1 /* 2 * Afatech AF9013 demodulator driver 3 * 4 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi> 5 * Copyright (C) 2011 Antti Palosaari <crope@iki.fi> 6 * 7 * Thanks to Afatech who kindly provided information. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 */ 20 21 #include "af9013_priv.h" 22 23 struct af9013_state { 24 struct i2c_client *client; 25 struct regmap *regmap; 26 struct dvb_frontend fe; 27 u32 clk; 28 u8 tuner; 29 u32 if_frequency; 30 u8 ts_mode; 31 u8 ts_output_pin; 32 bool spec_inv; 33 u8 api_version[4]; 34 u8 gpio[4]; 35 36 u32 bandwidth_hz; 37 enum fe_status fe_status; 38 /* RF and IF AGC limits used for signal strength calc */ 39 u8 strength_en, rf_agc_50, rf_agc_80, if_agc_50, if_agc_80; 40 unsigned long set_frontend_jiffies; 41 unsigned long read_status_jiffies; 42 unsigned long strength_jiffies; 43 unsigned long cnr_jiffies; 44 unsigned long ber_ucb_jiffies; 45 u16 dvbv3_snr; 46 u16 dvbv3_strength; 47 u32 dvbv3_ber; 48 u32 dvbv3_ucblocks; 49 bool first_tune; 50 bool i2c_gate_state; 51 }; 52 53 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval) 54 { 55 struct i2c_client *client = state->client; 56 int ret; 57 u8 pos; 58 u16 addr; 59 60 dev_dbg(&client->dev, "gpio %u, gpioval %02x\n", gpio, gpioval); 61 62 /* 63 * GPIO0 & GPIO1 0xd735 64 * GPIO2 & GPIO3 0xd736 65 */ 66 67 switch (gpio) { 68 case 0: 69 case 1: 70 addr = 0xd735; 71 break; 72 case 2: 73 case 3: 74 addr = 0xd736; 75 break; 76 77 default: 78 ret = -EINVAL; 79 goto err; 80 } 81 82 switch (gpio) { 83 case 0: 84 case 2: 85 pos = 0; 86 break; 87 case 1: 88 case 3: 89 default: 90 pos = 4; 91 break; 92 } 93 94 ret = regmap_update_bits(state->regmap, addr, 0x0f << pos, 95 gpioval << pos); 96 if (ret) 97 goto err; 98 99 return 0; 100 err: 101 dev_dbg(&client->dev, "failed %d\n", ret); 102 return ret; 103 } 104 105 static int af9013_get_tune_settings(struct dvb_frontend *fe, 106 struct dvb_frontend_tune_settings *fesettings) 107 { 108 fesettings->min_delay_ms = 800; 109 fesettings->step_size = 0; 110 fesettings->max_drift = 0; 111 112 return 0; 113 } 114 115 static int af9013_set_frontend(struct dvb_frontend *fe) 116 { 117 struct af9013_state *state = fe->demodulator_priv; 118 struct i2c_client *client = state->client; 119 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 120 int ret, i, sampling_freq; 121 bool auto_mode, spec_inv; 122 u8 buf[6]; 123 u32 if_frequency, freq_cw; 124 125 dev_dbg(&client->dev, "frequency %u, bandwidth_hz %u\n", 126 c->frequency, c->bandwidth_hz); 127 128 /* program tuner */ 129 if (fe->ops.tuner_ops.set_params) { 130 ret = fe->ops.tuner_ops.set_params(fe); 131 if (ret) 132 goto err; 133 } 134 135 /* program CFOE coefficients */ 136 if (c->bandwidth_hz != state->bandwidth_hz) { 137 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) { 138 if (coeff_lut[i].clock == state->clk && 139 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) { 140 break; 141 } 142 } 143 144 /* Return an error if can't find bandwidth or the right clock */ 145 if (i == ARRAY_SIZE(coeff_lut)) { 146 ret = -EINVAL; 147 goto err; 148 } 149 150 ret = regmap_bulk_write(state->regmap, 0xae00, coeff_lut[i].val, 151 sizeof(coeff_lut[i].val)); 152 if (ret) 153 goto err; 154 } 155 156 /* program frequency control */ 157 if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) { 158 /* get used IF frequency */ 159 if (fe->ops.tuner_ops.get_if_frequency) { 160 ret = fe->ops.tuner_ops.get_if_frequency(fe, 161 &if_frequency); 162 if (ret) 163 goto err; 164 } else { 165 if_frequency = state->if_frequency; 166 } 167 168 dev_dbg(&client->dev, "if_frequency %u\n", if_frequency); 169 170 sampling_freq = if_frequency; 171 172 while (sampling_freq > (state->clk / 2)) 173 sampling_freq -= state->clk; 174 175 if (sampling_freq < 0) { 176 sampling_freq *= -1; 177 spec_inv = state->spec_inv; 178 } else { 179 spec_inv = !state->spec_inv; 180 } 181 182 freq_cw = DIV_ROUND_CLOSEST_ULL((u64)sampling_freq * 0x800000, 183 state->clk); 184 185 if (spec_inv) 186 freq_cw = 0x800000 - freq_cw; 187 188 buf[0] = (freq_cw >> 0) & 0xff; 189 buf[1] = (freq_cw >> 8) & 0xff; 190 buf[2] = (freq_cw >> 16) & 0x7f; 191 192 freq_cw = 0x800000 - freq_cw; 193 194 buf[3] = (freq_cw >> 0) & 0xff; 195 buf[4] = (freq_cw >> 8) & 0xff; 196 buf[5] = (freq_cw >> 16) & 0x7f; 197 198 ret = regmap_bulk_write(state->regmap, 0xd140, buf, 3); 199 if (ret) 200 goto err; 201 202 ret = regmap_bulk_write(state->regmap, 0x9be7, buf, 6); 203 if (ret) 204 goto err; 205 } 206 207 /* clear TPS lock flag */ 208 ret = regmap_update_bits(state->regmap, 0xd330, 0x08, 0x08); 209 if (ret) 210 goto err; 211 212 /* clear MPEG2 lock flag */ 213 ret = regmap_update_bits(state->regmap, 0xd507, 0x40, 0x00); 214 if (ret) 215 goto err; 216 217 /* empty channel