1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver 4 * 5 * Copyright (C) 2005 Steven Toth <stoth@linuxtv.org> 6 * 7 * Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc> 8 * 9 * Support for CX24123/CX24113-NIM by Patrick Boettcher <pb@linuxtv.org> 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <asm/div64.h> 17 18 #include <media/dvb_frontend.h> 19 #include "cx24123.h" 20 21 #define XTAL 10111000 22 23 static int force_band; 24 module_param(force_band, int, 0644); 25 MODULE_PARM_DESC(force_band, "Force a specific band select "\ 26 "(1-9, default:off)."); 27 28 static int debug; 29 module_param(debug, int, 0644); 30 MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)"); 31 32 #define info(args...) do { printk(KERN_INFO "CX24123: " args); } while (0) 33 #define err(args...) do { printk(KERN_ERR "CX24123: " args); } while (0) 34 35 #define dprintk(args...) \ 36 do { \ 37 if (debug) { \ 38 printk(KERN_DEBUG "CX24123: %s: ", __func__); \ 39 printk(args); \ 40 } \ 41 } while (0) 42 43 struct cx24123_state { 44 struct i2c_adapter *i2c; 45 const struct cx24123_config *config; 46 47 struct dvb_frontend frontend; 48 49 /* Some PLL specifics for tuning */ 50 u32 VCAarg; 51 u32 VGAarg; 52 u32 bandselectarg; 53 u32 pllarg; 54 u32 FILTune; 55 56 struct i2c_adapter tuner_i2c_adapter; 57 58 u8 demod_rev; 59 60 /* The Demod/Tuner can't easily provide these, we cache them */ 61 u32 currentfreq; 62 u32 currentsymbolrate; 63 }; 64 65 /* Various tuner defaults need to be established for a given symbol rate Sps */ 66 static struct cx24123_AGC_val { 67 u32 symbolrate_low; 68 u32 symbolrate_high; 69 u32 VCAprogdata; 70 u32 VGAprogdata; 71 u32 FILTune; 72 } cx24123_AGC_vals[] = 73 { 74 { 75 .symbolrate_low = 1000000, 76 .symbolrate_high = 4999999, 77 /* the specs recommend other values for VGA offsets, 78 but tests show they are wrong */ 79 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, 80 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07, 81 .FILTune = 0x27f /* 0.41 V */ 82 }, 83 { 84 .symbolrate_low = 5000000, 85 .symbolrate_high = 14999999, 86 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, 87 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f, 88 .FILTune = 0x317 /* 0.90 V */ 89 }, 90 { 91 .symbolrate_low = 15000000, 92 .symbolrate_high = 45000000, 93 .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180, 94 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f, 95 .FILTune = 0x145 /* 2.70 V */ 96 }, 97 }; 98 99 /* 100 * Various tuner defaults need to be established for a given frequency kHz. 101 * fixme: The bounds on the bands do not match the doc in real life. 102 * fixme: Some of them have been moved, other might need adjustment. 103 */ 104 static struct cx24123_bandselect_val { 105 u32 freq_low; 106 u32 freq_high; 107 u32 VCOdivider; 108 u32 progdata; 109 } cx24123_bandselect_vals[] = 110 { 111 /* band 1 */ 112 { 113 .freq_low = 950000, 114 .freq_high = 1074999, 115 .VCOdivider = 4, 116 .progdata = (0 << 19) | (0 << 9) | 0x40, 117 }, 118 119 /* band 2 */ 120 { 121 .freq_low = 1075000, 122 .freq_high = 1177999, 123 .VCOdivider = 4, 124 .progdata = (0 << 19) | (0 << 9) | 0x80, 125 }, 126 127 /* band 3 */ 128 { 129 .freq_low = 1178000, 130 .freq_high = 1295999, 131 .VCOdivider = 2, 132 .progdata = (0 << 19) | (1 << 9) | 0x01, 133 }, 134 135 /* band 4 */ 136 { 137 .freq_low = 1296000, 138 .freq_high = 1431999, 139 .VCOdivider = 2, 140 .progdata = (0 << 19) | (1 << 9) | 0x02, 141 }, 142 143 /* band 5 */ 144 { 145 .freq_low = 1432000, 146 .freq_high = 1575999, 147 .VCOdivider = 2, 148 .progdata = (0 << 19) | (1 << 9) | 0x04, 149 }, 150 151 /* band 6 */ 152 { 153 .freq_low = 1576000, 154 .freq_high = 1717999, 155 .VCOdivider = 2, 156 .progdata = (0 << 19) | (1 << 9) | 0x08, 157 }, 158 159 /* band 7 */ 160 { 161 .freq_low = 1718000, 162 .freq_high = 1855999, 163 .VCOdivider = 2, 164 .progdata = (0 << 19) | (1 << 9) | 0x10, 165 }, 166 167 /* band 8 */ 168 { 169 .freq_low = 1856000, 170 .freq_high = 2035999, 171 .VCOdivider = 