1 /*
2  * Afatech AF9033 demodulator driver
3  *
4  * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
5  * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2 of the License, or
10  *    (at your option) any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License along
18  *    with this program; if not, write to the Free Software Foundation, Inc.,
19  *    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 
22 #include "af9033_priv.h"
23 
24 struct af9033_state {
25 	struct i2c_adapter *i2c;
26 	struct dvb_frontend fe;
27 	struct af9033_config cfg;
28 
29 	u32 bandwidth_hz;
30 	bool ts_mode_parallel;
31 	bool ts_mode_serial;
32 
33 	u32 ber;
34 	u32 ucb;
35 	unsigned long last_stat_check;
36 };
37 
38 /* write multiple registers */
39 static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
40 		int len)
41 {
42 	int ret;
43 	u8 buf[3 + len];
44 	struct i2c_msg msg[1] = {
45 		{
46 			.addr = state->cfg.i2c_addr,
47 			.flags = 0,
48 			.len = sizeof(buf),
49 			.buf = buf,
50 		}
51 	};
52 
53 	buf[0] = (reg >> 16) & 0xff;
54 	buf[1] = (reg >>  8) & 0xff;
55 	buf[2] = (reg >>  0) & 0xff;
56 	memcpy(&buf[3], val, len);
57 
58 	ret = i2c_transfer(state->i2c, msg, 1);
59 	if (ret == 1) {
60 		ret = 0;
61 	} else {
62 		dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
63 				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
64 		ret = -EREMOTEIO;
65 	}
66 
67 	return ret;
68 }
69 
70 /* read multiple registers */
71 static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
72 {
73 	int ret;
74 	u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
75 			(reg >> 0) & 0xff };
76 	struct i2c_msg msg[2] = {
77 		{
78 			.addr = state->cfg.i2c_addr,
79 			.flags = 0,
80 			.len = sizeof(buf),
81 			.buf = buf
82 		}, {
83 			.addr = state->cfg.i2c_addr,
84 			.flags = I2C_M_RD,
85 			.len = len,
86 			.buf = val
87 		}
88 	};
89 
90 	ret = i2c_transfer(state->i2c, msg, 2);
91 	if (ret == 2) {
92 		ret = 0;
93 	} else {
94 		dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
95 				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
96 		ret = -EREMOTEIO;
97 	}
98 
99 	return ret;
100 }
101 
102 
103 /* write single register */
104 static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
105 {
106 	return af9033_wr_regs(state, reg, &val, 1);
107 }
108 
109 /* read single register */
110 static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
111 {
112 	return af9033_rd_regs(state, reg, val, 1);
113 }
114 
115 /* write single register with mask */
116 static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
117 		u8 mask)
118 {
119 	int ret;
120 	u8 tmp;
121 
122 	/* no need for read if whole reg is written */
123 	if (mask != 0xff) {
124 		ret = af9033_rd_regs(state, reg, &tmp, 1);
125 		if (ret)
126 			return ret;
127 
128 		val &= mask;
129 		tmp &= ~mask;
130 		val |= tmp;
131 	}
132 
133 	return af9033_wr_regs(state, reg, &val, 1);
134 }
135 
136 /* read single register with mask */
137 static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
138 		u8 mask)
139 {
140 	int ret, i;
141 	u8 tmp;
142 
143 	ret = af9033_rd_regs(state, reg, &tmp, 1);
144 	if (ret)
145 		return ret;
146 
147 	tmp &= mask;
148 
149 	/* find position of the first bit */
150 	for (i = 0; i < 8; i++) {
151 		if ((mask >> i) & 0x01)
152 			break;
153 	}
154 	*val = tmp >> i;
155 
156 	return 0;
157 }
158 
159 /* write reg val table using reg addr auto increment */
