1 /*
2  * Afatech AF9013 demodulator driver
3  *
4  * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5  * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
6  *
7  * Thanks to Afatech who kindly provided information.
8  *
9  *    This program is free software; you can redistribute it and/or modify
10  *    it under the terms of the GNU General Public License as published by
11  *    the Free Software Foundation; either version 2 of the License, or
12  *    (at your option) any later version.
13  *
14  *    This program is distributed in the hope that it will be useful,
15  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *    GNU General Public License for more details.
18  *
19  *    You should have received a copy of the GNU General Public License
20  *    along with this program; if not, write to the Free Software
21  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  *
23  */
24 
25 #include "af9013_priv.h"
26 
27 /* Max transfer size done by I2C transfer functions */
28 #define MAX_XFER_SIZE  64
29 
30 struct af9013_state {
31 	struct i2c_adapter *i2c;
32 	struct dvb_frontend fe;
33 	struct af9013_config config;
34 
35 	/* tuner/demod RF and IF AGC limits used for signal strength calc */
36 	u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
37 	u16 signal_strength;
38 	u32 ber;
39 	u32 ucblocks;
40 	u16 snr;
41 	u32 bandwidth_hz;
42 	fe_status_t fe_status;
43 	unsigned long set_frontend_jiffies;
44 	unsigned long read_status_jiffies;
45 	bool first_tune;
46 	bool i2c_gate_state;
47 	unsigned int statistics_step:3;
48 	struct delayed_work statistics_work;
49 };
50 
51 /* write multiple registers */
52 static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
53 	const u8 *val, int len)
54 {
55 	int ret;
56 	u8 buf[MAX_XFER_SIZE];
57 	struct i2c_msg msg[1] = {
58 		{
59 			.addr = priv->config.i2c_addr,
60 			.flags = 0,
61 			.len = 3 + len,
62 			.buf = buf,
63 		}
64 	};
65 
66 	if (3 + len > sizeof(buf)) {
67 		dev_warn(&priv->i2c->dev,
68 			 "%s: i2c wr reg=%04x: len=%d is too big!\n",
69 			 KBUILD_MODNAME, reg, len);
70 		return -EINVAL;
71 	}
72 
73 	buf[0] = (reg >> 8) & 0xff;
74 	buf[1] = (reg >> 0) & 0xff;
75 	buf[2] = mbox;
76 	memcpy(&buf[3], val, len);
77 
78 	ret = i2c_transfer(priv->i2c, msg, 1);
79 	if (ret == 1) {
80 		ret = 0;
81 	} else {
82 		dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
83 				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
84 		ret = -EREMOTEIO;
85 	}
86 	return ret;
87 }
88 
89 /* read multiple registers */
90 static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
91 	u8 *val, int len)
92 {
93 	int ret;
94 	u8 buf[3];
95 	struct i2c_msg msg[2] = {
96 		{
97 			.addr = priv->config.i2c_addr,
98 			.flags = 0,
99 			.len = 3,
100 			.buf = buf,
101 		}, {
102 			.addr = priv->config.i2c_addr,
103 			.flags = I2C_M_RD,
104 			.len = len,
105 			.buf = val,
106 		}
107 	};
108 
109 	buf[0] = (reg >> 8) & 0xff;
110 	buf[1] = (reg >> 0) & 0xff;
111 	buf[2] = mbox;
112 
113 	ret = i2c_transfer(priv->i2c, msg, 2);
114 	if (ret == 2) {
115 		ret = 0;
116 	} else {
117 		dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
118 				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
119 		ret = -EREMOTEIO;
120 	}
121 	return ret;
122 }
123 
124 /* write multiple registers */
125 static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
126 	int len)
127 {
128 	int ret, i;
129 	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
130 
131 	if ((priv->config.ts_mode == AF9013_TS_USB) &&
132 		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
133 		mbox |= ((len - 1) << 2);
134 		ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
135 	} else {
136 		for (i = 0; i < len; i++) {
137 			ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
138 			if (ret)
139 				goto err;
140 		}
141 	}
142 
143 err:
144 	return 0;
145 }
146 
147 /* read multiple registers */
148 static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
149 {
150 	int ret, i;
151 	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
152 
153 	if ((priv->config.ts_mode == AF9013_TS_USB) &&
154 		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
155 		mbox |= ((len - 1) << 2);
156 		ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
157 	} else {
158 		for (i = 0; i < len; i++) {
159 			ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
160 			if (ret)
161 				goto err;
162 		}
163 	}
164 
165 err:
166 	return 0;
167 }
168 
169 /* write single register */
170 static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
171 {
172 	return af9013_wr_regs(priv, reg, &val, 1);
173 }
174 
175 /* read single register */
176 static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
