 1) && (msg[1].flags & I2C_M_RD)) { 1671 p[11] = (u8) (msg[1].len); 1672 p[12] = (u8) (msg[1].len >> 8); 1673 } else { 1674 p[11] = 0; 1675 p[12] = 0; 1676 } 1677 1678 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { 1679 dprintk("could not get the lock"); 1680 return 0; 1681 } 1682 1683 dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p); 1684 1685 { /* write-part */ 1686 dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0); 1687 dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len); 1688 } 1689 1690 /* do the transaction */ 1691 if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) { 1692 mutex_unlock(&state->platform.risc.mem_mbx_lock); 1693 return 0; 1694 } 1695 1696 /* read back any possible result */ 1697 if ((num > 1) && (msg[1].flags & I2C_M_RD)) 1698 dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len); 1699 1700 mutex_unlock(&state->platform.risc.mem_mbx_lock); 1701 1702 return num; 1703 } 1704 1705 static u32 dib9000_i2c_func(struct i2c_adapter *adapter) 1706 { 1707 return I2C_FUNC_I2C; 1708 } 1709 1710 static struct i2c_algorithm dib9000_tuner_algo = { 1711 .master_xfer = dib9000_tuner_xfer, 1712 .functionality = dib9000_i2c_func, 1713 }; 1714 1715 static struct i2c_algorithm dib9000_component_bus_algo = { 1716 .master_xfer = dib9000_fw_component_bus_xfer, 1717 .functionality = dib9000_i2c_func, 1718 }; 1719 1720 struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe) 1721 { 1722 struct dib9000_state *st = fe->demodulator_priv; 1723 return &st->tuner_adap; 1724 } 1725 EXPORT_SYMBOL(dib9000_get_tuner_interface); 1726 1727 struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe) 1728 { 1729 struct dib9000_state *st = fe->demodulator_priv; 1730 return &st->component_bus; 1731 } 1732 EXPORT_SYMBOL(dib9000_get_component_bus_interface); 1733 1734 struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) 1735 { 1736 struct dib9000_state *st = fe->demodulator_priv; 1737 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); 1738 } 1739 EXPORT_SYMBOL(dib9000_get_i2c_master); 1740 1741 int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c) 1742 { 1743 struct dib9000_state *st = fe->demodulator_priv; 1744 1745 st->i2c.i2c_adap = i2c; 1746 return 0; 1747 } 1748 EXPORT_SYMBOL(dib9000_set_i2c_adapter); 1749 1750 static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val) 1751 { 1752 st->gpio_dir = dib9000_read_word(st, 773); 1753 st->gpio_dir &= ~(1 << num); /* reset the direction bit */ 1754 st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ 1755 dib9000_write_word(st, 773, st->gpio_dir); 1756 1757 st->gpio_val = dib9000_read_word(st, 774); 1758 st->gpio_val &= ~(1 << num); /* reset the direction bit */ 1759 st->gpio_val |= (val & 0x01) << num; /* set the new value */ 1760 dib9000_write_word(st, 774, st->gpio_val); 1761 1762 dprintk("gpio dir: %04x: gpio val: %04x", st->gpio_dir, st->gpio_val); 1763 1764 return 0; 1765 } 1766 1767 int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) 1768 { 1769 struct dib9000_state *state = fe->demodulator_priv; 1770 return dib9000_cfg_gpio(state, num, dir, val); 1771 } 1772 EXPORT_SYMBOL(dib9000_set_gpio); 1773 1774 int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) 1775 { 1776 struct dib9000_state *state = fe->demodulator_priv; 1777 u16 val; 1778 int ret; 1779 1780 if ((state->pid_ctrl_index != -2) && (state->pid_ctrl_index < 9)) { 1781 /* postpone the pid filtering cmd */ 1782 dprintk("pid filter cmd postpone"); 1783 state->pid_ctrl_index++; 1784 state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER_CTRL; 1785 state->pid_ctrl[state->pid_ctrl_index].onoff = onoff; 1786 return 0; 1787 } 1788 1789 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 1790 dprintk("could not get the lock"); 1791 return -EINTR; 1792 } 1793 1794 val = dib9000_read_word(state, 294 + 1) & 0xffef; 1795 val |= (onoff & 0x1) << 4; 1796 1797 dprintk("PID filter enabled %d", onoff); 1798 ret = dib9000_write_word(state, 294 + 1, val); 1799 mutex_unlock(&state->demod_lock); 1800 return ret; 1801 1802 } 1803 EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl); 1804 1805 int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) 1806 { 1807 struct dib9000_state *state = fe->demodulator_priv; 1808 int ret; 1809 1810 if (state->pid_ctrl_index != -2) { 1811 /* postpone the pid filtering cmd */ 1812 dprintk("pid filter postpone"); 1813 if (state->pid_ctrl_index < 9) { 1814 state->pid_ctrl_index++; 1815 state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER; 1816 state->pid_ctrl[state->pid_ctrl_index].id = id; 1817 state->pid_ctrl[state->pid_ctrl_index].pid = pid; 1818 state->pid_ctrl[state->pid_ctrl_index].onoff = onoff; 1819 } else 1820 dprintk("can not add any more pid ctrl cmd"); 1821 return 0; 1822 } 1823 1824 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 1825 dprintk("could not get the lock"); 1826 return -EINTR; 1827 } 1828 dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff); 1829 ret = dib9000_write_word(state, 300 + 1 + id, 1830 onoff ? (1 << 13) | pid : 0); 1831 mutex_unlock(&state->demod_lock); 1832 return ret; 1833 } 1834 EXPORT_SYMBOL(dib9000_fw_pid_filter); 1835 1836 int dib9000_firmware_post_pll_init(struct dvb_frontend *fe) 1837 { 1838 struct dib9000_state *state = fe->demodulator_priv; 1839 return dib9000_fw_init(state); 1840 } 1841 EXPORT_SYMBOL(dib9000_firmware_post_pll_init); 1842 1843 static void dib9000_release(struct dvb_frontend *demod) 1844 { 1845 struct dib9000_state *st = demod->demodulator_priv; 1846 u8 index_frontend; 1847 1848 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) 1849 dvb_frontend_detach(st->fe[index_frontend]); 1850 1851 dibx000_exit_i2c_master(&st->i2c_master); 1852 1853 i2c_del_adapter(&st->tuner_adap); 1854 i2c_del_adapter(&st->component_bus); 1855 kfree(st->fe[0]); 1856 kfree(st); 1857 } 1858 1859 static int dib9000_wakeup(struct dvb_frontend *fe) 1860 { 1861 return 0; 1862 } 1863 1864 static int dib9000_sleep(struct dvb_frontend *fe) 1865 { 1866 struct dib9000_state *state = fe->demodulator_priv; 1867 u8 index_frontend; 1868 int ret = 0; 1869 1870 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 1871 dprintk("could not get the lock"); 1872 return -EINTR; 1873 } 1874 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 1875 ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); 1876 if (ret < 0) 1877 goto error; 1878 } 1879 ret = dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0); 1880 1881 error: 1882 mutex_unlock(&state->demod_lock); 1883 return ret; 1884 } 1885 1886 static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) 1887 { 1888 tune->min_delay_ms = 1000; 1889 return 0; 1890 } 1891 1892 static int dib9000_get_frontend(struct dvb_frontend *fe) 1893 { 1894 struct dib9000_state *state = fe->demodulator_priv; 1895 u8 index_frontend, sub_index_frontend; 1896 fe_status_t stat; 1897 int ret = 0; 1898 1899 if (state->get_frontend_internal == 0) { 1900 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 1901 dprintk("could not get the lock"); 1902 return -EINTR; 1903 } 1904 } 1905 1906 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 1907 state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); 1908 if (stat & FE_HAS_SYNC) { 1909 dprintk("TPS lock on the slave%i", index_frontend); 1910 1911 /* synchronize the cache with the other frontends */ 1912 state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend]); 1913 for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); 1914 sub_index_frontend++) { 1915 if (sub_index_frontend != index_frontend) { 1916 state->fe[sub_index_frontend]->dtv_property_cache.modulation = 1917 state->fe[index_frontend]->dtv_property_cache.modulation; 1918 state->fe[sub_index_frontend]->dtv_property_cache.inversion = 1919 state->fe[index_frontend]->dtv_property_cache.inversion; 1920 state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = 1921 state->fe[index_frontend]->dtv_property_cache.transmission_mode; 1922 state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = 1923 state->fe[index_frontend]->dtv_property_cache.guard_interval; 1924 state->fe[sub_index_frontend]->dtv_property_cache.hierarchy = 1925 state->fe[index_frontend]->dtv_property_cache.hierarchy; 1926 state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP = 1927 state->fe[index_frontend]->dtv_property_cache.code_rate_HP; 1928 state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP = 1929 state->fe[index_frontend]->dtv_property_cache.code_rate_LP; 1930 state->fe[sub_index_frontend]->dtv_property_cache.rolloff = 1931 state->fe[index_frontend]->dtv_property_cache.rolloff; 1932 } 1933 } 1934 ret = 0; 1935 goto return_value; 1936 } 1937 } 1938 1939 /* get the channel from master chip */ 1940 ret = dib9000_fw_get_channel(fe); 1941 if (ret != 0) 1942 goto return_value; 1943 1944 /* synchronize the cache with the other frontends */ 1945 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 1946 state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion; 1947 state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode; 1948 state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval; 1949 state->fe[index_frontend]->dtv_property_cache.modulation = fe->dtv_property_cache.modulation; 1950 state->fe[index_frontend]->dtv_property_cache.hierarchy = fe->dtv_property_cache.hierarchy; 1951 state->fe[index_frontend]->dtv_property_cache.code_rate_HP = fe->dtv_property_cache.code_rate_HP; 1952 state->fe[index_frontend]->dtv_property_cache.code_rate_LP = fe->dtv_property_cache.code_rate_LP; 1953 state->fe[index_frontend]->dtv_property_cache.rolloff = fe->dtv_property_cache.rolloff; 1954 } 1955 ret = 0; 1956 1957 return_value: 1958 if (state->get_frontend_internal == 0) 1959 mutex_unlock(&state->demod_lock); 1960 return ret; 1961 } 1962 1963 static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) 1964 { 1965 struct dib9000_state *state = fe->demodulator_priv; 1966 state->tune_state = tune_state; 1967 if (tune_state == CT_DEMOD_START) 1968 state->status = FE_STATUS_TUNE_PENDING; 1969 1970 return 0; 1971 } 1972 1973 static u32 dib9000_get_status(struct dvb_frontend *fe) 1974 { 1975 struct dib9000_state *state = fe->demodulator_priv; 1976 return state->status; 1977 } 1978 1979 static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status) 1980 { 1981 struct dib9000_state *state = fe->demodulator_priv; 1982 1983 memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext)); 1984 return 0; 1985 } 1986 1987 static int dib9000_set_frontend(struct dvb_frontend *fe) 1988 { 1989 struct dib9000_state *state = fe->demodulator_priv; 1990 int sleep_time, sleep_time_slave; 1991 u32 frontend_status; 1992 u8 nbr_pending, exit_condition, index_frontend, index_frontend_success; 1993 struct dvb_frontend_parametersContext channel_status; 1994 1995 /* check that the correct parameters are set */ 1996 if (state->fe[0]->dtv_property_cache.frequency == 0) { 1997 dprintk("dib9000: must specify frequency "); 1998 return 0; 1999 } 2000 2001 if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) { 2002 dprintk("dib9000: must specify bandwidth "); 2003 return 0; 2004 } 2005 2006 state->pid_ctrl_index = -1; /* postpone the pid filtering cmd */ 2007 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 2008 dprintk("could not get the lock"); 2009 return 