160 static int af9033_wr_reg_val_tab(struct af9033_state *state,
161 		const struct reg_val *tab, int tab_len)
162 {
163 	int ret, i, j;
164 	u8 buf[tab_len];
165 
166 	dev_dbg(&state->i2c->dev, "%s: tab_len=%d\n", __func__, tab_len);
167 
168 	for (i = 0, j = 0; i < tab_len; i++) {
169 		buf[j] = tab[i].val;
170 
171 		if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) {
172 			ret = af9033_wr_regs(state, tab[i].reg - j, buf, j + 1);
173 			if (ret < 0)
174 				goto err;
175 
176 			j = 0;
177 		} else {
178 			j++;
179 		}
180 	}
181 
182 	return 0;
183 
184 err:
185 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
186 
187 	return ret;
188 }
189 
190 static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
191 {
192 	u32 r = 0, c = 0, i;
193 
194 	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
195 
196 	if (a > b) {
197 		c = a / b;
198 		a = a - c * b;
199 	}
200 
201 	for (i = 0; i < x; i++) {
202 		if (a >= b) {
203 			r += 1;
204 			a -= b;
205 		}
206 		a <<= 1;
207 		r <<= 1;
208 	}
209 	r = (c << (u32)x) + r;
210 
211 	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
212 			__func__, a, b, x, r, r);
213 
214 	return r;
215 }
216 
217 static void af9033_release(struct dvb_frontend *fe)
218 {
219 	struct af9033_state *state = fe->demodulator_priv;
220 
221 	kfree(state);
222 }
223 
224 static int af9033_init(struct dvb_frontend *fe)
225 {
226 	struct af9033_state *state = fe->demodulator_priv;
227 	int ret, i, len;
228 	const struct reg_val *init;
229 	u8 buf[4];
230 	u32 adc_cw, clock_cw;
231 	struct reg_val_mask tab[] = {
232 		{ 0x80fb24, 0x00, 0x08 },
233 		{ 0x80004c, 0x00, 0xff },
234 		{ 0x00f641, state->cfg.tuner, 0xff },
235 		{ 0x80f5ca, 0x01, 0x01 },
236 		{ 0x80f715, 0x01, 0x01 },
237 		{ 0x00f41f, 0x04, 0x04 },
238 		{ 0x00f41a, 0x01, 0x01 },
239 		{ 0x80f731, 0x00, 0x01 },
240 		{ 0x00d91e, 0x00, 0x01 },
241 		{ 0x00d919, 0x00, 0x01 },
242 		{ 0x80f732, 0x00, 0x01 },
243 		{ 0x00d91f, 0x00, 0x01 },
244 		{ 0x00d91a, 0x00, 0x01 },
245 		{ 0x80f730, 0x00, 0x01 },
246 		{ 0x80f778, 0x00, 0xff },
247 		{ 0x80f73c, 0x01, 0x01 },
248 		{ 0x80f776, 0x00, 0x01 },
249 		{ 0x00d8fd, 0x01, 0xff },
250 		{ 0x00d830, 0x01, 0xff },
251 		{ 0x00d831, 0x00, 0xff },
252 		{ 0x00d832, 0x00, 0xff },
253 		{ 0x80f985, state->ts_mode_serial, 0x01 },
254 		{ 0x80f986, state->ts_mode_parallel, 0x01 },
255 		{ 0x00d827, 0x00, 0xff },
256 		{ 0x00d829, 0x00, 0xff },
257 		{ 0x800045, state->cfg.adc_multiplier, 0xff },
258 	};
259 
260 	/* program clock control */
261 	clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
262 	buf[0] = (clock_cw >>  0) & 0xff;
263 	buf[1] = (clock_cw >>  8) & 0xff;
264 	buf[2] = (clock_cw >> 16) & 0xff;
265 	buf[3] = (clock_cw >> 24) & 0xff;
266 
267 	dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
268 			__func__, state->cfg.clock, clock_cw);
269 
270 	ret = af9033_wr_regs(state, 0x800025, buf, 4);
271 	if (ret < 0)
272 		goto err;
273 
274 	/* program ADC control */
275 	for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
276 		if (clock_adc_lut[i].clock == state->cfg.clock)
277 			break;
278 	}
279 
280 	adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
281 	buf[0] = (adc_cw >>  0) & 0xff;
282 	buf[1] = (adc_cw >>  8) & 0xff;
283 	buf[2] = (adc_cw >> 16) & 0xff;
284 
285 	dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
286 			__func__, clock_adc_lut[i].adc, adc_cw);
