1 /*
2  * Driver for DiBcom DiB3000MC/P-demodulator.
3  *
4  * Copyright (C) 2004-7 DiBcom (http://www.dibcom.fr/)
5  * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de)
6  *
7  * This code is partially based on the previous dib3000mc.c .
8  *
9  * This program is free software; you can redistribute it and/or
10  *	modify it under the terms of the GNU General Public License as
11  *	published by the Free Software Foundation, version 2.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 
18 #include "dvb_frontend.h"
19 
20 #include "dib3000mc.h"
21 
22 static int debug;
23 module_param(debug, int, 0644);
24 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
25 
26 static int buggy_sfn_workaround;
27 module_param(buggy_sfn_workaround, int, 0644);
28 MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
29 
30 #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); printk("\n"); } } while (0)
31 
32 struct dib3000mc_state {
33 	struct dvb_frontend demod;
34 	struct dib3000mc_config *cfg;
35 
36 	u8 i2c_addr;
37 	struct i2c_adapter *i2c_adap;
38 
39 	struct dibx000_i2c_master i2c_master;
40 
41 	u32 timf;
42 
43 	u32 current_bandwidth;
44 
45 	u16 dev_id;
46 
47 	u8 sfn_workaround_active :1;
48 };
49 
50 static u16 dib3000mc_read_word(struct dib3000mc_state *state, u16 reg)
51 {
52 	u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
53 	u8 rb[2];
54 	struct i2c_msg msg[2] = {
55 		{ .addr = state->i2c_addr >> 1, .flags = 0,        .buf = wb, .len = 2 },
56 		{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
57 	};
58 
59 	if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
60 		dprintk("i2c read error on %d\n",reg);
61 
62 	return (rb[0] << 8) | rb[1];
63 }
64 
65 static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val)
66 {
67 	u8 b[4] = {
68 		(reg >> 8) & 0xff, reg & 0xff,
69 		(val >> 8) & 0xff, val & 0xff,
70 	};
71 	struct i2c_msg msg = {
72 		.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
73 	};
74 	return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
75 }
76 
77 static int dib3000mc_identify(struct dib3000mc_state *state)
78 {
79 	u16 value;
80 	if ((value = dib3000mc_read_word(state, 1025)) != 0x01b3) {
81 		dprintk("-E-  DiB3000MC/P: wrong Vendor ID (read=0x%x)\n",value);
82 		return -EREMOTEIO;
83 	}
84 
85 	value = dib3000mc_read_word(state, 1026);
86 	if (value != 0x3001 && value != 0x3002) {
87 		dprintk("-E-  DiB3000MC/P: wrong Device ID (%x)\n",value);
88 		return -EREMOTEIO;
89 	}
90 	state->dev_id = value;
91 
92 	dprintk("-I-  found DiB3000MC/P: %x\n",state->dev_id);
93 
94 	return 0;
95 }
96 
97 static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u32 bw, u8 update_offset)
98 {
99 	u32 timf;
100 
101 	if (state->timf == 0) {
102 		timf = 1384402; // default value for 8MHz
103 		if (update_offset)
104 			msleep(200); // first time we do an update
105 	} else
106 		timf = state->timf;
107 
108 	timf *= (bw / 1000);
109 
110 	if (update_offset) {
111 		s16 tim_offs = dib3000mc_read_word(state, 416);
112 
113 		if (tim_offs &  0x2000)
114 			tim_offs -= 0x4000;
115 
116 		if (nfft == TRANSMISSION_MODE_2K)
117 			tim_offs *= 4;
118 
119 		timf += tim_offs;
120 		state->timf = timf / (bw / 1000);
121 	}
122 
123 	dprintk("timf: %d\n", timf);
124 
125 	dib3000mc_write_word(state, 23, (u16) (timf >> 16));
126 	dib3000mc_write_word(state, 24, (u16) (timf      ) & 0xffff);
127 
128 	return 0;
129 }
130 
131 static int dib3000mc_setup_pwm_state(struct dib3000mc_state *state)
132 {
133 	u16 reg_51, reg_52 = state->cfg->agc->setup & 0xfefb;
134     if (state->cfg->pwm3_inversion) {
135 		reg_51 =  (2 << 14) | (0 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
