1 /*
2  * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
3  *
4  * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
5  *
6  * This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License as
8  *  published by the Free Software Foundation, version 2.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/i2c.h>
16 #include <linux/mutex.h>
17 #include <asm/div64.h>
18 
19 #include "dvb_math.h"
20 
21 #include "dvb_frontend.h"
22 
23 #include "dib8000.h"
24 
25 #define LAYER_ALL -1
26 #define LAYER_A   1
27 #define LAYER_B   2
28 #define LAYER_C   3
29 
30 #define MAX_NUMBER_OF_FRONTENDS 6
31 /* #define DIB8000_AGC_FREEZE */
32 
33 static int debug;
34 module_param(debug, int, 0644);
35 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
36 
37 #define dprintk(fmt, arg...) do {					\
38 	if (debug)							\
39 		printk(KERN_DEBUG pr_fmt("%s: " fmt),			\
40 		       __func__, ##arg);				\
41 } while (0)
42 
43 struct i2c_device {
44 	struct i2c_adapter *adap;
45 	u8 addr;
46 	u8 *i2c_write_buffer;
47 	u8 *i2c_read_buffer;
48 	struct mutex *i2c_buffer_lock;
49 };
50 
51 enum param_loop_step {
52 	LOOP_TUNE_1,
53 	LOOP_TUNE_2
54 };
55 
56 enum dib8000_autosearch_step {
57 	AS_START = 0,
58 	AS_SEARCHING_FFT,
59 	AS_SEARCHING_GUARD,
60 	AS_DONE = 100,
61 };
62 
63 enum timeout_mode {
64 	SYMBOL_DEPENDENT_OFF = 0,
65 	SYMBOL_DEPENDENT_ON,
66 };
67 
68 struct dib8000_state {
69 	struct dib8000_config cfg;
70 
71 	struct i2c_device i2c;
72 
73 	struct dibx000_i2c_master i2c_master;
74 
75 	u16 wbd_ref;
76 
77 	u8 current_band;
78 	u32 current_bandwidth;
79 	struct dibx000_agc_config *current_agc;
80 	u32 timf;
81 	u32 timf_default;
82 
83 	u8 div_force_off:1;
84 	u8 div_state:1;
85 	u16 div_sync_wait;
86 
87 	u8 agc_state;
88 	u8 differential_constellation;
89 	u8 diversity_onoff;
90 
91 	s16 ber_monitored_layer;
92 	u16 gpio_dir;
93 	u16 gpio_val;
94 
95 	u16 revision;
96 	u8 isdbt_cfg_loaded;
97 	enum frontend_tune_state tune_state;
98 	s32 status;
99 
100 	struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS];
101 
102 	/* for the I2C transfer */
103 	struct i2c_msg msg[2];
104 	u8 i2c_write_buffer[4];
105 	u8 i2c_read_buffer[2];
106 	struct mutex i2c_buffer_lock;
107 	u8 input_mode_mpeg;
108 
109 	u16 tuner_enable;
110 	struct i2c_adapter dib8096p_tuner_adap;
111 	u16 current_demod_bw;
112 
113 	u16 seg_mask;
114 	u16 seg_diff_mask;
115 	u16 mode;
116 	u8 layer_b_nb_seg;
117 	u8 layer_c_nb_seg;
118 
119 	u8 channel_parameters_set;
120 	u16 autosearch_state;
121 	u16 found_nfft;
122 	u16 found_guard;
123 	u8 subchannel;
124 	u8 symbol_duration;
125 	unsigned long timeout;
126 	u8 longest_intlv_layer;
127 	u16 output_mode;
128 
129 	/* for DVBv5 stats */
130 	s64 init_ucb;
131 	unsigned long per_jiffies_stats;
132 	unsigned long ber_jiffies_stats;
133 	unsigned long ber_jiffies_stats_layer[3];
134 
135 #ifdef DIB8000_AGC_FREEZE
136 	u16 agc1_max;
137 	u16 agc1_min;
138 	u16 agc2_max;
139 	u16 agc2_min;
140 #endif
141 };
142 
143 enum dib8000_power_mode {
144 	DIB8000_POWER_ALL = 0,
145 	DIB8000_POWER_INTERFACE_ONLY,
146 };
147 
148 static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg)
149 {
150 	u16 ret;
151 	struct i2c_msg msg[2] = {
152 		{.addr = i2c->addr >> 1, .flags = 0, .len = 2},
153 		{.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2},
154 	};
155 
156 	if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) {
157 		dprintk("could not acquire lock\n");
158 		return 0;
159 	}
160 
161 	msg[0].buf    = i2c->i2c_write_buffer;
162 	msg[0].buf[0] = reg >> 8;
163 	msg[0].buf[1] = reg & 0xff;
164 	msg[1].buf    = i2c->i2c_read_buffer;
165 
166 	if (i2c_transfer(i2c->adap, msg, 2) != 2)
167 		dprintk("i2c read error on %d\n", reg);
168 
169 	ret = (msg[1].buf[0] << 8) | msg[1].buf[1];
170 	mutex_unlock(i2c->i2c_buffer_lock);
171 	return ret;
172 }
173 
174 static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg)
175 {
176 	u16 ret;
177 
178 	state->i2c_write_buffer[0] = reg >> 8;
179 	state->i2c_write_buffer[1] = reg & 0xff;
180 
181 	memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
182 	state->msg[0].addr = state->i2c.addr >> 1;
183 	state->msg[0].flags = 0;
184 	state->msg[0].buf = state->i2c_write_buffer;
185 	state->msg[0].len = 2;
186 	state->msg[1].addr = state->i2c.addr >> 1;
187 	state->msg[1].flags = I2C_M_RD;
188 	state->msg[1].buf = state->i2c_read_buffer;
189 	state->msg[1].len = 2;
190 
191 	if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2)
192 		dprintk("i2c read error on %d\n", reg);
193 
194 	ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
195 
196 	return ret;
197 }
198 
199 static u16 dib8000_read_word(struct dib8000_state *state, u16 reg)
200 {
201 	u16 ret;
202 
203 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
204 		dprintk("could not acquire lock\n");
205 		return 0;
206 	}
207 
208 	ret = __dib8000_read_word(state, reg);
209 
210 	mutex_unlock(&state->i2c_buffer_lock);
211 
212 	return ret;
213 }
214 
215 static u32 dib8000_read32(struct dib8000_state *state, u16 reg)
216 {
217 	u16 rw[2];
218 
219 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
220 		dprintk("could not acquire lock\n");
221 		return 0;
222 	}
223 
224 	rw[0] = __dib8000_read_word(state, reg + 0);
225 	rw[1] = __dib8000_read_word(state, reg + 1);
226 
227 	mutex_unlock(&state->i2c_buffer_lock);
228 
229 	return ((rw[0] << 16) | (rw[1]));
230 }
231 
232 static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
233 {
234 	struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4};
235 	int ret = 0;
236 
237 	if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) {
238 		dprintk("could not acquire lock\n");
239 		return -EINVAL;
240 	}
241 
242 	msg.buf    = i2c->i2c_write_buffer;
243 	msg.buf[0] = (reg >> 8) & 0xff;
244 	msg.buf[1] = reg & 0xff;
245 	msg.buf[2] = (val >> 8) & 0xff;
246 	msg.buf[3] = val & 0xff;
247 
248 	ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
249 	mutex_unlock(i2c->i2c_buffer_lock);
250 
251 	return ret;
252 }
253 
254 static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val)
255 {
256 	int ret;
257 
258 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
259 		dprintk("could not acquire lock\n");
260 		return -EINVAL;
261 	}
262 
263 	state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
264 	state->i2c_write_buffer[1] = reg & 0xff;
265 	state->i2c_write_buffer[2] = (val >> 8) & 0xff;
266 	state->i2c_write_buffer[3] = val & 0xff;
267 
268 	memset(&state->msg[0], 0, sizeof(struct i2c_msg));
269 	state->msg[0].addr = state->i2c.addr >> 1;
270 	state->msg[0].flags = 0;
271 	state->msg[0].buf = state->i2c_write_buffer;
272 	state->msg[0].len = 4;
273 
274 	ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ?
275 			-EREMOTEIO : 0);
276 	mutex_unlock(&state->i2c_buffer_lock);
277 
278 	return ret;
279 }
280 
281 static const s16 coeff_2k_sb_1seg_dqpsk[8] = {
282 	(769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
283 		(920 << 5) | 0x09
284 };
285 
286 static const s16 coeff_2k_sb_1seg[8] = {
287 	(692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
288 };
289 
290 static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = {
291 	(832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
292 		(-931 << 5) | 0x0f
293 };
294 
295 static const s16 coeff_2k_sb_3seg_0dqpsk[8] = {
296 	(622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
297 		(982 << 5) | 0x0c
298 };
299 
300 static const s16 coeff_2k_sb_3seg_1dqpsk[8] = {
301 	(699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
302 		(-720 << 5) | 0x0d
303 };
304 
305 static const s16 coeff_2k_sb_3seg[8] = {
306 	(664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
307 		(-610 << 5) | 0x0a
308 };
309 
310 static const s16 coeff_4k_sb_1seg_dqpsk[8] = {
311 	(-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
312 		(-922 << 5) | 0x0d
313 };
314 
315 static const s16 coeff_4k_sb_1seg[8] = {
316 	(638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
317 		(-655 << 5) | 0x0a
318 };
319 
320 static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = {
321 	(-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
322 		(-958 << 5) | 0x13
323 };
324 
325 static const s16 coeff_4k_sb_3seg_0dqpsk[8] = {
326 	(-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
327 		(-568 << 5) | 0x0f
328 };
329 
330 static const s16 coeff_4k_sb_3seg_1dqpsk[8] = {
331 	(-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
332 		(-848 << 5) | 0x13
333 };
334 
335 static const s16 coeff_4k_sb_3seg[8] = {
336 	(612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
337 		(-869 << 5) | 0x13
338 };
339 
340 static const s16 coeff_8k_sb_1seg_dqpsk[8] = {
341 	(-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
342 		(-598 << 5) | 0x10
343 };
344 
345 static const s16 coeff_8k_sb_1seg[8] = {
346 	(673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
347 		(585 << 5) | 0x0f
348 };
349 
350 static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = {
351 	(863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
352 		(0 << 5) | 0x14
353 };
354 
355 static const s16 coeff_8k_sb_3seg_0dqpsk[8] = {
356 	(-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
357 		(-877 << 5) | 0x15
358 };
359 
360 static const s16 coeff_8k_sb_3seg_1dqpsk[8] = {
361 	(-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
362 		(-921 << 5) | 0x14
363 };
364 
365 static const s16 coeff_8k_sb_3seg[8] = {
366 	(514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
367 		(690 << 5) | 0x14
368 };
369 
370 static const s16 ana_fe_coeff_3seg[24] = {
371 	81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
372 };
373 
374 static const s16 ana_fe_coeff_1seg[24] = {
375 	249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
376 };
377 
378 static const s16 ana_fe_coeff_13seg[24] = {
379 	396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
380 };
381 
382 static u16 fft_to_mode(struct dib8000_state *state)
383 {
384 	u16 mode;
385 	switch (state->fe[0]->dtv_property_cache.transmission_mode) {
386 	case TRANSMISSION_MODE_2K:
387 		mode = 1;
388 		break;
389 	case TRANSMISSION_MODE_4K:
390 		mode = 2;
391 		break;
392 	default:
393 	case TRANSMISSION_MODE_AUTO:
394 	case TRANSMISSION_MODE_8K:
395 		mode = 3;
396 		break;
397 	}
398 	return mode;
399 }
400 
401 static void dib8000_set_acquisition_mode(struct dib8000_state *state)
402 {
403 	u16 nud = dib8000_read_word(state, 298);
404 	nud |= (1 << 3) | (1 << 0);
405 	dprintk("acquisition mode activated\n");
406 	dib8000_write_word(state, 298, nud);
407 }
408 static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode)
409 {
410 	struct dib8000_state *state = fe->demodulator_priv;
411 	u16 outreg, fifo_threshold, smo_mode, sram = 0x0205;	/* by default SDRAM deintlv is enabled */
412 
413 	state->output_mode = mode;
414 	outreg = 0;
415 	fifo_threshold = 1792;
416 	smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
417 
418 	dprintk("-I-	Setting output mode for demod %p to %d\n",
419 			&state->fe[0], mode);
420 
421 	switch (mode) {
422 	case OUTMODE_MPEG2_PAR_GATED_CLK:	// STBs with parallel gated clock
423 		outreg = (1 << 10);	/* 0x0400 */
424 		break;
425 	case OUTMODE_MPEG2_PAR_CONT_CLK:	// STBs with parallel continues clock
426 		outreg = (1 << 10) | (1 << 6);	/* 0x0440 */
427 		break;
428 	case OUTMODE_MPEG2_SERIAL:	// STBs with serial input
429 		outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0482 */
430 		break;
431 	case OUTMODE_DIVERSITY:
432 		if (state->cfg.hostbus_diversity) {
433 			outreg = (1 << 10) | (4 << 6);	/* 0x0500 */
434 			sram &= 0xfdff;
435 		} else
436 			sram |= 0x0c00;
437 		break;
438 	case OUTMODE_MPEG2_FIFO:	// e.g. USB feeding
439 		smo_mode |= (3 << 1);
440 		fifo_threshold = 512;
441 		outreg = (1 << 10) | (5 << 6);
442 		break;
443 	case OUTMODE_HIGH_Z:	// disable
444 		outreg = 0;
445 		break;
446 
447 	case OUTMODE_ANALOG_ADC:
448 		outreg = (1 << 10) | (3 << 6);
449 		dib8000_set_acquisition_mode(state);
450 		break;
451 
452 	default:
453 		dprintk("Unhandled output_mode passed to be set for demod %p\n",
454 				&state->fe[0]);
455 		return -EINVAL;
456 	}
457 
458 	if (state->cfg.output_mpeg2_in_188_bytes)
459 		smo_mode |= (1 << 5);
460 
461 	dib8000_write_word(state, 299, smo_mode);
462 	dib8000_write_word(state, 300, fifo_threshold);	/* synchronous fread */
463 	dib8000_write_word(state, 1286, outreg);
464 	dib8000_write_word(state, 1291, sram);
465 
466 	return 0;
467 }
468 
469 static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff)
470 {
471 	struct dib8000_state *state = fe->demodulator_priv;
472 	u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0;
473 
474 	dprintk("set diversity input to %i\n", onoff);
475 	if (!state->differential_constellation) {
476 		dib8000_write_word(state, 272, 1 << 9);	//dvsy_off_lmod4 = 1
477 		dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2);	// sync_enable = 1; comb_mode = 2
478 	} else {
479 		dib8000_write_word(state, 272, 0);	//dvsy_off_lmod4 = 0
480 		dib8000_write_word(state, 273, sync_wait);	// sync_enable = 0; comb_mode = 0
481 	}
482 	state->diversity_onoff = onoff;
483 
484 	switch (onoff) {
485 	case 0:		/* only use the internal way - not the diversity input */
486 		dib8000_write_word(state, 270, 1);
487 		dib8000_write_word(state, 271, 0);
488 		break;
489 	case 1:		/* both ways */
490 		dib8000_write_word(state, 270, 6);
491 		dib8000_write_word(state, 271, 6);
492 		break;
493 	case 2:		/* only the diversity input */
494 		dib8000_write_word(state, 270, 0);
495 		dib8000_write_word(state, 271, 1);
496 		break;
497 	}
498 
499 	if (state->revision == 0x8002) {
500 		tmp = dib8000_read_word(state, 903);
501 		dib8000_write_word(state, 903, tmp & ~(1 << 3));
502 		msleep(30);
503 		dib8000_write_word(state, 903, tmp | (1 << 3));
504 	}
505 	return 0;
506 }
507 
508 static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode)
509 {
510 	/* by default everything is going to be powered off */
511 	u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
512 		reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3,
513 		reg_1280;
514 
515 	if (state->revision != 0x8090)
516 		reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
517 	else
518 		reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80;
519 
520 	/* now, depending on the requested mode, we power on */
521 	switch (mode) {
522 		/* power up everything in the demod */
523 	case DIB8000_POWER_ALL:
524 		reg_774 = 0x0000;
525 		reg_775 = 0x0000;
526 		reg_776 = 0x0000;
527 		reg_900 &= 0xfffc;
528 		if (state->revision != 0x8090)
529 			reg_1280 &= 0x00ff;
530 		else
531 			reg_1280 &= 0x707f;
532 		break;
533 	case DIB8000_POWER_INTERFACE_ONLY:
534 		if (state->revision != 0x8090)
535 			reg_1280 &= 0x00ff;
536 		else
537 			reg_1280 &= 0xfa7b;
538 		break;
539 	}
540 
541 	dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774, reg_775, reg_776, reg_900, reg_1280);
542 	dib8000_write_word(state, 774, reg_774);
543 	dib8000_write_word(state, 775, reg_775);
544 	dib8000_write_word(state, 776, reg_776);
545 	dib8000_write_word(state, 900, reg_900);
546 	dib8000_write_word(state, 1280, reg_1280);
547 }
548 
549 static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no)
550 {
551 	int ret = 0;
552 	u16 reg, reg_907 = dib8000_read_word(state, 907);
553 	u16 reg_908 = dib8000_read_word(state, 908);
554 
555 	switch (no) {
556 	case DIBX000_SLOW_ADC_ON:
557 		if (state->revision != 0x8090) {
558 			reg_908 |= (1 << 1) | (1 << 0);
559 			ret |= dib8000_write_word(state, 908, reg_908);
560 			reg_908 &= ~(1 << 1);
561 		} else {
562 			reg = dib8000_read_word(state, 1925);
563 			/* en_slowAdc = 1 & reset_sladc = 1 */
564 			dib8000_write_word(state, 1925, reg |
565 					(1<<4) | (1<<2));
566 
567 			/* read acces to make it works... strange ... */
568 			reg = dib8000_read_word(state, 1925);
569 			msleep(20);
570 			/* en_slowAdc = 1 & reset_sladc = 0 */
571 			dib8000_write_word(state, 1925, reg & ~(1<<4));
572 
573 			reg = dib8000_read_word(state, 921) & ~((0x3 << 14)
574 					| (0x3 << 12));
575 			/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ;
576 			   (Vin2 = Vcm) */
577 			dib8000_write_word(state, 921, reg | (1 << 14)
578 					| (3 << 12));
579 		}
580 		break;
581 
582 	case DIBX000_SLOW_ADC_OFF:
583 		if (state->revision == 0x8090) {
584 			reg = dib8000_read_word(state, 1925);
585 			/* reset_sladc = 1 en_slowAdc = 0 */
586 			dib8000_write_word(state, 1925,
587 					(reg & ~(1<<2)) | (1<<4));
588 		}
589 		reg_908 |= (1 << 1) | (1 << 0);
590 		break;
591 
592 	case DIBX000_ADC_ON:
593 		reg_907 &= 0x0fff;
594 		reg_908 &= 0x0003;
595 		break;
596 
597 	case DIBX000_ADC_OFF:	// leave the VBG voltage on
598 		reg_907 = (1 << 13) | (1 << 12);
599 		reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1);
600 		break;
601 
602 	case DIBX000_VBG_ENABLE:
603 		reg_907 &= ~(1 << 15);
604 		break;
605 
606 	case DIBX000_VBG_DISABLE:
607 		reg_907 |= (1 << 15);
608 		break;
609 
610 	default:
611 		break;
612 	}
613 
614 	ret |= dib8000_write_word(state, 907, reg_907);
615 	ret |= dib8000_write_word(state, 908, reg_908);
616 
617 	return ret;
618 }
619 
620 static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw)
621 {
622 	struct dib8000_state *state = fe->demodulator_priv;
623 	u32 timf;
624 
625 	if (bw == 0)
626 		bw = 6000;
627 
628 	if (state->timf == 0) {
629 		dprintk("using default timf\n");
630 		timf = state->timf_default;
631 	} else {
632 		dprintk("using updated timf\n");
633 		timf = state->timf;
634 	}
635 
636 	dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff));
637 	dib8000_write_word(state, 30, (u16) ((timf) & 0xffff));
638 
639 	return 0;
640 }
641 
642 static int dib8000_sad_calib(struct dib8000_state *state)
643 {
644 	u8 sad_sel = 3;
645 
646 	if (state->revision == 0x8090) {
647 		dib8000_write_word(state, 922, (sad_sel << 2));
648 		dib8000_write_word(state, 923, 2048);
649 
650 		dib8000_write_word(state, 922, (sad_sel << 2) | 0x1);
651 		dib8000_write_word(state, 922, (sad_sel << 2));
652 	} else {
653 		/* internal */
654 		dib8000_write_word(state, 923, (0 << 1) | (0 << 0));
655 		dib8000_write_word(state, 924, 776);
656 
657 		/* do the calibration */
658 		dib8000_write_word(state, 923, (1 << 0));
659 		dib8000_write_word(state, 923, (0 << 0));
660 	}
661 
662 	msleep(1);
663 	return 0;
