1 /* 2 * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). 3 * 4 * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation, version 2. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/i2c.h> 13 #include <linux/mutex.h> 14 #include <asm/div64.h> 15 16 #include "dvb_math.h" 17 #include "dvb_frontend.h" 18 19 #include "dib7000p.h" 20 21 static int debug; 22 module_param(debug, int, 0644); 23 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); 24 25 static int buggy_sfn_workaround; 26 module_param(buggy_sfn_workaround, int, 0644); 27 MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)"); 28 29 #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0) 30 31 struct i2c_device { 32 struct i2c_adapter *i2c_adap; 33 u8 i2c_addr; 34 }; 35 36 struct dib7000p_state { 37 struct dvb_frontend demod; 38 struct dib7000p_config cfg; 39 40 u8 i2c_addr; 41 struct i2c_adapter *i2c_adap; 42 43 struct dibx000_i2c_master i2c_master; 44 45 u16 wbd_ref; 46 47 u8 current_band; 48 u32 current_bandwidth; 49 struct dibx000_agc_config *current_agc; 50 u32 timf; 51 52 u8 div_force_off:1; 53 u8 div_state:1; 54 u16 div_sync_wait; 55 56 u8 agc_state; 57 58 u16 gpio_dir; 59 u16 gpio_val; 60 61 u8 sfn_workaround_active:1; 62 63 #define SOC7090 0x7090 64 u16 version; 65 66 u16 tuner_enable; 67 struct i2c_adapter dib7090_tuner_adap; 68 69 /* for the I2C transfer */ 70 struct i2c_msg msg[2]; 71 u8 i2c_write_buffer[4]; 72 u8 i2c_read_buffer[2]; 73 struct mutex i2c_buffer_lock; 74 75 u8 input_mode_mpeg; 76 77 /* for DVBv5 stats */ 78 s64 old_ucb; 79 unsigned long per_jiffies_stats; 80 unsigned long ber_jiffies_stats; 81 unsigned long get_stats_time; 82 }; 83 84 enum dib7000p_power_mode { 85 DIB7000P_POWER_ALL = 0, 86 DIB7000P_POWER_ANALOG_ADC, 87 DIB7000P_POWER_INTERFACE_ONLY, 88 }; 89 90 /* dib7090 specific fonctions */ 91 static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode); 92 static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff); 93 static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode); 94 static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode); 95 96 static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) 97 { 98 u16 ret; 99 100 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 101 dprintk("could not acquire lock"); 102 return 0; 103 } 104 105 state->i2c_write_buffer[0] = reg >> 8; 106 state->i2c_write_buffer[1] = reg & 0xff; 107 108 memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); 109 state->msg[0].addr = state->i2c_addr >> 1; 110 state->msg[0].flags = 0; 111 state->msg[0].buf = state->i2c_write_buffer; 112 state->msg[0].len = 2; 113 state->msg[1].addr = state->i2c_addr >> 1; 114 state->msg[1].flags = I2C_M_RD; 115 state->msg[1].buf = state->i2c_read_buffer; 116 state->msg[1].len = 2; 117 118 if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2) 119 dprintk("i2c read error on %d", reg); 120 121 ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; 122 mutex_unlock(&state->i2c_buffer_lock); 123 return ret; 124 } 125 126 static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) 127 { 128 int ret; 129 130 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { 131 dprintk("could not acquire lock"); 132 return -EINVAL; 133 } 134 135 state->i2c_write_buffer[0] = (reg >> 8) & 0xff; 136 state->i2c_write_buffer[1] = reg & 0xff; 137 state->i2c_write_buffer[2] = (val >> 8) & 0xff; 138 state->i2c_write_buffer[3] = val & 0xff; 139 140 memset(&state->msg[0], 0, sizeof(struct i2c_msg)); 141 state->msg[0].addr = state->i2c_addr >> 1; 142 state->msg[0].flags = 0; 143 state->msg[0].buf = state->i2c_write_buffer; 144 state->msg[0].len = 4; 145 146 ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? 147 -EREMOTEIO : 0); 148 mutex_unlock(&state->i2c_buffer_lock); 149 return ret; 150 } 151 152 static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf) 153 { 154 u16 l = 0, r, *n; 155 n = buf; 156 l = *n++; 157 while (l) { 158 r = *n++; 159 160 do { 161 dib7000p_write_word(state, r, *n++); 162 r++; 163 } while (--l); 164 l = *n++; 165 } 166 } 167 168 static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) 169 { 170 int ret = 0; 171 u16 outreg, fifo_threshold, smo_mode; 172 173 outreg = 0; 174 fifo_threshold = 1792; 175 smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); 176 177 dprintk("setting output mode for demod %p to %d", &state->demod, mode); 178 179 switch (mode) { 180 case OUTMODE_MPEG2_PAR_GATED_CLK: 181 outreg = (1 << 10); /* 0x0400 */ 182 break; 183 case OUTMODE_MPEG2_PAR_CONT_CLK: 184 outreg = (1 << 10) | (1 << 6); /* 0x0440 */ 185 break; 186 case OUTMODE_MPEG2_SERIAL: 187 outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ 188 break; 189 case OUTMODE_DIVERSITY: 190 if (state->cfg.hostbus_diversity) 191 outreg = (1 << 10) | (4 << 6); /* 0x0500 */ 192 else 193 outreg = (1 << 11); 194 break; 195 case OUTMODE_MPEG2_FIFO: 196 smo_mode |= (3 << 1); 197 fifo_threshold = 512; 198 outreg = (1 << 10) | (5 << 6); 199 break; 200 case OUTMODE_ANALOG_ADC: 201 outreg = (1 << 10) | (3 << 6); 202 break; 203 case OUTMODE_HIGH_Z: 204 outreg = 0; 205 break; 206 default: 207 dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod); 208 break; 209 } 210 211 if (state->cfg.output_mpeg2_in_188_bytes) 212 smo_mode |= (1 << 5); 213 214 ret |= dib7000p_write_word(state, 235, smo_mode); 215 ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ 216 if (state->version != SOC7090) 217 ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ 218 219 return ret; 220 } 221 222 static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) 223 { 224 struct dib7000p_state *state = demod->demodulator_priv; 225 226 if (state->div_force_off) { 227 dprintk("diversity combination deactivated - forced by COFDM parameters"); 228 onoff = 0; 229 dib7000p_write_word(state, 207, 0); 230 } else 231 dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); 232 233 state->div_state = (u8) onoff; 234 235 if (onoff) { 236 dib7000p_write_word(state, 204, 6); 237 dib7000p_write_word(state, 205, 16); 238 /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ 239 } else { 240 dib7000p_write_word(state, 204, 1); 241 dib7000p_write_word(state, 205, 0); 242 } 243 244 return 0; 245 } 246 247 static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) 248 { 249 /* by default everything is powered off */ 250 u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); 251 252 /* now, depending on the requested mode, we power on */ 253 switch (mode) { 254 /* power up everything in the demod */ 255 case DIB7000P_POWER_ALL: 256 reg_774 = 0x0000; 257 reg_775 = 0x0000; 258 reg_776 = 0x0; 259 reg_899 = 0x0; 260 if (state->version == SOC7090) 261 reg_1280 &= 0x001f; 262 else 263 reg_1280 &= 0x01ff; 264 break; 265 266 case DIB7000P_POWER_ANALOG_ADC: 267 /* dem, cfg, iqc, sad, agc */ 268 reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); 269 /* nud */ 270 reg_776 &= ~((1 << 0)); 271 /* Dout */ 272 if (state->version != SOC7090) 273 reg_1280 &= ~((1 << 11)); 274 reg_1280 &= ~(1 << 6); 275 /* fall through wanted to enable the interfaces */ 276 277 /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ 278 case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ 279 if (state->version == SOC7090) 280 reg_1280 &= ~((1 << 7) | (1 << 5)); 281 else 282 reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); 283 break; 284 285 /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ 286 } 287 288 dib7000p_write_word(state, 774, reg_774); 289 dib7000p_write_word(state, 775, reg_775); 290 dib7000p_write_word(state, 776, reg_776); 291 dib7000p_write_word(state, 1280, reg_1280); 292 if (state->version != SOC7090) 293 dib7000p_write_word(state, 899, reg_899); 294 295 return 0; 296 } 297 298 static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) 299 { 300 u16 reg_908 = 0, reg_909 = 0; 301 u16 reg; 302 303 if (state->version != SOC7090) { 304 reg_908 = dib7000p_read_word(state, 908); 305 reg_909 = dib7000p_read_word(state, 909); 306 } 307 308 switch (no) { 309 case DIBX000_SLOW_ADC_ON: 310 if (state->version == SOC7090) { 311 reg = dib7000p_read_word(state, 1925); 312 313 dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2)); /* en_slowAdc = 1 & reset_sladc = 1 */ 314 315 reg = dib7000p_read_word(state, 1925); /* read acces to make it works... strange ... */ 316 msleep(200); 317 dib7000p_write_word(state, 1925, reg & ~(1 << 4)); /* en_slowAdc = 1 & reset_sladc = 0 */ 318 319 reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12)); 320 dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */ 321 } else { 322 reg_909 |= (1 << 1) | (1 << 0); 323 dib7000p_write_word(state, 909, reg_909); 324 reg_909 &= ~(1 << 1); 325 } 326 break; 327 328 case DIBX000_SLOW_ADC_OFF: 329 if (state->version == SOC7090) { 330 reg = dib7000p_read_word(state, 1925); 331 dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4)); /* reset_sladc = 1 en_slowAdc = 0 */ 332 } else 333 reg_909 |= (1 << 1) | (1 << 0); 334 break; 335 336 case DIBX000_ADC_ON: 337 reg_908 &= 0x0fff; 338 reg_909 &= 0x0003; 339 break; 340 341 case DIBX000_ADC_OFF: 342 reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); 343 reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); 344 break; 345 346 case DIBX000_VBG_ENABLE: 347 reg_908 &= ~(1 << 15); 348 break; 349 350 case DIBX000_VBG_DISABLE: 351 reg_908 |= (1 << 15); 352 break; 353 354 default: 355 break; 356 } 357 358 // dprintk( "908: %x, 909: %x\n", reg_908, reg_909); 359 360 reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4; 361 reg_908 |= (state->cfg.enable_current_mirror & 1) << 7; 362 363 if (state->version != SOC7090) { 364 dib7000p_write_word(state, 908, reg_908); 365 dib7000p_write_word(state, 909, reg_909); 366 } 367 } 368 369 static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) 370 { 371 u32 timf; 372 373 // store the current bandwidth for later use 374 state->current_bandwidth = bw; 375 376 if (state->timf == 0) { 377 dprintk("using default timf"); 378 timf = state->cfg.bw->timf; 379 } else { 380 dprintk("using updated timf"); 381 timf = state->timf; 382 } 383 384 timf = timf * (bw / 50) / 160; 385 386 dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); 387 dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff)); 388 389 return 0; 390 } 391 392 static int dib7000p_sad_calib(struct dib7000p_state *state) 393 { 394 /* internal */ 395 dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); 396 397 if (state->version == SOC7090) 398 dib7000p_write_word(state, 74, 2048); 399 else 400 dib7000p_write_word(state, 74, 776); 401 402 /* do the calibration */ 403 dib7000p_write_word(state, 73, (1 << 0)); 404 dib7000p_write_word(state, 73, (0 << 0)); 405 406 msleep(1); 407 408 return 0; 409 } 410 411 static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) 412 { 413 struct dib7000p_state *state = demod->demodulator_priv; 414 if (value > 4095) 415 value = 4095; 416 state->wbd_ref = value; 417 return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); 418 } 419 420 static int dib7000p_get_agc_values(struct dvb_frontend *fe, 421 u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd) 422 { 423 struct dib7000p_state *state = fe->demodulator_priv; 424 425 if (agc_global != NULL) 426 *agc_global = dib7000p_read_word(state, 394); 427 if (agc1 != NULL) 428 *agc1 = dib7000p_read_word(state, 392); 429 if (agc2 != NULL) 430 *agc2 = dib7000p_read_word(state, 393); 431 if (wbd != NULL) 432 *wbd = dib7000p_read_word(state, 397); 433 434 return 0; 435 } 436 437 static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v) 438 { 439 struct dib7000p_state *state = fe->demodulator_priv; 440 return dib7000p_write_word(state, 108, v); 441 } 442 443 static void dib7000p_reset_pll(struct dib7000p_state *state) 444 { 445 struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; 446 u16 clk_cfg0; 447 448 if (state->version == SOC7090) { 449 dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv)); 450 451 while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) 452 ; 453 454 dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15)); 455 } else { 456 /* force PLL bypass */ 457 clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | 458 (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0); 459 460 dib7000p_write_word(state, 900, clk_cfg0); 461 462 /* P_pll_cfg */ 463 dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); 464 clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); 465 dib7000p_write_word(state, 900, clk_cfg0); 466 } 467 468 dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); 469 dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff)); 470 dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff)); 471 dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff)); 472 473 dib7000p_write_word(state, 72, bw->sad_cfg); 474 } 475 476 static u32 dib7000p_get_internal_freq(struct dib7000p_state *state) 477 { 478 u32 internal = (u32) dib7000p_read_word(state, 18) << 16; 479 internal |= (u32) dib7000p_read_word(state, 19); 480 internal /= 1000; 481 482 return internal; 483 } 484 485 static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw) 486 { 487 struct dib7000p_state *state = fe->demodulator_priv; 488 u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856); 489 u8 loopdiv, prediv; 490 u32 internal, xtal; 491 492 /* get back old values */ 493 prediv = reg_1856 & 0x3f; 494 loopdiv = (reg_1856 >> 6) & 0x3f; 495 496 if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) { 497 dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio); 498 reg_1856 &= 0xf000; 499 reg_1857 = dib7000p_read_word(state, 1857); 500 dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); 501 502 dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f)); 503 504 /* write new system clk into P_sec_len */ 505 internal = dib7000p_get_internal_freq(state); 506 xtal = (internal / loopdiv) * prediv; 507 internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio; /* new internal */ 508 dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff)); 509 dib7000p_write_word(state, 19, (u16) (internal & 0xffff)); 510 511 dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); 512 513 while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) 514 dprintk("Waiting for PLL to lock"); 515 516 return 0; 517 } 518 return -EIO; 519 } 520 521 static int dib7000p_reset_gpio(struct dib7000p_state *st) 522 { 523 /* reset the GPIOs */ 524 dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos); 525 526 dib7000p_write_word(st, 1029, st->gpio_dir); 527 dib7000p_write_word(st, 1030, st->gpio_val); 528 529 /* TODO 1031 is P_gpio_od */ 530 531 dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); 532 533 dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); 534 return 0; 535 } 536 537 static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val) 538 { 539 st->gpio_dir = dib7000p_read_word(st, 1029); 540 st->gpio_dir &= ~(1 << num); /* reset the direction bit */ 541 st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ 542 dib7000p_write_word(st, 1029, st->gpio_dir); 543 544 st->gpio_val = dib7000p_read_word(st, 1030); 545 st->gpio_val &= ~(1 << num); /* reset the direction bit */ 546 st->gpio_val |= (val & 0x01) << num; /* set the new value */ 547 dib7000p_write_word(st, 1030, st->gpio_val); 548 549 return 0; 550 } 551 552 static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) 553 { 554 struct dib7000p_state *state = demod->demodulator_priv; 555 return dib7000p_cfg_gpio(state, num, dir, val); 556 } 557 558 static u16 dib7000p_defaults[] = { 559 // auto search configuration 560 3, 2, 561 0x0004, 562 (1<<3)|(1<<11)|(1<<12)|(1<<13), 563 0x0814, /* Equal Lock */ 564 565 12, 6, 566 0x001b, 567 0x7740, 568 0x005b, 569 0x8d80, 570 0x01c9, 571 0xc380, 572 0x0000, 573 0x0080, 574 0x0000, 575 0x0090, 576 0x0001, 577 0xd4c0, 578 579 1, 26, 580 0x6680, 581 582 /* set ADC level to -16 */ 583 11, 79, 584 (1 << 13) - 825 - 117, 585 (1 << 13) - 837 - 117, 586 (1 << 13) - 811 - 117, 587 (1 << 13) - 766 - 117, 588 (1 << 13) - 737 - 117, 589 (1 << 13) - 693 - 117, 590 (1 << 13) - 648 - 117, 591 (1 << 13) - 619 - 117, 592 (1 << 13) - 575 - 117, 593 (1 << 13) - 531 - 117, 594 (1 << 13) - 501 - 117, 595 596 1, 142, 597 0x0410, 598 599 /* disable power smoothing */ 600 8, 145, 601 0, 602 0, 603 0, 604 0, 605 0, 606 0, 607 0, 608 0, 609 610 1, 154, 611 1 << 13, 612 613 1, 168, 614 0x0ccd, 615 616 1, 183, 617 0x200f, 618 619 1, 212, 620 0x169, 621 622 5, 187, 623 0x023d, 624 0x00a4, 625 0x00a4, 626 0x7ff0, 627 0x3ccc, 628 629 1, 198, 630 0x800, 631 632 1, 222, 633 0x0010, 634 635 1, 235, 636 0x0062, 637 638 0, 639 }; 640 641 static void dib7000p_reset_stats(struct dvb_frontend *fe); 642 643 static int dib7000p_demod_reset(struct dib7000p_state *state) 644 { 645 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); 646 647 if (state->version == SOC7090) 648 dibx000_reset_i2c_master(&state->i2c_master); 649 650 dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); 651 652 /* restart all parts */ 653 dib7000p_write_word(state, 770, 0xffff); 654 dib7000p_write_word(state, 771, 0xffff); 655 dib7000p_write_word(state, 772, 0x001f); 656 dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3))); 657 658 dib7000p_write_word(state, 770, 0); 659 dib7000p_write_word(state, 771, 0); 660 dib7000p_write_word(state, 772, 0); 661 dib7000p_write_word(state, 1280, 0); 662 663 if (state->version != SOC7090) { 664 dib7000p_write_word(state, 898, 0x0003); 665 dib7000p_write_word(state, 898, 0); 666 } 667 668 /* default */ 669 dib7000p_reset_pll(state); 670 671 if (dib7000p_reset_gpio(state) != 0) 672 dprintk("GPIO reset was not successful."); 673 674 if (state->version == SOC7090) { 675 dib7000p_write_word(state, 899, 0); 676 677 /* impulse noise */ 678 dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */ 679 dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */ 680 dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */ 681 dib7000p_write_word(state, 273, (0<<6) | 30); 682 } 683 if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) 684 dprintk("OUTPUT_MODE could not be reset."); 685 686 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); 687 dib7000p_sad_calib(state); 688 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); 689 690 /* unforce divstr regardless whether i2c enumeration was done or not */ 691 dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1)); 692 693 dib7000p_set_bandwidth(state, 8000); 694 695 if (state->version == SOC7090) { 696 dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */ 697 } else { 698 if (state->cfg.tuner_is_baseband) 699 dib7000p_write_word(state, 36, 0x0755); 700 else 701 dib7000p_write_word(state, 36, 0x1f55); 702 } 703 704 dib7000p_write_tab(state, dib7000p_defaults); 705 if (state->version != SOC7090) { 706 dib7000p_write_word(state, 901, 0x0006); 707 dib7000p_write_word(state, 902, (3 << 10) | (1 << 6)); 708 dib7000p_write_word(state, 905, 0x2c8e); 709 } 710 711 dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); 712 713 return 0; 714 } 715 716 static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) 717 { 718 u16 tmp = 0; 719 tmp = dib7000p_read_word(state, 903); 720 dib7000p_write_word(state, 903, (tmp | 0x1)); 721 tmp = dib7000p_read_word(state, 900); 722 dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); 723 } 724 725 static void dib7000p_restart_agc(struct dib7000p_state *state) 726 { 727 // P_restart_iqc & P_restart_agc 728 dib7000p_write_word(state, 770, (1 << 11) | (1 << 9)); 729 dib7000p_write_word(state, 770, 0x0000); 730 } 731 732 static int dib7000p_update_lna(struct dib7000p_state *state) 733 { 734 u16 dyn_gain; 735 736 if (state->cfg.update_lna) { 737 dyn_gain = dib7000p_read_word(state, 394); 738 if (state->cfg.update_lna(&state->demod, dyn_gain)) { 739 dib7000p_restart_agc(state); 740 return 1; 741 } 742 } 743 744 return 0; 745 } 746 747 static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) 748 { 749 struct dibx000_agc_config *agc = NULL; 750 int i; 751 if (state->current_band == band && state->current_agc != NULL) 752 return 0; 753 state->current_band = band; 754 755 for (i = 0; i < state->cfg.agc_config_count; i++) 