1 /*
2  * Afatech AF9013 demodulator driver
3  *
4  * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5  * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
6  *
7  * Thanks to Afatech who kindly provided information.
8  *
9  *    This program is free software; you can redistribute it and/or modify
10  *    it under the terms of the GNU General Public License as published by
11  *    the Free Software Foundation; either version 2 of the License, or
12  *    (at your option) any later version.
13  *
14  *    This program is distributed in the hope that it will be useful,
15  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *    GNU General Public License for more details.
18  *
19  */
20 
21 #include "af9013_priv.h"
22 
23 struct af9013_state {
24 	struct i2c_client *client;
25 	struct regmap *regmap;
26 	struct dvb_frontend fe;
27 	u32 clk;
28 	u8 tuner;
29 	u32 if_frequency;
30 	u8 ts_mode;
31 	u8 ts_output_pin;
32 	bool spec_inv;
33 	u8 api_version[4];
34 	u8 gpio[4];
35 
36 	/* tuner/demod RF and IF AGC limits used for signal strength calc */
37 	u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
38 	u16 signal_strength;
39 	u32 ber;
40 	u32 ucblocks;
41 	u16 snr;
42 	u32 bandwidth_hz;
43 	enum fe_status fe_status;
44 	unsigned long set_frontend_jiffies;
45 	unsigned long read_status_jiffies;
46 	bool first_tune;
47 	bool i2c_gate_state;
48 	unsigned int statistics_step:3;
49 	struct delayed_work statistics_work;
50 };
51 
52 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
53 {
54 	struct i2c_client *client = state->client;
55 	int ret;
56 	u8 pos;
57 	u16 addr;
58 
59 	dev_dbg(&client->dev, "gpio %u, gpioval %02x\n", gpio, gpioval);
60 
61 	/*
62 	 * GPIO0 & GPIO1 0xd735
63 	 * GPIO2 & GPIO3 0xd736
64 	 */
65 
66 	switch (gpio) {
67 	case 0:
68 	case 1:
69 		addr = 0xd735;
70 		break;
71 	case 2:
72 	case 3:
73 		addr = 0xd736;
74 		break;
75 
76 	default:
77 		ret = -EINVAL;
78 		goto err;
79 	}
80 
81 	switch (gpio) {
82 	case 0:
83 	case 2:
84 		pos = 0;
85 		break;
86 	case 1:
87 	case 3:
88 	default:
89 		pos = 4;
90 		break;
91 	}
92 
93 	ret = regmap_update_bits(state->regmap, addr, 0x0f << pos,
94 				 gpioval << pos);
95 	if (ret)
96 		goto err;
97 
98 	return 0;
99 err:
100 	dev_dbg(&client->dev, "failed %d\n", ret);
101 	return ret;
102 }
103 
104 static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
105 {
106 	struct i2c_client *client = state->client;
107 	int ret;
108 	unsigned int utmp;
109 
110 	dev_dbg(&client->dev, "onoff %d\n", onoff);
111 
112 	/* enable reset */
113 	ret = regmap_update_bits(state->regmap, 0xd417, 0x10, 0x10);
114 	if (ret)
115 		goto err;
116 
117 	/* start reset mechanism */
118 	ret = regmap_write(state->regmap, 0xaeff, 0x01);
119 	if (ret)
120 		goto err;
121 
122 	/* wait reset performs */
123 	ret = regmap_read_poll_timeout(state->regmap, 0xd417, utmp,
124 				       (utmp >> 1) & 0x01, 5000, 1000000);
125 	if (ret)
126 		goto err;
127 
128 	if (!((utmp >> 1) & 0x01))
129 		return -ETIMEDOUT;
130 
131 	if (onoff) {
132 		/* clear reset */
133 		ret = regmap_update_bits(state->regmap, 0xd417, 0x02, 0x00);
134 		if (ret)
135 			goto err;
136 		/* disable reset */
137 		ret = regmap_update_bits(state->regmap, 0xd417, 0x10, 0x00);
138 		if (ret)
139 			goto err;
140 		/* power on */
141 		ret = regmap_update_bits(state->regmap, 0xd73a, 0x08, 0x00);
142 		if (ret)
143 			goto err;
144 	} else {
145 		/* power off */
146 		ret = regmap_update_bits(state->regmap, 0xd73a, 0x08, 0x08);
147 		if (ret)
148 			goto err;
149 	}
150 
151 	return 0;
152 err:
153 	dev_dbg(&client->dev, "failed %d\n", ret);
154 	return ret;
155 }
156 
157 static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
158 {
159 	struct af9013_state *state = fe->demodulator_priv;
160 	struct i2c_client *client = state->client;
161 	int ret;
162 
163 	dev_dbg(&client->dev, "\n");
164 
165 	/* reset and start BER counter */
166 	ret = regmap_update_bits(state->regmap, 0xd391, 0x10, 0x10);
167 	if (ret)
168 		goto err;
169 
170 	return 0;
171 err:
172 	dev_dbg(&client->dev, "failed %d\n", ret);
173 	return ret;
174 }
175 
176 static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
177 {
178 	struct af9013_state *state = fe->demodulator_priv;
179 	struct i2c_client *client = state->client;
180 	int ret;
181 	unsigned int utmp;
182 	u8 buf[5];
183 
184 	dev_dbg(&client->dev, "\n");
185 
186 	/* check if error bit count is ready */
187 	ret = regmap_read(state->regmap, 0xd391, &utmp);
188 	if (ret)
189 		goto err;
190 
191 	if (!((utmp >> 4) & 0x01)) {
192 		dev_dbg(&client->dev, "not ready\n");
193 		return 0;
194 	}
195 
196 	ret = regmap_bulk_read(state->regmap, 0xd387, buf, 5);
197 	if (ret)
198 		goto err;
199 
200 	state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
201 	state->ucblocks += (buf[4] << 8) | buf[3];
202 