177 {
178 	return af9013_rd_regs(priv, reg, val, 1);
179 }
180 
181 static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
182 	u8 len)
183 {
184 	u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
185 	return af9013_wr_regs_i2c(state, mbox, reg, val, len);
186 }
187 
188 static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
189 	int len, u8 val)
190 {
191 	int ret;
192 	u8 tmp, mask;
193 
194 	/* no need for read if whole reg is written */
195 	if (len != 8) {
196 		ret = af9013_rd_reg(state, reg, &tmp);
197 		if (ret)
198 			return ret;
199 
200 		mask = (0xff >> (8 - len)) << pos;
201 		val <<= pos;
202 		tmp &= ~mask;
203 		val |= tmp;
204 	}
205 
206 	return af9013_wr_reg(state, reg, val);
207 }
208 
209 static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
210 	int len, u8 *val)
211 {
212 	int ret;
213 	u8 tmp;
214 
215 	ret = af9013_rd_reg(state, reg, &tmp);
216 	if (ret)
217 		return ret;
218 
219 	*val = (tmp >> pos);
220 	*val &= (0xff >> (8 - len));
221 
222 	return 0;
223 }
224 
225 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
226 {
227 	int ret;
228 	u8 pos;
229 	u16 addr;
230 
231 	dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
232 			__func__, gpio, gpioval);
233 
234 	/*
235 	 * GPIO0 & GPIO1 0xd735
236 	 * GPIO2 & GPIO3 0xd736
237 	 */
238 
239 	switch (gpio) {
240 	case 0:
241 	case 1:
242 		addr = 0xd735;
243 		break;
244 	case 2:
245 	case 3:
246 		addr = 0xd736;
247 		break;
248 
249 	default:
250 		dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
251 				KBUILD_MODNAME, gpio);
252 		ret = -EINVAL;
253 		goto err;
254 	}
255 
256 	switch (gpio) {
257 	case 0:
258 	case 2:
259 		pos = 0;
260 		break;
261 	case 1:
262 	case 3:
263 	default:
264 		pos = 4;
265 		break;
266 	}
267 
268 	ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
269 	if (ret)
270 		goto err;
271 
272 	return ret;
273 err:
274 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
275 	return ret;
276 }
277 
278 static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
279 {
280 	u32 r = 0, c = 0, i;
281 
282 	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
283 
284 	if (a > b) {
285 		c = a / b;
286 		a = a - c * b;
287 	}
288 
289 	for (i = 0; i < x; i++) {
290 		if (a >= b) {
291 			r += 1;
292 			a -= b;
293 		}
294 		a <<= 1;
295 		r <<= 1;
296 	}
297 	r = (c << (u32)x) + r;
298 
299 	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
300 			__func__, a, b, x, r, r);
301 
302 	return r;
303 }
304 
305 static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
306 {
307 	int ret, i;
308 	u8 tmp;
309 
310 	dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
311 
312 	/* enable reset */
313 	ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
314 	if (ret)
315 		goto err;
316 
317 	/* start reset mechanism */
318 	ret = af9013_wr_reg(state, 0xaeff, 1);
319 	if (ret)
320 		goto err;
321 
322 	/* wait reset performs */
323 	for (i = 0; i < 150; i++) {
324 		ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
325 		if (ret)
326 			goto err;
327 
328 		if (tmp)
329 			break; /* reset done */
330 
331 		usleep_range(5000, 25000);
332 	}
333 
334 	if (!tmp)
335 		return -ETIMEDOUT;
336 
337 	if (onoff) {
338 		/* clear reset */
339 		ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
340 		if (ret)
341 			goto err;
342 
343 		/* disable reset */
344 		ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
345 
346 		/* power on */
347 		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
348 	} else {
349 		/* power off */
350 		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
351 	}
352 
353 	return ret;
354 err:
355 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
356 	return ret;
357 }
358 
359 static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
360 {
361 	struct af9013_state *state = fe->demodulator_priv;
362 	int ret;
363 
364 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
365 
366 	/* reset and start BER counter */
367 	ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
368 	if (ret)
369 		goto err;
370 
371 	return ret;
372 err:
373 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
374 	return ret;
375 }
376 
377 static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
378 {
379 	struct af9013_state *state = fe->demodulator_priv;
380 	int ret;
381 	u8 buf[5];
382 
383 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
384 
385 	/* check if error bit count is ready */
386 	ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
387 	if (ret)
388 		goto err;
389 
390 	if (!buf[0]) {
391 		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
392 		return 0;
393 	}
394 
395 	ret = af9013_rd_regs(state, 0xd387, buf, 5);
