1 /* 2 cx24110 - Single Chip Satellite Channel Receiver driver module 3 4 Copyright (C) 2002 Peter Hettkamp <peter.hettkamp@htp-tel.de> based on 5 work 6 Copyright (C) 1999 Convergence Integrated Media GmbH <ralph@convergence.de> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/init.h> 29 30 #include <media/dvb_frontend.h> 31 #include "cx24110.h" 32 33 34 struct cx24110_state { 35 36 struct i2c_adapter* i2c; 37 38 const struct cx24110_config* config; 39 40 struct dvb_frontend frontend; 41 42 u32 lastber; 43 u32 lastbler; 44 u32 lastesn0; 45 }; 46 47 static int debug; 48 #define dprintk(args...) \ 49 do { \ 50 if (debug) printk(KERN_DEBUG "cx24110: " args); \ 51 } while (0) 52 53 static struct {u8 reg; u8 data;} cx24110_regdata[]= 54 /* Comments beginning with @ denote this value should 55 be the default */ 56 {{0x09,0x01}, /* SoftResetAll */ 57 {0x09,0x00}, /* release reset */ 58 {0x01,0xe8}, /* MSB of code rate 27.5MS/s */ 59 {0x02,0x17}, /* middle byte " */ 60 {0x03,0x29}, /* LSB " */ 61 {0x05,0x03}, /* @ DVB mode, standard code rate 3/4 */ 62 {0x06,0xa5}, /* @ PLL 60MHz */ 63 {0x07,0x01}, /* @ Fclk, i.e. sampling clock, 60MHz */ 64 {0x0a,0x00}, /* @ partial chip disables, do not set */ 65 {0x0b,0x01}, /* set output clock in gapped mode, start signal low 66 active for first byte */ 67 {0x0c,0x11}, /* no parity bytes, large hold time, serial data out */ 68 {0x0d,0x6f}, /* @ RS Sync/Unsync thresholds */ 69 {0x10,0x40}, /* chip doc is misleading here: write bit 6 as 1 70 to avoid starting the BER counter. Reset the 71 CRC test bit. Finite counting selected */ 72 {0x15,0xff}, /* @ size of the limited time window for RS BER 73 estimation. It is <value>*256 RS blocks, this 74 gives approx. 2.6 sec at 27.5MS/s, rate 3/4 */ 75 {0x16,0x00}, /* @ enable all RS output ports */ 76 {0x17,0x04}, /* @ time window allowed for the RS to sync */ 77 {0x18,0xae}, /* @ allow all standard DVB code rates to be scanned 78 for automatically */ 79 /* leave the current code rate and normalization 80 registers as they are after reset... */ 81 {0x21,0x10}, /* @ during AutoAcq, search each viterbi setting 82 only once */ 83 {0x23,0x18}, /* @ size of the limited time window for Viterbi BER 84 estimation. It is <value>*65536 channel bits, i.e. 85 approx. 38ms at 27.5MS/s, rate 3/4 */ 86 {0x24,0x24}, /* do not trigger Viterbi CRC test. Finite count window */ 87 /* leave front-end AGC parameters at default values */ 88 /* leave decimation AGC parameters at default values */ 89 {0x35,0x40}, /* disable all interrupts. They are not connected anyway */ 90 {0x36,0xff}, /* clear all interrupt pending flags */ 91 {0x37,0x00}, /* @ fully enable AutoAcqq state machine */ 92 {0x38,0x07}, /* @ enable fade recovery, but not autostart AutoAcq */ 93 /* leave the equalizer parameters on their default values */ 94 /* leave the final AGC parameters on their default values */ 95 {0x41,0x00}, /* @ MSB of front-end derotator frequency */ 96 {0x42,0x00}, /* @ middle bytes " */ 97 {0x43,0x00}, /* @ LSB " */ 98 /* leave the carrier tracking loop parameters on default */ 99 /* leave the bit timing loop parameters at default */ 100 {0x56,0x4d}, /* set the filtune voltage to 2.7V, as recommended by */ 101 /* the cx24108 data sheet for symbol rates above 15MS/s */ 102 {0x57,0x00}, /* @ Filter sigma delta enabled, positive */ 103 {0x61,0x95}, /* GPIO pins 1-4 have special function */ 104 {0x62,0x05}, /* GPIO pin 5 has special function, pin 6 is GPIO */ 105 {0x63,0x00}, /* All GPIO pins use CMOS output characteristics */ 106 {0x64,0x20}, /* GPIO 6 is input, all others are outputs */ 107 {0x6d,0x30}, /* tuner auto mode clock freq 62kHz */ 108 {0x70,0x15}, /* use auto mode, tuner word is 21 bits long */ 109 {0x73,0x00}, /* @ disable several demod bypasses */ 110 {0x74,0x00}, /* @ " */ 111 {0x75,0x00} /* @ " */ 112 /* the remaining registers are for SEC */ 113 }; 114 115 116 static int cx24110_writereg (struct cx24110_state* state, int reg, int data) 117 { 118 u8 buf [] = { reg, data }; 119 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; 120 int err; 121 122 if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) { 123 dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", 124 __func__, err, reg, data); 125 return -EREMOTEIO; 126 } 127 128 return 0; 129 } 130 131 static int cx24110_readreg (struct cx24110_state* state, u8 reg) 132 { 133 int ret; 134 u8 b0 [] = { reg }; 135 u8 b1 [] = { 0 }; 136 struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, 137 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; 138 139 ret = i2c_transfer(state->i2c, msg, 2); 140 141 if (ret != 2) return ret; 142 143 return b1[0]; 144 } 145 146 static int cx24110_set_inversion(struct cx24110_state *state, 147 enum fe_spectral_inversion inversion) 148 { 149 /* fixme (low): error handling */ 150 151 switch (inversion) { 152 case INVERSION_OFF: 153 cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1); 154 /* AcqSpectrInvDis on. No idea why someone should want this */ 155 cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)&0xf7); 156 /* Initial value 0 at start of acq */ 157 cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)&0xef); 158 /* current value 0 */ 159 /* The cx24110 manual tells us this reg is read-only. 160 But what the heck... set it ayways */ 161 break; 162 case INVERSION_ON: 163 cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1); 164 /* AcqSpectrInvDis on. No idea why someone should want this */ 165 cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)|0x08); 166 /* Initial value 1 at start of acq */ 167 cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)|0x10); 168 /* current value 1 */ 169 break; 170 case INVERSION_AUTO: 171 cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xfe); 172 /* AcqSpectrInvDis off. Leave initial & current states as is */ 173 break; 174 default: 175 return -EINVAL; 176 } 177 178 return 0; 179 } 180 181 static int cx24110_set_fec(struct cx24110_state *state, enum fe_code_rate fec) 182 { 183 static const int rate[FEC_AUTO] = {-1, 1, 2, 3, 5, 7, -1}; 184 static const int g1[FEC_AUTO] = {-1, 0x01, 0x02, 0x05, 0x15, 0x45, -1}; 185 static const int g2[FEC_AUTO] = {-1, 0x01, 0x03, 0x06, 0x1a, 0x7a, -1}; 186 187 /* Well, the AutoAcq engine of the cx24106 and 24110 automatically 188 searches all enabled viterbi rates, and can handle non-standard 189 rates as well. */ 190 191 if (fec > FEC_AUTO) 192 fec = FEC_AUTO; 193 194 if (fec == FEC_AUTO) { /* (re-)establish AutoAcq behaviour */ 195 cx24110_writereg(state, 0x37, cx24110_readreg(state, 0x37) & 0xdf); 196 /* clear AcqVitDis bit */ 197 cx24110_writereg(state, 0x18, 0xae); 198 /* allow all DVB standard code rates */ 199 cx24110_writereg(state, 0x05, (cx24110_readreg(state, 0x05) & 0xf0) | 0x3); 200 /* set nominal Viterbi rate 3/4 */ 201 cx24110_writereg(state, 0x22, (cx24110_readreg(state, 0x22) & 0xf0) | 0x3); 202 /* set current Viterbi rate 3/4 */ 203 cx24110_writereg(state, 0x1a, 0x05); 204 cx24110_writereg(state, 0x1b, 0x06); 205 /* set the puncture registers for code rate 3/4 */ 206 return 0; 207 } else { 208 cx24110_writereg(state, 0x37, cx24110_readreg(state, 0x37) | 0x20); 209 /* set AcqVitDis