1 /*
2  * Afatech AF9013 demodulator driver
3  *
4  * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5  * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
6  *
7  * Thanks to Afatech who kindly provided information.
8  *
9  *    This program is free software; you can redistribute it and/or modify
10  *    it under the terms of the GNU General Public License as published by
11  *    the Free Software Foundation; either version 2 of the License, or
12  *    (at your option) any later version.
13  *
14  *    This program is distributed in the hope that it will be useful,
15  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *    GNU General Public License for more details.
18  *
19  *    You should have received a copy of the GNU General Public License
20  *    along with this program; if not, write to the Free Software
21  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  *
23  */
24 
25 #include "af9013_priv.h"
26 
27 /* Max transfer size done by I2C transfer functions */
28 #define MAX_XFER_SIZE  64
29 
30 struct af9013_state {
31 	struct i2c_adapter *i2c;
32 	struct dvb_frontend fe;
33 	struct af9013_config config;
34 
35 	/* tuner/demod RF and IF AGC limits used for signal strength calc */
36 	u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
37 	u16 signal_strength;
38 	u32 ber;
39 	u32 ucblocks;
40 	u16 snr;
41 	u32 bandwidth_hz;
42 	enum fe_status fe_status;
43 	unsigned long set_frontend_jiffies;
44 	unsigned long read_status_jiffies;
45 	bool first_tune;
46 	bool i2c_gate_state;
47 	unsigned int statistics_step:3;
48 	struct delayed_work statistics_work;
49 };
50 
51 /* write multiple registers */
52 static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
53 	const u8 *val, int len)
54 {
55 	int ret;
56 	u8 buf[MAX_XFER_SIZE];
57 	struct i2c_msg msg[1] = {
58 		{
59 			.addr = priv->config.i2c_addr,
60 			.flags = 0,
61 			.len = 3 + len,
62 			.buf = buf,
63 		}
64 	};
65 
66 	if (3 + len > sizeof(buf)) {
67 		dev_warn(&priv->i2c->dev,
68 			 "%s: i2c wr reg=%04x: len=%d is too big!\n",
69 			 KBUILD_MODNAME, reg, len);
70 		return -EINVAL;
71 	}
72 
73 	buf[0] = (reg >> 8) & 0xff;
74 	buf[1] = (reg >> 0) & 0xff;
75 	buf[2] = mbox;
76 	memcpy(&buf[3], val, len);
77 
78 	ret = i2c_transfer(priv->i2c, msg, 1);
79 	if (ret == 1) {
80 		ret = 0;
81 	} else {
82 		dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
83 				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
84 		ret = -EREMOTEIO;
85 	}
86 	return ret;
87 }
88 
89 /* read multiple registers */
90 static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
91 	u8 *val, int len)
92 {
93 	int ret;
94 	u8 buf[3];
95 	struct i2c_msg msg[2] = {
96 		{
97 			.addr = priv->config.i2c_addr,
98 			.flags = 0,
99 			.len = 3,
100 			.buf = buf,
101 		}, {
102 			.addr = priv->config.i2c_addr,
103 			.flags = I2C_M_RD,
104 			.len = len,
105 			.buf = val,
106 		}
107 	};
108 
109 	buf[0] = (reg >> 8) & 0xff;
110 	buf[1] = (reg >> 0) & 0xff;
111 	buf[2] = mbox;
112 
113 	ret = i2c_transfer(priv->i2c, msg, 2);
114 	if (ret == 2) {
115 		ret = 0;
116 	} else {
117 		dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
118 				"len=%d\n", KBUILD_MODNAME, ret, reg, len);
119 		ret = -EREMOTEIO;
120 	}
121 	return ret;
122 }
123 
124 /* write multiple registers */
125 static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
126 	int len)
127 {
128 	int ret, i;
129 	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
130 
131 	if ((priv->config.ts_mode == AF9013_TS_USB) &&
132 		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
133 		mbox |= ((len - 1) << 2);
134 		ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
135 	} else {
136 		for (i = 0; i < len; i++) {
137 			ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