664 }
665 
666 static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value)
667 {
668 	struct dib8000_state *state = fe->demodulator_priv;
669 	if (value > 4095)
670 		value = 4095;
671 	state->wbd_ref = value;
672 	return dib8000_write_word(state, 106, value);
673 }
674 
675 static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw)
676 {
677 	dprintk("ifreq: %d %x, inversion: %d\n", bw->ifreq, bw->ifreq, bw->ifreq >> 25);
678 	if (state->revision != 0x8090) {
679 		dib8000_write_word(state, 23,
680 				(u16) (((bw->internal * 1000) >> 16) & 0xffff));
681 		dib8000_write_word(state, 24,
682 				(u16) ((bw->internal * 1000) & 0xffff));
683 	} else {
684 		dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff));
685 		dib8000_write_word(state, 24,
686 				(u16) ((bw->internal  / 2 * 1000) & 0xffff));
687 	}
688 	dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff));
689 	dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff));
690 	dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003));
691 
692 	if (state->revision != 0x8090)
693 		dib8000_write_word(state, 922, bw->sad_cfg);
694 }
695 
696 static void dib8000_reset_pll(struct dib8000_state *state)
697 {
698 	const struct dibx000_bandwidth_config *pll = state->cfg.pll;
699 	u16 clk_cfg1, reg;
700 
701 	if (state->revision != 0x8090) {
702 		dib8000_write_word(state, 901,
703 				(pll->pll_prediv << 8) | (pll->pll_ratio << 0));
704 
705 		clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
706 			(pll->bypclk_div << 5) | (pll->enable_refdiv << 4) |
707 			(1 << 3) | (pll->pll_range << 1) |
708 			(pll->pll_reset << 0);
709 
710 		dib8000_write_word(state, 902, clk_cfg1);
711 		clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
712 		dib8000_write_word(state, 902, clk_cfg1);
713 
714 		dprintk("clk_cfg1: 0x%04x\n", clk_cfg1);
715 
716 		/* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
717 		if (state->cfg.pll->ADClkSrc == 0)
718 			dib8000_write_word(state, 904,
719 					(0 << 15) | (0 << 12) | (0 << 10) |
720 					(pll->modulo << 8) |
721 					(pll->ADClkSrc << 7) | (0 << 1));
722 		else if (state->cfg.refclksel != 0)
723 			dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
724 					((state->cfg.refclksel & 0x3) << 10) |
725 					(pll->modulo << 8) |
726 					(pll->ADClkSrc << 7) | (0 << 1));
727 		else
728 			dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
729 					(3 << 10) | (pll->modulo << 8) |
730 					(pll->ADClkSrc << 7) | (0 << 1));
731 	} else {
732 		dib8000_write_word(state, 1856, (!pll->pll_reset<<13) |
733 				(pll->pll_range<<12) | (pll->pll_ratio<<6) |
734 				(pll->pll_prediv));
735 
736 		reg = dib8000_read_word(state, 1857);
737 		dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15));
738 
739 		reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */
740 		dib8000_write_word(state, 1858, reg | 1);
741 
742 		dib8000_write_word(state, 904, (pll->modulo << 8));
743 	}
744 
745 	dib8000_reset_pll_common(state, pll);
746 }
747 
748 static int dib8000_update_pll(struct dvb_frontend *fe,
749 		struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio)
750 {
751 	struct dib8000_state *state = fe->demodulator_priv;
752 	u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856);
753 	u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ;
754 	u32 internal, xtal;
755 
756 	/* get back old values */
757 	prediv = reg_1856 & 0x3f;
758 	loopdiv = (reg_1856 >> 6) & 0x3f;
759 
760 	if ((pll == NULL) || (pll->pll_prediv == prediv &&
761 				pll->pll_ratio == loopdiv))
762 		return -EINVAL;
763 
764 	dprintk("Updating pll (prediv: old =  %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio);
765 	if (state->revision == 0x8090) {
766 		reg_1856 &= 0xf000;
767 		reg_1857 = dib8000_read_word(state, 1857);
768 		/* disable PLL */
769 		dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15));
770 
771 		dib8000_write_word(state, 1856, reg_1856 |
772 				((pll->pll_ratio & 0x3f) << 6) |
773 				(pll->pll_prediv & 0x3f));
774 
775 		/* write new system clk into P_sec_len */
776 		internal = dib8000_read32(state, 23) / 1000;
777 		dprintk("Old Internal = %d\n", internal);
778 		xtal = 2 * (internal / loopdiv) * prediv;
779 		internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio;
780 		dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal, internal/1000, internal/2000, internal/8000);
781 		dprintk("New Internal = %d\n", internal);
782 
783 		dib8000_write_word(state, 23,
784 				(u16) (((internal / 2) >> 16) & 0xffff));
785 		dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff));
786 		/* enable PLL */
787 		dib8000_write_word(state, 1857, reg_1857 | (1 << 15));
788 
789 		while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1)
790 			dprintk("Waiting for PLL to lock\n");
791 
792 		/* verify */
793 		reg_1856 = dib8000_read_word(state, 1856);
794 		dprintk("PLL Updated with prediv = %d and loopdiv = %d\n",
795 				reg_1856&0x3f, (reg_1856>>6)&0x3f);
796 	} else {
797 		if (bw != state->current_demod_bw) {
798 			/** Bandwidth change => force PLL update **/
799 			dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv);
800 
801 			if (state->cfg.pll->pll_prediv != oldprediv) {
802 				/** Full PLL change only if prediv is changed **/
803 
804 				/** full update => bypass and reconfigure **/
805 				dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio);
806 				dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */
807 				dib8000_reset_pll(state);
808 				dib8000_write_word(state, 898, 0x0004); /* sad */
809 			} else
810 				ratio = state->cfg.pll->pll_ratio;
811 
812 			state->current_demod_bw = bw;
813 		}
814 
815 		if (ratio != 0) {
816 			/** ratio update => only change ratio **/
817 			dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state->cfg.pll->pll_prediv, ratio);
818 			dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */
819 		}
820 	}
821 
822 	return 0;
823 }
824 
825 static int dib8000_reset_gpio(struct dib8000_state *st)
826 {
827 	/* reset the GPIOs */
828 	dib8000_write_word(st, 1029, st->cfg.gpio_dir);
829 	dib8000_write_word(st, 1030, st->cfg.gpio_val);
830 
831 	/* TODO 782 is P_gpio_od */
832 
833 	dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos);
834 
835 	dib8000_write_word(st, 1037, st->cfg.pwm_freq_div);
836 	return 0;
837 }
838 
839 static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val)
840 {
841 	st->cfg.gpio_dir = dib8000_read_word(st, 1029);
842 	st->cfg.gpio_dir &= ~(1 << num);	/* reset the direction bit */
843 	st->cfg.gpio_dir |= (dir & 0x1) << num;	/* set the new direction */
844 	dib8000_write_word(st, 1029, st->cfg.gpio_dir);
845 
846 	st->cfg.gpio_val = dib8000_read_word(st, 1030);
847 	st->cfg.gpio_val &= ~(1 << num);	/* reset the direction bit */
848 	st->cfg.gpio_val |= (val & 0x01) << num;	/* set the new value */
849 	dib8000_write_word(st, 1030, st->cfg.gpio_val);
850 
851 	dprintk("gpio dir: %x: gpio val: %x\n", st->cfg.gpio_dir, st->cfg.gpio_val);
852 
853 	return 0;
854 }
855 
856 static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
857 {
858 	struct dib8000_state *state = fe->demodulator_priv;
859 	return dib8000_cfg_gpio(state, num, dir, val);
860 }
861 
862 static const u16 dib8000_defaults[] = {
863 	/* auto search configuration - lock0 by default waiting
864 	 * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
865 	3, 7,
866 	0x0004,
867 	0x0400,
868 	0x0814,
869 
870 	12, 11,
871 	0x001b,
872 	0x7740,
873 	0x005b,
874 	0x8d80,
875 	0x01c9,
876 	0xc380,
877 	0x0000,
878 	0x0080,
879 	0x0000,
880 	0x0090,
881 	0x0001,
882 	0xd4c0,
883 
884 	/*1, 32,
885 		0x6680 // P_corm_thres Lock algorithms configuration */
886 
887 	11, 80,			/* set ADC level to -16 */
888 	(1 << 13) - 825 - 117,
889 	(1 << 13) - 837 - 117,
890 	(1 << 13) - 811 - 117,
891 	(1 << 13) - 766 - 117,
892 	(1 << 13) - 737 - 117,
893 	(1 << 13) - 693 - 117,
894 	(1 << 13) - 648 - 117,
895 	(1 << 13) - 619 - 117,
896 	(1 << 13) - 575 - 117,
897 	(1 << 13) - 531 - 117,
898 	(1 << 13) - 501 - 117,
899 
900 	4, 108,
901 	0,
902 	0,
903 	0,
904 	0,
905 
906 	1, 175,
907 	0x0410,
908 	1, 179,
909 	8192,			// P_fft_nb_to_cut
910 
911 	6, 181,
912 	0x2800,			// P_coff_corthres_ ( 2k 4k 8k ) 0x2800
913 	0x2800,
914 	0x2800,
915 	0x2800,			// P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
916 	0x2800,
917 	0x2800,
918 
919 	2, 193,
920 	0x0666,			// P_pha3_thres
921 	0x0000,			// P_cti_use_cpe, P_cti_use_prog
922 
923 	2, 205,
924 	0x200f,			// P_cspu_regul, P_cspu_win_cut
925 	0x000f,			// P_des_shift_work
926 
927 	5, 215,
928 	0x023d,			// P_adp_regul_cnt
929 	0x00a4,			// P_adp_noise_cnt
930 	0x00a4,			// P_adp_regul_ext
931 	0x7ff0,			// P_adp_noise_ext
932 	0x3ccc,			// P_adp_fil
933 
934 	1, 230,
935 	0x0000,			// P_2d_byp_ti_num
936 
937 	1, 263,
938 	0x800,			//P_equal_thres_wgn
939 
940 	1, 268,
941 	(2 << 9) | 39,		// P_equal_ctrl_synchro, P_equal_speedmode
942 
943 	1, 270,
944 	0x0001,			// P_div_lock0_wait
945 	1, 285,
946 	0x0020,			//p_fec_
947 	1, 299,
948 	0x0062,			/* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
949 
950 	1, 338,
951 	(1 << 12) |		// P_ctrl_corm_thres4pre_freq_inh=1
952 		(1 << 10) |
953 		(0 << 9) |		/* P_ctrl_pre_freq_inh=0 */
954 		(3 << 5) |		/* P_ctrl_pre_freq_step=3 */
955 		(1 << 0),		/* P_pre_freq_win_len=1 */
956 
957 	0,
958 };
959 
960 static u16 dib8000_identify(struct i2c_device *client)
961 {
962 	u16 value;
963 
964 	//because of glitches sometimes
965 	value = dib8000_i2c_read16(client, 896);
966 
967 	if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) {
968 		dprintk("wrong Vendor ID (read=0x%x)\n", value);
969 		return 0;
970 	}
971 
972 	value = dib8000_i2c_read16(client, 897);
973 	if (value != 0x8000 && value != 0x8001 &&
974 			value != 0x8002 && value != 0x8090) {
975 		dprintk("wrong Device ID (%x)\n", value);
976 		return 0;
977 	}
978 
979 	switch (value) {
980 	case 0x8000:
981 		dprintk("found DiB8000A\n");
982 		break;
983 	case 0x8001:
984 		dprintk("found DiB8000B\n");
985 		break;
986 	case 0x8002:
987 		dprintk("found DiB8000C\n");
988 		break;
989 	case 0x8090:
990 		dprintk("found DiB8096P\n");
991 		break;
992 	}
993 	return value;
994 }
995 
996 static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc);
997 
998 static void dib8000_reset_stats(struct dvb_frontend *fe)
999 {
1000 	struct dib8000_state *state = fe->demodulator_priv;
1001 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
1002 	u32 ucb;
1003 
1004 	memset(&c->strength, 0, sizeof(c->strength));
1005 	memset(&c->cnr, 0, sizeof(c->cnr));
1006 	memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
1007 	memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
1008 	memset(&c->block_error, 0, sizeof(c->block_error));
1009 
1010 	c->strength.len = 1;
1011 	c->cnr.len = 1;
1012 	c->block_error.len = 1;
1013 	c->block_count.len = 1;
1014 	c->post_bit_error.len = 1;
1015 	c->post_bit_count.len = 1;
1016 
1017 	c->strength.stat[0].scale = FE_SCALE_DECIBEL;
1018 	c->strength.stat[0].uvalue = 0;
1019 
1020 	c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1021 	c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1022 	c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1023 	c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1024 	c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1025 
1026 	dib8000_read_unc_blocks(fe, &ucb);
1027 
1028 	state->init_ucb = -ucb;
1029 	state->ber_jiffies_stats = 0;
1030 	state->per_jiffies_stats = 0;
1031 	memset(&state->ber_jiffies_stats_layer, 0,
1032 	       sizeof(state->ber_jiffies_stats_layer));
1033 }
1034 
1035 static int dib8000_reset(struct dvb_frontend *fe)
1036 {
1037 	struct dib8000_state *state = fe->demodulator_priv;
1038 
1039 	if ((state->revision = dib8000_identify(&state->i2c)) == 0)
1040 		return -EINVAL;
1041 
1042 	/* sram lead in, rdy */
1043 	if (state->revision != 0x8090)
1044 		dib8000_write_word(state, 1287, 0x0003);
1045 
1046 	if (state->revision == 0x8000)
1047 		dprintk("error : dib8000 MA not supported\n");
1048 
1049 	dibx000_reset_i2c_master(&state->i2c_master);
1050 
1051 	dib8000_set_power_mode(state, DIB8000_POWER_ALL);
1052 
1053 	/* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
1054 	dib8000_set_adc_state(state, DIBX000_ADC_OFF);
1055 
1056 	/* restart all parts */
1057 	dib8000_write_word(state, 770, 0xffff);
1058 	dib8000_write_word(state, 771, 0xffff);
1059 	dib8000_write_word(state, 772, 0xfffc);
1060 	dib8000_write_word(state, 898, 0x000c);	/* restart sad */
1061 	if (state->revision == 0x8090)
1062 		dib8000_write_word(state, 1280, 0x0045);
1063 	else
1064 		dib8000_write_word(state, 1280, 0x004d);
1065 	dib8000_write_word(state, 1281, 0x000c);
1066 
1067 	dib8000_write_word(state, 770, 0x0000);
1068 	dib8000_write_word(state, 771, 0x0000);
1069 	dib8000_write_word(state, 772, 0x0000);
1070 	dib8000_write_word(state, 898, 0x0004);	// sad
1071 	dib8000_write_word(state, 1280, 0x0000);
1072 	dib8000_write_word(state, 1281, 0x0000);
1073 
1074 	/* drives */
1075 	if (state->revision != 0x8090) {
1076 		if (state->cfg.drives)
1077 			dib8000_write_word(state, 906, state->cfg.drives);
1078 		else {
1079 			dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n");
1080 			/* min drive SDRAM - not optimal - adjust */
1081 			dib8000_write_word(state, 906, 0x2d98);
1082 		}
1083 	}
1084 
1085 	dib8000_reset_pll(state);
1086 	if (state->revision != 0x8090)
1087 		dib8000_write_word(state, 898, 0x0004);
1088 
1089 	if (dib8000_reset_gpio(state) != 0)
1090 		dprintk("GPIO reset was not successful.\n");
1091 
1092 	if ((state->revision != 0x8090) &&
1093 			(dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0))
1094 		dprintk("OUTPUT_MODE could not be resetted.\n");
1095 
1096 	state->current_agc = NULL;
1097 
1098 	// P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
1099 	/* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
1100 	if (state->cfg.pll->ifreq == 0)
1101 		dib8000_write_word(state, 40, 0x0755);	/* P_iqc_corr_inh = 0 enable IQcorr block */
1102 	else
1103 		dib8000_write_word(state, 40, 0x1f55);	/* P_iqc_corr_inh = 1 disable IQcorr block */
1104 
1105 	{
1106 		u16 l = 0, r;
1107 		const u16 *n;
1108 		n = dib8000_defaults;
1109 		l = *n++;
1110 		while (l) {
1111 			r = *n++;
1112 			do {
1113 				dib8000_write_word(state, r, *n++);
1114 				r++;
1115 			} while (--l);
1116 			l = *n++;
1117 		}
1118 	}
1119 
1120 	state->isdbt_cfg_loaded = 0;
1121 
1122 	//div_cfg override for special configs
1123 	if ((state->revision != 8090) && (state->cfg.div_cfg != 0))
1124 		dib8000_write_word(state, 903, state->cfg.div_cfg);
1125 
1126 	/* unforce divstr regardless whether i2c enumeration was done or not */
1127 	dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1));
1128 
1129 	dib8000_set_bandwidth(fe, 6000);
1130 
1131 	dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON);
1132 	dib8000_sad_calib(state);
1133 	if (state->revision != 0x8090)
1134 		dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
1135 
1136 	/* ber_rs_len = 3 */
1137 	dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5));
1138 
1139 	dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY);
1140 
1141 	dib8000_reset_stats(fe);
1142 
1143 	return 0;
1144 }
1145 
1146 static void dib8000_restart_agc(struct dib8000_state *state)
1147 {
1148 	// P_restart_iqc & P_restart_agc
1149 	dib8000_write_word(state, 770, 0x0a00);
1150 	dib8000_write_word(state, 770, 0x0000);
1151 }
1152 
1153 static int dib8000_update_lna(struct dib8000_state *state)
1154 {
1155 	u16 dyn_gain;
1156 
1157 	if (state->cfg.update_lna) {
1158 		// read dyn_gain here (because it is demod-dependent and not tuner)
1159 		dyn_gain = dib8000_read_word(state, 390);
1160 
1161 		if (state->cfg.update_lna(state->fe[0], dyn_gain)) {
1162 			dib8000_restart_agc(state);
1163 			return 1;
1164 		}
1165 	}
1166 	return 0;
1167 }
1168 
1169 static int dib8000_set_agc_config(struct dib8000_state *state, u8 band)
1170 {
1171 	struct dibx000_agc_config *agc = NULL;
1172 	int i;
1173 	u16 reg;
1174 
1175 	if (state->current_band == band && state->current_agc != NULL)
1176 		return 0;
1177 	state->current_band = band;
1178 
1179 	for (i = 0; i < state->cfg.agc_config_count; i++)
1180 		if (state->cfg.agc[i].band_caps & band) {
1181 			agc = &state->cfg.agc[i];
1182 			break;
1183 		}
1184 
1185 	if (agc == NULL) {
1186 		dprintk("no valid AGC configuration found for band 0x%02x\n", band);
1187 		return -EINVAL;
1188 	}
1189 
1190 	state->current_agc = agc;
1191 
1192 	/* AGC */
1193 	dib8000_write_word(state, 76, agc->setup);
1194 	dib8000_write_word(state, 77, agc->inv_gain);
1195 	dib8000_write_word(state, 78, agc->time_stabiliz);
1196 	dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock);
1197 
1198 	// Demod AGC loop configuration
1199 	dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp);
1200 	dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp);
1201 
1202 	dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
1203 		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
1204 
1205 	/* AGC continued */
1206 	if (state->wbd_ref != 0)
1207 		dib8000_write_word(state, 106, state->wbd_ref);
1208 	else			// use default
1209 		dib8000_write_word(state, 106, agc->wbd_ref);
1210 
1211 	if (state->revision == 0x8090) {
1212 		reg = dib8000_read_word(state, 922) & (0x3 << 2);
1213 		dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2));
1214 	}
1215 
1216 	dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
1217 	dib8000_write_word(state, 108, agc->agc1_max);
1218 	dib8000_write_word(state, 109, agc->agc1_min);
1219 	dib8000_write_word(state, 110, agc->agc2_max);
1220 	dib8000_write_word(state, 111, agc->agc2_min);
1221 	dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
1222 	dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
1223 	dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
1224 	dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
1225 
1226 	dib8000_write_word(state, 75, agc->agc1_pt3);
1227 	if (state->revision != 0x8090)
1228 		dib8000_write_word(state, 923,
1229 				(dib8000_read_word(state, 923) & 0xffe3) |
1230 				(agc->wbd_inv << 4) | (agc->wbd_sel << 2));
1231 
1232 	return 0;
1233 }
1234 
1235 static void dib8000_pwm_agc_reset(struct dvb_frontend *fe)
1236 {
1237 	struct dib8000_state *state = fe->demodulator_priv;