287 
288 	ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
289 	if (ret < 0)
290 		goto err;
291 
292 	/* program register table */
293 	for (i = 0; i < ARRAY_SIZE(tab); i++) {
294 		ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
295 				tab[i].mask);
296 		if (ret < 0)
297 			goto err;
298 	}
299 
300 	/* settings for TS interface */
301 	if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
302 		ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
303 		if (ret < 0)
304 			goto err;
305 
306 		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
307 		if (ret < 0)
308 			goto err;
309 	} else {
310 		ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
311 		if (ret < 0)
312 			goto err;
313 
314 		ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
315 		if (ret < 0)
316 			goto err;
317 	}
318 
319 	/* load OFSM settings */
320 	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
321 	switch (state->cfg.tuner) {
322 	case AF9033_TUNER_IT9135_38:
323 	case AF9033_TUNER_IT9135_51:
324 	case AF9033_TUNER_IT9135_52:
325 		len = ARRAY_SIZE(ofsm_init_it9135_v1);
326 		init = ofsm_init_it9135_v1;
327 		break;
328 	case AF9033_TUNER_IT9135_60:
329 	case AF9033_TUNER_IT9135_61:
330 	case AF9033_TUNER_IT9135_62:
331 		len = ARRAY_SIZE(ofsm_init_it9135_v2);
332 		init = ofsm_init_it9135_v2;
333 		break;
334 	default:
335 		len = ARRAY_SIZE(ofsm_init);
336 		init = ofsm_init;
337 		break;
338 	}
339 
340 	ret = af9033_wr_reg_val_tab(state, init, len);
341 	if (ret < 0)
342 		goto err;
343 
344 	/* load tuner specific settings */
345 	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
346 			__func__);
347 	switch (state->cfg.tuner) {
348 	case AF9033_TUNER_TUA9001:
349 		len = ARRAY_SIZE(tuner_init_tua9001);
350 		init = tuner_init_tua9001;
351 		break;
352 	case AF9033_TUNER_FC0011:
353 		len = ARRAY_SIZE(tuner_init_fc0011);
354 		init = tuner_init_fc0011;
355 		break;
356 	case AF9033_TUNER_MXL5007T:
357 		len = ARRAY_SIZE(tuner_init_mxl5007t);
358 		init = tuner_init_mxl5007t;
359 		break;
360 	case AF9033_TUNER_TDA18218:
361 		len = ARRAY_SIZE(tuner_init_tda18218);
362 		init = tuner_init_tda18218;
363 		break;
364 	case AF9033_TUNER_FC2580:
365 		len = ARRAY_SIZE(tuner_init_fc2580);
366 		init = tuner_init_fc2580;
367 		break;
368 	case AF9033_TUNER_FC0012:
369 		len = ARRAY_SIZE(tuner_init_fc0012);
370 		init = tuner_init_fc0012;
371 		break;
372 	case AF9033_TUNER_IT9135_38:
373 		len = ARRAY_SIZE(tuner_init_it9135_38);
374 		init = tuner_init_it9135_38;
375 		break;
376 	case AF9033_TUNER_IT9135_51:
377 		len = ARRAY_SIZE(tuner_init_it9135_51);
378 		init = tuner_init_it9135_51;
379 		break;
380 	case AF9033_TUNER_IT9135_52:
381 		len = ARRAY_SIZE(tuner_init_it9135_52);
382 		init = tuner_init_it9135_52;
383 		break;
384 	case AF9033_TUNER_IT9135_60:
385 		len = ARRAY_SIZE(tuner_init_it9135_60);
386 		init = tuner_init_it9135_60;
387 		break;
388 	case AF9033_TUNER_IT9135_61:
389 		len = ARRAY_SIZE(tuner_init_it9135_61);
390 		init = tuner_init_it9135_61;
391 		break;
392 	case AF9033_TUNER_IT9135_62:
393 		len = ARRAY_SIZE(tuner_init_it9135_62);
394 		init = tuner_init_it9135_62;
395 		break;
396 	default:
397 		dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
398 				__func__, state->cfg.tuner);
399 		ret = -ENODEV;
400 		goto err;
401 	}
402 
403 	ret = af9033_wr_reg_val_tab(state, init, len);
404 	if (ret < 0)
405 		goto err;