function */ 218 ret = regmap_update_bits(state->regmap, 0x9bfe, 0x01, 0x00); 219 if (ret) 220 goto err; 221 222 /* empty DVB-T channel function */ 223 ret = regmap_update_bits(state->regmap, 0x9bc2, 0x01, 0x00); 224 if (ret) 225 goto err; 226 227 /* transmission parameters */ 228 auto_mode = false; 229 memset(buf, 0, 3); 230 231 switch (c->transmission_mode) { 232 case TRANSMISSION_MODE_AUTO: 233 auto_mode = true; 234 break; 235 case TRANSMISSION_MODE_2K: 236 break; 237 case TRANSMISSION_MODE_8K: 238 buf[0] |= (1 << 0); 239 break; 240 default: 241 dev_dbg(&client->dev, "invalid transmission_mode\n"); 242 auto_mode = true; 243 } 244 245 switch (c->guard_interval) { 246 case GUARD_INTERVAL_AUTO: 247 auto_mode = true; 248 break; 249 case GUARD_INTERVAL_1_32: 250 break; 251 case GUARD_INTERVAL_1_16: 252 buf[0] |= (1 << 2); 253 break; 254 case GUARD_INTERVAL_1_8: 255 buf[0] |= (2 << 2); 256 break; 257 case GUARD_INTERVAL_1_4: 258 buf[0] |= (3 << 2); 259 break; 260 default: 261 dev_dbg(&client->dev, "invalid guard_interval\n"); 262 auto_mode = true; 263 } 264 265 switch (c->hierarchy) { 266 case HIERARCHY_AUTO: 267 auto_mode = true; 268 break; 269 case HIERARCHY_NONE: 270 break; 271 case HIERARCHY_1: 272 buf[0] |= (1 << 4); 273 break; 274 case HIERARCHY_2: 275 buf[0] |= (2 << 4); 276 break; 277 case HIERARCHY_4: 278 buf[0] |= (3 << 4); 279 break; 280 default: 281 dev_dbg(&client->dev, "invalid hierarchy\n"); 282 auto_mode = true; 283 } 284 285 switch (c->modulation) { 286 case QAM_AUTO: 287 auto_mode = true; 288 break; 289 case QPSK: 290 break; 291 case QAM_16: 292 buf[1] |= (1 << 6); 293 break; 294 case QAM_64: 295 buf[1] |= (2 << 6); 296 break; 297 default: 298 dev_dbg(&client->dev, "invalid modulation\n"); 299 auto_mode = true; 300 } 301 302 /* Use HP. How and which case we can switch to LP? */ 303 buf[1] |= (1 << 4); 304 305 switch (c->code_rate_HP) { 306 case FEC_AUTO: 307 auto_mode = true; 308 break; 309 case FEC_1_2: 310 break; 311 case FEC_2_3: 312 buf[2] |= (1 << 0); 313 break; 314 case FEC_3_4: 315 buf[2] |= (2 << 0); 316 break; 317 case FEC_5_6: 318 buf[2] |= (3 << 0); 319 break; 320 case FEC_7_8: 321 buf[2] |= (4 << 0); 322 break; 323 default: 324 dev_dbg(&client->dev, "invalid code_rate_HP\n"); 325 auto_mode = true; 326 } 327 328 switch (c->code_rate_LP) { 329 case FEC_AUTO: 330 auto_mode = true; 331 break; 332 case FEC_1_2: 333 break; 334 case FEC_2_3: 335 buf[2] |= (1 << 3); 336 break; 337 case FEC_3_4: 338 buf[2] |= (2 << 3); 339 break; 340 case FEC_5_6: 341 buf[2] |= (3 << 3); 342 break; 343 case FEC_7_8: 344 buf[2] |= (4 << 3); 345 break; 346 case FEC_NONE: 347 break; 348 default: 349 dev_dbg(&client->dev, "invalid code_rate_LP\n"); 350 auto_mode = true; 351 } 352 353 switch (c->bandwidth_hz) { 354 case 6000000: 355 break; 356 case 7000000: 357 buf[1] |= (1 << 2); 358 break; 359 case 8000000: 360 buf[1] |= (2 << 2); 361 break; 362 default: 363 dev_dbg(&client->dev, "invalid bandwidth_hz\n"); 364 ret = -EINVAL; 365 goto err; 366 } 367 368 ret = regmap_bulk_write(state->regmap, 0xd3c0, buf, 3); 369 if (ret) 370 goto err; 371 372 if (auto_mode) { 373 /* clear easy mode flag */ 374 ret = regmap_write(state->regmap, 0xaefd, 0x00); 375 if (ret) 376 goto err; 377 378 dev_dbg(&client->dev, "auto params\n"); 379 } else { 380 /* set easy mode flag */ 381 ret = regmap_write(state->regmap, 0xaefd, 0x01); 382 if (ret) 383 goto err; 384 385 ret = regmap_write(state->regmap, 0xaefe, 0x00); 386 if (ret) 387 goto err; 388 389 dev_dbg(&client->dev, "manual params\n"); 390 } 391 392 /* Reset FSM */ 393 ret = regmap_write(state->regmap, 0xffff, 0x00); 394 if (ret) 395 goto err; 396 397 state->bandwidth_hz = c->bandwidth_hz; 398 state->set_frontend_jiffies = jiffies; 399 state->first_tune = false; 400 401 return 0; 402 err: 403 dev_dbg(&client->dev, "failed %d\n", ret); 404 return ret; 405 } 406 407 static int af9013_get_frontend(struct dvb_frontend *fe, 408 struct dtv_frontend_properties *c) 409 { 410 struct af9013_state *state = fe->demodulator_priv; 411 struct i2c_client *client = state->client; 412 int ret; 413 u8 buf[3]; 414 415 dev_dbg(&client->dev, "\n"); 416 417 ret = regmap_bulk_read(state->regmap, 0xd3c0, buf, 3); 418 if (ret) 419 goto err; 420 421 switch ((buf[1] >> 6) & 3) { 422 case 0: 423 c->modulation = QPSK; 424 break; 425 case 1: 426 c->modulation = QAM_16; 427 break; 428 case 2: 429 c->modulation = QAM_64; 430 break; 431 } 432 433 switch ((buf[0] >> 0) & 3) { 434 case 0: 435 c->transmission_mode = TRANSMISSION_MODE_2K; 436 break; 437 case 1: 438 c->transmission_mode = TRANSMISSION_MODE_8K; 439 } 440 441 switch ((buf[0] >> 2) & 3) { 442 case 0: 443 c->guard_interval = GUARD_INTERVAL_1_32; 444 break; 445 case 1: 446 c->guard_interval = GUARD_INTERVAL_1_16; 447 break; 