bit */ 210 if (rate[fec] < 0) 211 return -EINVAL; 212 213 cx24110_writereg(state, 0x05, (cx24110_readreg(state, 0x05) & 0xf0) | rate[fec]); 214 /* set nominal Viterbi rate */ 215 cx24110_writereg(state, 0x22, (cx24110_readreg(state, 0x22) & 0xf0) | rate[fec]); 216 /* set current Viterbi rate */ 217 cx24110_writereg(state, 0x1a, g1[fec]); 218 cx24110_writereg(state, 0x1b, g2[fec]); 219 /* not sure if this is the right way: I always used AutoAcq mode */ 220 } 221 return 0; 222 } 223 224 static enum fe_code_rate cx24110_get_fec(struct cx24110_state *state) 225 { 226 int i; 227 228 i=cx24110_readreg(state,0x22)&0x0f; 229 if(!(i&0x08)) { 230 return FEC_1_2 + i - 1; 231 } else { 232 /* fixme (low): a special code rate has been selected. In theory, we need to 233 return a denominator value, a numerator value, and a pair of puncture 234 maps to correctly describe this mode. But this should never happen in 235 practice, because it cannot be set by cx24110_get_fec. */ 236 return FEC_NONE; 237 } 238 } 239 240 static int cx24110_set_symbolrate (struct cx24110_state* state, u32 srate) 241 { 242 /* fixme (low): add error handling */ 243 u32 ratio; 244 u32 tmp, fclk, BDRI; 245 246 static const u32 bands[]={5000000UL,15000000UL,90999000UL/2}; 247 int i; 248 249 dprintk("cx24110 debug: entering %s(%d)\n",__func__,srate); 250 if (srate>90999000UL/2) 251 srate=90999000UL/2; 252 if (srate<500000) 253 srate=500000; 254 255 for(i = 0; (i < ARRAY_SIZE(bands)) && (srate>bands[i]); i++) 256 ; 257 /* first, check which sample rate is appropriate: 45, 60 80 or 90 MHz, 258 and set the PLL accordingly (R07[1:0] Fclk, R06[7:4] PLLmult, 259 R06[3:0] PLLphaseDetGain */ 260 tmp=cx24110_readreg(state,0x07)&0xfc; 261 if(srate<90999000UL/4) { /* sample rate 45MHz*/ 262 cx24110_writereg(state,0x07,tmp); 263 cx24110_writereg(state,0x06,0x78); 264 fclk=90999000UL/2; 265 } else if(srate<60666000UL/2) { /* sample rate 60MHz */ 266 cx24110_writereg(state,0x07,tmp|0x1); 267 cx24110_writereg(state,0x06,0xa5); 268 fclk=60666000UL; 269 } else if(srate<80888000UL/2) { /* sample rate 80MHz */ 270 cx24110_writereg(state,0x07,tmp|0x2); 271 cx24110_writereg(state,0x06,0x87); 272 fclk=80888000UL; 273 } else { /* sample rate 90MHz */ 274 cx24110_writereg(state,0x07,tmp|0x3); 275 cx24110_writereg(state,0x06,0x78); 276 fclk=90999000UL; 277 } 278 dprintk("cx24110 debug: fclk %d Hz\n",fclk); 279 /* we need to divide two integers with approx. 27 bits in 32 bit 280 arithmetic giving a 25 bit result */ 281 /* the maximum dividend is 90999000/2, 0x02b6446c, this number is 282 also the most complex divisor. Hence, the dividend has, 283 assuming 32bit unsigned arithmetic, 6 clear bits on top, the 284 divisor 2 unused bits at the bottom. Also, the quotient is 285 always less than 1/2. Borrowed from VES1893.c, of course */ 286 287 tmp=srate<<6; 288 BDRI=fclk>>2; 289 ratio=(tmp/BDRI); 290 291 tmp=(tmp%BDRI)<<8; 292 ratio=(ratio<<8)+(tmp/BDRI); 293 294 tmp=(tmp%BDRI)<<8; 295 ratio=(ratio<<8)+(tmp/BDRI); 296 297 tmp=(tmp%BDRI)<<1; 298 ratio=(ratio<<1)+(tmp/BDRI); 299 300 dprintk("srate= %d (range %d, up to %d)\n", srate,i,bands[i]); 301 dprintk("fclk = %d\n", fclk); 302 dprintk("ratio= %08x\n", ratio); 303 304 cx24110_writereg(state, 0x1, (ratio>>16)&0xff); 305 cx24110_writereg(state, 0x2, (ratio>>8)&0xff); 306 cx24110_writereg(state, 0x3, (ratio)&0xff); 307 308 return 0; 309 310 } 311 312 static int _cx24110_pll_write (struct dvb_frontend* fe, const u8 buf[], int len) 313 { 314 struct cx24110_state *state = fe->demodulator_priv; 315 316 if (len != 3) 317 return -EINVAL; 318 319 /* tuner data