406 
407 	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
408 		ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
409 		if (ret < 0)
410 			goto err;
411 
412 		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
413 		if (ret < 0)
414 			goto err;
415 
416 		ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
417 		if (ret < 0)
418 			goto err;
419 	}
420 
421 	switch (state->cfg.tuner) {
422 	case AF9033_TUNER_IT9135_60:
423 	case AF9033_TUNER_IT9135_61:
424 	case AF9033_TUNER_IT9135_62:
425 		ret = af9033_wr_reg(state, 0x800000, 0x01);
426 		if (ret < 0)
427 			goto err;
428 	}
429 
430 	state->bandwidth_hz = 0; /* force to program all parameters */
431 
432 	return 0;
433 
434 err:
435 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
436 
437 	return ret;
438 }
439 
440 static int af9033_sleep(struct dvb_frontend *fe)
441 {
442 	struct af9033_state *state = fe->demodulator_priv;
443 	int ret, i;
444 	u8 tmp;
445 
446 	ret = af9033_wr_reg(state, 0x80004c, 1);
447 	if (ret < 0)
448 		goto err;
449 
450 	ret = af9033_wr_reg(state, 0x800000, 0);
451 	if (ret < 0)
452 		goto err;
453 
454 	for (i = 100, tmp = 1; i && tmp; i--) {
455 		ret = af9033_rd_reg(state, 0x80004c, &tmp);
456 		if (ret < 0)
457 			goto err;
458 
459 		usleep_range(200, 10000);
460 	}
461 
462 	dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
463 
464 	if (i == 0) {
465 		ret = -ETIMEDOUT;
466 		goto err;
467 	}
468 
469 	ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
470 	if (ret < 0)
471 		goto err;
472 
473 	/* prevent current leak (?) */
474 	if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
475 		/* enable parallel TS */
476 		ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
477 		if (ret < 0)
478 			goto err;
479 
480 		ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
481 		if (ret < 0)
482 			goto err;
483 	}
484 
485 	return 0;
486 
487 err:
488 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
489 
490 	return ret;
491 }
492 
493 static int af9033_get_tune_settings(struct dvb_frontend *fe,
494 		struct dvb_frontend_tune_settings *fesettings)
495 {
496 	/* 800 => 2000 because IT9135 v2 is slow to gain lock */
497 	fesettings->min_delay_ms = 2000;
498 	fesettings->step_size = 0;
499 	fesettings->max_drift = 0;
500 
501 	return 0;
502 }
503 
504 static int af9033_set_frontend(struct dvb_frontend *fe)
505 {
506 	struct af9033_state *state = fe->demodulator_priv;
507 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
508 	int ret, i, spec_inv, sampling_freq;
509 	u8 tmp, buf[3], bandwidth_reg_val;
510 	u32 if_frequency, freq_cw, adc_freq;
511 
512 	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
513 			__func__, c->frequency, c->bandwidth_hz);
514 
515 	/* check bandwidth */
516 	switch (c->bandwidth_hz) {
517 	case 6000000:
518 		bandwidth_reg_val = 0x00;
519 		break;
520 	case 7000000:
521 		bandwidth_reg_val = 0x01;
522 		break;
523 	case 8000000:
524 		bandwidth_reg_val = 0x02;
525 		break;
526 	default:
527 		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
528 				__func__);
529 		ret = -EINVAL;
530 		goto err;
531 	}
532 
533 	/* program tuner */
534 	if (fe->ops.tuner_ops.set_params)
535 		fe->ops.tuner_ops.set_params(fe);
536 
537 	/* program CFOE coefficients */
538 	if (c->bandwidth_hz != state->bandwidth_hz) {
539 		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
540 			if (coeff_lut[i].clock == state->cfg.clock &&
