1 /* 2 cx24110 - Single Chip Satellite Channel Receiver driver module 3 4 Copyright (C) 2002 Peter Hettkamp <peter.hettkamp@htp-tel.de> based on 5 work 6 Copyright (C) 1999 Convergence Integrated Media GmbH <ralph@convergence.de> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/init.h> 29 30 #include "dvb_frontend.h" 31 #include "cx24110.h" 32 33 34 struct cx24110_state { 35 36 struct i2c_adapter* i2c; 37 38 const struct cx24110_config* config; 39 40 struct dvb_frontend frontend; 41 42 u32 lastber; 43 u32 lastbler; 44 u32 lastesn0; 45 }; 46 47 static int debug; 48 #define dprintk(args...) \ 49 do { \ 50 if (debug) printk(KERN_DEBUG "cx24110: " args); \ 51 } while (0) 52 53 static struct {u8 reg; u8 data;} cx24110_regdata[]= 54 /* Comments beginning with @ denote this value should 55 be the default */ 56 {{0x09,0x01}, /* SoftResetAll */ 57 {0x09,0x00}, /* release reset */ 58 {0x01,0xe8}, /* MSB of code rate 27.5MS/s */ 59 {0x02,0x17}, /* middle byte " */ 60 {0x03,0x29}, /* LSB " */ 61 {0x05,0x03}, /* @ DVB mode, standard code rate 3/4 */ 62 {0x06,0xa5}, /* @ PLL 60MHz */ 63 {0x07,0x01}, /* @ Fclk, i.e. sampling clock, 60MHz */ 64 {0x0a,0x00}, /* @ partial chip disables, do not set */ 65 {0x0b,0x01}, /* set output clock in gapped mode, start signal low 66 active for first byte */ 67 {0x0c,0x11}, /* no parity bytes, large hold time, serial data out */ 68 {0x0d,0x6f}, /* @ RS Sync/Unsync thresholds */ 69 {0x10,0x40}, /* chip doc is misleading here: write bit 6 as 1 70 to avoid starting the BER counter. Reset the 71 CRC test bit. Finite counting selected */ 72 {0x15,0xff}, /* @ size of the limited time window for RS BER 73 estimation. It is <value>*256 RS blocks, this 74 gives approx. 2.6 sec at 27.5MS/s, rate 3/4 */ 75 {0x16,0x00}, /* @ enable all RS output ports */ 76 {0x17,0x04}, /* @ time window allowed for the RS to sync */ 77 {0x18,0xae}, /* @ allow all standard DVB code rates to be scanned 78 for automatically */ 79 /* leave the current code rate and normalization 80 registers as they are after reset... */ 81 {0x21,0x10}, /* @ during AutoAcq, search each viterbi setting 82 only once */ 83 {0x23,0x18}, /* @ size of the limited time window for Viterbi BER 84 estimation. It is <value>*65536 channel bits, i.e. 85 approx. 38ms at 27.5MS/s, rate 3/4 */ 86 {0x24,0x24}, /* do not trigger Viterbi CRC test. Finite count window */ 87 /* leave front-end AGC parameters at default values */ 88 /* leave decimation AGC parameters at default values */ 89 {0x35,0x40}, /* disable all interrupts. They are not connected anyway */ 90 {0x36,0xff}, /* clear all interrupt pending flags */ 91 {0x37,0x00}, /* @ fully enable AutoAcqq state machine */ 92 {0x38,0x07}, /* @ enable fade recovery, but not autostart AutoAcq */ 93 /* leave the equalizer parameters on their default values */ 94 /* leave the final AGC parameters on their default values */ 95 {0x41,0x00}, /* @ MSB of front-end derotator frequency */ 96 {0x42,0x00}, /* @ middle bytes " */ 97 {0x43,0x00}, /* @ LSB " */ 98 /* leave the carrier tracking loop parameters on default */ 99 /* leave the bit timing loop parameters at default */ 100 {0x56,0x4d}, /* set the filtune voltage to 2.7V, as recommended by */ 101 /* the cx24108 data sheet for symbol rates above 15MS/s */ 102 {0x57,0x00}, /* @ Filter sigma delta enabled, positive */ 103 {0x61,0x95}, /* GPIO pins 1-4 have special function */ 104 {0x62,0x05}, /* GPIO pin 5 has special function, pin 6 is GPIO */ 105 {0x63,0x00}, /* All GPIO pins use CMOS output characteristics */ 106 {0x64,0x20}, /* GPIO 6 is input, all others are outputs */ 107 {0x6d,0x30}, /* tuner auto mode clock freq 62kHz */ 108 {0x70,0x15}, /* use auto mode, tuner word is 21 bits long */ 109 {0x73,0x00}, /* @ disable several demod bypasses */ 110 {0x74,0x00}, /* @ " */ 111 {0x75,0x00} /* @ " */ 112 /* the remaining registers are for SEC */ 113 }; 114 115 116 static int cx24110_writereg (struct cx24110_state* state, int reg, int data) 117 { 118 u8 buf [] = { reg, data }; 119 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; 120 int err; 121 122 if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) { 123 dprintk ("%s: writereg error (err == %i, reg == 0x%02x," 124 " data == 0x%02x)\n", __func__, err, reg, data); 125 return -EREMOTEIO; 126 } 127 128 return 0; 129 } 130 131 static int cx24110_readreg (struct cx24110_state* state, u8 reg) 132 { 133 int ret; 134 u8 b0 [] = { reg }; 135 u8 b1 [] = { 0 }; 136 struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, 137 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; 138 139 ret = i2c_transfer(state->i2c, msg, 2); 140 141 if (ret != 2) return ret; 142 143 return b1[0]; 144 } 145 146 static int cx24110_set_inversion (struct cx24110_state* state, fe_spectral_inversion_t inversion) 147 { 148 /* fixme (low): error handling */ 149 150 switch (inversion) { 151 case INVERSION_OFF: 152 cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1); 153 /* AcqSpectrInvDis on. No idea why someone should want this */ 154 cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)&0xf7); 155 /* Initial value 0 at start of acq */ 156 cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)&0xef); 157 /* current value 0 */ 158 /* The cx24110 manual tells us this reg is read-only. 159 But what the heck... set it ayways */ 160 break; 161 case INVERSION_ON: 162 cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1); 163 /* AcqSpectrInvDis on. No idea why someone should want this */ 164 cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)|0x08); 165 /* Initial value 1 at start of acq */ 166 cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)|0x10); 167 /* current value 1 */ 168 break; 169 case INVERSION_AUTO: 170 cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xfe); 171 /* AcqSpectrInvDis off. Leave initial & current states as is */ 172 break; 173 default: 174 return -EINVAL; 175 } 176 177 return 0; 178 } 179 180 static int cx24110_set_fec(struct cx24110_state* state, fe_code_rate_t fec) 181 { 182 static const int rate[FEC_AUTO] = {-1, 1, 2, 3, 5, 7, -1}; 183 static const int g1[FEC_AUTO] = {-1, 0x01, 0x02, 0x05, 0x15, 0x45, -1}; 184 static const int g2[FEC_AUTO] = {-1, 0x01, 0x03, 0x06, 0x1a, 0x7a, -1}; 185 186 /* Well, the AutoAcq engine of the cx24106 and 24110 automatically 187 searches all enabled viterbi rates, and can handle non-standard 188 rates as well. */ 189 190 if (fec > FEC_AUTO) 191 fec = FEC_AUTO; 192 193 if (fec == FEC_AUTO) { /* (re-)establish AutoAcq behaviour */ 194 cx24110_writereg(state, 0x37, cx24110_readreg(state, 0x37) & 0xdf); 195 /* clear AcqVitDis bit */ 196 cx24110_writereg(state, 0x18, 0xae); 197 /* allow all DVB standard code rates */ 198 cx24110_writereg(state, 0x05, (cx24110_readreg(state, 0x05) & 0xf0) | 0x3); 199 /* set nominal Viterbi rate 3/4 */ 200 cx24110_writereg(state, 0x22, (cx24110_readreg(state, 0x22) & 0xf0) | 0x3); 201 /* set current Viterbi rate 3/4 */ 202 cx24110_writereg(state, 0x1a, 0x05); 203 cx24110_writereg(state, 0x1b, 0x06); 204 /* set the puncture registers for code rate 3/4 */ 205 return 0; 206 } else { 207 cx24110_writereg(state, 0x37, cx24110_readreg(state, 0x37) | 0x20); 208 /* set AcqVitDis bit */ 209 if (rate[fec] < 0) 210 return -EINVAL; 211 212 cx24110_writereg(state, 0x05, (cx24110_readreg(state, 0x05) & 0xf0) | rate[fec]); 213 /* set nominal Viterbi rate */ 214 cx24110_writereg(state, 0x22, (cx24110_readreg(state, 0x22) & 0xf0) | rate[fec]); 215 /* set current Viterbi rate */ 216 cx24110_writereg(state, 0x1a, g1[fec]); 217 cx24110_writereg(state, 0x1b, g2[fec]); 218 /* not sure if this is the right way: I always used AutoAcq mode */ 219 } 220 return 0; 221 } 222 223 static fe_code_rate_t cx24110_get_fec (struct cx24110_state* state) 224 { 225 int i; 226 227 i=cx24110_readreg(state,0x22)&0x0f; 228 if(!(i&0x08)) { 229 return FEC_1_2 + i - 1; 230 } else { 231 /* fixme (low): a special code rate has been selected. In theory, we need to 232 return a denominator value, a numerator value, and a pair of puncture 233 maps to correctly describe this mode. But this should never happen in 234 practice, because it cannot be set by cx24110_get_fec. */ 235 return FEC_NONE; 236 } 237 } 238 239 static int cx24110_set_symbolrate (struct cx24110_state* state, u32 srate) 240 { 241 /* fixme (low): add error handling */ 242 u32 ratio; 243 u32 tmp, fclk, BDRI; 244 245 static const u32 bands[]={5000000UL,15000000UL,90999000UL/2}; 246 int i; 247 248 dprintk("cx24110 debug: entering %s(%d)\n",__func__,srate); 249 if (srate>90999000UL/2) 250 srate=90999000UL/2; 251 if (srate<500000) 252 srate=500000; 253 254 for(i = 0; (i < ARRAY_SIZE(bands)) && (srate>bands[i]); i++) 255 ; 256 /* first, check which sample rate is appropriate: 45, 60 80 or 90 MHz, 257 and set the PLL accordingly (R07[1:0] Fclk, R06[7:4] PLLmult, 258 R06[3:0] PLLphaseDetGain */ 259 tmp=cx24110_readreg(state,0x07)&0xfc; 260 if(srate<90999000UL/4) { /* sample rate 45MHz*/ 261 cx24110_writereg(state,0x07,tmp); 262 cx24110_writereg(state,0x06,0x78); 263 fclk=90999000UL/2; 264 } else if(srate<60666000UL/2) { /* sample rate 60MHz */ 265 cx24110_writereg(state,0x07,tmp|0x1); 266 cx24110_writereg(state,0x06,0xa5); 267 fclk=60666000UL; 268 } else if(srate<80888000UL/2) { /* sample rate 80MHz */ 269 cx24110_writereg(state,0x07,tmp|0x2); 270 cx24110_writereg(state,0x06,0x87); 271 fclk=80888000UL; 272 } else { /* sample rate 90MHz */ 273 cx24110_writereg(state,0x07,tmp|0x3); 274 cx24110_writereg(state,0x06,0x78); 275 fclk=90999000UL; 276 } 277 dprintk("cx24110 debug: fclk %d Hz\n",fclk); 278 /* we need to divide two integers with approx. 27 bits in 32 bit 279 arithmetic giving a 25 bit result */ 280 /* the maximum dividend is 90999000/2, 0x02b6446c, this number is 281 also the most complex divisor. Hence, the dividend has, 282 assuming 32bit unsigned arithmetic, 6 clear bits on top, the 283 divisor 2 unused bits at the bottom. Also, the quotient is 284 always less than 1/2. Borrowed from VES1893.c, of course */ 285 286 tmp=srate<<6; 287 BDRI=fclk>>2; 288 ratio=(tmp/BDRI); 289 290 tmp=(tmp%BDRI)<<8; 291 ratio=(ratio<<8)+(tmp/BDRI); 292 293 tmp=(tmp%BDRI)<<8; 294 ratio=(ratio<<8)+(tmp/BDRI); 295 296 tmp=(tmp%BDRI)<<1; 297 ratio=(ratio<<1)+(tmp/BDRI); 298 299 dprintk("srate= %d (range %d, up to %d)\n", srate,i,bands[i]); 300 dprintk("fclk = %d\n", fclk); 301 dprintk("ratio= %08x\n", ratio); 302 303 cx24110_writereg(state, 0x1, (ratio>>16)&0xff); 304 cx24110_writereg(state, 0x2, (ratio>>8)&0xff); 305 cx24110_writereg(state, 0x3, (ratio)&0xff); 306 307 return 0; 308 309 } 310 311 static int _cx24110_pll_write (struct dvb_frontend* fe, const u8 buf[], int len) 312 { 313 struct cx24110_state *state = fe->demodulator_priv; 314 315 if (len != 3) 316 return -EINVAL; 317 