0; 2010 } 2011 2012 fe->dtv_property_cache.delivery_system = SYS_DVBT; 2013 2014 /* set the master status */ 2015 if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO || 2016 state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO || 2017 state->fe[0]->dtv_property_cache.modulation == QAM_AUTO || 2018 state->fe[0]->dtv_property_cache.code_rate_HP == FEC_AUTO) { 2019 /* no channel specified, autosearch the channel */ 2020 state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN; 2021 } else 2022 state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; 2023 2024 /* set mode and status for the different frontends */ 2025 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 2026 dib9000_fw_set_diversity_in(state->fe[index_frontend], 1); 2027 2028 /* synchronization of the cache */ 2029 memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); 2030 2031 state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT; 2032 dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z); 2033 2034 dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status); 2035 dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); 2036 } 2037 2038 /* actual tune */ 2039 exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */ 2040 index_frontend_success = 0; 2041 do { 2042 sleep_time = dib9000_fw_tune(state->fe[0]); 2043 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 2044 sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]); 2045 if (sleep_time == FE_CALLBACK_TIME_NEVER) 2046 sleep_time = sleep_time_slave; 2047 else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) 2048 sleep_time = sleep_time_slave; 2049 } 2050 if (sleep_time != FE_CALLBACK_TIME_NEVER) 2051 msleep(sleep_time / 10); 2052 else 2053 break; 2054 2055 nbr_pending = 0; 2056 exit_condition = 0; 2057 index_frontend_success = 0; 2058 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 2059 frontend_status = -dib9000_get_status(state->fe[index_frontend]); 2060 if (frontend_status > -FE_STATUS_TUNE_PENDING) { 2061 exit_condition = 2; /* tune success */ 2062 index_frontend_success = index_frontend; 2063 break; 2064 } 2065 if (frontend_status == -FE_STATUS_TUNE_PENDING) 2066 nbr_pending++; /* some frontends are still tuning */ 2067 } 2068 if ((exit_condition != 2) && (nbr_pending == 0)) 2069 exit_condition = 1; /* if all tune are done and no success, exit: tune failed */ 2070 2071 } while (exit_condition == 0); 2072 2073 /* check the tune result */ 2074 if (exit_condition == 1) { /* tune failed */ 2075 dprintk("tune failed"); 2076 mutex_unlock(&state->demod_lock); 2077 /* tune failed; put all the pid filtering cmd to junk */ 2078 state->pid_ctrl_index = -1; 2079 return 0; 2080 } 2081 2082 dprintk("tune success on frontend%i", index_frontend_success); 2083 2084 /* synchronize all the channel cache */ 2085 state->get_frontend_internal = 1; 2086 dib9000_get_frontend(state->fe[0]); 2087 state->get_frontend_internal = 0; 2088 2089 /* retune the other frontends with the found channel */ 2090 channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; 2091 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 2092 /* only retune the frontends which was not tuned success */ 2093 if (index_frontend != index_frontend_success) { 2094 dib9000_set_channel_status(state->fe[index_frontend], &channel_status); 2095 dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); 2096 } 2097 } 2098 do { 2099 sleep_time = FE_CALLBACK_TIME_NEVER; 2100 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 2101 if (index_frontend != index_frontend_success) { 2102 sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]); 2103 if (sleep_time == FE_CALLBACK_TIME_NEVER) 2104 sleep_time = sleep_time_slave; 2105 else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) 2106 