138 			if (ret)
139 				goto err;
140 		}
141 	}
142 
143 err:
144 	return 0;
145 }
146 
147 /* read multiple registers */
148 static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
149 {
150 	int ret, i;
151 	u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
152 
153 	if ((priv->config.ts_mode == AF9013_TS_USB) &&
154 		((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
155 		mbox |= ((len - 1) << 2);
156 		ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
157 	} else {
158 		for (i = 0; i < len; i++) {
159 			ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
160 			if (ret)
161 				goto err;
162 		}
163 	}
164 
165 err:
166 	return 0;
167 }
168 
169 /* write single register */
170 static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
171 {
172 	return af9013_wr_regs(priv, reg, &val, 1);
173 }
174 
175 /* read single register */
176 static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
177 {
178 	return af9013_rd_regs(priv, reg, val, 1);
179 }
180 
181 static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
182 	u8 len)
183 {
184 	u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
185 	return af9013_wr_regs_i2c(state, mbox, reg, val, len);
186 }
187 
188 static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
189 	int len, u8 val)
190 {
191 	int ret;
192 	u8 tmp, mask;
193 
194 	/* no need for read if whole reg is written */
195 	if (len != 8) {
196 		ret = af9013_rd_reg(state, reg, &tmp);
197 		if (ret)
198 			return ret;
199 
200 		mask = (0xff >> (8 - len)) << pos;
201 		val <<= pos;
202 		tmp &= ~mask;
203 		val |= tmp;
204 	}
205 
206 	return af9013_wr_reg(state, reg, val);
207 }
208 
209 static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
210 	int len, u8 *val)
211 {
212 	int ret;
213 	u8 tmp;
214 
215 	ret = af9013_rd_reg(state, reg, &tmp);
216 	if (ret)
217 		return ret;
218 
219 	*val = (tmp >> pos);
220 	*val &= (0xff >> (8 - len));
221 
222 	return 0;
223 }
224 
225 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
226 {
227 	int ret;
228 	u8 pos;
229 	u16 addr;
230 
231 	dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
232 			__func__, gpio, gpioval);
233 
234 	/*
235 	 * GPIO0 & GPIO1 0xd735
236 	 * GPIO2 & GPIO3 0xd736
237 	 */
238 
239 	switch (gpio) {
240 	case 0:
241 	case 1:
242 		addr = 0xd735;
243 		break;
244 	case 2:
245 	case 3:
246 		addr = 0xd736;
247 		break;
248 
249 	default:
250 		dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
251 				KBUILD_MODNAME, gpio);
252 		ret = -EINVAL;
253 		goto err;
254 	}
255 
256 	switch (gpio) {
257 	case 0:
258 	case 2:
259 		pos = 0;
260 		break;
261 	case 1:
262 	case 3:
263 	default:
264 		pos = 4;
265 		break;
266 	}
267 
268 	ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
269 	if (ret)
270 		goto err;
271 
272 	return ret;
273 err:
274 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
275 	return ret;
276 }
277 
278 static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
279 {
280 	u32 r = 0, c = 0, i;
281 
282 	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
283 
284 	if (a > b) {
285 		c = a / b;
286 		a = a - c * b;
287 	}
288 
289 	for (i = 0; i < x; i++) {
290 		if (a >= b) {
291 			r += 1;
292 			a -= b;
293 		}
294 		a <<= 1;
295 		r <<= 1;
296 	}
297 	r = (c << (u32)x) + r;
298 
299 	dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
300 			__func__, a, b, x, r, r);
301 
302 	return r;
303 }
304 
305 static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
306 {
307 	int ret, i;
308 	u8 tmp;
309 
310 	dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
311 
312 	/* enable reset */
313 	ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
314 	if (ret)
315 		goto err;
316 
317 	/* start reset mechanism */