2, 172 .progdata = (0 << 19) | (1 << 9) | 0x20, 173 }, 174 175 /* band 9 */ 176 { 177 .freq_low = 2036000, 178 .freq_high = 2150000, 179 .VCOdivider = 2, 180 .progdata = (0 << 19) | (1 << 9) | 0x40, 181 }, 182 }; 183 184 static struct { 185 u8 reg; 186 u8 data; 187 } cx24123_regdata[] = 188 { 189 {0x00, 0x03}, /* Reset system */ 190 {0x00, 0x00}, /* Clear reset */ 191 {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */ 192 {0x04, 0x10}, /* MPEG */ 193 {0x05, 0x04}, /* MPEG */ 194 {0x06, 0x31}, /* MPEG (default) */ 195 {0x0b, 0x00}, /* Freq search start point (default) */ 196 {0x0c, 0x00}, /* Demodulator sample gain (default) */ 197 {0x0d, 0x7f}, /* Force driver to shift until the maximum (+-10 MHz) */ 198 {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */ 199 {0x0f, 0xfe}, /* FEC search mask (all supported codes) */ 200 {0x10, 0x01}, /* Default search inversion, no repeat (default) */ 201 {0x16, 0x00}, /* Enable reading of frequency */ 202 {0x17, 0x01}, /* Enable EsNO Ready Counter */ 203 {0x1c, 0x80}, /* Enable error counter */ 204 {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */ 205 {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */ 206 {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */ 207 {0x29, 0x00}, /* DiSEqC LNB_DC off */ 208 {0x2a, 0xb0}, /* DiSEqC Parameters (default) */ 209 {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */ 210 {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */ 211 {0x2d, 0x00}, 212 {0x2e, 0x00}, 213 {0x2f, 0x00}, 214 {0x30, 0x00}, 215 {0x31, 0x00}, 216 {0x32, 0x8c}, /* DiSEqC Parameters (default) */ 217 {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */ 218 {0x34, 0x00}, 219 {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */ 220 {0x36, 0x02}, /* DiSEqC Parameters (default) */ 221 {0x37, 0x3a}, /* DiSEqC Parameters (default) */ 222 {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */ 223 {0x44, 0x00}, /* Constellation (default) */ 224 {0x45, 0x00}, /* Symbol count (default) */ 225 {0x46, 0x0d}, /* Symbol rate estimator on (default) */ 226 {0x56, 0xc1}, /* Error Counter = Viterbi BER */ 227 {0x57, 0xff}, /* Error Counter Window (default) */ 228 {0x5c, 0x20}, /* Acquisition AFC Expiration window (default is 0x10) */ 229 {0x67, 0x83}, /* Non-DCII symbol clock */ 230 }; 231 232 static int cx24123_i2c_writereg(struct cx24123_state *state, 233 u8 i2c_addr, int reg, int data) 234 { 235 u8 buf[] = { reg, data }; 236 struct i2c_msg msg = { 237 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2 238 }; 239 int err; 240 241 /* printk(KERN_DEBUG "wr(%02x): %02x %02x\n", i2c_addr, reg, data); */ 242 243 err = i2c_transfer(state->i2c, &msg, 1); 244 if (err != 1) { 245 printk("%s: writereg error(err == %i, reg == 0x%02x, data == 0x%02x)\n", 246 __func__, err, reg, data); 247 return err; 248 } 249 250 return 0; 251 } 252 253 static int cx24123_i2c_readreg(struct cx24123_state *state, u8 i2c_addr, u8 reg) 254 { 255 int ret; 256 u8 b = 0; 257 struct i2c_msg msg[] = { 258 { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 }, 259 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &b, .len = 1 } 260 }; 261 262 ret = i2c_transfer(state->i2c, msg, 2); 263 264 if (ret != 2) { 265 err("%s: reg=0x%x (error=%d)\n", __func__, reg, ret); 266 return ret; 267 } 268 269 /* printk(KERN_DEBUG "rd(%02x): %02x %02x\n", i2c_addr, reg, b); */ 270 271 return b; 272 } 273 274 #define cx24123_readreg(state, reg) \ 275 cx24123_i2c_readreg(state, state->config->demod_address, reg) 276 #define cx24123_writereg(state, reg, val) \ 277 cx24123_i2c_writereg(state, state->config->demod_address, reg, val) 278 279 static int cx24123_set_inversion(struct cx24123_state *state, 280 enum fe_spectral_inversion inversion) 281 { 282 u8 nom_reg = cx24123_readreg(state, 0x0e); 283 u8 auto_reg = cx24123_readreg(state, 0x10); 284 285 switch (inversion) { 286 case INVERSION_OFF: 287 dprintk("inversion off\n"); 288 cx24123_writereg(state, 0x0e, nom_reg & ~0x80); 289 cx24123_writereg(state, 0x10, auto_reg | 0x80); 290 