is 21 bits long, must be left-aligned in data */ 320 /* tuner cx24108 is written through a dedicated 3wire interface on the demod chip */ 321 /* FIXME (low): add error handling, avoid infinite loops if HW fails... */ 322 323 cx24110_writereg(state,0x6d,0x30); /* auto mode at 62kHz */ 324 cx24110_writereg(state,0x70,0x15); /* auto mode 21 bits */ 325 326 /* if the auto tuner writer is still busy, clear it out */ 327 while (cx24110_readreg(state,0x6d)&0x80) 328 cx24110_writereg(state,0x72,0); 329 330 /* write the topmost 8 bits */ 331 cx24110_writereg(state,0x72,buf[0]); 332 333 /* wait for the send to be completed */ 334 while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) 335 ; 336 337 /* send another 8 bytes */ 338 cx24110_writereg(state,0x72,buf[1]); 339 while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) 340 ; 341 342 /* and the topmost 5 bits of this byte */ 343 cx24110_writereg(state,0x72,buf[2]); 344 while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) 345 ; 346 347 /* now strobe the enable line once */ 348 cx24110_writereg(state,0x6d,0x32); 349 cx24110_writereg(state,0x6d,0x30); 350 351 return 0; 352 } 353 354 static int cx24110_initfe(struct dvb_frontend* fe) 355 { 356 struct cx24110_state *state = fe->demodulator_priv; 357 /* fixme (low): error handling */ 358 int i; 359 360 dprintk("%s: init chip\n", __func__); 361 362 for(i = 0; i < ARRAY_SIZE(cx24110_regdata); i++) { 363 cx24110_writereg(state, cx24110_regdata[i].reg, cx24110_regdata[i].data); 364 } 365 366 return 0; 367 } 368 369 static int cx24110_set_voltage(struct dvb_frontend *fe, 370 enum fe_sec_voltage voltage) 371 { 372 struct cx24110_state *state = fe->demodulator_priv; 373 374 switch (voltage) { 375 case SEC_VOLTAGE_13: 376 return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0xc0); 377 case SEC_VOLTAGE_18: 378 return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0x40); 379 default: 380 return -EINVAL; 381 } 382 } 383 384 static int cx24110_diseqc_send_burst(struct dvb_frontend *fe, 385 enum fe_sec_mini_cmd burst) 386 { 387 int rv, bit; 388 struct cx24110_state *state = fe->demodulator_priv; 389 unsigned long timeout; 390 391 if (burst == SEC_MINI_A) 392 bit = 0x00; 393 else if (burst == SEC_MINI_B) 394 bit = 0x08; 395 else 396 return -EINVAL; 397 398 rv = cx24110_readreg(state, 0x77); 399 if (!(rv & 0x04)) 400 cx24110_writereg(state, 0x77, rv | 0x04); 401 402 rv = cx24110_readreg(state, 0x76); 403 cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40 | bit)); 404 timeout = jiffies + msecs_to_jiffies(100); 405 while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40)) 406 ; /* wait for LNB ready */ 407 408 return 0; 409 } 410 411 static int cx24110_send_diseqc_msg(struct dvb_frontend* fe, 412 struct dvb_diseqc_master_cmd *cmd) 413 { 414 int i, rv; 415 struct cx24110_state *state = fe->demodulator_priv; 416 unsigned long timeout; 417 418 if (cmd->msg_len < 3 || cmd->msg_len > 6) 419 return -EINVAL; /* not implemented */ 420 421 for (i = 0; i < cmd->msg_len; i++) 422 cx24110_writereg(state, 0x79 + i, cmd->msg[i]); 423 424 rv = cx24110_readreg(state, 0x77); 425 if (rv & 0x04) { 426 cx24110_writereg(state, 0x77, rv & ~0x04); 427 msleep(30); /* reportedly fixes switching problems */ 428 } 429 430 rv = cx24110_readreg(state, 0x76); 431 432 cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40) | ((cmd->msg_len-3) & 3)); 433 timeout = jiffies + msecs_to_jiffies(100); 434 while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40)) 435 ; /* wait for LNB ready */ 436 437 return 0; 438 } 439 440 static int