756 if (state->cfg.agc[i].band_caps & band) { 757 agc = &state->cfg.agc[i]; 758 break; 759 } 760 761 if (agc == NULL) { 762 dprintk("no valid AGC configuration found for band 0x%02x", band); 763 return -EINVAL; 764 } 765 766 state->current_agc = agc; 767 768 /* AGC */ 769 dib7000p_write_word(state, 75, agc->setup); 770 dib7000p_write_word(state, 76, agc->inv_gain); 771 dib7000p_write_word(state, 77, agc->time_stabiliz); 772 dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); 773 774 // Demod AGC loop configuration 775 dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); 776 dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); 777 778 /* AGC continued */ 779 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d", 780 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); 781 782 if (state->wbd_ref != 0) 783 dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); 784 else 785 dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); 786 787 dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); 788 789 dib7000p_write_word(state, 107, agc->agc1_max); 790 dib7000p_write_word(state, 108, agc->agc1_min); 791 dib7000p_write_word(state, 109, agc->agc2_max); 792 dib7000p_write_word(state, 110, agc->agc2_min); 793 dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2); 794 dib7000p_write_word(state, 112, agc->agc1_pt3); 795 dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); 796 dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); 797 dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); 798 return 0; 799 } 800 801 static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz) 802 { 803 u32 internal = dib7000p_get_internal_freq(state); 804 s32 unit_khz_dds_val = 67108864 / (internal); /* 2**26 / Fsampling is the unit 1KHz offset */ 805 u32 abs_offset_khz = ABS(offset_khz); 806 u32 dds = state->cfg.bw->ifreq & 0x1ffffff; 807 u8 invert = !!(state->cfg.bw->ifreq & (1 << 25)); 808 809 dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert); 810 811 if (offset_khz < 0) 812 unit_khz_dds_val *= -1; 813 814 /* IF tuner */ 815 if (invert) 816 dds -= (abs_offset_khz * unit_khz_dds_val); /* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */ 817 else 818 dds += (abs_offset_khz * unit_khz_dds_val); 819 820 if (abs_offset_khz <= (internal / 2)) { /* Max dds offset is the half of the demod freq */ 821 dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9))); 822 dib7000p_write_word(state, 22, (u16) (dds & 0xffff)); 823 } 824 } 825 826 static int dib7000p_agc_startup(struct dvb_frontend *demod) 827 { 828 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 829 struct dib7000p_state *state = demod->demodulator_priv; 830 int ret = -1; 831 u8 *agc_state = &state->agc_state; 832 u8 agc_split; 833 u16 reg; 834 u32 upd_demod_gain_period = 0x1000; 835 s32 frequency_offset = 0; 836 837 switch (state->agc_state) { 838 case 0: 839 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); 840 if (state->version == SOC7090) { 841 reg = dib7000p_read_word(state, 0x79b) & 0xff00; 842 dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */ 843 dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); 844 845 /* enable adc i & q */ 846 reg = dib7000p_read_word(state, 0x780); 847 dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7))); 848 } else { 849 dib7000p_set_adc_state(state, DIBX000_ADC_ON); 850 dib7000p_pll_clk_cfg(state); 851 } 852 853 if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0) 854 return -1; 855 856 if (demod->ops.tuner_ops.get_frequency) { 857 u32 frequency_tuner; 858 859 demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner); 860 frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000; 861 } 862 863 dib7000p_set_dds(state, frequency_offset); 864 ret = 7; 865 (*agc_state)++; 866 break; 867 868 case 1: 869 if (state->cfg.agc_control) 870 state->cfg.agc_control(&state->demod, 1); 871 872 dib7000p_write_word(state, 78, 32768); 873 if (!state->current_agc->perform_agc_softsplit) { 874 /* we are using the wbd - so slow AGC startup */ 875 /* force 0 split on WBD and restart AGC */ 876 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8)); 877 (*agc_state)++; 878 ret = 5; 879 } else { 880 /* default AGC startup */ 881 (*agc_state) = 4; 882 /* wait AGC rough lock time */ 883 ret = 7; 884 } 885 886 dib7000p_restart_agc(state); 887 break; 888 889 case 2: /* fast split search path after 5sec */ 890 dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */ 891 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */ 892 (*agc_state)++; 893 ret = 14; 894 break; 895 896 case 3: /* split search ended */ 897 agc_split = (u8) dib7000p_read_word(state, 396); /* store the split value for the next time */ 898 dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */ 899 900 dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */ 901 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ 902 903 dib7000p_restart_agc(state); 904 905 dprintk("SPLIT %p: %hd", demod, agc_split); 906 907 (*agc_state)++; 908 ret = 5; 909 break; 910 911 case 4: /* LNA startup */ 912 ret = 7; 913 914 if (dib7000p_update_lna(state)) 915 ret = 5; 916 else 917 (*agc_state)++; 918 break; 919 920 case 5: 921 if (state->cfg.agc_control) 922 state->cfg.agc_control(&state->demod, 0); 923 (*agc_state)++; 924 break; 925 default: 926 break; 927 } 928 return ret; 929 } 930 931 static void dib7000p_update_timf(struct dib7000p_state *state) 932 { 933 u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); 934 state->timf = timf * 160 / (state->current_bandwidth / 50); 935 dib7000p_write_word(state, 23, (u16) (timf >> 16)); 936 dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); 937 dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf); 938 939 } 940 941 static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf) 942 { 943 struct dib7000p_state *state = fe->demodulator_priv; 944 switch (op) { 945 case DEMOD_TIMF_SET: 946 state->timf = timf; 947 break; 948 case DEMOD_TIMF_UPDATE: 949 dib7000p_update_timf(state); 950 break; 951 case DEMOD_TIMF_GET: 952 break; 953 } 954 dib7000p_set_bandwidth(state, state->current_bandwidth); 955 return state->timf; 956 } 957 958 static void dib7000p_set_channel(struct dib7000p_state *state, 959 struct dtv_frontend_properties *ch, u8 seq) 960 { 961 u16 value, est[4]; 962 963 dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); 964 965 /* nfft, guard, qam, alpha */ 966 value = 0; 967 switch (ch->transmission_mode) { 968 case TRANSMISSION_MODE_2K: 969 value |= (0 << 7); 970 break; 971 case TRANSMISSION_MODE_4K: 972 value |= (2 << 7); 973 break; 974 default: 975 case TRANSMISSION_MODE_8K: 976 value |= (1 << 7); 977 break; 978 } 979 switch (ch->guard_interval) { 980 case GUARD_INTERVAL_1_32: 981 value |= (0 << 5); 982 break; 983 case GUARD_INTERVAL_1_16: 984 value |= (1 << 5); 985 break; 986 case GUARD_INTERVAL_1_4: 987 value |= (3 << 5); 988 break; 989 default: 990 case GUARD_INTERVAL_1_8: 991 value |= (2 << 5); 992 break; 993 } 994 switch (ch->modulation) { 995 case QPSK: 996 value |= (0 << 3); 997 break; 998 case QAM_16: 999 value |= (1 << 3); 1000 break; 1001 default: 1002 case QAM_64: 1003 value |= (2 << 3); 1004 break; 1005 } 1006 switch (HIERARCHY_1) { 1007 case HIERARCHY_2: 1008 value |= 2; 1009 break; 1010 case HIERARCHY_4: 1011 value |= 4; 1012 break; 1013 default: 1014 case HIERARCHY_1: 1015 value |= 1; 1016 break; 1017 } 1018 dib7000p_write_word(state, 0, value); 1019 dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ 1020 1021 /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ 1022 value = 0; 1023 if (1 != 0) 1024 value |= (1 << 6); 1025 if (ch->hierarchy == 1) 1026 value |= (1 << 4); 1027 if (1 == 1) 1028 value |= 1; 1029 switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) { 1030 case FEC_2_3: 1031 value |= (2 << 1); 1032 break; 1033 case FEC_3_4: 1034 value |= (3 << 1); 1035 break; 1036 case FEC_5_6: 1037 value |= (5 << 1); 1038 break; 1039 case FEC_7_8: 1040 value |= (7 << 1); 1041 break; 1042 default: 1043 case FEC_1_2: 1044 value |= (1 << 1); 1045 break; 1046 } 1047 dib7000p_write_word(state, 208, value); 1048 1049 /* offset loop parameters */ 1050 dib7000p_write_word(state, 26, 0x6680); 1051 dib7000p_write_word(state, 32, 0x0003); 1052 dib7000p_write_word(state, 29, 0x1273); 1053 dib7000p_write_word(state, 33, 0x0005); 1054 1055 /* P_dvsy_sync_wait */ 1056 switch (ch->transmission_mode) { 1057 case TRANSMISSION_MODE_8K: 1058 value = 256; 1059 break; 1060 case TRANSMISSION_MODE_4K: 1061 value = 128; 1062 break; 1063 case TRANSMISSION_MODE_2K: 1064 default: 1065 value = 64; 1066 break; 1067 } 1068 switch (ch->guard_interval) { 1069 case GUARD_INTERVAL_1_16: 1070 value *= 2; 1071 break; 1072 case GUARD_INTERVAL_1_8: 1073 value *= 4; 1074 break; 1075 case GUARD_INTERVAL_1_4: 1076 value *= 8; 1077 break; 1078 default: 1079 case GUARD_INTERVAL_1_32: 1080 value *= 1; 1081 break; 1082 } 1083 if (state->cfg.diversity_delay == 0) 1084 state->div_sync_wait = (value * 3) / 2 + 48; 1085 else 1086 state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; 1087 1088 /* deactive the possibility of diversity reception if extended interleaver */ 1089 state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K; 1090 dib7000p_set_diversity_in(&state->demod, state->div_state); 1091 1092 /* channel estimation fine configuration */ 1093 switch (ch->modulation) { 1094 case QAM_64: 1095 est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ 1096 est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ 1097 est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ 1098 est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ 1099 break; 1100 case QAM_16: 1101 est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ 1102 est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ 1103 est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ 1104 est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ 1105 break; 1106 default: 1107 est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ 1108 est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ 1109 est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ 1110 est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ 1111 break; 1112 } 1113 for (value = 0; value < 4; value++) 1114 dib7000p_write_word(state, 187 + value, est[value]); 1115 } 1116 1117 static int dib7000p_autosearch_start(struct dvb_frontend *demod) 1118 { 1119 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 1120 struct dib7000p_state *state = demod->demodulator_priv; 1121 struct dtv_frontend_properties schan; 1122 u32 value, factor; 1123 u32 internal = dib7000p_get_internal_freq(state); 1124 1125 schan = *ch; 1126 schan.modulation = QAM_64; 1127 schan.guard_interval = GUARD_INTERVAL_1_32; 1128 schan.transmission_mode = TRANSMISSION_MODE_8K; 1129 schan.code_rate_HP = FEC_2_3; 1130 schan.code_rate_LP = FEC_3_4; 1131 schan.hierarchy = 0; 1132 1133 dib7000p_set_channel(state, &schan, 7); 1134 1135 factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz); 1136 if (factor >= 5000) { 1137 if (state->version == SOC7090) 1138 factor = 2; 1139 else 1140 factor = 1; 1141 } else 1142 factor = 6; 1143 1144 value = 30 * internal * factor; 1145 dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); 1146 dib7000p_write_word(state, 7, (u16) (value & 0xffff)); 1147 value = 100 * internal * factor; 1148 dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); 1149 dib7000p_write_word(state, 9, (u16) (value & 0xffff)); 1150 value = 500 * internal * factor; 1151 dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); 1152 dib7000p_write_word(state, 11, (u16) (value & 0xffff)); 1153 1154 value = dib7000p_read_word(state, 0); 1155 dib7000p_write_word(state, 0, (u16) ((1 << 9) | value)); 1156 dib7000p_read_word(state, 1284); 1157 dib7000p_write_word(state, 0, (u16) value); 1158 1159 return 0; 1160 } 1161 1162 static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) 1163 { 1164 struct dib7000p_state *state = demod->demodulator_priv; 1165 u16 irq_pending = dib7000p_read_word(state, 1284); 1166 1167 if (irq_pending & 0x1) 1168 return 1; 1169 1170 if (irq_pending & 0x2) 1171 return 2; 1172 1173 return 0; 1174 } 1175 1176 static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) 1177 { 1178 static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 }; 1179 static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, 1180 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 1181 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 1182 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, 1183 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126, 1184 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 1185 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165, 1186 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 1187 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 1188 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212, 1189 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, 1190 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235, 1191 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243, 1192 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 1193 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, 1194 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 1195 255, 255, 255, 255, 255, 255 1196 }; 1197 1198 u32 xtal = state->cfg.bw->xtal_hz / 1000; 1199 int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz; 1200 int k; 1201 int coef_re[8], coef_im[8]; 1202 int bw_khz = bw; 1203 u32 pha; 1204 1205 dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal); 1206 1207 if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2) 1208 return; 1209 1210 bw_khz /= 100; 1211 1212 dib7000p_write_word(state, 142, 0x0610); 1213 1214 for (k = 0; k < 8; k++) { 1215 pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff; 1216 1217 if (pha == 0) { 1218 coef_re[k] = 256; 1219 coef_im[k] = 0; 1220 } else if (pha < 256) { 1221 coef_re[k] = sine[256 - (pha & 0xff)]; 1222 coef_im[k] = sine[pha & 0xff]; 1223 } else if (pha == 256) { 1224 coef_re[k] = 0; 1225 coef_im[k] = 256; 1226 } else if (pha < 512) { 1227 coef_re[k] = -sine[pha & 0xff]; 1228 coef_im[k] = sine[256 - (pha & 0xff)]; 1229 } else if (pha == 512) { 1230 coef_re[k] = -256; 1231 coef_im[k] = 0; 1232 } else if (pha < 768) { 1233 coef_re[k] = -sine[256 - (pha & 0xff)]; 1234 coef_im[k] = -sine[pha & 0xff]; 1235 } else if (pha == 768) { 1236 coef_re[k] = 0; 1237 coef_im[k] = -256; 1238 } else { 1239 coef_re[k] = sine[pha & 0xff]; 1240 coef_im[k] = -sine[256 - (pha & 0xff)]; 1241 } 1242 1243 coef_re[k] *= notch[k]; 1244 coef_re[k] += (1 << 14); 1245 if (coef_re[k] >= (1 << 24)) 1246 coef_re[k] = (1 << 24) - 1; 1247 coef_re[k] /= (1 << 15); 1248 1249 coef_im[k] *= notch[k]; 1250 coef_im[k] += (1 << 14); 1251 if (coef_im[k] >= (1 << 24)) 1252 coef_im[k] = (1 << 24) - 1; 1253 coef_im[k] /= (1 << 15); 1254 1255 dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]); 1256 1257 dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); 1258 dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); 1259 dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); 1260 } 1261 dib7000p_write_word(state, 143, 0); 1262 } 1263 1264 static int dib7000p_tune(struct dvb_frontend *demod) 1265 { 1266 struct dtv_frontend_properties *ch = &demod->dtv_property_cache; 1267 struct dib7000p_state *state = demod->demodulator_priv; 1268 u16 tmp = 0; 1269 1270 if (ch != NULL) 1271 dib7000p_set_channel(state, ch, 0); 1272 else 1273 return -EINVAL; 1274 1275 // restart demod 1276 dib7000p_write_word(state, 770, 0x4000); 1277 dib7000p_write_word(state, 770, 0x0000); 1278 msleep(45); 1279 1280 /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ 1281 tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); 1282 if (state->sfn_workaround_active) { 1283 dprintk("SFN workaround is active"); 1284 tmp |= (1 << 9); 1285 dib7000p_write_word(state, 166, 0x4000); 1286 } else { 1287 dib7000p_write_word(state, 166, 0x0000); 1288 } 1289 dib7000p_write_word(state, 29, tmp); 1290 1291 // never achieved a lock with that bandwidth so far - wait for osc-freq to update 1292 if (state->timf == 0) 1293 msleep(200); 1294 1295 /* offset loop parameters */ 1296 1297 /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ 1298 tmp = (6 << 8) | 0x80; 1299 switch (ch->transmission_mode) { 1300 case TRANSMISSION_MODE_2K: 1301 tmp |= (2 << 12); 1302 break; 1303 case TRANSMISSION_MODE_4K: 1304 tmp |= (3 << 12); 1305 break; 1306 default: 1307 case TRANSMISSION_MODE_8K: 1308 tmp |= (4 << 12); 1309 break; 1310 } 1311 dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ 1312 1313 /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ 1314 tmp = (0 << 4); 1315 switch (ch->transmission_mode) { 1316 case TRANSMISSION_MODE_2K: 1317 tmp |= 0x6; 1318 break; 1319 case TRANSMISSION_MODE_4K: 1320 tmp |= 0x7; 1321 break; 1322 default: 1323 case TRANSMISSION_MODE_8K: 1324 tmp |= 0x8; 1325 break; 1326 } 1327 dib7000p_write_word(state, 32, tmp); 1328 1329 /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ 1330 tmp = (0 << 4); 1331 switch (ch->transmission_mode) { 1332 case TRANSMISSION_MODE_2K: 1333 tmp |= 0x6; 1334 break; 1335 case TRANSMISSION_MODE_4K: 1336 tmp |= 0x7; 1337 break; 1338 default: 1339 case TRANSMISSION_MODE_8K: 1340 tmp |= 0x8; 1341 break; 1342 } 1343 dib7000p_write_word(state, 33, tmp); 1344 1345 tmp = dib7000p_read_word(state, 509); 1346 if (!((tmp >> 6) & 0x1)) { 1347 /* restart the fec */ 1348 tmp = dib7000p_read_word(state, 771); 1349 dib7000p_write_word(state, 771, tmp | (1 << 1)); 1350 dib7000p_write_word(state, 771, tmp); 1351 msleep(40); 1352 tmp = dib7000p_read_word(state, 509); 1353 } 1354 // we achieved a lock - it's time to update the osc freq 1355 if ((tmp >> 6) & 0x1) { 1356 dib7000p_update_timf(state); 1357 /* P_timf_alpha += 2 */ 1358 tmp = dib7000p_read_word(state, 26); 1359 dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12)); 1360 } 1361 1362 if (state->cfg.spur_protect) 1363 dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); 1364 1365 dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); 1366 1367 dib7000p_reset_stats(demod); 1368 1369 return 0; 1370 } 1371 1372 static int dib7000p_wakeup(struct dvb_frontend *demod) 1373 { 1374 struct dib7000p_state *state = demod->demodulator_priv; 1375 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); 1376 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); 1377 if (state->version == SOC7090) 1378 dib7000p_sad_calib(state); 1379 return 0; 1380 } 1381 1382 static int dib7000p_sleep(struct dvb_frontend *demod) 1383 { 1384 struct dib7000p_state *state = demod->demodulator_priv; 1385 if (state->version == SOC7090) 1386 return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); 1387 return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); 1388 } 1389 1390 static int dib7000p_identify(struct dib7000p_state *st) 1391 { 1392 u16 value; 1393 dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr); 1394 1395 if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { 1396 dprintk("wrong Vendor ID (read=0x%x)", value); 1397 return -EREMOTEIO; 1398 } 1399 1400 if ((value = dib7000p_read_word(st, 769)) != 0x4000) { 1401 dprintk("wrong Device ID (%x)", value); 1402 return -EREMOTEIO; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int dib7000p_get_frontend(struct dvb_frontend *fe) 1409 { 1410 struct dtv_frontend_properties *fep = &fe->dtv_property_cache; 1411 struct dib7000p_state *state = fe->demodulator_priv; 1412 u16 tps = dib7000p_read_word(state, 463); 1413 1414 fep->inversion = INVERSION_AUTO; 1415 1416 fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth); 1417 1418 switch ((tps >> 8) & 0x3) { 1419 case 0: 1420 fep->transmission_mode = TRANSMISSION_MODE_2K; 1421 break; 1422 case 1: 1423 fep->transmission_mode = TRANSMISSION_MODE_8K; 1424 break; 1425 /* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */ 1426 } 1427 1428 switch (tps & 0x3) { 1429 case 0: 1430 fep->guard_interval = GUARD_INTERVAL_1_32; 1431 break; 1432 case 1: 1433 fep->guard_interval = GUARD_INTERVAL_1_16; 1434 break; 1435 case 2: 