136 		reg_52 |= (1 << 2);
137 	} else {
138 		reg_51 = (2 << 14) | (4 << 10) | (7 << 6) | (2 << 2) | (2 << 0);
139 		reg_52 |= (1 << 8);
140 	}
141 	dib3000mc_write_word(state, 51, reg_51);
142 	dib3000mc_write_word(state, 52, reg_52);
143 
144     if (state->cfg->use_pwm3)
145 		dib3000mc_write_word(state, 245, (1 << 3) | (1 << 0));
146 	else
147 		dib3000mc_write_word(state, 245, 0);
148 
149     dib3000mc_write_word(state, 1040, 0x3);
150 	return 0;
151 }
152 
153 static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode)
154 {
155 	int    ret = 0;
156 	u16 fifo_threshold = 1792;
157 	u16 outreg = 0;
158 	u16 outmode = 0;
159 	u16 elecout = 1;
160 	u16 smo_reg = dib3000mc_read_word(state, 206) & 0x0010; /* keep the pid_parse bit */
161 
162 	dprintk("-I-  Setting output mode for demod %p to %d\n",
163 			&state->demod, mode);
164 
165 	switch (mode) {
166 		case OUTMODE_HIGH_Z:  // disable
167 			elecout = 0;
168 			break;
169 		case OUTMODE_MPEG2_PAR_GATED_CLK:   // STBs with parallel gated clock
170 			outmode = 0;
171 			break;
172 		case OUTMODE_MPEG2_PAR_CONT_CLK:    // STBs with parallel continues clock
173 			outmode = 1;
174 			break;
175 		case OUTMODE_MPEG2_SERIAL:          // STBs with serial input
176 			outmode = 2;
177 			break;
178 		case OUTMODE_MPEG2_FIFO:            // e.g. USB feeding
179 			elecout = 3;
180 			/*ADDR @ 206 :
181 			P_smo_error_discard  [1;6:6] = 0
182 			P_smo_rs_discard     [1;5:5] = 0
183 			P_smo_pid_parse      [1;4:4] = 0
184 			P_smo_fifo_flush     [1;3:3] = 0
185 			P_smo_mode           [2;2:1] = 11
186 			P_smo_ovf_prot       [1;0:0] = 0
187 			*/
188 			smo_reg |= 3 << 1;
189 			fifo_threshold = 512;
190 			outmode = 5;
191 			break;
192 		case OUTMODE_DIVERSITY:
193 			outmode = 4;
194 			elecout = 1;
195 			break;
196 		default:
197 			dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod);
198 			outmode = 0;
199 			break;
200 	}
201 
202 	if ((state->cfg->output_mpeg2_in_188_bytes))
203 		smo_reg |= (1 << 5); // P_smo_rs_discard     [1;5:5] = 1
204 
205 	outreg = dib3000mc_read_word(state, 244) & 0x07FF;
206 	outreg |= (outmode << 11);
207 	ret |= dib3000mc_write_word(state,  244, outreg);
208 	ret |= dib3000mc_write_word(state,  206, smo_reg);   /*smo_ mode*/
209 	ret |= dib3000mc_write_word(state,  207, fifo_threshold); /* synchronous fread */
210 	ret |= dib3000mc_write_word(state, 1040, elecout);         /* P_out_cfg */
211 	return ret;
212 }
213 
214 static int dib3000mc_set_bandwidth(struct dib3000mc_state *state, u32 bw)
215 {
216 	u16 bw_cfg[6] = { 0 };
217 	u16 imp_bw_cfg[3] = { 0 };
218 	u16 reg;
219 
220 /* settings here are for 27.7MHz */
221 	switch (bw) {
222 		case 8000:
223 			bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20;
224 			imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7;
225 			break;
226 
227 		case 7000:
228 			bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7;
229 			imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0;
230 			break;
231 
232 		case 6000:
233 			bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5;
234 			imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089;
235 			break;
236 
237 		case 5000:
238 			bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500;
239 			imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072;
240 			break;
241 
242 		default: return -EINVAL;
243 	}
244 
245 	for (reg = 6; reg < 12; reg++)
246 		dib3000mc_write_word(state, reg, bw_cfg[reg - 6]);
247 	dib3000mc_write_word(state, 12, 0x0000);
248 	dib3000mc_write_word(state, 13, 0x03e8);
249 	dib3000mc_write_word(state, 14, 0x0000);
250 	dib3000mc_write_word(state, 15, 0x03f2);
251 	dib3000mc_write_word(state, 16, 0x0001);