sleep_time = sleep_time_slave; 2107 } 2108 } 2109 if (sleep_time != FE_CALLBACK_TIME_NEVER) 2110 msleep(sleep_time / 10); 2111 else 2112 break; 2113 2114 nbr_pending = 0; 2115 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 2116 if (index_frontend != index_frontend_success) { 2117 frontend_status = -dib9000_get_status(state->fe[index_frontend]); 2118 if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING)) 2119 nbr_pending++; /* some frontends are still tuning */ 2120 } 2121 } 2122 } while (nbr_pending != 0); 2123 2124 /* set the output mode */ 2125 dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode); 2126 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) 2127 dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); 2128 2129 /* turn off the diversity for the last frontend */ 2130 dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0); 2131 2132 mutex_unlock(&state->demod_lock); 2133 if (state->pid_ctrl_index >= 0) { 2134 u8 index_pid_filter_cmd; 2135 u8 pid_ctrl_index = state->pid_ctrl_index; 2136 2137 state->pid_ctrl_index = -2; 2138 for (index_pid_filter_cmd = 0; 2139 index_pid_filter_cmd <= pid_ctrl_index; 2140 index_pid_filter_cmd++) { 2141 if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER_CTRL) 2142 dib9000_fw_pid_filter_ctrl(state->fe[0], 2143 state->pid_ctrl[index_pid_filter_cmd].onoff); 2144 else if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER) 2145 dib9000_fw_pid_filter(state->fe[0], 2146 state->pid_ctrl[index_pid_filter_cmd].id, 2147 state->pid_ctrl[index_pid_filter_cmd].pid, 2148 state->pid_ctrl[index_pid_filter_cmd].onoff); 2149 } 2150 } 2151 /* do not postpone any more the pid filtering */ 2152 state->pid_ctrl_index = -2; 2153 2154 return 0; 2155 } 2156 2157 static u16 dib9000_read_lock(struct dvb_frontend *fe) 2158 { 2159 struct dib9000_state *state = fe->demodulator_priv; 2160 2161 return dib9000_read_word(state, 535); 2162 } 2163 2164 static int dib9000_read_status(struct dvb_frontend *fe, fe_status_t * stat) 2165 { 2166 struct dib9000_state *state = fe->demodulator_priv; 2167 u8 index_frontend; 2168 u16 lock = 0, lock_slave = 0; 2169 2170 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 2171 dprintk("could not get the lock"); 2172 return -EINTR; 2173 } 2174 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) 2175 lock_slave |= dib9000_read_lock(state->fe[index_frontend]); 2176 2177 lock = dib9000_read_word(state, 535); 2178 2179 *stat = 0; 2180 2181 if ((lock & 0x8000) || (lock_slave & 0x8000)) 2182 *stat |= FE_HAS_SIGNAL; 2183 if ((lock & 0x3000) || (lock_slave & 0x3000)) 2184 *stat |= FE_HAS_CARRIER; 2185 if ((lock & 0x0100) || (lock_slave & 0x0100)) 2186 *stat |= FE_HAS_VITERBI; 2187 if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38)) 2188 *stat |= FE_HAS_SYNC; 2189 if ((lock & 0x0008) || (lock_slave & 0x0008)) 2190 *stat |= FE_HAS_LOCK; 2191 2192 mutex_unlock(&state->demod_lock); 2193 2194 return 0; 2195 } 2196 2197 static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber) 2198 { 2199 struct dib9000_state *state = fe->demodulator_priv; 2200 u16 *c; 2201 int ret = 0; 2202 2203 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 2204 dprintk("could not get the lock"); 2205 return -EINTR; 2206 } 2207 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { 2208 dprintk("could not get the lock"); 2209 ret = -EINTR; 2210 goto error; 2211 } 2212 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { 2213 mutex_unlock(&state->platform.risc.mem_mbx_lock); 2214 ret = -EIO; 2215 goto error; 2216 } 2217 dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, 2218 state->i2c_read_buffer, 16 * 2); 2219 mutex_unlock(&state->platform.risc.mem_mbx_lock); 2220 2221 c = (u16 *)state->i2c_read_buffer; 2222 2223 *ber = c[10] << 16 | c[11]; 