1436 fep->guard_interval = GUARD_INTERVAL_1_8; 1437 break; 1438 case 3: 1439 fep->guard_interval = GUARD_INTERVAL_1_4; 1440 break; 1441 } 1442 1443 switch ((tps >> 14) & 0x3) { 1444 case 0: 1445 fep->modulation = QPSK; 1446 break; 1447 case 1: 1448 fep->modulation = QAM_16; 1449 break; 1450 case 2: 1451 default: 1452 fep->modulation = QAM_64; 1453 break; 1454 } 1455 1456 /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ 1457 /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ 1458 1459 fep->hierarchy = HIERARCHY_NONE; 1460 switch ((tps >> 5) & 0x7) { 1461 case 1: 1462 fep->code_rate_HP = FEC_1_2; 1463 break; 1464 case 2: 1465 fep->code_rate_HP = FEC_2_3; 1466 break; 1467 case 3: 1468 fep->code_rate_HP = FEC_3_4; 1469 break; 1470 case 5: 1471 fep->code_rate_HP = FEC_5_6; 1472 break; 1473 case 7: 1474 default: 1475 fep->code_rate_HP = FEC_7_8; 1476 break; 1477 1478 } 1479 1480 switch ((tps >> 2) & 0x7) { 1481 case 1: 1482 fep->code_rate_LP = FEC_1_2; 1483 break; 1484 case 2: 1485 fep->code_rate_LP = FEC_2_3; 1486 break; 1487 case 3: 1488 fep->code_rate_LP = FEC_3_4; 1489 break; 1490 case 5: 1491 fep->code_rate_LP = FEC_5_6; 1492 break; 1493 case 7: 1494 default: 1495 fep->code_rate_LP = FEC_7_8; 1496 break; 1497 } 1498 1499 /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ 1500 1501 return 0; 1502 } 1503 1504 static int dib7000p_set_frontend(struct dvb_frontend *fe) 1505 { 1506 struct dtv_frontend_properties *fep = &fe->dtv_property_cache; 1507 struct dib7000p_state *state = fe->demodulator_priv; 1508 int time, ret; 1509 1510 if (state->version == SOC7090) 1511 dib7090_set_diversity_in(fe, 0); 1512 else 1513 dib7000p_set_output_mode(state, OUTMODE_HIGH_Z); 1514 1515 /* maybe the parameter has been changed */ 1516 state->sfn_workaround_active = buggy_sfn_workaround; 1517 1518 if (fe->ops.tuner_ops.set_params) 1519 fe->ops.tuner_ops.set_params(fe); 1520 1521 /* start up the AGC */ 1522 state->agc_state = 0; 1523 do { 1524 time = dib7000p_agc_startup(fe); 1525 if (time != -1) 1526 msleep(time); 1527 } while (time != -1); 1528 1529 if (fep->transmission_mode == TRANSMISSION_MODE_AUTO || 1530 fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) { 1531 int i = 800, found; 1532 1533 dib7000p_autosearch_start(fe); 1534 do { 1535 msleep(1); 1536 found = dib7000p_autosearch_is_irq(fe); 1537 } while (found == 0 && i--); 1538 1539 dprintk("autosearch returns: %d", found); 1540 if (found == 0 || found == 1) 1541 return 0; 1542 1543 dib7000p_get_frontend(fe); 1544 } 1545 1546 ret = dib7000p_tune(fe); 1547 1548 /* make this a config parameter */ 1549 if (state->version == SOC7090) { 1550 dib7090_set_output_mode(fe, state->cfg.output_mode); 1551 if (state->cfg.enMpegOutput == 0) { 1552 dib7090_setDibTxMux(state, MPEG_ON_DIBTX); 1553 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); 1554 } 1555 } else 1556 dib7000p_set_output_mode(state, state->cfg.output_mode); 1557 1558 return ret; 1559 } 1560 1561 static int dib7000p_get_stats(struct dvb_frontend *fe, fe_status_t stat); 1562 1563 static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t * stat) 1564 { 1565 struct dib7000p_state *state = fe->demodulator_priv; 1566 u16 lock = dib7000p_read_word(state, 509); 1567 1568 *stat = 0; 1569 1570 if (lock & 0x8000) 1571 *stat |= FE_HAS_SIGNAL; 1572 if (lock & 0x3000) 1573 *stat |= FE_HAS_CARRIER; 1574 if (lock & 0x0100) 1575 *stat |= FE_HAS_VITERBI; 1576 if (lock & 0x0010) 1577 *stat |= FE_HAS_SYNC; 1578 if ((lock & 0x0038) == 0x38) 1579 *stat |= FE_HAS_LOCK; 1580 1581 dib7000p_get_stats(fe, *stat); 1582 1583 return 0; 1584 } 1585 1586 static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber) 1587 { 1588 struct dib7000p_state *state = fe->demodulator_priv; 1589 *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); 1590 return 0; 1591 } 1592 1593 static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) 1594 { 1595 struct dib7000p_state *state = fe->demodulator_priv; 1596 *unc = dib7000p_read_word(state, 506); 1597 return 0; 1598 } 1599 1600 static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength) 1601 { 1602 struct dib7000p_state *state = fe->demodulator_priv; 1603 u16 val = dib7000p_read_word(state, 394); 1604 *strength = 65535 - val; 1605 return 0; 1606 } 1607 1608 static u32 dib7000p_get_snr(struct dvb_frontend *fe) 1609 { 1610 struct dib7000p_state *state = fe->demodulator_priv; 1611 u16 val; 1612 s32 signal_mant, signal_exp, noise_mant, noise_exp; 1613 u32 result = 0; 1614 1615 val = dib7000p_read_word(state, 479); 1616 noise_mant = (val >> 4) & 0xff; 1617 noise_exp = ((val & 0xf) << 2); 1618 val = dib7000p_read_word(state, 480); 1619 noise_exp += ((val >> 14) & 0x3); 1620 if ((noise_exp & 0x20) != 0) 1621 noise_exp -= 0x40; 1622 1623 signal_mant = (val >> 6) & 0xFF; 1624 signal_exp = (val & 0x3F); 1625 if ((signal_exp & 0x20) != 0) 1626 signal_exp -= 0x40; 1627 1628 if (signal_mant != 0) 1629 result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant); 1630 else 1631 result = intlog10(2) * 10 * signal_exp - 100; 1632 1633 if (noise_mant != 0) 1634 result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant); 1635 else 1636 result -= intlog10(2) * 10 * noise_exp - 100; 1637 1638 return result; 1639 } 1640 1641 static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr) 1642 { 1643 u32 result; 1644 1645 result = dib7000p_get_snr(fe); 1646 1647 *snr = result / ((1 << 24) / 10); 1648 return 0; 1649 } 1650 1651 static void dib7000p_reset_stats(struct dvb_frontend *demod) 1652 { 1653 struct dib7000p_state *state = demod->demodulator_priv; 1654 struct dtv_frontend_properties *c = &demod->dtv_property_cache; 1655 u32 ucb; 1656 1657 memset(&c->strength, 0, sizeof(c->strength)); 1658 memset(&c->cnr, 0, sizeof(c->cnr)); 1659 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); 1660 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); 1661 memset(&c->block_error, 0, sizeof(c->block_error)); 1662 1663 c->strength.len = 1; 1664 c->cnr.len = 1; 1665 c->block_error.len = 1; 1666 c->block_count.len = 1; 1667 c->post_bit_error.len = 1; 1668 c->post_bit_count.len = 1; 1669 1670 c->strength.stat[0].scale = FE_SCALE_DECIBEL; 1671 c->strength.stat[0].uvalue = 0; 1672 1673 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1674 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1675 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1676 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1677 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1678 1679 dib7000p_read_unc_blocks(demod, &ucb); 1680 1681 state->old_ucb = ucb; 1682 state->ber_jiffies_stats = 0; 1683 state->per_jiffies_stats = 0; 1684 } 1685 1686 struct linear_segments { 1687 unsigned x; 1688 signed y; 1689 }; 1690 1691 /* 1692 * Table to estimate signal strength in dBm. 1693 * This table should be empirically determinated by measuring the signal 1694 * strength generated by a RF generator directly connected into 1695 * a device. 1696 * This table was determinated by measuring the signal strength generated 1697 * by a DTA-2111 RF generator directly connected into a dib7000p device 1698 * (a Hauppauge Nova-TD stick), using a good quality 3 meters length 1699 * RC6 cable and good RC6 connectors, connected directly to antenna 1. 1700 * As the minimum output power of DTA-2111 is -31dBm, a 16 dBm attenuator 1701 * were used, for the lower power values. 1702 * The real value can actually be on other devices, or even at the 1703 * second antena input, depending on several factors, like if LNA 1704 * is enabled or not, if diversity is enabled, type of connectors, etc. 1705 * Yet, it is better to use this measure in dB than a random non-linear 1706 * percentage value, especially for antenna adjustments. 1707 * On my tests, the precision of the measure using this table is about 1708 * 0.5 dB, with sounds reasonable enough to adjust antennas. 1709 */ 1710 #define DB_OFFSET 131000 1711 1712 static struct linear_segments strength_to_db_table[] = { 1713 { 63630, DB_OFFSET - 20500}, 1714 { 62273, DB_OFFSET - 21000}, 1715 { 60162, DB_OFFSET - 22000}, 1716 { 58730, DB_OFFSET - 23000}, 1717 { 58294, DB_OFFSET - 24000}, 1718 { 57778, DB_OFFSET - 25000}, 1719 { 57320, DB_OFFSET - 26000}, 1720 { 56779, DB_OFFSET - 27000}, 1721 { 56293, DB_OFFSET - 28000}, 1722 { 55724, DB_OFFSET - 29000}, 1723 { 55145, DB_OFFSET - 30000}, 1724 { 54680, DB_OFFSET - 31000}, 1725 { 54293, DB_OFFSET - 32000}, 1726 { 53813, DB_OFFSET - 33000}, 1727 { 53427, DB_OFFSET - 34000}, 1728 { 52981, DB_OFFSET - 35000}, 1729 1730 { 52636, DB_OFFSET - 36000}, 1731 { 52014, DB_OFFSET - 37000}, 1732 { 51674, DB_OFFSET - 38000}, 1733 { 50692, DB_OFFSET - 39000}, 1734 { 49824, DB_OFFSET - 40000}, 1735 { 49052, DB_OFFSET - 41000}, 1736 { 48436, DB_OFFSET - 42000}, 1737 { 47836, DB_OFFSET - 43000}, 1738 { 47368, DB_OFFSET - 44000}, 1739 { 46468, DB_OFFSET - 45000}, 1740 { 45597, DB_OFFSET - 46000}, 1741 { 44586, DB_OFFSET - 47000}, 1742 { 43667, DB_OFFSET - 48000}, 1743 { 42673, DB_OFFSET - 49000}, 1744 { 41816, DB_OFFSET - 50000}, 1745 { 40876, DB_OFFSET - 51000}, 1746 { 0, 0}, 1747 }; 1748 1749 static u32 interpolate_value(u32 value, struct linear_segments *segments, 1750 unsigned len) 1751 { 1752 u64 tmp64; 1753 u32 dx; 1754 s32 dy; 1755 int i, ret; 1756 1757 if (value >= segments[0].x) 1758 return segments[0].y; 1759 if (value < segments[len-1].x) 1760 return segments[len-1].y; 1761 1762 for (i = 1; i < len - 1; i++) { 1763 /* If value is identical, no need to interpolate */ 1764 if (value == segments[i].x) 1765 return segments[i].y; 1766 if (value > segments[i].x) 1767 break; 1768 } 1769 1770 /* Linear interpolation between the two (x,y) points */ 1771 dy = segments[i - 1].y - segments[i].y; 1772 dx = segments[i - 1].x - segments[i].x; 1773 1774 tmp64 = value - segments[i].x; 1775 tmp64 *= dy; 1776 do_div(tmp64, dx); 1777 ret = segments[i].y + tmp64; 1778 1779 return ret; 1780 } 1781 1782 /* FIXME: may require changes - this one was borrowed from dib8000 */ 1783 static u32 dib7000p_get_time_us(struct dvb_frontend *demod, int layer) 1784 { 1785 struct