252 	dib3000mc_write_word(state, 17, 0xb0d0);
253 	// P_sec_len
254 	dib3000mc_write_word(state, 18, 0x0393);
255 	dib3000mc_write_word(state, 19, 0x8700);
256 
257 	for (reg = 55; reg < 58; reg++)
258 		dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]);
259 
260 	// Timing configuration
261 	dib3000mc_set_timing(state, TRANSMISSION_MODE_2K, bw, 0);
262 
263 	return 0;
264 }
265 
266 static u16 impulse_noise_val[29] =
267 
268 {
269 	0x38, 0x6d9, 0x3f28, 0x7a7, 0x3a74, 0x196, 0x32a, 0x48c, 0x3ffe, 0x7f3,
270 	0x2d94, 0x76, 0x53d, 0x3ff8, 0x7e3, 0x3320, 0x76, 0x5b3, 0x3feb, 0x7d2,
271 	0x365e, 0x76, 0x48c, 0x3ffe, 0x5b3, 0x3feb, 0x76, 0x0000, 0xd
272 };
273 
274 static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, s16 nfft)
275 {
276 	u16 i;
277 	for (i = 58; i < 87; i++)
278 		dib3000mc_write_word(state, i, impulse_noise_val[i-58]);
279 
280 	if (nfft == TRANSMISSION_MODE_8K) {
281 		dib3000mc_write_word(state, 58, 0x3b);
282 		dib3000mc_write_word(state, 84, 0x00);
283 		dib3000mc_write_word(state, 85, 0x8200);
284 	}
285 
286 	dib3000mc_write_word(state, 34, 0x1294);
287 	dib3000mc_write_word(state, 35, 0x1ff8);
288 	if (mode == 1)
289 		dib3000mc_write_word(state, 55, dib3000mc_read_word(state, 55) | (1 << 10));
290 }
291 
292 static int dib3000mc_init(struct dvb_frontend *demod)
293 {
294 	struct dib3000mc_state *state = demod->demodulator_priv;
295 	struct dibx000_agc_config *agc = state->cfg->agc;
296 
297 	// Restart Configuration
298 	dib3000mc_write_word(state, 1027, 0x8000);
299 	dib3000mc_write_word(state, 1027, 0x0000);
300 
301 	// power up the demod + mobility configuration
302 	dib3000mc_write_word(state, 140, 0x0000);
303 	dib3000mc_write_word(state, 1031, 0);
304 
305 	if (state->cfg->mobile_mode) {
306 		dib3000mc_write_word(state, 139,  0x0000);
307 		dib3000mc_write_word(state, 141,  0x0000);
308 		dib3000mc_write_word(state, 175,  0x0002);
309 		dib3000mc_write_word(state, 1032, 0x0000);
310 	} else {
311 		dib3000mc_write_word(state, 139,  0x0001);
312 		dib3000mc_write_word(state, 141,  0x0000);
313 		dib3000mc_write_word(state, 175,  0x0000);
314 		dib3000mc_write_word(state, 1032, 0x012C);
315 	}
316 	dib3000mc_write_word(state, 1033, 0x0000);
317 
318 	// P_clk_cfg
319 	dib3000mc_write_word(state, 1037, 0x3130);
320 
321 	// other configurations
322 
323 	// P_ctrl_sfreq
324 	dib3000mc_write_word(state, 33, (5 << 0));
325 	dib3000mc_write_word(state, 88, (1 << 10) | (0x10 << 0));
326 
327 	// Phase noise control
328 	// P_fft_phacor_inh, P_fft_phacor_cpe, P_fft_powrange
329 	dib3000mc_write_word(state, 99, (1 << 9) | (0x20 << 0));
330 
331 	if (state->cfg->phase_noise_mode == 0)
332 		dib3000mc_write_word(state, 111, 0x00);
333 	else
334 		dib3000mc_write_word(state, 111, 0x02);
335 
336 	// P_agc_global
337 	dib3000mc_write_word(state, 50, 0x8000);
338 
339 	// agc setup misc
340 	dib3000mc_setup_pwm_state(state);
341 
342 	// P_agc_counter_lock
343 	dib3000mc_write_word(state, 53, 0x87);
344 	// P_agc_counter_unlock
345 	dib3000mc_write_word(state, 54, 0x87);
346 
347 	/* agc */
348 	dib3000mc_write_word(state, 36, state->cfg->max_time);
349 	dib3000mc_write_word(state, 37, (state->cfg->agc_command1 << 13) | (state->cfg->agc_command2 << 12) | (0x1d << 0));
350 	dib3000mc_write_word(state, 38, state->cfg->pwm3_value);
351 	dib3000mc_write_word(state, 39, state->cfg->ln_adc_level);
352 
353 	// set_agc_loop_Bw
354 	dib3000mc_write_word(state, 40, 0x0179);
355 	dib3000mc_write_word(state, 41, 0x03f0);
356 
357 	dib3000mc_write_word(state, 42, agc->agc1_max);
358 	dib3000mc_write_word(state, 43, agc->agc1_min);
359 	dib3000mc_write_word(state, 44, agc->agc2_max);