2224 2225 error: 2226 mutex_unlock(&state->demod_lock); 2227 return ret; 2228 } 2229 2230 static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) 2231 { 2232 struct dib9000_state *state = fe->demodulator_priv; 2233 u8 index_frontend; 2234 u16 *c = (u16 *)state->i2c_read_buffer; 2235 u16 val; 2236 int ret = 0; 2237 2238 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 2239 dprintk("could not get the lock"); 2240 return -EINTR; 2241 } 2242 *strength = 0; 2243 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { 2244 state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); 2245 if (val > 65535 - *strength) 2246 *strength = 65535; 2247 else 2248 *strength += val; 2249 } 2250 2251 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { 2252 dprintk("could not get the lock"); 2253 ret = -EINTR; 2254 goto error; 2255 } 2256 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { 2257 mutex_unlock(&state->platform.risc.mem_mbx_lock); 2258 ret = -EIO; 2259 goto error; 2260 } 2261 dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); 2262 mutex_unlock(&state->platform.risc.mem_mbx_lock); 2263 2264 val = 65535 - c[4]; 2265 if (val > 65535 - *strength) 2266 *strength = 65535; 2267 else 2268 *strength += val; 2269 2270 error: 2271 mutex_unlock(&state->demod_lock); 2272 return ret; 2273 } 2274 2275 static u32 dib9000_get_snr(struct dvb_frontend *fe) 2276 { 2277 struct dib9000_state *state = fe->demodulator_priv; 2278 u16 *c = (u16 *)state->i2c_read_buffer; 2279 u32 n, s, exp; 2280 u16 val; 2281 2282 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { 2283 dprintk("could not get the lock"); 2284 return 0; 2285 } 2286 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { 2287 mutex_unlock(&state->platform.risc.mem_mbx_lock); 2288 return 0; 2289 } 2290 dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); 2291 mutex_unlock(&state->platform.risc.mem_mbx_lock); 2292 2293 val = c[7]; 2294 n = (val >> 4) & 0xff; 2295 exp = ((val & 0xf) << 2); 2296 val = c[8]; 2297 exp += ((val >> 14) & 0x3); 2298 if ((exp & 0x20) != 0) 2299 exp -= 0x40; 2300 n <<= exp + 16; 2301 2302 s = (val >> 6) & 0xFF; 2303 exp = (val & 0x3F); 2304 if ((exp & 0x20) != 0) 2305 exp -= 0x40; 2306 s <<= exp + 16; 2307 2308 if (n > 0) { 2309 u32 t = (s / n) << 16; 2310 return t + ((s << 16) - n * t) / n; 2311 } 2312 return 0xffffffff; 2313 } 2314 2315 static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr) 2316 { 2317 struct dib9000_state *state = fe->demodulator_priv; 2318 u8 index_frontend; 2319 u32 snr_master; 2320 2321 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 2322 dprintk("could not get the lock"); 2323 return -EINTR; 2324 } 2325 snr_master = dib9000_get_snr(fe); 2326 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) 2327 snr_master += dib9000_get_snr(state->fe[index_frontend]); 2328 2329 if ((snr_master >> 16) != 0) { 2330 snr_master = 10 * intlog10(snr_master >> 16); 2331 *snr = snr_master / ((1 << 24) / 10); 2332 } else 2333 *snr = 0; 2334 2335 mutex_unlock(&state->demod_lock); 2336 2337 return 0; 2338 } 2339 2340 static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) 2341 { 2342 struct dib9000_state *state = fe->demodulator_priv; 2343 u16 *c = (u16 *)state->i2c_read_buffer; 2344 int ret = 0; 2345 2346 if (mutex_lock_interruptible(&state->demod_lock) < 0) { 2347 dprintk("could not get the lock"); 2348 return -EINTR; 2349 } 2350 if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { 2351 dprintk("could not get the lock"); 2352 ret = -EINTR; 2353 goto error; 2354 } 2355 if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { 2356 mutex_unlock(&state->platform.risc.mem_mbx_lock); 2357 ret = -EIO; 2358 goto error; 2359 } 2360 dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); 2361 