1238 	dib8000_set_adc_state(state, DIBX000_ADC_ON);
1239 	dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000)));
1240 }
1241 
1242 static int dib8000_agc_soft_split(struct dib8000_state *state)
1243 {
1244 	u16 agc, split_offset;
1245 
1246 	if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
1247 		return 0;
1248 
1249 	// n_agc_global
1250 	agc = dib8000_read_word(state, 390);
1251 
1252 	if (agc > state->current_agc->split.min_thres)
1253 		split_offset = state->current_agc->split.min;
1254 	else if (agc < state->current_agc->split.max_thres)
1255 		split_offset = state->current_agc->split.max;
1256 	else
1257 		split_offset = state->current_agc->split.max *
1258 			(agc - state->current_agc->split.min_thres) /
1259 			(state->current_agc->split.max_thres - state->current_agc->split.min_thres);
1260 
1261 	dprintk("AGC split_offset: %d\n", split_offset);
1262 
1263 	// P_agc_force_split and P_agc_split_offset
1264 	dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset);
1265 	return 5000;
1266 }
1267 
1268 static int dib8000_agc_startup(struct dvb_frontend *fe)
1269 {
1270 	struct dib8000_state *state = fe->demodulator_priv;
1271 	enum frontend_tune_state *tune_state = &state->tune_state;
1272 	int ret = 0;
1273 	u16 reg;
1274 	u32 upd_demod_gain_period = 0x8000;
1275 
1276 	switch (*tune_state) {
1277 	case CT_AGC_START:
1278 		// set power-up level: interf+analog+AGC
1279 
1280 		if (state->revision != 0x8090)
1281 			dib8000_set_adc_state(state, DIBX000_ADC_ON);
1282 		else {
1283 			dib8000_set_power_mode(state, DIB8000_POWER_ALL);
1284 
1285 			reg = dib8000_read_word(state, 1947)&0xff00;
1286 			dib8000_write_word(state, 1946,
1287 					upd_demod_gain_period & 0xFFFF);
1288 			/* bit 14 = enDemodGain */
1289 			dib8000_write_word(state, 1947, reg | (1<<14) |
1290 					((upd_demod_gain_period >> 16) & 0xFF));
1291 
1292 			/* enable adc i & q */
1293 			reg = dib8000_read_word(state, 1920);
1294 			dib8000_write_word(state, 1920, (reg | 0x3) &
1295 					(~(1 << 7)));
1296 		}
1297 
1298 		if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) {
1299 			*tune_state = CT_AGC_STOP;
1300 			state->status = FE_STATUS_TUNE_FAILED;
1301 			break;
1302 		}
1303 
1304 		ret = 70;
1305 		*tune_state = CT_AGC_STEP_0;
1306 		break;
1307 
1308 	case CT_AGC_STEP_0:
1309 		//AGC initialization
1310 		if (state->cfg.agc_control)
1311 			state->cfg.agc_control(fe, 1);
1312 
1313 		dib8000_restart_agc(state);
1314 
1315 		// wait AGC rough lock time
1316 		ret = 50;
1317 		*tune_state = CT_AGC_STEP_1;
1318 		break;
1319 
1320 	case CT_AGC_STEP_1:
1321 		// wait AGC accurate lock time
1322 		ret = 70;
1323 
1324 		if (dib8000_update_lna(state))
1325 			// wait only AGC rough lock time
1326 			ret = 50;
1327 		else
1328 			*tune_state = CT_AGC_STEP_2;
1329 		break;
1330 
1331 	case CT_AGC_STEP_2:
1332 		dib8000_agc_soft_split(state);
1333 
1334 		if (state->cfg.agc_control)
1335 			state->cfg.agc_control(fe, 0);
1336 
1337 		*tune_state = CT_AGC_STOP;
1338 		break;
1339 	default:
1340 		ret = dib8000_agc_soft_split(state);
1341 		break;
1342 	}
1343 	return ret;
1344 
1345 }
1346 
1347 static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive)
1348 {
1349 	u16 reg;
1350 
1351 	drive &= 0x7;
1352 
1353 	/* drive host bus 2, 3, 4 */
1354 	reg = dib8000_read_word(state, 1798) &
1355 		~(0x7 | (0x7 << 6) | (0x7 << 12));
1356 	reg |= (drive<<12) | (drive<<6) | drive;
1357 	dib8000_write_word(state, 1798, reg);
1358 
1359 	/* drive host bus 5,6 */
1360 	reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
1361 	reg |= (drive<<8) | (drive<<2);
1362 	dib8000_write_word(state, 1799, reg);
1363 
1364 	/* drive host bus 7, 8, 9 */
1365 	reg = dib8000_read_word(state, 1800) &
1366 		~(0x7 | (0x7 << 6) | (0x7 << 12));
1367 	reg |= (drive<<12) | (drive<<6) | drive;
1368 	dib8000_write_word(state, 1800, reg);
1369 
1370 	/* drive host bus 10, 11 */
1371 	reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
1372 	reg |= (drive<<8) | (drive<<2);
1373 	dib8000_write_word(state, 1801, reg);
1374 
1375 	/* drive host bus 12, 13, 14 */
1376 	reg = dib8000_read_word(state, 1802) &
1377 		~(0x7 | (0x7 << 6) | (0x7 << 12));
1378 	reg |= (drive<<12) | (drive<<6) | drive;
1379 	dib8000_write_word(state, 1802, reg);
1380 }
1381 
1382 static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout,
1383 		u32 insertExtSynchro, u32 syncSize)
1384 {
1385 	u32 quantif = 3;
1386 	u32 nom = (insertExtSynchro * P_Kin+syncSize);
1387 	u32 denom = P_Kout;
1388 	u32 syncFreq = ((nom << quantif) / denom);
1389 
1390 	if ((syncFreq & ((1 << quantif) - 1)) != 0)
1391 		syncFreq = (syncFreq >> quantif) + 1;
1392 	else
1393 		syncFreq = (syncFreq >> quantif);
1394 
1395 	if (syncFreq != 0)
1396 		syncFreq = syncFreq - 1;
1397 
1398 	return syncFreq;
1399 }
1400 
1401 static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin,
1402 		u32 P_Kout, u32 insertExtSynchro, u32 synchroMode,
1403 		u32 syncWord, u32 syncSize)
1404 {
1405 	dprintk("Configure DibStream Tx\n");
1406 
1407 	dib8000_write_word(state, 1615, 1);
1408 	dib8000_write_word(state, 1603, P_Kin);
1409 	dib8000_write_word(state, 1605, P_Kout);
1410 	dib8000_write_word(state, 1606, insertExtSynchro);
1411 	dib8000_write_word(state, 1608, synchroMode);
1412 	dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff);
1413 	dib8000_write_word(state, 1610, syncWord & 0xffff);
1414 	dib8000_write_word(state, 1612, syncSize);
1415 	dib8000_write_word(state, 1615, 0);
1416 }
1417 
1418 static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin,
1419 		u32 P_Kout, u32 synchroMode, u32 insertExtSynchro,
1420 		u32 syncWord, u32 syncSize, u32 dataOutRate)
1421 {
1422 	u32 syncFreq;
1423 
1424 	dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode);
1425 
1426 	if ((P_Kin != 0) && (P_Kout != 0)) {
1427 		syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout,
1428 				insertExtSynchro, syncSize);
1429 		dib8000_write_word(state, 1542, syncFreq);
1430 	}
1431 
1432 	dib8000_write_word(state, 1554, 1);
1433 	dib8000_write_word(state, 1536, P_Kin);
1434 	dib8000_write_word(state, 1537, P_Kout);
1435 	dib8000_write_word(state, 1539, synchroMode);
1436 	dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff);
1437 	dib8000_write_word(state, 1541, syncWord & 0xffff);
1438 	dib8000_write_word(state, 1543, syncSize);
1439 	dib8000_write_word(state, 1544, dataOutRate);
1440 	dib8000_write_word(state, 1554, 0);
1441 }
1442 
1443 static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff)
1444 {
1445 	u16 reg_1287;
1446 
1447 	reg_1287 = dib8000_read_word(state, 1287);
1448 
1449 	switch (onoff) {
1450 	case 1:
1451 			reg_1287 &= ~(1 << 8);
1452 			break;
1453 	case 0:
1454 			reg_1287 |= (1 << 8);
1455 			break;
1456 	}
1457 
1458 	dib8000_write_word(state, 1287, reg_1287);
1459 }
1460 
1461 static void dib8096p_configMpegMux(struct dib8000_state *state,
1462 		u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
1463 {
1464 	u16 reg_1287;
1465 
1466 	dprintk("Enable Mpeg mux\n");
1467 
1468 	dib8096p_enMpegMux(state, 0);
1469 
1470 	/* If the input mode is MPEG do not divide the serial clock */
1471 	if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
1472 		enSerialClkDiv2 = 0;
1473 
1474 	reg_1287 = ((pulseWidth & 0x1f) << 3) |
1475 		((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1);
1476 	dib8000_write_word(state, 1287, reg_1287);
1477 
1478 	dib8096p_enMpegMux(state, 1);
1479 }
1480 
1481 static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode)
1482 {
1483 	u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7);
1484 
1485 	switch (mode) {
1486 	case MPEG_ON_DIBTX:
1487 			dprintk("SET MPEG ON DIBSTREAM TX\n");
1488 			dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
1489 			reg_1288 |= (1 << 9); break;
1490 	case DIV_ON_DIBTX:
1491 			dprintk("SET DIV_OUT ON DIBSTREAM TX\n");
1492 			dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
1493 			reg_1288 |= (1 << 8); break;
1494 	case ADC_ON_DIBTX:
1495 			dprintk("SET ADC_OUT ON DIBSTREAM TX\n");
1496 			dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
1497 			reg_1288 |= (1 << 7); break;
1498 	default:
1499 			break;
1500 	}
1501 	dib8000_write_word(state, 1288, reg_1288);
1502 }
1503 
1504 static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode)
1505 {
1506 	u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4);
1507 
1508 	switch (mode) {
1509 	case DEMOUT_ON_HOSTBUS:
1510 			dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n");
1511 			dib8096p_enMpegMux(state, 0);
1512 			reg_1288 |= (1 << 6);
1513 			break;
1514 	case DIBTX_ON_HOSTBUS:
1515 			dprintk("SET DIBSTREAM TX ON HOST BUS\n");
1516 			dib8096p_enMpegMux(state, 0);
1517 			reg_1288 |= (1 << 5);
1518 			break;
1519 	case MPEG_ON_HOSTBUS:
1520 			dprintk("SET MPEG MUX ON HOST BUS\n");
1521 			reg_1288 |= (1 << 4);
1522 			break;
1523 	default:
1524 			break;
1525 	}
1526 	dib8000_write_word(state, 1288, reg_1288);
1527 }
1528 
1529 static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff)
1530 {
1531 	struct dib8000_state *state = fe->demodulator_priv;
1532 	u16 reg_1287;
1533 
1534 	switch (onoff) {
1535 	case 0: /* only use the internal way - not the diversity input */
1536 			dprintk("%s mode OFF : by default Enable Mpeg INPUT\n",
1537 					__func__);
1538 			/* outputRate = 8 */
1539 			dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);
1540 
1541 			/* Do not divide the serial clock of MPEG MUX in
1542 			   SERIAL MODE in case input mode MPEG is used */
1543 			reg_1287 = dib8000_read_word(state, 1287);
1544 			/* enSerialClkDiv2 == 1 ? */
1545 			if ((reg_1287 & 0x1) == 1) {
1546 				/* force enSerialClkDiv2 = 0 */
1547 				reg_1287 &= ~0x1;
1548 				dib8000_write_word(state, 1287, reg_1287);
1549 			}
1550 			state->input_mode_mpeg = 1;
1551 			break;
1552 	case 1: /* both ways */
1553 	case 2: /* only the diversity input */
1554 			dprintk("%s ON : Enable diversity INPUT\n", __func__);
1555 			dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
1556 			state->input_mode_mpeg = 0;
1557 			break;
1558 	}
1559 
1560 	dib8000_set_diversity_in(state->fe[0], onoff);
1561 	return 0;
1562 }
1563 
1564 static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode)
1565 {
1566 	struct dib8000_state *state = fe->demodulator_priv;
1567 	u16 outreg, smo_mode, fifo_threshold;
1568 	u8 prefer_mpeg_mux_use = 1;
1569 	int ret = 0;
1570 
1571 	state->output_mode = mode;
1572 	dib8096p_host_bus_drive(state, 1);
1573 
1574 	fifo_threshold = 1792;
1575 	smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
1576 	outreg   = dib8000_read_word(state, 1286) &
1577 		~((1 << 10) | (0x7 << 6) | (1 << 1));
1578 
1579 	switch (mode) {
1580 	case OUTMODE_HIGH_Z:
1581 			outreg = 0;
1582 			break;
1583 
1584 	case OUTMODE_MPEG2_SERIAL:
1585 			if (prefer_mpeg_mux_use) {
1586 				dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n");
1587 				dib8096p_configMpegMux(state, 3, 1, 1);
1588 				dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS);
1589 			} else {/* Use Smooth block */
1590 				dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n");
1591 				dib8096p_setHostBusMux(state,
1592 						DEMOUT_ON_HOSTBUS);
1593 				outreg |= (2 << 6) | (0 << 1);
1594 			}
1595 			break;
1596 
1597 	case OUTMODE_MPEG2_PAR_GATED_CLK:
1598 			if (prefer_mpeg_mux_use) {
1599 				dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n");
1600 				dib8096p_configMpegMux(state, 2, 0, 0);
1601 				dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS);
1602 			} else { /* Use Smooth block */
1603 				dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n");
1604 				dib8096p_setHostBusMux(state,
1605 						DEMOUT_ON_HOSTBUS);
1606 				outreg |= (0 << 6);
1607 			}
1608 			break;
1609 
1610 	case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
1611 			dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n");
1612 			dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
1613 			outreg |= (1 << 6);
1614 			break;
1615 
1616 	case OUTMODE_MPEG2_FIFO:
1617 			/* Using Smooth block because not supported
1618 			   by new Mpeg Mux bloc */
1619 			dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n");
1620 			dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
1621 			outreg |= (5 << 6);
1622 			smo_mode |= (3 << 1);
1623 			fifo_threshold = 512;
1624 			break;
1625 
1626 	case OUTMODE_DIVERSITY:
1627 			dprintk("dib8096P setting output mode MODE_DIVERSITY\n");
1628 			dib8096p_setDibTxMux(state, DIV_ON_DIBTX);
1629 			dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
1630 			break;
1631 
1632 	case OUTMODE_ANALOG_ADC:
1633 			dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n");
1634 			dib8096p_setDibTxMux(state, ADC_ON_DIBTX);
1635 			dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
1636 			break;
1637 	}
1638 
1639 	if (mode != OUTMODE_HIGH_Z)
1640 		outreg |= (1<<10);
1641 
1642 	dprintk("output_mpeg2_in_188_bytes = %d\n",
1643 			state->cfg.output_mpeg2_in_188_bytes);
1644 	if (state->cfg.output_mpeg2_in_188_bytes)
1645 		smo_mode |= (1 << 5);
1646 
1647 	ret |= dib8000_write_word(state, 299, smo_mode);
1648 	/* synchronous fread */
1649 	ret |= dib8000_write_word(state, 299 + 1, fifo_threshold);
1650 	ret |= dib8000_write_word(state, 1286, outreg);
1651 
1652 	return ret;
1653 }
1654 
1655 static int map_addr_to_serpar_number(struct i2c_msg *msg)
1656 {
1657 	if (msg->buf[0] <= 15)
1658 		msg->buf[0] -= 1;
1659 	else if (msg->buf[0] == 17)
1660 		msg->buf[0] = 15;
1661 	else if (msg->buf[0] == 16)
1662 		msg->buf[0] = 17;
1663 	else if (msg->buf[0] == 19)
1664 		msg->buf[0] = 16;
1665 	else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
1666 		msg->buf[0] -= 3;
1667 	else if (msg->buf[0] == 28)
1668 		msg->buf[0] = 23;
1669 	else if (msg->buf[0] == 99)
1670 		msg->buf[0] = 99;
1671 	else
1672 		return -EINVAL;
1673 	return 0;
1674 }
1675 
1676 static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap,
1677 		struct i2c_msg msg[], int num)
1678 {
1679 	struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
1680 	u8 n_overflow = 1;
1681 	u16 i = 1000;
1682 	u16 serpar_num = msg[0].buf[0];
1683 
1684 	while (n_overflow == 1 && i) {
1685 		n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1;
1686 		i--;
1687 		if (i == 0)
1688 			dprintk("Tuner ITF: write busy (overflow)\n");
1689 	}
1690 	dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
1691 	dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
1692 
1693 	return num;
1694 }
1695 
1696 static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap,
1697 		struct i2c_msg msg[], int num)
1698 {
1699 	struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
1700 	u8 n_overflow = 1, n_empty = 1;
1701 	u16 i = 1000;
1702 	u16 serpar_num = msg[0].buf[0];
1703 	u16 read_word;
1704 
1705 	while (n_overflow == 1 && i) {
1706 		n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1;
1707 		i--;
1708 		if (i == 0)
1709 			dprintk("TunerITF: read busy (overflow)\n");
1710 	}
1711 	dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f));
1712 
1713 	i = 1000;
1714 	while (n_empty == 1 && i) {
1715 		n_empty = dib8000_read_word(state, 1984)&0x1;
1716 		i--;
1717 		if (i == 0)
1718 			dprintk("TunerITF: read busy (empty)\n");
1719 	}
1720 
1721 	read_word = dib8000_read_word(state, 1987);
1722 	msg[1].buf[0] = (read_word >> 8) & 0xff;
1723 	msg[1].buf[1] = (read_word) & 0xff;
1724 
1725 	return num;
1726 }
1727 
1728 static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap,
1729 		struct i2c_msg msg[], int num)
1730 {
1731 	if (map_addr_to_serpar_number(&msg[0]) == 0) {
1732 		if (num == 1) /* write */
1733 			return dib8096p_tuner_write_serpar(i2c_adap, msg, 1);
1734 		else /* read */
1735 			return dib8096p_tuner_read_serpar(i2c_adap, msg, 2);
1736 	}
1737 	return num;
1738 }
1739 
1740 static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap,
1741 		struct i2c_msg msg[], int num, u16 apb_address)
1742 {
1743 	struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
1744 	u16 word;
1745 
1746 	if (num == 1) {		/* write */
1747 		dib8000_write_word(state, apb_address,
1748 				((msg[0].buf[1] << 8) | (msg[0].buf[2])));
1749 	} else {
1750 		word = dib8000_read_word(state, apb_address);
1751 		msg[1].buf[0] = (word >> 8) & 0xff;
1752 		msg[1].buf[1] = (word) & 0xff;
1753 	}
1754 	return num;
1755 }
1756 
1757 static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap,
1758 		struct i2c_msg msg[], int num)
1759 {
1760 	struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
1761 	u16 apb_address = 0, word;
1762 	int i = 0;
1763 
1764 	switch (msg[0].buf[0]) {
1765 	case 0x12:
1766 			apb_address = 1920;
1767 			break;
1768 	case 0x14:
1769 			apb_address = 1921;
1770 			break;
1771 	case 0x24:
1772 			apb_address = 1922;
1773 			break;
1774 	case 0x1a:
1775 			apb_address = 1923;
1776 			break;
1777 	case 0x22:
1778 			apb_address = 1924;
1779 			break;
1780 	case 0x33:
1781 			apb_address = 1926;
1782 			break;
1783 	case 0x34:
1784 			apb_address = 1927;
1785 			break;
1786 	case 0x35:
1787 			apb_address = 1928;
1788 			break;
1789 	case 0x36:
1790 			apb_address = 1929;
1791 			break;
1792 	case 0x37:
1793 			apb_address = 1930;
1794 			break;
1795 	case 0x38:
1796 			apb_address = 1931;
1797 			break;
1798 	case 0x39:
1799 			apb_address = 1932;
1800 			break;
1801 	case 0x2a:
1802 			apb_address = 1935;
1803 			break;
1804 	case 0x2b:
1805 			apb_address = 1936;
1806 			break;
1807 	case 0x2c:
1808 			apb_address = 1937;
1809 			break;
1810 	case 0x2d:
1811 			apb_address = 1938;
1812 			break;
1813 	case 0x2e:
1814 			apb_address = 1939;
1815 			break;
1816 	case 0x2f:
1817 			apb_address = 1940;
1818 			break;
1819 	case 0x30:
1820 			apb_address = 1941;
1821 			break;
1822 	case 0x31:
1823 			apb_address = 1942;
1824 			break;
1825 	case 0x32:
1826 			apb_address = 1943;
1827 			break;
1828 	case 0x3e:
1829 			apb_address = 1944;
1830 			break;
1831 	case 0x3f:
1832 			apb_address = 1945;
1833 			break;
1834 	case 0x40:
1835 			apb_address = 1948;
1836 			break;
1837 	case 0x25:
1838 			apb_address = 936;
1839 			break;
1840 	case 0x26:
1841 			apb_address = 937;
1842 			break;
1843 	case 0x27:
1844 			apb_address = 938;
1845 			break;
1846 	case 0x28:
1847 			apb_address = 939;
1848 			break;
1849 	case 0x1d:
1850 			/* get sad sel request */
1851 			i = ((dib8000_read_word(state, 921) >> 12)&0x3);
1852 			word = dib8000_read_word(state, 924+i);
1853 			msg[1].buf[0] = (word >> 8) & 0xff;
1854 			msg[1].buf[1] = (word) & 0xff;
1855 			return num;
1856 	case 0x1f:
1857 			if (num == 1) {	/* write */
1858 				word = (u16) ((msg[0].buf[1] << 8) |
1859 						msg[0].buf[2]);
1860 				/* in the VGAMODE Sel are located on bit 0/1 */
1861 				word &= 0x3;
1862 				word = (dib8000_read_word(state, 921) &
1863 						~(3<<12)) | (word<<12);
1864 				/* Set the proper input */
1865 				dib8000_write_word(state, 921, word);
1866 				return num;
1867 			}
1868 	}
1869 
1870 	if (apb_address != 0) /* R/W acces via APB */
1871 		return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address);
1872 	else  /* R/W access via SERPAR  */
1873 		return dib8096p_tuner_rw_serpar(i2c_adap, msg, num);
1874 
1875 	return 0;
1876 }
1877 
1878 static u32 dib8096p_i2c_func(struct i2c_adapter *adapter)
1879 {
1880 	return I2C_FUNC_I2C;
1881 }
1882 
1883 static struct i2c_algorithm dib8096p_tuner_xfer_algo = {
1884 	.master_xfer = dib8096p_tuner_xfer,
1885 	.functionality = dib8096p_i2c_func,
1886 };
1887 
1888 static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe)
1889 {
1890 	struct dib8000_state *st = fe->demodulator_priv;
1891 	return &st->dib8096p_tuner_adap;
1892 }
1893 
1894 static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff)
1895 {
1896 	struct dib8000_state *state = fe->demodulator_priv;
1897 	u16 en_cur_state;
1898 
1899 	dprintk("sleep dib8096p: %d\n", onoff);
1900 
1901 	en_cur_state = dib8000_read_word(state, 1922);
1902 
1903 	/* LNAs and MIX are ON and therefore it is a valid configuration */
1904 	if (en_cur_state > 0xff)
1905 		state->tuner_enable = en_cur_state ;
1906 
1907 	if (onoff)
1908 		en_cur_state &= 0x00ff;
1909 	else {
1910 		if (state->tuner_enable != 0)
1911 			en_cur_state = state->tuner_enable;
1912 	}
1913 
1914 	dib8000_write_word(state, 1922, en_cur_state);
1915 
1916 	return 0;
1917 }
1918 
1919 static const s32 lut_1000ln_mant[] =
1920 {
1921 	908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
1922 };
1923 
1924 static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode)
1925 {
1926 	struct dib8000_state *state = fe->demodulator_priv;
1927 	u32 ix = 0, tmp_val = 0, exp = 0, mant = 0;
1928 	s32 val;
1929 
1930 	val = dib8000_read32(state, 384);
1931 	if (mode) {
1932 		tmp_val = val;
1933 		while (tmp_val >>= 1)
1934 			exp++;
1935 		mant = (val * 1000 / (1<<exp));
1936 		ix = (u8)((mant-1000)/100); /* index of the LUT */
1937 		val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908);
1938 		val = (val*256)/1000;
1939 	}
1940 	return val;
1941 }
1942 
1943 static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ)
1944 {
1945 	struct dib8000_state *state = fe->demodulator_priv;
1946 	int val = 0;
1947 
1948 	switch (IQ) {
1949 	case 1:
1950 			val = dib8000_read_word(state, 403);
1951 			break;
1952 	case 0:
1953 			val = dib8000_read_word(state, 404);
1954 			break;
1955 	}
1956 	if (val  & 0x200)
1957 		val -= 1024;
1958 
1959 	return val;
1960 }
1961 
1962 static void dib8000_update_timf(struct dib8000_state *state)
1963 {
1964 	u32 timf = state->timf = dib8000_read32(state, 435);
1965 
1966 	dib8000_write_word(state, 29, (u16) (timf >> 16));
1967 	dib8000_write_word(state, 30, (u16) (timf & 0xffff));
1968 	dprintk("Updated timing frequency: %d (default: %d)\n", state->timf, state->timf_default);
1969 }
1970 
1971 static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf)
1972 {
1973 	struct dib8000_state *state = fe->demodulator_priv;
1974 
1975 	switch (op) {
1976 	case DEMOD_TIMF_SET:
1977 			state->timf = timf;
1978 			break;
1979 	case DEMOD_TIMF_UPDATE:
1980 			dib8000_update_timf(state);
1981 			break;
1982 	case DEMOD_TIMF_GET:
1983 			break;
1984 	}
1985 	dib8000_set_bandwidth(state->fe[0], 6000);
1986 
1987 	return state->timf;
1988 }
1989 
1990 static const u16 adc_target_16dB[11] = {
1991 	7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574
1992 };
1993 
1994 static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
1995 
1996 static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation)
1997 {
1998 	u8  cr, constellation, time_intlv;
1999 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2000 
2001 	switch (c->layer[layer_index].modulation) {
2002 	case DQPSK:
2003 			constellation = 0;
2004 			break;
2005 	case  QPSK:
2006 			constellation = 1;
2007 			break;
2008 	case QAM_16:
2009 			constellation = 2;
2010 			break;
2011 	case QAM_64:
2012 	default:
2013 			constellation = 3;
2014 			break;
2015 	}
2016 
2017 	switch (c->layer[layer_index].fec) {
2018 	case FEC_1_2:
2019 			cr = 1;
2020 			break;
2021 	case FEC_2_3:
2022 			cr = 2;
2023 			break;
2024 	case FEC_3_4:
2025 			cr = 3;
2026 			break;
2027 	case FEC_5_6:
2028 			cr = 5;
2029 			break;
2030 	case FEC_7_8:
2031 	default:
2032 			cr = 7;
2033 			break;
2034 	}
2035 
2036 	time_intlv = fls(c->layer[layer_index].interleaving);
2037 	if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1))
2038 		time_intlv = 0;
2039 
2040 	dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv);
2041 	if (c->layer[layer_index].segment_count > 0) {
2042 		switch (max_constellation) {
2043 		case DQPSK:
2044 		case QPSK:
2045 				if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64)
2046 					max_constellation = c->layer[layer_index].modulation;
2047 				break;
2048 		case QAM_16:
2049 				if (c->layer[layer_index].modulation == QAM_64)
2050 					max_constellation = c->layer[layer_index].modulation;
2051 				break;
2052 		}
2053 	}
2054 
2055 	return  max_constellation;
2056 }
2057 
2058 static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */
2059 static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */
2060 static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3,  P_adp_noise_cnt -0.01,  P_adp_regul_ext 0.1,  P_adp_noise_ext -0.002 */
2061 static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation)
2062 {
2063 	u16 i, ana_gain = 0;
2064 	const u16 *adp;
2065 
2066 	/* channel estimation fine configuration */
2067 	switch (max_constellation) {
2068 	case QAM_64:
2069 			ana_gain = 0x7;
2070 			adp = &adp_Q64[0];
2071 			break;
2072 	case QAM_16:
2073 			ana_gain = 0x7;
2074 			adp = &adp_Q16[0];
2075 			break;
2076 	default:
2077 			ana_gain = 0;
2078 			adp = &adp_Qdefault[0];
2079 			break;
2080 	}
2081 
2082 	for (i = 0; i < 4; i++)
2083 		dib8000_write_word(state, 215 + i, adp[i]);
2084 
2085 	return ana_gain;
2086 }
2087 
2088 static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain)
2089 {
2090 	u16 i;
2091 
2092 	dib8000_write_word(state, 116, ana_gain);
2093 
2094 	/* update ADC target depending on ana_gain */
2095 	if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */
2096 		for (i = 0; i < 10; i++)
2097 			dib8000_write_word(state, 80 + i, adc_target_16dB[i]);
2098 	} else { /* set -22dB ADC target for ana_gain=0 */
2099 		for (i = 0; i < 10; i++)
2100 			dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355);
2101 	}
2102 }
2103 
2104 static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe)
2105 {
2106 	u16 mode = 0;
2107 
2108 	if (state->isdbt_cfg_loaded == 0)
2109 		for (mode = 0; mode < 24; mode++)
2110 			dib8000_write_word(state, 117 + mode, ana_fe[mode]);
2111 }
2112 
2113 static const u16 lut_prbs_2k[14] = {
2114 	0, 0x423, 0x009, 0x5C7, 0x7A6, 0x3D8, 0x527, 0x7FF, 0x79B, 0x3D6, 0x3A2, 0x53B, 0x2F4, 0x213
2115 };
2116 static const u16 lut_prbs_4k[14] = {
2117 	0, 0x208, 0x0C3, 0x7B9, 0x423, 0x5C7, 0x3D8, 0x7FF, 0x3D6, 0x53B, 0x213, 0x029, 0x0D0, 0x48E
2118 };
2119 static const u16 lut_prbs_8k[14] = {
2120 	0, 0x740, 0x069, 0x7DD, 0x208, 0x7B9, 0x5C7, 0x7FF, 0x53B, 0x029, 0x48E, 0x4C4, 0x367, 0x684
2121 };
2122 
2123 static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel)
2124 {
2125 	int sub_channel_prbs_group = 0;
2126 
2127 	sub_channel_prbs_group = (subchannel / 3) + 1;
2128 	dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n", sub_channel_prbs_group, subchannel, lut_prbs_8k[sub_channel_prbs_group]);
2129 
2130 	switch (state->fe[0]->dtv_property_cache.transmission_mode) {
2131 	case TRANSMISSION_MODE_2K:
2132 			return lut_prbs_2k[sub_channel_prbs_group];
2133 	case TRANSMISSION_MODE_4K:
2134 			return lut_prbs_4k[sub_channel_prbs_group];
2135 	default:
2136 	case TRANSMISSION_MODE_8K:
2137 			return lut_prbs_8k[sub_channel_prbs_group];
2138 	}
2139 }
2140 
2141 static void dib8000_set_13seg_channel(struct dib8000_state *state)
2142 {
2143 	u16 i;
2144 	u16 coff_pow = 0x2800;
2145 
2146 	state->seg_mask = 0x1fff; /* All 13 segments enabled */
2147 
2148 	/* ---- COFF ---- Carloff, the most robust --- */
2149 	if (state->isdbt_cfg_loaded == 0) {  /* if not Sound Broadcasting mode : put default values for 13 segments */
2150 		dib8000_write_word(state, 180, (16 << 6) | 9);
2151 		dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2);
2152 		coff_pow = 0x2800;
2153 		for (i = 0; i < 6; i++)
2154 			dib8000_write_word(state, 181+i, coff_pow);
2155 
2156 		/* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */
2157 		/* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */
2158 		dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
2159 
2160 		/* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */
2161 		dib8000_write_word(state, 340, (8 << 6) | (6 << 0));
2162 		/* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */
2163 		dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
2164 
2165 		dib8000_write_word(state, 228, 0);  /* default value */
2166 		dib8000_write_word(state, 265, 31); /* default value */
2167 		dib8000_write_word(state, 205, 0x200f); /* init value */
2168 	}
2169 
2170 	/*
2171 	 * make the cpil_coff_lock more robust but slower p_coff_winlen
2172 	 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
2173 	 */
2174 
2175 	if (state->cfg.pll->ifreq == 0)
2176 		dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */
2177 
2178 	dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg);
2179 }
2180 
2181 static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs)
2182 {
2183 	u16 reg_1;
2184 
2185 	reg_1 = dib8000_read_word(state, 1);
2186 	dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */
2187 }
2188 
2189 static void dib8000_small_fine_tune(struct dib8000_state *state)
2190 {
2191 	u16 i;
2192 	const s16 *ncoeff;
2193 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2194 
2195 	dib8000_write_word(state, 352, state->seg_diff_mask);
2196 	dib8000_write_word(state, 353, state->seg_mask);
2197 
2198 	/* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */
2199 	dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5);
2200 
2201 	if (c->isdbt_sb_mode) {
2202 		/* ---- SMALL ---- */
2203 		switch (c->transmission_mode) {
2204 		case TRANSMISSION_MODE_2K:
2205 				if (c->isdbt_partial_reception == 0) { /* 1-seg */
2206 					if (c->layer[0].modulation == DQPSK) /* DQPSK */
2207 						ncoeff = coeff_2k_sb_1seg_dqpsk;
2208 					else /* QPSK or QAM */
2209 						ncoeff = coeff_2k_sb_1seg;
2210 				} else { /* 3-segments */
2211 					if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
2212 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2213 							ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
2214 						else /* QPSK or QAM on external segments */
2215 							ncoeff = coeff_2k_sb_3seg_0dqpsk;
2216 					} else { /* QPSK or QAM on central segment */
2217 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2218 							ncoeff = coeff_2k_sb_3seg_1dqpsk;
2219 						else /* QPSK or QAM on external segments */
2220 							ncoeff = coeff_2k_sb_3seg;
2221 					}
2222 				}
2223 				break;
2224 		case TRANSMISSION_MODE_4K:
2225 				if (c->isdbt_partial_reception == 0) { /* 1-seg */
2226 					if (c->layer[0].modulation == DQPSK) /* DQPSK */
2227 						ncoeff = coeff_4k_sb_1seg_dqpsk;
2228 					else /* QPSK or QAM */
2229 						ncoeff = coeff_4k_sb_1seg;
2230 				} else { /* 3-segments */
2231 					if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
2232 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2233 							ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
2234 						else /* QPSK or QAM on external segments */
2235 							ncoeff = coeff_4k_sb_3seg_0dqpsk;
2236 					} else { /* QPSK or QAM on central segment */
2237 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2238 							ncoeff = coeff_4k_sb_3seg_1dqpsk;
2239 						else /* QPSK or QAM on external segments */
2240 							ncoeff = coeff_4k_sb_3seg;
2241 					}
2242 				}
2243 				break;
2244 		case TRANSMISSION_MODE_AUTO:
2245 		case TRANSMISSION_MODE_8K:
2246 		default:
2247 				if (c->isdbt_partial_reception == 0) { /* 1-seg */
2248 					if (c->layer[0].modulation == DQPSK) /* DQPSK */
2249 						ncoeff = coeff_8k_sb_1seg_dqpsk;
2250 					else /* QPSK or QAM */
2251 						ncoeff = coeff_8k_sb_1seg;
2252 				} else { /* 3-segments */
2253 					if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
2254 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2255 							ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
2256 						else /* QPSK or QAM on external segments */
2257 							ncoeff = coeff_8k_sb_3seg_0dqpsk;
2258 					} else { /* QPSK or QAM on central segment */
2259 						if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2260 							ncoeff = coeff_8k_sb_3seg_1dqpsk;
2261 						else /* QPSK or QAM on external segments */
2262 							ncoeff = coeff_8k_sb_3seg;
2263 					}
2264 				}
2265 				break;
2266 		}
2267 
2268 		for (i = 0; i < 8; i++)
2269 			dib8000_write_word(state, 343 + i, ncoeff[i]);
2270 	}
2271 }
2272 
2273 static const u16 coff_thres_1seg[3] = {300, 150, 80};
2274 static const u16 coff_thres_3seg[3] = {350, 300, 250};
2275 static void dib8000_set_sb_channel(struct dib8000_state *state)
2276 {
2277 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2278 	const u16 *coff;
2279 	u16 i;
2280 
2281 	if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) {
2282 		dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */
2283 		dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */
2284 	} else {
2285 		dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */
2286 		dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */
2287 	}
2288 
2289 	if (c->isdbt_partial_reception == 1) /* 3-segments */
2290 		state->seg_mask = 0x00E0;
2291 	else /* 1-segment */
2292 		state->seg_mask = 0x0040;
2293 
2294 	dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
2295 
2296 	/* ---- COFF ---- Carloff, the most robust --- */
2297 	/* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */
2298 	dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3);
2299 
2300 	dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */
2301 	dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */
2302 
2303 	/* Sound Broadcasting mode 1 seg */
2304 	if (c->isdbt_partial_reception == 0) {
2305 		/* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */
2306 		if (state->mode == 3)
2307 			dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14));
2308 		else
2309 			dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14));
2310 
2311 		/* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */
2312 		dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
2313 		coff = &coff_thres_1seg[0];
2314 	} else {   /* Sound Broadcasting mode 3 seg */
2315 		dib8000_write_word(state, 180, 0x1fcf | (1 << 14));
2316 		/* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */
2317 		dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
2318 		coff = &coff_thres_3seg[0];
2319 	}
2320 
2321 	dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */
2322 	dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */
2323 
2324 	if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K)
2325 		dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */
2326 
2327 	/* Write COFF thres */
2328 	for (i = 0 ; i < 3; i++) {
2329 		dib8000_write_word(state, 181+i, coff[i]);
2330 		dib8000_write_word(state, 184+i, coff[i]);
2331 	}
2332 
2333 	/*
2334 	 * make the cpil_coff_lock more robust but slower p_coff_winlen
2335 	 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
2336 	 */
2337 
2338 	dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */
2339 
2340 	if (c->isdbt_partial_reception == 0)
2341 		dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */
2342 	else
2343 		dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */
2344 }
2345 
2346 static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching)
2347 {
2348 	u16 p_cfr_left_edge  = 0, p_cfr_right_edge = 0;
2349 	u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ;
2350 	u16 max_constellation = DQPSK;
2351 	int init_prbs;
2352 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2353 
2354 	if (autosearching)
2355 		c->isdbt_partial_reception = 1;
2356 
2357 	/* P_mode */
2358 	dib8000_write_word(state, 10, (seq << 4));
2359 
2360 	/* init mode */
2361 	state->mode = fft_to_mode(state);
2362 
2363 	/* set guard */
2364 	tmp = dib8000_read_word(state, 1);
2365 	dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3));
2366 
2367 	dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4));
2368 
2369 	/* signal optimization parameter */
2370 	if (c->isdbt_partial_reception) {
2371 		state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0];
2372 		for (i = 1; i < 3; i++)
2373 			nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count;
2374 		for (i = 0; i < nbseg_diff; i++)
2375 			state->seg_diff_mask |= 1 << permu_seg[i+1];
2376 	} else {
2377 		for (i = 0; i < 3; i++)
2378 			nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count;
2379 		for (i = 0; i < nbseg_diff; i++)
2380 			state->seg_diff_mask |= 1 << permu_seg[i];
2381 	}
2382 
2383 	if (state->seg_diff_mask)
2384 		dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
2385 	else
2386 		dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */
2387 
2388 	for (i = 0; i < 3; i++)
2389 		max_constellation = dib8000_set_layer(state, i, max_constellation);
2390 	if (autosearching == 0) {
2391 		state->layer_b_nb_seg = c->layer[1].segment_count;
2392 		state->layer_c_nb_seg = c->layer[2].segment_count;
2393 	}
2394 
2395 	/* WRITE: Mode & Diff mask */
2396 	dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask);