dtv_frontend_properties *c = &demod->dtv_property_cache; 1786 u64 time_us, tmp64; 1787 u32 tmp, denom; 1788 int guard, rate_num, rate_denum = 1, bits_per_symbol; 1789 int interleaving = 0, fft_div; 1790 1791 switch (c->guard_interval) { 1792 case GUARD_INTERVAL_1_4: 1793 guard = 4; 1794 break; 1795 case GUARD_INTERVAL_1_8: 1796 guard = 8; 1797 break; 1798 case GUARD_INTERVAL_1_16: 1799 guard = 16; 1800 break; 1801 default: 1802 case GUARD_INTERVAL_1_32: 1803 guard = 32; 1804 break; 1805 } 1806 1807 switch (c->transmission_mode) { 1808 case TRANSMISSION_MODE_2K: 1809 fft_div = 4; 1810 break; 1811 case TRANSMISSION_MODE_4K: 1812 fft_div = 2; 1813 break; 1814 default: 1815 case TRANSMISSION_MODE_8K: 1816 fft_div = 1; 1817 break; 1818 } 1819 1820 switch (c->modulation) { 1821 case DQPSK: 1822 case QPSK: 1823 bits_per_symbol = 2; 1824 break; 1825 case QAM_16: 1826 bits_per_symbol = 4; 1827 break; 1828 default: 1829 case QAM_64: 1830 bits_per_symbol = 6; 1831 break; 1832 } 1833 1834 switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) { 1835 case FEC_1_2: 1836 rate_num = 1; 1837 rate_denum = 2; 1838 break; 1839 case FEC_2_3: 1840 rate_num = 2; 1841 rate_denum = 3; 1842 break; 1843 case FEC_3_4: 1844 rate_num = 3; 1845 rate_denum = 4; 1846 break; 1847 case FEC_5_6: 1848 rate_num = 5; 1849 rate_denum = 6; 1850 break; 1851 default: 1852 case FEC_7_8: 1853 rate_num = 7; 1854 rate_denum = 8; 1855 break; 1856 } 1857 1858 interleaving = interleaving; 1859 1860 denom = bits_per_symbol * rate_num * fft_div * 384; 1861 1862 /* If calculus gets wrong, wait for 1s for the next stats */ 1863 if (!denom) 1864 return 0; 1865 1866 /* Estimate the period for the total bit rate */ 1867 time_us = rate_denum * (1008 * 1562500L); 1868 tmp64 = time_us; 1869 do_div(tmp64, guard); 1870 time_us = time_us + tmp64; 1871 time_us += denom / 2; 1872 do_div(time_us, denom); 1873 1874 tmp = 1008 * 96 * interleaving; 1875 time_us += tmp + tmp / guard; 1876 1877 return time_us; 1878 } 1879 1880 static int dib7000p_get_stats(struct dvb_frontend *demod, fe_status_t stat) 1881 { 1882 struct dib7000p_state *state = demod->demodulator_priv; 1883 struct dtv_frontend_properties *c = &demod->dtv_property_cache; 1884 int i; 1885 int show_per_stats = 0; 1886 u32 time_us = 0, val, snr; 1887 u64 blocks, ucb; 1888 s32 db; 1889 u16 strength; 1890 1891 /* Get Signal strength */ 1892 dib7000p_read_signal_strength(demod, &strength); 1893 val = strength; 1894 db = interpolate_value(val, 1895 strength_to_db_table, 1896 ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET; 1897 c->strength.stat[0].svalue = db; 1898 1899 /* UCB/BER/CNR measures require lock */ 1900 if (!(stat & FE_HAS_LOCK)) { 1901 c->cnr.len = 1; 1902 c->block_count.len = 1; 1903 c->block_error.len = 1; 1904 c->post_bit_error.len = 1; 1905 c->post_bit_count.len = 1; 1906 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1907 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1908 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1909 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1910 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 1911 return 0; 1912 } 1913 1914 /* Check if time for stats was elapsed */ 1915 if (time_after(jiffies, state->per_jiffies_stats)) { 1916 state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); 1917 1918 /* Get SNR */ 1919 snr = dib7000p_get_snr(demod); 1920 if (snr) 1921 snr = (1000L * snr) >> 24; 1922 else 1923 snr = 0; 1924 c->cnr.stat[0].svalue = snr; 1925 c->cnr.stat[0].scale = FE_SCALE_DECIBEL; 1926 1927 /* Get UCB measures */ 1928 dib7000p_read_unc_blocks(demod, &val); 1929 ucb = val - state->old_ucb; 1930 if (val < state->old_ucb) 1931 ucb += 0x100000000LL; 1932 1933 c->block_error.stat[0].scale = FE_SCALE_COUNTER; 1934 c->block_error.stat[0].uvalue = ucb; 1935 1936 /* Estimate the number of packets based on bitrate */ 1937 if (!time_us) 1938 time_us = dib7000p_get_time_us(demod, -1); 1939 1940 if (time_us) { 1941 blocks = 1250000ULL * 1000000ULL; 1942 do_div(blocks, time_us * 8 * 204); 1943 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 1944 c->block_count.stat[0].uvalue += blocks; 1945 } 1946 1947 show_per_stats = 1; 1948 } 1949 1950 /* Get post-BER measures */ 1951 if (time_after(jiffies, state->ber_jiffies_stats)) { 1952 time_us = dib7000p_get_time_us(demod, -1); 1953 state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); 1954 1955 dprintk("Next all layers stats available in %u us.", time_us); 1956 1957 dib7000p_read_ber(demod, &val); 1958 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 1959 c->post_bit_error.stat[0].uvalue += val; 1960 1961 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 1962 c->post_bit_count.stat[0].uvalue += 100000000; 1963 } 1964 1965 /* Get PER measures */ 1966 if (show_per_stats) { 1967 dib7000p_read_unc_blocks(demod, &val); 1968 1969 c->block_error.stat[0].scale = FE_SCALE_COUNTER; 1970 c->block_error.stat[0].uvalue += val; 1971 1972 time_us = dib7000p_get_time_us(demod, i); 1973 if (time_us) { 1974 blocks = 1250000ULL * 1000000ULL; 1975 do_div(blocks, time_us * 8 * 204); 1976 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 1977 c->block_count.stat[0].uvalue += blocks; 1978 } 1979 } 1980 return 0; 1981 } 1982 1983 static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) 1984 { 1985 tune->min_delay_ms = 1000; 1986 return 0; 1987 } 1988 1989 static void dib7000p_release(struct dvb_frontend *demod) 1990 { 1991 struct dib7000p_state *st = demod->demodulator_priv; 1992 dibx000_exit_i2c_master(&st->i2c_master); 1993 i2c_del_adapter(&st->dib7090_tuner_adap); 1994 kfree(st); 1995 } 1996 1997 static int dib7000pc_detection(struct i2c_adapter *i2c_adap) 1998 { 1999 u8 *tx, *rx; 2000 struct i2c_msg msg[2] = { 2001 {.addr = 18 >> 1, .flags = 0, .len = 2}, 2002 {.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2}, 2003 }; 2004 int ret = 0; 2005 2006 tx = kzalloc(2*sizeof(u8), GFP_KERNEL); 2007 if (!tx) 2008 return -ENOMEM; 2009 rx = kzalloc(2*sizeof(u8), GFP_KERNEL); 2010 if (!rx) { 2011 ret = -ENOMEM; 2012 goto rx_memory_error; 2013 } 2014 2015 msg[0].buf = tx; 2016 msg[1].buf = rx; 2017 2018 tx[0] = 0x03; 2019 tx[1] = 0x00; 2020 2021 if (i2c_transfer(i2c_adap, msg, 2) == 2) 2022 if (rx[0] == 0x01 && rx[1] == 0xb3) { 2023 dprintk("-D- DiB7000PC detected"); 2024 return 1; 2025 } 2026 2027 msg[0].addr = msg[1].addr = 0x40; 2028 2029 if (i2c_transfer(i2c_adap, msg, 2) == 2) 2030 if (rx[0] == 0x01 && rx[1] == 0xb3) { 2031 dprintk("-D- DiB7000PC detected"); 2032 return 1; 2033 } 2034 2035 dprintk("-D- DiB7000PC not detected"); 2036 2037 kfree(rx); 2038 rx_memory_error: 2039 kfree(tx); 2040 return ret; 2041 } 2042 2043 static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) 2044 { 2045 struct dib7000p_state *st = demod->demodulator_priv; 2046 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); 2047 } 2048 2049 static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) 2050 { 2051 struct dib7000p_state *state = fe->demodulator_priv; 2052 u16 val = dib7000p_read_word(state, 235) & 0xffef; 2053 val |= (onoff & 0x1) << 4; 2054 dprintk("PID filter enabled %d", onoff); 2055 return dib7000p_write_word(state, 235, val); 2056 } 2057 2058 static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) 2059 { 2060 struct dib7000p_state *state = fe->demodulator_priv; 2061 dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff); 2062 return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0); 2063 } 2064 2065 static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) 2066 { 2067 struct dib7000p_state *dpst; 2068 int k = 0; 2069 u8 new_addr = 0; 2070 2071 dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); 2072 if (!dpst) 2073 return -ENOMEM; 2074 2075 dpst->i2c_adap = i2c; 2076 mutex_init(&dpst->i2c_buffer_lock); 2077 2078 for (k = no_of_demods - 1; k >= 0; k--) { 2079 dpst->cfg = cfg[k]; 2080 2081 /* designated i2c address */ 2082 if (cfg[k].default_i2c_addr != 0) 2083 new_addr = cfg[k].default_i2c_addr + (k << 1); 2084 else 2085 new_addr = (0x40 + k) << 1; 2086 dpst->i2c_addr = new_addr; 2087 dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ 2088 if (dib7000p_identify(dpst) != 0) { 2089 dpst->i2c_addr = default_addr; 2090 dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ 2091 if (dib7000p_identify(dpst) != 0) { 2092 dprintk("DiB7000P #%d: not identified\n", k); 2093 kfree(dpst); 2094 return -EIO; 2095 } 2096 } 2097 2098 /* start diversity to pull_down div_str - just for i2c-enumeration */ 2099 dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY); 2100 2101 /* set new i2c address and force divstart */ 2102 dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2); 2103 2104 dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); 2105 } 2106 2107 for (k = 0; k < no_of_demods; k++) { 2108 dpst->cfg = cfg[k]; 2109 if (cfg[k].default_i2c_addr != 0) 2110 dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1; 2111 else 2112 dpst->i2c_addr = (0x40 + k) << 1; 2113 2114 // unforce divstr 2115 dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2); 2116 2117 /* deactivate div - it was just for i2c-enumeration */ 2118 dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z); 2119 } 2120 2121 kfree(dpst); 2122 return 0; 2123 } 2124 2125 static const s32 lut_1000ln_mant[] = { 2126 6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600 2127 }; 2128 2129 static s32 dib7000p_get_adc_power(struct dvb_frontend *fe) 2130 { 2131 struct dib7000p_state *state = fe->demodulator_priv; 2132 u32 tmp_val = 0, exp = 0, mant = 0; 2133 s32 pow_i; 2134 u16 buf[2]; 2135 u8 ix = 0; 2136 2137 buf[0] = dib7000p_read_word(state, 0x184); 2138 buf[1] = dib7000p_read_word(state, 0x185); 2139 pow_i = (buf[0] << 16) | buf[1]; 2140 dprintk("raw pow_i = %d", pow_i); 2141 2142 tmp_val = pow_i; 2143 while (tmp_val >>= 1) 2144 exp++; 2145 2146 mant = (pow_i * 1000 / (1 << exp)); 2147 dprintk(" mant = %d exp = %d", mant / 1000, exp); 2148 2149 ix = (u8) ((mant - 1000) / 100); /* index of the LUT */ 2150 dprintk(" ix = %d", ix); 2151 2152 pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908); 