1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cxd2099.c: Driver for the Sony CXD2099AR Common Interface Controller
4  *
5  * Copyright (C) 2010-2013 Digital Devices GmbH
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/regmap.h>
13 #include <linux/wait.h>
14 #include <linux/delay.h>
15 #include <linux/mutex.h>
16 #include <linux/io.h>
17 
18 #include "cxd2099.h"
19 
20 static int buffermode;
21 module_param(buffermode, int, 0444);
22 MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)");
23 
24 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
25 
26 struct cxd {
27 	struct dvb_ca_en50221 en;
28 
29 	struct cxd2099_cfg cfg;
30 	struct i2c_client *client;
31 	struct regmap *regmap;
32 
33 	u8     regs[0x23];
34 	u8     lastaddress;
35 	u8     clk_reg_f;
36 	u8     clk_reg_b;
37 	int    mode;
38 	int    ready;
39 	int    dr;
40 	int    write_busy;
41 	int    slot_stat;
42 
43 	u8     amem[1024];
44 	int    amem_read;
45 
46 	int    cammode;
47 	struct mutex lock; /* device access lock */
48 
49 	u8     rbuf[1028];
50 	u8     wbuf[1028];
51 };
52 
53 static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
54 {
55 	int status = 0;
56 
57 	if (ci->lastaddress != adr)
58 		status = regmap_write(ci->regmap, 0, adr);
59 	if (!status) {
60 		ci->lastaddress = adr;
61 
62 		while (n) {
63 			int len = n;
64 
65 			if (ci->cfg.max_i2c && len > ci->cfg.max_i2c)
66 				len = ci->cfg.max_i2c;
67 			status = regmap_raw_read(ci->regmap, 1, data, len);
68 			if (status)
69 				return status;
70 			data += len;
71 			n -= len;
72 		}
73 	}
74 	return status;
75 }
76 
77 static int read_reg(struct cxd *ci, u8 reg, u8 *val)
78 {
79 	return read_block(ci, reg, val, 1);
80 }
81 
82 static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
83 {
84 	int status;
85 	u8 addr[2] = {address & 0xff, address >> 8};
86 
87 	status = regmap_raw_write(ci->regmap, 2, addr, 2);
88 	if (!status)
89 		status = regmap_raw_read(ci->regmap, 3, data, n);
90 	return status;
91 }
92 
93 static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
94 {
95 	int status;
96 	u8 addr[2] = {address & 0xff, address >> 8};
97 
98 	status = regmap_raw_write(ci->regmap, 2, addr, 2);
99 	if (!status) {
100 		u8 buf[256];
101 
102 		memcpy(buf, data, n);
103 		status = regmap_raw_write(ci->regmap, 3, buf, n);
104 	}
105 	return status;
106 }
107 
108 static int read_io(struct cxd *ci, u16 address, unsigned int *val)
109 {
110 	int status;
111 	u8 addr[2] = {address & 0xff, address >> 8};
112 
113 	status = regmap_raw_write(ci->regmap, 2, addr, 2);
114 	if (!status)
115 		status = regmap_read(ci->regmap, 3, val);
116 	return status;
117 }
118 
119 static int write_io(struct cxd *ci, u16 address, u8 val)
120 {
121 	int status;
122 	u8 addr[2] = {address & 0xff, address >> 8};
123 
124 	status = regmap_raw_write(ci->regmap, 2, addr, 2);
125 	if (!status)
126 		status = regmap_write(ci->regmap, 3, val);
127 	return status;
128 }
129 
130 static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
131 {
132 	int status = 0;
133 	unsigned int regval;
134 
135 	if (ci->lastaddress != reg)
136 		status = regmap_write(ci->regmap, 0, reg);
137 	if (!status && reg >= 6 && reg <= 8 && mask != 0xff) {
138 		status = regmap_read(ci->regmap, 1, &regval);
139 		ci->regs[reg] = regval;
140 	}
141 	ci->lastaddress = reg;
