1 /* 2 * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). 3 * 4 * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation, version 2. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/i2c.h> 13 #include <linux/mutex.h> 14 #include <asm/div64.h> 15 16 #include "dvb_math.h" 17 #include "dvb_frontend.h" 18 19 #include "dib7000p.h" 20 21 static int debug; 22 module_param(debug, int, 0644); 23 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); 24 25 static int buggy_sfn_workaround; 26 module_param(buggy_sfn_workaround, int, 0644); 27 MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)"); 28 29 #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0) 30 31 struct i2c_device { 32 struct i2c_adapter *i2c_adap; 33 u8 i2c_addr; 34 }; 35 36 struct dib7000p_state { 37 struct dvb_frontend demod; 38 struct dib7000p_config cfg; 39 40 u8 i2c_addr; 41 struct i2c_adapter *i2c_adap; 42 43 struct dibx000_i2c_master i2c_master; 44 45 u16 wbd_ref; 46 47 u8 current_band; 48 u32 current_bandwidth; 49 struct dibx000_agc_config *current_agc; 50 u32 timf; 51 52 u8 div_force_off:1; 53 u8 div_state:1; 54 u16 div_sync_wait; 55 56 u8 agc_state; 57 58 u16 gpio_dir; 59 u16 gpio_val; 60 61 u8 sfn_workaround_active:1; 62 63 #define SOC7090 0x7090 64 u16 version; 65 66 u16 tuner_enable; 67 struct i2c_adapter dib7090_tuner_adap; 68 69 /* for the I2C transfer */ 70 struct i2c_msg msg[2]; 71 u8 i2c_write_buffer[4]; 72 u8 i2c_read_buffer[2]; 73 struct mutex i2c_buffer_lock; 74 75 u8 input_mode_mpeg; 76 77 /* for DVBv5 stats */ 78 s64 old_ucb; 79 unsigned long per_jiffies_stats; 80 unsigned long ber_jiffies_stats; 81 unsigned long get_stats_time; 82 }; 83 84 enum dib7000p_power_mode { 85 DIB7000P_POWER_ALL = 0, 86 DIB7000P_POWER_ANALOG_ADC, 87 DIB7000P_POWER_INTERFACE_ONLY, 88 }; 89 90 /* dib7090 specific fonctions */ 91 static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode); 92 static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff); 93 static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode); 94 static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode); 95 96 static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) 97 { 98 u16 ret; 99 100 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 101 dprintk("could not acquire lock"); 102 return 0; 103 } 104 105 state->i2c_write_buffer[0] = reg >> 8; 106 state->i2c_write_buffer[1] = reg & 0xff; 107 108 memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); 109 state->msg[0].addr = state->i2c_addr >> 1; 110 state->msg[0].flags = 0; 111 state->msg[0].buf = state->i2c_write_buffer; 112 state->msg[0].len = 2; 113 state->msg[1].addr = state->i2c_addr >> 1; 114 state->msg[1].flags = I2C_M_RD; 115 state->msg[1].buf = state->i2c_read_buffer; 116 state->msg[1].len = 2; 117 118 if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2) 119 dprintk("i2c read error on %d", reg); 120 121 ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; 122 mutex_unlock(&state->i2c_buffer_lock); 123 return ret; 124 } 125 126 static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) 127 { 128 int ret; 129 130 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 131 dprintk("could not acquire lock"); 132 return -EINVAL; 133 } 134 135 state->i2c_write_buffer[0] = (reg >> 8) & 0xff; 136 state->i2c_write_buffer[1] = reg & 0xff; 137 state->i2c_write_buffer[2] = (val >> 8) & 0xff; 138 state->i2c_write_buffer[3] = val & 0xff; 139 140 memset(&state->msg[0], 0, sizeof(struct i2c_msg)); 141 state->msg[0].addr = state->i2c_addr >> 1; 142 state->msg[0].flags = 0; 143 state->msg[0].buf = state->i2c_write_buffer; 144 state->msg[0].len = 4; 145 146 ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? 147 -EREMOTEIO : 0); 148 mutex_unlock(&state->i2c_buffer_lock); 149 return ret; 150 } 151 152 static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf) 153 { 154 u16 l = 0, r, *n; 155 n = buf; 156 l = *n++; 157 while (l) { 158 r = *n++; 159 160 do { 161 dib7000p_write_word(state, r, *n++); 162 r++; 163 } while (--l); 164 l = *n++; 165 } 166 } 167 168 static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) 169 { 170 int ret = 0; 171 u16 outreg, fifo_threshold, smo_mode; 172 173 outreg = 0; 174 fifo_threshold = 1792; 175 smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); 176 177 dprintk("setting output mode for demod %p to %d", &state->demod, mode); 178 179 switch (mode) { 180 case OUTMODE_MPEG2_PAR_GATED_CLK: 181 outreg = (1 << 10); /* 0x0400 */ 182 break; 183 case OUTMODE_MPEG2_PAR_CONT_CLK: 184 outreg = (1 << 10) | (1 << 6); /* 0x0440 */ 185 break; 186 case OUTMODE_MPEG2_SERIAL: 187 outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ 188 break; 189 case OUTMODE_DIVERSITY: 190 if (state->cfg.hostbus_diversity) 191 outreg = (1 << 10) | (4 << 6); /* 0x0500 */ 192 else 193 outreg = (1 << 11); 194 break; 195 case OUTMODE_MPEG2_FIFO: 196 smo_mode |= (3 << 1); 197 fifo_threshold = 512; 198 outreg = (1 << 10) | (5 << 6); 199 break; 200 case OUTMODE_ANALOG_ADC: 201 outreg = (1 << 10) | (3 << 6); 202 break; 203 case OUTMODE_HIGH_Z: 204 outreg = 0; 205 break; 206 default: 207 dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod); 208 break; 209 } 210 211 if (state->cfg.output_mpeg2_in_188_bytes) 212 smo_mode |= (1 << 5); 213 214 ret |= dib7000p_write_word(state, 235, smo_mode); 215 ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ 216 if (state->version != SOC7090) 217 ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ 218 219 return ret; 220 } 221 222 static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) 223 { 224 struct dib7000p_state *state = demod->demodulator_priv; 225 226 if (state->div_force_off) { 227 dprintk("diversity combination deactivated - forced by COFDM parameters"); 228 onoff = 0; 229 dib7000p_write_word(state, 207, 0); 230 } else 231 dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); 232 233 state->div_state = (u8) onoff; 234 235 if (onoff) { 236 dib7000p_write_word(state, 204, 6); 237 dib7000p_write_word(state, 205, 16); 238 /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ 239 } else { 240 dib7000p_write_word(state, 204, 1); 241 dib7000p_write_word(state, 205, 0); 242 } 243 244 return 0; 245 } 246 247 static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) 248 { 249 /* by default everything is powered off */ 250 u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); 251 252 /* now, depending on the requested mode, we power on */ 253 switch (mode) { 254 /* power up everything in the demod */ 255 case DIB7000P_POWER_ALL: 256 reg_774 = 0x0000; 257 reg_775 = 0x0000; 258 reg_776 = 0x0; 259 reg_899 = 0x0; 260 if (state->version == SOC7090) 261 reg_1280 &= 0x001f; 262 else 263 reg_1280 &= 0x01ff; 264 break; 265 266 case DIB7000P_POWER_ANALOG_ADC: 267 /* dem, cfg, iqc, sad, agc */ 268 reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); 269 /* nud */ 270 reg_776 &= ~((1 << 0)); 271 /* Dout */ 272 if (state->version != SOC7090) 273 reg_1280 &= ~((1 << 11)); 274 reg_1280 &= ~(1 << 6); 275 /* fall through wanted to enable the interfaces */ 276 277 /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ 278 case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ 279 if (state->version == SOC7090) 280 reg_1280 &= ~((1 << 7) | (1 << 5)); 281 else 282 reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); 283 break; 284 285 /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ 286 } 287 288 dib7000p_write_word(state, 774, reg_774); 289 dib7000p_write_word(state, 775, reg_775); 290 dib7000p_write_word(state, 776, reg_776); 291 dib7000p_write_word(state, 1280, reg_1280); 292 if (state->version != SOC7090) 293 dib7000p_write_word(state, 899, reg_899); 294 295 return 0; 296 } 297 298 static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) 299 { 300 u16 reg_908 = 0, reg_909 = 0; 301 u16 reg; 302 303 if (state->version != SOC7090) { 304 reg_908 = dib7000p_read_word(state, 908); 305 reg_909 = dib7000p_read_word(state, 909); 306 } 307 308 switch (no) { 309 case DIBX000_SLOW_ADC_ON: 310 if (state->version == SOC7090) { 311 reg = dib7000p_read_word(state, 1925); 312 313 dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2)); /* en_slowAdc = 1 & reset_sladc = 1 */ 314 315 reg = dib7000p_read_word(state, 1925); /* read acces to make it works... strange ... */ 316 msleep(200); 317 dib7000p_write_word(state, 1925, reg & ~(1 << 4)); /* en_slowAdc = 1 & reset_sladc = 0 */ 318 319 reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12)); 320 dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */ 321 } else { 322 reg_909 |= (1 << 1) | (1 << 0); 323 dib7000p_write_word(state, 909, reg_909); 324 reg_909 &= ~(1 << 1); 325 } 326 break; 327 328 case DIBX000_SLOW_ADC_OFF: 329 if (state->version == SOC7090) { 330 reg = dib7000p_read_word(state, 1925); 331 dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4)); /* reset_sladc = 1 en_slowAdc = 0 */ 332 } else 333 reg_909 |= (1 << 1) | (1 << 0); 334 break; 335 336 case DIBX000_ADC_ON: 337 reg_908 &= 0x0fff; 338 reg_909 &= 0x0003; 339 break; 340 341 case DIBX000_ADC_OFF: 342 reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); 343 reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); 344 break; 345 346 case DIBX000_VBG_ENABLE: 347 reg_908 &= ~(1 << 15); 348 break; 349 350 case DIBX000_VBG_DISABLE: 351 reg_908 |= (1 << 15); 352 break; 353 354 default: 355 break; 356 } 357 358 // dprintk( "908: %x, 909: %x\n", reg_908, reg_909); 359 360 reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4; 361 reg_908 |= (state->cfg.enable_current_mirror & 1) << 7; 362 363 if (state->version != SOC7090) { 364 dib7000p_write_word(state, 908, reg_908); 365 dib7000p_write_word(state, 909, reg_909); 366 } 367 } 368 369 static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) 370 { 371 u32 timf; 372 373 // store the current bandwidth for later use 374 state->current_bandwidth = bw; 375 376 if (state->timf == 0) { 377 dprintk("using default timf"); 378 timf = state->cfg.bw->timf; 379 } else { 380 dprintk("using updated timf"); 381 timf = state->timf; 382 } 383 384 