396 	if (ret)
397 		goto err;
398 
399 	state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
400 	state->ucblocks += (buf[4] << 8) | buf[3];
401 
402 	return ret;
403 err:
404 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
405 	return ret;
406 }
407 
408 static int af9013_statistics_snr_start(struct dvb_frontend *fe)
409 {
410 	struct af9013_state *state = fe->demodulator_priv;
411 	int ret;
412 
413 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
414 
415 	/* start SNR meas */
416 	ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
417 	if (ret)
418 		goto err;
419 
420 	return ret;
421 err:
422 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
423 	return ret;
424 }
425 
426 static int af9013_statistics_snr_result(struct dvb_frontend *fe)
427 {
428 	struct af9013_state *state = fe->demodulator_priv;
429 	int ret, i, len;
430 	u8 buf[3], tmp;
431 	u32 snr_val;
432 	const struct af9013_snr *uninitialized_var(snr_lut);
433 
434 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
435 
436 	/* check if SNR ready */
437 	ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
438 	if (ret)
439 		goto err;
440 
441 	if (!tmp) {
442 		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
443 		return 0;
444 	}
445 
446 	/* read value */
447 	ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
448 	if (ret)
449 		goto err;
450 
451 	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
452 
453 	/* read current modulation */
454 	ret = af9013_rd_reg(state, 0xd3c1, &tmp);
455 	if (ret)
456 		goto err;
457 
458 	switch ((tmp >> 6) & 3) {
459 	case 0:
460 		len = ARRAY_SIZE(qpsk_snr_lut);
461 		snr_lut = qpsk_snr_lut;
462 		break;
463 	case 1:
464 		len = ARRAY_SIZE(qam16_snr_lut);
465 		snr_lut = qam16_snr_lut;
466 		break;
467 	case 2:
468 		len = ARRAY_SIZE(qam64_snr_lut);
469 		snr_lut = qam64_snr_lut;
470 		break;
471 	default:
472 		goto err;
473 		break;
474 	}
475 
476 	for (i = 0; i < len; i++) {
477 		tmp = snr_lut[i].snr;
478 
479 		if (snr_val < snr_lut[i].val)
480 			break;
481 	}
482 	state->snr = tmp * 10; /* dB/10 */
483 
484 	return ret;
485 err:
486 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
487 	return ret;
488 }
489 
490 static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
491 {
492 	struct af9013_state *state = fe->demodulator_priv;
493 	int ret = 0;
494 	u8 buf[2], rf_gain, if_gain;
495 	int signal_strength;
496 
497 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
498 
499 	if (!state->signal_strength_en)
500 		return 0;
501 
502 	ret = af9013_rd_regs(state, 0xd07c, buf, 2);
503 	if (ret)
504 		goto err;
505 
506 	rf_gain = buf[0];
507 	if_gain = buf[1];
508 
509 	signal_strength = (0xffff / \
510 		(9 * (state->rf_50 + state->if_50) - \
511 		11 * (state->rf_80 + state->if_80))) * \
512 		(10 * (rf_gain + if_gain) - \
513 		11 * (state->rf_80 + state->if_80));
514 	if (signal_strength < 0)
515 		signal_strength = 0;
516 	else if (signal_strength > 0xffff)
517 		signal_strength = 0xffff;
518 
519 	state->signal_strength = signal_strength;
520 
521 	return ret;
522 err:
523 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
524 	return ret;
525 }
526 
527 static void af9013_statistics_work(struct work_struct *work)
528 {
529 	struct af9013_state *state = container_of(work,
530 		struct af9013_state, statistics_work.work);
531 	unsigned int next_msec;
532 
533 	/* update only signal strength when demod is not locked */
534 	if (!(state->fe_status & FE_HAS_LOCK)) {
535 		state->statistics_step = 0;
536 		state->ber = 0;
537 		state->snr = 0;
538 	}
539 
540 	switch (state->statistics_step) {
541 	default:
542 		state->statistics_step = 0;
543 	case 0:
544 		af9013_statistics_signal_strength(&state->fe);
545 		state->statistics_step++;
546 		next_msec = 300;
547 		break;
548 	case 1:
549 		af9013_statistics_snr_start(&state->fe);
550 		state->statistics_step++;
551 		next_msec = 200;
552 		break;
553 	case 2:
554 		af9013_statistics_ber_unc_start(&state->fe);
555 		state->statistics_step++;
556 		next_msec = 1000;
557 		break;
558 	case 3:
559 		af9013_statistics_snr_result(&state->fe);
560 		state->statistics_step++;
561 		next_msec = 400;
562 		break;
563 	case 4:
564 		af9013_statistics_ber_unc_result(&state->fe);
565 		state->statistics_step++;
566 		next_msec = 100;
567 		break;
568 	}
569 
570 	schedule_delayed_work(&state->statistics_work,
571 		msecs_to_jiffies(next_msec));
572 }
573 
574 static int af9013_get_tune_settings(struct dvb_frontend *fe,
575 	struct dvb_frontend_tune_settings *fesettings)
576 {
577 	fesettings->min_delay_ms = 800;
578 	fesettings->step_size = 0;
579 	fesettings->max_drift = 0;
580 
581 	return 0;
582 }
583 
584 static int af9013_set_frontend(struct dvb_frontend *fe)