142 	ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
143 	if (!status)
144 		status = regmap_write(ci->regmap, 1, ci->regs[reg]);
145 	if (reg == 0x20)
146 		ci->regs[reg] &= 0x7f;
147 	return status;
148 }
149 
150 static int write_reg(struct cxd *ci, u8 reg, u8 val)
151 {
152 	return write_regm(ci, reg, val, 0xff);
153 }
154 
155 static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
156 {
157 	int status = 0;
158 	u8 *buf = ci->wbuf;
159 
160 	if (ci->lastaddress != adr)
161 		status = regmap_write(ci->regmap, 0, adr);
162 	if (status)
163 		return status;
164 
165 	ci->lastaddress = adr;
166 	while (n) {
167 		int len = n;
168 
169 		if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c))
170 			len = ci->cfg.max_i2c - 1;
171 		memcpy(buf, data, len);
172 		status = regmap_raw_write(ci->regmap, 1, buf, len);
173 		if (status)
174 			return status;
175 		n -= len;
176 		data += len;
177 	}
178 	return status;
179 }
180 
181 static void set_mode(struct cxd *ci, int mode)
182 {
183 	if (mode == ci->mode)
184 		return;
185 
186 	switch (mode) {
187 	case 0x00: /* IO mem */
188 		write_regm(ci, 0x06, 0x00, 0x07);
189 		break;
190 	case 0x01: /* ATT mem */
191 		write_regm(ci, 0x06, 0x02, 0x07);
192 		break;
193 	default:
194 		break;
195 	}
196 	ci->mode = mode;
197 }
198 
199 static void cam_mode(struct cxd *ci, int mode)
200 {
201 	u8 dummy;
202 
203 	if (mode == ci->cammode)
204 		return;
205 
206 	switch (mode) {
207 	case 0x00:
208 		write_regm(ci, 0x20, 0x80, 0x80);
209 		break;
210 	case 0x01:
211 		if (!ci->en.read_data)
212 			return;
213 		ci->write_busy = 0;
214 		dev_info(&ci->client->dev, "enable cam buffer mode\n");
215 		write_reg(ci, 0x0d, 0x00);
216 		write_reg(ci, 0x0e, 0x01);
217 		write_regm(ci, 0x08, 0x40, 0x40);
218 		read_reg(ci, 0x12, &dummy);
219 		write_regm(ci, 0x08, 0x80, 0x80);
220 		break;
221 	default:
222 		break;
223 	}
224 	ci->cammode = mode;
225 }
226 
227 static int init(struct cxd *ci)
228 {
229 	int status;
230 
231 	mutex_lock(&ci->lock);
232 	ci->mode = -1;
233 	do {
234 		status = write_reg(ci, 0x00, 0x00);
235 		if (status < 0)
236 			break;
237 		status = write_reg(ci, 0x01, 0x00);
238 		if (status < 0)
239 			break;
240 		status = write_reg(ci, 0x02, 0x10);
241 		if (status < 0)
242 			break;
243 		status = write_reg(ci, 0x03, 0x00);
244 		if (status < 0)
245 			break;
246 		status = write_reg(ci, 0x05, 0xFF);
247 		if (status < 0)
248 			break;
249 		status = write_reg(ci, 0x06, 0x1F);
250 		if (status < 0)
251 			break;
252 		status = write_reg(ci, 0x07, 0x1F);
253 		if (status < 0)
254 			break;
255 		status = write_reg(ci, 0x08, 0x28);
256 		if (status < 0)
257 			break;
258 		status = write_reg(ci, 0x14, 0x20);
259 		if (status < 0)
260 			break;
261 
262 		/* TOSTRT = 8, Mode B (gated clock), falling Edge,
263 		 * Serial, POL=HIGH, MSB
264 		 */
265 		status = write_reg(ci, 0x0A, 0xA7);
266 		if (status < 0)
267 			break;
268 
269 		status = write_reg(ci, 0x0B, 0x33);
270 		if (status < 0)
271 			break;
272 		status = write_reg(ci, 0x0C, 0x33);
273 		if (status < 0)
274 			break;
275 
276 		status = write_regm(ci, 0x14, 0x00, 0x0F);
277 		if (status < 0)
278 			break;
279 		status = write_reg(ci, 0x15, ci->clk_reg_b);
280 		if (status < 0)
281 			break;
282 		status = write_regm(ci, 0x16, 0x00, 0x0F);