203 	return 0;
204 err:
205 	dev_dbg(&client->dev, "failed %d\n", ret);
206 	return ret;
207 }
208 
209 static int af9013_statistics_snr_start(struct dvb_frontend *fe)
210 {
211 	struct af9013_state *state = fe->demodulator_priv;
212 	struct i2c_client *client = state->client;
213 	int ret;
214 
215 	dev_dbg(&client->dev, "\n");
216 
217 	/* start SNR meas */
218 	ret = regmap_update_bits(state->regmap, 0xd2e1, 0x08, 0x08);
219 	if (ret)
220 		goto err;
221 
222 	return 0;
223 err:
224 	dev_dbg(&client->dev, "failed %d\n", ret);
225 	return ret;
226 }
227 
228 static int af9013_statistics_snr_result(struct dvb_frontend *fe)
229 {
230 	struct af9013_state *state = fe->demodulator_priv;
231 	struct i2c_client *client = state->client;
232 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
233 	int ret, i, len;
234 	unsigned int utmp;
235 	u8 buf[3];
236 	u32 snr_val;
237 	const struct af9013_snr *uninitialized_var(snr_lut);
238 
239 	dev_dbg(&client->dev, "\n");
240 
241 	/* check if SNR ready */
242 	ret = regmap_read(state->regmap, 0xd2e1, &utmp);
243 	if (ret)
244 		goto err;
245 
246 	if (!((utmp >> 3) & 0x01)) {
247 		dev_dbg(&client->dev, "not ready\n");
248 		return 0;
249 	}
250 
251 	/* read value */
252 	ret = regmap_bulk_read(state->regmap, 0xd2e3, buf, 3);
253 	if (ret)
254 		goto err;
255 
256 	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
257 
258 	/* read current modulation */
259 	ret = regmap_read(state->regmap, 0xd3c1, &utmp);
260 	if (ret)
261 		goto err;
262 
263 	switch ((utmp >> 6) & 3) {
264 	case 0:
265 		len = ARRAY_SIZE(qpsk_snr_lut);
266 		snr_lut = qpsk_snr_lut;
267 		break;
268 	case 1:
269 		len = ARRAY_SIZE(qam16_snr_lut);
270 		snr_lut = qam16_snr_lut;
271 		break;
272 	case 2:
273 		len = ARRAY_SIZE(qam64_snr_lut);
274 		snr_lut = qam64_snr_lut;
275 		break;
276 	default:
277 		goto err;
278 	}
279 
280 	for (i = 0; i < len; i++) {
281 		utmp = snr_lut[i].snr;
282 
283 		if (snr_val < snr_lut[i].val)
284 			break;
285 	}
286 	state->snr = utmp * 10; /* dB/10 */
287 
288 	c->cnr.stat[0].svalue = 1000 * utmp;
289 	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
290 
291 	return 0;
292 err:
293 	dev_dbg(&client->dev, "failed %d\n", ret);
294 	return ret;
295 }
296 
297 static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
298 {
299 	struct af9013_state *state = fe->demodulator_priv;
300 	struct i2c_client *client = state->client;
301 	int ret = 0;
302 	u8 buf[2], rf_gain, if_gain;
303 	int signal_strength;
304 
305 	dev_dbg(&client->dev, "\n");
306 
307 	if (!state->signal_strength_en)
308 		return 0;
309 
310 	ret = regmap_bulk_read(state->regmap, 0xd07c, buf, 2);
311 	if (ret)
312 		goto err;
313 
314 	rf_gain = buf[0];
315 	if_gain = buf[1];
316 
317 	signal_strength = (0xffff / \
318 		(9 * (state->rf_50 + state->if_50) - \
319 		11 * (state->rf_80 + state->if_80))) * \
320 		(10 * (rf_gain + if_gain) - \
321 		11 * (state->rf_80 + state->if_80));
322 	if (signal_strength < 0)
323 		signal_strength = 0;
324 	else if (signal_strength > 0xffff)
325 		signal_strength = 0xffff;
326 
327 	state->signal_strength = signal_strength;
328 
329 	return 0;
330 err:
331 	dev_dbg(&client->dev, "failed %d\n", ret);
332 	return ret;
333 }
334 
335 static void af9013_statistics_work(struct work_struct *work)
336 {
337 	struct af9013_state *state = container_of(work,
338 		struct af9013_state, statistics_work.work);
339 	unsigned int next_msec;
340 
341 	/* update only signal strength when demod is not locked */
342 	if (!(state->fe_status & FE_HAS_LOCK)) {
343 		state->statistics_step = 0;
344 		state->ber = 0;
345 		state->snr = 0;
346 	}
347 
348 	switch (state->statistics_step) {
349 	default:
350 		state->statistics_step = 0;
351 		/* fall-through */
352 	case 0:
353 		af9013_statistics_signal_strength(&state->fe);
354 		state->statistics_step++;
355 		next_msec = 300;
356 		break;
357 	case 1:
358 		af9013_statistics_snr_start(&state->fe);
359 		state->statistics_step++;
360 		next_msec = 200;
361 		break;
362 	case 2:
363 		af9013_statistics_ber_unc_start(&state->fe);
364 		state->statistics_step++;
365 		next_msec = 1000;
366 		break;
367 	case 3:
368 		af9013_statistics_snr_result(&state->fe);
369 		state->statistics_step++;
370 		next_msec = 400;
371 		break;
372 	case 4:
373 		af9013_statistics_ber_unc_result(&state->fe);
374 		state->statistics_step++;
375 		next_msec = 100;
376 		break;
377 	}
378 
379 	schedule_delayed_work(&state->statistics_work,
380 		msecs_to_jiffies(next_msec));
381 }
382 
383 static int af9013_get_tune_settings(struct dvb_frontend *fe,
384 	struct dvb_frontend_tune_settings *fesettings)
385 {
386 	fesettings->min_delay_ms = 800;
387 	fesettings->step_size = 0;
388 	fesettings->max_drift = 0;
389 
390 	return 0;
391 }
392 
393 static int af9013_set_frontend(struct dvb_frontend *fe)
394 {