360 	dib3000mc_write_word(state, 45, agc->agc2_min);
361 	dib3000mc_write_word(state, 46, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
362 	dib3000mc_write_word(state, 47, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
363 	dib3000mc_write_word(state, 48, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
364 	dib3000mc_write_word(state, 49, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
365 
366 // Begin: TimeOut registers
367 	// P_pha3_thres
368 	dib3000mc_write_word(state, 110, 3277);
369 	// P_timf_alpha = 6, P_corm_alpha = 6, P_corm_thres = 0x80
370 	dib3000mc_write_word(state,  26, 0x6680);
371 	// lock_mask0
372 	dib3000mc_write_word(state, 1, 4);
373 	// lock_mask1
374 	dib3000mc_write_word(state, 2, 4);
375 	// lock_mask2
376 	dib3000mc_write_word(state, 3, 0x1000);
377 	// P_search_maxtrial=1
378 	dib3000mc_write_word(state, 5, 1);
379 
380 	dib3000mc_set_bandwidth(state, 8000);
381 
382 	// div_lock_mask
383 	dib3000mc_write_word(state,  4, 0x814);
384 
385 	dib3000mc_write_word(state, 21, (1 << 9) | 0x164);
386 	dib3000mc_write_word(state, 22, 0x463d);
387 
388 	// Spurious rm cfg
389 	// P_cspu_regul, P_cspu_win_cut
390 	dib3000mc_write_word(state, 120, 0x200f);
391 	// P_adp_selec_monit
392 	dib3000mc_write_word(state, 134, 0);
393 
394 	// Fec cfg
395 	dib3000mc_write_word(state, 195, 0x10);
396 
397 	// diversity register: P_dvsy_sync_wait..
398 	dib3000mc_write_word(state, 180, 0x2FF0);
399 
400 	// Impulse noise configuration
401 	dib3000mc_set_impulse_noise(state, 0, TRANSMISSION_MODE_8K);
402 
403 	// output mode set-up
404 	dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
405 
406 	/* close the i2c-gate */
407 	dib3000mc_write_word(state, 769, (1 << 7) );
408 
409 	return 0;
410 }
411 
412 static int dib3000mc_sleep(struct dvb_frontend *demod)
413 {
414 	struct dib3000mc_state *state = demod->demodulator_priv;
415 
416 	dib3000mc_write_word(state, 1031, 0xFFFF);
417 	dib3000mc_write_word(state, 1032, 0xFFFF);
418 	dib3000mc_write_word(state, 1033, 0xFFF0);
419 
420     return 0;
421 }
422 
423 static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam)
424 {
425 	u16 cfg[4] = { 0 },reg;
426 	switch (qam) {
427 		case QPSK:
428 			cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0;
429 			break;
430 		case QAM_16:
431 			cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0;
432 			break;
433 		case QAM_64:
434 			cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8;
435 			break;
436 	}
437 	for (reg = 129; reg < 133; reg++)
438 		dib3000mc_write_word(state, reg, cfg[reg - 129]);
439 }
440 
441 static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state,
442 				      struct dtv_frontend_properties *ch, u16 seq)
443 {
444 	u16 value;
445 	u32 bw = BANDWIDTH_TO_KHZ(ch->bandwidth_hz);
446 
447 	dib3000mc_set_bandwidth(state, bw);
448 	dib3000mc_set_timing(state, ch->transmission_mode, bw, 0);
449 
450 //	if (boost)
451 //		dib3000mc_write_word(state, 100, (11 << 6) + 6);
452 //	else
453 		dib3000mc_write_word(state, 100, (16 << 6) + 9);
454 
455 	dib3000mc_write_word(state, 1027, 0x0800);
456 	dib3000mc_write_word(state, 1027, 0x0000);
457 
458 	//Default cfg isi offset adp
459 	dib3000mc_write_word(state, 26,  0x6680);
460 	dib3000mc_write_word(state, 29,  0x1273);
461 	dib3000mc_write_word(state, 33,       5);
462 	dib3000mc_set_adp_cfg(state, QAM_16);
463 	dib3000mc_write_word(state, 133,  15564);
464 
465 	dib3000mc_write_word(state, 12 , 0x0);
466 	dib3000mc_write_word(state, 13 , 0x3e8);
467 	dib3000mc_write_word(state, 14 , 0x0);
468 	dib3000mc_write_word(state, 15 , 0x3f2);
469 
470 	dib3000mc_write_word(state, 93,0);
471 	dib3000mc_write_word(state, 94,0);