448 case 2: 449 c->guard_interval = GUARD_INTERVAL_1_8; 450 break; 451 case 3: 452 c->guard_interval = GUARD_INTERVAL_1_4; 453 break; 454 } 455 456 switch ((buf[0] >> 4) & 7) { 457 case 0: 458 c->hierarchy = HIERARCHY_NONE; 459 break; 460 case 1: 461 c->hierarchy = HIERARCHY_1; 462 break; 463 case 2: 464 c->hierarchy = HIERARCHY_2; 465 break; 466 case 3: 467 c->hierarchy = HIERARCHY_4; 468 break; 469 } 470 471 switch ((buf[2] >> 0) & 7) { 472 case 0: 473 c->code_rate_HP = FEC_1_2; 474 break; 475 case 1: 476 c->code_rate_HP = FEC_2_3; 477 break; 478 case 2: 479 c->code_rate_HP = FEC_3_4; 480 break; 481 case 3: 482 c->code_rate_HP = FEC_5_6; 483 break; 484 case 4: 485 c->code_rate_HP = FEC_7_8; 486 break; 487 } 488 489 switch ((buf[2] >> 3) & 7) { 490 case 0: 491 c->code_rate_LP = FEC_1_2; 492 break; 493 case 1: 494 c->code_rate_LP = FEC_2_3; 495 break; 496 case 2: 497 c->code_rate_LP = FEC_3_4; 498 break; 499 case 3: 500 c->code_rate_LP = FEC_5_6; 501 break; 502 case 4: 503 c->code_rate_LP = FEC_7_8; 504 break; 505 } 506 507 switch ((buf[1] >> 2) & 3) { 508 case 0: 509 c->bandwidth_hz = 6000000; 510 break; 511 case 1: 512 c->bandwidth_hz = 7000000; 513 break; 514 case 2: 515 c->bandwidth_hz = 8000000; 516 break; 517 } 518 519 return 0; 520 err: 521 dev_dbg(&client->dev, "failed %d\n", ret); 522 return ret; 523 } 524 525 static int af9013_read_status(struct dvb_frontend *fe, enum fe_status *status) 526 { 527 struct af9013_state *state = fe->demodulator_priv; 528 struct i2c_client *client = state->client; 529 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 530 int ret, stmp1; 531 unsigned int utmp, utmp1, utmp2, utmp3, utmp4; 532 u8 buf[7]; 533 534 dev_dbg(&client->dev, "\n"); 535 536 /* 537 * Return status from the cache if it is younger than 2000ms with the 538 * exception of last tune is done during 4000ms. 539 */ 540 if (time_is_after_jiffies(state->read_status_jiffies + msecs_to_jiffies(2000)) && 541 time_is_before_jiffies(state->set_frontend_jiffies + msecs_to_jiffies(4000))) { 542 *status = state->fe_status; 543 } else { 544 /* MPEG2 lock */ 545 ret = regmap_read(state->regmap, 0xd507, &utmp); 546 if (ret) 547 goto err; 548 549 if ((utmp >> 6) & 0x01) { 550 utmp1 = FE_HAS_SIGNAL | FE_HAS_CARRIER | 551 FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; 552 } else { 553 /* TPS lock */ 554 ret = regmap_read(state->regmap, 0xd330, &utmp); 555 if (ret) 556 goto err; 557 558 if ((utmp >> 3) & 0x01) 559 utmp1 = FE_HAS_SIGNAL | FE_HAS_CARRIER | 560 FE_HAS_VITERBI; 561 else 562 utmp1 = 0; 563 } 564 565 dev_dbg(&client->dev, "fe_status %02x\n", utmp1); 566 567 state->read_status_jiffies = jiffies; 568 569 state->fe_status = utmp1; 570 *status = utmp1; 571 } 572 573 /* Signal strength */ 574 switch (state->strength_en) { 575 case 0: 576 /* Check if we support signal strength */ 577 ret = regmap_read(state->regmap, 0x9bee, &utmp); 578 if (ret) 579 goto err; 580 581 if ((utmp >> 0) & 0x01) { 582 /* Read agc values for signal strength estimation */ 583 ret = regmap_read(state->regmap, 0x9bbd, &utmp1); 584 if (ret) 585 goto err; 586 ret = regmap_read(state->regmap, 0x9bd0, &utmp2); 587 if (ret) 588 goto err; 589 ret = regmap_read(state->regmap, 0x9be2, &utmp3); 590 if (ret) 591 goto err; 592 ret = regmap_read(state->regmap, 0x9be4, &utmp4); 593 if (ret) 594 goto err; 595 596 state->rf_agc_50 = utmp1; 597 state->rf_agc_80 = utmp2; 598 state->if_agc_50 = utmp3; 599 state->if_agc_80 = utmp4; 600 dev_dbg(&client->dev, 601 "rf_agc_50 %u, rf_agc_80 %u, if_agc_50 %u, if_agc_80 %u\n", 602 utmp1, utmp2, utmp3, utmp4); 603 604 state->strength_en = 1; 605 } else { 606 /* Signal strength is not supported */ 607 state->strength_en = 2; 608 break; 609 } 610 /* Fall through */ 611 case 1: 612 if (time_is_after_jiffies(state->strength_jiffies + msecs_to_jiffies(2000))) 613 break; 614 615 /* Read value */ 616 ret = regmap_bulk_read(state->regmap, 0xd07c, buf, 2); 617 if (ret) 618 goto err; 619 620 /* 621 * Construct line equation from tuner dependent -80/-50 dBm agc 622 * limits and use it to map current agc value to dBm estimate 623 */ 624 #define agc_gain (buf[0] + buf[1]) 625 #define agc_gain_50dbm (state->rf_agc_50 + state->if_agc_50) 626 #define agc_gain_80dbm (state->rf_agc_80 + state->if_agc_80) 627 stmp1 = 30000 * (agc_gain - agc_gain_80dbm) / 628 (agc_gain_50dbm - agc_gain_80dbm) - 80000; 629 630 dev_dbg(&client->dev, 631 "strength %d, agc_gain %d, agc_gain_50dbm %d, agc_gain_80dbm %d\n", 632 stmp1, agc_gain, agc_gain_50dbm, agc_gain_80dbm); 633 634 state->strength_jiffies = jiffies; 635 /* Convert [-90, -30] dBm to [0x0000, 0xffff] for dvbv3 */ 636 utmp1 = clamp(stmp1 + 90000, 0, 60000); 637 state->dvbv3_strength = div_u64((u64)utmp1 * 0xffff, 60000); 638 639 c->strength.stat[0].scale = FE_SCALE_DECIBEL; 640 c->strength.stat[0].svalue = stmp1; 641 break; 642 default: 643 c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 644 break; 645 } 646 647 /* CNR */ 648 switch (state->fe_status & FE_HAS_VITERBI) { 649 case FE_HAS_VITERBI: 650 if (time_is_after_jiffies(state->cnr_jiffies + msecs_to_jiffies(2000))) 651 break; 652 653 /* Check if cnr ready */ 654 ret = regmap_read(state->regmap, 0xd2e1, &utmp); 655 if (ret) 656 goto err; 657 658 if (!