395 	struct af9013_state *state = fe->demodulator_priv;
396 	struct i2c_client *client = state->client;
397 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
398 	int ret, i, sampling_freq;
399 	bool auto_mode, spec_inv;
400 	u8 buf[6];
401 	u32 if_frequency, freq_cw;
402 
403 	dev_dbg(&client->dev, "frequency %u, bandwidth_hz %u\n",
404 		c->frequency, c->bandwidth_hz);
405 
406 	/* program tuner */
407 	if (fe->ops.tuner_ops.set_params) {
408 		ret = fe->ops.tuner_ops.set_params(fe);
409 		if (ret)
410 			goto err;
411 	}
412 
413 	/* program CFOE coefficients */
414 	if (c->bandwidth_hz != state->bandwidth_hz) {
415 		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
416 			if (coeff_lut[i].clock == state->clk &&
417 				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
418 				break;
419 			}
420 		}
421 
422 		/* Return an error if can't find bandwidth or the right clock */
423 		if (i == ARRAY_SIZE(coeff_lut)) {
424 			ret = -EINVAL;
425 			goto err;
426 		}
427 
428 		ret = regmap_bulk_write(state->regmap, 0xae00, coeff_lut[i].val,
429 					sizeof(coeff_lut[i].val));
430 		if (ret)
431 			goto err;
432 	}
433 
434 	/* program frequency control */
435 	if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
436 		/* get used IF frequency */
437 		if (fe->ops.tuner_ops.get_if_frequency) {
438 			ret = fe->ops.tuner_ops.get_if_frequency(fe,
439 								 &if_frequency);
440 			if (ret)
441 				goto err;
442 		} else {
443 			if_frequency = state->if_frequency;
444 		}
445 
446 		dev_dbg(&client->dev, "if_frequency %u\n", if_frequency);
447 
448 		sampling_freq = if_frequency;
449 
450 		while (sampling_freq > (state->clk / 2))
451 			sampling_freq -= state->clk;
452 
453 		if (sampling_freq < 0) {
454 			sampling_freq *= -1;
455 			spec_inv = state->spec_inv;
456 		} else {
457 			spec_inv = !state->spec_inv;
458 		}
459 
460 		freq_cw = DIV_ROUND_CLOSEST_ULL((u64)sampling_freq * 0x800000,
461 						state->clk);
462 
463 		if (spec_inv)
464 			freq_cw = 0x800000 - freq_cw;
465 
466 		buf[0] = (freq_cw >>  0) & 0xff;
467 		buf[1] = (freq_cw >>  8) & 0xff;
468 		buf[2] = (freq_cw >> 16) & 0x7f;
469 
470 		freq_cw = 0x800000 - freq_cw;
471 
472 		buf[3] = (freq_cw >>  0) & 0xff;
473 		buf[4] = (freq_cw >>  8) & 0xff;
474 		buf[5] = (freq_cw >> 16) & 0x7f;
475 
476 		ret = regmap_bulk_write(state->regmap, 0xd140, buf, 3);
477 		if (ret)
478 			goto err;
479 
480 		ret = regmap_bulk_write(state->regmap, 0x9be7, buf, 6);
481 		if (ret)
482 			goto err;
483 	}
484 
485 	/* clear TPS lock flag */
486 	ret = regmap_update_bits(state->regmap, 0xd330, 0x08, 0x08);
487 	if (ret)
488 		goto err;
489 
490 	/* clear MPEG2 lock flag */
491 	ret = regmap_update_bits(state->regmap, 0xd507, 0x40, 0x00);
492 	if (ret)
493 		goto err;
494 
495 	/* empty channel function */
496 	ret = regmap_update_bits(state->regmap, 0x9bfe, 0x01, 0x00);
497 	if (ret)
498 		goto err;
499 
500 	/* empty DVB-T channel function */
501 	ret = regmap_update_bits(state->regmap, 0x9bc2, 0x01, 0x00);
502 	if (ret)
503 		goto err;
504 
505 	/* transmission parameters */
506 	auto_mode = false;
507 	memset(buf, 0, 3);
508 
509 	switch (c->transmission_mode) {
510 	case TRANSMISSION_MODE_AUTO:
511 		auto_mode = true;
512 		break;
513 	case TRANSMISSION_MODE_2K:
514 		break;
515 	case TRANSMISSION_MODE_8K:
516 		buf[0] |= (1 << 0);
517 		break;
518 	default:
519 		dev_dbg(&client->dev, "invalid transmission_mode\n");
520 		auto_mode = true;
521 	}
522 
523 	switch (c->guard_interval) {
524 	case GUARD_INTERVAL_AUTO:
525 		auto_mode = true;
526 		break;
527 	case GUARD_INTERVAL_1_32:
528 		break;
529 	case GUARD_INTERVAL_1_16:
530 		buf[0] |= (1 << 2);
531 		break;
532 	case GUARD_INTERVAL_1_8:
533 		buf[0] |= (2 << 2);
534 		break;
535 	case GUARD_INTERVAL_1_4:
536 		buf[0] |= (3 << 2);
537 		break;
538 	default:
539 		dev_dbg(&client->dev, "invalid guard_interval\n");
540 		auto_mode = true;
541 	}
542 
543 	switch (c->hierarchy) {
544 	case HIERARCHY_AUTO:
545 		auto_mode = true;
546 		break;
547 	case HIERARCHY_NONE:
548 		break;
549 	case HIERARCHY_1:
550 		buf[0] |= (1 << 4);
551 		break;
552 	case HIERARCHY_2:
553 		buf[0] |= (2 << 4);
554 		break;
555 	case HIERARCHY_4:
556 		buf[0] |= (3 << 4);
557 		break;
558 	default:
559 		dev_dbg(&client->dev, "invalid hierarchy\n");
560 		auto_mode = true;
561 	}
562 
563 	switch (c->modulation) {
564 	case QAM_AUTO:
565 		auto_mode = true;
566 		break;
567 	case QPSK:
568 		break;
569 	case QAM_16:
570 		buf[1] |= (1 << 6);
571 		break;
572 	case QAM_64:
573 		buf[1] |= (2 << 6);
574 		break;
575 	default:
576 		dev_dbg(&client->dev, "invalid modulation\n");
577 		auto_mode = true;
578 	}
579 
580 	/* Use HP. How and which case we can switch to LP? */
581 	buf[1] |= (1 << 4);
582 
583 	switch (c->code_rate_HP) {
584 	case FEC_AUTO:
585 		auto_mode = true;
586 		break;