cx24110_read_status(struct dvb_frontend *fe, 441 enum fe_status *status) 442 { 443 struct cx24110_state *state = fe->demodulator_priv; 444 445 int sync = cx24110_readreg (state, 0x55); 446 447 *status = 0; 448 449 if (sync & 0x10) 450 *status |= FE_HAS_SIGNAL; 451 452 if (sync & 0x08) 453 *status |= FE_HAS_CARRIER; 454 455 sync = cx24110_readreg (state, 0x08); 456 457 if (sync & 0x40) 458 *status |= FE_HAS_VITERBI; 459 460 if (sync & 0x20) 461 *status |= FE_HAS_SYNC; 462 463 if ((sync & 0x60) == 0x60) 464 *status |= FE_HAS_LOCK; 465 466 return 0; 467 } 468 469 static int cx24110_read_ber(struct dvb_frontend* fe, u32* ber) 470 { 471 struct cx24110_state *state = fe->demodulator_priv; 472 473 /* fixme (maybe): value range is 16 bit. Scale? */ 474 if(cx24110_readreg(state,0x24)&0x10) { 475 /* the Viterbi error counter has finished one counting window */ 476 cx24110_writereg(state,0x24,0x04); /* select the ber reg */ 477 state->lastber=cx24110_readreg(state,0x25)| 478 (cx24110_readreg(state,0x26)<<8); 479 cx24110_writereg(state,0x24,0x04); /* start new count window */ 480 cx24110_writereg(state,0x24,0x14); 481 } 482 *ber = state->lastber; 483 484 return 0; 485 } 486 487 static int cx24110_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength) 488 { 489 struct cx24110_state *state = fe->demodulator_priv; 490 491 /* no provision in hardware. Read the frontend AGC accumulator. No idea how to scale this, but I know it is 2s complement */ 492 u8 signal = cx24110_readreg (state, 0x27)+128; 493 *signal_strength = (signal << 8) | signal; 494 495 return 0; 496 } 497 498 static int cx24110_read_snr(struct dvb_frontend* fe, u16* snr) 499 { 500 struct cx24110_state *state = fe->demodulator_priv; 501 502 /* no provision in hardware. Can be computed from the Es/N0 estimator, but I don't know how. */ 503 if(cx24110_readreg(state,0x6a)&0x80) { 504 /* the Es/N0 error counter has finished one counting window */ 505 state->lastesn0=cx24110_readreg(state,0x69)| 506 (cx24110_readreg(state,0x68)<<8); 507 cx24110_writereg(state,0x6a,0x84); /* start new count window */ 508 } 509 *snr = state->lastesn0; 510 511 return 0; 512 } 513 514 static int cx24110_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) 515 { 516 struct cx24110_state *state = fe->demodulator_priv; 517 518 if(cx24110_readreg(state,0x10)&0x40) { 519 /* the RS error counter has finished one counting window */ 520 cx24110_writereg(state,0x10,0x60); /* select the byer reg */ 521 (void)(cx24110_readreg(state, 0x12) | 522 (cx24110_readreg(state, 0x13) << 8) | 523 (cx24110_readreg(state, 0x14) << 16)); 524 cx24110_writereg(state,0x10,0x70); /* select the bler reg */ 525 state->lastbler=cx24110_readreg(state,0x12)| 526 (cx24110_readreg(state,0x13)<<8)| 527 (cx24110_readreg(state,0x14)<<16); 528 cx24110_writereg(state,0x10,0x20); /* start new count window */ 529 } 530 *ucblocks = state->lastbler; 531 532 return 0; 533 } 534 535 static int cx24110_set_frontend(struct dvb_frontend *fe) 536 { 537 struct cx24110_state *state = fe->demodulator_priv; 538 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 539 540 if (fe->ops.tuner_ops.set_params) { 541 fe->ops.tuner_ops.set_params(fe); 542 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); 543 } 544 545 cx24110_set_inversion(state, p->inversion); 546 cx24110_set_fec(state, p->fec_inner); 547 cx24110_set_symbolrate(state, p->symbol_rate); 548 cx24110_writereg(state,0x04,0x05); /* start acquisition */ 549 550 return 0; 551 } 552 553 static int cx24110_get_frontend(struct dvb_frontend *fe, 554 struct dtv_frontend_properties *p) 555 { 556 struct