318 /* tuner data is 21 bits long, must be left-aligned in data */ 319 /* tuner cx24108 is written through a dedicated 3wire interface on the demod chip */ 320 /* FIXME (low): add error handling, avoid infinite loops if HW fails... */ 321 322 cx24110_writereg(state,0x6d,0x30); /* auto mode at 62kHz */ 323 cx24110_writereg(state,0x70,0x15); /* auto mode 21 bits */ 324 325 /* if the auto tuner writer is still busy, clear it out */ 326 while (cx24110_readreg(state,0x6d)&0x80) 327 cx24110_writereg(state,0x72,0); 328 329 /* write the topmost 8 bits */ 330 cx24110_writereg(state,0x72,buf[0]); 331 332 /* wait for the send to be completed */ 333 while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) 334 ; 335 336 /* send another 8 bytes */ 337 cx24110_writereg(state,0x72,buf[1]); 338 while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) 339 ; 340 341 /* and the topmost 5 bits of this byte */ 342 cx24110_writereg(state,0x72,buf[2]); 343 while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) 344 ; 345 346 /* now strobe the enable line once */ 347 cx24110_writereg(state,0x6d,0x32); 348 cx24110_writereg(state,0x6d,0x30); 349 350 return 0; 351 } 352 353 static int cx24110_initfe(struct dvb_frontend* fe) 354 { 355 struct cx24110_state *state = fe->demodulator_priv; 356 /* fixme (low): error handling */ 357 int i; 358 359 dprintk("%s: init chip\n", __func__); 360 361 for(i = 0; i < ARRAY_SIZE(cx24110_regdata); i++) { 362 cx24110_writereg(state, cx24110_regdata[i].reg, cx24110_regdata[i].data); 363 } 364 365 return 0; 366 } 367 368 static int cx24110_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage) 369 { 370 struct cx24110_state *state = fe->demodulator_priv; 371 372 switch (voltage) { 373 case SEC_VOLTAGE_13: 374 return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0xc0); 375 case SEC_VOLTAGE_18: 376 return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0x40); 377 default: 378 return -EINVAL; 379 } 380 } 381 382 static int cx24110_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst) 383 { 384 int rv, bit; 385 struct cx24110_state *state = fe->demodulator_priv; 386 unsigned long timeout; 387 388 if (burst == SEC_MINI_A) 389 bit = 0x00; 390 else if (burst == SEC_MINI_B) 391 bit = 0x08; 392 else 393 return -EINVAL; 394 395 rv = cx24110_readreg(state, 0x77); 396 if (!(rv & 0x04)) 397 cx24110_writereg(state, 0x77, rv | 0x04); 398 399 rv = cx24110_readreg(state, 0x76); 400 cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40 | bit)); 401 timeout = jiffies + msecs_to_jiffies(100); 402 while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40)) 403 ; /* wait for LNB ready */ 404 405 return 0; 406 } 407 408 static int cx24110_send_diseqc_msg(struct dvb_frontend* fe, 409 struct dvb_diseqc_master_cmd *cmd) 410 { 411 int i, rv; 412 struct cx24110_state *state = fe->demodulator_priv; 413 unsigned long timeout; 414 415 if (cmd->msg_len < 3 || cmd->msg_len > 6) 416 return -EINVAL; /* not implemented */ 417 418 for (i = 0; i < cmd->msg_len; i++) 419 cx24110_writereg(state, 0x79 + i, cmd->msg[i]); 420 421 rv = cx24110_readreg(state, 0x77); 422 if (rv & 0x04) { 423 cx24110_writereg(state, 0x77, rv & ~0x04); 424 msleep(30); /* reportedly fixes switching problems */ 425 } 426 427 rv = cx24110_readreg(state, 0x76); 428 429 cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40) | ((cmd->msg_len-3) & 3)); 430 timeout = jiffies + msecs_to_jiffies(100); 431 while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40)) 432 ; /* wait for LNB ready */ 433 434 return 0; 435 } 436 437 static int cx24110_read_status(struct