587 	case FEC_1_2:
588 		break;
589 	case FEC_2_3:
590 		buf[2] |= (1 << 0);
591 		break;
592 	case FEC_3_4:
593 		buf[2] |= (2 << 0);
594 		break;
595 	case FEC_5_6:
596 		buf[2] |= (3 << 0);
597 		break;
598 	case FEC_7_8:
599 		buf[2] |= (4 << 0);
600 		break;
601 	default:
602 		dev_dbg(&client->dev, "invalid code_rate_HP\n");
603 		auto_mode = true;
604 	}
605 
606 	switch (c->code_rate_LP) {
607 	case FEC_AUTO:
608 		auto_mode = true;
609 		break;
610 	case FEC_1_2:
611 		break;
612 	case FEC_2_3:
613 		buf[2] |= (1 << 3);
614 		break;
615 	case FEC_3_4:
616 		buf[2] |= (2 << 3);
617 		break;
618 	case FEC_5_6:
619 		buf[2] |= (3 << 3);
620 		break;
621 	case FEC_7_8:
622 		buf[2] |= (4 << 3);
623 		break;
624 	case FEC_NONE:
625 		break;
626 	default:
627 		dev_dbg(&client->dev, "invalid code_rate_LP\n");
628 		auto_mode = true;
629 	}
630 
631 	switch (c->bandwidth_hz) {
632 	case 6000000:
633 		break;
634 	case 7000000:
635 		buf[1] |= (1 << 2);
636 		break;
637 	case 8000000:
638 		buf[1] |= (2 << 2);
639 		break;
640 	default:
641 		dev_dbg(&client->dev, "invalid bandwidth_hz\n");
642 		ret = -EINVAL;
643 		goto err;
644 	}
645 
646 	ret = regmap_bulk_write(state->regmap, 0xd3c0, buf, 3);
647 	if (ret)
648 		goto err;
649 
650 	if (auto_mode) {
651 		/* clear easy mode flag */
652 		ret = regmap_write(state->regmap, 0xaefd, 0x00);
653 		if (ret)
654 			goto err;
655 
656 		dev_dbg(&client->dev, "auto params\n");
657 	} else {
658 		/* set easy mode flag */
659 		ret = regmap_write(state->regmap, 0xaefd, 0x01);
660 		if (ret)
661 			goto err;
662 
663 		ret = regmap_write(state->regmap, 0xaefe, 0x00);
664 		if (ret)
665 			goto err;
666 
667 		dev_dbg(&client->dev, "manual params\n");
668 	}
669 
670 	/* Reset FSM */
671 	ret = regmap_write(state->regmap, 0xffff, 0x00);
672 	if (ret)
673 		goto err;
674 
675 	state->bandwidth_hz = c->bandwidth_hz;
676 	state->set_frontend_jiffies = jiffies;
677 	state->first_tune = false;
678 
679 	return 0;
680 err:
681 	dev_dbg(&client->dev, "failed %d\n", ret);
682 	return ret;
683 }
684 
685 static int af9013_get_frontend(struct dvb_frontend *fe,
686 			       struct dtv_frontend_properties *c)
687 {
688 	struct af9013_state *state = fe->demodulator_priv;
689 	struct i2c_client *client = state->client;
690 	int ret;
691 	u8 buf[3];
692 
693 	dev_dbg(&client->dev, "\n");
694 
695 	ret = regmap_bulk_read(state->regmap, 0xd3c0, buf, 3);
696 	if (ret)
697 		goto err;
698 
699 	switch ((buf[1] >> 6) & 3) {
700 	case 0:
701 		c->modulation = QPSK;
702 		break;
703 	case 1:
704 		c->modulation = QAM_16;
705 		break;
706 	case 2:
707 		c->modulation = QAM_64;
708 		break;
709 	}
710 
711 	switch ((buf[0] >> 0) & 3) {
712 	case 0:
713 		c->transmission_mode = TRANSMISSION_MODE_2K;
714 		break;
715 	case 1:
716 		c->transmission_mode = TRANSMISSION_MODE_8K;
717 	}
718 
719 	switch ((buf[0] >> 2) & 3) {
720 	case 0:
721 		c->guard_interval = GUARD_INTERVAL_1_32;
722 		break;
723 	case 1:
724 		c->guard_interval = GUARD_INTERVAL_1_16;
725 		break;
726 	case 2:
727 		c->guard_interval = GUARD_INTERVAL_1_8;
728 		break;
729 	case 3:
730 		c->guard_interval = GUARD_INTERVAL_1_4;
731 		break;
732 	}
733 
734 	switch ((buf[0] >> 4) & 7) {
735 	case 0:
736 		c->hierarchy = HIERARCHY_NONE;
737 		break;
738 	case 1:
739 		c->hierarchy = HIERARCHY_1;
740 		break;
741 	case 2:
742 		c->hierarchy = HIERARCHY_2;
743 		break;
744 	case 3:
745 		c->hierarchy = HIERARCHY_4;
746 		break;
747 	}
748 
749 	switch ((buf[2] >> 0) & 7) {
750 	case 0:
751 		c->code_rate_HP = FEC_1_2;
752 		break;
753 	case 1:
754 		c->code_rate_HP = FEC_2_3;
755 		break;
756 	case 2:
757 		c->code_rate_HP = FEC_3_4;
758 		break;
759 	case 3:
760 		c->code_rate_HP = FEC_5_6;
761 		break;
762 	case 4:
763 		c->code_rate_HP = FEC_7_8;
764 		break;
765 	}
766 
767 	switch ((buf[2] >> 3) & 7) {
768 	case 0:
769 		c->code_rate_LP = FEC_1_2;
770 		break;
771 	case 1:
772 		c->code_rate_LP = FEC_2_3;
773 		break;
774 	case 2:
775 		c->code_rate_LP = FEC_3_4;
776 		break;
777 	case 3:
778 		c->code_rate_LP = FEC_5_6;
779 		break;
780 	case 4:
781 		c->code_rate_LP = FEC_7_8;
782 		break;
783 	}
784 
785 	switch ((buf[1] >> 2) & 3) {
786 	case 0:
787 		c->bandwidth_hz = 6000000;
788 		break;
789 	case 1:
790 		c->bandwidth_hz = 7000000;
791 		break;
792 	case 2:
793 		c->bandwidth_hz = 8000000;
794 		break;
795 	}
796 
797 	return 0;
798 err:
799 	dev_dbg(&client->dev, "failed %d\n", ret);
800 	return ret;
801 }
802 
803 static int af9013_read_status(struct dvb_frontend *fe, enum fe_status *status)
804 {
805 	struct af9013_state *state = fe->demodulator_priv;
806 	struct i2c_client *client = state->client;
807 	int ret;
808 	unsigned int utmp;
809 
810 	/*
811 	 * Return status from the cache if it is younger than 2000ms with the
812 	 * exception of last tune is done during 4000ms.