break; 291 case INVERSION_ON: 292 dprintk("inversion on\n"); 293 cx24123_writereg(state, 0x0e, nom_reg | 0x80); 294 cx24123_writereg(state, 0x10, auto_reg | 0x80); 295 break; 296 case INVERSION_AUTO: 297 dprintk("inversion auto\n"); 298 cx24123_writereg(state, 0x10, auto_reg & ~0x80); 299 break; 300 default: 301 return -EINVAL; 302 } 303 304 return 0; 305 } 306 307 static int cx24123_get_inversion(struct cx24123_state *state, 308 enum fe_spectral_inversion *inversion) 309 { 310 u8 val; 311 312 val = cx24123_readreg(state, 0x1b) >> 7; 313 314 if (val == 0) { 315 dprintk("read inversion off\n"); 316 *inversion = INVERSION_OFF; 317 } else { 318 dprintk("read inversion on\n"); 319 *inversion = INVERSION_ON; 320 } 321 322 return 0; 323 } 324 325 static int cx24123_set_fec(struct cx24123_state *state, enum fe_code_rate fec) 326 { 327 u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07; 328 329 if (((int)fec < FEC_NONE) || (fec > FEC_AUTO)) 330 fec = FEC_AUTO; 331 332 /* Set the soft decision threshold */ 333 if (fec == FEC_1_2) 334 cx24123_writereg(state, 0x43, 335 cx24123_readreg(state, 0x43) | 0x01); 336 else 337 cx24123_writereg(state, 0x43, 338 cx24123_readreg(state, 0x43) & ~0x01); 339 340 switch (fec) { 341 case FEC_1_2: 342 dprintk("set FEC to 1/2\n"); 343 cx24123_writereg(state, 0x0e, nom_reg | 0x01); 344 cx24123_writereg(state, 0x0f, 0x02); 345 break; 346 case FEC_2_3: 347 dprintk("set FEC to 2/3\n"); 348 cx24123_writereg(state, 0x0e, nom_reg | 0x02); 349 cx24123_writereg(state, 0x0f, 0x04); 350 break; 351 case FEC_3_4: 352 dprintk("set FEC to 3/4\n"); 353 cx24123_writereg(state, 0x0e, nom_reg | 0x03); 354 cx24123_writereg(state, 0x0f, 0x08); 355 break; 356 case FEC_4_5: 357 dprintk("set FEC to 4/5\n"); 358 cx24123_writereg(state, 0x0e, nom_reg | 0x04); 359 cx24123_writereg(state, 0x0f, 0x10); 360 break; 361 case FEC_5_6: 362 dprintk("set FEC to 5/6\n"); 363 cx24123_writereg(state, 0x0e, nom_reg | 0x05); 364 cx24123_writereg(state, 0x0f, 0x20); 365 break; 366 case FEC_6_7: 367 dprintk("set FEC to 6/7\n"); 368 cx24123_writereg(state, 0x0e, nom_reg | 0x06); 369 cx24123_writereg(state, 0x0f, 0x40); 370 break; 371 case FEC_7_8: 372 dprintk("set FEC to 7/8\n"); 373 cx24123_writereg(state, 0x0e, nom_reg | 0x07); 374 cx24123_writereg(state, 0x0f, 0x80); 375 break; 376 case FEC_AUTO: 377 dprintk("set FEC to auto\n"); 378 cx24123_writereg(state, 0x0f, 0xfe); 379 break; 380 default: 381 return -EOPNOTSUPP; 382 } 383 384 return 0; 385 } 386 387 static int cx24123_get_fec(struct cx24123_state *state, enum fe_code_rate *fec) 388 { 389 int ret; 390 391 ret = cx24123_readreg(state, 0x1b); 392 if (ret < 0) 393 return ret; 394 ret = ret & 0x07; 395 396 switch (ret) { 397 case 1: 398 *fec = FEC_1_2; 399 break; 400 case 2: 401 *fec = FEC_2_3; 402 break; 403 case 3: 404 *fec = FEC_3_4; 405 break; 406 case 4: 407 *fec = FEC_4_5; 408 break; 409 case 5: 410 *fec = FEC_5_6; 411 break; 412 case 6: 413 *fec = FEC_6_7; 414 break; 415 case 7: 416 *fec = FEC_7_8; 417 break; 418 default: 419 /* this can happen when there's no lock */ 420 *fec = FEC_NONE; 421 } 422 423 return 0; 424 } 425 426 /* Approximation of closest integer of log2(a/b). It actually gives the 427 lowest integer i such that 2^i >= round(a/b) */ 428 static u32 cx24123_int_log2(u32 a, u32 b) 429 { 430 u32 exp, nearest = 0; 431 u32 div = a / b; 432 if (a % b >= b / 2) 433 ++div; 434 if (div < (1 << 31)) { 435 for (exp = 1; div > exp; nearest++) 436 exp += exp; 437 } 438 return nearest; 439 } 440 441 static int cx24123_set_symbolrate(struct cx24123_state *state, u32 srate) 442 { 443 u64 tmp; 444 u32 sample_rate, ratio, sample_gain; 445 u8 pll_mult; 446 447 /* check if symbol rate is within limits */ 448 if ((srate > state->frontend.ops.info.symbol_rate_max) || 449 (srate < state->frontend.ops.info.symbol_rate_min)) 450 return -EOPNOTSUPP; 451 452 /* choose the sampling rate high enough for the required operation, 453 while optimizing the power consumed by the demodulator */ 454 if (srate < (XTAL*2)/2) 455 