283 		if (status < 0)
284 			break;
285 		status = write_reg(ci, 0x17, ci->clk_reg_f);
286 		if (status < 0)
287 			break;
288 
289 		if (ci->cfg.clock_mode == 2) {
290 			/* bitrate*2^13/ 72000 */
291 			u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
292 
293 			if (ci->cfg.polarity) {
294 				status = write_reg(ci, 0x09, 0x6f);
295 				if (status < 0)
296 					break;
297 			} else {
298 				status = write_reg(ci, 0x09, 0x6d);
299 				if (status < 0)
300 					break;
301 			}
302 			status = write_reg(ci, 0x20, 0x08);
303 			if (status < 0)
304 				break;
305 			status = write_reg(ci, 0x21, (reg >> 8) & 0xff);
306 			if (status < 0)
307 				break;
308 			status = write_reg(ci, 0x22, reg & 0xff);
309 			if (status < 0)
310 				break;
311 		} else if (ci->cfg.clock_mode == 1) {
312 			if (ci->cfg.polarity) {
313 				status = write_reg(ci, 0x09, 0x6f); /* D */
314 				if (status < 0)
315 					break;
316 			} else {
317 				status = write_reg(ci, 0x09, 0x6d);
318 				if (status < 0)
319 					break;
320 			}
321 			status = write_reg(ci, 0x20, 0x68);
322 			if (status < 0)
323 				break;
324 			status = write_reg(ci, 0x21, 0x00);
325 			if (status < 0)
326 				break;
327 			status = write_reg(ci, 0x22, 0x02);
328 			if (status < 0)
329 				break;
330 		} else {
331 			if (ci->cfg.polarity) {
332 				status = write_reg(ci, 0x09, 0x4f); /* C */
333 				if (status < 0)
334 					break;
335 			} else {
336 				status = write_reg(ci, 0x09, 0x4d);
337 				if (status < 0)
338 					break;
339 			}
340 			status = write_reg(ci, 0x20, 0x28);
341 			if (status < 0)
342 				break;
343 			status = write_reg(ci, 0x21, 0x00);
344 			if (status < 0)
345 				break;
346 			status = write_reg(ci, 0x22, 0x07);
347 			if (status < 0)
348 				break;
349 		}
350 
351 		status = write_regm(ci, 0x20, 0x80, 0x80);
352 		if (status < 0)
353 			break;
354 		status = write_regm(ci, 0x03, 0x02, 0x02);
355 		if (status < 0)
356 			break;
357 		status = write_reg(ci, 0x01, 0x04);
358 		if (status < 0)
359 			break;
360 		status = write_reg(ci, 0x00, 0x31);
361 		if (status < 0)
362 			break;
363 
364 		/* Put TS in bypass */
365 		status = write_regm(ci, 0x09, 0x08, 0x08);
366 		if (status < 0)
367 			break;
368 		ci->cammode = -1;
369 		cam_mode(ci, 0);
370 	} while (0);
371 	mutex_unlock(&ci->lock);
372 
373 	return 0;
374 }
375 
376 static int read_attribute_mem(struct dvb_ca_en50221 *ca,
377 			      int slot, int address)
378 {
379 	struct cxd *ci = ca->data;
380 	u8 val;
381 
382 	mutex_lock(&ci->lock);
383 	set_mode(ci, 1);
384 	read_pccard(ci, address, &val, 1);
385 	mutex_unlock(&ci->lock);
386 	return val;
387 }
388 
389 static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
390 			       int address, u8 value)
391 {
392 	struct cxd *ci = ca->data;
393 
394 	mutex_lock(&ci->lock);
395 	set_mode(ci, 1);
396 	write_pccard(ci, address, &value, 1);
397 	mutex_unlock(&ci->lock);
398 	return 0;
399 }
400 
401 static int read_cam_control(struct dvb_ca_en50221 *ca,
402 			    int slot, u8 address)
403 {
404 	struct cxd *ci = ca->data;
405 	unsigned int val;
406 
407 	mutex_lock(&ci->lock);
408 	set_mode(ci, 0);
409 	read_io(ci, address, &val);
410 	mutex_unlock(&ci->lock);
411 	return val;
412 }
413 
414 static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
415 			     u8 address, u8 value)
416 {