dvb_frontend* fe, fe_status_t* status) 438 { 439 struct cx24110_state *state = fe->demodulator_priv; 440 441 int sync = cx24110_readreg (state, 0x55); 442 443 *status = 0; 444 445 if (sync & 0x10) 446 *status |= FE_HAS_SIGNAL; 447 448 if (sync & 0x08) 449 *status |= FE_HAS_CARRIER; 450 451 sync = cx24110_readreg (state, 0x08); 452 453 if (sync & 0x40) 454 *status |= FE_HAS_VITERBI; 455 456 if (sync & 0x20) 457 *status |= FE_HAS_SYNC; 458 459 if ((sync & 0x60) == 0x60) 460 *status |= FE_HAS_LOCK; 461 462 return 0; 463 } 464 465 static int cx24110_read_ber(struct dvb_frontend* fe, u32* ber) 466 { 467 struct cx24110_state *state = fe->demodulator_priv; 468 469 /* fixme (maybe): value range is 16 bit. Scale? */ 470 if(cx24110_readreg(state,0x24)&0x10) { 471 /* the Viterbi error counter has finished one counting window */ 472 cx24110_writereg(state,0x24,0x04); /* select the ber reg */ 473 state->lastber=cx24110_readreg(state,0x25)| 474 (cx24110_readreg(state,0x26)<<8); 475 cx24110_writereg(state,0x24,0x04); /* start new count window */ 476 cx24110_writereg(state,0x24,0x14); 477 } 478 *ber = state->lastber; 479 480 return 0; 481 } 482 483 static int cx24110_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength) 484 { 485 struct cx24110_state *state = fe->demodulator_priv; 486 487 /* no provision in hardware. Read the frontend AGC accumulator. No idea how to scale this, but I know it is 2s complement */ 488 u8 signal = cx24110_readreg (state, 0x27)+128; 489 *signal_strength = (signal << 8) | signal; 490 491 return 0; 492 } 493 494 static int cx24110_read_snr(struct dvb_frontend* fe, u16* snr) 495 { 496 struct cx24110_state *state = fe->demodulator_priv; 497 498 /* no provision in hardware. Can be computed from the Es/N0 estimator, but I don't know how. */ 499 if(cx24110_readreg(state,0x6a)&0x80) { 500 /* the Es/N0 error counter has finished one counting window */ 501 state->lastesn0=cx24110_readreg(state,0x69)| 502 (cx24110_readreg(state,0x68)<<8); 503 cx24110_writereg(state,0x6a,0x84); /* start new count window */ 504 } 505 *snr = state->lastesn0; 506 507 return 0; 508 } 509 510 static int cx24110_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) 511 { 512 struct cx24110_state *state = fe->demodulator_priv; 513 514 if(cx24110_readreg(state,0x10)&0x40) { 515 /* the RS error counter has finished one counting window */ 516 cx24110_writereg(state,0x10,0x60); /* select the byer reg */ 517 (void)(cx24110_readreg(state, 0x12) | 518 (cx24110_readreg(state, 0x13) << 8) | 519 (cx24110_readreg(state, 0x14) << 16)); 520 cx24110_writereg(state,0x10,0x70); /* select the bler reg */ 521 state->lastbler=cx24110_readreg(state,0x12)| 522 (cx24110_readreg(state,0x13)<<8)| 523 (cx24110_readreg(state,0x14)<<16); 524 cx24110_writereg(state,0x10,0x20); /* start new count window */ 525 } 526 *ucblocks = state->lastbler; 527 528 return 0; 529 } 530 531 static int cx24110_set_frontend(struct dvb_frontend *fe) 532 { 533 struct cx24110_state *state = fe->demodulator_priv; 534 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 535 536 if (fe->ops.tuner_ops.set_params) { 537 fe->ops.tuner_ops.set_params(fe); 538 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); 539 } 540 541 cx24110_set_inversion(state, p->inversion); 542 cx24110_set_fec(state, p->fec_inner); 543 cx24110_set_symbolrate(state, p->symbol_rate); 544 cx24110_writereg(state,0x04,0x05); /* start acquisition */ 545 546 return 0; 547 } 548 549 static int cx24110_get_frontend(struct dvb_frontend *fe) 550 { 551 struct dtv_frontend_properties *p = &fe->dtv_property_cache; 