pll_mult = 2; 456 else if (srate < (XTAL*3)/2) 457 pll_mult = 3; 458 else if (srate < (XTAL*4)/2) 459 pll_mult = 4; 460 else if (srate < (XTAL*5)/2) 461 pll_mult = 5; 462 else if (srate < (XTAL*6)/2) 463 pll_mult = 6; 464 else if (srate < (XTAL*7)/2) 465 pll_mult = 7; 466 else if (srate < (XTAL*8)/2) 467 pll_mult = 8; 468 else 469 pll_mult = 9; 470 471 472 sample_rate = pll_mult * XTAL; 473 474 /* SYSSymbolRate[21:0] = (srate << 23) / sample_rate */ 475 476 tmp = ((u64)srate) << 23; 477 do_div(tmp, sample_rate); 478 ratio = (u32) tmp; 479 480 cx24123_writereg(state, 0x01, pll_mult * 6); 481 482 cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f); 483 cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff); 484 cx24123_writereg(state, 0x0a, ratio & 0xff); 485 486 /* also set the demodulator sample gain */ 487 sample_gain = cx24123_int_log2(sample_rate, srate); 488 tmp = cx24123_readreg(state, 0x0c) & ~0xe0; 489 cx24123_writereg(state, 0x0c, tmp | sample_gain << 5); 490 491 dprintk("srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", 492 srate, ratio, sample_rate, sample_gain); 493 494 return 0; 495 } 496 497 /* 498 * Based on the required frequency and symbolrate, the tuner AGC has 499 * to be configured and the correct band selected. 500 * Calculate those values. 501 */ 502 static int cx24123_pll_calculate(struct dvb_frontend *fe) 503 { 504 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 505 struct cx24123_state *state = fe->demodulator_priv; 506 u32 ndiv = 0, adiv = 0, vco_div = 0; 507 int i = 0; 508 int pump = 2; 509 int band = 0; 510 int num_bands = ARRAY_SIZE(cx24123_bandselect_vals); 511 struct cx24123_bandselect_val *bsv = NULL; 512 struct cx24123_AGC_val *agcv = NULL; 513 514 /* Defaults for low freq, low rate */ 515 state->VCAarg = cx24123_AGC_vals[0].VCAprogdata; 516 state->VGAarg = cx24123_AGC_vals[0].VGAprogdata; 517 state->bandselectarg = cx24123_bandselect_vals[0].progdata; 518 vco_div = cx24123_bandselect_vals[0].VCOdivider; 519 520 /* For the given symbol rate, determine the VCA, VGA and 521 * FILTUNE programming bits */ 522 for (i = 0; i < ARRAY_SIZE(cx24123_AGC_vals); i++) { 523 agcv = &cx24123_AGC_vals[i]; 524 if ((agcv->symbolrate_low <= p->symbol_rate) && 525 (agcv->symbolrate_high >= p->symbol_rate)) { 526 state->VCAarg = agcv->VCAprogdata; 527 state->VGAarg = agcv->VGAprogdata; 528 state->FILTune = agcv->FILTune; 529 } 530 } 531 532 /* determine the band to use */ 533 if (force_band < 1 || force_band > num_bands) { 534 for (i = 0; i < num_bands; i++) { 535 bsv = &cx24123_bandselect_vals[i]; 536 if ((bsv->freq_low <= p->frequency) && 537 (bsv->freq_high >= p->frequency)) 538 band = i; 539 } 540 } else 541 band = force_band - 1; 542 543 state->bandselectarg = cx24123_bandselect_vals[band].progdata; 544 vco_div = cx24123_bandselect_vals[band].VCOdivider; 545 546 /* determine the charge pump current */ 547 if (p->frequency < (cx24123_bandselect_vals[band].freq_low + 548 cx24123_bandselect_vals[band].freq_high) / 2) 549 pump = 0x01; 550 else 551 pump = 0x02; 552 553 /* Determine the N/A dividers for the requested lband freq (in kHz). */ 554 /* Note: the reference divider R=10, frequency is in KHz, 555 * XTAL is in Hz */ 556 ndiv = (((p->frequency * vco_div * 10) / 557 (2 * XTAL / 1000)) / 32) & 0x1ff; 558 adiv = (((p->frequency * vco_div * 10) / 559 (2 * XTAL / 1000)) % 32) & 0x1f; 560 561 if (adiv == 0 && ndiv > 0) 562 ndiv--; 563 564 /* control bits 11, refdiv 11, charge pump polarity 1, 565 * charge pump current, ndiv, adiv */ 566 state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | 567 (pump << 14) | (ndiv << 5) | adiv; 568 569 return 0; 570 } 571 572 /* 573 * Tuner data is 21 bits long, must be left-aligned in data. 574 * Tuner cx24109 is written through a dedicated 3wire interface 575 * on the demod chip. 576 */ 577 static int cx24123_pll_writereg(struct dvb_frontend *fe, u32 data) 578 { 579 struct cx24123_state *state = fe->demodulator_priv; 580 unsigned long timeout; 581 582 dprintk("pll writereg called, data=0x%08x\n", data); 583 584 /* align the 21 bytes into to bit23 boundary */ 585 data = data << 3; 586 587 /* Reset the demod pll word length to 0x15 bits */ 588 cx24123_writereg(state, 0x21, 0x15); 589 590 /* write the msb 8 bits, wait for the send to be completed */ 591 timeout = jiffies + msecs_to_jiffies(40); 592 cx24123_writereg(state, 0x22, (data >> 16) & 0xff); 593 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) { 594 if (time_after(jiffies, timeout)) { 595 err("%s: demodulator is not responding, "\ 596 "possibly hung, aborting.