((utmp >> 3) & 0x01)) { 659 dev_dbg(&client->dev, "cnr not ready\n"); 660 break; 661 } 662 663 /* Read value */ 664 ret = regmap_bulk_read(state->regmap, 0xd2e3, buf, 3); 665 if (ret) 666 goto err; 667 668 utmp1 = buf[2] << 16 | buf[1] << 8 | buf[0] << 0; 669 670 /* Read current modulation */ 671 ret = regmap_read(state->regmap, 0xd3c1, &utmp); 672 if (ret) 673 goto err; 674 675 switch ((utmp >> 6) & 3) { 676 case 0: 677 /* 678 * QPSK 679 * CNR[dB] 13 * -log10((1690000 - value) / value) + 2.6 680 * value [653799, 1689999], 2.6 / 13 = 3355443 681 */ 682 utmp1 = clamp(utmp1, 653799U, 1689999U); 683 utmp1 = ((u64)(intlog10(utmp1) 684 - intlog10(1690000 - utmp1) 685 + 3355443) * 13 * 1000) >> 24; 686 break; 687 case 1: 688 /* 689 * QAM-16 690 * CNR[dB] 6 * log10((value - 370000) / (828000 - value)) + 15.7 691 * value [371105, 827999], 15.7 / 6 = 43900382 692 */ 693 utmp1 = clamp(utmp1, 371105U, 827999U); 694 utmp1 = ((u64)(intlog10(utmp1 - 370000) 695 - intlog10(828000 - utmp1) 696 + 43900382) * 6 * 1000) >> 24; 697 break; 698 case 2: 699 /* 700 * QAM-64 701 * CNR[dB] 8 * log10((value - 193000) / (425000 - value)) + 23.8 702 * value [193246, 424999], 23.8 / 8 = 49912218 703 */ 704 utmp1 = clamp(utmp1, 193246U, 424999U); 705 utmp1 = ((u64)(intlog10(utmp1 - 193000) 706 - intlog10(425000 - utmp1) 707 + 49912218) * 8 * 1000) >> 24; 708 break; 709 default: 710 dev_dbg(&client->dev, "invalid modulation %u\n", 711 (utmp >> 6) & 3); 712 utmp1 = 0; 713 break; 714 } 715 716 dev_dbg(&client->dev, "cnr %u\n", utmp1); 717 718 state->cnr_jiffies = jiffies; 719 state->dvbv3_snr = utmp1 / 100; 720 721 c->cnr.stat[0].scale = FE_SCALE_DECIBEL; 722 c->cnr.stat[0].svalue = utmp1; 723 break; 724 default: 725 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 726 break; 727 } 728 729 /* BER / PER */ 730 switch (state->fe_status & FE_HAS_SYNC) { 731 case FE_HAS_SYNC: 732 if (time_is_after_jiffies(state->ber_ucb_jiffies + msecs_to_jiffies(2000))) 733 break; 734 735 /* Check if ber / ucb is ready */ 736 ret = regmap_read(state->regmap, 0xd391, &utmp); 737 if (ret) 738 goto err; 739 740 if (!((utmp >> 4) & 0x01)) { 741 dev_dbg(&client->dev, "ber not ready\n"); 742 break; 743 } 744 745 /* Read value */ 746 ret = regmap_bulk_read(state->regmap, 0xd385, buf, 7); 747 if (ret) 748 goto err; 749 750 utmp1 = buf[4] << 16 | buf[3] << 8 | buf[2] << 0; 751 utmp2 = (buf[1] << 8 | buf[0] << 0) * 204 * 8; 752 utmp3 = buf[6] << 8 | buf[5] << 0; 753 utmp4 = buf[1] << 8 | buf[0] << 0; 754 755 /* Use 10000 TS packets for measure */ 756 if (utmp4 != 10000) { 757 buf[0] = (10000 >> 0) & 0xff; 758 buf[1] = (10000 >> 8) & 0xff; 759 ret = regmap_bulk_write(state->regmap, 0xd385, buf, 2); 760 if (ret) 761 goto err; 762 } 763 764 /* Reset ber / ucb counter */ 765 ret = regmap_update_bits(state->regmap, 0xd391, 0x20, 0x20); 766 if (ret) 767 goto err; 768 769 dev_dbg(&client->dev, "post_bit_error %u, post_bit_count %u\n", 770 utmp1, utmp2); 771 dev_dbg(&client->dev, "block_error %u, block_count %u\n", 772 utmp3, utmp4); 773 774 state->ber_ucb_jiffies = jiffies; 775 state->dvbv3_ber = utmp1; 776 state->dvbv3_ucblocks += utmp3; 777 778 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; 779 c->post_bit_error.stat[0].uvalue += utmp1; 780 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; 781 c->post_bit_count.stat[0].uvalue += utmp2; 782 783 c->block_error.stat[0].scale = FE_SCALE_COUNTER; 784 c->block_error.stat[0].uvalue += utmp3; 785 c->block_count.stat[0].scale = FE_SCALE_COUNTER; 786 c->block_count.stat[0].uvalue += utmp4; 787 break; 788 default: 789 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 790 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 791 792 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 793 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; 794 break; 795 } 796 797 return 0; 798 err: 799 dev_dbg(&client->dev, "failed %d\n", ret); 800 return ret; 801 } 802 803 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr) 804 { 805 struct af9013_state *state = fe->demodulator_priv; 806 807 *snr = state->dvbv3_snr; 808 809 return 0; 810 } 811 812 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength) 813 { 814 struct af9013_state *state = fe->demodulator_priv; 815 816 *strength = state->dvbv3_strength; 817 818 return 0; 819 } 