318 	ret = af9013_wr_reg(state, 0xaeff, 1);
319 	if (ret)
320 		goto err;
321 
322 	/* wait reset performs */
323 	for (i = 0; i < 150; i++) {
324 		ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
325 		if (ret)
326 			goto err;
327 
328 		if (tmp)
329 			break; /* reset done */
330 
331 		usleep_range(5000, 25000);
332 	}
333 
334 	if (!tmp)
335 		return -ETIMEDOUT;
336 
337 	if (onoff) {
338 		/* clear reset */
339 		ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
340 		if (ret)
341 			goto err;
342 
343 		/* disable reset */
344 		ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
345 
346 		/* power on */
347 		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
348 	} else {
349 		/* power off */
350 		ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
351 	}
352 
353 	return ret;
354 err:
355 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
356 	return ret;
357 }
358 
359 static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
360 {
361 	struct af9013_state *state = fe->demodulator_priv;
362 	int ret;
363 
364 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
365 
366 	/* reset and start BER counter */
367 	ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
368 	if (ret)
369 		goto err;
370 
371 	return ret;
372 err:
373 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
374 	return ret;
375 }
376 
377 static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
378 {
379 	struct af9013_state *state = fe->demodulator_priv;
380 	int ret;
381 	u8 buf[5];
382 
383 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
384 
385 	/* check if error bit count is ready */
386 	ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
387 	if (ret)
388 		goto err;
389 
390 	if (!buf[0]) {
391 		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
392 		return 0;
393 	}
394 
395 	ret = af9013_rd_regs(state, 0xd387, buf, 5);
396 	if (ret)
397 		goto err;
398 
399 	state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
400 	state->ucblocks += (buf[4] << 8) | buf[3];
401 
402 	return ret;
403 err:
404 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
405 	return ret;
406 }
407 
408 static int af9013_statistics_snr_start(struct dvb_frontend *fe)
409 {
410 	struct af9013_state *state = fe->demodulator_priv;
411 	int ret;
412 
413 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
414 
415 	/* start SNR meas */
416 	ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
417 	if (ret)
418 		goto err;
419 
420 	return ret;
421 err:
422 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
423 	return ret;
424 }
425 
426 static int af9013_statistics_snr_result(struct dvb_frontend *fe)
427 {
428 	struct af9013_state *state = fe->demodulator_priv;
429 	int ret, i, len;
430 	u8 buf[3], tmp;
431 	u32 snr_val;
432 	const struct af9013_snr *uninitialized_var(snr_lut);
433 
434 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
435 
436 	/* check if SNR ready */
437 	ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
438 	if (ret)
439 		goto err;
440 
441 	if (!tmp) {
442 		dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
443 		return 0;
444 	}
445 
446 	/* read value */
447 	ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
448 	if (ret)
449 		goto err;
450 
451 	snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
452 
453 	/* read current modulation */
454 	ret = af9013_rd_reg(state, 0xd3c1, &tmp);
455 	if (ret)
456 		goto err;
457 
458 	switch ((tmp >> 6) & 3) {
459 	case 0:
460 		len = ARRAY_SIZE(qpsk_snr_lut);
461 		snr_lut = qpsk_snr_lut;
462 		break;
463 	case 1:
464 		len = ARRAY_SIZE(qam16_snr_lut);
465 		snr_lut = qam16_snr_lut;
466 		break;
467 	case 2:
468 		len = ARRAY_SIZE(qam64_snr_lut);
469 		snr_lut = qam64_snr_lut;
470 		break;