\n", __func__); 597 return -EREMOTEIO; 598 } 599 msleep(10); 600 } 601 602 /* send another 8 bytes, wait for the send to be completed */ 603 timeout = jiffies + msecs_to_jiffies(40); 604 cx24123_writereg(state, 0x22, (data >> 8) & 0xff); 605 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) { 606 if (time_after(jiffies, timeout)) { 607 err("%s: demodulator is not responding, "\ 608 "possibly hung, aborting.\n", __func__); 609 return -EREMOTEIO; 610 } 611 msleep(10); 612 } 613 614 /* send the lower 5 bits of this byte, padded with 3 LBB, 615 * wait for the send to be completed */ 616 timeout = jiffies + msecs_to_jiffies(40); 617 cx24123_writereg(state, 0x22, (data) & 0xff); 618 while ((cx24123_readreg(state, 0x20) & 0x80)) { 619 if (time_after(jiffies, timeout)) { 620 err("%s: demodulator is not responding," \ 621 "possibly hung, aborting.\n", __func__); 622 return -EREMOTEIO; 623 } 624 msleep(10); 625 } 626 627 /* Trigger the demod to configure the tuner */ 628 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2); 629 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd); 630 631 return 0; 632 } 633 634 static int cx24123_pll_tune(struct dvb_frontend *fe) 635 { 636 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 637 struct cx24123_state *state = fe->demodulator_priv; 638 u8 val; 639 640 dprintk("frequency=%i\n", p->frequency); 641 642 if (cx24123_pll_calculate(fe) != 0) { 643 err("%s: cx24123_pll_calculate failed\n", __func__); 644 return -EINVAL; 645 } 646 647 /* Write the new VCO/VGA */ 648 cx24123_pll_writereg(fe, state->VCAarg); 649 cx24123_pll_writereg(fe, state->VGAarg); 650 651 /* Write the new bandselect and pll args */ 652 cx24123_pll_writereg(fe, state->bandselectarg); 653 cx24123_pll_writereg(fe, state->pllarg); 654 655 /* set the FILTUNE voltage */ 656 val = cx24123_readreg(state, 0x28) & ~0x3; 657 cx24123_writereg(state, 0x27, state->FILTune >> 2); 658 cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3)); 659 660 dprintk("pll tune VCA=%d, band=%d, pll=%d\n", state->VCAarg, 661 state->bandselectarg, state->pllarg); 662 663 return 0; 664 } 665 666 667 /* 668 * 0x23: 669 * [7:7] = BTI enabled 670 * [6:6] = I2C repeater enabled 671 * [5:5] = I2C repeater start 672 * [0:0] = BTI start 673 */ 674 675 /* mode == 1 -> i2c-repeater, 0 -> bti */ 676 static int cx24123_repeater_mode(struct cx24123_state *state, u8 mode, u8 start) 677 { 678 u8 r = cx24123_readreg(state, 0x23) & 0x1e; 679 if (mode) 680 r |= (1 << 6) | (start << 5); 681 else 682 r |= (1 << 7) | (start); 683 return cx24123_writereg(state, 0x23, r); 684 } 685 686 static int cx24123_initfe(struct dvb_frontend *fe) 687 { 688 struct cx24123_state *state = fe->demodulator_priv; 689 int i; 690 691 dprintk("init frontend\n"); 692 693 /* Configure the demod to a good set of defaults */ 694 for (i = 0; i < ARRAY_SIZE(cx24123_regdata); i++) 695 cx24123_writereg(state, cx24123_regdata[i].reg, 696 cx24123_regdata[i].data); 697 698 /* Set the LNB polarity */ 699 if (state->config->lnb_polarity) 700 cx24123_writereg(state, 0x32, 701 cx24123_readreg(state, 0x32) | 0x02); 702 703 if (state->config->dont_use_pll) 704 cx24123_repeater_mode(state, 1, 0); 705 706 return 0; 707 } 708 709 static int cx24123_set_voltage(struct dvb_frontend *fe, 710 enum fe_sec_voltage voltage) 711 { 712 struct cx24123_state *state = fe->demodulator_priv; 713 u8 val; 714 715 val = cx24123_readreg(state, 0x29) & ~0x40; 716 717 switch (voltage) { 718 case SEC_VOLTAGE_13: 719 dprintk("setting voltage 13V\n"); 720 return cx24123_writereg(state, 0x29, val & 0x7f); 721 case SEC_VOLTAGE_18: 722 dprintk("setting voltage 18V\n"); 723 return cx24123_writereg(state, 0x29, val | 0x80); 724 case SEC_VOLTAGE_OFF: 725 /* already handled in cx88-dvb */ 726 return 0; 727 default: 728 return -EINVAL; 729 } 730 731 return 0; 732 } 733 734 /* wait for diseqc queue to become ready (or timeout) */ 735 static void cx24123_wait_for_diseqc(struct cx24123_state *state) 736 { 737 unsigned long timeout = jiffies + msecs_to_jiffies(200); 738 while (!