2397 
2398 	state->differential_constellation = (state->seg_diff_mask != 0);
2399 
2400 	/* channel estimation fine configuration */
2401 	ana_gain = dib8000_adp_fine_tune(state, max_constellation);
2402 
2403 	/* update ana_gain depending on max constellation */
2404 	dib8000_update_ana_gain(state, ana_gain);
2405 
2406 	/* ---- ANA_FE ---- */
2407 	if (c->isdbt_partial_reception) /* 3-segments */
2408 		dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg);
2409 	else
2410 		dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */
2411 
2412 	/* TSB or ISDBT ? apply it now */
2413 	if (c->isdbt_sb_mode) {
2414 		dib8000_set_sb_channel(state);
2415 		if (c->isdbt_sb_subchannel < 14)
2416 			init_prbs = dib8000_get_init_prbs(state, c->isdbt_sb_subchannel);
2417 		else
2418 			init_prbs = 0;
2419 	} else {
2420 		dib8000_set_13seg_channel(state);
2421 		init_prbs = 0xfff;
2422 	}
2423 
2424 	/* SMALL */
2425 	dib8000_small_fine_tune(state);
2426 
2427 	dib8000_set_subchannel_prbs(state, init_prbs);
2428 
2429 	/* ---- CHAN_BLK ---- */
2430 	for (i = 0; i < 13; i++) {
2431 		if ((((~state->seg_diff_mask) >> i) & 1) == 1) {
2432 			p_cfr_left_edge  += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0));
2433 			p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0));
2434 		}
2435 	}
2436 	dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */
2437 	dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */
2438 	/* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */
2439 
2440 	dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */
2441 	dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */
2442 	dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */
2443 
2444 	if (!autosearching)
2445 		dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */
2446 	else
2447 		dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */
2448 
2449 	dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */
2450 	dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */
2451 
2452 	dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */
2453 
2454 	/* ---- TMCC ---- */
2455 	for (i = 0; i < 3; i++)
2456 		tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ;
2457 
2458 	/* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */
2459 	/* Threshold is set at 1/4 of max power. */
2460 	tmcc_pow *= (1 << (9-2));
2461 	dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */
2462 	dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */
2463 	dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */
2464 	/*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */
2465 
2466 	/* ---- PHA3 ---- */
2467 	if (state->isdbt_cfg_loaded == 0)
2468 		dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */
2469 
2470 	state->isdbt_cfg_loaded = 0;
2471 }
2472 
2473 static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal,
2474 			     u32 wait0_ms, u32 wait1_ms, u32 wait2_ms)
2475 {
2476 	u32 value = 0;	/* P_search_end0 wait time */
2477 	u16 reg = 11;	/* P_search_end0 start addr */
2478 
2479 	for (reg = 11; reg < 16; reg += 2) {
2480 		if (reg == 11) {
2481 			if (state->revision == 0x8090)
2482 				value = internal * wait1_ms;
2483 			else
2484 				value = internal * wait0_ms;
2485 		} else if (reg == 13)
2486 			value = internal * wait1_ms;
2487 		else if (reg == 15)
2488 			value = internal * wait2_ms;
2489 		dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff));
2490 		dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff));
2491 	}
2492 	return value;
2493 }
2494 
2495 static int dib8000_autosearch_start(struct dvb_frontend *fe)
2496 {
2497 	struct dib8000_state *state = fe->demodulator_priv;
2498 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2499 	u8 slist = 0;
2500 	u32 value, internal = state->cfg.pll->internal;
2501 
2502 	if (state->revision == 0x8090)
2503 		internal = dib8000_read32(state, 23) / 1000;
2504 
2505 	if ((state->revision >= 0x8002) &&
2506 	    (state->autosearch_state == AS_SEARCHING_FFT)) {
2507 		dib8000_write_word(state,  37, 0x0065); /* P_ctrl_pha_off_max default values */
2508 		dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */
2509 
2510 		dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */
2511 		dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */
2512 		dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */
2513 		dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */
2514 		dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */
2515 		dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */
2516 
2517 		if (state->revision == 0x8090)
2518 			value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2519 		else
2520 			value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2521 
2522 		dib8000_write_word(state, 17, 0);
2523 		dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */
2524 		dib8000_write_word(state, 19, 0);
2525 		dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */
2526 		dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */
2527 		dib8000_write_word(state, 22, value & 0xffff);
2528 
2529 		if (state->revision == 0x8090)
2530 			dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */
2531 		else
2532 			dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */
2533 		dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */
2534 
2535 		/* P_search_param_select = (1 | 1<<4 | 1 << 8) */
2536 		dib8000_write_word(state, 356, 0);
2537 		dib8000_write_word(state, 357, 0x111);
2538 
2539 		dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */
2540 		dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */
2541 		dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */
2542 	} else if ((state->revision >= 0x8002) &&
2543 		   (state->autosearch_state == AS_SEARCHING_GUARD)) {
2544 		c->transmission_mode = TRANSMISSION_MODE_8K;
2545 		c->guard_interval = GUARD_INTERVAL_1_8;
2546 		c->inversion = 0;
2547 		c->layer[0].modulation = QAM_64;
2548 		c->layer[0].fec = FEC_2_3;
2549 		c->layer[0].interleaving = 0;
2550 		c->layer[0].segment_count = 13;
2551 
2552 		slist = 16;
2553 		c->transmission_mode = state->found_nfft;
2554 
2555 		dib8000_set_isdbt_common_channel(state, slist, 1);
2556 
2557 		/* set lock_mask values */
2558 		dib8000_write_word(state, 6, 0x4);
2559 		if (state->revision == 0x8090)
2560 			dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */
2561 		else
2562 			dib8000_write_word(state, 7, 0x8);
2563 		dib8000_write_word(state, 8, 0x1000);
2564 
2565 		/* set lock_mask wait time values */
2566 		if (state->revision == 0x8090)
2567 			dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2568 		else
2569 			dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2570 
2571 		dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */
2572 
2573 		/* P_search_param_select = 0xf; look for the 4 different guard intervals */
2574 		dib8000_write_word(state, 356, 0);
2575 		dib8000_write_word(state, 357, 0xf);
2576 
2577 		value = dib8000_read_word(state, 0);
2578 		dib8000_write_word(state, 0, (u16)((1 << 15) | value));
2579 		dib8000_read_word(state, 1284);  /* reset the INT. n_irq_pending */
2580 		dib8000_write_word(state, 0, (u16)value);
2581 	} else {
2582 		c->inversion = 0;
2583 		c->layer[0].modulation = QAM_64;
2584 		c->layer[0].fec = FEC_2_3;
2585 		c->layer[0].interleaving = 0;
2586 		c->layer[0].segment_count = 13;
2587 		if (!c->isdbt_sb_mode)
2588 			c->layer[0].segment_count = 13;
2589 
2590 		/* choose the right list, in sb, always do everything */
2591 		if (c->isdbt_sb_mode) {
2592 			slist = 7;
2593 			dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));
2594 		} else {
2595 			if (c->guard_interval == GUARD_INTERVAL_AUTO) {
2596 				if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
2597 					c->transmission_mode = TRANSMISSION_MODE_8K;
2598 					c->guard_interval = GUARD_INTERVAL_1_8;
2599 					slist = 7;
2600 					dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));  /* P_mode = 1 to have autosearch start ok with mode2 */
2601 				} else {
2602 					c->guard_interval = GUARD_INTERVAL_1_8;
2603 					slist = 3;
2604 				}
2605 			} else {
2606 				if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
2607 					c->transmission_mode = TRANSMISSION_MODE_8K;
2608 					slist = 2;
2609 					dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));  /* P_mode = 1 */
2610 				} else
2611 					slist = 0;
2612 			}
2613 		}
2614 		dprintk("Using list for autosearch : %d\n", slist);
2615 
2616 		dib8000_set_isdbt_common_channel(state, slist, 1);
2617 
2618 		/* set lock_mask values */
2619 		dib8000_write_word(state, 6, 0x4);
2620 		if (state->revision == 0x8090)
2621 			dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10));
2622 		else
2623 			dib8000_write_word(state, 7, 0x8);
2624 		dib8000_write_word(state, 8, 0x1000);
2625 
2626 		/* set lock_mask wait time values */
2627 		if (state->revision == 0x8090)
2628 			dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2629 		else
2630 			dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2631 
2632 		value = dib8000_read_word(state, 0);
2633 		dib8000_write_word(state, 0, (u16)((1 << 15) | value));
2634 		dib8000_read_word(state, 1284);  /* reset the INT. n_irq_pending */
2635 		dib8000_write_word(state, 0, (u16)value);
2636 	}
2637 	return 0;
2638 }
2639 
2640 static int dib8000_autosearch_irq(struct dvb_frontend *fe)
2641 {
2642 	struct dib8000_state *state = fe->demodulator_priv;
2643 	u16 irq_pending = dib8000_read_word(state, 1284);
2644 
2645 	if ((state->revision >= 0x8002) &&
2646 	    (state->autosearch_state == AS_SEARCHING_FFT)) {
2647 		if (irq_pending & 0x1) {
2648 			dprintk("dib8000_autosearch_irq: max correlation result available\n");
2649 			return 3;
2650 		}
2651 	} else {
2652 		if (irq_pending & 0x1) {	/* failed */
2653 			dprintk("dib8000_autosearch_irq failed\n");
2654 			return 1;
2655 		}
2656 
2657 		if (irq_pending & 0x2) {	/* succeeded */
2658 			dprintk("dib8000_autosearch_irq succeeded\n");
2659 			return 2;
2660 		}
2661 	}
2662 
2663 	return 0;		// still pending
2664 }
2665 
2666 static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff)
2667 {
2668 	u16 tmp;
2669 
2670 	tmp = dib8000_read_word(state, 771);
2671 	if (onoff) /* start P_restart_chd : channel_decoder */
2672 		dib8000_write_word(state, 771, tmp & 0xfffd);
2673 	else /* stop P_restart_chd : channel_decoder */
2674 		dib8000_write_word(state, 771, tmp | (1<<1));
2675 }
2676 
2677 static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz)
2678 {
2679 	s16 unit_khz_dds_val;
2680 	u32 abs_offset_khz = ABS(offset_khz);
2681 	u32 dds = state->cfg.pll->ifreq & 0x1ffffff;
2682 	u8 invert = !!(state->cfg.pll->ifreq & (1 << 25));
2683 	u8 ratio;
2684 
2685 	if (state->revision == 0x8090) {
2686 		ratio = 4;
2687 		unit_khz_dds_val = (1<<26) / (dib8000_read32(state, 23) / 1000);
2688 		if (offset_khz < 0)
2689 			dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val);
2690 		else
2691 			dds = (abs_offset_khz * unit_khz_dds_val);
2692 
2693 		if (invert)
2694 			dds = (1<<26) - dds;
2695 	} else {
2696 		ratio = 2;
2697 		unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal);
2698 
2699 		if (offset_khz < 0)
2700 			unit_khz_dds_val *= -1;
2701 
2702 		/* IF tuner */
2703 		if (invert)
2704 			dds -= abs_offset_khz * unit_khz_dds_val;
2705 		else
2706 			dds += abs_offset_khz * unit_khz_dds_val;
2707 	}
2708 
2709 	dprintk("setting a DDS frequency offset of %c%dkHz\n", invert ? '-' : ' ', dds / unit_khz_dds_val);
2710 
2711 	if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) {
2712 		/* Max dds offset is the half of the demod freq */
2713 		dib8000_write_word(state, 26, invert);
2714 		dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff);
2715 		dib8000_write_word(state, 28, (u16)(dds & 0xffff));
2716 	}
2717 }
2718 
2719 static void dib8000_set_frequency_offset(struct dib8000_state *state)
2720 {
2721 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2722 	int i;
2723 	u32 current_rf;
2724 	int total_dds_offset_khz;
2725 
2726 	if (state->fe[0]->ops.tuner_ops.get_frequency)
2727 		state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], &current_rf);
2728 	else
2729 		current_rf = c->frequency;
2730 	current_rf /= 1000;
2731 	total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000;
2732 
2733 	if (c->isdbt_sb_mode) {
2734 		state->subchannel = c->isdbt_sb_subchannel;
2735 
2736 		i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */
2737 		dib8000_write_word(state, 26, c->inversion ^ i);
2738 
2739 		if (state->cfg.pll->ifreq == 0) { /* low if tuner */
2740 			if ((c->inversion ^ i) == 0)
2741 				dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1);
2742 		} else {
2743 			if ((c->inversion ^ i) == 0)
2744 				total_dds_offset_khz *= -1;
2745 		}
2746 	}
2747 
2748 	dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz);
2749 
2750 	/* apply dds offset now */
2751 	dib8000_set_dds(state, total_dds_offset_khz);
2752 }
2753 
2754 static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 };
2755 
2756 static u32 dib8000_get_symbol_duration(struct dib8000_state *state)
2757 {
2758 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2759 	u16 i;
2760 
2761 	switch (c->transmission_mode) {
2762 	case TRANSMISSION_MODE_2K:
2763 			i = 0;
2764 			break;
2765 	case TRANSMISSION_MODE_4K:
2766 			i = 2;
2767 			break;
2768 	default:
2769 	case TRANSMISSION_MODE_AUTO:
2770 	case TRANSMISSION_MODE_8K:
2771 			i = 1;
2772 			break;
2773 	}
2774 
2775 	return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1;
2776 }
2777 
2778 static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step)
2779 {
2780 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2781 	u16 reg_32 = 0, reg_37 = 0;
2782 
2783 	switch (loop_step) {
2784 	case LOOP_TUNE_1:
2785 			if (c->isdbt_sb_mode)  {
2786 				if (c->isdbt_partial_reception == 0) {
2787 					reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */
2788 					reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = (10-P_mode)  */
2789 				} else { /* Sound Broadcasting mode 3 seg */
2790 					reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */
2791 					reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = (9-P_mode)  */
2792 				}
2793 			} else { /* 13-seg start conf offset loop parameters */
2794 				reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
2795 				reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = 9  */
2796 			}
2797 			break;
2798 	case LOOP_TUNE_2:
2799 			if (c->isdbt_sb_mode)  {
2800 				if (c->isdbt_partial_reception == 0) {  /* Sound Broadcasting mode 1 seg */
2801 					reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/
2802 					reg_37 = (12-state->mode) | ((5 + state->mode) << 5);
2803 				} else {  /* Sound Broadcasting mode 3 seg */
2804 					reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */
2805 					reg_37 = (11-state->mode) | ((5 + state->mode) << 5);
2806 				}
2807 			} else {  /* 13 seg */
2808 				reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */
2809 				reg_37 = ((5+state->mode) << 5) | (10 - state->mode);
2810 			}
2811 			break;
2812 	}
2813 	dib8000_write_word(state, 32, reg_32);
2814 	dib8000_write_word(state, 37, reg_37);
2815 }
2816 
2817 static void dib8000_demod_restart(struct dib8000_state *state)
2818 {
2819 	dib8000_write_word(state, 770, 0x4000);
2820 	dib8000_write_word(state, 770, 0x0000);
2821 	return;
2822 }
2823 
2824 static void dib8000_set_sync_wait(struct dib8000_state *state)
2825 {
2826 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2827 	u16 sync_wait = 64;
2828 
2829 	/* P_dvsy_sync_wait - reuse mode */
2830 	switch (c->transmission_mode) {
2831 	case TRANSMISSION_MODE_8K:
2832 			sync_wait = 256;
2833 			break;
2834 	case TRANSMISSION_MODE_4K:
2835 			sync_wait = 128;
2836 			break;
2837 	default:
2838 	case TRANSMISSION_MODE_2K:
2839 			sync_wait =  64;
2840 			break;
2841 	}
2842 
2843 	if (state->cfg.diversity_delay == 0)
2844 		sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */
2845 	else
2846 		sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */
2847 
2848 	dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4));
2849 }
2850 
2851 static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode)
2852 {
2853 	if (mode == SYMBOL_DEPENDENT_ON)
2854 		delay *= state->symbol_duration;
2855 
2856 	return jiffies + usecs_to_jiffies(delay * 100);
2857 }
2858 
2859 static s32 dib8000_get_status(struct dvb_frontend *fe)
2860 {
2861 	struct dib8000_state *state = fe->demodulator_priv;
2862 	return state->status;
2863 }
2864 
2865 static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe)
2866 {
2867 	struct dib8000_state *state = fe->demodulator_priv;
2868 	return state->tune_state;
2869 }
2870 
2871 static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
2872 {
2873 	struct dib8000_state *state = fe->demodulator_priv;
2874 
2875 	state->tune_state = tune_state;
2876 	return 0;
2877 }
2878 
2879 static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe)
2880 {
2881 	struct dib8000_state *state = fe->demodulator_priv;
2882 
2883 	state->status = FE_STATUS_TUNE_PENDING;
2884 	state->tune_state = CT_DEMOD_START;
2885 	return 0;
2886 }
2887 
2888 static u16 dib8000_read_lock(struct dvb_frontend *fe)
2889 {
2890 	struct dib8000_state *state = fe->demodulator_priv;
2891 
2892 	if (state->revision == 0x8090)
2893 		return dib8000_read_word(state, 570);
2894 	return dib8000_read_word(state, 568);
2895 }
2896 
2897 static int dib8090p_init_sdram(struct dib8000_state *state)
2898 {
2899 	u16 reg = 0;
2900 	dprintk("init sdram\n");
2901 
2902 	reg = dib8000_read_word(state, 274) & 0xfff0;
2903 	dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */
2904 
2905 	dib8000_write_word(state, 1803, (7 << 2));
2906 
2907 	reg = dib8000_read_word(state, 1280);
2908 	dib8000_write_word(state, 1280,  reg | (1 << 2)); /* force restart P_restart_sdram */
2909 	dib8000_write_word(state, 1280,  reg); /* release restart P_restart_sdram */
2910 
2911 	return 0;
2912 }
2913 
2914 /**
2915  * is_manual_mode - Check if TMCC should be used for parameters settings
2916  * @c:	struct dvb_frontend_properties
2917  *
2918  * By default, TMCC table should be used for parameter settings on most
2919  * usercases. However, sometimes it is desirable to lock the demod to
2920  * use the manual parameters.