417 	struct cxd *ci = ca->data;
418 
419 	mutex_lock(&ci->lock);
420 	set_mode(ci, 0);
421 	write_io(ci, address, value);
422 	mutex_unlock(&ci->lock);
423 	return 0;
424 }
425 
426 static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
427 {
428 	struct cxd *ci = ca->data;
429 
430 	if (ci->cammode)
431 		read_data(ca, slot, ci->rbuf, 0);
432 
433 	mutex_lock(&ci->lock);
434 	cam_mode(ci, 0);
435 	write_reg(ci, 0x00, 0x21);
436 	write_reg(ci, 0x06, 0x1F);
437 	write_reg(ci, 0x00, 0x31);
438 	write_regm(ci, 0x20, 0x80, 0x80);
439 	write_reg(ci, 0x03, 0x02);
440 	ci->ready = 0;
441 	ci->mode = -1;
442 	{
443 		int i;
444 
445 		for (i = 0; i < 100; i++) {
446 			usleep_range(10000, 11000);
447 			if (ci->ready)
448 				break;
449 		}
450 	}
451 	mutex_unlock(&ci->lock);
452 	return 0;
453 }
454 
455 static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
456 {
457 	struct cxd *ci = ca->data;
458 
459 	dev_dbg(&ci->client->dev, "%s\n", __func__);
460 	if (ci->cammode)
461 		read_data(ca, slot, ci->rbuf, 0);
462 	mutex_lock(&ci->lock);
463 	write_reg(ci, 0x00, 0x21);
464 	write_reg(ci, 0x06, 0x1F);
465 	msleep(300);
466 
467 	write_regm(ci, 0x09, 0x08, 0x08);
468 	write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
469 	write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
470 
471 	ci->mode = -1;
472 	ci->write_busy = 0;
473 	mutex_unlock(&ci->lock);
474 	return 0;
475 }
476 
477 static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
478 {
479 	struct cxd *ci = ca->data;
480 
481 	mutex_lock(&ci->lock);
482 	write_regm(ci, 0x09, 0x00, 0x08);
483 	set_mode(ci, 0);
484 	cam_mode(ci, 1);
485 	mutex_unlock(&ci->lock);
486 	return 0;
487 }
488 
489 static int campoll(struct cxd *ci)
490 {
491 	u8 istat;
492 
493 	read_reg(ci, 0x04, &istat);
494 	if (!istat)
495 		return 0;
496 	write_reg(ci, 0x05, istat);
497 
498 	if (istat & 0x40)
499 		ci->dr = 1;
500 	if (istat & 0x20)
501 		ci->write_busy = 0;
502 
503 	if (istat & 2) {
504 		u8 slotstat;
505 
506 		read_reg(ci, 0x01, &slotstat);
507 		if (!(2 & slotstat)) {
508 			if (!ci->slot_stat) {
509 				ci->slot_stat |=
510 					      DVB_CA_EN50221_POLL_CAM_PRESENT;
511 				write_regm(ci, 0x03, 0x08, 0x08);
512 			}
513 
514 		} else {
515 			if (ci->slot_stat) {
516 				ci->slot_stat = 0;
517 				write_regm(ci, 0x03, 0x00, 0x08);
518 				dev_info(&ci->client->dev, "NO CAM\n");
519 				ci->ready = 0;
520 			}
521 		}
522 		if ((istat & 8) &&
523 		    ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
524 			ci->ready = 1;
525 			ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
526 		}
527 	}
528 	return 0;
529 }
530 
531 static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
532 {
533 	struct cxd *ci = ca->data;
534 	u8 slotstat;
535 
536 	mutex_lock(&ci->lock);
537 	campoll(ci);
538 	read_reg(ci, 0x01, &slotstat);
539 	mutex_unlock(&ci->lock);
540 
541 	return ci->slot_stat;
542 }
543 
544 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
545 {
546 	struct cxd *ci = ca->data;
547 	u8 msb, lsb;
548 	u16 len;
549 
550 	mutex_lock(&ci->lock);
551 	campoll(ci);
552 	mutex_unlock(&ci->lock);
553 
554 	if (!ci->dr)
555 		return 0;
556 
557 	mutex_lock(&ci->lock);
558 	read_reg(ci, 0x0f, &msb);
559 	read_reg(ci, 0x10, &lsb);
560 	len = ((u16)msb << 8) | lsb;
561 	if (len > ecount || len < 2) {