timf = timf * (bw / 50) / 160; 385 386 dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); 387 dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff)); 388 389 return 0; 390 } 391 392 static int dib7000p_sad_calib(struct dib7000p_state *state) 393 { 394 /* internal */ 395 dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); 396 397 if (state->version == SOC7090) 398 dib7000p_write_word(state, 74, 2048); 399 else 400 dib7000p_write_word(state, 74, 776); 401 402 /* do the calibration */ 403 dib7000p_write_word(state, 73, (1 << 0)); 404 dib7000p_write_word(state, 73, (0 << 0)); 405 406 msleep(1); 407 408 return 0; 409 } 410 411 static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) 412 { 413 struct dib7000p_state *state = demod->demodulator_priv; 414 if (value > 4095) 415 value = 4095; 416 state->wbd_ref = value; 417 return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); 418 } 419 420 static int dib7000p_get_agc_values(struct dvb_frontend *fe, 421 u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd) 422 { 423 struct dib7000p_state *state = fe->demodulator_priv; 424 425 if (agc_global != NULL) 426 *agc_global = dib7000p_read_word(state, 394); 427 if (agc1 != NULL) 428 *agc1 = dib7000p_read_word(state, 392); 429 if (agc2 != NULL) 430 *agc2 = dib7000p_read_word(state, 393); 431 if (wbd != NULL) 432 *wbd = dib7000p_read_word(state, 397); 433 434 return 0; 435 } 436 437 static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v) 438 { 439 struct dib7000p_state *state = fe->demodulator_priv; 440 return dib7000p_write_word(state, 108, v); 441 } 442 443 static void dib7000p_reset_pll(struct dib7000p_state *state) 444 { 445 struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; 446 u16 clk_cfg0; 447 448 if (state->version == SOC7090) { 449 dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv)); 450 451 while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) 452 ; 453 454 dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15)); 455 } else { 456 /* force PLL bypass */ 457 clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | 458 (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0); 459 460 dib7000p_write_word(state, 900, clk_cfg0); 461 462 /* P_pll_cfg */ 463 dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); 464 clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); 465 dib7000p_write_word(state, 900, clk_cfg0); 466 } 467 468 dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); 469 dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff)); 470 dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff)); 471 dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff)); 472 473 dib7000p_write_word(state, 72, bw->sad_cfg); 474 } 475 476 static u32 dib7000p_get_internal_freq(struct dib7000p_state *state) 477 { 478 u32 internal = (u32) dib7000p_read_word(state, 18) << 16; 479 internal |= (u32) dib7000p_read_word(state, 19); 480 internal /= 1000; 481 482 return internal; 483 } 484 485 static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw) 486 { 487 struct dib7000p_state *state = fe->demodulator_priv; 488 u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856); 489 u8 loopdiv, prediv; 490 u32 internal, xtal; 491 492 /* get back old values */ 493 prediv = reg_1856 & 0x3f; 494 loopdiv = (reg_1856 >> 6) & 0x3f; 495 496 if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) { 497 dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio); 498 reg_1856 &= 0xf000; 499 reg_1857 = dib7000p_read_word(state, 1857); 500 dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); 501 502 dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f)); 503 504 /* write new system clk into P_sec_len */ 505 internal = dib7000p_get_internal_freq(state); 506 xtal = (internal / loopdiv) * prediv; 507 internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio; /* new internal */ 508 dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff)); 509 dib7000p_write_word(state, 19, (u16) (internal & 0xffff)); 510 511 dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); 512 513 while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) 514 dprintk("Waiting for PLL to lock"); 515 516 return 0; 517 } 518 return -EIO; 519 } 520 521 static int dib7000p_reset_gpio(struct dib7000p_state *st) 522 { 523 /* reset the GPIOs */ 524 dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos); 525 526 dib7000p_write_word(st, 1029, st->gpio_dir); 527 dib7000p_write_word(st, 1030, st->gpio_val); 528 529 /* TODO 1031 is P_gpio_od */ 530 531 dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); 532 533 dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); 534 return 0; 535 } 536 537 static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val) 538 { 539 st->gpio_dir = dib7000p_read_word(st, 1029); 540 st->gpio_dir &= ~(1 << num); /* reset the direction bit */ 541 st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ 542 dib7000p_write_word(st, 1029, st->gpio_dir); 543 544 st->gpio_val = dib7000p_read_word(st, 1030); 545 st->gpio_val &= ~(1 << num); /* reset the direction bit */ 546 st->gpio_val |= (val & 0x01) << num; /* set the new value */ 547 dib7000p_write_word(st, 1030, st->gpio_val); 548 549 return 0; 550 } 551 552 static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) 553 { 554 struct dib7000p_state *state = demod->demodulator_priv; 555 return dib7000p_cfg_gpio(state, num, dir, val); 556 } 557 558 static u16 dib7000p_defaults[] = { 559 // auto search configuration 560 3, 2, 561 0x0004, 562 (1<<3)|(1<<11)|(1<<12)|(1<<13), 563 0x0814, /* Equal Lock */ 564 565 12, 6, 566 0x001b, 567 0x7740, 568 0x005b, 569 0x8d80, 570 0x01c9, 571 0xc380, 572 0x0000, 573 0x0080, 574 0x0000, 575 0x0090, 576 0x0001, 577 0xd4c0, 578 579 1, 26, 580 0x6680, 581 582 /* set ADC level to -16 */ 583 11, 79, 584 (1 << 13) - 825 - 117, 585 (1 << 13) - 837 - 117, 586 (1 << 13) - 811 - 117, 587 (1 << 13) - 766 - 117, 588 (1 << 13) - 737 - 117, 589 (1 << 13) - 693 - 117, 590 (1 << 13) - 648 - 117, 591 (1 << 13) - 619 - 117, 592 (1 << 13) - 575 - 117, 593 (1 << 13) - 531 - 117, 594 (1 << 13) - 501 - 117, 595 596 1, 142, 597 0x0410, 598 599 /* disable power smoothing */ 600 8, 145, 601 0, 602 0, 603 0, 604 0, 605 0, 606 0, 607 0, 608 0, 609 610 1, 154, 611 1 << 13, 612 613 1, 168, 614 0x0ccd, 615 616 1, 183, 617 0x200f, 618 619 1, 212, 620 0x169, 621 622 5, 187, 623 0x023d, 624 0x00a4, 625 0x00a4, 626 0x7ff0, 627 0x3ccc, 628 629 1, 198, 630 0x800, 631 632 1, 222, 633 0x0010, 634 635 1, 235, 636 0x0062, 637 638 0, 639 }; 640 641 static void dib7000p_reset_stats(struct dvb_frontend *fe); 642 643 static int dib7000p_demod_reset(struct dib7000p_state *state) 644 { 645 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); 646 647 if (state->version == SOC7090) 648 dibx000_reset_i2c_master(&state->i2c_master); 649 650 dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); 651 652 /* restart all parts */ 653 dib7000p_write_word(state, 770, 0xffff); 654 dib7000p_write_word(state, 771, 0xffff); 655 dib7000p_write_word(state, 772, 0x001f); 656 dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3))); 657 658 dib7000p_write_word(state, 770, 0); 659 dib7000p_write_word(state, 771, 0); 660 dib7000p_write_word(state, 772, 0); 661 dib7000p_write_word(state, 1280, 0); 662 663 if (state->version != SOC7090) { 664 dib7000p_write_word(state, 898, 0x0003); 665 dib7000p_write_word(state, 898, 0); 666 } 667 668 /* default */ 669 dib7000p_reset_pll(state); 670 671 if (dib7000p_reset_gpio(state) != 0) 672 dprintk("GPIO reset was not successful."); 673 674 if (state->version == SOC7090) { 675 dib7000p_write_word(state, 899, 0); 676 677 /* impulse noise */ 678 dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */ 679 dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */ 680 dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */ 681 dib7000p_write_word(state, 273, (0<<6) | 30); 682 } 683 if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) 684 dprintk("OUTPUT_MODE could not be reset."); 685 686 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); 687 dib7000p_sad_calib(state); 688 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); 689 690 /* unforce divstr regardless whether i2c enumeration was done or not */ 691 dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1)); 692 693 dib7000p_set_bandwidth(state, 8000); 694 695 if (state->version == SOC7090) { 696 dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */ 697 } else { 698 if (state->cfg.tuner_is_baseband) 699 dib7000p_write_word(state, 36, 0x0755); 700 else 701 dib7000p_write_word(state, 36, 0x1f55); 702 } 703 704 dib7000p_write_tab(state, dib7000p_defaults); 705 if (state->version != SOC7090) { 706 dib7000p_write_word(state, 901, 0x0006); 707 dib7000p_write_word(state, 902, (3 << 10) | (1 << 6)); 708 dib7000p_write_word(state, 905, 0x2c8e); 709 } 710 711 dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); 712 713 return 0; 714 } 715 716 static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) 717 { 718 u16 tmp = 0; 719 tmp = dib7000p_read_word(state, 903); 720 dib7000p_write_word(state, 903, (tmp | 0x1)); 721 tmp = dib7000p_read_word(state, 900); 722 dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); 723 } 724 725 static void dib7000p_restart_agc(struct dib7000p_state *state) 726 { 727 // P_restart_iqc & P_restart_agc 728 dib7000p_write_word(state, 770, (1 << 11) | (1 << 9)); 729 dib7000p_write_word(state, 770, 0x0000); 730 } 731 732 static int dib7000p_update_lna(struct dib7000p_state *state) 733 { 734 u16 dyn_gain; 735 736 if (state->cfg.update_lna) { 737 dyn_gain = dib7000p_read_word(state, 394); 738 if (state->cfg.update_lna(&state->demod, dyn_gain)) { 739 dib7000p_restart_agc(state); 740 return 1; 741 } 742 } 743 744 return 0; 745 } 746 747 static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) 748 { 749 struct dibx000_agc_config *agc = NULL; 750 int i; 751 if (state->current_band == band && state->current_agc != NULL) 752 return 0; 753 state->current_band = band; 754 755 for (i = 0; i < state->cfg.agc_config_count; i++) 756 if (state->cfg.agc[i].band_caps & band) { 757 agc = &state->cfg.agc[i]; 758 break; 759 } 760 761 if (agc == NULL) { 762 dprintk("no valid AGC configuration found for band 0x%02x", band); 763 return -EINVAL; 764 } 765 766 state->current_agc = agc; 767 768 /* AGC */ 769 dib7000p_write_word(state, 75, agc->setup); 770 dib7000p_write_word(state, 76, agc->inv_gain); 771 dib7000p_write_word(state, 77, agc->time_stabiliz); 772 dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); 773 774 // Demod AGC loop configuration 775 dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); 776 dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); 777 778 /* AGC continued */ 779 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d", 780 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); 781 782 if (state->wbd_ref != 0) 783 dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); 784 else 785 dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); 786 787 dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); 788 789 dib7000p_write_word(state, 107, agc->agc1_max); 790 dib7000p_write_word(state, 108, agc->agc1_min); 791 dib7000p_write_word(state, 109, agc->agc2_max); 792 dib7000p_write_word(state, 110, agc->agc2_min); 793 dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2); 794 dib7000p_write_word(state, 112, agc->agc1_pt3); 795 dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); 796 dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); 797 dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); 798 return 0; 799 } 800 801 static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz) 802 { 803 u32 internal = dib7000p_get_internal_freq(state); 804 s32 unit_khz_dds_val = 67108864 / (internal); /* 2**26 / Fsampling is the unit 1KHz offset */ 805 u32 abs_offset_khz = ABS(offset_khz); 806 u32 dds = state->cfg.bw->ifreq & 0x1ffffff; 807 u8 invert = !!(state->cfg.bw->ifreq & (1 << 25)); 808 809 dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert); 810 811 if (offset_khz < 0) 812 unit_khz_dds_val *= -1; 813 814 /* IF tuner */ 815 if (invert) 816 dds -= (abs_offset_khz * unit_khz_dds_val); /* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */ 817 else 818 dds += (abs_offset_khz * unit_khz_dds_val); 819 820 if (abs_offset_khz <= (internal / 2)) { /* Max dds offset is the half of the demod freq */ 821 dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9))); 822 dib7000p_write_word(state, 22, (u16) (dds & 0xffff)); 823 } 824 } 825 826 static int dib7000p_agc_startup(struct dvb_frontend *demod) 827 { 828 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 829 struct dib7000p_state *state = demod->demodulator_priv; 830 int ret = -1; 831 u8 *agc_state = &state->agc_state; 832 u8 agc_split; 833 u16 reg; 834 u32 upd_demod_gain_period = 0x1000; 835 s32 frequency_offset = 0; 836 837 switch (state->agc_state) { 838 case 0: 839 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); 840 if (state->version == SOC7090) { 841 reg = dib7000p_read_word(state, 0x79b) & 0xff00; 842 dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */ 843 dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); 844 845 /* enable adc i & q */ 846 reg = dib7000p_read_word(state, 0x780); 847 dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7))); 848 } else { 849 dib7000p_set_adc_state(state, DIBX000_ADC_ON); 850 dib7000p_pll_clk_cfg(state); 851 } 852 853 if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0) 854 return -1; 855 856 if (demod->ops.tuner_ops.get_frequency) { 857 u32 frequency_tuner; 858 859 demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner); 860 frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000; 861 } 862 863 dib7000p_set_dds(state, frequency_offset); 864 ret = 7; 865 (*agc_state)++; 866 break; 867 868 case 1: 869 if (state->cfg.agc_control) 870 state->cfg.agc_control(&state->demod, 1); 871 872 dib7000p_write_word(state, 78, 32768); 873 if (!state->current_agc->perform_agc_softsplit) { 874 /* we are using the wbd - so slow AGC startup */ 875 /* force 0 split on WBD and restart AGC */ 876 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8)); 877 (*agc_state)++; 878 ret = 5; 879 } else { 880 /* default AGC startup */ 881 (*agc_state) = 4; 882 /* wait AGC rough lock time */ 883 ret = 7; 884 } 885 886 dib7000p_restart_agc(state); 887 break; 888 889 case 2: /* fast split search path after 5sec */ 890 dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */ 891 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */ 892 (*agc_state)++; 893 ret = 14; 894 break; 895 896 case 3: /* split search ended */ 897 agc_split = (u8) dib7000p_read_word(state, 396); /* store the split value for the next time */ 898 dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */ 899 900 dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */ 901 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ 902 903 dib7000p_restart_agc(state); 904 905 dprintk("SPLIT %p: %hd", demod, agc_split); 906 907 (*agc_state)++; 908 ret = 5; 909 break; 910 911 case 4: /* LNA startup */ 912 ret = 7; 913 914 if (dib7000p_update_lna(state)) 915 ret = 5; 916 else 917 (*agc_state)++; 918 break; 919 920 case 5: 921 if (state->cfg.agc_control) 922 state->cfg.agc_control(&state->demod, 0); 923 (*agc_state)++; 924 break; 925 default: 926 break; 927 } 928 return ret; 929 } 930 931 static void dib7000p_update_timf(struct dib7000p_state *state) 932 { 933 u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); 934 state->timf = timf * 160 / (state->current_bandwidth / 50); 935 dib7000p_write_word(state, 23, (u16) (timf >> 16)); 936 dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); 937 dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf); 938 939 } 940 941 static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf) 942 { 943 struct dib7000p_state *state = fe->demodulator_priv; 944 switch (op) { 945 case DEMOD_TIMF_SET: 946 state->timf = timf; 947 break; 948 case DEMOD_TIMF_UPDATE: 949 dib7000p_update_timf(state); 950 break; 951 case DEMOD_TIMF_GET: 952 break; 953 } 954 dib7000p_set_bandwidth(state, state->current_bandwidth); 955 return state->timf; 956 } 957 958 static void dib7000p_set_channel(struct dib7000p_state *state, 959 struct dtv_frontend_properties *ch, u8 seq) 960 { 961 u16 value, est[4]; 962 963 dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); 964 965 /* nfft, guard, qam, alpha */ 966 value = 0; 967 switch (ch->transmission_mode) { 968 case TRANSMISSION_MODE_2K: 969 value |= (0 << 7); 970 break; 971 case TRANSMISSION_MODE_4K: 972 value |= (2 << 7); 973 break; 974 default: 975 case TRANSMISSION_MODE_8K: 976 value |= (1 << 7); 977 break; 978 } 979 switch (ch->guard_interval) { 980 case GUARD_INTERVAL_1_32: 981 value |= (0 << 5); 982 break; 983 case GUARD_INTERVAL_1_16: 984 value |= (1 << 5); 985 break; 986 case GUARD_INTERVAL_1_4: 987 value |= (3 << 5); 988 break; 989 default: 990 case GUARD_INTERVAL_1_8: 991 value |= (2 << 5); 992 break; 993 } 994 switch (ch->modulation) { 995 case QPSK: 996 value |= (0 << 3); 997 break; 998 case QAM_16: 999 value |= (1 << 3); 1000 break; 1001 default: 1002 case QAM_64: 1003 value |= (2 << 3); 1004 break; 1005 } 1006 switch (HIERARCHY_1) { 1007 case HIERARCHY_2: 1008 value |= 2; 1009 break; 1010 case HIERARCHY_4: 1011 value |= 4; 1012 break; 1013 default: 1014 case HIERARCHY_1: 1015 value |= 1; 1016 break; 1017 } 1018 dib7000p_write_word(state, 0, value); 1019 dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ 1020 1021 /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ 1022 value = 0; 1023 if (1 != 0) 1024 value |= (1 << 6); 1025 if (ch->hierarchy == 1) 1026 value |= (1 << 4); 1027 if (1 == 1) 1028 value |= 1; 1029 switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) { 1030 case FEC_2_3: 1031 value |= (2 << 1); 1032 break; 1033 case FEC_3_4: 1034 value |= (3 << 1); 1035 break; 1036 case FEC_5_6: 1037 value |= (5 << 1); 1038 break; 1039 case FEC_7_8: 1040 value |= (7 << 1); 1041 break; 1042 default: 1043 case FEC_1_2: 1044 value |= (1 << 1); 1045 break; 1046 } 1047 dib7000p_write_word(state, 208, value); 1048 1049 /* offset loop parameters */ 1050 dib7000p_write_word(state, 26, 0x6680); 1051 dib7000p_write_word(state, 32, 0x0003); 1052 dib7000p_write_word(state, 29, 0x1273); 1053 dib7000p_write_word(state, 33, 0x0005); 1054 1055 /* P_dvsy_sync_wait */ 1056 switch (ch->transmission_mode) { 1057 case TRANSMISSION_MODE_8K: 1058 value = 256; 1059 break; 1060 case TRANSMISSION_MODE_4K: 1061 value = 128; 1062 break; 1063 case TRANSMISSION_MODE_2K: 1064 default: 1065 value = 64; 1066 break; 1067 } 1068 switch (ch->guard_interval) { 1069 case GUARD_INTERVAL_1_16: 1070 value *= 2; 1071 break; 1072 case GUARD_INTERVAL_1_8: 1073 value *= 4; 1074 break; 1075 case GUARD_INTERVAL_1_4: 1076 value *= 8; 1077 break; 1078 default: 1079 case GUARD_INTERVAL_1_32: 1080 value *= 1; 1081 break; 1082 } 1083 if (state->cfg.diversity_delay == 0) 1084 state->div_sync_wait = (value * 3) / 2 + 48; 1085 else 1086 state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; 1087 1088 /* deactive the possibility of diversity reception if extended interleaver */ 1089 state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K; 1090 dib7000p_set_diversity_in(&state->demod, state->div_state); 1091 1092 /* channel estimation fine configuration */ 1093 switch (ch->modulation) { 1094 case QAM_64: 1095 est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ 1096 est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ 1097 est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ 1098 est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ 1099 break; 1100 case QAM_16: 1101 est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ 1102 est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ 1103 est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ 1104 est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ 1105 break; 1106 default: 1107 est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ 1108 est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ 1109 est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ 1110 est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ 1111 break; 1112 } 1113 for (value = 0; value < 4; value++) 1114 dib7000p_write_word(state, 187 + value, est[value]); 1115 } 1116 1117 static int dib7000p_autosearch_start(struct dvb_frontend *demod) 1118 { 1119 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 1120 struct dib7000p_state *state = demod->demodulator_priv; 1121 struct dtv_frontend_properties schan; 1122 u32 value, factor; 1123 u32 internal = dib7000p_get_internal_freq(state); 1124 1125 schan = *ch; 1126 schan.modulation = QAM_64; 1127 schan.guard_interval = GUARD_INTERVAL_1_32; 1128 schan.transmission_mode = TRANSMISSION_MODE_8K; 1129 schan.code_rate_HP = FEC_2_3; 1130 schan.code_rate_LP = FEC_3_4; 1131 schan.hierarchy = 0; 1132 1133 dib7000p_set_channel(state, &schan, 7); 1134 1135 factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz); 1136 if (factor >= 5000) { 1137 if (state->version == SOC7090) 1138 factor = 2; 1139 else 1140 factor = 1; 1141 } else 1142 factor = 6; 1143 1144 value = 30 * internal * factor; 1145 dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); 1146 dib7000p_write_word(state, 7, (u16) (value & 0xffff)); 1147 value = 100 * internal * factor; 1148 dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); 1149 dib7000p_write_word(state, 9, (u16) (value & 0xffff)); 1150 value = 500 * internal * factor; 1151 dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); 1152 dib7000p_write_word(state, 11, (u16) (value & 0xffff)); 1153 1154 value = dib7000p_read_word(state, 0); 1155 dib7000p_write_word(state, 0, (u16) ((1 << 9) | value)); 1156 dib7000p_read_word(state, 1284); 1157 dib7000p_write_word(state, 0, (u16) value); 1158 1159 return 0; 1160 } 1161 1162 static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) 1163 { 1164 struct dib7000p_state *state = demod->demodulator_priv; 1165 u16 irq_pending = dib7000p_read_word(state, 1284); 1166 1167 if (irq_pending & 0x1) 1168 return 1; 1169 1170 if (irq_pending & 0x2) 1171 return 2; 1172 1173 return 0; 1174 } 1175 1176 static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) 1177 { 1178 static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 }; 1179 static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, 1180 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 1181 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 1182 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, 1183 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126, 1184 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 1185 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165, 1186 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 1187 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 1188 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212, 1189 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, 1190 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235, 1191 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243, 1192 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 1193 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, 1194 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 1195 255, 255, 255, 255, 255, 255 1196 }; 1197 1198 u32 xtal = state->cfg.bw->xtal_hz / 1000; 1199 int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz; 1200 int k; 1201 int coef_re[8], coef_im[8]; 1202 int bw_khz = bw; 1203 u32 pha; 1204 1205 dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal); 1206 1207 if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2) 1208 return; 1209 1210 bw_khz /= 100; 1211 1212 dib7000p_write_word(state, 142, 0x0610); 1213 1214 for (k = 0; k < 8; k++) { 1215 pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff; 1216 1217 if (pha == 0) { 1218 coef_re[k] = 256; 1219 coef_im[k] = 0; 1220 } else if (pha < 256) { 1221 coef_re[k] = sine[256 - (pha & 0xff)]; 1222 coef_im[k] = sine[pha & 0xff]; 1223 } else if (pha == 256) { 1224 coef_re[k] = 0; 1225 coef_im[k] = 256; 1226 } else if (pha < 512) { 1227 coef_re[k] = -sine[pha & 0xff]; 1228 coef_im[k] = sine[256 - (pha & 0xff)]; 1229 } else if (pha == 512) { 1230 coef_re[k] = -256; 1231 coef_im[k] = 0; 1232 } else if (pha < 768) { 1233 coef_re[k] = -sine[256 - (pha & 0xff)]; 1234 coef_im[k] = -sine[pha & 0xff]; 1235 } else if (pha == 768) { 1236 coef_re[k] = 0; 1237 coef_im[k] = -256; 1238 } else { 1239 coef_re[k] = sine[pha & 0xff]; 1240 coef_im[k] = -sine[256 - (pha & 0xff)]; 1241 } 1242 1243 coef_re[k] *= notch[k]; 1244 coef_re[k] += (1 << 14); 1245 if (coef_re[k] >= (1 << 24)) 1246 coef_re[k] = (1 << 24) - 1; 1247 coef_re[k] /= (1 << 15); 1248 1249 coef_im[k] *= notch[k]; 1250 coef_im[k] += (1 << 14); 1251 if (coef_im[k] >= (1 << 24)) 1252 coef_im[k] = (1 << 24) - 1; 1253 coef_im[k] /= (1 << 15); 1254 1255 dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]); 1256 1257 dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); 1258 dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); 1259 dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); 1260 } 1261 dib7000p_write_word(state, 143, 0); 1262 } 1263 1264 static int dib7000p_tune(struct dvb_frontend *demod) 1265 { 1266 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 1267 struct dib7000p_state *state = demod->demodulator_priv; 1268 u16 tmp = 0; 1269 1270 if (ch != NULL) 1271 dib7000p_set_channel(state, ch, 0); 1272 else 1273 return -EINVAL; 1274 1275 // restart demod 1276 dib7000p_write_word(state, 770, 0x4000); 1277 dib7000p_write_word(state, 770, 0x0000); 1278 msleep(45); 1279 1280 /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ 1281 tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); 1282 if (state->sfn_workaround_active) { 1283 dprintk("SFN workaround is active"); 1284 tmp |= (1 << 9); 1285 dib7000p_write_word(state, 166, 0x4000); 1286 } else { 1287 dib7000p_write_word(state, 166, 0x0000); 1288 } 1289 dib7000p_write_word(state, 29, tmp); 1290 1291 // never achieved a lock with that bandwidth so far - wait for osc-freq to update 1292 if (state->timf == 0) 1293 msleep(200); 1294 1295 /* offset loop parameters */ 1296 1297 /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ 1298 tmp = (6 << 8) | 0x80; 1299 switch (ch->transmission_mode) { 1300 case TRANSMISSION_MODE_2K: 1301 tmp |= (2 << 12); 1302 break; 1303 case TRANSMISSION_MODE_4K: 1304 tmp |= (3 << 12); 1305 break; 1306 default: 1307 case TRANSMISSION_MODE_8K: 1308 tmp |= (4 << 12); 1309 break; 1310 } 1311 dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ 1312 1313 /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ 1314 tmp = (0 << 4); 1315 switch (ch->transmission_mode) { 1316 case TRANSMISSION_MODE_2K: 1317 tmp |= 0x6; 1318 break; 1319 case TRANSMISSION_MODE_4K: 1320 tmp |= 0x7; 1321 break; 1322 default: 1323 case TRANSMISSION_MODE_8K: 1324 tmp |= 0x8; 1325 break; 1326 } 1327 dib7000p_write_word(state, 32, tmp); 1328 1329 /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ 1330 tmp = (0 << 4); 1331 switch (ch->transmission_mode) { 1332 case TRANSMISSION_MODE_2K: 1333 tmp |= 0x6; 1334 break; 1335 case TRANSMISSION_MODE_4K: 1336 tmp |= 0x7; 1337 break; 1338 default: 1339 case TRANSMISSION_MODE_8K: 1340 tmp |= 0x8; 1341 break; 1342 } 1343 dib7000p_write_word(state, 33, tmp); 1344 1345 tmp = dib7000p_read_word(state, 509); 1346 if (!((tmp >> 6) & 0x1)) { 1347 /* restart the fec */ 1348 tmp = dib7000p_read_word(state, 771); 1349 dib7000p_write_word(state, 771, tmp | (1 << 1)); 1350 dib7000p_write_word(state, 771, tmp); 1351 msleep(40); 1352 tmp = dib7000p_read_word(state, 509); 1353 } 1354 // we achieved a lock - it's time to update the osc freq 1355 if ((tmp >> 6) & 0x1) { 1356 dib7000p_update_timf(state); 1357 /* P_timf_alpha += 2 */ 1358 tmp = dib7000p_read_word(state, 26); 1359 dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12)); 1360 } 1361 1362 if (state->cfg.spur_protect) 1363 dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); 1364 1365 dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); 1366 1367 dib7000p_reset_stats(demod); 1368 1369 return 0; 1370 } 1371 1372 static int dib7000p_wakeup(struct dvb_frontend *demod) 1373 { 1374 struct dib7000p_state *state = demod->demodulator_priv; 1375 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); 1376 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); 1377 if (state->version == SOC7090) 1378 dib7000p_sad_calib(state); 1379 return 0; 1380 } 1381 1382 static int dib7000p_sleep(struct dvb_frontend *demod) 1383 { 1384 struct dib7000p_state *state = demod->demodulator_priv; 1385 if (state->version == SOC7090) 1386 return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); 1387 return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); 1388 } 1389 1390 static int dib7000p_identify(struct dib7000p_state *st) 1391 { 1392 u16 value; 1393 dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr); 1394 1395 if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { 1396 dprintk("wrong Vendor ID (read=0x%x)", value); 1397 return -EREMOTEIO; 1398 } 1399 1400 if ((value = dib7000p_read_word(st, 769)) != 0x4000) { 1401 dprintk("wrong Device ID (%x)", value); 1402 return -EREMOTEIO; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int dib7000p_get_frontend(struct dvb_frontend *fe) 1409 { 1410 struct dtv_frontend_properties *fep = &fe->dtv_property_cache; 1411 struct dib7000p_state *state = fe->demodulator_priv; 1412 u16 tps = dib7000p_read_word(state, 463); 1413 1414 fep->inversion = INVERSION_AUTO; 1415 1416 fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth); 1417 1418 switch ((tps >> 8) & 0x3) { 1419 case 0: 1420 fep->transmission_mode = TRANSMISSION_MODE_2K; 1421 break; 1422 case 1: 1423 fep->transmission_mode = TRANSMISSION_MODE_8K; 1424 break; 1425 /* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */ 1426 } 1427 1428 switch (tps & 0x3) { 1429 case 0: 1430 fep->guard_interval = GUARD_INTERVAL_1_32; 1431 break; 1432 case 1: 1433 fep->guard_interval = GUARD_INTERVAL_1_16; 1434 break; 1435 case 