471 	default:
472 		goto err;
473 	}
474 
475 	for (i = 0; i < len; i++) {
476 		tmp = snr_lut[i].snr;
477 
478 		if (snr_val < snr_lut[i].val)
479 			break;
480 	}
481 	state->snr = tmp * 10; /* dB/10 */
482 
483 	return ret;
484 err:
485 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
486 	return ret;
487 }
488 
489 static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
490 {
491 	struct af9013_state *state = fe->demodulator_priv;
492 	int ret = 0;
493 	u8 buf[2], rf_gain, if_gain;
494 	int signal_strength;
495 
496 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
497 
498 	if (!state->signal_strength_en)
499 		return 0;
500 
501 	ret = af9013_rd_regs(state, 0xd07c, buf, 2);
502 	if (ret)
503 		goto err;
504 
505 	rf_gain = buf[0];
506 	if_gain = buf[1];
507 
508 	signal_strength = (0xffff / \
509 		(9 * (state->rf_50 + state->if_50) - \
510 		11 * (state->rf_80 + state->if_80))) * \
511 		(10 * (rf_gain + if_gain) - \
512 		11 * (state->rf_80 + state->if_80));
513 	if (signal_strength < 0)
514 		signal_strength = 0;
515 	else if (signal_strength > 0xffff)
516 		signal_strength = 0xffff;
517 
518 	state->signal_strength = signal_strength;
519 
520 	return ret;
521 err:
522 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
523 	return ret;
524 }
525 
526 static void af9013_statistics_work(struct work_struct *work)
527 {
528 	struct af9013_state *state = container_of(work,
529 		struct af9013_state, statistics_work.work);
530 	unsigned int next_msec;
531 
532 	/* update only signal strength when demod is not locked */
533 	if (!(state->fe_status & FE_HAS_LOCK)) {
534 		state->statistics_step = 0;
535 		state->ber = 0;
536 		state->snr = 0;
537 	}
538 
539 	switch (state->statistics_step) {
540 	default:
541 		state->statistics_step = 0;
542 	case 0:
543 		af9013_statistics_signal_strength(&state->fe);
544 		state->statistics_step++;
545 		next_msec = 300;
546 		break;
547 	case 1:
548 		af9013_statistics_snr_start(&state->fe);
549 		state->statistics_step++;
550 		next_msec = 200;
551 		break;
552 	case 2:
553 		af9013_statistics_ber_unc_start(&state->fe);
554 		state->statistics_step++;
555 		next_msec = 1000;
556 		break;
557 	case 3:
558 		af9013_statistics_snr_result(&state->fe);
559 		state->statistics_step++;
560 		next_msec = 400;
561 		break;
562 	case 4:
563 		af9013_statistics_ber_unc_result(&state->fe);
564 		state->statistics_step++;
565 		next_msec = 100;
566 		break;
567 	}
568 
569 	schedule_delayed_work(&state->statistics_work,
570 		msecs_to_jiffies(next_msec));
571 }
572 
573 static int af9013_get_tune_settings(struct dvb_frontend *fe,
574 	struct dvb_frontend_tune_settings *fesettings)
575 {
576 	fesettings->min_delay_ms = 800;
577 	fesettings->step_size = 0;
578 	fesettings->max_drift = 0;
579 
580 	return 0;
581 }
582 
583 static int af9013_set_frontend(struct dvb_frontend *fe)
584 {
585 	struct af9013_state *state = fe->demodulator_priv;
586 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
587 	int ret, i, sampling_freq;
588 	bool auto_mode, spec_inv;
589 	u8 buf[6];
590 	u32 if_frequency, freq_cw;
591 
592 	dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
593 			__func__, c->frequency, c->bandwidth_hz);
594 
595 	/* program tuner */
596 	if (fe->ops.tuner_ops.set_params)
597 		fe->ops.tuner_ops.set_params(fe);
598 
599 	/* program CFOE coefficients */
600 	if (c->bandwidth_hz != state->bandwidth_hz) {
601 		for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
602 			if (coeff_lut[i].clock == state->config.clock &&
603 				coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
604 				break;
605 			}
606 		}
607 
608 		/* Return an error if can't find bandwidth or the right clock */
609 		if (i == ARRAY_SIZE(coeff_lut))
610 			return -EINVAL;