813 	 */
814 	if (time_is_after_jiffies(
815 		state->read_status_jiffies + msecs_to_jiffies(2000)) &&
816 		time_is_before_jiffies(
817 		state->set_frontend_jiffies + msecs_to_jiffies(4000))
818 	) {
819 			*status = state->fe_status;
820 			return 0;
821 	} else {
822 		*status = 0;
823 	}
824 
825 	/* MPEG2 lock */
826 	ret = regmap_read(state->regmap, 0xd507, &utmp);
827 	if (ret)
828 		goto err;
829 
830 	if ((utmp >> 6) & 0x01)
831 		*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
832 			FE_HAS_SYNC | FE_HAS_LOCK;
833 
834 	if (!*status) {
835 		/* TPS lock */
836 		ret = regmap_read(state->regmap, 0xd330, &utmp);
837 		if (ret)
838 			goto err;
839 
840 		if ((utmp >> 3) & 0x01)
841 			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
842 				FE_HAS_VITERBI;
843 	}
844 
845 	state->fe_status = *status;
846 	state->read_status_jiffies = jiffies;
847 
848 	return 0;
849 err:
850 	dev_dbg(&client->dev, "failed %d\n", ret);
851 	return ret;
852 }
853 
854 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
855 {
856 	struct af9013_state *state = fe->demodulator_priv;
857 	*snr = state->snr;
858 	return 0;
859 }
860 
861 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
862 {
863 	struct af9013_state *state = fe->demodulator_priv;
864 	*strength = state->signal_strength;
865 	return 0;
866 }
867 
868 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
869 {
870 	struct af9013_state *state = fe->demodulator_priv;
871 	*ber = state->ber;
872 	return 0;
873 }
874 
875 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
876 {
877 	struct af9013_state *state = fe->demodulator_priv;
878 	*ucblocks = state->ucblocks;
879 	return 0;
880 }
881 
882 static int af9013_init(struct dvb_frontend *fe)
883 {
884 	struct af9013_state *state = fe->demodulator_priv;
885 	struct i2c_client *client = state->client;
886 	int ret, i, len;
887 	unsigned int utmp;
888 	u8 buf[3];
889 	const struct af9013_reg_bit *init;
890 
891 	dev_dbg(&client->dev, "\n");
892 
893 	/* power on */
894 	ret = af9013_power_ctrl(state, 1);
895 	if (ret)
896 		goto err;
897 
898 	/* write API version to firmware */
899 	ret = regmap_bulk_write(state->regmap, 0x9bf2, state->api_version, 4);
900 	if (ret)
901 		goto err;
902 
903 	/* program ADC control */
904 	switch (state->clk) {
905 	case 28800000: /* 28.800 MHz */
906 		utmp = 0;
907 		break;
908 	case 20480000: /* 20.480 MHz */
909 		utmp = 1;
910 		break;
911 	case 28000000: /* 28.000 MHz */
912 		utmp = 2;
913 		break;
914 	case 25000000: /* 25.000 MHz */
915 		utmp = 3;
916 		break;
917 	default:
918 		ret = -EINVAL;
919 		goto err;
920 	}
921 
922 	ret = regmap_update_bits(state->regmap, 0x9bd2, 0x0f, utmp);
923 	if (ret)
924 		goto err;
925 
926 	utmp = div_u64((u64)state->clk * 0x80000, 1000000);
927 	buf[0] = (utmp >>  0) & 0xff;
928 	buf[1] = (utmp >>  8) & 0xff;
929 	buf[2] = (utmp >> 16) & 0xff;
930 	ret = regmap_bulk_write(state->regmap, 0xd180, buf, 3);
931 	if (ret)
932 		goto err;
933 
934 	/* load OFSM settings */
935 	dev_dbg(&client->dev, "load ofsm settings\n");
936 	len = ARRAY_SIZE(ofsm_init);
937 	init = ofsm_init;
938 	for (i = 0; i < len; i++) {
939 		u16 reg = init[i].addr;
940 		u8 mask = GENMASK(init[i].pos + init[i].len - 1, init[i].pos);
941 		u8 val = init[i].val << init[i].pos;
942 
943 		ret = regmap_update_bits(state->regmap, reg, mask, val);
944 		if (ret)
945 			goto err;
946 	}
947 
948 	/* load tuner specific settings */
949 	dev_dbg(&client->dev, "load tuner specific settings\n");
950 	switch (state->tuner) {
951 	case AF9013_TUNER_MXL5003D:
952 		len = ARRAY_SIZE(tuner_init_mxl5003d);
953 		init = tuner_init_mxl5003d;
954 		break;
955 	case AF9013_TUNER_MXL5005D:
956 	case AF9013_TUNER_MXL5005R:
957 	case AF9013_TUNER_MXL5007T:
958 		len = ARRAY_SIZE(tuner_init_mxl5005);
959 		init = tuner_init_mxl5005;
960 		break;
961 	case AF9013_TUNER_ENV77H11D5:
962 		len = ARRAY_SIZE(tuner_init_env77h11d5);
963 		init = tuner_init_env77h11d5;
964 		break;
965 	case AF9013_TUNER_MT2060:
966 		len = ARRAY_SIZE(tuner_init_mt2060);
967 		init = tuner_init_mt2060;
968 		break;
969 	case AF9013_TUNER_MC44S803:
970 		len = ARRAY_SIZE(tuner_init_mc44s803);
971 		init = tuner_init_mc44s803;
972 		break;
973 	case AF9013_TUNER_QT1010:
974 	case AF9013_TUNER_QT1010A:
975 		len = ARRAY_SIZE(tuner_init_qt1010);
976 		init = tuner_init_qt1010;
977 		break;
978 	case AF9013_TUNER_MT2060_2:
979 		len = ARRAY_SIZE(tuner_init_mt2060_2);
980 		init = tuner_init_mt2060_2;
981 		break;
982 	case AF9013_TUNER_TDA18271:
983 	case AF9013_TUNER_TDA18218:
984 		len = ARRAY_SIZE(tuner_init_tda18271);
985 		init = tuner_init_tda18271;
986 		break;
987 	case AF9013_TUNER_UNKNOWN:
988 	default:
989 		len = ARRAY_SIZE(tuner_init_unknown);
990 		init = tuner_init_unknown;
991 		break;
992 	}
993 
994 	for (i = 0; i < len; i++) {
995 		u16 reg = init[i].addr;
996 		u8 mask = GENMASK(init[i].pos + init[i].len - 1, init[i].pos);
997 		u8 val = init[i].val << init[i].pos;
998 
999 		ret = regmap_update_bits(state->regmap, reg, mask, val);
1000 		if (ret)
1001 			goto err;
1002 	}
1003 
1004 	/* TS interface */
1005 	if (state->ts_output_pin == 7)
1006 		utmp = 1 << 3 | state->ts_mode << 1;
1007 	else
1008 		utmp = 0 << 3 | state->ts_mode << 1;
1009 	ret = regmap_update_bits(state->regmap, 0xd500, 0x0e, utmp);
1010 	if (ret)
1011 		goto err;
1012 
1013 	/* enable lock led */
1014 	ret = regmap_update_bits(state->regmap, 0xd730, 0x01, 0x01);
1015 	if (ret)
1016 		goto err;
1017 
1018 	/* check if we support signal strength */
1019 	if (!state->signal_strength_en) {
1020 		ret = regmap_read(state->regmap, 0x9bee, &utmp);
1021 		if (ret)
1022 			goto err;
1023 
1024 		state->signal_strength_en = (utmp >> 0) & 0x01;
1025 	}
1026 
1027 	/* read values needed for signal strength calculation */
1028 	if (state->signal_strength_en && !state->rf_50) {
1029 		ret = regmap_bulk_read(state->regmap, 0x9bbd, &state->rf_50, 1);