2: 1436 fep->guard_interval = GUARD_INTERVAL_1_8; 1437 break; 1438 case 3: 1439 fep->guard_interval = GUARD_INTERVAL_1_4; 1440 break; 1441 } 1442 1443 switch ((tps >> 14) & 0x3) { 1444 case 0: 1445 fep->modulation = QPSK; 1446 break; 1447 case 1: 1448 fep->modulation = QAM_16; 1449 break; 1450 case 2: 1451 default: 1452 fep->modulation = QAM_64; 1453 break; 1454 } 1455 1456 /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ 1457 /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ 1458 1459 fep->hierarchy = HIERARCHY_NONE; 1460 switch ((tps >> 5) & 0x7) { 1461 case 1: 1462 fep->code_rate_HP = FEC_1_2; 1463 break; 1464 case 2: 1465 fep->code_rate_HP = FEC_2_3; 1466 break; 1467 case 3: 1468 fep->code_rate_HP = FEC_3_4; 1469 break; 1470 case 5: 1471 fep->code_rate_HP = FEC_5_6; 1472 break; 1473 case 7: 1474 default: 1475 fep->code_rate_HP = FEC_7_8; 1476 break; 1477 1478 } 1479 1480 switch ((tps >> 2) & 0x7) { 1481 case 1: 1482 fep->code_rate_LP = FEC_1_2; 1483 break; 1484 case 2: 1485 fep->code_rate_LP = FEC_2_3; 1486 break; 1487 case 3: 1488 fep->code_rate_LP = FEC_3_4; 1489 break; 1490 case 5: 1491 fep->code_rate_LP = FEC_5_6; 1492 break; 1493 case 7: 1494 default: 1495 fep->code_rate_LP = FEC_7_8; 1496 break; 1497 } 1498 1499 /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ 1500 1501 return 0; 1502 } 1503 1504 static int dib7000p_set_frontend(struct dvb_frontend *fe) 1505 { 1506 struct dtv_frontend_properties *fep = &fe->dtv_property_cache; 1507 struct dib7000p_state *state = fe->demodulator_priv; 1508 int time, ret; 1509 1510 if (state->version == SOC7090) 1511 dib7090_set_diversity_in(fe, 0); 1512 else 1513 dib7000p_set_output_mode(state, OUTMODE_HIGH_Z); 1514 1515 /* maybe the parameter has been changed */ 1516 state->sfn_workaround_active = buggy_sfn_workaround; 1517 1518 if (fe->ops.tuner_ops.set_params) 1519 fe->ops.tuner_ops.set_params(fe); 1520 1521 /* start up the AGC */ 1522 state->agc_state = 0; 1523 do { 1524 time = dib7000p_agc_startup(fe); 1525 if (time != -1) 1526 msleep(time); 1527 } while (time != -1); 1528 1529 if (fep->transmission_mode == TRANSMISSION_MODE_AUTO || 1530 fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) { 1531 int i = 800, found; 1532 1533 dib7000p_autosearch_start(fe); 1534 do { 1535 msleep(1); 1536 found = dib7000p_autosearch_is_irq(fe); 1537 } while (found == 0 && i--); 1538 1539 dprintk("autosearch returns: %d", found); 1540 if (found == 0 || found == 1) 1541 return 0; 1542 1543 dib7000p_get_frontend(fe); 1544 } 1545 1546 ret = dib7000p_tune(fe); 1547 1548 /* make this a config parameter */ 1549 if (state->version == SOC7090) { 1550 dib7090_set_output_mode(fe, state->cfg.output_mode); 1551 if (state->cfg.enMpegOutput == 0) { 1552 dib7090_setDibTxMux(state, MPEG_ON_DIBTX); 1553 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); 1554 } 1555 } else 1556 dib7000p_set_output_mode(state, state->cfg.output_mode); 1557 1558 return ret; 1559 } 1560 1561 static int dib7000p_get_stats(struct dvb_frontend *fe, enum fe_status stat); 1562 1563 static int dib7000p_read_status(struct dvb_frontend *fe, enum fe_status *stat) 1564 { 1565 struct dib7000p_state *state = fe->demodulator_priv; 1566 u16 lock = dib7000p_read_word(state, 509); 1567 1568 *stat = 0; 1569 1570 if (lock & 0x8000) 1571 *stat |= FE_HAS_SIGNAL; 1572 if (lock & 0x3000) 1573 *stat |= FE_HAS_CARRIER; 1574 if (lock & 0x0100) 1575 *stat |= FE_HAS_VITERBI; 1576 if (lock & 0x0010) 1577 *stat |= FE_HAS_SYNC; 1578 if ((lock & 0x0038) == 0x38) 1579 *stat |= FE_HAS_LOCK; 1580 1581 dib7000p_get_stats(fe, *stat); 1582 1583 return 0; 1584 } 1585 1586 static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber) 1587 { 1588 struct dib7000p_state *state = fe->demodulator_priv; 1589 *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); 1590 return 0; 1591 } 1592 1593 static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) 1594 { 1595 struct dib7000p_state *state = fe->demodulator_priv; 1596 *unc = dib7000p_read_word(state, 506); 1597 return 0; 1598 } 1599 1600 static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength) 1601 { 1602 struct dib7000p_state *state = fe->demodulator_priv; 1603 u16 val = dib7000p_read_word(state, 394); 1604 *strength = 65535 - val; 1605 return 0; 1606 } 1607 1608 static u32 dib7000p_get_snr(struct dvb_frontend *fe) 1609 { 1610 struct dib7000p_state *state = fe->demodulator_priv; 1611 u16 val; 1612 s32 signal_mant, signal_exp, noise_mant, noise_exp; 1613 u32 result = 0; 1614 1615 val = dib7000p_read_word(state, 479); 1616 noise_mant = (val >> 4) & 0xff; 1617 noise_exp = ((val & 0xf) << 2); 1618 val = dib7000p_read_word(state, 480); 1619 noise_exp += ((val >> 14) & 0x3); 1620 if ((noise_exp & 0x20) != 0) 1621 noise_exp -= 0x40; 1622 1623 signal_mant = (val >> 6) & 0xFF; 1624 signal_exp = (val & 0x3F); 1625 if ((signal_exp & 0x20) != 0) 1626 signal_exp -= 0x40; 1627 1628 if (signal_mant != 0) 1629 result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant); 1630 else 1631 result = intlog10(2) * 10 * signal_exp - 100; 1632 1633 if (noise_mant != 0) 1634 result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant); 1635 else 1636 result -= intlog10(2) * 10 * noise_exp - 100; 1637 1638 return result; 1639 } 1640 1641 static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr) 1642 { 1643 u32 result; 1644 1645 result = dib7000p_get_snr(fe); 1646 1647 *snr = result / ((1 << 24) / 10); 1648 return 0; 1649 } 1650 1651 static void dib7000p_reset_stats(struct dvb_frontend *demod) 1652 { 1653 struct dib7000p_state *state = demod->demodulator_priv; 1654 struct dtv_frontend_properties *c = &demod->dtv_property_cache; 1655 u32 ucb; 1656 1657 memset(&c->strength, 0, sizeof(c->strength)); 1658 memset(&c->cnr, 0, sizeof(c->cnr)); 1659 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); 1660 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); 1661 memset(&c->block_error, 0, sizeof(c->block_error)); 1662 1663 c->strength.len = 1; 1664 c->cnr.len = 1; 1665 c->block_error.len = 1; 1666 c->block_count.len = 1; 1667 c->post_bit_error.len = 1; 1668 c->post_bit_count.len = 1; 1669 1670 c->strength.stat[0].scale = FE_SCALE_DECIBEL; 1671 c->strength.stat[0].uvalue = 0; 1672 1673 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1674 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1675 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1676 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1677 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1678 1679 dib7000p_read_unc_blocks(demod, &ucb); 1680 1681 state->old_ucb = ucb; 1682 state->ber_jiffies_stats = 0; 1683 state->per_jiffies_stats = 0; 1684 } 1685 1686 struct linear_segments { 1687 unsigned x; 1688 signed y; 1689 }; 1690 1691 /* 1692 * Table to estimate signal strength in dBm. 1693 * This table should be empirically determinated by measuring the signal 1694 * strength generated by a RF generator directly connected into 1695 * a device. 1696 * This table was determinated by measuring the signal strength generated 1697 * by a DTA-2111 RF generator directly connected into a dib7000p device 1698 * (a Hauppauge Nova-TD stick), using a good quality 3 meters length 1699 * RC6 cable and good RC6 connectors, connected directly to antenna 1. 1700 * As the minimum output power of DTA-2111 is -31dBm, a 16 dBm attenuator 1701 * were used, for the lower power values. 1702 * The real value can actually be on other devices, or even at the 1703 * second antena input, depending on several factors, like if LNA 1704 * is enabled or not, if diversity is enabled, type of connectors, etc. 1705 * Yet, it is better to use this measure in dB than a random non-linear 1706 * percentage value, especially for antenna adjustments. 1707 * On my tests, the precision of the measure using this table is about 1708 * 0.5 dB, with sounds reasonable enough to adjust antennas. 1709 */ 1710 #define DB_OFFSET 131000 1711 1712 static struct linear_segments strength_to_db_table[] = { 1713 { 63630, DB_OFFSET - 20500}, 1714 { 62273, DB_OFFSET - 21000}, 1715 { 60162, DB_OFFSET - 22000}, 1716 { 58730, DB_OFFSET - 23000}, 1717 { 58294, DB_OFFSET - 24000}, 1718 { 57778, DB_OFFSET - 25000}, 1719 { 57320, DB_OFFSET - 26000}, 1720 { 56779, DB_OFFSET - 27000}, 1721 { 56293, DB_OFFSET - 28000}, 1722 { 55724, DB_OFFSET - 29000}, 1723 { 55145, DB_OFFSET - 30000}, 1724 { 54680, DB_OFFSET - 31000}, 1725 { 54293, DB_OFFSET - 32000}, 1726 { 53813, DB_OFFSET - 33000}, 1727 { 53427, DB_OFFSET - 34000}, 1728 { 52981, DB_OFFSET - 35000}, 1729 1730 { 52636, DB_OFFSET - 36000}, 1731 { 52014, DB_OFFSET - 37000}, 1732 { 51674, DB_OFFSET - 38000}, 1733 { 50692, DB_OFFSET - 39000}, 1734 { 49824, DB_OFFSET - 40000}, 1735 { 49052, DB_OFFSET - 41000}, 1736 { 48436, DB_OFFSET - 42000}, 1737 { 47836, DB_OFFSET - 43000}, 1738 { 47368, DB_OFFSET - 44000}, 1739 { 46468, DB_OFFSET - 45000}, 1740 { 45597, DB_OFFSET - 46000}, 1741 { 44586, DB_OFFSET - 47000}, 1742 { 43667, DB_OFFSET - 48000}, 1743 { 42673, DB_OFFSET - 49000}, 1744 { 41816, DB_OFFSET - 50000}, 1745 { 40876, DB_OFFSET - 51000}, 1746 { 0, 0}, 1747 }; 1748 1749 static u32 interpolate_value(u32 value, struct linear_segments *segments, 1750 unsigned len) 1751 { 1752 u64 tmp64; 1753 u32 dx; 1754 s32 dy; 1755 int i, ret; 1756 1757 if (value >= segments[0].x) 1758 return segments[0].y; 1759 if (value < segments[len-1].x) 1760 return segments[len-1].y; 1761 1762 for (i = 1; i < len - 1; i++) { 1763 /* If value is identical, no need to interpolate */ 1764 if (value == segments[i].x) 1765 return segments[i].y; 1766 if (value > segments[i].x) 1767 break; 1768 } 1769 1770 /* Linear interpolation between the two (x,y) points */ 1771 dy = segments[i - 1].y - segments[i].y; 1772 dx = segments[i - 1].x - segments[i].x; 1773 1774 tmp64 = value - segments[i].x; 1775 tmp64 *= dy; 1776 do_div(tmp64, dx); 1777 ret = segments[i].y + tmp64; 1778 1779 return ret; 1780 } 1781 1782 /* FIXME: may require changes - this one was borrowed from dib8000 */ 1783 static u32 dib7000p_get_time_us(struct dvb_frontend *demod) 1784 { 