mutex_unlock(&state->platform.risc.mem_mbx_lock); 2362 2363 *unc = c[12]; 2364 2365 error: 2366 mutex_unlock(&state->demod_lock); 2367 return ret; 2368 } 2369 2370 int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr) 2371 { 2372 int k = 0, ret = 0; 2373 u8 new_addr = 0; 2374 struct i2c_device client = {.i2c_adap = i2c }; 2375 2376 client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); 2377 if (!client.i2c_write_buffer) { 2378 dprintk("%s: not enough memory", __func__); 2379 return -ENOMEM; 2380 } 2381 client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); 2382 if (!client.i2c_read_buffer) { 2383 dprintk("%s: not enough memory", __func__); 2384 ret = -ENOMEM; 2385 goto error_memory; 2386 } 2387 2388 client.i2c_addr = default_addr + 16; 2389 dib9000_i2c_write16(&client, 1796, 0x0); 2390 2391 for (k = no_of_demods - 1; k >= 0; k--) { 2392 /* designated i2c address */ 2393 new_addr = first_addr + (k << 1); 2394 client.i2c_addr = default_addr; 2395 2396 dib9000_i2c_write16(&client, 1817, 3); 2397 dib9000_i2c_write16(&client, 1796, 0); 2398 dib9000_i2c_write16(&client, 1227, 1); 2399 dib9000_i2c_write16(&client, 1227, 0); 2400 2401 client.i2c_addr = new_addr; 2402 dib9000_i2c_write16(&client, 1817, 3); 2403 dib9000_i2c_write16(&client, 1796, 0); 2404 dib9000_i2c_write16(&client, 1227, 1); 2405 dib9000_i2c_write16(&client, 1227, 0); 2406 2407 if (dib9000_identify(&client) == 0) { 2408 client.i2c_addr = default_addr; 2409 if (dib9000_identify(&client) == 0) { 2410 dprintk("DiB9000 #%d: not identified", k); 2411 ret = -EIO; 2412 goto error; 2413 } 2414 } 2415 2416 dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6)); 2417 dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2); 2418 2419 dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); 2420 } 2421 2422 for (k = 0; k < no_of_demods; k++) { 2423 new_addr = first_addr | (k << 1); 2424 client.i2c_addr = new_addr; 2425 2426 dib9000_i2c_write16(&client, 1794, (new_addr << 2)); 2427 dib9000_i2c_write16(&client, 1795, 0); 2428 } 2429 2430 error: 2431 kfree(client.i2c_read_buffer); 2432 error_memory: 2433 kfree(client.i2c_write_buffer); 2434 2435 return ret; 2436 } 2437 EXPORT_SYMBOL(dib9000_i2c_enumeration); 2438 2439 int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) 2440 { 2441 struct dib9000_state *state = fe->demodulator_priv; 2442 u8 index_frontend = 1; 2443 2444 while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) 2445 index_frontend++; 2446 if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { 2447 dprintk("set slave fe %p to index %i", fe_slave, index_frontend); 2448 state->fe[index_frontend] = fe_slave; 2449 return 0; 2450 } 2451 2452 dprintk("too many slave frontend"); 2453 return -ENOMEM; 2454 } 2455 EXPORT_SYMBOL(dib9000_set_slave_frontend); 2456 2457 int dib9000_remove_slave_frontend(struct dvb_frontend *fe) 2458 { 2459 struct dib9000_state *state = fe->demodulator_priv; 2460 u8 index_frontend = 1; 2461 2462 while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) 2463 index_frontend++; 2464 if (index_frontend != 1) { 2465 dprintk("remove slave fe %p (index %i)", state->fe[index_frontend - 1], index_frontend - 1); 2466 state->fe[index_frontend] = NULL; 2467 return 0; 2468 } 2469 2470 dprintk("no frontend to be removed"); 2471 return -ENODEV; 2472 } 2473 EXPORT_SYMBOL(dib9000_remove_slave_frontend); 2474 2475 struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) 2476 { 2477 struct dib9000_state *state = fe->demodulator_priv; 2478 2479 if (slave_index >= MAX_NUMBER_OF_FRONTENDS) 2480 return NULL; 2481 return state->fe[slave_index]; 2482 } 2483 EXPORT_SYMBOL(dib9000_get_slave_frontend); 2484 2485 static struct dvb_frontend_ops dib9000_ops; 2486 struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg) 