820 821 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber) 822 { 823 struct af9013_state *state = fe->demodulator_priv; 824 825 *ber = state->dvbv3_ber; 826 827 return 0; 828 } 829 830 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) 831 { 832 struct af9013_state *state = fe->demodulator_priv; 833 834 *ucblocks = state->dvbv3_ucblocks; 835 836 return 0; 837 } 838 839 static int af9013_init(struct dvb_frontend *fe) 840 { 841 struct af9013_state *state = fe->demodulator_priv; 842 struct i2c_client *client = state->client; 843 int ret, i, len; 844 unsigned int utmp; 845 u8 buf[3]; 846 const struct af9013_reg_mask_val *tab; 847 848 dev_dbg(&client->dev, "\n"); 849 850 /* ADC on */ 851 ret = regmap_update_bits(state->regmap, 0xd73a, 0x08, 0x00); 852 if (ret) 853 goto err; 854 855 /* Clear reset */ 856 ret = regmap_update_bits(state->regmap, 0xd417, 0x02, 0x00); 857 if (ret) 858 goto err; 859 860 /* Disable reset */ 861 ret = regmap_update_bits(state->regmap, 0xd417, 0x10, 0x00); 862 if (ret) 863 goto err; 864 865 /* write API version to firmware */ 866 ret = regmap_bulk_write(state->regmap, 0x9bf2, state->api_version, 4); 867 if (ret) 868 goto err; 869 870 /* program ADC control */ 871 switch (state->clk) { 872 case 28800000: /* 28.800 MHz */ 873 utmp = 0; 874 break; 875 case 20480000: /* 20.480 MHz */ 876 utmp = 1; 877 break; 878 case 28000000: /* 28.000 MHz */ 879 utmp = 2; 880 break; 881 case 25000000: /* 25.000 MHz */ 882 utmp = 3; 883 break; 884 default: 885 ret = -EINVAL; 886 goto err; 887 } 888 889 ret = regmap_update_bits(state->regmap, 0x9bd2, 0x0f, utmp); 890 if (ret) 891 goto err; 892 893 utmp = div_u64((u64)state->clk * 0x80000, 1000000); 894 buf[0] = (utmp >> 0) & 0xff; 895 buf[1] = (utmp >> 8) & 0xff; 896 buf[2] = (utmp >> 16) & 0xff; 897 ret = regmap_bulk_write(state->regmap, 0xd180, buf, 3); 898 if (ret) 899 goto err; 900 901 /* Demod core settings */ 902 dev_dbg(&client->dev, "load demod core settings\n"); 903 len = ARRAY_SIZE(demod_init_tab); 904 tab = demod_init_tab; 905 for (i = 0; i < len; i++) { 906 ret = regmap_update_bits(state->regmap, tab[i].reg, tab[i].mask, 907 tab[i].val); 908 if (ret) 909 goto err; 910 } 911 912 /* Demod tuner specific settings */ 913 dev_dbg(&client->dev, "load tuner specific settings\n"); 914 switch (state->tuner) { 915 case AF9013_TUNER_MXL5003D: 916 len = ARRAY_SIZE(tuner_init_tab_mxl5003d); 917 tab = tuner_init_tab_mxl5003d; 918 break; 919 case AF9013_TUNER_MXL5005D: 920 case AF9013_TUNER_MXL5005R: 921 case AF9013_TUNER_MXL5007T: 922 len = ARRAY_SIZE(tuner_init_tab_mxl5005); 923 tab = tuner_init_tab_mxl5005; 924 break; 925 case AF9013_TUNER_ENV77H11D5: 926 len = ARRAY_SIZE(tuner_init_tab_env77h11d5); 927 tab = tuner_init_tab_env77h11d5; 928 break; 929 case AF9013_TUNER_MT2060: 930 len = ARRAY_SIZE(tuner_init_tab_mt2060); 931 tab = tuner_init_tab_mt2060; 932 break; 933 case AF9013_TUNER_MC44S803: 934 len = ARRAY_SIZE(tuner_init_tab_mc44s803); 935 tab = tuner_init_tab_mc44s803; 936 break; 937 case AF9013_TUNER_QT1010: 938 case AF9013_TUNER_QT1010A: 939 len = ARRAY_SIZE(tuner_init_tab_qt1010); 940 tab = tuner_init_tab_qt1010; 941 break; 942 case AF9013_TUNER_MT2060_2: 943 len = ARRAY_SIZE(tuner_init_tab_mt2060_2); 944 tab = tuner_init_tab_mt2060_2; 945 break; 946 case AF9013_TUNER_TDA18271: 947 case AF9013_TUNER_TDA18218: 948 len = ARRAY_SIZE(tuner_init_tab_tda18271); 949 tab = tuner_init_tab_tda18271; 950 break; 951 case AF9013_TUNER_UNKNOWN: 952 default: 953 len = ARRAY_SIZE(tuner_init_tab_unknown); 954 tab = tuner_init_tab_unknown; 955 break; 956 } 957 958 for (i = 0; i < len; i++) { 959 ret = regmap_update_bits(state->regmap, tab[i].reg, tab[i].mask, 960 tab[i].val); 961 if (ret) 962 goto err; 963 } 964 965 /* TS interface */ 966 if (state->ts_output_pin == 7) 967 utmp = 1 << 3 | state->ts_mode << 1; 968 else 969 utmp = 0 << 3 | state->ts_mode << 1; 970 ret = regmap_update_bits(state->regmap, 0xd500, 0x0e, utmp); 971 if (ret) 972 goto err; 973 974 /* enable lock led */ 975 ret = regmap_update_bits(state->regmap, 0xd730, 0x01, 0x01); 976 if (ret) 977 goto err; 978 979 state->first_tune = true; 980 981 return 0; 982 err: 983 dev_dbg(&client->dev, "failed %d\n", ret); 984 return ret; 985 } 986 987 static int af9013_sleep(struct dvb_frontend *fe) 988 { 989 struct af9013_state *state = fe->demodulator_priv; 990 struct i2c_client *client = state->client; 991 int ret; 992 unsigned int utmp; 993 994 dev_dbg(&client->dev, "\n"); 995 996 /* disable lock led */ 997 ret = regmap_update_bits(state->regmap, 0xd730, 0x01, 0x00); 998 if (ret) 999 goto err; 1000 1001 /* Enable reset */ 1002 ret = regmap_update_bits(state->regmap, 0xd417, 0x10, 0x10); 1003 if (ret) 1004 goto err; 1005 1006 /* Start reset execution */ 1007 ret = regmap_write(state->regmap, 0xaeff, 0x01); 1008 if (ret) 1009 goto err; 1010 1011 /* Wait reset performs */ 1012 ret = regmap_read_poll_timeout(state->regmap, 0xd417, utmp, 1013 (utmp >> 1) & 0x01, 5000, 1000000); 1014 if (ret) 1015 goto err; 1016 1017 if (!