541 				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
542 				break;
543 			}
544 		}
545 		ret =  af9033_wr_regs(state, 0x800001,
546 				coeff_lut[i].val, sizeof(coeff_lut[i].val));
547 	}
548 
549 	/* program frequency control */
550 	if (c->bandwidth_hz != state->bandwidth_hz) {
551 		spec_inv = state->cfg.spec_inv ? -1 : 1;
552 
553 		for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
554 			if (clock_adc_lut[i].clock == state->cfg.clock)
555 				break;
556 		}
557 		adc_freq = clock_adc_lut[i].adc;
558 
559 		/* get used IF frequency */
560 		if (fe->ops.tuner_ops.get_if_frequency)
561 			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
562 		else
563 			if_frequency = 0;
564 
565 		sampling_freq = if_frequency;
566 
567 		while (sampling_freq > (adc_freq / 2))
568 			sampling_freq -= adc_freq;
569 
570 		if (sampling_freq >= 0)
571 			spec_inv *= -1;
572 		else
573 			sampling_freq *= -1;
574 
575 		freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
576 
577 		if (spec_inv == -1)
578 			freq_cw = 0x800000 - freq_cw;
579 
580 		if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
581 			freq_cw /= 2;
582 
583 		buf[0] = (freq_cw >>  0) & 0xff;
584 		buf[1] = (freq_cw >>  8) & 0xff;
585 		buf[2] = (freq_cw >> 16) & 0x7f;
586 
587 		/* FIXME: there seems to be calculation error here... */
588 		if (if_frequency == 0)
589 			buf[2] = 0;
590 
591 		ret = af9033_wr_regs(state, 0x800029, buf, 3);
592 		if (ret < 0)
593 			goto err;
594 
595 		state->bandwidth_hz = c->bandwidth_hz;
596 	}
597 
598 	ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
599 	if (ret < 0)
600 		goto err;
601 
602 	ret = af9033_wr_reg(state, 0x800040, 0x00);
603 	if (ret < 0)
604 		goto err;
605 
606 	ret = af9033_wr_reg(state, 0x800047, 0x00);
607 	if (ret < 0)
608 		goto err;
609 
610 	ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
611 	if (ret < 0)
612 		goto err;
613 
614 	if (c->frequency <= 230000000)
615 		tmp = 0x00; /* VHF */
616 	else
617 		tmp = 0x01; /* UHF */
618 
619 	ret = af9033_wr_reg(state, 0x80004b, tmp);
620 	if (ret < 0)
621 		goto err;
622 
623 	ret = af9033_wr_reg(state, 0x800000, 0x00);
624 	if (ret < 0)
625 		goto err;
626 
627 	return 0;
628 
629 err:
630 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
631 
632 	return ret;
633 }
634 
635 static int af9033_get_frontend(struct dvb_frontend *fe)
636 {
637 	struct af9033_state *state = fe->demodulator_priv;
638 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
639 	int ret;
640 	u8 buf[8];
641 
642 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
643 
644 	/* read all needed registers */
645 	ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
646 	if (ret < 0)
647 		goto err;
648 
649 	switch ((buf[0] >> 0) & 3) {
650 	case 0:
651 		c->transmission_mode = TRANSMISSION_MODE_2K;
652 		break;
653 	case 1:
654 		c->transmission_mode = TRANSMISSION_MODE_8K;
655 		break;
656 	}
657 
658 	switch ((buf[1] >> 0) & 3) {
659 	case 0:
660 		c->guard_interval = GUARD_INTERVAL_1_32;
661 		break;
662 	case 1:
663 		c->guard_interval = GUARD_INTERVAL_1_16;
664 		break;
665 	case 2:
666 		c->guard_interval = GUARD_INTERVAL_1_8;
667 		break;
668 	case 3:
669 		c->guard_interval = GUARD_INTERVAL_1_4;
670 		break;
671 	}
672 
673 	switch ((buf[2] >> 0) & 7) {
674 	case 0:
675 		c->hierarchy = HIERARCHY_NONE;
676 		break;
677 	case 1:
678 		c->hierarchy = HIERARCHY_1;