562 		/* read it anyway or cxd may hang */
563 		read_block(ci, 0x12, ci->rbuf, len);
564 		mutex_unlock(&ci->lock);
565 		return -EIO;
566 	}
567 	read_block(ci, 0x12, ebuf, len);
568 	ci->dr = 0;
569 	mutex_unlock(&ci->lock);
570 	return len;
571 }
572 
573 static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
574 {
575 	struct cxd *ci = ca->data;
576 
577 	if (ci->write_busy)
578 		return -EAGAIN;
579 	mutex_lock(&ci->lock);
580 	write_reg(ci, 0x0d, ecount >> 8);
581 	write_reg(ci, 0x0e, ecount & 0xff);
582 	write_block(ci, 0x11, ebuf, ecount);
583 	ci->write_busy = 1;
584 	mutex_unlock(&ci->lock);
585 	return ecount;
586 }
587 
588 static const struct dvb_ca_en50221 en_templ = {
589 	.read_attribute_mem  = read_attribute_mem,
590 	.write_attribute_mem = write_attribute_mem,
591 	.read_cam_control    = read_cam_control,
592 	.write_cam_control   = write_cam_control,
593 	.slot_reset          = slot_reset,
594 	.slot_shutdown       = slot_shutdown,
595 	.slot_ts_enable      = slot_ts_enable,
596 	.poll_slot_status    = poll_slot_status,
597 	.read_data           = read_data,
598 	.write_data          = write_data,
599 };
600 
601 static int cxd2099_probe(struct i2c_client *client,
602 			 const struct i2c_device_id *id)
603 {
604 	struct cxd *ci;
605 	struct cxd2099_cfg *cfg = client->dev.platform_data;
606 	static const struct regmap_config rm_cfg = {
607 		.reg_bits = 8,
608 		.val_bits = 8,
609 	};
610 	unsigned int val;
611 	int ret;
612 
613 	ci = kzalloc(sizeof(*ci), GFP_KERNEL);
614 	if (!ci) {
615 		ret = -ENOMEM;
616 		goto err;
617 	}
618 
619 	ci->client = client;
620 	memcpy(&ci->cfg, cfg, sizeof(ci->cfg));
621 
622 	ci->regmap = regmap_init_i2c(client, &rm_cfg);
623 	if (IS_ERR(ci->regmap)) {
624 		ret = PTR_ERR(ci->regmap);
625 		goto err_kfree;
626 	}
627 
628 	ret = regmap_read(ci->regmap, 0x00, &val);
629 	if (ret < 0) {
630 		dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n",
631 			 client->addr);
632 		goto err_rmexit;
633 	}
634 
635 	mutex_init(&ci->lock);
636 	ci->lastaddress = 0xff;
637 	ci->clk_reg_b = 0x4a;
638 	ci->clk_reg_f = 0x1b;
639 
640 	ci->en = en_templ;
641 	ci->en.data = ci;
642 	init(ci);
643 	dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr);
644 
645 	*cfg->en = &ci->en;
646 
647 	if (!buffermode) {
648 		ci->en.read_data = NULL;
649 		ci->en.write_data = NULL;
650 	} else {
651 		dev_info(&client->dev, "Using CXD2099AR buffer mode");
652 	}
653 
654 	i2c_set_clientdata(client, ci);
655 
656 	return 0;
657 
658 err_rmexit:
659 	regmap_exit(ci->regmap);
660 err_kfree:
661 	kfree(ci);
662 err:
663 
664 	return ret;
665 }
666 
667 static void cxd2099_remove(struct i2c_client *client)
668 {
669 	struct cxd *ci = i2c_get_clientdata(client);
670 
671 	regmap_exit(ci->regmap);
672 	kfree(ci);
673 }
674 
675 static const struct i2c_device_id cxd2099_id[] = {
676 	{"cxd2099", 0},
677 	{}
678 };
679 MODULE_DEVICE_TABLE(i2c, cxd2099_id);
680 
681 static struct i2c_driver cxd2099_driver = {
682 	.driver = {
683 		.name	= "cxd2099",
684 	},
685 	.probe		= cxd2099_probe,
686 	.remove		= cxd2099_remove,
687 	.id_table	= cxd2099_id,
688 };
689 
690 module_i2c_driver(cxd2099_driver);
691 
692 MODULE_DESCRIPTION("Sony CXD2099AR Common Interface controller driver");
693 MODULE_AUTHOR("Ralph Metzler");
694 MODULE_LICENSE("GPL v2");
695