611 
612 		ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
613 			sizeof(coeff_lut[i].val));
614 	}
615 
616 	/* program frequency control */
617 	if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
618 		/* get used IF frequency */
619 		if (fe->ops.tuner_ops.get_if_frequency)
620 			fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
621 		else
622 			if_frequency = state->config.if_frequency;
623 
624 		dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
625 				__func__, if_frequency);
626 
627 		sampling_freq = if_frequency;
628 
629 		while (sampling_freq > (state->config.clock / 2))
630 			sampling_freq -= state->config.clock;
631 
632 		if (sampling_freq < 0) {
633 			sampling_freq *= -1;
634 			spec_inv = state->config.spec_inv;
635 		} else {
636 			spec_inv = !state->config.spec_inv;
637 		}
638 
639 		freq_cw = af9013_div(state, sampling_freq, state->config.clock,
640 				23);
641 
642 		if (spec_inv)
643 			freq_cw = 0x800000 - freq_cw;
644 
645 		buf[0] = (freq_cw >>  0) & 0xff;
646 		buf[1] = (freq_cw >>  8) & 0xff;
647 		buf[2] = (freq_cw >> 16) & 0x7f;
648 
649 		freq_cw = 0x800000 - freq_cw;
650 
651 		buf[3] = (freq_cw >>  0) & 0xff;
652 		buf[4] = (freq_cw >>  8) & 0xff;
653 		buf[5] = (freq_cw >> 16) & 0x7f;
654 
655 		ret = af9013_wr_regs(state, 0xd140, buf, 3);
656 		if (ret)
657 			goto err;
658 
659 		ret = af9013_wr_regs(state, 0x9be7, buf, 6);
660 		if (ret)
661 			goto err;
662 	}
663 
664 	/* clear TPS lock flag */
665 	ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
666 	if (ret)
667 		goto err;
668 
669 	/* clear MPEG2 lock flag */
670 	ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
671 	if (ret)
672 		goto err;
673 
674 	/* empty channel function */
675 	ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
676 	if (ret)
677 		goto err;
678 
679 	/* empty DVB-T channel function */
680 	ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
681 	if (ret)
682 		goto err;
683 
684 	/* transmission parameters */
685 	auto_mode = false;
686 	memset(buf, 0, 3);
687 
688 	switch (c->transmission_mode) {
689 	case TRANSMISSION_MODE_AUTO:
690 		auto_mode = true;
691 		break;
692 	case TRANSMISSION_MODE_2K:
693 		break;
694 	case TRANSMISSION_MODE_8K:
695 		buf[0] |= (1 << 0);
696 		break;
697 	default:
698 		dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
699 				__func__);
700 		auto_mode = true;
701 	}
702 
703 	switch (c->guard_interval) {
704 	case GUARD_INTERVAL_AUTO:
705 		auto_mode = true;
706 		break;
707 	case GUARD_INTERVAL_1_32:
708 		break;
709 	case GUARD_INTERVAL_1_16:
710 		buf[0] |= (1 << 2);
711 		break;
712 	case GUARD_INTERVAL_1_8:
713 		buf[0] |= (2 << 2);
714 		break;
715 	case GUARD_INTERVAL_1_4:
716 		buf[0] |= (3 << 2);
717 		break;
718 	default:
719 		dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
720 				__func__);
721 		auto_mode = true;
722 	}
723 
724 	switch (c->hierarchy) {
725 	case HIERARCHY_AUTO:
726 		auto_mode = true;
727 		break;
728 	case HIERARCHY_NONE:
729 		break;
730 	case HIERARCHY_1:
731 		buf[0] |= (1 << 4);
732 		break;
733 	case HIERARCHY_2:
734 		buf[0] |= (2 << 4);
735 		break;
736 	case HIERARCHY_4:
737 		buf[0] |= (3 << 4);
738 		break;
739 	default:
740 		dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
741 		auto_mode = true;
742 	}
743 
744 	switch (c->modulation) {
745 	case QAM_AUTO:
746 		auto_mode = true;
747 		break;
748 	case QPSK:
749 		break;
750 	case QAM_16:
751 		buf[1] |= (1 << 6);
752 		break;
753 	case QAM_64:
754 		buf[1] |= (2 << 6);
755 		break;
756 	default:
757 		dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
758 		auto_mode = true;
759 	}
760 
761 	/* Use HP. How and which case we can switch to LP? */
762 	buf[1] |= (1 << 4);
763 