679 		break;
680 	case 2:
681 		c->hierarchy = HIERARCHY_2;
682 		break;
683 	case 3:
684 		c->hierarchy = HIERARCHY_4;
685 		break;
686 	}
687 
688 	switch ((buf[3] >> 0) & 3) {
689 	case 0:
690 		c->modulation = QPSK;
691 		break;
692 	case 1:
693 		c->modulation = QAM_16;
694 		break;
695 	case 2:
696 		c->modulation = QAM_64;
697 		break;
698 	}
699 
700 	switch ((buf[4] >> 0) & 3) {
701 	case 0:
702 		c->bandwidth_hz = 6000000;
703 		break;
704 	case 1:
705 		c->bandwidth_hz = 7000000;
706 		break;
707 	case 2:
708 		c->bandwidth_hz = 8000000;
709 		break;
710 	}
711 
712 	switch ((buf[6] >> 0) & 7) {
713 	case 0:
714 		c->code_rate_HP = FEC_1_2;
715 		break;
716 	case 1:
717 		c->code_rate_HP = FEC_2_3;
718 		break;
719 	case 2:
720 		c->code_rate_HP = FEC_3_4;
721 		break;
722 	case 3:
723 		c->code_rate_HP = FEC_5_6;
724 		break;
725 	case 4:
726 		c->code_rate_HP = FEC_7_8;
727 		break;
728 	case 5:
729 		c->code_rate_HP = FEC_NONE;
730 		break;
731 	}
732 
733 	switch ((buf[7] >> 0) & 7) {
734 	case 0:
735 		c->code_rate_LP = FEC_1_2;
736 		break;
737 	case 1:
738 		c->code_rate_LP = FEC_2_3;
739 		break;
740 	case 2:
741 		c->code_rate_LP = FEC_3_4;
742 		break;
743 	case 3:
744 		c->code_rate_LP = FEC_5_6;
745 		break;
746 	case 4:
747 		c->code_rate_LP = FEC_7_8;
748 		break;
749 	case 5:
750 		c->code_rate_LP = FEC_NONE;
751 		break;
752 	}
753 
754 	return 0;
755 
756 err:
757 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
758 
759 	return ret;
760 }
761 
762 static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
763 {
764 	struct af9033_state *state = fe->demodulator_priv;
765 	int ret;
766 	u8 tmp;
767 
768 	*status = 0;
769 
770 	/* radio channel status, 0=no result, 1=has signal, 2=no signal */
771 	ret = af9033_rd_reg(state, 0x800047, &tmp);
772 	if (ret < 0)
773 		goto err;
774 
775 	/* has signal */
776 	if (tmp == 0x01)
777 		*status |= FE_HAS_SIGNAL;
778 
779 	if (tmp != 0x02) {
780 		/* TPS lock */
781 		ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
782 		if (ret < 0)
783 			goto err;
784 
785 		if (tmp)
786 			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
787 					FE_HAS_VITERBI;
788 
789 		/* full lock */
790 		ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
791 		if (ret < 0)
792 			goto err;
793 
794 		if (tmp)
795 			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
796 					FE_HAS_VITERBI | FE_HAS_SYNC |
797 					FE_HAS_LOCK;
798 	}
799 
800 	return 0;
801 
802 err:
803 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
804 
805 	return ret;
806 }
807 
808 static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
809 {
810 	struct af9033_state *state = fe->demodulator_priv;
811 	int ret, i, len;
812 	u8 buf[3], tmp;
813 	u32 snr_val;
814 	const struct val_snr *uninitialized_var(snr_lut);
815 
816 	/* read value */
817 	ret = af9033_rd_regs(state, 0x80002c, buf, 3);
818 	if (ret < 0)
819 		goto err;
820 
821 	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
822 
823 	/* read current modulation */
824 	ret = af9033_rd_reg(state, 0x80f903, &tmp);
825 	if (ret < 0)
826 		goto err;
827 
828 	switch ((tmp >> 0) & 3) {
829 	case 0:
830 		len = ARRAY_SIZE(qpsk_snr_lut);
831 		snr_lut = qpsk_snr_lut;
832 		break;
833 	case 1:
834 		len = ARRAY_SIZE(qam16_snr_lut);
835 		snr_lut = qam16_snr_lut;
836 		break;
837 	case 2:
838 		len = ARRAY_SIZE(qam64_snr_lut);
839 		snr_lut = qam64_snr_lut;