2153 pow_i = (pow_i << 8) / 1000; 2154 dprintk(" pow_i = %d", pow_i); 2155 2156 return pow_i; 2157 } 2158 2159 static int map_addr_to_serpar_number(struct i2c_msg *msg) 2160 { 2161 if ((msg->buf[0] <= 15)) 2162 msg->buf[0] -= 1; 2163 else if (msg->buf[0] == 17) 2164 msg->buf[0] = 15; 2165 else if (msg->buf[0] == 16) 2166 msg->buf[0] = 17; 2167 else if (msg->buf[0] == 19) 2168 msg->buf[0] = 16; 2169 else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) 2170 msg->buf[0] -= 3; 2171 else if (msg->buf[0] == 28) 2172 msg->buf[0] = 23; 2173 else 2174 return -EINVAL; 2175 return 0; 2176 } 2177 2178 static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 2179 { 2180 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); 2181 u8 n_overflow = 1; 2182 u16 i = 1000; 2183 u16 serpar_num = msg[0].buf[0]; 2184 2185 while (n_overflow == 1 && i) { 2186 n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; 2187 i--; 2188 if (i == 0) 2189 dprintk("Tuner ITF: write busy (overflow)"); 2190 } 2191 dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); 2192 dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); 2193 2194 return num; 2195 } 2196 2197 static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 2198 { 2199 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); 2200 u8 n_overflow = 1, n_empty = 1; 2201 u16 i = 1000; 2202 u16 serpar_num = msg[0].buf[0]; 2203 u16 read_word; 2204 2205 while (n_overflow == 1 && i) { 2206 n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; 2207 i--; 2208 if (i == 0) 2209 dprintk("TunerITF: read busy (overflow)"); 2210 } 2211 dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f)); 2212 2213 i = 1000; 2214 while (n_empty == 1 && i) { 2215 n_empty = dib7000p_read_word(state, 1984) & 0x1; 2216 i--; 2217 if (i == 0) 2218 dprintk("TunerITF: read busy (empty)"); 2219 } 2220 read_word = dib7000p_read_word(state, 1987); 2221 msg[1].buf[0] = (read_word >> 8) & 0xff; 2222 msg[1].buf[1] = (read_word) & 0xff; 2223 2224 return num; 2225 } 2226 2227 static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 2228 { 2229 if (map_addr_to_serpar_number(&msg[0]) == 0) { /* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */ 2230 if (num == 1) { /* write */ 2231 return w7090p_tuner_write_serpar(i2c_adap, msg, 1); 2232 } else { /* read */ 2233 return w7090p_tuner_read_serpar(i2c_adap, msg, 2); 2234 } 2235 } 2236 return num; 2237 } 2238 2239 static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, 2240 struct i2c_msg msg[], int num, u16 apb_address) 2241 { 2242 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); 2243 u16 word; 2244 2245 if (num == 1) { /* write */ 2246 dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); 2247 } else { 2248 word = dib7000p_read_word(state, apb_address); 2249 msg[1].buf[0] = (word >> 8) & 0xff; 2250 msg[1].buf[1] = (word) & 0xff; 2251 } 2252 2253 return num; 2254 } 2255 2256 static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) 2257 { 2258 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); 2259 2260 u16 apb_address = 0, word; 2261 int i = 0; 2262 switch (msg[0].buf[0]) { 2263 case 0x12: 2264 apb_address = 1920; 2265 break; 2266 case 0x14: 2267 apb_address = 1921; 2268 break; 2269 case 0x24: 2270 apb_address = 1922; 2271 break; 2272 case 0x1a: 2273 apb_address = 1923; 2274 break; 2275 case 0x22: 2276 apb_address = 1924; 2277 break; 2278 case 0x33: 2279 apb_address = 1926; 2280 break; 2281 case 0x34: 2282 apb_address = 1927; 2283 break; 2284 case 0x35: 2285 apb_address = 1928; 2286 break; 2287 case 0x36: 2288 apb_address = 1929; 2289 break; 2290 case 0x37: 2291 apb_address = 1930; 2292 break; 2293 case 0x38: 2294 apb_address = 1931; 2295 break; 2296 case 0x39: 2297 apb_address = 1932; 2298 break; 2299 case 0x2a: 2300 apb_address = 1935; 2301 break; 2302 case 0x2b: 2303 apb_address = 1936; 2304 break; 2305 case 0x2c: 2306 apb_address = 1937; 2307 break; 2308 case 0x2d: 2309 apb_address = 1938; 2310 break; 2311 case 0x2e: 2312 apb_address = 1939; 2313 break; 2314 case 0x2f: 2315 apb_address = 1940; 2316 break; 2317 case 0x30: 2318 apb_address = 1941; 2319 break; 2320 case 0x31: 2321 apb_address = 1942; 2322 break; 2323 case 0x32: 2324 apb_address = 1943; 2325 break; 2326 case 0x3e: 2327 apb_address = 1944; 2328 break; 2329 case 0x3f: 2330 apb_address = 1945; 2331 break; 2332 case 0x40: 2333 apb_address = 1948; 2334 break; 2335 case 0x25: 2336 apb_address = 914; 2337 break; 2338 case 0x26: 2339 apb_address = 915; 2340 break; 2341 case 0x27: 2342 apb_address = 917; 2343 break; 2344 case 0x28: 2345 apb_address = 916; 2346 break; 2347 case 0x1d: 2348 i = ((dib7000p_read_word(state, 72) >> 12) & 0x3); 2349 word = dib7000p_read_word(state, 384 + i); 2350 msg[1].buf[0] = (word >> 8) & 0xff; 2351 msg[1].buf[1] = (word) & 0xff; 2352 return num; 2353 case 0x1f: 2354 if (num == 1) { /* write */ 2355 word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]); 2356 word &= 0x3; 2357 word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); 2358 dib7000p_write_word(state, 72, word); /* Set the proper input */ 2359 return num; 2360 } 2361 } 2362 2363 if (apb_address != 0) /* R/W acces via APB */ 2364 return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address); 2365 else /* R/W access via SERPAR */ 2366 return w7090p_tuner_rw_serpar(i2c_adap, msg, num); 2367 2368 return 0; 2369 } 2370 2371 static u32 dib7000p_i2c_func(struct i2c_adapter *adapter) 2372 { 2373 return I2C_FUNC_I2C; 2374 } 2375 2376 static struct i2c_algorithm dib7090_tuner_xfer_algo = { 2377 .master_xfer = dib7090_tuner_xfer, 2378 .functionality = dib7000p_i2c_func, 2379 }; 2380 2381 static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe) 2382 { 2383 struct dib7000p_state *st = fe->demodulator_priv; 2384 return &st->dib7090_tuner_adap; 2385 } 2386 2387 static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive) 2388 { 2389 u16 reg; 2390 2391 /* drive host bus 2, 3, 4 */ 2392 reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); 2393 reg |= (drive << 12) | (drive << 6) | drive; 2394 dib7000p_write_word(state, 1798, reg); 2395 2396 /* drive host bus 5,6 */ 2397 reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); 2398 reg |= (drive << 8) | (drive << 2); 2399 dib7000p_write_word(state, 1799, reg); 2400 2401 /* drive host bus 7, 8, 9 */ 2402 reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); 2403 reg |= (drive << 12) | (drive << 6) | drive; 2404 dib7000p_write_word(state, 1800, reg); 2405 2406 /* drive host bus 10, 11 */ 2407 reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); 2408 reg |= (drive << 8) | (drive << 2); 2409 dib7000p_write_word(state, 1801, reg); 2410 2411 /* drive host bus 12, 13, 14 */ 2412 reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); 2413 reg |= (drive << 12) | (drive << 6) | drive; 2414 dib7000p_write_word(state, 1802, reg); 2415 2416 return 0; 2417 } 2418 2419 static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize) 2420 { 2421 u32 quantif = 3; 2422 u32 nom = (insertExtSynchro * P_Kin + syncSize); 2423 u32 denom = P_Kout; 2424 u32 syncFreq = ((nom << quantif) / denom); 2425 2426 if ((syncFreq & ((1 << quantif) - 1)) != 0) 2427 syncFreq = (syncFreq >> quantif) + 1; 2428 else 2429 syncFreq = (syncFreq >> quantif); 2430 2431 if (syncFreq != 0) 2432 syncFreq = syncFreq - 1; 2433 2434 return syncFreq; 2435 } 2436 2437 static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize) 2438 { 2439 dprintk("Configure DibStream Tx"); 2440 2441 dib7000p_write_word(state, 1615, 1); 2442 dib7000p_write_word(state, 1603, P_Kin); 2443 dib7000p_write_word(state, 1605, P_Kout); 2444 dib7000p_write_word(state, 1606, insertExtSynchro); 2445 dib7000p_write_word(state, 1608, synchroMode); 2446 dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff); 2447 dib7000p_write_word(state, 1610, syncWord & 0xffff); 2448 dib7000p_write_word(state, 1612, syncSize); 2449 dib7000p_write_word(state, 1615, 0); 2450 2451 return 0; 2452 } 2453 2454 static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize, 2455 u32 dataOutRate) 2456 { 2457 u32 syncFreq; 2458 2459 dprintk("Configure DibStream Rx"); 2460 if ((P_Kin != 0) && (P_Kout != 0)) { 2461 syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize); 2462 dib7000p_write_word(state, 1542, syncFreq); 2463 } 2464 dib7000p_write_word(state, 1554, 1); 2465 dib7000p_write_word(state, 1536, P_Kin); 2466 dib7000p_write_word(state, 1537, P_Kout); 2467 dib7000p_write_word(state, 1539, synchroMode); 2468 dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff); 2469 dib7000p_write_word(state, 1541, syncWord & 0xffff); 2470 dib7000p_write_word(state, 1543, syncSize); 2471 dib7000p_write_word(state, 1544, dataOutRate); 2472 dib7000p_write_word(state, 1554, 0); 2473 2474 return 0; 2475 } 2476 2477 static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff) 2478 { 2479 u16 reg_1287 = dib7000p_read_word(state, 1287); 2480 2481 switch (onoff) { 2482 case 1: 2483 reg_1287 &= ~(1<<7); 2484 break; 2485 case 0: 2486 reg_1287 |= (1<<7); 2487 break; 2488 } 2489 2490 dib7000p_write_word(state, 1287, reg_1287); 2491 } 2492 2493 static void dib7090_configMpegMux(struct dib7000p_state *state, 2494 u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) 2495 { 2496 dprintk("Enable Mpeg mux"); 2497 2498 dib7090_enMpegMux(state, 0); 2499 2500 /* If the input mode is MPEG do not divide the serial clock */ 2501 if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) 2502 enSerialClkDiv2 = 0; 2503 2504 dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2) 2505 | ((enSerialMode & 0x1) << 1) 2506 | (enSerialClkDiv2 & 0x1)); 2507 2508 dib7090_enMpegMux(state, 1); 2509 } 2510 2511 static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode) 2512 { 2513 u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7); 2514 2515 switch (mode) { 2516 case MPEG_ON_DIBTX: 2517 dprintk("SET MPEG ON DIBSTREAM TX"); 2518 dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); 2519 reg_1288 |= (1<<9); 2520 break; 2521 case DIV_ON_DIBTX: 2522 dprintk("SET DIV_OUT ON DIBSTREAM TX"); 2523 dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); 2524 reg_1288 |= (1<<8); 2525 break; 2526 case ADC_ON_DIBTX: 2527 dprintk("SET ADC_OUT ON DIBSTREAM TX"); 2528 dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); 2529 reg_1288 |= (1<<7); 2530 break; 2531 default: 2532 break; 2533 } 2534 dib7000p_write_word(state, 1288, reg_1288); 2535 } 2536 2537 static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode) 2538 { 2539 u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4); 2540 2541 switch (mode) { 2542 case DEMOUT_ON_HOSTBUS: 2543 dprintk("SET DEM OUT OLD INTERF ON HOST BUS"); 2544 dib7090_enMpegMux(state, 0); 2545 reg_1288 |= (1<<6); 2546 break; 2547 case DIBTX_ON_HOSTBUS: 2548 dprintk("SET DIBSTREAM TX ON HOST BUS"); 2549 dib7090_enMpegMux(state, 0); 2550 reg_1288 |= (1<<5); 2551 break; 2552 case MPEG_ON_HOSTBUS: 2553 dprintk("SET MPEG MUX ON HOST BUS"); 2554 reg_1288 |= (1<<4); 2555 break; 2556 default: 2557 break; 2558 } 2559 dib7000p_write_word(state, 1288, reg_1288); 2560 } 2561 2562 static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff) 2563 { 2564 struct dib7000p_state *state = fe->demodulator_priv; 2565 u16 reg_1287; 2566 2567 switch (onoff) { 2568 case 0: /* only use the internal way - not the diversity input */ 2569 dprintk("%s mode OFF : by default Enable Mpeg INPUT", __func__); 2570 dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); 2571 2572 /* Do not divide the serial clock of MPEG MUX */ 2573 /* in SERIAL MODE in case input mode MPEG is used */ 2574 reg_1287 = dib7000p_read_word(state, 1287); 2575 /* enSerialClkDiv2 == 1 ? */ 2576 if ((reg_1287 & 0x1) == 1) { 2577 /* force enSerialClkDiv2 = 0 */ 2578 reg_1287 &= ~0x1; 2579 dib7000p_write_word(state, 1287, reg_1287); 2580 } 2581 state->input_mode_mpeg = 1; 2582 break; 2583 case 1: /* both ways */ 2584 case 2: /* only the diversity input */ 2585 dprintk("%s ON : Enable diversity INPUT", __func__); 2586 dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); 2587 state->input_mode_mpeg = 0; 2588 break; 2589 } 2590 2591 dib7000p_set_diversity_in(&state->demod, onoff); 2592 return 0; 2593 } 2594 2595 static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode) 2596 { 2597 struct dib7000p_state *state = fe->demodulator_priv; 2598 2599 u16 outreg, smo_mode, fifo_threshold; 2600 u8 prefer_mpeg_mux_use = 1; 2601 int ret = 0; 2602 2603 dib7090_host_bus_drive(state, 1); 2604 2605 fifo_threshold = 1792; 2606 smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); 2607 outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1)); 2608 2609 switch (mode) { 2610 case OUTMODE_HIGH_Z: 2611 outreg = 0; 2612 break; 2613 2614 case OUTMODE_MPEG2_SERIAL: 2615 if (prefer_mpeg_mux_use) { 2616 dprintk("setting output mode TS_SERIAL using Mpeg Mux"); 2617 dib7090_configMpegMux(state, 3, 1, 1); 2618 dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); 2619 } else {/* Use Smooth block */ 2620 dprintk("setting output mode TS_SERIAL using Smooth bloc"); 2621 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 2622 outreg |= (2<<6) | (0 << 1); 2623 } 2624 break; 2625 2626 case OUTMODE_MPEG2_PAR_GATED_CLK: 2627 if (prefer_mpeg_mux_use) { 2628 dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux"); 2629 dib7090_configMpegMux(state, 2, 0, 0); 2630 dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); 2631 } else { /* Use Smooth block */ 2632 dprintk("setting output mode TS_PARALLEL_GATED using Smooth block"); 2633 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 2634 outreg |= (0<<6); 2635 } 2636 break; 2637 2638 case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ 2639 dprintk("setting output mode TS_PARALLEL_CONT using Smooth block"); 2640 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 2641 outreg |= (1<<6); 2642 break; 2643 2644 case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */ 2645 dprintk("setting output mode TS_FIFO using Smooth block"); 2646 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); 2647 outreg |= (5<<6); 2648 smo_mode |= (3 << 1); 2649 fifo_threshold = 512; 2650 break; 2651 2652 case OUTMODE_DIVERSITY: 2653 dprintk("setting output mode MODE_DIVERSITY"); 2654 dib7090_setDibTxMux(state, DIV_ON_DIBTX); 2655 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); 2656 break; 2657 2658 case OUTMODE_ANALOG_ADC: 2659 dprintk("setting output mode MODE_ANALOG_ADC"); 2660 dib7090_setDibTxMux(state, ADC_ON_DIBTX); 2661 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); 2662 break; 2663 } 2664 if (mode != OUTMODE_HIGH_Z) 2665 outreg |= (1 << 10); 2666 2667 if (state->cfg.output_mpeg2_in_188_bytes) 2668 smo_mode |= (1 << 5); 2669 2670 ret |= dib7000p_write_word(state, 235, smo_mode); 2671 ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ 2672 ret |= dib7000p_write_word(state, 1286, outreg); 2673 2674 return ret; 2675 } 2676 2677 static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff) 2678 { 2679 struct dib7000p_state *state = fe->demodulator_priv; 2680 u16 en_cur_state; 2681 2682 dprintk("sleep dib7090: %d", onoff); 2683 2684 en_cur_state = dib7000p_read_word(state, 1922); 2685 2686 if (en_cur_state > 0xff) 2687 state->tuner_enable = en_cur_state; 2688 2689 if (onoff) 2690 en_cur_state &= 0x00ff; 2691 else { 2692 if (state->tuner_enable != 0) 2693 en_cur_state = state->tuner_enable; 2694 } 2695 2696 dib7000p_write_word(state, 1922, en_cur_state); 2697 2698 return 0; 2699 } 2700 2701 static int dib7090_get_adc_power(struct dvb_frontend *fe) 2702 { 2703 return dib7000p_get_adc_power(fe); 2704 } 2705 2706 static int dib7090_slave_reset(struct dvb_frontend *fe) 2707 { 2708 struct dib7000p_state *state = fe->demodulator_priv; 2709 u16 reg; 2710 2711 reg = dib7000p_read_word(state, 1794); 2712 dib7000p_write_word(state, 1794, reg | (4 << 12)); 2713 2714 dib7000p_write_word(state, 1032, 0xffff); 2715 return 0; 2716 } 2717 2718 static struct dvb_frontend_ops dib7000p_ops; 2719 static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) 2720 { 2721 struct dvb_frontend *demod; 2722 struct dib7000p_state *st; 2723 st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); 2724 if (st == NULL) 2725 return NULL; 2726 2727 memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); 2728 st->i2c_adap = i2c_adap; 2729 st->i2c_addr = i2c_addr; 2730 st->gpio_val = cfg->gpio_val; 2731 st->gpio_dir = cfg->gpio_dir; 2732 2733 /* Ensure the output mode remains at the previous default if it's 2734 * not specifically set by the caller. 2735 */ 2736 if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) 2737 st->cfg.output_mode = OUTMODE_MPEG2_FIFO; 2738 2739 demod = &st->demod; 2740 demod->demodulator_priv = st; 2741 memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); 2742 mutex_init(&st->i2c_buffer_lock); 2743 2744 dib7000p_write_word(st, 1287, 0x0003); /* sram lead in, rdy */ 2745 2746 if (dib7000p_identify(st) != 0) 2747 goto error; 2748 2749 st->version = dib7000p_read_word(st, 897); 2750 2751 /* FIXME: make sure the dev.parent field is initialized, or else 2752 request_firmware() will hit an OOPS (this should be moved somewhere 2753 more common) */ 2754 st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent; 2755 2756 dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); 2757 2758 /* init 7090 tuner adapter */ 2759 strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name)); 2760 st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo; 2761 st->dib7090_tuner_adap.algo_data = NULL; 2762 st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent; 2763 i2c_set_adapdata(&st->dib7090_tuner_adap, st); 2764 i2c_add_adapter(&st->dib7090_tuner_adap); 2765 2766 dib7000p_demod_reset(st); 2767 2768 dib7000p_reset_stats(demod); 2769 2770 if (st->version == SOC7090) { 2771 dib7090_set_output_mode(demod, st->cfg.output_mode); 2772 dib7090_set_diversity_in(demod, 0); 2773 } 2774 2775 return demod; 2776 2777 error: 2778 kfree(st); 2779 return NULL; 2780 } 2781 2782 void *dib7000p_attach(struct dib7000p_ops *ops) 2783 { 2784 if (!ops) 2785 return NULL; 2786 2787 ops->slave_reset = dib7090_slave_reset; 2788 ops->get_adc_power = dib7090_get_adc_power; 2789 ops->dib7000pc_detection = dib7000pc_detection; 2790 ops->get_i2c_tuner = dib7090_get_i2c_tuner; 2791 ops->tuner_sleep = dib7090_tuner_sleep; 2792 ops->init = dib7000p_init; 2793 ops->set_agc1_min = dib7000p_set_agc1_min; 2794 ops->set_gpio = dib7000p_set_gpio; 2795 ops->i2c_enumeration = dib7000p_i2c_enumeration; 2796 ops->pid_filter = dib7000p_pid_filter; 2797 ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl; 2798 ops->get_i2c_master = dib7000p_get_i2c_master; 2799 ops->update_pll = dib7000p_update_pll; 2800 ops->ctrl_timf = dib7000p_ctrl_timf; 2801 ops->get_agc_values = dib7000p_get_agc_values; 2802 ops->set_wbd_ref = dib7000p_set_wbd_ref; 2803 2804 return ops; 2805 } 2806 EXPORT_SYMBOL(dib7000p_attach); 2807 2808 static struct dvb_frontend_ops dib7000p_ops = { 2809 .delsys = { SYS_DVBT }, 2810 .info = { 2811 .name = "DiBcom 7000PC", 2812 .frequency_min = 44250000, 2813 .frequency_max = 867250000, 2814 .frequency_stepsize = 62500, 2815 .caps = FE_CAN_INVERSION_AUTO | 2816 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 2817 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 2818 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | 2819 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, 2820 }, 2821 2822 .release = dib7000p_release, 2823 2824 .init = dib7000p_wakeup, 2825 .sleep = dib7000p_sleep, 2826 2827 .set_frontend = dib7000p_set_frontend, 2828 .get_tune_settings = dib7000p_fe_get_tune_settings, 2829 .get_frontend = dib7000p_get_frontend, 2830 2831 .read_status = dib7000p_read_status, 2832 .read_ber = dib7000p_read_ber, 2833 .read_signal_strength = dib7000p_read_signal_strength, 2834 .read_snr = dib7000p_read_snr, 2835 .read_ucblocks = dib7000p_read_unc_blocks, 2836 }; 2837 2838 MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>"); 2839 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); 2840 MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); 2841 MODULE_LICENSE("GPL"); 2842