((utmp >> 1) & 0x01)) { 1018 ret = -ETIMEDOUT; 1019 goto err; 1020 } 1021 1022 /* ADC off */ 1023 ret = regmap_update_bits(state->regmap, 0xd73a, 0x08, 0x08); 1024 if (ret) 1025 goto err; 1026 1027 return 0; 1028 err: 1029 dev_dbg(&client->dev, "failed %d\n", ret); 1030 return ret; 1031 } 1032 1033 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) 1034 { 1035 int ret; 1036 struct af9013_state *state = fe->demodulator_priv; 1037 struct i2c_client *client = state->client; 1038 1039 dev_dbg(&client->dev, "enable %d\n", enable); 1040 1041 /* gate already open or close */ 1042 if (state->i2c_gate_state == enable) 1043 return 0; 1044 1045 if (state->ts_mode == AF9013_TS_MODE_USB) 1046 ret = regmap_update_bits(state->regmap, 0xd417, 0x08, 1047 enable << 3); 1048 else 1049 ret = regmap_update_bits(state->regmap, 0xd607, 0x04, 1050 enable << 2); 1051 if (ret) 1052 goto err; 1053 1054 state->i2c_gate_state = enable; 1055 1056 return 0; 1057 err: 1058 dev_dbg(&client->dev, "failed %d\n", ret); 1059 return ret; 1060 } 1061 1062 static void af9013_release(struct dvb_frontend *fe) 1063 { 1064 struct af9013_state *state = fe->demodulator_priv; 1065 struct i2c_client *client = state->client; 1066 1067 dev_dbg(&client->dev, "\n"); 1068 1069 i2c_unregister_device(client); 1070 } 1071 1072 static const struct dvb_frontend_ops af9013_ops; 1073 1074 static int af9013_download_firmware(struct af9013_state *state) 1075 { 1076 struct i2c_client *client = state->client; 1077 int ret, i, len, rem; 1078 unsigned int utmp; 1079 u8 buf[4]; 1080 u16 checksum = 0; 1081 const struct firmware *firmware; 1082 const char *name = AF9013_FIRMWARE; 1083 1084 dev_dbg(&client->dev, "\n"); 1085 1086 /* Check whether firmware is already running */ 1087 ret = regmap_read(state->regmap, 0x98be, &utmp); 1088 if (ret) 1089 goto err; 1090 1091 dev_dbg(&client->dev, "firmware status %02x\n", utmp); 1092 1093 if (utmp == 0x0c) 1094 return 0; 1095 1096 dev_info(&client->dev, "found a '%s' in cold state, will try to load a firmware\n", 1097 af9013_ops.info.name); 1098 1099 /* Request the firmware, will block and timeout */ 1100 ret = request_firmware(&firmware, name, &client->dev); 1101 if (ret) { 1102 dev_info(&client->dev, "firmware file '%s' not found %d\n", 1103 name, ret); 1104 goto err; 1105 } 1106 1107 dev_info(&client->dev, "downloading firmware from file '%s'\n", 1108 name); 1109 1110 /* Write firmware checksum & size */ 1111 for (i = 0; i < firmware->size; i++) 1112 checksum += firmware->data[i]; 1113 1114 buf[0] = (checksum >> 8) & 0xff; 1115 buf[1] = (checksum >> 0) & 0xff; 1116 buf[2] = (firmware->size >> 8) & 0xff; 1117 buf[3] = (firmware->size >> 0) & 0xff; 1118 ret = regmap_bulk_write(state->regmap, 0x50fc, buf, 4); 1119 if (ret) 1120 goto err_release_firmware; 1121 1122 /* Download firmware */ 1123 #define LEN_MAX 16 1124 for (rem = firmware->size; rem > 0; rem -= LEN_MAX) { 1125 len = min(LEN_MAX, rem); 1126 ret = regmap_bulk_write(state->regmap, 1127 0x5100 + firmware->size - rem, 1128 &firmware->data[firmware->size - rem], 1129 len); 1130 if (ret) { 1131 dev_err(&client->dev, "firmware download failed %d\n", 1132 ret); 1133 goto err_release_firmware; 1134 } 1135 } 1136 1137 release_firmware(firmware); 1138 1139 /* Boot firmware */ 1140 ret = regmap_write(state->regmap, 0xe205, 0x01); 1141 if (ret) 1142 goto err; 1143 1144 /* Check firmware status. 0c=OK, 04=fail */ 1145 ret = regmap_read_poll_timeout(state->regmap, 0x98be, utmp, 1146 (utmp == 0x0c || utmp == 0x04), 1147 5000, 1000000); 1148 if (ret) 1149 goto err; 1150 1151 dev_dbg(&client->dev, "firmware status %02x\n", utmp); 1152 1153 if (utmp == 0x04) { 1154 ret = -ENODEV; 1155 dev_err(&client->dev, "firmware did not run\n"); 1156 goto err; 1157 } else if (utmp != 0x0c) { 1158 ret = -ENODEV; 1159 dev_err(&client->dev, "firmware boot timeout\n"); 1160 goto err; 1161 } 1162 1163 dev_info(&client->dev, "found a '%s' in warm state\n", 1164 af9013_ops.info.name); 1165 1166 return 0; 1167 err_release_firmware: 1168 release_firmware(firmware); 1169 err: 1170 dev_dbg(&client->dev, "failed %d\n", ret); 1171 return ret; 1172 } 1173 1174 /* 1175 * XXX: That is wrapper to af9013_probe() via driver core in order to provide 1176 * proper I2C client for legacy media attach binding. 1177 * New users must use I2C client binding directly! 