cx24110_state *state = fe->demodulator_priv; 557 s32 afc; unsigned sclk; 558 559 /* cannot read back tuner settings (freq). Need to have some private storage */ 560 561 sclk = cx24110_readreg (state, 0x07) & 0x03; 562 /* ok, real AFC (FEDR) freq. is afc/2^24*fsamp, fsamp=45/60/80/90MHz. 563 * Need 64 bit arithmetic. Is thiss possible in the kernel? */ 564 if (sclk==0) sclk=90999000L/2L; 565 else if (sclk==1) sclk=60666000L; 566 else if (sclk==2) sclk=80888000L; 567 else sclk=90999000L; 568 sclk>>=8; 569 afc = sclk*(cx24110_readreg (state, 0x44)&0x1f)+ 570 ((sclk*cx24110_readreg (state, 0x45))>>8)+ 571 ((sclk*cx24110_readreg (state, 0x46))>>16); 572 573 p->frequency += afc; 574 p->inversion = (cx24110_readreg (state, 0x22) & 0x10) ? 575 INVERSION_ON : INVERSION_OFF; 576 p->fec_inner = cx24110_get_fec(state); 577 578 return 0; 579 } 580 581 static int cx24110_set_tone(struct dvb_frontend *fe, 582 enum fe_sec_tone_mode tone) 583 { 584 struct cx24110_state *state = fe->demodulator_priv; 585 586 return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&~0x10)|(((tone==SEC_TONE_ON))?0x10:0)); 587 } 588 589 static void cx24110_release(struct dvb_frontend* fe) 590 { 591 struct cx24110_state* state = fe->demodulator_priv; 592 kfree(state); 593 } 594 595 static const struct dvb_frontend_ops cx24110_ops; 596 597 struct dvb_frontend* cx24110_attach(const struct cx24110_config* config, 598 struct i2c_adapter* i2c) 599 { 600 struct cx24110_state* state = NULL; 601 int ret; 602 603 /* allocate memory for the internal state */ 604 state = kzalloc(sizeof(struct cx24110_state), GFP_KERNEL); 605 if (state == NULL) goto error; 606 607 /* setup the state */ 608 state->config = config; 609 state->i2c = i2c; 610 state->lastber = 0; 611 state->lastbler = 0; 612 state->lastesn0 = 0; 613 614 /* check if the demod is there */ 615 ret = cx24110_readreg(state, 0x00); 616 if ((ret != 0x5a) && (ret != 0x69)) goto error; 617 618 /* create dvb_frontend */ 619 memcpy(&state->frontend.ops, &cx24110_ops, sizeof(struct dvb_frontend_ops)); 620 state->frontend.demodulator_priv = state; 621 return &state->frontend; 622 623 error: 624 kfree(state); 625 return NULL; 626 } 627 628 static const struct dvb_frontend_ops cx24110_ops = { 629 .delsys = { SYS_DVBS }, 630 .info = { 631 .name = "Conexant CX24110 DVB-S", 632 .frequency_min = 950000, 633 .frequency_max = 2150000, 634 .frequency_stepsize = 1011, /* kHz for QPSK frontends */ 635 .frequency_tolerance = 29500, 636 .symbol_rate_min = 1000000, 637 .symbol_rate_max = 45000000, 638 .caps = FE_CAN_INVERSION_AUTO | 639 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 640 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 641 FE_CAN_QPSK | FE_CAN_RECOVER 642 }, 643 644 .release = cx24110_release, 645 646 .init = cx24110_initfe, 647 .write = _cx24110_pll_write, 648 .set_frontend = cx24110_set_frontend, 649 .get_frontend = cx24110_get_frontend, 650 .read_status = cx24110_read_status, 651 .read_ber = cx24110_read_ber, 652 .read_signal_strength = cx24110_read_signal_strength, 653 .read_snr = cx24110_read_snr, 654 .read_ucblocks = cx24110_read_ucblocks, 655 656 .diseqc_send_master_cmd = cx24110_send_diseqc_msg, 657 .set_tone = cx24110_set_tone, 658 .set_voltage = cx24110_set_voltage, 659 .diseqc_send_burst = cx24110_diseqc_send_burst, 660 }; 661 662 module_param(debug, int, 0644); 663 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); 664 665 MODULE_DESCRIPTION("Conexant CX24110 DVB-S Demodulator driver"); 666 MODULE_AUTHOR("Peter Hettkamp"); 667 MODULE_LICENSE("GPL"); 668 669 EXPORT_SYMBOL(cx24110_attach); 670