472 	dib3000mc_write_word(state, 95,0);
473 	dib3000mc_write_word(state, 96,0);
474 	dib3000mc_write_word(state, 97,0);
475 	dib3000mc_write_word(state, 98,0);
476 
477 	dib3000mc_set_impulse_noise(state, 0, ch->transmission_mode);
478 
479 	value = 0;
480 	switch (ch->transmission_mode) {
481 		case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
482 		default:
483 		case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
484 	}
485 	switch (ch->guard_interval) {
486 		case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
487 		case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
488 		case GUARD_INTERVAL_1_4:  value |= (3 << 5); break;
489 		default:
490 		case GUARD_INTERVAL_1_8:  value |= (2 << 5); break;
491 	}
492 	switch (ch->modulation) {
493 		case QPSK:  value |= (0 << 3); break;
494 		case QAM_16: value |= (1 << 3); break;
495 		default:
496 		case QAM_64: value |= (2 << 3); break;
497 	}
498 	switch (HIERARCHY_1) {
499 		case HIERARCHY_2: value |= 2; break;
500 		case HIERARCHY_4: value |= 4; break;
501 		default:
502 		case HIERARCHY_1: value |= 1; break;
503 	}
504 	dib3000mc_write_word(state, 0, value);
505 	dib3000mc_write_word(state, 5, (1 << 8) | ((seq & 0xf) << 4));
506 
507 	value = 0;
508 	if (ch->hierarchy == 1)
509 		value |= (1 << 4);
510 	if (1 == 1)
511 		value |= 1;
512 	switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
513 		case FEC_2_3: value |= (2 << 1); break;
514 		case FEC_3_4: value |= (3 << 1); break;
515 		case FEC_5_6: value |= (5 << 1); break;
516 		case FEC_7_8: value |= (7 << 1); break;
517 		default:
518 		case FEC_1_2: value |= (1 << 1); break;
519 	}
520 	dib3000mc_write_word(state, 181, value);
521 
522 	// diversity synchro delay add 50% SFN margin
523 	switch (ch->transmission_mode) {
524 		case TRANSMISSION_MODE_8K: value = 256; break;
525 		case TRANSMISSION_MODE_2K:
526 		default: value = 64; break;
527 	}
528 	switch (ch->guard_interval) {
529 		case GUARD_INTERVAL_1_16: value *= 2; break;
530 		case GUARD_INTERVAL_1_8:  value *= 4; break;
531 		case GUARD_INTERVAL_1_4:  value *= 8; break;
532 		default:
533 		case GUARD_INTERVAL_1_32: value *= 1; break;
534 	}
535 	value <<= 4;
536 	value |= dib3000mc_read_word(state, 180) & 0x000f;
537 	dib3000mc_write_word(state, 180, value);
538 
539 	// restart demod
540 	value = dib3000mc_read_word(state, 0);
541 	dib3000mc_write_word(state, 0, value | (1 << 9));
542 	dib3000mc_write_word(state, 0, value);
543 
544 	msleep(30);
545 
546 	dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, ch->transmission_mode);
547 }
548 
549 static int dib3000mc_autosearch_start(struct dvb_frontend *demod)
550 {
551 	struct dtv_frontend_properties *chan = &demod->dtv_property_cache;
552 	struct dib3000mc_state *state = demod->demodulator_priv;
553 	u16 reg;
554 //	u32 val;
555 	struct dtv_frontend_properties schan;
556 
557 	schan = *chan;
558 
559 	/* TODO what is that ? */
560 
561 	/* a channel for autosearch */
562 	schan.transmission_mode = TRANSMISSION_MODE_8K;
563 	schan.guard_interval = GUARD_INTERVAL_1_32;
564 	schan.modulation = QAM_64;
565 	schan.code_rate_HP = FEC_2_3;
566 	schan.code_rate_LP = FEC_2_3;
567 	schan.hierarchy = 0;
568 
569 	dib3000mc_set_channel_cfg(state, &schan, 11);
570 
571 	reg = dib3000mc_read_word(state, 0);
572 	dib3000mc_write_word(state, 0, reg | (1 << 8));
573 	dib3000mc_read_word(state, 511);
574 	dib3000mc_write_word(state, 0, reg);
575 
576 	return 0;
577 }
578 
579 static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod)
580 {
581 	struct dib3000mc_state *state = demod->demodulator_priv;
582 	u16 irq_pending = dib3000mc_read_word(state, 511);
583 
584 	if (irq_pending & 0x1) // failed