840 		break;
841 	default:
842 		goto err;
843 	}
844 
845 	for (i = 0; i < len; i++) {
846 		tmp = snr_lut[i].snr;
847 
848 		if (snr_val < snr_lut[i].val)
849 			break;
850 	}
851 
852 	*snr = tmp * 10; /* dB/10 */
853 
854 	return 0;
855 
856 err:
857 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
858 
859 	return ret;
860 }
861 
862 static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
863 {
864 	struct af9033_state *state = fe->demodulator_priv;
865 	int ret;
866 	u8 strength2;
867 
868 	/* read signal strength of 0-100 scale */
869 	ret = af9033_rd_reg(state, 0x800048, &strength2);
870 	if (ret < 0)
871 		goto err;
872 
873 	/* scale value to 0x0000-0xffff */
874 	*strength = strength2 * 0xffff / 100;
875 
876 	return 0;
877 
878 err:
879 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
880 
881 	return ret;
882 }
883 
884 static int af9033_update_ch_stat(struct af9033_state *state)
885 {
886 	int ret = 0;
887 	u32 err_cnt, bit_cnt;
888 	u16 abort_cnt;
889 	u8 buf[7];
890 
891 	/* only update data every half second */
892 	if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
893 		ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
894 		if (ret < 0)
895 			goto err;
896 		/* in 8 byte packets? */
897 		abort_cnt = (buf[1] << 8) + buf[0];
898 		/* in bits */
899 		err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
900 		/* in 8 byte packets? always(?) 0x2710 = 10000 */
901 		bit_cnt = (buf[6] << 8) + buf[5];
902 
903 		if (bit_cnt < abort_cnt) {
904 			abort_cnt = 1000;
905 			state->ber = 0xffffffff;
906 		} else {
907 			/* 8 byte packets, that have not been rejected already */
908 			bit_cnt -= (u32)abort_cnt;
909 			if (bit_cnt == 0) {
910 				state->ber = 0xffffffff;
911 			} else {
912 				err_cnt -= (u32)abort_cnt * 8 * 8;
913 				bit_cnt *= 8 * 8;
914 				state->ber = err_cnt * (0xffffffff / bit_cnt);
915 			}
916 		}
917 		state->ucb += abort_cnt;
918 		state->last_stat_check = jiffies;
919 	}
920 
921 	return 0;
922 err:
923 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
924 
925 	return ret;
926 }
927 
928 static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
929 {
930 	struct af9033_state *state = fe->demodulator_priv;
931 	int ret;
932 
933 	ret = af9033_update_ch_stat(state);
934 	if (ret < 0)
935 		return ret;
936 
937 	*ber = state->ber;
938 
939 	return 0;
940 }
941 
942 static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
943 {
944 	struct af9033_state *state = fe->demodulator_priv;
945 	int ret;
946 
947 	ret = af9033_update_ch_stat(state);
948 	if (ret < 0)
949 		return ret;
950 
951 	*ucblocks = state->ucb;
952 
953 	return 0;
954 }
955 
956 static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
957 {
958 	struct af9033_state *state = fe->demodulator_priv;
959 	int ret;
960 
961 	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
962 
963 	ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
964 	if (ret < 0)
965 		goto err;
966 
967 	return 0;
968 
969 err:
970 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
971 
972 	return ret;
973 }
974 
975 static struct dvb_frontend_ops af9033_ops;
976 
977 struct dvb_frontend *af9033_attach(const struct af9033_config *config,
978 		struct i2c_adapter *i2c)
979 {
980 	int ret;
981 	struct af9033_state *state;
982 	u8 buf[8];
983 
984 	dev_dbg(&i2c->dev, "%s:\n", __func__);
985 
986 	/* allocate memory for the internal state */