552 struct cx24110_state *state = fe->demodulator_priv; 553 s32 afc; unsigned sclk; 554 555 /* cannot read back tuner settings (freq). Need to have some private storage */ 556 557 sclk = cx24110_readreg (state, 0x07) & 0x03; 558 /* ok, real AFC (FEDR) freq. is afc/2^24*fsamp, fsamp=45/60/80/90MHz. 559 * Need 64 bit arithmetic. Is thiss possible in the kernel? */ 560 if (sclk==0) sclk=90999000L/2L; 561 else if (sclk==1) sclk=60666000L; 562 else if (sclk==2) sclk=80888000L; 563 else sclk=90999000L; 564 sclk>>=8; 565 afc = sclk*(cx24110_readreg (state, 0x44)&0x1f)+ 566 ((sclk*cx24110_readreg (state, 0x45))>>8)+ 567 ((sclk*cx24110_readreg (state, 0x46))>>16); 568 569 p->frequency += afc; 570 p->inversion = (cx24110_readreg (state, 0x22) & 0x10) ? 571 INVERSION_ON : INVERSION_OFF; 572 p->fec_inner = cx24110_get_fec(state); 573 574 return 0; 575 } 576 577 static int cx24110_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone) 578 { 579 struct cx24110_state *state = fe->demodulator_priv; 580 581 return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&~0x10)|(((tone==SEC_TONE_ON))?0x10:0)); 582 } 583 584 static void cx24110_release(struct dvb_frontend* fe) 585 { 586 struct cx24110_state* state = fe->demodulator_priv; 587 kfree(state); 588 } 589 590 static struct dvb_frontend_ops cx24110_ops; 591 592 struct dvb_frontend* cx24110_attach(const struct cx24110_config* config, 593 struct i2c_adapter* i2c) 594 { 595 struct cx24110_state* state = NULL; 596 int ret; 597 598 /* allocate memory for the internal state */ 599 state = kzalloc(sizeof(struct cx24110_state), GFP_KERNEL); 600 if (state == NULL) goto error; 601 602 /* setup the state */ 603 state->config = config; 604 state->i2c = i2c; 605 state->lastber = 0; 606 state->lastbler = 0; 607 state->lastesn0 = 0; 608 609 /* check if the demod is there */ 610 ret = cx24110_readreg(state, 0x00); 611 if ((ret != 0x5a) && (ret != 0x69)) goto error; 612 613 /* create dvb_frontend */ 614 memcpy(&state->frontend.ops, &cx24110_ops, sizeof(struct dvb_frontend_ops)); 615 state->frontend.demodulator_priv = state; 616 return &state->frontend; 617 618 error: 619 kfree(state); 620 return NULL; 621 } 622 623 static struct dvb_frontend_ops cx24110_ops = { 624 .delsys = { SYS_DVBS }, 625 .info = { 626 .name = "Conexant CX24110 DVB-S", 627 .frequency_min = 950000, 628 .frequency_max = 2150000, 629 .frequency_stepsize = 1011, /* kHz for QPSK frontends */ 630 .frequency_tolerance = 29500, 631 .symbol_rate_min = 1000000, 632 .symbol_rate_max = 45000000, 633 .caps = FE_CAN_INVERSION_AUTO | 634 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | 635 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | 636 FE_CAN_QPSK | FE_CAN_RECOVER 637 }, 638 639 .release = cx24110_release, 640 641 .init = cx24110_initfe, 642 .write = _cx24110_pll_write, 643 .set_frontend = cx24110_set_frontend, 644 .get_frontend = cx24110_get_frontend, 645 .read_status = cx24110_read_status, 646 .read_ber = cx24110_read_ber, 647 .read_signal_strength = cx24110_read_signal_strength, 648 .read_snr = cx24110_read_snr, 649 .read_ucblocks = cx24110_read_ucblocks, 650 651 .diseqc_send_master_cmd = cx24110_send_diseqc_msg, 652 .set_tone = cx24110_set_tone, 653 .set_voltage = cx24110_set_voltage, 654 .diseqc_send_burst = cx24110_diseqc_send_burst, 655 }; 656 657 module_param(debug, int, 0644); 658 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); 659 660 MODULE_DESCRIPTION("Conexant CX24110 DVB-S Demodulator driver"); 661 MODULE_AUTHOR("Peter Hettkamp"); 662 MODULE_LICENSE("GPL"); 663 664 EXPORT_SYMBOL(cx24110_attach); 665