585 		return 1;
586 
587 	if (irq_pending & 0x2) // succeeded
588 		return 2;
589 
590 	return 0; // still pending
591 }
592 
593 static int dib3000mc_tune(struct dvb_frontend *demod)
594 {
595 	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
596 	struct dib3000mc_state *state = demod->demodulator_priv;
597 
598 	// ** configure demod **
599 	dib3000mc_set_channel_cfg(state, ch, 0);
600 
601 	// activates isi
602 	if (state->sfn_workaround_active) {
603 		dprintk("SFN workaround is active\n");
604 		dib3000mc_write_word(state, 29, 0x1273);
605 		dib3000mc_write_word(state, 108, 0x4000); // P_pha3_force_pha_shift
606 	} else {
607 		dib3000mc_write_word(state, 29, 0x1073);
608 		dib3000mc_write_word(state, 108, 0x0000); // P_pha3_force_pha_shift
609 	}
610 
611 	dib3000mc_set_adp_cfg(state, (u8)ch->modulation);
612 	if (ch->transmission_mode == TRANSMISSION_MODE_8K) {
613 		dib3000mc_write_word(state, 26, 38528);
614 		dib3000mc_write_word(state, 33, 8);
615 	} else {
616 		dib3000mc_write_word(state, 26, 30336);
617 		dib3000mc_write_word(state, 33, 6);
618 	}
619 
620 	if (dib3000mc_read_word(state, 509) & 0x80)
621 		dib3000mc_set_timing(state, ch->transmission_mode,
622 				     BANDWIDTH_TO_KHZ(ch->bandwidth_hz), 1);
623 
624 	return 0;
625 }
626 
627 struct i2c_adapter * dib3000mc_get_tuner_i2c_master(struct dvb_frontend *demod, int gating)
628 {
629 	struct dib3000mc_state *st = demod->demodulator_priv;
630 	return dibx000_get_i2c_adapter(&st->i2c_master, DIBX000_I2C_INTERFACE_TUNER, gating);
631 }
632 
633 EXPORT_SYMBOL(dib3000mc_get_tuner_i2c_master);
634 
635 static int dib3000mc_get_frontend(struct dvb_frontend* fe)
636 {
637 	struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
638 	struct dib3000mc_state *state = fe->demodulator_priv;
639 	u16 tps = dib3000mc_read_word(state,458);
640 
641 	fep->inversion = INVERSION_AUTO;
642 
643 	fep->bandwidth_hz = state->current_bandwidth;
644 
645 	switch ((tps >> 8) & 0x1) {
646 		case 0: fep->transmission_mode = TRANSMISSION_MODE_2K; break;
647 		case 1: fep->transmission_mode = TRANSMISSION_MODE_8K; break;
648 	}
649 
650 	switch (tps & 0x3) {
651 		case 0: fep->guard_interval = GUARD_INTERVAL_1_32; break;
652 		case 1: fep->guard_interval = GUARD_INTERVAL_1_16; break;
653 		case 2: fep->guard_interval = GUARD_INTERVAL_1_8; break;
654 		case 3: fep->guard_interval = GUARD_INTERVAL_1_4; break;
655 	}
656 
657 	switch ((tps >> 13) & 0x3) {
658 		case 0: fep->modulation = QPSK; break;
659 		case 1: fep->modulation = QAM_16; break;
660 		case 2:
661 		default: fep->modulation = QAM_64; break;
662 	}
663 
664 	/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
665 	/* (tps >> 12) & 0x1 == hrch is used, (tps >> 9) & 0x7 == alpha */
666 
667 	fep->hierarchy = HIERARCHY_NONE;
668 	switch ((tps >> 5) & 0x7) {
669 		case 1: fep->code_rate_HP = FEC_1_2; break;
670 		case 2: fep->code_rate_HP = FEC_2_3; break;
671 		case 3: fep->code_rate_HP = FEC_3_4; break;
672 		case 5: fep->code_rate_HP = FEC_5_6; break;
673 		case 7:
674 		default: fep->code_rate_HP = FEC_7_8; break;
675 
676 	}
677 
678 	switch ((tps >> 2) & 0x7) {
679 		case 1: fep->code_rate_LP = FEC_1_2; break;
680 		case 2: fep->code_rate_LP = FEC_2_3; break;
681 		case 3: fep->code_rate_LP = FEC_3_4; break;
682 		case 5: fep->code_rate_LP = FEC_5_6; break;
683 		case 7:
684 		default: fep->code_rate_LP = FEC_7_8; break;
685 	}
686 
687 	return 0;
688 }
689 
690 static int dib3000mc_set_frontend(struct dvb_frontend *fe)
691 {
692 	struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
693 	struct dib3000mc_state *state = fe->demodulator_priv;
694 	int ret;
695 
696 	dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