2921  *
2922  * On manual mode, the current dib8000_tune state machine is very restrict:
2923  * It requires that both per-layer and per-transponder parameters to be
2924  * properly specified, otherwise the device won't lock.
2925  *
2926  * Check if all those conditions are properly satisfied before allowing
2927  * the device to use the manual frequency lock mode.
2928  */
2929 static int is_manual_mode(struct dtv_frontend_properties *c)
2930 {
2931 	int i, n_segs = 0;
2932 
2933 	/* Use auto mode on DVB-T compat mode */
2934 	if (c->delivery_system != SYS_ISDBT)
2935 		return 0;
2936 
2937 	/*
2938 	 * Transmission mode is only detected on auto mode, currently
2939 	 */
2940 	if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
2941 		dprintk("transmission mode auto\n");
2942 		return 0;
2943 	}
2944 
2945 	/*
2946 	 * Guard interval is only detected on auto mode, currently
2947 	 */
2948 	if (c->guard_interval == GUARD_INTERVAL_AUTO) {
2949 		dprintk("guard interval auto\n");
2950 		return 0;
2951 	}
2952 
2953 	/*
2954 	 * If no layer is enabled, assume auto mode, as at least one
2955 	 * layer should be enabled
2956 	 */
2957 	if (!c->isdbt_layer_enabled) {
2958 		dprintk("no layer modulation specified\n");
2959 		return 0;
2960 	}
2961 
2962 	/*
2963 	 * Check if the per-layer parameters aren't auto and
2964 	 * disable a layer if segment count is 0 or invalid.
2965 	 */
2966 	for (i = 0; i < 3; i++) {
2967 		if (!(c->isdbt_layer_enabled & 1 << i))
2968 			continue;
2969 
2970 		if ((c->layer[i].segment_count > 13) ||
2971 		    (c->layer[i].segment_count == 0)) {
2972 			c->isdbt_layer_enabled &= ~(1 << i);
2973 			continue;
2974 		}
2975 
2976 		n_segs += c->layer[i].segment_count;
2977 
2978 		if ((c->layer[i].modulation == QAM_AUTO) ||
2979 		    (c->layer[i].fec == FEC_AUTO)) {
2980 			dprintk("layer %c has either modulation or FEC auto\n",
2981 				'A' + i);
2982 			return 0;
2983 		}
2984 	}
2985 
2986 	/*
2987 	 * Userspace specified a wrong number of segments.
2988 	 *	fallback to auto mode.
2989 	 */
2990 	if (n_segs == 0 || n_segs > 13) {
2991 		dprintk("number of segments is invalid\n");
2992 		return 0;
2993 	}
2994 
2995 	/* Everything looks ok for manual mode */
2996 	return 1;
2997 }
2998 
2999 static int dib8000_tune(struct dvb_frontend *fe)
3000 {
3001 	struct dib8000_state *state = fe->demodulator_priv;
3002 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
3003 	enum frontend_tune_state *tune_state = &state->tune_state;
3004 
3005 	u16 locks, deeper_interleaver = 0, i;
3006 	int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */
3007 
3008 	unsigned long *timeout = &state->timeout;
3009 	unsigned long now = jiffies;
3010 #ifdef DIB8000_AGC_FREEZE
3011 	u16 agc1, agc2;
3012 #endif
3013 
3014 	u32 corm[4] = {0, 0, 0, 0};
3015 	u8 find_index, max_value;
3016 
3017 #if 0
3018 	if (*tune_state < CT_DEMOD_STOP)
3019 		dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n",
3020 			state->channel_parameters_set, *tune_state, state->autosearch_state, now);
3021 #endif
3022 
3023 	switch (*tune_state) {
3024 	case CT_DEMOD_START: /* 30 */
3025 		dib8000_reset_stats(fe);
3026 
3027 		if (state->revision == 0x8090)
3028 			dib8090p_init_sdram(state);
3029 		state->status = FE_STATUS_TUNE_PENDING;
3030 		state->channel_parameters_set = is_manual_mode(c);
3031 
3032 		dprintk("Tuning channel on %s search mode\n",
3033 			state->channel_parameters_set ? "manual" : "auto");
3034 
3035 		dib8000_viterbi_state(state, 0); /* force chan dec in restart */
3036 
3037 		/* Layer monitor */
3038 		dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
3039 
3040 		dib8000_set_frequency_offset(state);
3041 		dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000);
3042 
3043 		if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */
3044 #ifdef DIB8000_AGC_FREEZE
3045 			if (state->revision != 0x8090) {
3046 				state->agc1_max = dib8000_read_word(state, 108);
3047 				state->agc1_min = dib8000_read_word(state, 109);
3048 				state->agc2_max = dib8000_read_word(state, 110);
3049 				state->agc2_min = dib8000_read_word(state, 111);
3050 				agc1 = dib8000_read_word(state, 388);
3051 				agc2 = dib8000_read_word(state, 389);
3052 				dib8000_write_word(state, 108, agc1);
3053 				dib8000_write_word(state, 109, agc1);
3054 				dib8000_write_word(state, 110, agc2);
3055 				dib8000_write_word(state, 111, agc2);
3056 			}
3057 #endif
3058 			state->autosearch_state = AS_SEARCHING_FFT;
3059 			state->found_nfft = TRANSMISSION_MODE_AUTO;
3060 			state->found_guard = GUARD_INTERVAL_AUTO;
3061 			*tune_state = CT_DEMOD_SEARCH_NEXT;
3062 		} else { /* we already know the channel struct so TUNE only ! */
3063 			state->autosearch_state = AS_DONE;
3064 			*tune_state = CT_DEMOD_STEP_3;
3065 		}
3066 		state->symbol_duration = dib8000_get_symbol_duration(state);
3067 		break;
3068 
3069 	case CT_DEMOD_SEARCH_NEXT: /* 51 */
3070 		dib8000_autosearch_start(fe);
3071 		if (state->revision == 0x8090)
3072 			ret = 50;
3073 		else
3074 			ret = 15;
3075 		*tune_state = CT_DEMOD_STEP_1;
3076 		break;
3077 
3078 	case CT_DEMOD_STEP_1: /* 31 */
3079 		switch (dib8000_autosearch_irq(fe)) {
3080 		case 1: /* fail */
3081 			state->status = FE_STATUS_TUNE_FAILED;
3082 			state->autosearch_state = AS_DONE;
3083 			*tune_state = CT_DEMOD_STOP; /* else we are done here */
3084 			break;
3085 		case 2: /* Succes */
3086 			state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */
3087 			*tune_state = CT_DEMOD_STEP_3;
3088 			if (state->autosearch_state == AS_SEARCHING_GUARD)
3089 				*tune_state = CT_DEMOD_STEP_2;
3090 			else
3091 				state->autosearch_state = AS_DONE;
3092 			break;
3093 		case 3: /* Autosearch FFT max correlation endded */
3094 			*tune_state = CT_DEMOD_STEP_2;
3095 			break;
3096 		}
3097 		break;
3098 
3099 	case CT_DEMOD_STEP_2:
3100 		switch (state->autosearch_state) {
3101 		case AS_SEARCHING_FFT:
3102 			/* searching for the correct FFT */
3103 			if (state->revision == 0x8090) {
3104 				corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597));
3105 				corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599));
3106 				corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601));
3107 			} else {
3108 				corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595));
3109 				corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597));
3110 				corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599));
3111 			}
3112 			/* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */
3113 
3114 			max_value = 0;
3115 			for (find_index = 1 ; find_index < 3 ; find_index++) {
3116 				if (corm[max_value] < corm[find_index])
3117 					max_value = find_index ;
3118 			}
3119 
3120 			switch (max_value) {
3121 			case 0:
3122 				state->found_nfft = TRANSMISSION_MODE_2K;
3123 				break;
3124 			case 1:
3125 				state->found_nfft = TRANSMISSION_MODE_4K;
3126 				break;
3127 			case 2:
3128 			default:
3129 				state->found_nfft = TRANSMISSION_MODE_8K;
3130 				break;
3131 			}
3132 			/* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */
3133 
3134 			*tune_state = CT_DEMOD_SEARCH_NEXT;
3135 			state->autosearch_state = AS_SEARCHING_GUARD;
3136 			if (state->revision == 0x8090)
3137 				ret = 50;
3138 			else
3139 				ret = 10;
3140 			break;
3141 		case AS_SEARCHING_GUARD:
3142 			/* searching for the correct guard interval */
3143 			if (state->revision == 0x8090)
3144 				state->found_guard = dib8000_read_word(state, 572) & 0x3;
3145 			else
3146 				state->found_guard = dib8000_read_word(state, 570) & 0x3;
3147 			/* dprintk("guard interval found=%i\n", state->found_guard); */
3148 
3149 			*tune_state = CT_DEMOD_STEP_3;
3150 			break;
3151 		default:
3152 			/* the demod should never be in this state */
3153 			state->status = FE_STATUS_TUNE_FAILED;
3154 			state->autosearch_state = AS_DONE;
3155 			*tune_state = CT_DEMOD_STOP; /* else we are done here */
3156 			break;
3157 		}
3158 		break;
3159 
3160 	case CT_DEMOD_STEP_3: /* 33 */
3161 		dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1);
3162 		dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */
3163 		*tune_state = CT_DEMOD_STEP_4;
3164 		break;
3165 
3166 	case CT_DEMOD_STEP_4: /* (34) */
3167 		dib8000_demod_restart(state);
3168 
3169 		dib8000_set_sync_wait(state);
3170 		dib8000_set_diversity_in(state->fe[0], state->diversity_onoff);
3171 
3172 		locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */
3173 		/* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */
3174 		*timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON);
3175 		*tune_state = CT_DEMOD_STEP_5;
3176 		break;
3177 
3178 	case CT_DEMOD_STEP_5: /* (35) */
3179 		locks = dib8000_read_lock(fe);
3180 		if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */
3181 			dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */
3182 			if (!state->differential_constellation) {
3183 				/* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */
3184 				*timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON);
3185 				*tune_state = CT_DEMOD_STEP_7;
3186 			} else {
3187 				*tune_state = CT_DEMOD_STEP_8;
3188 			}
3189 		} else if (time_after(now, *timeout)) {
3190 			*tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */
3191 		}
3192 		break;
3193 
3194 	case CT_DEMOD_STEP_6: /* (36)  if there is an input (diversity) */
3195 		if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) {
3196 			/* if there is a diversity fe in input and this fe is has not already failled : wait here until this this fe has succedeed or failled */
3197 			if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */
3198 				*tune_state = CT_DEMOD_STEP_8; /* go for mpeg */
3199 			else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failled also, break the current one */
3200 				*tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */
3201 				dib8000_viterbi_state(state, 1); /* start viterbi chandec */
3202 				dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
3203 				state->status = FE_STATUS_TUNE_FAILED;
3204 			}
3205 		} else {
3206 			dib8000_viterbi_state(state, 1); /* start viterbi chandec */
3207 			dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
3208 			*tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */
3209 			state->status = FE_STATUS_TUNE_FAILED;
3210 		}
3211 		break;
3212 
3213 	case CT_DEMOD_STEP_7: /* 37 */
3214 		locks = dib8000_read_lock(fe);
3215 		if (locks & (1<<10)) { /* lmod4_lock */
3216 			ret = 14; /* wait for 14 symbols */
3217 			*tune_state = CT_DEMOD_STEP_8;
3218 		} else if (time_after(now, *timeout))
3219 			*tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */
3220 		break;
3221 
3222 	case CT_DEMOD_STEP_8: /* 38 */
3223 		dib8000_viterbi_state(state, 1); /* start viterbi chandec */
3224 		dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
3225 
3226 		/* mpeg will never lock on this condition because init_prbs is not set : search for it !*/
3227 		if (c->isdbt_sb_mode
3228 		    && c->isdbt_sb_subchannel < 14
3229 		    && !state->differential_constellation) {
3230 			state->subchannel = 0;
3231 			*tune_state = CT_DEMOD_STEP_11;
3232 		} else {
3233 			*tune_state = CT_DEMOD_STEP_9;
3234 			state->status = FE_STATUS_LOCKED;
3235 		}
3236 		break;
3237 
3238 	case CT_DEMOD_STEP_9: /* 39 */
3239 		if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */
3240 			/* defines timeout for mpeg lock depending on interleaver length of longest layer */
3241 			for (i = 0; i < 3; i++) {
3242 				if (c->layer[i].interleaving >= deeper_interleaver) {
3243 					dprintk("layer%i: time interleaver = %d\n", i, c->layer[i].interleaving);
3244 					if (c->layer[i].segment_count > 0) { /* valid layer */
3245 						deeper_interleaver = c->layer[0].interleaving;
3246 						state->longest_intlv_layer = i;
3247 					}
3248 				}
3249 			}
3250 
3251 			if (deeper_interleaver == 0)
3252 				locks = 2; /* locks is the tmp local variable name */
3253 			else if (deeper_interleaver == 3)
3254 				locks = 8;
3255 			else
3256 				locks = 2 * deeper_interleaver;
3257 
3258 			if (state->diversity_onoff != 0) /* because of diversity sync */
3259 				locks *= 2;
3260 
3261 			*timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */
3262 			dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n",
3263 				deeper_interleaver, state->longest_intlv_layer, locks, *timeout);
3264 
3265 			*tune_state = CT_DEMOD_STEP_10;
3266 		} else
3267 			*tune_state = CT_DEMOD_STOP;
3268 		break;
3269 
3270 	case CT_DEMOD_STEP_10: /* 40 */
3271 		locks = dib8000_read_lock(fe);
3272 		if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */
3273 			dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n",
3274 				c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3275 				c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3276 				c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
3277 			if (c->isdbt_sb_mode
3278 			    && c->isdbt_sb_subchannel < 14
3279 			    && !state->differential_constellation)
3280 				/* signal to the upper layer, that there was a channel found and the parameters can be read */
3281 				state->status = FE_STATUS_DEMOD_SUCCESS;
3282 			else
3283 				state->status = FE_STATUS_DATA_LOCKED;
3284 			*tune_state = CT_DEMOD_STOP;
3285 		} else if (time_after(now, *timeout)) {
3286 			if (c->isdbt_sb_mode
3287 			    && c->isdbt_sb_subchannel < 14
3288 			    && !state->differential_constellation) { /* continue to try init prbs autosearch */
3289 				state->subchannel += 3;
3290 				*tune_state = CT_DEMOD_STEP_11;
3291 			} else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */
3292 				if (locks & (0x7 << 5)) {
3293 					dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n",
3294 						jiffies_to_msecs(now - *timeout),
3295 						c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3296 						c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3297 						c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
3298 
3299 					state->status = FE_STATUS_DATA_LOCKED;
3300 				} else
3301 					state->status = FE_STATUS_TUNE_FAILED;
3302 				*tune_state = CT_DEMOD_STOP;
3303 			}
3304 		}
3305 		break;
3306 
3307 	case CT_DEMOD_STEP_11:  /* 41 : init prbs autosearch */
3308 		if (state->subchannel <= 41) {
3309 			dib8000_set_subchannel_prbs(state, dib8000_get_init_prbs(state, state->subchannel));
3310 			*tune_state = CT_DEMOD_STEP_9;
3311 		} else {
3312 			*tune_state = CT_DEMOD_STOP;
3313 			state->status = FE_STATUS_TUNE_FAILED;
3314 		}
3315 		break;
3316 
3317 	default:
3318 		break;
3319 	}
3320 
3321 	/* tuning is finished - cleanup the demod */
3322 	switch (*tune_state) {
3323 	case CT_DEMOD_STOP: /* (42) */
3324 #ifdef DIB8000_AGC_FREEZE
3325 		if ((state->revision != 0x8090) && (state->agc1_max != 0)) {
3326 			dib8000_write_word(state, 108, state->agc1_max);
3327 			dib8000_write_word(state, 109, state->agc1_min);
3328 			dib8000_write_word(state, 110, state->agc2_max);
3329 			dib8000_write_word(state, 111, state->agc2_min);
3330 			state->agc1_max = 0;
3331 			state->agc1_min = 0;
3332 			state->agc2_max = 0;
3333 			state->agc2_min = 0;
3334 		}
3335 #endif
3336 		ret = 0;
3337 		break;
3338 	default:
3339 		break;
3340 	}
3341 
3342 	if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3))
3343 		return ret * state->symbol_duration;
3344 	if ((ret > 0) && (ret < state->symbol_duration))
3345 		return state->symbol_duration; /* at least one symbol */
3346 	return ret;
3347 }
3348 
3349 static int dib8000_wakeup(struct dvb_frontend *fe)
3350 {
3351 	struct dib8000_state *state = fe->demodulator_priv;
3352 	u8 index_frontend;
3353 	int ret;
3354 
3355 	dib8000_set_power_mode(state, DIB8000_POWER_ALL);
3356 	dib8000_set_adc_state(state, DIBX000_ADC_ON);
3357 	if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
3358 		dprintk("could not start Slow ADC\n");
3359 
3360 	if (state->revision == 0x8090)
3361 		dib8000_sad_calib(state);
3362 
3363 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3364 		ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]);
3365 		if (ret < 0)
3366 			return ret;
3367 	}
3368 
3369 	return 0;
3370 }
3371 
3372 static int dib8000_sleep(struct dvb_frontend *fe)
3373 {
3374 	struct dib8000_state *state = fe->demodulator_priv;
3375 	u8 index_frontend;
3376 	int ret;
3377 
3378 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3379 		ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
3380 		if (ret < 0)
3381 			return ret;
3382 	}
3383 
3384 	if (state->revision != 0x8090)
3385 		dib8000_set_output_mode(fe, OUTMODE_HIGH_Z);
3386 	dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY);
3387 	return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF);
3388 }
3389 
3390 static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat);
3391 
3392 static int dib8000_get_frontend(struct dvb_frontend *fe,
3393 				struct dtv_frontend_properties *c)
3394 {
3395 	struct dib8000_state *state = fe->demodulator_priv;
3396 	u16 i, val = 0;
3397 	enum fe_status stat = 0;
3398 	u8 index_frontend, sub_index_frontend;
3399 
3400 	c->bandwidth_hz = 6000000;
3401 
3402 	/*
3403 	 * If called to early, get_frontend makes dib8000_tune to either
3404 	 * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail.