585 {
586 	struct af9013_state *state = fe->demodulator_priv;
587 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
588 	int ret, i, sampling_freq;
589 	bool auto_mode, spec_inv;
590 	u8 buf[6];
591 	u32 if_frequency, freq_cw;
592 
593 	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
594 			__func__, c->frequency, c->bandwidth_hz);
595 
596 	/* program tuner */
597 	if (fe->ops.tuner_ops.set_params)
598 		fe->ops.tuner_ops.set_params(fe);
599 
600 	/* program CFOE coefficients */
601 	if (c->bandwidth_hz != state->bandwidth_hz) {
602 		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
603 			if (coeff_lut[i].clock == state->config.clock &&
604 				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
605 				break;
606 			}
607 		}
608 
609 		ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
610 			sizeof(coeff_lut[i].val));
611 	}
612 
613 	/* program frequency control */
614 	if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
615 		/* get used IF frequency */
616 		if (fe->ops.tuner_ops.get_if_frequency)
617 			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
618 		else
619 			if_frequency = state->config.if_frequency;
620 
621 		dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
622 				__func__, if_frequency);
623 
624 		sampling_freq = if_frequency;
625 
626 		while (sampling_freq > (state->config.clock / 2))
627 			sampling_freq -= state->config.clock;
628 
629 		if (sampling_freq < 0) {
630 			sampling_freq *= -1;
631 			spec_inv = state->config.spec_inv;
632 		} else {
633 			spec_inv = !state->config.spec_inv;
634 		}
635 
636 		freq_cw = af9013_div(state, sampling_freq, state->config.clock,
637 				23);
638 
639 		if (spec_inv)
640 			freq_cw = 0x800000 - freq_cw;
641 
642 		buf[0] = (freq_cw >>  0) & 0xff;
643 		buf[1] = (freq_cw >>  8) & 0xff;
644 		buf[2] = (freq_cw >> 16) & 0x7f;
645 
646 		freq_cw = 0x800000 - freq_cw;
647 
648 		buf[3] = (freq_cw >>  0) & 0xff;
649 		buf[4] = (freq_cw >>  8) & 0xff;
650 		buf[5] = (freq_cw >> 16) & 0x7f;
651 
652 		ret = af9013_wr_regs(state, 0xd140, buf, 3);
653 		if (ret)
654 			goto err;
655 
656 		ret = af9013_wr_regs(state, 0x9be7, buf, 6);
657 		if (ret)
658 			goto err;
659 	}
660 
661 	/* clear TPS lock flag */
662 	ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
663 	if (ret)
664 		goto err;
665 
666 	/* clear MPEG2 lock flag */
667 	ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
668 	if (ret)
669 		goto err;
670 
671 	/* empty channel function */
672 	ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
673 	if (ret)
674 		goto err;
675 
676 	/* empty DVB-T channel function */
677 	ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
678 	if (ret)
679 		goto err;
680 
681 	/* transmission parameters */
682 	auto_mode = false;
683 	memset(buf, 0, 3);
684 
685 	switch (c->transmission_mode) {
686 	case TRANSMISSION_MODE_AUTO:
687 		auto_mode = 1;
688 		break;
689 	case TRANSMISSION_MODE_2K:
690 		break;
691 	case TRANSMISSION_MODE_8K:
692 		buf[0] |= (1 << 0);
693 		break;
694 	default:
695 		dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
696 				__func__);
697 		auto_mode = 1;
698 	}
699 
700 	switch (c->guard_interval) {
701 	case GUARD_INTERVAL_AUTO:
702 		auto_mode = 1;
703 		break;
704 	case GUARD_INTERVAL_1_32:
705 		break;
706 	case GUARD_INTERVAL_1_16:
707 		buf[0] |= (1 << 2);
708 		break;
709 	case GUARD_INTERVAL_1_8:
710 		buf[0] |= (2 << 2);
711 		break;
712 	case GUARD_INTERVAL_1_4:
713 		buf[0] |= (3 << 2);
714 		break;
715 	default:
716 		dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
717 				__func__);
718 		auto_mode = 1;
719 	}
720 
721 	switch (c->hierarchy) {
722 	case HIERARCHY_AUTO:
723 		auto_mode = 1;
724 		break;
725 	case HIERARCHY_NONE:
726 		break;
727 	case HIERARCHY_1:
728 		buf[0] |= (1 << 4);
729 		break;
730 	case HIERARCHY_2:
731 		buf[0] |= (2 << 4);
732 		break;
733 	case HIERARCHY_4:
734 		buf[0] |= (3 << 4);
735 		break;
736 	default:
737 		dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
738 		auto_mode = 1;
739 	}
740 
741 	switch (c->modulation) {
742 	case QAM_AUTO:
743 		auto_mode = 1;
744 		break;
745 	case QPSK:
746 		break;
747 	case QAM_16:
748 		buf[1] |= (1 << 6);
749 		break;
750 	case QAM_64:
751 		buf[1] |= (2 << 6);
752 		break;
753 	default:
754 		dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
755 		auto_mode = 1;
756 	}
757 
758 	/* Use HP. How and which case we can switch to LP? */
759 	buf[1] |= (1 << 4);
760 
761 	switch (c->code_rate_HP) {
762 	case FEC_AUTO:
763 		auto_mode = 1;
764 		break;
765 	case FEC_1_2:
766 		break;
767 	case FEC_2_3:
768 		buf[2] |= (1 << 0);
769 		break;
770 	case FEC_3_4:
771 		buf[2] |= (2 << 0);
772 		break;
773 	case FEC_5_6:
774 		buf[2] |= (3 << 0);
775 		break;
776 	case FEC_7_8:
777 		buf[2] |= (4 << 0);
778 		break;
779 	default:
780 		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
781 				__func__);
782 		auto_mode = 1;
783 	}
784 
785 	switch (c->code_rate_LP) {
786 	case FEC_AUTO:
787 		auto_mode = 1;
788 		break;
789 	case FEC_1_2:
790 		break;
791 	case FEC_2_3:
792 		buf[2] |= (1 << 3);
793 		break;
794 	case FEC_3_4:
795 		buf[2] |= (2 << 3);
796 		break;
797 	case FEC_5_6:
798 		buf[2] |= (3 << 3);
799 		break;
800 	case FEC_7_8:
801 		buf[2] |= (4 << 3);
802 		break;
803 	case FEC_NONE:
804 		break;
805 	default:
806 		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
807 				__func__);
808 		auto_mode = 1;
809 	}
810 
811 	switch (c->bandwidth_hz) {
812 	case 6000000:
813 		break;
814 	case 7000000:
815 		buf[1] |= (1 << 2);
816 		break;
817 	case 8000000:
818 		buf[1] |= (2 << 2);
819 		break;
820 	default:
821 		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
822 				__func__);
823 		ret = -EINVAL;
824 		goto err;
825 	}
826 
827 	ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
828 	if (ret)
829 		goto err;
830 
831 	if (auto_mode) {
832 		/* clear easy mode flag */
833 		ret = af9013_wr_reg(state, 0xaefd, 0);
834 		if (ret)
835 			goto err;
836 
837 		dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
838 	} else {
839 		/* set easy mode flag */
840 		ret = af9013_wr_reg(state, 0xaefd, 1);
841 		if (ret)
842 			goto err;
843 
844 		ret = af9013_wr_reg(state, 0xaefe, 0);
845 		if (ret)
846 			goto err;
847 
848 		dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
849 	}
850 
851 	/* tune */
852 	ret = af9013_wr_reg(state, 0xffff, 0);
853 	if (ret)
854 		goto err;
855 
856 	state->bandwidth_hz = c->bandwidth_hz;
857 	state->set_frontend_jiffies = jiffies;
858 	state->first_tune = false;
859 
860 	return ret;
861 err:
862 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
863 	return ret;
864 }
865 
866 static int af9013_get_frontend(struct dvb_frontend *fe)
867 {
868 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
869 	struct af9013_state *state = fe->demodulator_priv;
870 	int ret;
871 	u8 buf[3];
872 
873 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
874 
875 	ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
876 	if (ret)
877 		goto err;
878 
879 	switch ((buf[1] >> 6) & 3) {
880 	case 0:
881 		c->modulation = QPSK;
882 		break;
883 	case 1:
884 		c->modulation = QAM_16;
885 		break;
886 	case 2:
887 		c->modulation = QAM_64;
888 		break;
889 	}
890 
891 	switch ((buf[0] >> 0) & 3) {
892 	case 0:
893 		c->transmission_mode = TRANSMISSION_MODE_2K;
894 		break;
895 	case 1:
896 		c->transmission_mode = TRANSMISSION_MODE_8K;
897 	}
898 
899 	switch ((buf[0] >> 2) & 3) {
900 	case 0:
901 		c->guard_interval = GUARD_INTERVAL_1_32;
902 		break;
903 	case 1:
904 		c->guard_interval = GUARD_INTERVAL_1_16;
905 		break;
906 	case 2:
907 		c->guard_interval = GUARD_INTERVAL_1_8;
908 		break;
909 	case 3:
910 		c->guard_interval = GUARD_INTERVAL_1_4;
911 		break;
912 	}
913 
914 	switch ((buf[0] >> 4) & 7) {
915 	case 0:
916 		c->hierarchy = HIERARCHY_NONE;
917 		break;
918 	case 1:
919 		c->hierarchy = HIERARCHY_1;
920 		break;
921 	case 2:
922 		c->hierarchy = HIERARCHY_2;
923 		break;
924 	case 3:
925 		c->hierarchy = HIERARCHY_4;
926 		break;
927 	}
928 
929 	switch ((buf[2] >> 0) & 7) {
930 	case 0:
931 		c->code_rate_HP = FEC_1_2;
932 		break;
933 	case 1:
934 		c->code_rate_HP = FEC_2_3;
935 		break;
936 	case 2:
937 		c->code_rate_HP = FEC_3_4;
938 		break;
939 	case 3:
940 		c->code_rate_HP = FEC_5_6;
941 		break;
942 	case 4:
943 		c->code_rate_HP = FEC_7_8;
944 		break;
945 	}
946 
947 	switch ((buf[2] >> 3) & 7) {
948 	case 0:
949 		c->code_rate_LP = FEC_1_2;
950 		break;
951 	case 1:
952 		c->code_rate_LP = FEC_2_3;
953 		break;
954 	case 2:
955 		c->code_rate_LP = FEC_3_4;
956 		break;
957 	case 3:
958 		c->code_rate_LP = FEC_5_6;
959 		break;
960 	case 4:
961 		c->code_rate_LP = FEC_7_8;
962 		break;
963 	}
964 
965 	switch ((buf[1] >> 2) & 3) {
966 	case 0:
967 		c->bandwidth_hz = 6000000;
968 		break;
969 	case 1:
970 		c->bandwidth_hz = 7000000;
971 		break;
972 	case 2:
973 		c->bandwidth_hz = 8000000;
974 		break;
975 	}
976 
977 	return ret;
978 err:
979 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
980 	return ret;
981 }
982 
983 static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
984 {
985 	struct af9013_state *state = fe->demodulator_priv;
986 	int ret;
987 	u8 tmp;
988 
989 	/*
990 	 * Return status from the cache if it is younger than 2000ms with the
991 	 * exception of last tune is done during 4000ms.