1178 */ 1179 struct dvb_frontend *af9013_attach(const struct af9013_config *config, 1180 struct i2c_adapter *i2c) 1181 { 1182 struct i2c_client *client; 1183 struct i2c_board_info board_info; 1184 struct af9013_platform_data pdata; 1185 1186 pdata.clk = config->clock; 1187 pdata.tuner = config->tuner; 1188 pdata.if_frequency = config->if_frequency; 1189 pdata.ts_mode = config->ts_mode; 1190 pdata.ts_output_pin = 7; 1191 pdata.spec_inv = config->spec_inv; 1192 memcpy(&pdata.api_version, config->api_version, sizeof(pdata.api_version)); 1193 memcpy(&pdata.gpio, config->gpio, sizeof(pdata.gpio)); 1194 pdata.attach_in_use = true; 1195 1196 memset(&board_info, 0, sizeof(board_info)); 1197 strlcpy(board_info.type, "af9013", sizeof(board_info.type)); 1198 board_info.addr = config->i2c_addr; 1199 board_info.platform_data = &pdata; 1200 client = i2c_new_device(i2c, &board_info); 1201 if (!client || !client->dev.driver) 1202 return NULL; 1203 1204 return pdata.get_dvb_frontend(client); 1205 } 1206 EXPORT_SYMBOL(af9013_attach); 1207 1208 static const struct dvb_frontend_ops af9013_ops = { 1209 .delsys = { SYS_DVBT }, 1210 .info = { 1211 .name = "Afatech AF9013", 1212 .frequency_min = 174000000, 1213 .frequency_max = 862000000, 1214 .frequency_stepsize = 250000, 1215 .frequency_tolerance = 0, 1216 .caps = FE_CAN_FEC_1_2 | 1217 FE_CAN_FEC_2_3 | 1218 FE_CAN_FEC_3_4 | 1219 FE_CAN_FEC_5_6 | 1220 FE_CAN_FEC_7_8 | 1221 FE_CAN_FEC_AUTO | 1222 FE_CAN_QPSK | 1223 FE_CAN_QAM_16 | 1224 FE_CAN_QAM_64 | 1225 FE_CAN_QAM_AUTO | 1226 FE_CAN_TRANSMISSION_MODE_AUTO | 1227 FE_CAN_GUARD_INTERVAL_AUTO | 1228 FE_CAN_HIERARCHY_AUTO | 1229 FE_CAN_RECOVER | 1230 FE_CAN_MUTE_TS 1231 }, 1232 1233 .release = af9013_release, 1234 1235 .init = af9013_init, 1236 .sleep = af9013_sleep, 1237 1238 .get_tune_settings = af9013_get_tune_settings, 1239 .set_frontend = af9013_set_frontend, 1240 .get_frontend = af9013_get_frontend, 1241 1242 .read_status = af9013_read_status, 1243 .read_snr = af9013_read_snr, 1244 .read_signal_strength = af9013_read_signal_strength, 1245 .read_ber = af9013_read_ber, 1246 .read_ucblocks = af9013_read_ucblocks, 1247 1248 .i2c_gate_ctrl = af9013_i2c_gate_ctrl, 1249 }; 1250 1251 static struct dvb_frontend *af9013_get_dvb_frontend(struct i2c_client *client) 1252 { 1253 struct af9013_state *state = i2c_get_clientdata(client); 1254 1255 dev_dbg(&client->dev, "\n"); 1256 1257 return &state->fe; 1258 } 1259 1260 /* Own I2C access routines needed for regmap as chip uses extra command byte */ 1261 static int af9013_wregs(struct i2c_client *client, u8 cmd, u16 reg, 1262 const u8 *val, int len) 1263 { 1264 int ret; 1265 u8 buf[21]; 1266 struct i2c_msg msg[1] = { 1267 { 1268 .addr = client->addr, 1269 .flags = 0, 1270 .len = 3 + len, 1271 .buf = buf, 1272 } 1273 }; 1274 1275 if (3 + len > sizeof(buf)) { 1276 ret = -EINVAL; 1277 goto err; 1278 } 1279 1280 buf[0] = (reg >> 8) & 0xff; 1281 buf[1] = (reg >> 0) & 0xff; 1282 buf[2] = cmd; 1283 memcpy(&buf[3], val, len); 1284 ret = i2c_transfer(client->adapter, msg, 1); 1285 if (ret < 0) { 1286 goto err; 1287 } else if (ret != 1) { 1288 ret = -EREMOTEIO; 1289 goto err; 1290 } 1291 1292 return 0; 1293 err: 1294 dev_dbg(&client->dev, "failed %d\n", ret); 1295 return ret; 1296 } 1297 1298 static int af9013_rregs(struct i2c_client *client, u8 cmd, u16 reg, 1299 u8 *val, int len) 1300 { 1301 int ret; 1302 u8 buf[3]; 1303 struct i2c_msg msg[2] = { 1304 { 1305 .addr = client->addr, 1306 .flags = 0, 1307 .len = 3, 1308 .buf = buf, 1309 }, { 1310 .addr = client->addr, 1311 .flags = I2C_M_RD, 1312 .len = len, 1313 .buf = val, 1314 } 1315 }; 1316 1317 buf[0] = (reg >> 8) & 0xff; 1318 buf[1] = (reg >> 0) & 0xff; 1319 buf[2] = cmd; 1320 ret = i2c_transfer(client->adapter, msg, 2); 1321 if (ret < 0) { 1322 goto err; 1323 } else if (ret != 2) { 1324 ret = -EREMOTEIO; 1325 goto err; 1326 } 1327 1328 return 0; 1329 err: 1330 dev_dbg(&client->dev, "failed %d\n", ret); 1331 return ret; 1332 } 1333 1334 static int af9013_regmap_write(void *context, const void *data, size_t count) 1335 { 1336 struct i2c_client *client = context; 1337 struct af9013_state *state = i2c_get_clientdata(client); 1338 int ret, i; 1339 u8 cmd; 1340 u16 reg = ((u8 *)data)[0] << 8|((u8 *)data)[1] << 0; 1341 u8 *val = &((u8 *)data)[2]; 1342 const unsigned int len = count - 2; 1343 1344 if (state->ts_mode == AF9013_TS_MODE_USB && (reg & 0xff00) != 0xae00) { 1345 cmd = 0 << 7|0 << 6|(len - 1) << 2|1 << 1|1 << 0; 1346 ret = af9013_wregs(client, cmd, reg, val, len); 1347 if (ret) 1348 goto err; 1349 } else if (reg >= 0x5100 && reg < 0x8fff) { 1350 /* Firmware download */ 1351 cmd = 1 << 7|1 << 6|(len - 1) << 2|1 << 1|1 << 0; 1352 ret = af9013_wregs(client, cmd, reg, val, len); 1353 if (ret) 1354 goto err; 1355 } else { 1356 cmd = 0 << 7|0 << 6|(1 - 1) << 2|1 << 1|1 << 0; 1357 for (i = 0; i < len; i++) { 1358 ret = af9013_wregs(client, cmd, reg + i, val + i, 1); 1359 if (ret) 1360 goto err; 1361 } 1362 } 1363 1364 return 0; 1365 err: 1366 dev_dbg(&client->dev, "failed %d\n", ret); 1367 return ret; 1368 } 1369 1370 static int af9013_regmap_read(void *context, const void *reg_buf, 1371 size_t reg_size, void *val_buf, size_t val_size) 1372 { 1373 struct i2c_client *client = context; 1374 struct af9013_state *state = i2c_get_clientdata(client); 1375 int ret, i; 1376 u8 cmd; 1377 u16 reg = ((u8 *)reg_buf)[0] << 8|((u8 *)reg_buf)[1] << 0; 1378 u8 *val = &((u8 *)val_buf)[0]; 1379 const unsigned int len = val_size; 1380 1381 if (state->ts_mode == AF9013_TS_MODE_USB && (reg & 0xff00) != 0xae00) { 1382 cmd = 0 << 7|0 << 6|(len - 1) << 2|1 << 1|0 << 0; 1383 ret = af9013_rregs(client, cmd, reg, val_buf, len); 1384 if (ret) 1385 goto err; 1386 } else { 1387 cmd = 0 << 7|0 << 6|(1 - 1) << 2|1 << 1|0 << 0; 1388 for (i = 0; i < len; i++) { 1389 ret = af9013_rregs(client, cmd, reg + i, val + i, 1); 1390 if (ret) 1391 goto err; 1392 } 1393 } 1394 1395 return 0; 1396 err: 1397 dev_dbg(&client->dev, "failed %d\n", ret); 1398 return ret; 1399 } 1400 1401 static int af9013_probe(struct i2c_client *client, 1402 const struct i2c_device_id *id) 1403 { 1404 struct af9013_state *state; 1405 struct af9013_platform_data *pdata = client->dev.platform_data; 1406 struct dtv_frontend_properties *c; 1407 int ret, i; 1408 u8 firmware_version[4]; 1409 static const struct regmap_bus regmap_bus = { 1410 .read = af9013_regmap_read, 1411 .write = af9013_regmap_write, 1412 }; 1413 static const struct regmap_config regmap_config = { 1414 .reg_bits = 16, 1415 .val_bits = 8, 1416 }; 1417 1418 state = kzalloc(sizeof(*state), GFP_KERNEL); 1419 if (!state) { 1420 ret = -ENOMEM; 1421 goto err; 1422 } 1423 1424 /* Setup the state */ 1425 state->client = client; 1426 i2c_set_clientdata(client, state); 1427 state->clk = pdata->clk; 1428 state->tuner = pdata->tuner; 1429 state->if_frequency = pdata->if_frequency; 1430 state->ts_mode = pdata->ts_mode; 1431 state->ts_output_pin = pdata->ts_output_pin; 1432 state->spec_inv = pdata->spec_inv; 1433 memcpy(&state->api_version, pdata->api_version, sizeof(state->api_version)); 1434 memcpy(&state->gpio, pdata->gpio, sizeof(state->gpio)); 1435 state->regmap = regmap_init(&client->dev, ®map_bus, client, 1436 ®map_config); 1437 if (IS_ERR(state->regmap)) { 1438 ret = PTR_ERR(state->regmap); 1439 goto err_kfree; 1440 } 1441 1442 /* Download firmware */ 1443 if (state->ts_mode != AF9013_TS_MODE_USB) { 1444 ret = af9013_download_firmware(state); 1445 if (ret) 1446 goto err_regmap_exit; 1447 } 1448 1449 /* Firmware version */ 1450 ret = regmap_bulk_read(state->regmap, 0x5103, firmware_version, 1451 sizeof(firmware_version)); 1452 if (ret) 1453 goto err_regmap_exit; 1454 1455 /* Set GPIOs */ 1456 for (i = 0; i < sizeof(state->gpio); i++) { 1457 ret = af9013_set_gpio(state, i, state->gpio[i]); 1458 if (ret) 1459 goto err_regmap_exit; 1460 } 1461 1462 /* Create dvb frontend */ 1463 memcpy(&state->fe.ops, &af9013_ops, sizeof(state->fe.ops)); 1464 if (!pdata->attach_in_use) 1465 state->fe.ops.release = NULL; 1466 state->fe.demodulator_priv = state; 1467 1468 /* Setup callbacks */ 1469 pdata->get_dvb_frontend = af9013_get_dvb_frontend; 1470 1471 /* Init stats to indicate which stats are supported */ 1472 c = &state->fe.dtv_property_cache; 1473 c->strength.len = 1; 1474 c->cnr.len = 1; 1475 c->post_bit_error.len = 1; 1476 c->post_bit_count.len = 1; 1477 c->block_error.len = 1; 1478 c->block_count.len = 1; 1479 1480 dev_info(&client->dev, "Afatech AF9013 successfully attached\n"); 1481 dev_info(&client->dev, "firmware version: %d.%d.%d.%d\n", 1482 firmware_version[0], firmware_version[1], 1483 firmware_version[2], firmware_version[3]); 1484 return 0; 1485 err_regmap_exit: 1486 regmap_exit(state->regmap); 1487 err_kfree: 1488 kfree(state); 1489 err: 1490 dev_dbg(&client->dev, "failed %d\n", ret); 1491 return ret; 1492 } 1493 1494 static int af9013_remove(struct i2c_client *client) 1495 { 1496 struct af9013_state *state = i2c_get_clientdata(client); 1497 1498 dev_dbg(&client->dev, "\n"); 1499 1500 regmap_exit(state->regmap); 1501 1502 kfree(state); 1503 1504 return 0; 1505 } 1506 1507 static const struct i2c_device_id af9013_id_table[] = { 1508 {"af9013", 0}, 1509 {} 1510 }; 1511 MODULE_DEVICE_TABLE(i2c, af9013_id_table); 1512 1513 static struct i2c_driver af9013_driver = { 1514 .driver = { 1515 .name = "af9013", 1516 .suppress_bind_attrs = true, 1517 }, 1518 .probe = af9013_probe, 1519 .remove = af9013_remove, 1520 .id_table = af9013_id_table, 1521 }; 1522 1523 module_i2c_driver(af9013_driver); 1524 1525 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); 1526 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver"); 1527 MODULE_LICENSE("GPL"); 1528 MODULE_FIRMWARE(AF9013_FIRMWARE); 1529