3405 	 * So, let's just return if frontend 0 has not locked.
3406 	 */
3407 	dib8000_read_status(fe, &stat);
3408 	if (!(stat & FE_HAS_SYNC))
3409 		return 0;
3410 
3411 	dprintk("dib8000_get_frontend: TMCC lock\n");
3412 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3413 		state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
3414 		if (stat&FE_HAS_SYNC) {
3415 			dprintk("TMCC lock on the slave%i\n", index_frontend);
3416 			/* synchronize the cache with the other frontends */
3417 			state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c);
3418 			for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
3419 				if (sub_index_frontend != index_frontend) {
3420 					state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
3421 					state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
3422 					state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
3423 					state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
3424 					state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
3425 					for (i = 0; i < 3; i++) {
3426 						state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
3427 						state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
3428 						state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
3429 						state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
3430 					}
3431 				}
3432 			}
3433 			return 0;
3434 		}
3435 	}
3436 
3437 	c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1;
3438 
3439 	if (state->revision == 0x8090)
3440 		val = dib8000_read_word(state, 572);
3441 	else
3442 		val = dib8000_read_word(state, 570);
3443 	c->inversion = (val & 0x40) >> 6;
3444 	switch ((val & 0x30) >> 4) {
3445 	case 1:
3446 		c->transmission_mode = TRANSMISSION_MODE_2K;
3447 		dprintk("dib8000_get_frontend: transmission mode 2K\n");
3448 		break;
3449 	case 2:
3450 		c->transmission_mode = TRANSMISSION_MODE_4K;
3451 		dprintk("dib8000_get_frontend: transmission mode 4K\n");
3452 		break;
3453 	case 3:
3454 	default:
3455 		c->transmission_mode = TRANSMISSION_MODE_8K;
3456 		dprintk("dib8000_get_frontend: transmission mode 8K\n");
3457 		break;
3458 	}
3459 
3460 	switch (val & 0x3) {
3461 	case 0:
3462 		c->guard_interval = GUARD_INTERVAL_1_32;
3463 		dprintk("dib8000_get_frontend: Guard Interval = 1/32\n");
3464 		break;
3465 	case 1:
3466 		c->guard_interval = GUARD_INTERVAL_1_16;
3467 		dprintk("dib8000_get_frontend: Guard Interval = 1/16\n");
3468 		break;
3469 	case 2:
3470 		dprintk("dib8000_get_frontend: Guard Interval = 1/8\n");
3471 		c->guard_interval = GUARD_INTERVAL_1_8;
3472 		break;
3473 	case 3:
3474 		dprintk("dib8000_get_frontend: Guard Interval = 1/4\n");
3475 		c->guard_interval = GUARD_INTERVAL_1_4;
3476 		break;
3477 	}
3478 
3479 	val = dib8000_read_word(state, 505);
3480 	c->isdbt_partial_reception = val & 1;
3481 	dprintk("dib8000_get_frontend: partial_reception = %d\n", c->isdbt_partial_reception);
3482 
3483 	for (i = 0; i < 3; i++) {
3484 		int show;
3485 
3486 		val = dib8000_read_word(state, 493 + i) & 0x0f;
3487 		c->layer[i].segment_count = val;
3488 
3489 		if (val == 0 || val > 13)
3490 			show = 0;
3491 		else
3492 			show = 1;
3493 
3494 		if (show)
3495 			dprintk("dib8000_get_frontend: Layer %d segments = %d\n",
3496 				i, c->layer[i].segment_count);
3497 
3498 		val = dib8000_read_word(state, 499 + i) & 0x3;
3499 		/* Interleaving can be 0, 1, 2 or 4 */
3500 		if (val == 3)
3501 			val = 4;
3502 		c->layer[i].interleaving = val;
3503 		if (show)
3504 			dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n",
3505 				i, c->layer[i].interleaving);
3506 
3507 		val = dib8000_read_word(state, 481 + i);
3508 		switch (val & 0x7) {
3509 		case 1:
3510 			c->layer[i].fec = FEC_1_2;
3511 			if (show)
3512 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i);
3513 			break;
3514 		case 2:
3515 			c->layer[i].fec = FEC_2_3;
3516 			if (show)
3517 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i);
3518 			break;
3519 		case 3:
3520 			c->layer[i].fec = FEC_3_4;
3521 			if (show)
3522 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i);
3523 			break;
3524 		case 5:
3525 			c->layer[i].fec = FEC_5_6;
3526 			if (show)
3527 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i);
3528 			break;
3529 		default:
3530 			c->layer[i].fec = FEC_7_8;
3531 			if (show)
3532 				dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i);
3533 			break;
3534 		}
3535 
3536 		val = dib8000_read_word(state, 487 + i);
3537 		switch (val & 0x3) {
3538 		case 0:
3539 			c->layer[i].modulation = DQPSK;
3540 			if (show)
3541 				dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i);
3542 			break;
3543 		case 1:
3544 			c->layer[i].modulation = QPSK;
3545 			if (show)
3546 				dprintk("dib8000_get_frontend: Layer %d QPSK\n", i);
3547 			break;
3548 		case 2:
3549 			c->layer[i].modulation = QAM_16;
3550 			if (show)
3551 				dprintk("dib8000_get_frontend: Layer %d QAM16\n", i);
3552 			break;
3553 		case 3:
3554 		default:
3555 			c->layer[i].modulation = QAM_64;
3556 			if (show)
3557 				dprintk("dib8000_get_frontend: Layer %d QAM64\n", i);
3558 			break;
3559 		}
3560 	}
3561 
3562 	/* synchronize the cache with the other frontends */
3563 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3564 		state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode;
3565 		state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion;
3566 		state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode;
3567 		state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval;
3568 		state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception;
3569 		for (i = 0; i < 3; i++) {
3570 			state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count;
3571 			state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving;
3572 			state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec;
3573 			state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation;
3574 		}
3575 	}
3576 	return 0;
3577 }
3578 
3579 static int dib8000_set_frontend(struct dvb_frontend *fe)
3580 {
3581 	struct dib8000_state *state = fe->demodulator_priv;
3582 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
3583 	int l, i, active, time, time_slave = 0;
3584 	u8 exit_condition, index_frontend;
3585 	unsigned long delay, callback_time;
3586 
3587 	if (c->frequency == 0) {
3588 		dprintk("dib8000: must at least specify frequency\n");
3589 		return 0;
3590 	}
3591 
3592 	if (c->bandwidth_hz == 0) {
3593 		dprintk("dib8000: no bandwidth specified, set to default\n");
3594 		c->bandwidth_hz = 6000000;
3595 	}
3596 
3597 	for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3598 		/* synchronization of the cache */
3599 		state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT;
3600 		memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
3601 
3602 		/* set output mode and diversity input */
3603 		if (state->revision != 0x8090) {
3604 			dib8000_set_diversity_in(state->fe[index_frontend], 1);
3605 			if (index_frontend != 0)
3606 				dib8000_set_output_mode(state->fe[index_frontend],
3607 						OUTMODE_DIVERSITY);
3608 			else
3609 				dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z);
3610 		} else {
3611 			dib8096p_set_diversity_in(state->fe[index_frontend], 1);
3612 			if (index_frontend != 0)
3613 				dib8096p_set_output_mode(state->fe[index_frontend],
3614 						OUTMODE_DIVERSITY);
3615 			else
3616 				dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z);
3617 		}
3618 
3619 		/* tune the tuner */
3620 		if (state->fe[index_frontend]->ops.tuner_ops.set_params)
3621 			state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]);
3622 
3623 		dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START);
3624 	}
3625 
3626 	/* turn off the diversity of the last chip */
3627 	if (state->revision != 0x8090)
3628 		dib8000_set_diversity_in(state->fe[index_frontend - 1], 0);
3629 	else
3630 		dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0);
3631 
3632 	/* start up the AGC */
3633 	do {
3634 		time = dib8000_agc_startup(state->fe[0]);
3635 		for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3636 			time_slave = dib8000_agc_startup(state->fe[index_frontend]);
3637 			if (time == 0)
3638 				time = time_slave;
3639 			else if ((time_slave != 0) && (time_slave > time))
3640 				time = time_slave;
3641 		}
3642 		if (time == 0)
3643 			break;
3644 
3645 		/*
3646 		 * Despite dib8000_agc_startup returns time at a 0.1 ms range,
3647 		 * the actual sleep time depends on CONFIG_HZ. The worse case
3648 		 * is when CONFIG_HZ=100. In such case, the minimum granularity
3649 		 * is 10ms. On some real field tests, the tuner sometimes don't
3650 		 * lock when this timer is lower than 10ms. So, enforce a 10ms
3651 		 * granularity.
3652 		 */
3653 		time = 10 * (time + 99)/100;
3654 		usleep_range(time * 1000, (time + 1) * 1000);
3655 		exit_condition = 1;
3656 		for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3657 			if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) {
3658 				exit_condition = 0;
3659 				break;
3660 			}
3661 		}
3662 	} while (exit_condition == 0);
3663 
3664 	for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
3665 		dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
3666 
3667 	active = 1;
3668 	do {
3669 		callback_time = 0;
3670 		for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3671 			delay = dib8000_tune(state->fe[index_frontend]);
3672 			if (delay != 0) {
3673 				delay = jiffies + usecs_to_jiffies(100 * delay);
3674 				if (!callback_time || delay < callback_time)
3675 					callback_time = delay;
3676 			}
3677 
3678 			/* we are in autosearch */
3679 			if (state->channel_parameters_set == 0) { /* searching */
3680 				if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) {
3681 					dprintk("autosearch succeeded on fe%i\n", index_frontend);
3682 					dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */
3683 					state->channel_parameters_set = 1;
3684 
3685 					for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) {
3686 						if (l != index_frontend) { /* and for all frontend except the successful one */
3687 							dprintk("Restarting frontend %d\n", l);
3688 							dib8000_tune_restart_from_demod(state->fe[l]);
3689 
3690 							state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
3691 							state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
3692 							state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
3693 							state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
3694 							state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
3695 							for (i = 0; i < 3; i++) {
3696 								state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
3697 								state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
3698 								state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
3699 								state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
3700 							}
3701 
3702 						}
3703 					}
3704 				}
3705 			}
3706 		}
3707 		/* tuning is done when the master frontend is done (failed or success) */
3708 		if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED ||
3709 				dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED ||
3710 				dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) {
3711 			active = 0;
3712 			/* we need to wait for all frontends to be finished */
3713 			for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3714 				if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP)
3715 					active = 1;
3716 			}
3717 			if (active == 0)
3718 				dprintk("tuning done with status %d\n", dib8000_get_status(state->fe[0]));
3719 		}
3720 
3721 		if ((active == 1) && (callback_time == 0)) {
3722 			dprintk("strange callback time something went wrong\n");
3723 			active = 0;
3724 		}
3725 
3726 		while ((active == 1) && (time_before(jiffies, callback_time)))
3727 			msleep(100);
3728 	} while (active);
3729 
3730 	/* set output mode */
3731 	if (state->revision != 0x8090)
3732 		dib8000_set_output_mode(state->fe[0], state->cfg.output_mode);
3733 	else {
3734 		dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode);
3735 		if (state->cfg.enMpegOutput == 0) {
3736 			dib8096p_setDibTxMux(state, MPEG_ON_DIBTX);
3737 			dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
3738 		}
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat);
3745 
3746 static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat)
3747 {
3748 	struct dib8000_state *state = fe->demodulator_priv;
3749 	u16 lock_slave = 0, lock;
3750 	u8 index_frontend;
3751 
3752 	lock = dib8000_read_lock(fe);
3753 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
3754 		lock_slave |= dib8000_read_lock(state->fe[index_frontend]);
3755 
3756 	*stat = 0;
3757 
3758 	if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1))
3759 		*stat |= FE_HAS_SIGNAL;
3760 
3761 	if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */
3762 		*stat |= FE_HAS_CARRIER;
3763 
3764 	if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */
3765 		*stat |= FE_HAS_SYNC;
3766 
3767 	if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */
3768 		*stat |= FE_HAS_LOCK;
3769 
3770 	if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) {
3771 		lock = dib8000_read_word(state, 554); /* Viterbi Layer A */
3772 		if (lock & 0x01)
3773 			*stat |= FE_HAS_VITERBI;
3774 
3775 		lock = dib8000_read_word(state, 555); /* Viterbi Layer B */
3776 		if (lock & 0x01)
3777 			*stat |= FE_HAS_VITERBI;
3778 
3779 		lock = dib8000_read_word(state, 556); /* Viterbi Layer C */
3780 		if (lock & 0x01)
3781 			*stat |= FE_HAS_VITERBI;
3782 	}
3783 	dib8000_get_stats(fe, *stat);
3784 
3785 	return 0;
3786 }
3787 
3788 static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber)
3789 {
3790 	struct dib8000_state *state = fe->demodulator_priv;
3791 
3792 	/* 13 segments */
3793 	if (state->revision == 0x8090)
3794 		*ber = (dib8000_read_word(state, 562) << 16) |
3795 			dib8000_read_word(state, 563);
3796 	else
3797 		*ber = (dib8000_read_word(state, 560) << 16) |
3798 			dib8000_read_word(state, 561);
3799 	return 0;
3800 }
3801 
3802 static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
3803 {
3804 	struct dib8000_state *state = fe->demodulator_priv;
3805 
3806 	/* packet error on 13 seg */
3807 	if (state->revision == 0x8090)
3808 		*unc = dib8000_read_word(state, 567);
3809 	else
3810 		*unc = dib8000_read_word(state, 565);
3811 	return 0;
3812 }
3813 
3814 static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
3815 {
3816 	struct dib8000_state *state = fe->demodulator_priv;
3817 	u8 index_frontend;
3818 	u16 val;
3819 
3820 	*strength = 0;
3821 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3822 		state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
3823 		if (val > 65535 - *strength)
3824 			*strength = 65535;
3825 		else
3826 			*strength += val;
3827 	}
3828 
3829 	val = 65535 - dib8000_read_word(state, 390);
3830 	if (val > 65535 - *strength)
3831 		*strength = 65535;
3832 	else
3833 		*strength += val;
3834 	return 0;
3835 }
3836 
3837 static u32 dib8000_get_snr(struct dvb_frontend *fe)
3838 {
3839 	struct dib8000_state *state = fe->demodulator_priv;
3840 	u32 n, s, exp;
3841 	u16 val;
3842 
3843 	if (state->revision != 0x8090)
3844 		val = dib8000_read_word(state, 542);
3845 	else
3846 		val = dib8000_read_word(state, 544);
3847 	n = (val >> 6) & 0xff;
3848 	exp = (val & 0x3f);
3849 	if ((exp & 0x20) != 0)
3850 		exp -= 0x40;
3851 	n <<= exp+16;
3852 
3853 	if (state->revision != 0x8090)
3854 		val = dib8000_read_word(state, 543);
3855 	else
3856 		val = dib8000_read_word(state, 545);
3857 	s = (val >> 6) & 0xff;
3858 	exp = (val & 0x3f);
3859 	if ((exp & 0x20) != 0)
3860 		exp -= 0x40;
3861 	s <<= exp+16;
3862 
3863 	if (n > 0) {
3864 		u32 t = (s/n) << 16;
3865 		return t + ((s << 16) - n*t) / n;
3866 	}
3867 	return 0xffffffff;
3868 }
3869 
3870 static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
3871 {
3872 	struct dib8000_state *state = fe->demodulator_priv;
3873 	u8 index_frontend;
3874 	u32 snr_master;
3875 
3876 	snr_master = dib8000_get_snr(fe);
3877 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
3878 		snr_master += dib8000_get_snr(state->fe[index_frontend]);
3879 
3880 	if ((snr_master >> 16) != 0) {
3881 		snr_master = 10*intlog10(snr_master>>16);
3882 		*snr = snr_master / ((1 << 24) / 10);
3883 	}
3884 	else
3885 		*snr = 0;
3886 
3887 	return 0;
3888 }
3889 
3890 struct per_layer_regs {
3891 	u16 lock, ber, per;
3892 };
3893 
3894 static const struct per_layer_regs per_layer_regs[] = {
3895 	{ 554, 560, 562 },
3896 	{ 555, 576, 578 },
3897 	{ 556, 581, 583 },
3898 };
3899 
3900 struct linear_segments {
3901 	unsigned x;
3902 	signed y;
3903 };
3904 
3905 /*
3906  * Table to estimate signal strength in dBm.
3907  * This table was empirically determinated by measuring the signal
3908  * strength generated by a DTA-2111 RF generator directly connected into
3909  * a dib8076 device (a PixelView PV-D231U stick), using a good quality
3910  * 3 meters RC6 cable and good RC6 connectors.
3911  * The real value can actually be different on other devices, depending
3912  * on several factors, like if LNA is enabled or not, if diversity is
3913  * enabled, type of connectors, etc.
3914  * Yet, it is better to use this measure in dB than a random non-linear
3915  * percentage value, especially for antenna adjustments.
3916  * On my tests, the precision of the measure using this table is about
3917  * 0.5 dB, with sounds reasonable enough.