992 	 */
993 	if (time_is_after_jiffies(
994 		state->read_status_jiffies + msecs_to_jiffies(2000)) &&
995 		time_is_before_jiffies(
996 		state->set_frontend_jiffies + msecs_to_jiffies(4000))
997 	) {
998 			*status = state->fe_status;
999 			return 0;
1000 	} else {
1001 		*status = 0;
1002 	}
1003 
1004 	/* MPEG2 lock */
1005 	ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
1006 	if (ret)
1007 		goto err;
1008 
1009 	if (tmp)
1010 		*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
1011 			FE_HAS_SYNC | FE_HAS_LOCK;
1012 
1013 	if (!*status) {
1014 		/* TPS lock */
1015 		ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
1016 		if (ret)
1017 			goto err;
1018 
1019 		if (tmp)
1020 			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1021 				FE_HAS_VITERBI;
1022 	}
1023 
1024 	state->fe_status = *status;
1025 	state->read_status_jiffies = jiffies;
1026 
1027 	return ret;
1028 err:
1029 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1030 	return ret;
1031 }
1032 
1033 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1034 {
1035 	struct af9013_state *state = fe->demodulator_priv;
1036 	*snr = state->snr;
1037 	return 0;
1038 }
1039 
1040 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1041 {
1042 	struct af9013_state *state = fe->demodulator_priv;
1043 	*strength = state->signal_strength;
1044 	return 0;
1045 }
1046 
1047 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1048 {
1049 	struct af9013_state *state = fe->demodulator_priv;
1050 	*ber = state->ber;
1051 	return 0;
1052 }
1053 
1054 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1055 {
1056 	struct af9013_state *state = fe->demodulator_priv;
1057 	*ucblocks = state->ucblocks;
1058 	return 0;
1059 }
1060 
1061 static int af9013_init(struct dvb_frontend *fe)
1062 {
1063 	struct af9013_state *state = fe->demodulator_priv;
1064 	int ret, i, len;
1065 	u8 buf[3], tmp;
1066 	u32 adc_cw;
1067 	const struct af9013_reg_bit *init;
1068 
1069 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1070 
1071 	/* power on */
1072 	ret = af9013_power_ctrl(state, 1);
1073 	if (ret)
1074 		goto err;
1075 
1076 	/* enable ADC */
1077 	ret = af9013_wr_reg(state, 0xd73a, 0xa4);
1078 	if (ret)
1079 		goto err;
1080 
1081 	/* write API version to firmware */
1082 	ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
1083 	if (ret)
1084 		goto err;
1085 
1086 	/* program ADC control */
1087 	switch (state->config.clock) {
1088 	case 28800000: /* 28.800 MHz */
1089 		tmp = 0;
1090 		break;
1091 	case 20480000: /* 20.480 MHz */
1092 		tmp = 1;
1093 		break;
1094 	case 28000000: /* 28.000 MHz */
1095 		tmp = 2;
1096 		break;
1097 	case 25000000: /* 25.000 MHz */
1098 		tmp = 3;
1099 		break;
1100 	default:
1101 		dev_err(&state->i2c->dev, "%s: invalid clock\n",
1102 				KBUILD_MODNAME);
1103 		return -EINVAL;
1104 	}
1105 
1106 	adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
1107 	buf[0] = (adc_cw >>  0) & 0xff;
1108 	buf[1] = (adc_cw >>  8) & 0xff;
1109 	buf[2] = (adc_cw >> 16) & 0xff;
1110 
1111 	ret = af9013_wr_regs(state, 0xd180, buf, 3);
1112 	if (ret)
1113 		goto err;
1114 
1115 	ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
1116 	if (ret)
1117 		goto err;
1118 
1119 	/* set I2C master clock */
1120 	ret = af9013_wr_reg(state, 0xd416, 0x14);
1121 	if (ret)
1122 		goto err;
1123 
1124 	/* set 16 embx */
1125 	ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
1126 	if (ret)
1127 		goto err;
1128 
1129 	/* set no trigger */
1130 	ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
1131 	if (ret)
1132 		goto err;
1133 
1134 	/* set read-update bit for constellation */
1135 	ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
1136 	if (ret)
1137 		goto err;
1138 
1139 	/* settings for mp2if */
1140 	if (state->config.ts_mode == AF9013_TS_USB) {
1141 		/* AF9015 split PSB to 1.5k + 0.5k */
1142 		ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
1143 		if (ret)
1144 			goto err;
1145 	} else {
1146 		/* AF9013 change the output bit to data7 */
1147 		ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
1148 		if (ret)
1149 			goto err;
1150 
1151 		/* AF9013 set mpeg to full speed */
1152 		ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
1153 		if (ret)
1154 			goto err;
1155 	}
1156 
1157 	ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
1158 	if (ret)
1159 		goto err;
1160 
1161 	/* load OFSM settings */
1162 	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
1163 	len = ARRAY_SIZE(ofsm_init);
1164 	init = ofsm_init;
1165 	for (i = 0; i < len; i++) {
1166 		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1167 			init[i].len, init[i].val);
1168 		if (ret)
1169 			goto err;
1170 	}
1171 
1172 	/* load tuner specific settings */
1173 	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
1174 			__func__);
1175 	switch (state->config.tuner) {
1176 	case AF9013_TUNER_MXL5003D:
1177 		len = ARRAY_SIZE(tuner_init_mxl5003d);
1178 		init = tuner_init_mxl5003d;
1179 		break;
1180 	case AF9013_TUNER_MXL5005D:
1181 	case AF9013_TUNER_MXL5005R:
1182 	case AF9013_TUNER_MXL5007T:
1183 		len = ARRAY_SIZE(tuner_init_mxl5005);
1184 		init = tuner_init_mxl5005;
1185 		break;
1186 	case AF9013_TUNER_ENV77H11D5:
1187 		len = ARRAY_SIZE(tuner_init_env77h11d5);
1188 		init = tuner_init_env77h11d5;
1189 		break;
1190 	case AF9013_TUNER_MT2060:
1191 		len = ARRAY_SIZE(tuner_init_mt2060);
1192 		init = tuner_init_mt2060;
1193 		break;
1194 	case AF9013_TUNER_MC44S803:
1195 		len = ARRAY_SIZE(tuner_init_mc44s803);
1196 		init = tuner_init_mc44s803;
1197 		break;
1198 	case AF9013_TUNER_QT1010:
1199 	case AF9013_TUNER_QT1010A:
1200 		len = ARRAY_SIZE(tuner_init_qt1010);
1201 		init = tuner_init_qt1010;
1202 		break;
1203 	case AF9013_TUNER_MT2060_2:
1204 		len = ARRAY_SIZE(tuner_init_mt2060_2);
1205 		init = tuner_init_mt2060_2;
1206 		break;
1207 	case AF9013_TUNER_TDA18271:
1208 	case AF9013_TUNER_TDA18218:
1209 		len = ARRAY_SIZE(tuner_init_tda18271);
1210 		init = tuner_init_tda18271;
1211 		break;
1212 	case AF9013_TUNER_UNKNOWN:
1213 	default:
1214 		len = ARRAY_SIZE(tuner_init_unknown);
1215 		init = tuner_init_unknown;
1216 		break;
1217 	}
1218 
1219 	for (i = 0; i < len; i++) {
1220 		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1221 			init[i].len, init[i].val);
1222 		if (ret)
1223 			goto err;
1224 	}
1225 
1226 	/* TS mode */
1227 	ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
1228 	if (ret)
1229 		goto err;
1230 
1231 	/* enable lock led */
1232 	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
1233 	if (ret)
1234 		goto err;
1235 
1236 	/* check if we support signal strength */
1237 	if (!state->signal_strength_en) {
1238 		ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
1239 			&state->signal_strength_en);
1240 		if (ret)
1241 			goto err;
1242 	}
1243 
1244 	/* read values needed for signal strength calculation */
1245 	if (state->signal_strength_en && !state->rf_50) {
1246 		ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
1247 		if (ret)
1248 			goto err;
1249 
1250 		ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
1251 		if (ret)
1252 			goto err;
1253 
1254 		ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
1255 		if (ret)
1256 			goto err;
1257 
1258 		ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
1259 		if (ret)
1260 			goto err;
1261 	}
1262 
1263 	/* SNR */
1264 	ret = af9013_wr_reg(state, 0xd2e2, 1);
1265 	if (ret)
1266 		goto err;
1267 
1268 	/* BER / UCB */
1269 	buf[0] = (10000 >> 0) & 0xff;
1270 	buf[1] = (10000 >> 8) & 0xff;
1271 	ret = af9013_wr_regs(state, 0xd385, buf, 2);
1272 	if (ret)
1273 		goto err;
1274 
1275 	/* enable FEC monitor */
1276 	ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
1277 	if (ret)
1278 		goto err;
1279 
1280 	state->first_tune = true;
1281 	schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1282 
1283 	return ret;
1284 err:
1285 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1286 	return ret;
1287 }
1288 
1289 static int af9013_sleep(struct dvb_frontend *fe)
1290 {
1291 	struct af9013_state *state = fe->demodulator_priv;
1292 	int ret;
1293 
1294 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1295 
1296 	/* stop statistics polling */
1297 	cancel_delayed_work_sync(&state->statistics_work);
1298 
1299 	/* disable lock led */
1300 	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
1301 	if (ret)
1302 		goto err;
1303 
1304 	/* power off */
1305 	ret = af9013_power_ctrl(state, 0);
1306 	if (ret)
1307 		goto err;
1308 
1309 	return ret;
1310 err:
1311 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1312 	return ret;
1313 }
1314 
1315 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1316 {
1317 	int ret;
1318 	struct af9013_state *state = fe->demodulator_priv;
1319 
1320 	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
1321 
1322 	/* gate already open or close */
1323 	if (state->i2c_gate_state == enable)
1324 		return 0;
1325 
1326 	if (state->config.ts_mode == AF9013_TS_USB)
1327 		ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
1328 	else
1329 		ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
1330 	if (ret)
1331 		goto err;
1332 
1333 	state->i2c_gate_state = enable;
1334 
1335 	return ret;
1336 err:
1337 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1338 	return ret;
1339 }
1340 
1341 static void af9013_release(struct dvb_frontend *fe)
1342 {
1343 	struct af9013_state *state = fe->demodulator_priv;
1344 	kfree(state);
1345 }
1346 
1347 static struct dvb_frontend_ops af9013_ops;
1348 
1349 static int af9013_download_firmware(struct af9013_state *state)
1350 {
1351 	int i, len, remaining, ret;
1352 	const struct firmware *fw;
1353 	u16 checksum = 0;
1354 	u8 val;
1355 	u8 fw_params[4];
1356 	u8 *fw_file = AF9013_FIRMWARE;
1357 
1358 	msleep(100);
1359 	/* check whether firmware is already running */
1360 	ret = af9013_rd_reg(state, 0x98be, &val);
1361 	if (ret)
1362 		goto err;
1363 	else
1364 		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1365 				__func__, val);
1366 
1367 	if (val == 0x0c) /* fw is running, no need for download */
1368 		goto exit;
1369 
1370 	dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
1371 			"to load a firmware\n",
1372 			KBUILD_MODNAME, af9013_ops.info.name);
1373 
1374 	/* request the firmware, this will block and timeout */
1375 	ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1376 	if (ret) {