(cx24123_readreg(state, 0x29) & 0x40)) { 739 if (time_after(jiffies, timeout)) { 740 err("%s: diseqc queue not ready, " \ 741 "command may be lost.\n", __func__); 742 break; 743 } 744 msleep(10); 745 } 746 } 747 748 static int cx24123_send_diseqc_msg(struct dvb_frontend *fe, 749 struct dvb_diseqc_master_cmd *cmd) 750 { 751 struct cx24123_state *state = fe->demodulator_priv; 752 int i, val, tone; 753 754 dprintk("\n"); 755 756 /* stop continuous tone if enabled */ 757 tone = cx24123_readreg(state, 0x29); 758 if (tone & 0x10) 759 cx24123_writereg(state, 0x29, tone & ~0x50); 760 761 /* wait for diseqc queue ready */ 762 cx24123_wait_for_diseqc(state); 763 764 /* select tone mode */ 765 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb); 766 767 for (i = 0; i < cmd->msg_len; i++) 768 cx24123_writereg(state, 0x2C + i, cmd->msg[i]); 769 770 val = cx24123_readreg(state, 0x29); 771 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | 772 ((cmd->msg_len-3) & 3)); 773 774 /* wait for diseqc message to finish sending */ 775 cx24123_wait_for_diseqc(state); 776 777 /* restart continuous tone if enabled */ 778 if (tone & 0x10) 779 cx24123_writereg(state, 0x29, tone & ~0x40); 780 781 return 0; 782 } 783 784 static int cx24123_diseqc_send_burst(struct dvb_frontend *fe, 785 enum fe_sec_mini_cmd burst) 786 { 787 struct cx24123_state *state = fe->demodulator_priv; 788 int val, tone; 789 790 dprintk("\n"); 791 792 /* stop continuous tone if enabled */ 793 tone = cx24123_readreg(state, 0x29); 794 if (tone & 0x10) 795 cx24123_writereg(state, 0x29, tone & ~0x50); 796 797 /* wait for diseqc queue ready */ 798 cx24123_wait_for_diseqc(state); 799 800 /* select tone mode */ 801 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4); 802 msleep(30); 803 val = cx24123_readreg(state, 0x29); 804 if (burst == SEC_MINI_A) 805 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00)); 806 else if (burst == SEC_MINI_B) 807 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08)); 808 else 809 return -EINVAL; 810 811 cx24123_wait_for_diseqc(state); 812 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb); 813 814 /* restart continuous tone if enabled */ 815 if (tone & 0x10) 816 cx24123_writereg(state, 0x29, tone & ~0x40); 817 818 return 0; 819 } 820 821 static int cx24123_read_status(struct dvb_frontend *fe, enum fe_status *status) 822 { 823 struct cx24123_state *state = fe->demodulator_priv; 824 int sync = cx24123_readreg(state, 0x14); 825 826 *status = 0; 827 if (state->config->dont_use_pll) { 828 u32 tun_status = 0; 829 if (fe->ops.tuner_ops.get_status) 830 fe->ops.tuner_ops.get_status(fe, &tun_status); 831 if (tun_status & TUNER_STATUS_LOCKED) 832 *status |= FE_HAS_SIGNAL; 833 } else { 834 int lock = cx24123_readreg(state, 0x20); 835 if (lock & 0x01) 836 *status |= FE_HAS_SIGNAL; 837 } 838 839 if (sync & 0x02) 840 *status |= FE_HAS_CARRIER; /* Phase locked */ 841 if (sync & 0x04) 842 *status |= FE_HAS_VITERBI; 843 844 /* Reed-Solomon Status */ 845 if (sync & 0x08) 846 *status |= FE_HAS_SYNC; 847 if (sync & 0x80) 848 *status |= FE_HAS_LOCK; /*Full Sync */ 849 850 return 0; 851 } 852 853 /* 854 * Configured to return the measurement of errors in blocks, 855 * because no UCBLOCKS value is available, so this value doubles up 856 * to satisfy both measurements. 