987 	state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
988 	if (state == NULL)
989 		goto err;
990 
991 	/* setup the state */
992 	state->i2c = i2c;
993 	memcpy(&state->cfg, config, sizeof(struct af9033_config));
994 
995 	if (state->cfg.clock != 12000000) {
996 		dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
997 				"only 12000000 Hz is supported currently\n",
998 				KBUILD_MODNAME, state->cfg.clock);
999 		goto err;
1000 	}
1001 
1002 	/* firmware version */
1003 	ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
1004 	if (ret < 0)
1005 		goto err;
1006 
1007 	ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
1008 	if (ret < 0)
1009 		goto err;
1010 
1011 	dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
1012 			"OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
1013 			buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
1014 
1015 	/* sleep */
1016 	switch (state->cfg.tuner) {
1017 	case AF9033_TUNER_IT9135_38:
1018 	case AF9033_TUNER_IT9135_51:
1019 	case AF9033_TUNER_IT9135_52:
1020 	case AF9033_TUNER_IT9135_60:
1021 	case AF9033_TUNER_IT9135_61:
1022 	case AF9033_TUNER_IT9135_62:
1023 		/* IT9135 did not like to sleep at that early */
1024 		break;
1025 	default:
1026 		ret = af9033_wr_reg(state, 0x80004c, 1);
1027 		if (ret < 0)
1028 			goto err;
1029 
1030 		ret = af9033_wr_reg(state, 0x800000, 0);
1031 		if (ret < 0)
1032 			goto err;
1033 	}
1034 
1035 	/* configure internal TS mode */
1036 	switch (state->cfg.ts_mode) {
1037 	case AF9033_TS_MODE_PARALLEL:
1038 		state->ts_mode_parallel = true;
1039 		break;
1040 	case AF9033_TS_MODE_SERIAL:
1041 		state->ts_mode_serial = true;
1042 		break;
1043 	case AF9033_TS_MODE_USB:
1044 		/* usb mode for AF9035 */
1045 	default:
1046 		break;
1047 	}
1048 
1049 	/* create dvb_frontend */
1050 	memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
1051 	state->fe.demodulator_priv = state;
1052 
1053 	return &state->fe;
1054 
1055 err:
1056 	kfree(state);
1057 	return NULL;
1058 }
1059 EXPORT_SYMBOL(af9033_attach);
1060 
1061 static struct dvb_frontend_ops af9033_ops = {
1062 	.delsys = { SYS_DVBT },
1063 	.info = {
1064 		.name = "Afatech AF9033 (DVB-T)",
1065 		.frequency_min = 174000000,
1066 		.frequency_max = 862000000,
1067 		.frequency_stepsize = 250000,
1068 		.frequency_tolerance = 0,
1069 		.caps =	FE_CAN_FEC_1_2 |
1070 			FE_CAN_FEC_2_3 |
1071 			FE_CAN_FEC_3_4 |
1072 			FE_CAN_FEC_5_6 |
1073 			FE_CAN_FEC_7_8 |
1074 			FE_CAN_FEC_AUTO |
1075 			FE_CAN_QPSK |
1076 			FE_CAN_QAM_16 |
1077 			FE_CAN_QAM_64 |
1078 			FE_CAN_QAM_AUTO |
1079 			FE_CAN_TRANSMISSION_MODE_AUTO |
1080 			FE_CAN_GUARD_INTERVAL_AUTO |
1081 			FE_CAN_HIERARCHY_AUTO |
1082 			FE_CAN_RECOVER |
1083 			FE_CAN_MUTE_TS
1084 	},
1085 
1086 	.release = af9033_release,
1087 
1088 	.init = af9033_init,
1089 	.sleep = af9033_sleep,
1090 
1091 	.get_tune_settings = af9033_get_tune_settings,
1092 	.set_frontend = af9033_set_frontend,
1093 	.get_frontend = af9033_get_frontend,
1094 
1095 	.read_status = af9033_read_status,
1096 	.read_snr = af9033_read_snr,
1097 	.read_signal_strength = af9033_read_signal_strength,
1098 	.read_ber = af9033_read_ber,
1099 	.read_ucblocks = af9033_read_ucblocks,
1100 
1101 	.i2c_gate_ctrl = af9033_i2c_gate_ctrl,
1102 };
1103 
1104 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1105 MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
1106 MODULE_LICENSE("GPL");
1107