1030 		if (ret)
1031 			goto err;
1032 		ret = regmap_bulk_read(state->regmap, 0x9bd0, &state->rf_80, 1);
1033 		if (ret)
1034 			goto err;
1035 		ret = regmap_bulk_read(state->regmap, 0x9be2, &state->if_50, 1);
1036 		if (ret)
1037 			goto err;
1038 		ret = regmap_bulk_read(state->regmap, 0x9be4, &state->if_80, 1);
1039 		if (ret)
1040 			goto err;
1041 	}
1042 
1043 	/* SNR */
1044 	ret = regmap_write(state->regmap, 0xd2e2, 0x01);
1045 	if (ret)
1046 		goto err;
1047 
1048 	/* BER / UCB */
1049 	buf[0] = (10000 >> 0) & 0xff;
1050 	buf[1] = (10000 >> 8) & 0xff;
1051 	ret = regmap_bulk_write(state->regmap, 0xd385, buf, 2);
1052 	if (ret)
1053 		goto err;
1054 
1055 	/* enable FEC monitor */
1056 	ret = regmap_update_bits(state->regmap, 0xd392, 0x02, 0x02);
1057 	if (ret)
1058 		goto err;
1059 
1060 	state->first_tune = true;
1061 	schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1062 
1063 	return 0;
1064 err:
1065 	dev_dbg(&client->dev, "failed %d\n", ret);
1066 	return ret;
1067 }
1068 
1069 static int af9013_sleep(struct dvb_frontend *fe)
1070 {
1071 	struct af9013_state *state = fe->demodulator_priv;
1072 	struct i2c_client *client = state->client;
1073 	int ret;
1074 
1075 	dev_dbg(&client->dev, "\n");
1076 
1077 	/* stop statistics polling */
1078 	cancel_delayed_work_sync(&state->statistics_work);
1079 
1080 	/* disable lock led */
1081 	ret = regmap_update_bits(state->regmap, 0xd730, 0x01, 0x00);
1082 	if (ret)
1083 		goto err;
1084 
1085 	/* power off */
1086 	ret = af9013_power_ctrl(state, 0);
1087 	if (ret)
1088 		goto err;
1089 
1090 	return 0;
1091 err:
1092 	dev_dbg(&client->dev, "failed %d\n", ret);
1093 	return ret;
1094 }
1095 
1096 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1097 {
1098 	int ret;
1099 	struct af9013_state *state = fe->demodulator_priv;
1100 	struct i2c_client *client = state->client;
1101 
1102 	dev_dbg(&client->dev, "enable %d\n", enable);
1103 
1104 	/* gate already open or close */
1105 	if (state->i2c_gate_state == enable)
1106 		return 0;
1107 
1108 	if (state->ts_mode == AF9013_TS_MODE_USB)
1109 		ret = regmap_update_bits(state->regmap, 0xd417, 0x08,
1110 					 enable << 3);
1111 	else
1112 		ret = regmap_update_bits(state->regmap, 0xd607, 0x04,
1113 					 enable << 2);
1114 	if (ret)
1115 		goto err;
1116 
1117 	state->i2c_gate_state = enable;
1118 
1119 	return 0;
1120 err:
1121 	dev_dbg(&client->dev, "failed %d\n", ret);
1122 	return ret;
1123 }
1124 
1125 static void af9013_release(struct dvb_frontend *fe)
1126 {
1127 	struct af9013_state *state = fe->demodulator_priv;
1128 	struct i2c_client *client = state->client;
1129 
1130 	dev_dbg(&client->dev, "\n");
1131 
1132 	i2c_unregister_device(client);
1133 }
1134 
1135 static const struct dvb_frontend_ops af9013_ops;
1136 
1137 static int af9013_download_firmware(struct af9013_state *state)
1138 {
1139 	struct i2c_client *client = state->client;
1140 	int ret, i, len, rem;
1141 	unsigned int utmp;
1142 	u8 buf[4];
1143 	u16 checksum = 0;
1144 	const struct firmware *firmware;
1145 	const char *name = AF9013_FIRMWARE;
1146 
1147 	dev_dbg(&client->dev, "\n");
1148 
1149 	/* Check whether firmware is already running */
1150 	ret = regmap_read(state->regmap, 0x98be, &utmp);
1151 	if (ret)
1152 		goto err;
1153 
1154 	dev_dbg(&client->dev, "firmware status %02x\n", utmp);
1155 
1156 	if (utmp == 0x0c)
1157 		return 0;
1158 
1159 	dev_info(&client->dev, "found a '%s' in cold state, will try to load a firmware\n",
1160 		 af9013_ops.info.name);
1161 
1162 	/* Request the firmware, will block and timeout */
1163 	ret = request_firmware(&firmware, name, &client->dev);
1164 	if (ret) {
1165 		dev_info(&client->dev, "firmware file '%s' not found %d\n",
1166 			 name, ret);
1167 		goto err;
1168 	}
1169 
1170 	dev_info(&client->dev, "downloading firmware from file '%s'\n",
1171 		 name);
1172 
1173 	/* Write firmware checksum & size */
1174 	for (i = 0; i < firmware->size; i++)
1175 		checksum += firmware->data[i];
1176 
1177 	buf[0] = (checksum >> 8) & 0xff;
1178 	buf[1] = (checksum >> 0) & 0xff;
1179 	buf[2] = (firmware->size >> 8) & 0xff;
1180 	buf[3] = (firmware->size >> 0) & 0xff;
1181 	ret = regmap_bulk_write(state->regmap, 0x50fc, buf, 4);
1182 	if (ret)
1183 		goto err_release_firmware;
1184 
1185 	/* Download firmware */
1186 	#define LEN_MAX 16
1187 	for (rem = firmware->size; rem > 0; rem -= LEN_MAX) {
1188 		len = min(LEN_MAX, rem);
1189 		ret = regmap_bulk_write(state->regmap,
1190 					0x5100 + firmware->size - rem,
1191 					&firmware->data[firmware->size - rem],
1192 					len);
1193 		if (ret) {
1194 			dev_err(&client->dev, "firmware download failed %d\n",
1195 				ret);
1196 			goto err_release_firmware;
1197 		}
1198 	}
1199 
1200 	release_firmware(firmware);
1201 
1202 	/* Boot firmware */
1203 	ret = regmap_write(state->regmap, 0xe205, 0x01);
1204 	if (ret)
1205 		goto err;
1206 
1207 	/* Check firmware status. 0c=OK, 04=fail */
1208 	ret = regmap_read_poll_timeout(state->regmap, 0x98be, utmp,
1209 				       (utmp == 0x0c || utmp == 0x04),
1210 				       5000, 1000000);
1211 	if (ret)
1212 		goto err;
1213 
1214 	dev_dbg(&client->dev, "firmware status %02x\n", utmp);
1215 
1216 	if (utmp == 0x04) {
1217 		ret = -ENODEV;
1218 		dev_err(&client->dev, "firmware did not run\n");
1219 		goto err;
1220 	} else if (utmp != 0x0c) {
1221 		ret = -ENODEV;
1222 		dev_err(&client->dev, "firmware boot timeout\n");
1223 		goto err;
1224 	}
1225 
1226 	dev_info(&client->dev, "found a '%s' in warm state\n",
1227 		 af9013_ops.info.name);
1228 
1229 	return 0;
1230 err_release_firmware:
1231 	release_firmware(firmware);
1232 err:
1233 	dev_dbg(&client->dev, "failed %d\n", ret);
1234 	return ret;
1235 }
1236 
1237 /*
1238  * XXX: That is wrapper to af9013_probe() via driver core in order to provide
1239  * proper I2C client for legacy media attach binding.
1240  * New users must use I2C client binding directly!