857 */ 858 static int cx24123_read_ber(struct dvb_frontend *fe, u32 *ber) 859 { 860 struct cx24123_state *state = fe->demodulator_priv; 861 862 /* The true bit error rate is this value divided by 863 the window size (set as 256 * 255) */ 864 *ber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) | 865 (cx24123_readreg(state, 0x1d) << 8 | 866 cx24123_readreg(state, 0x1e)); 867 868 dprintk("BER = %d\n", *ber); 869 870 return 0; 871 } 872 873 static int cx24123_read_signal_strength(struct dvb_frontend *fe, 874 u16 *signal_strength) 875 { 876 struct cx24123_state *state = fe->demodulator_priv; 877 878 /* larger = better */ 879 *signal_strength = cx24123_readreg(state, 0x3b) << 8; 880 881 dprintk("Signal strength = %d\n", *signal_strength); 882 883 return 0; 884 } 885 886 static int cx24123_read_snr(struct dvb_frontend *fe, u16 *snr) 887 { 888 struct cx24123_state *state = fe->demodulator_priv; 889 890 /* Inverted raw Es/N0 count, totally bogus but better than the 891 BER threshold. */ 892 *snr = 65535 - (((u16)cx24123_readreg(state, 0x18) << 8) | 893 (u16)cx24123_readreg(state, 0x19)); 894 895 dprintk("read S/N index = %d\n", *snr); 896 897 return 0; 898 } 899 900 static int cx24123_set_frontend(struct dvb_frontend *fe) 901 { 902 struct cx24123_state *state = fe->demodulator_priv; 903 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 904 905 dprintk("\n"); 906 907 if (state->config->set_ts_params) 908 state->config->set_ts_params(fe, 0); 909 910 state->currentfreq = p->frequency; 911 state->currentsymbolrate = p->symbol_rate; 912 913 cx24123_set_inversion(state, p->inversion); 914 cx24123_set_fec(state, p->fec_inner); 915 cx24123_set_symbolrate(state, p->symbol_rate); 916 917 if (!state->config->dont_use_pll) 918 cx24123_pll_tune(fe); 919 else if (fe->ops.tuner_ops.set_params) 920 fe->ops.tuner_ops.set_params(fe); 921 else 922 err("it seems I don't have a tuner..."); 923 924 /* Enable automatic acquisition and reset cycle */ 925 cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07)); 926 cx24123_writereg(state, 0x00, 0x10); 927 cx24123_writereg(state, 0x00, 0); 928 929 if (state->config->agc_callback) 930 state->config->agc_callback(fe); 931 932 return 0; 933 } 934 935 static int cx24123_get_frontend(struct dvb_frontend *fe, 936 struct dtv_frontend_properties *p) 937 { 938 struct cx24123_state *state = fe->demodulator_priv; 939 940 dprintk("\n"); 941 942 if (cx24123_get_inversion(state, &p->inversion) != 0) { 943 err("%s: Failed to get inversion status\n", __func__); 944 return -EREMOTEIO; 945 } 946 if (cx24123_get_fec(state, &p->fec_inner) != 0) { 947 err("%s: Failed to get fec status\n", __func__); 948 return -EREMOTEIO; 949 } 950 p->frequency = state->currentfreq; 951 p->symbol_rate = state->currentsymbolrate; 952 953 return 0; 954 } 955 956 static int cx24123_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) 957 { 958 struct cx24123_state *state = fe->demodulator_priv; 959 u8 val; 960 961 /* wait for diseqc queue ready */ 962 cx24123_wait_for_diseqc(state); 963 964 val = cx24123_readreg(state, 0x29) & ~0x40; 965 966 switch (tone) { 967 case SEC_TONE_ON: 968 dprintk("setting tone on\n"); 969 return cx24123_writereg(state, 0x29, val | 0x10); 970 case SEC_TONE_OFF: 971 dprintk("setting tone off\n"); 972 return cx24123_writereg(state, 0x29, val & 0xef); 973 default: 974 err("CASE reached default with tone=%d\n", tone); 975 return -EINVAL; 976 } 977 978 return 0; 979 } 980 981 static int cx24123_tune(struct dvb_frontend *fe, 982 bool re_tune, 983 unsigned int mode_flags, 984 unsigned int *delay, 985 enum fe_status *status) 986 { 987 int retval = 0; 988 989 if (re_tune) 990 retval = cx24123_set_frontend(fe); 991 992 if (!