697 
698 	state->current_bandwidth = fep->bandwidth_hz;
699 	dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->bandwidth_hz));
700 
701 	/* maybe the parameter has been changed */
702 	state->sfn_workaround_active = buggy_sfn_workaround;
703 
704 	if (fe->ops.tuner_ops.set_params) {
705 		fe->ops.tuner_ops.set_params(fe);
706 		msleep(100);
707 	}
708 
709 	if (fep->transmission_mode  == TRANSMISSION_MODE_AUTO ||
710 	    fep->guard_interval == GUARD_INTERVAL_AUTO ||
711 	    fep->modulation     == QAM_AUTO ||
712 	    fep->code_rate_HP   == FEC_AUTO) {
713 		int i = 1000, found;
714 
715 		dib3000mc_autosearch_start(fe);
716 		do {
717 			msleep(1);
718 			found = dib3000mc_autosearch_is_irq(fe);
719 		} while (found == 0 && i--);
720 
721 		dprintk("autosearch returns: %d\n",found);
722 		if (found == 0 || found == 1)
723 			return 0; // no channel found
724 
725 		dib3000mc_get_frontend(fe);
726 	}
727 
728 	ret = dib3000mc_tune(fe);
729 
730 	/* make this a config parameter */
731 	dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO);
732 	return ret;
733 }
734 
735 static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat)
736 {
737 	struct dib3000mc_state *state = fe->demodulator_priv;
738 	u16 lock = dib3000mc_read_word(state, 509);
739 
740 	*stat = 0;
741 
742 	if (lock & 0x8000)
743 		*stat |= FE_HAS_SIGNAL;
744 	if (lock & 0x3000)
745 		*stat |= FE_HAS_CARRIER;
746 	if (lock & 0x0100)
747 		*stat |= FE_HAS_VITERBI;
748 	if (lock & 0x0010)
749 		*stat |= FE_HAS_SYNC;
750 	if (lock & 0x0008)
751 		*stat |= FE_HAS_LOCK;
752 
753 	return 0;
754 }
755 
756 static int dib3000mc_read_ber(struct dvb_frontend *fe, u32 *ber)
757 {
758 	struct dib3000mc_state *state = fe->demodulator_priv;
759 	*ber = (dib3000mc_read_word(state, 500) << 16) | dib3000mc_read_word(state, 501);
760 	return 0;
761 }
762 
763 static int dib3000mc_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
764 {
765 	struct dib3000mc_state *state = fe->demodulator_priv;
766 	*unc = dib3000mc_read_word(state, 508);
767 	return 0;
768 }
769 
770 static int dib3000mc_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
771 {
772 	struct dib3000mc_state *state = fe->demodulator_priv;
773 	u16 val = dib3000mc_read_word(state, 392);
774 	*strength = 65535 - val;
775 	return 0;
776 }
777 
778 static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr)
779 {
780 	*snr = 0x0000;
781 	return 0;
782 }
783 
784 static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
785 {
786 	tune->min_delay_ms = 1000;
787 	return 0;
788 }
789 
790 static void dib3000mc_release(struct dvb_frontend *fe)
791 {
792 	struct dib3000mc_state *state = fe->demodulator_priv;
793 	dibx000_exit_i2c_master(&state->i2c_master);
794 	kfree(state);
795 }
796 
797 int dib3000mc_pid_control(struct dvb_frontend *fe, int index, int pid,int onoff)
798 {
799 	struct dib3000mc_state *state = fe->demodulator_priv;
800 	dib3000mc_write_word(state, 212 + index,  onoff ? (1 << 13) | pid : 0);
801 	return 0;
802 }
803 EXPORT_SYMBOL(dib3000mc_pid_control);
804 
805 int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff)
806 {
807 	struct dib3000mc_state *state = fe->demodulator_priv;
808 	u16 tmp = dib3000mc_read_word(state, 206) & ~(1 << 4);
809 	tmp |= (onoff << 4);
810 	return dib3000mc_write_word(state, 206, tmp);
811 }
812 EXPORT_SYMBOL(dib3000mc_pid_parse);
813 
814 void dib3000mc_set_config(struct dvb_frontend *fe, struct dib3000mc_config *cfg)
815 {
816 	struct dib3000mc_state *state = fe->demodulator_priv;
817 	state->cfg = cfg;
818 }
819 EXPORT_SYMBOL(dib3000mc_set_config);
820 
821 int dib3000mc_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib3000mc_config cfg[])