1785 struct dtv_frontend_properties *c = &demod->dtv_property_cache; 1786 u64 time_us, tmp64; 1787 u32 tmp, denom; 1788 int guard, rate_num, rate_denum = 1, bits_per_symbol; 1789 int interleaving = 0, fft_div; 1790 1791 switch (c->guard_interval) { 1792 case GUARD_INTERVAL_1_4: 1793 guard = 4; 1794 break; 1795 case GUARD_INTERVAL_1_8: 1796 guard = 8; 1797 break; 1798 case GUARD_INTERVAL_1_16: 1799 guard = 16; 1800 break; 1801 default: 1802 case GUARD_INTERVAL_1_32: 1803 guard = 32; 1804 break; 1805 } 1806 1807 switch (c->transmission_mode) { 1808 case TRANSMISSION_MODE_2K: 1809 fft_div = 4; 1810 break; 1811 case TRANSMISSION_MODE_4K: 1812 fft_div = 2; 1813 break; 1814 default: 1815 case TRANSMISSION_MODE_8K: 1816 fft_div = 1; 1817 break; 1818 } 1819 1820 switch (c->modulation) { 1821 case DQPSK: 1822 case QPSK: 1823 bits_per_symbol = 2; 1824 break; 1825 case QAM_16: 1826 bits_per_symbol = 4; 1827 break; 1828 default: 1829 case QAM_64: 1830 bits_per_symbol = 6; 1831 break; 1832 } 1833 1834 switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) { 1835 case FEC_1_2: 1836 rate_num = 1; 1837 rate_denum = 2; 1838 break; 1839 case FEC_2_3: 1840 rate_num = 2; 1841 rate_denum = 3; 1842 break; 1843 case FEC_3_4: 1844 rate_num = 3; 1845 rate_denum = 4; 1846 break; 1847 case FEC_5_6: 1848 rate_num = 5; 1849 rate_denum = 6; 1850 break; 1851 default: 1852 case FEC_7_8: 1853 rate_num = 7; 1854 rate_denum = 8; 1855 break; 1856 } 1857 1858 interleaving = interleaving; 1859 1860 denom = bits_per_symbol * rate_num * fft_div * 384; 1861 1862 /* If calculus gets wrong, wait for 1s for the next stats */ 1863 if (!denom) 1864 return 0; 1865 1866 /* Estimate the period for the total bit rate */ 1867 time_us = rate_denum * (1008 * 1562500L); 1868 tmp64 = time_us; 1869 do_div(tmp64, guard); 1870 time_us = time_us + tmp64; 1871 time_us += denom / 2; 1872 do_div(time_us, denom); 1873 1874 tmp = 1008 * 96 * interleaving; 1875 time_us += tmp + tmp / guard; 1876 1877 return time_us; 1878 } 1879 1880 static int dib7000p_get_stats(struct dvb_frontend *demod, enum fe_status stat) 1881 { 1882 struct dib7000p_state *state = demod->demodulator_priv; 1883 struct dtv_frontend_properties *c = &demod->dtv_property_cache; 1884 int show_per_stats = 0; 1885 u32 time_us = 0, val, snr; 1886 u64 blocks, ucb; 1887 s32 db; 1888 u16 strength; 1889 1890 /* Get Signal strength */ 1891 dib7000p_read_signal_strength(demod, &strength); 1892 val = strength; 1893 db = interpolate_value(val, 1894 strength_to_db_table, 1895 ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET; 1896 c->strength.stat[0].svalue = db; 1897 1898 /* UCB/BER/CNR measures require lock */ 1899 if (!(stat & FE_HAS_LOCK)) { 1900 c->cnr.len = 1; 1901 c->block_count.len = 1; 1902 c->block_error.len = 1; 1903 c->post_bit_error.len = 1; 1904 c->post_bit_count.len = 1; 1905 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1906 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1907 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1908 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1909 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1910 return 0; 1911 } 1912 1913 /* Check if time for stats was elapsed */ 1914 if (time_after(jiffies, state->per_jiffies_stats)) { 1915 state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); 1916 1917 /* Get SNR */ 1918 snr = dib7000p_get_snr(demod); 1919 if (snr) 1920 snr = (1000L * snr) >> 24; 1921 else 1922 snr = 0; 1923 c->cnr.stat[0].svalue = snr; 1924 c->cnr.stat[0].scale = FE_SCALE_DECIBEL; 1925 1926 /* Get UCB measures */ 1927 dib7000p_read_unc_blocks(demod, &val); 1928 ucb = val - state->old_ucb; 1929 if (val < state->old_ucb) 1930 ucb += 0x100000000LL; 1931 1932 c->block_error.stat[0].scale = FE_SCALE_COUNTER; 1933 c->block_error.stat[0].uvalue = ucb; 1934 1935 /* Estimate the number of packets based on bitrate */ 1936 if (!time_us) 1937 time_us = dib7000p_get_time_us(demod); 1938 1939 if (time_us) { 1940 blocks = 1250000ULL * 1000000ULL; 1941 do_div(blocks, time_us * 8 * 204); 1942 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 1943 c->block_count.stat[0].uvalue += blocks; 1944 } 1945 1946 show_per_stats = 1; 1947 } 1948 1949 /* Get post-BER measures */ 1950 if (time_after(jiffies, state->ber_jiffies_stats)) { 1951 time_us = dib7000p_get_time_us(demod); 1952 state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); 1953 1954 dprintk("Next all layers stats available in %u us.", time_us); 1955 1956 dib7000p_read_ber(demod, &val); 1957 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 1958 c->post_bit_error.stat[0].uvalue += val; 1959 1960 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 1961 c->post_bit_count.stat[0].uvalue += 100000000; 1962 } 1963 1964 /* Get PER measures */ 1965 if (show_per_stats) { 1966 dib7000p_read_unc_blocks(demod, &val); 1967 1968 c->block_error.stat[0].scale = FE_SCALE_COUNTER; 1969 c->block_error.stat[0].uvalue += val; 1970 1971 time_us = dib7000p_get_time_us(demod); 1972 if (time_us) { 1973 blocks = 1250000ULL * 1000000ULL; 1974 do_div(blocks, time_us * 8 * 204); 1975 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 1976 c->block_count.stat[0].uvalue += blocks; 1977 } 1978 } 1979 return 0; 1980 } 1981 1982 static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) 1983 { 1984 tune->min_delay_ms = 1000; 1985 return 0; 1986 } 1987 1988 static void dib7000p_release(struct dvb_frontend *demod) 1989 { 1990 struct dib7000p_state *st = demod->demodulator_priv; 1991 dibx000_exit_i2c_master(&st->i2c_master); 1992 i2c_del_adapter(&st->dib7090_tuner_adap); 1993 kfree(st); 1994 } 1995 1996 static int dib7000pc_detection(struct i2c_adapter *i2c_adap) 1997 { 1998 u8 *tx, *rx; 1999 struct i2c_msg msg[2] = { 2000 {.addr = 18 >> 1, .flags = 0, .len = 2}, 2001 {.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2}, 2002 }; 2003 int ret = 0; 2004 2005 tx = kzalloc(2*sizeof(u8), GFP_KERNEL); 2006 if (!tx) 2007 return -ENOMEM; 2008 rx = kzalloc(2*sizeof(u8), GFP_KERNEL); 2009 if (!rx) { 2010 ret = -ENOMEM; 2011 goto rx_memory_error; 2012 } 2013 2014 msg[0].buf = tx; 2015 msg[1].buf = rx; 2016 2017 tx[0] = 0x03; 2018 tx[1] = 0x00; 2019 2020 if (i2c_transfer(i2c_adap, msg, 2) == 2) 2021 if (rx[0] == 0x01 && rx[1] == 0xb3) { 2022 dprintk("-D- DiB7000PC detected"); 2023 return 1; 2024 } 2025 2026 msg[0].addr = msg[1].addr = 0x40; 2027 2028 if (i2c_transfer(i2c_adap, msg, 2) == 2) 2029 if (rx[0] == 0x01 && rx[1] == 0xb3) { 2030 dprintk("-D- DiB7000PC detected"); 2031 return 1; 2032 } 2033 2034 dprintk("-D- DiB7000PC not detected"); 2035 2036 kfree(rx); 2037 rx_memory_error: 2038 kfree(tx); 2039 return ret; 2040 } 2041 2042 static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) 2043 { 2044 struct dib7000p_state *st = demod->demodulator_priv; 2045 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); 2046 } 2047 2048 static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) 2049 { 2050 struct dib7000p_state *state = fe->demodulator_priv; 2051 u16 val = dib7000p_read_word(state, 235) & 0xffef; 2052 val |= (onoff & 0x1) << 4; 2053 dprintk("PID filter enabled %d", onoff); 2054 return dib7000p_write_word(state, 235, val); 2055 } 2056 2057 static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) 2058 { 2059 struct dib7000p_state *state = fe->demodulator_priv; 2060 dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff); 2061 return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0); 2062 } 2063 2064 static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) 2065 { 2066 struct dib7000p_state *dpst; 2067 int k = 0; 2068 u8 new_addr = 0; 2069 2070 dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); 2071 if (!dpst) 2072 return -ENOMEM; 2073 2074 dpst->i2c_adap = i2c; 2075 mutex_init(&dpst->i2c_buffer_lock); 2076 2077 for (k = no_of_demods - 1; k >= 0; k--) { 2078 dpst->cfg = cfg[k]; 2079 2080 /* designated i2c address */ 2081 if (cfg[k].default_i2c_addr != 0) 2082 new_addr = cfg[k].default_i2c_addr + (k << 1); 2083 else 2084 new_addr = (0x40 + k) << 1; 2085 dpst->i2c_addr = new_addr; 2086 dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ 2087 if (dib7000p_identify(dpst) != 0) { 2088 dpst->i2c_addr = default_addr; 2089 dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ 2090 if (dib7000p_identify(dpst) != 0) { 2091 dprintk("DiB7000P #%d: not identified\n", k); 2092 kfree(dpst); 2093 return -EIO; 2094 } 2095 } 2096 2097 /* start diversity to pull_down div_str - just for i2c-enumeration */ 2098 dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY); 2099 2100 /* set new i2c address and force divstart */ 2101 dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2); 2102 2103 dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); 2104 } 2105 2106 for (k = 0; k < no_of_demods; k++) { 2107 dpst->cfg = cfg[k]; 2108 if (cfg[k].default_i2c_addr != 0) 2109 dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1; 2110 else 2111 dpst->i2c_addr = (0x40 + k) << 1; 2112 2113 // unforce divstr 2114 dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2); 2115 2116 /* deactivate div - it was just for i2c-enumeration */ 2117 dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z); 2118 } 2119 2120 kfree(dpst); 2121 return 0; 2122 } 2123 2124 static const s32 lut_1000ln_mant[] = { 2125 6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600 2126 }; 2127 2128 static s32 dib7000p_get_adc_power(struct dvb_frontend *fe) 2129 { 2130 struct dib7000p_state *state = fe->demodulator_priv; 2131 u32 tmp_val = 0, exp = 0, mant = 0; 2132 s32 pow_i; 2133 u16 buf[2]; 2134 u8 ix = 0; 2135 2136 buf[0] = dib7000p_read_word(state, 0x184); 2137 buf[1] = dib7000p_read_word(state, 0x185); 2138 pow_i = (buf[0] << 16) | buf[1]; 2139 dprintk("raw pow_i = %d", pow_i); 2140 2141 tmp_val = pow_i; 2142 while (tmp_val >>= 1) 2143 exp++; 2144 2145 mant = (pow_i * 1000 / (1 << exp)); 2146 dprintk(" mant = %d exp = %d", mant / 1000, exp); 2147 2148 ix = (u8) ((mant - 1000) / 100); /* index of the LUT */ 2149 dprintk(" ix = %d", ix); 2150 2151 pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908); 