1241  */
1242 struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1243 				   struct i2c_adapter *i2c)
1244 {
1245 	struct i2c_client *client;
1246 	struct i2c_board_info board_info;
1247 	struct af9013_platform_data pdata;
1248 
1249 	pdata.clk = config->clock;
1250 	pdata.tuner = config->tuner;
1251 	pdata.if_frequency = config->if_frequency;
1252 	pdata.ts_mode = config->ts_mode;
1253 	pdata.ts_output_pin = 7;
1254 	pdata.spec_inv = config->spec_inv;
1255 	memcpy(&pdata.api_version, config->api_version, sizeof(pdata.api_version));
1256 	memcpy(&pdata.gpio, config->gpio, sizeof(pdata.gpio));
1257 	pdata.attach_in_use = true;
1258 
1259 	memset(&board_info, 0, sizeof(board_info));
1260 	strlcpy(board_info.type, "af9013", sizeof(board_info.type));
1261 	board_info.addr = config->i2c_addr;
1262 	board_info.platform_data = &pdata;
1263 	client = i2c_new_device(i2c, &board_info);
1264 	if (!client || !client->dev.driver)
1265 		return NULL;
1266 
1267 	return pdata.get_dvb_frontend(client);
1268 }
1269 EXPORT_SYMBOL(af9013_attach);
1270 
1271 static const struct dvb_frontend_ops af9013_ops = {
1272 	.delsys = { SYS_DVBT },
1273 	.info = {
1274 		.name = "Afatech AF9013",
1275 		.frequency_min = 174000000,
1276 		.frequency_max = 862000000,
1277 		.frequency_stepsize = 250000,
1278 		.frequency_tolerance = 0,
1279 		.caps =	FE_CAN_FEC_1_2 |
1280 			FE_CAN_FEC_2_3 |
1281 			FE_CAN_FEC_3_4 |
1282 			FE_CAN_FEC_5_6 |
1283 			FE_CAN_FEC_7_8 |
1284 			FE_CAN_FEC_AUTO |
1285 			FE_CAN_QPSK |
1286 			FE_CAN_QAM_16 |
1287 			FE_CAN_QAM_64 |
1288 			FE_CAN_QAM_AUTO |
1289 			FE_CAN_TRANSMISSION_MODE_AUTO |
1290 			FE_CAN_GUARD_INTERVAL_AUTO |
1291 			FE_CAN_HIERARCHY_AUTO |
1292 			FE_CAN_RECOVER |
1293 			FE_CAN_MUTE_TS
1294 	},
1295 
1296 	.release = af9013_release,
1297 
1298 	.init = af9013_init,
1299 	.sleep = af9013_sleep,
1300 
1301 	.get_tune_settings = af9013_get_tune_settings,
1302 	.set_frontend = af9013_set_frontend,
1303 	.get_frontend = af9013_get_frontend,
1304 
1305 	.read_status = af9013_read_status,
1306 	.read_snr = af9013_read_snr,
1307 	.read_signal_strength = af9013_read_signal_strength,
1308 	.read_ber = af9013_read_ber,
1309 	.read_ucblocks = af9013_read_ucblocks,
1310 
1311 	.i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1312 };
1313 
1314 static struct dvb_frontend *af9013_get_dvb_frontend(struct i2c_client *client)
1315 {
1316 	struct af9013_state *state = i2c_get_clientdata(client);
1317 
1318 	dev_dbg(&client->dev, "\n");
1319 
1320 	return &state->fe;
1321 }
1322 
1323 /* Own I2C access routines needed for regmap as chip uses extra command byte */
1324 static int af9013_wregs(struct i2c_client *client, u8 cmd, u16 reg,
1325 			const u8 *val, int len)
1326 {
1327 	int ret;
1328 	u8 buf[21];
1329 	struct i2c_msg msg[1] = {
1330 		{
1331 			.addr = client->addr,
1332 			.flags = 0,
1333 			.len = 3 + len,
1334 			.buf = buf,
1335 		}
1336 	};
1337 
1338 	if (3 + len > sizeof(buf)) {
1339 		ret = -EINVAL;
1340 		goto err;
1341 	}
1342 
1343 	buf[0] = (reg >> 8) & 0xff;
1344 	buf[1] = (reg >> 0) & 0xff;
1345 	buf[2] = cmd;
1346 	memcpy(&buf[3], val, len);
1347 	ret = i2c_transfer(client->adapter, msg, 1);
1348 	if (ret < 0) {
1349 		goto err;
1350 	} else if (ret != 1) {
1351 		ret = -EREMOTEIO;
1352 		goto err;
1353 	}
1354 
1355 	return 0;
1356 err:
1357 	dev_dbg(&client->dev, "failed %d\n", ret);
1358 	return ret;
1359 }
1360 
1361 static int af9013_rregs(struct i2c_client *client, u8 cmd, u16 reg,
1362 			u8 *val, int len)
1363 {
1364 	int ret;
1365 	u8 buf[3];
1366 	struct i2c_msg msg[2] = {
1367 		{
1368 			.addr = client->addr,
1369 			.flags = 0,
1370 			.len = 3,
1371 			.buf = buf,
1372 		}, {
1373 			.addr = client->addr,
1374 			.flags = I2C_M_RD,
1375 			.len = len,
1376 			.buf = val,
1377 		}
1378 	};
1379 
1380 	buf[0] = (reg >> 8) & 0xff;
1381 	buf[1] = (reg >> 0) & 0xff;
1382 	buf[2] = cmd;
1383 	ret = i2c_transfer(client->adapter, msg, 2);
1384 	if (ret < 0) {
1385 		goto err;
1386 	} else if (ret != 2) {
1387 		ret = -EREMOTEIO;
1388 		goto err;
1389 	}
1390 
1391 	return 0;
1392 err:
1393 	dev_dbg(&client->dev, "failed %d\n", ret);
1394 	return ret;
1395 }
1396 
1397 static int af9013_regmap_write(void *context, const void *data, size_t count)
1398 {
1399 	struct i2c_client *client = context;
1400 	struct af9013_state *state = i2c_get_clientdata(client);
1401 	int ret, i;
1402 	u8 cmd;
1403 	u16 reg = ((u8 *)data)[0] << 8|((u8 *)data)[1] << 0;
1404 	u8 *val = &((u8 *)data)[2];
1405 	const unsigned int len = count - 2;
1406 
1407 	if (state->ts_mode == AF9013_TS_MODE_USB && (reg & 0xff00) != 0xae00) {
1408 		cmd = 0 << 7|0 << 6|(len - 1) << 2|1 << 1|1 << 0;
1409 		ret = af9013_wregs(client, cmd, reg, val, len);
1410 		if (ret)
1411 			goto err;
1412 	} else if (reg >= 0x5100 && reg < 0x8fff) {
1413 		/* Firmware download */
1414 		cmd = 1 << 7|1 << 6|(len - 1) << 2|1 << 1|1 << 0;
1415 		ret = af9013_wregs(client, cmd, reg, val, len);
1416 		if (ret)
1417 			goto err;
1418 	} else {
1419 		cmd = 0 << 7|0 << 6|(1 - 1) << 2|1 << 1|1 << 0;
1420 		for (i = 0; i < len; i++) {