(mode_flags & FE_TUNE_MODE_ONESHOT)) 993 cx24123_read_status(fe, status); 994 *delay = HZ/10; 995 996 return retval; 997 } 998 999 static enum dvbfe_algo cx24123_get_algo(struct dvb_frontend *fe) 1000 { 1001 return DVBFE_ALGO_HW; 1002 } 1003 1004 static void cx24123_release(struct dvb_frontend *fe) 1005 { 1006 struct cx24123_state *state = fe->demodulator_priv; 1007 dprintk("\n"); 1008 i2c_del_adapter(&state->tuner_i2c_adapter); 1009 kfree(state); 1010 } 1011 1012 static int cx24123_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, 1013 struct i2c_msg msg[], int num) 1014 { 1015 struct cx24123_state *state = i2c_get_adapdata(i2c_adap); 1016 /* this repeater closes after the first stop */ 1017 cx24123_repeater_mode(state, 1, 1); 1018 return i2c_transfer(state->i2c, msg, num); 1019 } 1020 1021 static u32 cx24123_tuner_i2c_func(struct i2c_adapter *adapter) 1022 { 1023 return I2C_FUNC_I2C; 1024 } 1025 1026 static const struct i2c_algorithm cx24123_tuner_i2c_algo = { 1027 .master_xfer = cx24123_tuner_i2c_tuner_xfer, 1028 .functionality = cx24123_tuner_i2c_func, 1029 }; 1030 1031 struct i2c_adapter * 1032 cx24123_get_tuner_i2c_adapter(struct dvb_frontend *fe) 1033 { 1034 struct cx24123_state *state = fe->demodulator_priv; 1035 return &state->tuner_i2c_adapter; 1036 } 1037 EXPORT_SYMBOL(cx24123_get_tuner_i2c_adapter); 1038 1039 static const struct dvb_frontend_ops cx24123_ops; 1040 1041 struct dvb_frontend *cx24123_attach(const struct cx24123_config *config, 1042 struct i2c_adapter *i2c) 1043 { 1044 /* allocate memory for the internal state */ 1045 struct cx24123_state *state = 1046 kzalloc(sizeof(struct cx24123_state), GFP_KERNEL); 1047 1048 dprintk("\n"); 1049 if (state == NULL) { 1050 err("Unable to kzalloc\n"); 1051 goto error; 1052 } 1053 1054 /* setup the state */ 1055 state->config = config; 1056 state->i2c = i2c; 1057 1058 /* check if the demod is there */ 1059 state->demod_rev = cx24123_readreg(state, 0x00); 1060 switch (state->demod_rev) { 1061 case 0xe1: 1062 info("detected CX24123C\n"); 1063 break; 1064 case 0xd1: 1065 info("detected CX24123\n"); 1066 break; 1067 default: 1068 err("wrong demod revision: %x\n", state->demod_rev); 1069 goto error; 1070 } 1071 1072 /* create dvb_frontend */ 1073 memcpy(&state->frontend.ops, &cx24123_ops, 1074 sizeof(struct dvb_frontend_ops)); 1075 state->frontend.demodulator_priv = state; 1076 1077 /* create tuner i2c adapter */ 1078 if (config->dont_use_pll) 1079 cx24123_repeater_mode(state, 1, 0); 1080 1081 strscpy(state->tuner_i2c_adapter.name, "CX24123 tuner I2C bus", 1082 sizeof(state->tuner_i2c_adapter.name)); 1083 state->tuner_i2c_adapter.algo = &cx24123_tuner_i2c_algo; 1084 state->tuner_i2c_adapter.algo_data = NULL; 1085 state->tuner_i2c_adapter.dev.parent = i2c->dev.parent; 1086 i2c_set_adapdata(&state->tuner_i2c_adapter, state); 1087 if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) { 1088 err("tuner i2c bus could not be initialized\n"); 1089 goto error; 1090 } 1091 1092 return &state->frontend; 1093 1094 error: 1095 kfree(state); 1096 1097 return NULL; 1098 } 1099 EXPORT_SYMBOL(cx24123_attach); 1100 1101 static const struct dvb_frontend_ops cx24123_ops = { 1102 .delsys = { SYS_DVBS }, 1103 .info = { 1104 .name = "Conexant CX24123/CX24109", 1105 .frequency_min_hz = 950 * MHz, 1106 .frequency_max_hz = 2150 * MHz, 1107 .frequency_stepsize_hz = 1011 * kHz, 1108 .frequency_tolerance_hz = 5 * MHz, 1109 .symbol_rate_min = 1000000, 1110 .symbol_rate_max = 45000000, 1111 .caps = FE_CAN_INVERSION_AUTO | 1112 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 1113 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | 1114 FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 1115 FE_CAN_QPSK | FE_CAN_RECOVER 1116 }, 1117 1118 .release = cx24123_release, 1119 1120 .init = cx24123_initfe, 1121 .set_frontend = cx24123_set_frontend, 1122 .get_frontend = cx24123_get_frontend, 1123 .read_status = cx24123_read_status, 1124 .read_ber = cx24123_read_ber, 1125 .read_signal_strength = cx24123_read_signal_strength, 1126 .read_snr = cx24123_read_snr, 1127 .diseqc_send_master_cmd = cx24123_send_diseqc_msg, 1128 .diseqc_send_burst = cx24123_diseqc_send_burst, 1129 .set_tone = cx24123_set_tone, 1130 .set_voltage = cx24123_set_voltage, 1131 .tune = cx24123_tune, 1132 .get_frontend_algo = cx24123_get_algo, 1133 }; 1134 1135 MODULE_DESCRIPTION("DVB Frontend module for Conexant " \ 1136 "CX24123/CX24109/CX24113 hardware"); 1137 MODULE_AUTHOR("Steven Toth"); 1138 MODULE_LICENSE("GPL"); 1139 1140