1377 		dev_info(&state->i2c->dev, "%s: did not find the firmware " \
1378 			"file. (%s) Please see linux/Documentation/dvb/ for " \
1379 			"more details on firmware-problems. (%d)\n",
1380 			KBUILD_MODNAME, fw_file, ret);
1381 		goto err;
1382 	}
1383 
1384 	dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
1385 			KBUILD_MODNAME, fw_file);
1386 
1387 	/* calc checksum */
1388 	for (i = 0; i < fw->size; i++)
1389 		checksum += fw->data[i];
1390 
1391 	fw_params[0] = checksum >> 8;
1392 	fw_params[1] = checksum & 0xff;
1393 	fw_params[2] = fw->size >> 8;
1394 	fw_params[3] = fw->size & 0xff;
1395 
1396 	/* write fw checksum & size */
1397 	ret = af9013_write_ofsm_regs(state, 0x50fc,
1398 		fw_params, sizeof(fw_params));
1399 	if (ret)
1400 		goto err_release;
1401 
1402 	#define FW_ADDR 0x5100 /* firmware start address */
1403 	#define LEN_MAX 16 /* max packet size */
1404 	for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
1405 		len = remaining;
1406 		if (len > LEN_MAX)
1407 			len = LEN_MAX;
1408 
1409 		ret = af9013_write_ofsm_regs(state,
1410 			FW_ADDR + fw->size - remaining,
1411 			(u8 *) &fw->data[fw->size - remaining], len);
1412 		if (ret) {
1413 			dev_err(&state->i2c->dev,
1414 					"%s: firmware download failed=%d\n",
1415 					KBUILD_MODNAME, ret);
1416 			goto err_release;
1417 		}
1418 	}
1419 
1420 	/* request boot firmware */
1421 	ret = af9013_wr_reg(state, 0xe205, 1);
1422 	if (ret)
1423 		goto err_release;
1424 
1425 	for (i = 0; i < 15; i++) {
1426 		msleep(100);
1427 
1428 		/* check firmware status */
1429 		ret = af9013_rd_reg(state, 0x98be, &val);
1430 		if (ret)
1431 			goto err_release;
1432 
1433 		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1434 				__func__, val);
1435 
1436 		if (val == 0x0c || val == 0x04) /* success or fail */
1437 			break;
1438 	}
1439 
1440 	if (val == 0x04) {
1441 		dev_err(&state->i2c->dev, "%s: firmware did not run\n",
1442 				KBUILD_MODNAME);
1443 		ret = -ENODEV;
1444 	} else if (val != 0x0c) {
1445 		dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
1446 				KBUILD_MODNAME);
1447 		ret = -ENODEV;
1448 	}
1449 
1450 err_release:
1451 	release_firmware(fw);
1452 err:
1453 exit:
1454 	if (!ret)
1455 		dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
1456 				KBUILD_MODNAME, af9013_ops.info.name);
1457 	return ret;
1458 }
1459 
1460 struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1461 	struct i2c_adapter *i2c)
1462 {
1463 	int ret;
1464 	struct af9013_state *state = NULL;
1465 	u8 buf[4], i;
1466 
1467 	/* allocate memory for the internal state */
1468 	state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1469 	if (state == NULL)
1470 		goto err;
1471 
1472 	/* setup the state */
1473 	state->i2c = i2c;
1474 	memcpy(&state->config, config, sizeof(struct af9013_config));
1475 
1476 	/* download firmware */
1477 	if (state->config.ts_mode != AF9013_TS_USB) {
1478 		ret = af9013_download_firmware(state);
1479 		if (ret)
1480 			goto err;
1481 	}
1482 
1483 	/* firmware version */
1484 	ret = af9013_rd_regs(state, 0x5103, buf, 4);
1485 	if (ret)
1486 		goto err;
1487 
1488 	dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
1489 			KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
1490 
1491 	/* set GPIOs */
1492 	for (i = 0; i < sizeof(state->config.gpio); i++) {
1493 		ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1494 		if (ret)
1495 			goto err;
1496 	}
1497 
1498 	/* create dvb_frontend */
1499 	memcpy(&state->fe.ops, &af9013_ops,
1500 		sizeof(struct dvb_frontend_ops));
1501 	state->fe.demodulator_priv = state;
1502 
1503 	INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1504 
1505 	return &state->fe;
1506 err:
1507 	kfree(state);
1508 	return NULL;
1509 }
1510 EXPORT_SYMBOL(af9013_attach);
1511 
1512 static struct dvb_frontend_ops af9013_ops = {
1513 	.delsys = { SYS_DVBT },
1514 	.info = {
1515 		.name = "Afatech AF9013",
1516 		.frequency_min = 174000000,
1517 		.frequency_max = 862000000,
1518 		.frequency_stepsize = 250000,
1519 		.frequency_tolerance = 0,
1520 		.caps =	FE_CAN_FEC_1_2 |
1521 			FE_CAN_FEC_2_3 |
1522 			FE_CAN_FEC_3_4 |
1523 			FE_CAN_FEC_5_6 |
1524 			FE_CAN_FEC_7_8 |
1525 			FE_CAN_FEC_AUTO |
1526 			FE_CAN_QPSK |
1527 			FE_CAN_QAM_16 |
1528 			FE_CAN_QAM_64 |
1529 			FE_CAN_QAM_AUTO |
1530 			FE_CAN_TRANSMISSION_MODE_AUTO |
1531 			FE_CAN_GUARD_INTERVAL_AUTO |
1532 			FE_CAN_HIERARCHY_AUTO |
1533 			FE_CAN_RECOVER |
1534 			FE_CAN_MUTE_TS
1535 	},
1536 
1537 	.release = af9013_release,
1538 
1539 	.init = af9013_init,
1540 	.sleep = af9013_sleep,
1541 
1542 	.get_tune_settings = af9013_get_tune_settings,
1543 	.set_frontend = af9013_set_frontend,
1544 	.get_frontend = af9013_get_frontend,
1545 
1546 	.read_status = af9013_read_status,
1547 	.read_snr = af9013_read_snr,
1548 	.read_signal_strength = af9013_read_signal_strength,
1549 	.read_ber = af9013_read_ber,
1550 	.read_ucblocks = af9013_read_ucblocks,
1551 
1552 	.i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1553 };
1554 
1555 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1556 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1557 MODULE_LICENSE("GPL");
1558 MODULE_FIRMWARE(AF9013_FIRMWARE);
1559