1421 			ret = af9013_wregs(client, cmd, reg + i, val + i, 1);
1422 			if (ret)
1423 				goto err;
1424 		}
1425 	}
1426 
1427 	return 0;
1428 err:
1429 	dev_dbg(&client->dev, "failed %d\n", ret);
1430 	return ret;
1431 }
1432 
1433 static int af9013_regmap_read(void *context, const void *reg_buf,
1434 			      size_t reg_size, void *val_buf, size_t val_size)
1435 {
1436 	struct i2c_client *client = context;
1437 	struct af9013_state *state = i2c_get_clientdata(client);
1438 	int ret, i;
1439 	u8 cmd;
1440 	u16 reg = ((u8 *)reg_buf)[0] << 8|((u8 *)reg_buf)[1] << 0;
1441 	u8 *val = &((u8 *)val_buf)[0];
1442 	const unsigned int len = val_size;
1443 
1444 	if (state->ts_mode == AF9013_TS_MODE_USB && (reg & 0xff00) != 0xae00) {
1445 		cmd = 0 << 7|0 << 6|(len - 1) << 2|1 << 1|0 << 0;
1446 		ret = af9013_rregs(client, cmd, reg, val_buf, len);
1447 		if (ret)
1448 			goto err;
1449 	} else {
1450 		cmd = 0 << 7|0 << 6|(1 - 1) << 2|1 << 1|0 << 0;
1451 		for (i = 0; i < len; i++) {
1452 			ret = af9013_rregs(client, cmd, reg + i, val + i, 1);
1453 			if (ret)
1454 				goto err;
1455 		}
1456 	}
1457 
1458 	return 0;
1459 err:
1460 	dev_dbg(&client->dev, "failed %d\n", ret);
1461 	return ret;
1462 }
1463 
1464 static int af9013_probe(struct i2c_client *client,
1465 			const struct i2c_device_id *id)
1466 {
1467 	struct af9013_state *state;
1468 	struct af9013_platform_data *pdata = client->dev.platform_data;
1469 	struct dtv_frontend_properties *c;
1470 	int ret, i;
1471 	u8 firmware_version[4];
1472 	static const struct regmap_bus regmap_bus = {
1473 		.read = af9013_regmap_read,
1474 		.write = af9013_regmap_write,
1475 	};
1476 	static const struct regmap_config regmap_config = {
1477 		.reg_bits    =  16,
1478 		.val_bits    =  8,
1479 	};
1480 
1481 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1482 	if (!state) {
1483 		ret = -ENOMEM;
1484 		goto err;
1485 	}
1486 
1487 	/* Setup the state */
1488 	state->client = client;
1489 	i2c_set_clientdata(client, state);
1490 	state->clk = pdata->clk;
1491 	state->tuner = pdata->tuner;
1492 	state->if_frequency = pdata->if_frequency;
1493 	state->ts_mode = pdata->ts_mode;
1494 	state->ts_output_pin = pdata->ts_output_pin;
1495 	state->spec_inv = pdata->spec_inv;
1496 	memcpy(&state->api_version, pdata->api_version, sizeof(state->api_version));
1497 	memcpy(&state->gpio, pdata->gpio, sizeof(state->gpio));
1498 	INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1499 	state->regmap = regmap_init(&client->dev, &regmap_bus, client,
1500 				  &regmap_config);
1501 	if (IS_ERR(state->regmap)) {
1502 		ret = PTR_ERR(state->regmap);
1503 		goto err_kfree;
1504 	}
1505 
1506 	/* Download firmware */
1507 	if (state->ts_mode != AF9013_TS_MODE_USB) {
1508 		ret = af9013_download_firmware(state);
1509 		if (ret)
1510 			goto err_regmap_exit;
1511 	}
1512 
1513 	/* Firmware version */
1514 	ret = regmap_bulk_read(state->regmap, 0x5103, firmware_version,
1515 			       sizeof(firmware_version));
1516 	if (ret)
1517 		goto err_regmap_exit;
1518 
1519 	/* Set GPIOs */
1520 	for (i = 0; i < sizeof(state->gpio); i++) {
1521 		ret = af9013_set_gpio(state, i, state->gpio[i]);
1522 		if (ret)
1523 			goto err_regmap_exit;
1524 	}
1525 
1526 	/* Create dvb frontend */
1527 	memcpy(&state->fe.ops, &af9013_ops, sizeof(state->fe.ops));
1528 	if (!pdata->attach_in_use)
1529 		state->fe.ops.release = NULL;
1530 	state->fe.demodulator_priv = state;
1531 
1532 	/* Setup callbacks */
1533 	pdata->get_dvb_frontend = af9013_get_dvb_frontend;
1534 
1535 	/* Init stats to indicate which stats are supported */
1536 	c = &state->fe.dtv_property_cache;
1537 	c->cnr.len = 1;
1538 
1539 	dev_info(&client->dev, "Afatech AF9013 successfully attached\n");
1540 	dev_info(&client->dev, "firmware version: %d.%d.%d.%d\n",
1541 		 firmware_version[0], firmware_version[1],
1542 		 firmware_version[2], firmware_version[3]);
1543 	return 0;
1544 err_regmap_exit:
1545 	regmap_exit(state->regmap);
1546 err_kfree:
1547 	kfree(state);
1548 err:
1549 	dev_dbg(&client->dev, "failed %d\n", ret);
1550 	return ret;
1551 }
1552 
1553 static int af9013_remove(struct i2c_client *client)
1554 {
1555 	struct af9013_state *state = i2c_get_clientdata(client);
1556 
1557 	dev_dbg(&client->dev, "\n");
1558 
1559 	/* Stop statistics polling */
1560 	cancel_delayed_work_sync(&state->statistics_work);
1561 
1562 	regmap_exit(state->regmap);
1563 
1564 	kfree(state);
1565 
1566 	return 0;
1567 }
1568 
1569 static const struct i2c_device_id af9013_id_table[] = {
1570 	{"af9013", 0},
1571 	{}
1572 };
1573 MODULE_DEVICE_TABLE(i2c, af9013_id_table);
1574 
1575 static struct i2c_driver af9013_driver = {
1576 	.driver = {
1577 		.name	= "af9013",
1578 		.suppress_bind_attrs = true,
1579 	},
1580 	.probe		= af9013_probe,
1581 	.remove		= af9013_remove,
1582 	.id_table	= af9013_id_table,
1583 };
1584 
1585 module_i2c_driver(af9013_driver);
1586 
1587 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1588 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1589 MODULE_LICENSE("GPL");
1590 MODULE_FIRMWARE(AF9013_FIRMWARE);
1591