2152 pow_i = (pow_i << 8) / 1000; 2153 dprintk(" pow_i = %d", pow_i); 2154 2155 return pow_i; 2156 } 2157 2158 static int map_addr_to_serpar_number(struct i2c_msg *msg) 2159 { 2160 if ((msg->buf[0] <= 15)) 2161 msg->buf[0] -= 1; 2162 else if (msg->buf[0] == 17) 2163 msg->buf[0] = 15; 2164 else if (msg->buf[0] == 16) 2165 msg->buf[0] = 17; 2166 else if (msg->buf[0] == 19) 2167 msg->buf[0] = 16; 2168 else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) 2169 msg->buf[0] -= 3; 2170 else if (msg->buf[0] == 28) 2171 msg->buf[0] = 23; 2172 else 2173 return -EINVAL; 2174 return 0; 2175 } 2176 2177 static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 2178 { 2179 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); 2180 u8 n_overflow = 1; 2181 u16 i = 1000; 2182 u16 serpar_num = msg[0].buf[0]; 2183 2184 while (n_overflow == 1 && i) { 2185 n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; 2186 i--; 2187 if (i == 0) 2188 dprintk("Tuner ITF: write busy (overflow)"); 2189 } 2190 dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); 2191 dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); 2192 2193 return num; 2194 } 2195 2196 static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 2197 { 2198 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); 2199 u8 n_overflow = 1, n_empty = 1; 2200 u16 i = 1000; 2201 u16 serpar_num = msg[0].buf[0]; 2202 u16 read_word; 2203 2204 while (n_overflow == 1 && i) { 2205 n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; 2206 i--; 2207 if (i == 0) 2208 dprintk("TunerITF: read busy (overflow)"); 2209 } 2210 dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f)); 2211 2212 i = 1000; 2213 while (n_empty == 1 && i) { 2214 n_empty = dib7000p_read_word(state, 1984) & 0x1; 2215 i--; 2216 if (i == 0) 2217 dprintk("TunerITF: read busy (empty)"); 2218 } 2219 read_word = dib7000p_read_word(state, 1987); 2220 msg[1].buf[0] = (read_word >> 8) & 0xff; 2221 msg[1].buf[1] = (read_word) & 0xff; 2222 2223 return num; 2224 } 2225 2226 static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 2227 { 2228 if (map_addr_to_serpar_number(&msg[0]) == 0) { /* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */ 2229 if (num == 1) { /* write */ 2230 return w7090p_tuner_write_serpar(i2c_adap, msg, 1); 2231 } else { /* read */ 2232 return w7090p_tuner_read_serpar(i2c_adap, msg, 2); 2233 } 2234 } 2235 return num; 2236 } 2237 2238 static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, 2239 struct i2c_msg msg[], int num, u16 apb_address) 2240 { 2241 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); 2242 u16 word; 2243 2244 if (num == 1) { /* write */ 2245 dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); 2246 } else { 2247 word = dib7000p_read_word(state, apb_address); 2248 msg[1].buf[0] = (word >> 8) & 0xff; 2249 msg[1].buf[1] = (word) & 0xff; 2250 } 2251 2252 return num; 2253 } 2254 2255 static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 2256 { 2257 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); 2258 2259 u16 apb_address = 0, word; 2260 int i = 0; 2261 switch (msg[0].buf[0]) { 2262 case 0x12: 2263 apb_address = 1920; 2264 break; 2265 case 0x14: 2266 apb_address = 1921; 2267 break; 2268 case 0x24: 2269 apb_address = 1922; 2270 break; 2271 case 0x1a: 2272 apb_address = 1923; 2273 break; 2274 case 0x22: 2275 apb_address = 1924; 2276 break; 2277 case 0x33: 2278 apb_address = 1926; 2279 break; 2280 case 0x34: 2281 apb_address = 1927; 2282 break; 2283 case 0x35: 2284 apb_address = 1928; 2285 break; 2286 case 0x36: 2287 apb_address = 1929; 2288 break; 2289 case 0x37: 2290 apb_address = 1930; 2291 break; 2292 case 0x38: 2293 apb_address = 1931; 2294 break; 2295 case 0x39: 2296 apb_address = 1932; 2297 break; 2298 case 0x2a: 2299 apb_address = 1935; 2300 break; 2301 case 0x2b: 2302 apb_address = 1936; 2303 break; 2304 case 0x2c: 2305 apb_address = 1937; 2306 break; 2307 case 0x2d: 2308 apb_address = 1938; 2309 break; 2310 case 0x2e: 2311 apb_address = 1939; 2312 break; 2313 case 0x2f: 2314 apb_address = 1940; 2315 break; 2316 case 0x30: 2317 apb_address = 1941; 2318 break; 2319 case 0x31: 2320 apb_address = 1942; 2321 break; 2322 case 0x32: 2323 apb_address = 1943; 2324 break; 2325 case 0x3e: 2326 apb_address = 1944; 2327 break; 2328 case 0x3f: 2329 apb_address = 1945; 2330 break; 2331 case 0x40: 2332 apb_address = 1948; 2333 break; 2334 case 0x25: 2335 apb_address = 914; 2336 break; 2337 case 0x26: 2338 apb_address = 915; 2339 break; 2340 case 0x27: 2341 apb_address = 917; 2342 break; 2343 case 0x28: 2344 apb_address = 916; 2345 break; 2346 case 0x1d: 2347 i = ((dib7000p_read_word(state, 72) >> 12) & 0x3); 2348 word = dib7000p_read_word(state, 384 + i); 2349 msg[1].buf[0] = (word >> 8) & 0xff; 2350 msg[1].buf[1] = (word) & 0xff; 2351 return num; 2352 case 0x1f: 2353 if (num == 1) { /* write */ 2354 word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]); 2355 word &= 0x3; 2356 word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); 2357 dib7000p_write_word(state, 72, word); /* Set the proper input */ 2358 return num; 2359 } 2360 } 2361 2362 if (apb_address != 0) /* R/W acces via APB */ 2363 return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address); 2364 else /* R/W access via SERPAR */ 2365 return w7090p_tuner_rw_serpar(i2c_adap, msg, num); 2366 2367 return 0; 2368 } 2369 2370 static u32 dib7000p_i2c_func(struct i2c_adapter *adapter) 2371 { 2372 return I2C_FUNC_I2C; 2373 } 2374 2375 static struct i2c_algorithm dib7090_tuner_xfer_algo = { 2376 .master_xfer = dib7090_tuner_xfer, 2377 .functionality = dib7000p_i2c_func, 2378 }; 2379 2380 static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe) 2381 { 2382 struct dib7000p_state *st = fe->demodulator_priv; 2383 return &st->dib7090_tuner_adap; 2384 } 2385 2386 static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive) 2387 { 2388 u16 reg; 2389 2390 /* drive host bus 2, 3, 4 */ 2391 reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); 2392 reg |= (drive << 12) | (drive << 6) | drive; 2393 dib7000p_write_word(state, 1798, reg); 2394 2395 /* drive host bus 5,6 */ 2396 reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); 2397 reg |= (drive << 8) | (drive << 2); 2398 dib7000p_write_word(state, 1799, reg); 2399 2400 /* drive host bus 7, 8, 9 */ 2401 reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); 2402 reg |= (drive << 12) | (drive << 6) | drive; 2403 dib7000p_write_word(state, 1800, reg); 2404 2405 /* drive host bus 10, 11 */ 2406 reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); 2407 reg |= (drive << 8) | (drive << 2); 2408 dib7000p_write_word(state, 1801, reg); 2409 2410 /* drive host bus 12, 13, 14 */ 2411 reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); 2412 reg |= (drive << 12) | (drive << 6) | drive; 2413 dib7000p_write_word(state, 1802, reg); 2414 2415 return 0; 2416 } 2417 2418 static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize) 2419 { 2420 u32 quantif = 3; 2421 u32 nom = (insertExtSynchro * P_Kin + syncSize); 2422 u32 denom = P_Kout; 2423 u32 syncFreq = ((nom << quantif) / denom); 2424 2425 if ((syncFreq & ((1 << quantif) - 1)) != 0) 2426 syncFreq = (syncFreq >> quantif) + 1; 2427 else 2428 syncFreq = (syncFreq >> quantif); 2429 2430 if (syncFreq != 0) 2431 syncFreq = syncFreq - 1; 2432 2433 return syncFreq; 2434 } 2435 2436 static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize) 2437 { 2438 dprintk("Configure DibStream Tx"); 2439 2440 dib7000p_write_word(state, 1615, 1); 2441 dib7000p_write_word(state, 1603, P_Kin); 2442 dib7000p_write_word(state, 1605, P_Kout); 2443 dib7000p_write_word(state, 1606, insertExtSynchro); 2444 dib7000p_write_word(state, 1608, synchroMode); 2445 dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff); 2446 dib7000p_write_word(state, 1610, syncWord & 0xffff); 2447 dib7000p_write_word(state, 1612, syncSize); 2448 dib7000p_write_word(state, 1615, 0); 2449 2450 return 0; 2451 } 2452 2453 static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize, 2454 u32 dataOutRate) 2455 { 2456 u32 syncFreq; 2457 2458 dprintk("Configure DibStream Rx"); 2459 if ((P_Kin != 0) && (P_Kout != 0)) { 2460 syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize); 2461 dib7000p_write_word(state, 1542, syncFreq); 2462 } 2463 dib7000p_write_word(state, 1554, 1); 2464 dib7000p_write_word(state, 1536, P_Kin); 2465 dib7000p_write_word(state, 1537, P_Kout); 2466 dib7000p_write_word(state, 1539, synchroMode); 2467 dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff); 2468 dib7000p_write_word(state, 1541, syncWord & 0xffff); 2469 dib7000p_write_word(state, 1543, syncSize); 2470 dib7000p_write_word(state, 1544, dataOutRate); 2471 dib7000p_write_word(state, 1554, 0); 2472 2473 return 0; 2474 } 2475 2476 static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff) 2477 { 2478 u16 reg_1287 = dib7000p_read_word(state, 1287); 2479 2480 switch (onoff) { 2481 case 1: 2482 reg_1287 &= ~(1<<7); 2483 break; 2484 case 0: 2485 reg_1287 |= (1<<7); 2486 break; 2487 } 2488 2489 dib7000p_write_word(state, 1287, reg_1287); 2490 } 2491 2492 static void dib7090_configMpegMux(struct dib7000p_state *state, 2493 u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) 2494 { 2495 dprintk("Enable Mpeg mux"); 2496 2497 dib7090_enMpegMux(state, 0); 2498 2499 /* If the input mode is MPEG do not divide the serial clock */ 2500 if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) 2501 enSerialClkDiv2 = 0; 2502 2503 dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2) 2504 | ((enSerialMode & 0x1) << 1) 2505 | (enSerialClkDiv2 & 0x1)); 2506 2507 dib7090_enMpegMux(state, 1); 2508 } 2509 2510 static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode) 2511 { 2512 u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7); 2513 2514 switch (mode) { 2515 case MPEG_ON_DIBTX: 2516 dprintk("SET MPEG ON DIBSTREAM TX"); 2517 dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); 2518 reg_1288 |= (1<<9); 2519 break; 2520 case DIV_ON_DIBTX: 2521 dprintk("SET DIV_OUT ON DIBSTREAM TX"); 2522 dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); 2523 reg_1288 |= (1<<8); 2524 break; 2525 case ADC_ON_DIBTX: 2526 dprintk("SET ADC_OUT ON DIBSTREAM TX"); 2527 dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); 2528 reg_1288 |= (1<<7); 2529 break; 2530 default: 2531 break; 2532 } 2533 dib7000p_write_word(state, 1288, reg_1288); 2534 } 2535 2536 static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode) 2537 { 2538 u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4); 2539 2540 switch (mode) { 2541 case DEMOUT_ON_HOSTBUS: 2542 dprintk("SET DEM OUT OLD INTERF ON HOST BUS"); 2543 dib7090_enMpegMux(state, 0); 2544 reg_1288 |= (1<<6); 2545 break; 2546 case DIBTX_ON_HOSTBUS: 2547 dprintk("SET DIBSTREAM TX ON HOST BUS"); 2548 dib7090_enMpegMux(state, 0); 2549 reg_1288 |= (1<<5); 2550 break; 2551 case MPEG_ON_HOSTBUS: 2552 dprintk("SET MPEG MUX ON HOST BUS"); 2553 reg_1288 |= (1<<4); 2554 break; 2555 default: 2556 break; 2557 } 2558 dib7000p_write_word(state, 1288, reg_1288); 2559 } 2560 2561 static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff) 2562 { 2563 struct dib7000p_state *state = fe->demodulator_priv; 2564 u16 reg_1287; 2565 2566 switch (onoff) { 2567 case 0: /* only use the internal way - not the diversity input */ 2568 dprintk("%s mode OFF : by default Enable Mpeg INPUT", __func__); 2569 dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); 2570 2571 /* Do not divide the serial clock of MPEG MUX */ 2572 /* in SERIAL MODE in case input mode MPEG is used */ 2573 reg_1287 = dib7000p_read_word(state, 1287); 2574 /* enSerialClkDiv2 == 1 ? */ 2575 if ((reg_1287 & 0x1) == 1) { 2576 /* force enSerialClkDiv2 = 0 */ 2577 reg_1287 &= ~0x1; 2578 dib7000p_write_word(state, 1287, reg_1287); 2579 } 2580 state->input_mode_mpeg = 1; 2581 break; 2582 case 1: /* both ways */ 2583 case 2: /* only the diversity input */ 2584 dprintk("%s ON : Enable diversity INPUT", __func__); 2585 dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); 2586 state->input_mode_mpeg = 0; 2587 break; 2588 } 2589 2590 dib7000p_set_diversity_in(&state->demod, onoff); 2591 return 0; 2592 } 2593 2594 static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode) 2595 { 2596 struct dib7000p_state *state = fe->demodulator_priv; 2597 2598 u16 outreg, smo_mode, fifo_threshold; 2599 u8 prefer_mpeg_mux_use = 1; 2600 int ret = 0; 2601 2602 dib7090_host_bus_drive(state, 1); 2603 2604 fifo_threshold = 1792; 2605 smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); 2606 outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1)); 2607 2608 switch (mode) { 2609 case OUTMODE_HIGH_Z: 2610 outreg = 0; 2611 break; 2612 2613 case OUTMODE_MPEG2_SERIAL: 2614 if (prefer_mpeg_mux_use) { 2615 dprintk("setting output mode TS_SERIAL using Mpeg Mux"); 2616 dib7090_configMpegMux(state, 3, 1, 1); 2617 dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); 2618 } else {/* Use Smooth block */ 2619 dprintk("setting output mode TS_SERIAL using Smooth bloc"); 2620 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 2621 outreg |= (2<<6) | (0 << 1); 2622 } 2623 break; 2624 2625 case OUTMODE_MPEG2_PAR_GATED_CLK: 2626 if (prefer_mpeg_mux_use) { 2627 dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux"); 2628 dib7090_configMpegMux(state, 2, 0, 0); 2629 dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); 2630 } else { /* Use Smooth block */ 2631 dprintk("setting output mode TS_PARALLEL_GATED using Smooth block"); 2632 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 2633 outreg |= (0<<6); 2634 } 2635 break; 2636 2637 case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ 2638 dprintk("setting output mode TS_PARALLEL_CONT using Smooth block"); 2639 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 2640 outreg |= (1<<6); 2641 break; 2642 2643 case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */ 2644 dprintk("setting output mode TS_FIFO using Smooth block"); 2645 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 2646 outreg |= (5<<6); 2647 smo_mode |= (3 << 1); 2648 fifo_threshold = 512; 2649 break; 2650 2651 case OUTMODE_DIVERSITY: 2652 dprintk("setting output mode MODE_DIVERSITY"); 2653 dib7090_setDibTxMux(state, DIV_ON_DIBTX); 2654 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); 2655 break; 2656 2657 case OUTMODE_ANALOG_ADC: 2658 dprintk("setting output mode MODE_ANALOG_ADC"); 2659 dib7090_setDibTxMux(state, ADC_ON_DIBTX); 2660 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); 2661 break; 2662 } 2663 if (mode != OUTMODE_HIGH_Z) 2664 outreg |= (1 << 10); 2665 2666 if (state->cfg.output_mpeg2_in_188_bytes) 2667 smo_mode |= (1 << 5); 2668 2669 ret |= dib7000p_write_word(state, 235, smo_mode); 2670 ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ 2671 ret |= dib7000p_write_word(state, 1286, outreg); 2672 2673 return ret; 2674 } 2675 2676 static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff) 2677 { 2678 struct dib7000p_state *state = fe->demodulator_priv; 2679 u16 en_cur_state; 2680 2681 dprintk("sleep dib7090: %d", onoff); 2682 2683 en_cur_state = dib7000p_read_word(state, 1922); 2684 2685 if (en_cur_state > 0xff) 2686 state->tuner_enable = en_cur_state; 2687 2688 if (onoff) 2689 en_cur_state &= 0x00ff; 2690 else { 2691 if (state->tuner_enable != 0) 2692 en_cur_state = state->tuner_enable; 2693 } 2694 2695 dib7000p_write_word(state, 1922, en_cur_state); 2696 2697 return 0; 2698 } 2699 2700 static int dib7090_get_adc_power(struct dvb_frontend *fe) 2701 { 2702 return dib7000p_get_adc_power(fe); 2703 } 2704 2705 static int dib7090_slave_reset(struct dvb_frontend *fe) 2706 { 2707 struct dib7000p_state *state = fe->demodulator_priv; 2708 u16 reg; 2709 2710 reg = dib7000p_read_word(state, 1794); 2711 dib7000p_write_word(state, 1794, reg | (4 << 12)); 2712 2713 dib7000p_write_word(state, 1032, 0xffff); 2714 return 0; 2715 } 2716 2717 static struct dvb_frontend_ops dib7000p_ops; 2718 static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) 2719 { 2720 struct dvb_frontend *demod; 2721 struct dib7000p_state *st; 2722 st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); 2723 if (st == NULL) 2724 return NULL; 2725 2726 memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); 2727 st->i2c_adap = i2c_adap; 2728 st->i2c_addr = i2c_addr; 2729 st->gpio_val = cfg->gpio_val; 2730 st->gpio_dir = cfg->gpio_dir; 2731 2732 /* Ensure the output mode remains at the previous default if it's 2733 * not specifically set by the caller. 2734 */ 2735 if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) 2736 st->cfg.output_mode = OUTMODE_MPEG2_FIFO; 2737 2738 demod = &st->demod; 2739 demod->demodulator_priv = st; 2740 memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); 2741 mutex_init(&st->i2c_buffer_lock); 2742 2743 dib7000p_write_word(st, 1287, 0x0003); /* sram lead in, rdy */ 2744 2745 if (dib7000p_identify(st) != 0) 2746 goto error; 2747 2748 st->version = dib7000p_read_word(st, 897); 2749 2750 /* FIXME: make sure the dev.parent field is initialized, or else 2751 request_firmware() will hit an OOPS (this should be moved somewhere 2752 more common) */ 2753 st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent; 2754 2755 dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); 2756 2757 /* init 7090 tuner adapter */ 2758 strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name)); 2759 st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo; 2760 st->dib7090_tuner_adap.algo_data = NULL; 2761 st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent; 2762 i2c_set_adapdata(&st->dib7090_tuner_adap, st); 2763 i2c_add_adapter(&st->dib7090_tuner_adap); 2764 2765 dib7000p_demod_reset(st); 2766 2767 dib7000p_reset_stats(demod); 2768 2769 if (st->version == SOC7090) { 2770 dib7090_set_output_mode(demod, st->cfg.output_mode); 2771 dib7090_set_diversity_in(demod, 0); 2772 } 2773 2774 return demod; 2775 2776 error: 2777 kfree(st); 2778 return NULL; 2779 } 2780 2781 void *dib7000p_attach(struct dib7000p_ops *ops) 2782 { 2783 if (!ops) 2784 return NULL; 2785 2786 ops->slave_reset = dib7090_slave_reset; 2787 ops->get_adc_power = dib7090_get_adc_power; 2788 ops->dib7000pc_detection = dib7000pc_detection; 2789 ops->get_i2c_tuner = dib7090_get_i2c_tuner; 2790 ops->tuner_sleep = dib7090_tuner_sleep; 2791 ops->init = dib7000p_init; 2792 ops->set_agc1_min = dib7000p_set_agc1_min; 2793 ops->set_gpio = dib7000p_set_gpio; 2794 ops->i2c_enumeration = dib7000p_i2c_enumeration; 2795 ops->pid_filter = dib7000p_pid_filter; 2796 ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl; 2797 ops->get_i2c_master = dib7000p_get_i2c_master; 2798 ops->update_pll = dib7000p_update_pll; 2799 ops->ctrl_timf = dib7000p_ctrl_timf; 2800 ops->get_agc_values = dib7000p_get_agc_values; 2801 ops->set_wbd_ref = dib7000p_set_wbd_ref; 2802 2803 return ops; 2804 } 2805 EXPORT_SYMBOL(dib7000p_attach); 2806 2807 static struct dvb_frontend_ops dib7000p_ops = { 2808 .delsys = { SYS_DVBT }, 2809 .info = { 2810 .name = "DiBcom 7000PC", 2811 .frequency_min = 44250000, 2812 .frequency_max = 867250000, 2813 .frequency_stepsize = 62500, 2814 .caps = FE_CAN_INVERSION_AUTO | 2815 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 2816 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 2817 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | 2818 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, 2819 }, 2820 2821 .release = dib7000p_release, 2822 2823 .init = dib7000p_wakeup, 2824 .sleep = dib7000p_sleep, 2825 2826 .set_frontend = dib7000p_set_frontend, 2827 .get_tune_settings = dib7000p_fe_get_tune_settings, 2828 .get_frontend = dib7000p_get_frontend, 2829 2830 .read_status = dib7000p_read_status, 2831 .read_ber = dib7000p_read_ber, 2832 .read_signal_strength = dib7000p_read_signal_strength, 2833 .read_snr = dib7000p_read_snr, 2834 .read_ucblocks = dib7000p_read_unc_blocks, 2835 }; 2836 2837 MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>"); 2838 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); 2839 MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); 2840 MODULE_LICENSE("GPL"); 2841