3918  */
3919 static struct linear_segments strength_to_db_table[] = {
3920 	{ 55953, 108500 },	/* -22.5 dBm */
3921 	{ 55394, 108000 },
3922 	{ 53834, 107000 },
3923 	{ 52863, 106000 },
3924 	{ 52239, 105000 },
3925 	{ 52012, 104000 },
3926 	{ 51803, 103000 },
3927 	{ 51566, 102000 },
3928 	{ 51356, 101000 },
3929 	{ 51112, 100000 },
3930 	{ 50869,  99000 },
3931 	{ 50600,  98000 },
3932 	{ 50363,  97000 },
3933 	{ 50117,  96000 },	/* -35 dBm */
3934 	{ 49889,  95000 },
3935 	{ 49680,  94000 },
3936 	{ 49493,  93000 },
3937 	{ 49302,  92000 },
3938 	{ 48929,  91000 },
3939 	{ 48416,  90000 },
3940 	{ 48035,  89000 },
3941 	{ 47593,  88000 },
3942 	{ 47282,  87000 },
3943 	{ 46953,  86000 },
3944 	{ 46698,  85000 },
3945 	{ 45617,  84000 },
3946 	{ 44773,  83000 },
3947 	{ 43845,  82000 },
3948 	{ 43020,  81000 },
3949 	{ 42010,  80000 },	/* -51 dBm */
3950 	{     0,      0 },
3951 };
3952 
3953 static u32 interpolate_value(u32 value, struct linear_segments *segments,
3954 			     unsigned len)
3955 {
3956 	u64 tmp64;
3957 	u32 dx;
3958 	s32 dy;
3959 	int i, ret;
3960 
3961 	if (value >= segments[0].x)
3962 		return segments[0].y;
3963 	if (value < segments[len-1].x)
3964 		return segments[len-1].y;
3965 
3966 	for (i = 1; i < len - 1; i++) {
3967 		/* If value is identical, no need to interpolate */
3968 		if (value == segments[i].x)
3969 			return segments[i].y;
3970 		if (value > segments[i].x)
3971 			break;
3972 	}
3973 
3974 	/* Linear interpolation between the two (x,y) points */
3975 	dy = segments[i - 1].y - segments[i].y;
3976 	dx = segments[i - 1].x - segments[i].x;
3977 
3978 	tmp64 = value - segments[i].x;
3979 	tmp64 *= dy;
3980 	do_div(tmp64, dx);
3981 	ret = segments[i].y + tmp64;
3982 
3983 	return ret;
3984 }
3985 
3986 static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer)
3987 {
3988 	struct dib8000_state *state = fe->demodulator_priv;
3989 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
3990 	int ini_layer, end_layer, i;
3991 	u64 time_us, tmp64;
3992 	u32 tmp, denom;
3993 	int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs;
3994 	int interleaving = 0, fft_div;
3995 
3996 	if (layer >= 0) {
3997 		ini_layer = layer;
3998 		end_layer = layer + 1;
3999 	} else {
4000 		ini_layer = 0;
4001 		end_layer = 3;
4002 	}
4003 
4004 	switch (c->guard_interval) {
4005 	case GUARD_INTERVAL_1_4:
4006 		guard = 4;
4007 		break;
4008 	case GUARD_INTERVAL_1_8:
4009 		guard = 8;
4010 		break;
4011 	case GUARD_INTERVAL_1_16:
4012 		guard = 16;
4013 		break;
4014 	default:
4015 	case GUARD_INTERVAL_1_32:
4016 		guard = 32;
4017 		break;
4018 	}
4019 
4020 	switch (c->transmission_mode) {
4021 	case TRANSMISSION_MODE_2K:
4022 		fft_div = 4;
4023 		break;
4024 	case TRANSMISSION_MODE_4K:
4025 		fft_div = 2;
4026 		break;
4027 	default:
4028 	case TRANSMISSION_MODE_8K:
4029 		fft_div = 1;
4030 		break;
4031 	}
4032 
4033 	denom = 0;
4034 	for (i = ini_layer; i < end_layer; i++) {
4035 		nsegs = c->layer[i].segment_count;
4036 		if (nsegs == 0 || nsegs > 13)
4037 			continue;
4038 
4039 		switch (c->layer[i].modulation) {
4040 		case DQPSK:
4041 		case QPSK:
4042 			bits_per_symbol = 2;
4043 			break;
4044 		case QAM_16:
4045 			bits_per_symbol = 4;
4046 			break;
4047 		default:
4048 		case QAM_64:
4049 			bits_per_symbol = 6;
4050 			break;
4051 		}
4052 
4053 		switch (c->layer[i].fec) {
4054 		case FEC_1_2:
4055 			rate_num = 1;
4056 			rate_denum = 2;
4057 			break;
4058 		case FEC_2_3:
4059 			rate_num = 2;
4060 			rate_denum = 3;
4061 			break;
4062 		case FEC_3_4:
4063 			rate_num = 3;
4064 			rate_denum = 4;
4065 			break;
4066 		case FEC_5_6:
4067 			rate_num = 5;
4068 			rate_denum = 6;
4069 			break;
4070 		default:
4071 		case FEC_7_8:
4072 			rate_num = 7;
4073 			rate_denum = 8;
4074 			break;
4075 		}
4076 
4077 		interleaving = c->layer[i].interleaving;
4078 
4079 		denom += bits_per_symbol * rate_num * fft_div * nsegs * 384;
4080 	}
4081 
4082 	/* If all goes wrong, wait for 1s for the next stats */
4083 	if (!denom)
4084 		return 0;
4085 
4086 	/* Estimate the period for the total bit rate */
4087 	time_us = rate_denum * (1008 * 1562500L);
4088 	tmp64 = time_us;
4089 	do_div(tmp64, guard);
4090 	time_us = time_us + tmp64;
4091 	time_us += denom / 2;
4092 	do_div(time_us, denom);
4093 
4094 	tmp = 1008 * 96 * interleaving;
4095 	time_us += tmp + tmp / guard;
4096 
4097 	return time_us;
4098 }
4099 
4100 static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat)
4101 {
4102 	struct dib8000_state *state = fe->demodulator_priv;
4103 	struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
4104 	int i;
4105 	int show_per_stats = 0;
4106 	u32 time_us = 0, snr, val;
4107 	u64 blocks;
4108 	s32 db;
4109 	u16 strength;
4110 
4111 	/* Get Signal strength */
4112 	dib8000_read_signal_strength(fe, &strength);
4113 	val = strength;
4114 	db = interpolate_value(val,
4115 			       strength_to_db_table,
4116 			       ARRAY_SIZE(strength_to_db_table)) - 131000;
4117 	c->strength.stat[0].svalue = db;
4118 
4119 	/* UCB/BER/CNR measures require lock */
4120 	if (!(stat & FE_HAS_LOCK)) {
4121 		c->cnr.len = 1;
4122 		c->block_count.len = 1;
4123 		c->block_error.len = 1;
4124 		c->post_bit_error.len = 1;
4125 		c->post_bit_count.len = 1;
4126 		c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4127 		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4128 		c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4129 		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4130 		c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4131 		return 0;
4132 	}
4133 
4134 	/* Check if time for stats was elapsed */
4135 	if (time_after(jiffies, state->per_jiffies_stats)) {
4136 		state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);
4137 
4138 		/* Get SNR */
4139 		snr = dib8000_get_snr(fe);
4140 		for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) {
4141 			if (state->fe[i])
4142 				snr += dib8000_get_snr(state->fe[i]);
4143 		}
4144 		snr = snr >> 16;
4145 
4146 		if (snr) {
4147 			snr = 10 * intlog10(snr);
4148 			snr = (1000L * snr) >> 24;
4149 		} else {
4150 			snr = 0;
4151 		}
4152 		c->cnr.stat[0].svalue = snr;
4153 		c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
4154 
4155 		/* Get UCB measures */
4156 		dib8000_read_unc_blocks(fe, &val);
4157 		if (val < state->init_ucb)
4158 			state->init_ucb += 0x100000000LL;
4159 
4160 		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
4161 		c->block_error.stat[0].uvalue = val + state->init_ucb;
4162 
4163 		/* Estimate the number of packets based on bitrate */
4164 		if (!time_us)
4165 			time_us = dib8000_get_time_us(fe, -1);
4166 
4167 		if (time_us) {
4168 			blocks = 1250000ULL * 1000000ULL;
4169 			do_div(blocks, time_us * 8 * 204);
4170 			c->block_count.stat[0].scale = FE_SCALE_COUNTER;
4171 			c->block_count.stat[0].uvalue += blocks;
4172 		}
4173 
4174 		show_per_stats = 1;
4175 	}
4176 
4177 	/* Get post-BER measures */
4178 	if (time_after(jiffies, state->ber_jiffies_stats)) {
4179 		time_us = dib8000_get_time_us(fe, -1);
4180 		state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
4181 
4182 		dprintk("Next all layers stats available in %u us.\n", time_us);
4183 
4184 		dib8000_read_ber(fe, &val);
4185 		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
4186 		c->post_bit_error.stat[0].uvalue += val;
4187 
4188 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
4189 		c->post_bit_count.stat[0].uvalue += 100000000;
4190 	}
4191 
4192 	if (state->revision < 0x8002)
4193 		return 0;
4194 
4195 	c->block_error.len = 4;
4196 	c->post_bit_error.len = 4;
4197 	c->post_bit_count.len = 4;
4198 
4199 	for (i = 0; i < 3; i++) {
4200 		unsigned nsegs = c->layer[i].segment_count;
4201 
4202 		if (nsegs == 0 || nsegs > 13)
4203 			continue;
4204 
4205 		time_us = 0;
4206 
4207 		if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) {
4208 			time_us = dib8000_get_time_us(fe, i);
4209 
4210 			state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
4211 			dprintk("Next layer %c  stats will be available in %u us\n",
4212 				'A' + i, time_us);
4213 
4214 			val = dib8000_read_word(state, per_layer_regs[i].ber);
4215 			c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
4216 			c->post_bit_error.stat[1 + i].uvalue += val;
4217 
4218 			c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
4219 			c->post_bit_count.stat[1 + i].uvalue += 100000000;
4220 		}
4221 
4222 		if (show_per_stats) {
4223 			val = dib8000_read_word(state, per_layer_regs[i].per);
4224 
4225 			c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER;
4226 			c->block_error.stat[1 + i].uvalue += val;
4227 
4228 			if (!time_us)
4229 				time_us = dib8000_get_time_us(fe, i);
4230 			if (time_us) {
4231 				blocks = 1250000ULL * 1000000ULL;
4232 				do_div(blocks, time_us * 8 * 204);
4233 				c->block_count.stat[0].scale = FE_SCALE_COUNTER;
4234 				c->block_count.stat[0].uvalue += blocks;
4235 			}
4236 		}
4237 	}
4238 	return 0;
4239 }
4240 
4241 static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
4242 {
4243 	struct dib8000_state *state = fe->demodulator_priv;
4244 	u8 index_frontend = 1;
4245 
4246 	while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
4247 		index_frontend++;
4248 	if (index_frontend < MAX_NUMBER_OF_FRONTENDS) {
4249 		dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend);
4250 		state->fe[index_frontend] = fe_slave;
4251 		return 0;
4252 	}
4253 
4254 	dprintk("too many slave frontend\n");
4255 	return -ENOMEM;
4256 }
4257 
4258 static int dib8000_remove_slave_frontend(struct dvb_frontend *fe)
4259 {
4260 	struct dib8000_state *state = fe->demodulator_priv;
4261 	u8 index_frontend = 1;
4262 
4263 	while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
4264 		index_frontend++;
4265 	if (index_frontend != 1) {
4266 		dprintk("remove slave fe %p (index %i)\n", state->fe[index_frontend-1], index_frontend-1);
4267 		state->fe[index_frontend] = NULL;
4268 		return 0;
4269 	}
4270 
4271 	dprintk("no frontend to be removed\n");
4272 	return -ENODEV;
4273 }
4274 
4275 static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
4276 {
4277 	struct dib8000_state *state = fe->demodulator_priv;
4278 
4279 	if (slave_index >= MAX_NUMBER_OF_FRONTENDS)
4280 		return NULL;
4281 	return state->fe[slave_index];
4282 }
4283 
4284 static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods,
4285 		u8 default_addr, u8 first_addr, u8 is_dib8096p)
4286 {
4287 	int k = 0, ret = 0;
4288 	u8 new_addr = 0;
4289 	struct i2c_device client = {.adap = host };
4290 
4291 	client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL);
4292 	if (!client.i2c_write_buffer) {
4293 		dprintk("%s: not enough memory\n", __func__);
4294 		return -ENOMEM;
4295 	}
4296 	client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL);
4297 	if (!client.i2c_read_buffer) {
4298 		dprintk("%s: not enough memory\n", __func__);
4299 		ret = -ENOMEM;
4300 		goto error_memory_read;
4301 	}
4302 	client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL);
4303 	if (!client.i2c_buffer_lock) {
4304 		dprintk("%s: not enough memory\n", __func__);
4305 		ret = -ENOMEM;
4306 		goto error_memory_lock;
4307 	}
4308 	mutex_init(client.i2c_buffer_lock);
4309 
4310 	for (k = no_of_demods - 1; k >= 0; k--) {
4311 		/* designated i2c address */
4312 		new_addr = first_addr + (k << 1);
4313 
4314 		client.addr = new_addr;
4315 		if (!is_dib8096p)
4316 			dib8000_i2c_write16(&client, 1287, 0x0003);	/* sram lead in, rdy */
4317 		if (dib8000_identify(&client) == 0) {
4318 			/* sram lead in, rdy */
4319 			if (!is_dib8096p)
4320 				dib8000_i2c_write16(&client, 1287, 0x0003);
4321 			client.addr = default_addr;
4322 			if (dib8000_identify(&client) == 0) {
4323 				dprintk("#%d: not identified\n", k);
4324 				ret  = -EINVAL;
4325 				goto error;
4326 			}
4327 		}
4328 
4329 		/* start diversity to pull_down div_str - just for i2c-enumeration */
4330 		dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6));
4331 
4332 		/* set new i2c address and force divstart */
4333 		dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2);
4334 		client.addr = new_addr;
4335 		dib8000_identify(&client);
4336 
4337 		dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
4338 	}
4339 
4340 	for (k = 0; k < no_of_demods; k++) {
4341 		new_addr = first_addr | (k << 1);
4342 		client.addr = new_addr;
4343 
4344 		// unforce divstr
4345 		dib8000_i2c_write16(&client, 1285, new_addr << 2);
4346 
4347 		/* deactivate div - it was just for i2c-enumeration */
4348 		dib8000_i2c_write16(&client, 1286, 0);
4349 	}
4350 
4351 error:
4352 	kfree(client.i2c_buffer_lock);
4353 error_memory_lock:
4354 	kfree(client.i2c_read_buffer);
4355 error_memory_read:
4356 	kfree(client.i2c_write_buffer);
4357 
4358 	return ret;
4359 }
4360 
4361 static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
4362 {
4363 	tune->min_delay_ms = 1000;
4364 	tune->step_size = 0;
4365 	tune->max_drift = 0;
4366 	return 0;
4367 }
4368 
4369 static void dib8000_release(struct dvb_frontend *fe)
4370 {
4371 	struct dib8000_state *st = fe->demodulator_priv;
4372 	u8 index_frontend;
4373 
4374 	for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
4375 		dvb_frontend_detach(st->fe[index_frontend]);
4376 
4377 	dibx000_exit_i2c_master(&st->i2c_master);
4378 	i2c_del_adapter(&st->dib8096p_tuner_adap);
4379 	kfree(st->fe[0]);
4380 	kfree(st);
4381 }
4382 
4383 static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
4384 {
4385 	struct dib8000_state *st = fe->demodulator_priv;
4386 	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
4387 }
4388 
4389 static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
4390 {
4391 	struct dib8000_state *st = fe->demodulator_priv;
4392 	u16 val = dib8000_read_word(st, 299) & 0xffef;
4393 	val |= (onoff & 0x1) << 4;
4394 
4395 	dprintk("pid filter enabled %d\n", onoff);
4396 	return dib8000_write_word(st, 299, val);
4397 }
4398 
4399 static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
4400 {
4401 	struct dib8000_state *st = fe->demodulator_priv;
4402 	dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff);
4403 	return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0);
4404 }
4405 
4406 static const struct dvb_frontend_ops dib8000_ops = {
4407 	.delsys = { SYS_ISDBT },
4408 	.info = {
4409 		 .name = "DiBcom 8000 ISDB-T",
4410 		 .frequency_min = 44250000,
4411 		 .frequency_max = 867250000,
4412 		 .frequency_stepsize = 62500,
4413 		 .caps = FE_CAN_INVERSION_AUTO |
4414 		 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
4415 		 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
4416 		 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
4417 		 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
4418 		 },
4419 
4420 	.release = dib8000_release,
4421 
4422 	.init = dib8000_wakeup,
4423 	.sleep = dib8000_sleep,
4424 
4425 	.set_frontend = dib8000_set_frontend,
4426 	.get_tune_settings = dib8000_fe_get_tune_settings,
4427 	.get_frontend = dib8000_get_frontend,
4428 
4429 	.read_status = dib8000_read_status,
4430 	.read_ber = dib8000_read_ber,
4431 	.read_signal_strength = dib8000_read_signal_strength,
4432 	.read_snr = dib8000_read_snr,
4433 	.read_ucblocks = dib8000_read_unc_blocks,
4434 };
4435 
4436 static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
4437 {
4438 	struct dvb_frontend *fe;
4439 	struct dib8000_state *state;
4440 
4441 	dprintk("dib8000_init\n");
4442 
4443 	state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL);
4444 	if (state == NULL)
4445 		return NULL;
4446 	fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL);
4447 	if (fe == NULL)
4448 		goto error;
4449 
4450 	memcpy(&state->cfg, cfg, sizeof(struct dib8000_config));
4451 	state->i2c.adap = i2c_adap;
4452 	state->i2c.addr = i2c_addr;
4453 	state->i2c.i2c_write_buffer = state->i2c_write_buffer;
4454 	state->i2c.i2c_read_buffer = state->i2c_read_buffer;
4455 	mutex_init(&state->i2c_buffer_lock);
4456 	state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock;
4457 	state->gpio_val = cfg->gpio_val;
4458 	state->gpio_dir = cfg->gpio_dir;
4459 
4460 	/* Ensure the output mode remains at the previous default if it's
4461 	 * not specifically set by the caller.
4462 	 */
4463 	if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
4464 		state->cfg.output_mode = OUTMODE_MPEG2_FIFO;
4465 
4466 	state->fe[0] = fe;
4467 	fe->demodulator_priv = state;
4468 	memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops));
4469 
4470 	state->timf_default = cfg->pll->timf;
4471 
4472 	if (dib8000_identify(&state->i2c) == 0)
4473 		goto error;
4474 
4475 	dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr);
4476 
4477 	/* init 8096p tuner adapter */
4478 	strncpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface",
4479 			sizeof(state->dib8096p_tuner_adap.name));
4480 	state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo;
4481 	state->dib8096p_tuner_adap.algo_data = NULL;
4482 	state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent;
4483 	i2c_set_adapdata(&state->dib8096p_tuner_adap, state);
4484 	i2c_add_adapter(&state->dib8096p_tuner_adap);
4485 
4486 	dib8000_reset(fe);
4487 
4488 	dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5));	/* ber_rs_len = 3 */
4489 	state->current_demod_bw = 6000;
4490 
4491 	return fe;
4492 
4493 error:
4494 	kfree(state);
4495 	return NULL;
4496 }
4497 
4498 void *dib8000_attach(struct dib8000_ops *ops)
4499 {
4500 	if (!ops)
4501 		return NULL;
4502 
4503 	ops->pwm_agc_reset = dib8000_pwm_agc_reset;
4504 	ops->get_dc_power = dib8090p_get_dc_power;
4505 	ops->set_gpio = dib8000_set_gpio;
4506 	ops->get_slave_frontend = dib8000_get_slave_frontend;
4507 	ops->set_tune_state = dib8000_set_tune_state;
4508 	ops->pid_filter_ctrl = dib8000_pid_filter_ctrl;
4509 	ops->remove_slave_frontend = dib8000_remove_slave_frontend;
4510 	ops->get_adc_power = dib8000_get_adc_power;
4511 	ops->update_pll = dib8000_update_pll;
4512 	ops->tuner_sleep = dib8096p_tuner_sleep;
4513 	ops->get_tune_state = dib8000_get_tune_state;
4514 	ops->get_i2c_tuner = dib8096p_get_i2c_tuner;
4515 	ops->set_slave_frontend = dib8000_set_slave_frontend;
4516 	ops->pid_filter = dib8000_pid_filter;
4517 	ops->ctrl_timf = dib8000_ctrl_timf;
4518 	ops->init = dib8000_init;
4519 	ops->get_i2c_master = dib8000_get_i2c_master;
4520 	ops->i2c_enumeration = dib8000_i2c_enumeration;
4521 	ops->set_wbd_ref = dib8000_set_wbd_ref;
4522 
4523 	return ops;
4524 }
4525 EXPORT_SYMBOL(dib8000_attach);
4526 
4527 MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>");
4528 MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
4529 MODULE_LICENSE("GPL");
4530