2487 { 2488 struct dvb_frontend *fe; 2489 struct dib9000_state *st; 2490 st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL); 2491 if (st == NULL) 2492 return NULL; 2493 fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); 2494 if (fe == NULL) { 2495 kfree(st); 2496 return NULL; 2497 } 2498 2499 memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config)); 2500 st->i2c.i2c_adap = i2c_adap; 2501 st->i2c.i2c_addr = i2c_addr; 2502 st->i2c.i2c_write_buffer = st->i2c_write_buffer; 2503 st->i2c.i2c_read_buffer = st->i2c_read_buffer; 2504 2505 st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS; 2506 st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES; 2507 st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS; 2508 2509 mutex_init(&st->platform.risc.mbx_if_lock); 2510 mutex_init(&st->platform.risc.mbx_lock); 2511 mutex_init(&st->platform.risc.mem_lock); 2512 mutex_init(&st->platform.risc.mem_mbx_lock); 2513 mutex_init(&st->demod_lock); 2514 st->get_frontend_internal = 0; 2515 2516 st->pid_ctrl_index = -2; 2517 2518 st->fe[0] = fe; 2519 fe->demodulator_priv = st; 2520 memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops)); 2521 2522 /* Ensure the output mode remains at the previous default if it's 2523 * not specifically set by the caller. 2524 */ 2525 if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) 2526 st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO; 2527 2528 if (dib9000_identify(&st->i2c) == 0) 2529 goto error; 2530 2531 dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr); 2532 2533 st->tuner_adap.dev.parent = i2c_adap->dev.parent; 2534 strncpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS", sizeof(st->tuner_adap.name)); 2535 st->tuner_adap.algo = &dib9000_tuner_algo; 2536 st->tuner_adap.algo_data = NULL; 2537 i2c_set_adapdata(&st->tuner_adap, st); 2538 if (i2c_add_adapter(&st->tuner_adap) < 0) 2539 goto error; 2540 2541 st->component_bus.dev.parent = i2c_adap->dev.parent; 2542 strncpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS", sizeof(st->component_bus.name)); 2543 st->component_bus.algo = &dib9000_component_bus_algo; 2544 st->component_bus.algo_data = NULL; 2545 st->component_bus_speed = 340; 2546 i2c_set_adapdata(&st->component_bus, st); 2547 if (i2c_add_adapter(&st->component_bus) < 0) 2548 goto component_bus_add_error; 2549 2550 dib9000_fw_reset(fe); 2551 2552 return fe; 2553 2554 component_bus_add_error: 2555 i2c_del_adapter(&st->tuner_adap); 2556 error: 2557 kfree(st); 2558 return NULL; 2559 } 2560 EXPORT_SYMBOL(dib9000_attach); 2561 2562 static struct dvb_frontend_ops dib9000_ops = { 2563 .delsys = { SYS_DVBT }, 2564 .info = { 2565 .name = "DiBcom 9000", 2566 .frequency_min = 44250000, 2567 .frequency_max = 867250000, 2568 .frequency_stepsize = 62500, 2569 .caps = FE_CAN_INVERSION_AUTO | 2570 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 2571 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 2572 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | 2573 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, 2574 }, 2575 2576 .release = dib9000_release, 2577 2578 .init = dib9000_wakeup, 2579 .sleep = dib9000_sleep, 2580 2581 .set_frontend = dib9000_set_frontend, 2582 .get_tune_settings = dib9000_fe_get_tune_settings, 2583 .get_frontend = dib9000_get_frontend, 2584 2585 .read_status = dib9000_read_status, 2586 .read_ber = dib9000_read_ber, 2587 .read_signal_strength = dib9000_read_signal_strength, 2588 .read_snr = dib9000_read_snr, 2589 .read_ucblocks = dib9000_read_unc_blocks, 2590 }; 2591 2592 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); 2593 MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>"); 2594 MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator"); 2595 MODULE_LICENSE("GPL"); 2596