822 {
823 	struct dib3000mc_state *dmcst;
824 	int k;
825 	u8 new_addr;
826 
827 	static u8 DIB3000MC_I2C_ADDRESS[] = {20,22,24,26};
828 
829 	dmcst = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
830 	if (dmcst == NULL)
831 		return -ENOMEM;
832 
833 	dmcst->i2c_adap = i2c;
834 
835 	for (k = no_of_demods-1; k >= 0; k--) {
836 		dmcst->cfg = &cfg[k];
837 
838 		/* designated i2c address */
839 		new_addr          = DIB3000MC_I2C_ADDRESS[k];
840 		dmcst->i2c_addr = new_addr;
841 		if (dib3000mc_identify(dmcst) != 0) {
842 			dmcst->i2c_addr = default_addr;
843 			if (dib3000mc_identify(dmcst) != 0) {
844 				dprintk("-E-  DiB3000P/MC #%d: not identified\n", k);
845 				kfree(dmcst);
846 				return -ENODEV;
847 			}
848 		}
849 
850 		dib3000mc_set_output_mode(dmcst, OUTMODE_MPEG2_PAR_CONT_CLK);
851 
852 		// set new i2c address and force divstr (Bit 1) to value 0 (Bit 0)
853 		dib3000mc_write_word(dmcst, 1024, (new_addr << 3) | 0x1);
854 		dmcst->i2c_addr = new_addr;
855 	}
856 
857 	for (k = 0; k < no_of_demods; k++) {
858 		dmcst->cfg = &cfg[k];
859 		dmcst->i2c_addr = DIB3000MC_I2C_ADDRESS[k];
860 
861 		dib3000mc_write_word(dmcst, 1024, dmcst->i2c_addr << 3);
862 
863 		/* turn off data output */
864 		dib3000mc_set_output_mode(dmcst, OUTMODE_HIGH_Z);
865 	}
866 
867 	kfree(dmcst);
868 	return 0;
869 }
870 EXPORT_SYMBOL(dib3000mc_i2c_enumeration);
871 
872 static struct dvb_frontend_ops dib3000mc_ops;
873 
874 struct dvb_frontend * dib3000mc_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib3000mc_config *cfg)
875 {
876 	struct dvb_frontend *demod;
877 	struct dib3000mc_state *st;
878 	st = kzalloc(sizeof(struct dib3000mc_state), GFP_KERNEL);
879 	if (st == NULL)
880 		return NULL;
881 
882 	st->cfg = cfg;
883 	st->i2c_adap = i2c_adap;
884 	st->i2c_addr = i2c_addr;
885 
886 	demod                   = &st->demod;
887 	demod->demodulator_priv = st;
888 	memcpy(&st->demod.ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops));
889 
890 	if (dib3000mc_identify(st) != 0)
891 		goto error;
892 
893 	dibx000_init_i2c_master(&st->i2c_master, DIB3000MC, st->i2c_adap, st->i2c_addr);
894 
895 	dib3000mc_write_word(st, 1037, 0x3130);
896 
897 	return demod;
898 
899 error:
900 	kfree(st);
901 	return NULL;
902 }
903 EXPORT_SYMBOL(dib3000mc_attach);
904 
905 static struct dvb_frontend_ops dib3000mc_ops = {
906 	.delsys = { SYS_DVBT },
907 	.info = {
908 		.name = "DiBcom 3000MC/P",
909 		.frequency_min      = 44250000,
910 		.frequency_max      = 867250000,
911 		.frequency_stepsize = 62500,
912 		.caps = FE_CAN_INVERSION_AUTO |
913 			FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
914 			FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
915 			FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
916 			FE_CAN_TRANSMISSION_MODE_AUTO |
917 			FE_CAN_GUARD_INTERVAL_AUTO |
918 			FE_CAN_RECOVER |
919 			FE_CAN_HIERARCHY_AUTO,
920 	},
921 
922 	.release              = dib3000mc_release,
923 
924 	.init                 = dib3000mc_init,
925 	.sleep                = dib3000mc_sleep,
926 
927 	.set_frontend         = dib3000mc_set_frontend,
928 	.get_tune_settings    = dib3000mc_fe_get_tune_settings,
929 	.get_frontend         = dib3000mc_get_frontend,
930 
931 	.read_status          = dib3000mc_read_status,
932 	.read_ber             = dib3000mc_read_ber,
933 	.read_signal_strength = dib3000mc_read_signal_strength,
934 	.read_snr             = dib3000mc_read_snr,
935 	.read_ucblocks        = dib3000mc_read_unc_blocks,
936 };
937 
938 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
939 MODULE_DESCRIPTION("Driver for the DiBcom 3000MC/P COFDM demodulator");
940 MODULE_LICENSE("GPL");
941