764 	switch (c->code_rate_HP) {
765 	case FEC_AUTO:
766 		auto_mode = true;
767 		break;
768 	case FEC_1_2:
769 		break;
770 	case FEC_2_3:
771 		buf[2] |= (1 << 0);
772 		break;
773 	case FEC_3_4:
774 		buf[2] |= (2 << 0);
775 		break;
776 	case FEC_5_6:
777 		buf[2] |= (3 << 0);
778 		break;
779 	case FEC_7_8:
780 		buf[2] |= (4 << 0);
781 		break;
782 	default:
783 		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
784 				__func__);
785 		auto_mode = true;
786 	}
787 
788 	switch (c->code_rate_LP) {
789 	case FEC_AUTO:
790 		auto_mode = true;
791 		break;
792 	case FEC_1_2:
793 		break;
794 	case FEC_2_3:
795 		buf[2] |= (1 << 3);
796 		break;
797 	case FEC_3_4:
798 		buf[2] |= (2 << 3);
799 		break;
800 	case FEC_5_6:
801 		buf[2] |= (3 << 3);
802 		break;
803 	case FEC_7_8:
804 		buf[2] |= (4 << 3);
805 		break;
806 	case FEC_NONE:
807 		break;
808 	default:
809 		dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
810 				__func__);
811 		auto_mode = true;
812 	}
813 
814 	switch (c->bandwidth_hz) {
815 	case 6000000:
816 		break;
817 	case 7000000:
818 		buf[1] |= (1 << 2);
819 		break;
820 	case 8000000:
821 		buf[1] |= (2 << 2);
822 		break;
823 	default:
824 		dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
825 				__func__);
826 		ret = -EINVAL;
827 		goto err;
828 	}
829 
830 	ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
831 	if (ret)
832 		goto err;
833 
834 	if (auto_mode) {
835 		/* clear easy mode flag */
836 		ret = af9013_wr_reg(state, 0xaefd, 0);
837 		if (ret)
838 			goto err;
839 
840 		dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
841 	} else {
842 		/* set easy mode flag */
843 		ret = af9013_wr_reg(state, 0xaefd, 1);
844 		if (ret)
845 			goto err;
846 
847 		ret = af9013_wr_reg(state, 0xaefe, 0);
848 		if (ret)
849 			goto err;
850 
851 		dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
852 	}
853 
854 	/* tune */
855 	ret = af9013_wr_reg(state, 0xffff, 0);
856 	if (ret)
857 		goto err;
858 
859 	state->bandwidth_hz = c->bandwidth_hz;
860 	state->set_frontend_jiffies = jiffies;
861 	state->first_tune = false;
862 
863 	return ret;
864 err:
865 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
866 	return ret;
867 }
868 
869 static int af9013_get_frontend(struct dvb_frontend *fe,
870 			       struct dtv_frontend_properties *c)
871 {
872 	struct af9013_state *state = fe->demodulator_priv;
873 	int ret;
874 	u8 buf[3];
875 
876 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
877 
878 	ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
879 	if (ret)
880 		goto err;
881 
882 	switch ((buf[1] >> 6) & 3) {
883 	case 0:
884 		c->modulation = QPSK;
885 		break;
886 	case 1:
887 		c->modulation = QAM_16;
888 		break;
889 	case 2:
890 		c->modulation = QAM_64;
891 		break;
892 	}
893 
894 	switch ((buf[0] >> 0) & 3) {
895 	case 0:
896 		c->transmission_mode = TRANSMISSION_MODE_2K;
897 		break;
898 	case 1:
899 		c->transmission_mode = TRANSMISSION_MODE_8K;
900 	}
901 
902 	switch ((buf[0] >> 2) & 3) {
903 	case 0:
904 		c->guard_interval = GUARD_INTERVAL_1_32;
905 		break;
906 	case 1:
907 		c->guard_interval = GUARD_INTERVAL_1_16;
908 		break;
909 	case 2:
910 		c->guard_interval = GUARD_INTERVAL_1_8;
911 		break;
912 	case 3:
913 		c->guard_interval = GUARD_INTERVAL_1_4;
914 		break;
915 	}
916 
917 	switch ((buf[0] >> 4) & 7) {
918 	case 0:
919 		c->hierarchy = HIERARCHY_NONE;
920 		break;
921 	case 1:
922 		c->hierarchy = HIERARCHY_1;
923 		break;
924 	case 2:
925 		c->hierarchy = HIERARCHY_2;
926 		break;
927 	case 3:
928 		c->hierarchy = HIERARCHY_4;
929 		break;
930 	}
931 
932 	switch ((buf[2] >> 0) & 7) {
933 	case 0:
934 		c->code_rate_HP = FEC_1_2;
935 		break;
936 	case 1:
937 		c->code_rate_HP = FEC_2_3;
938 		break;
939 	case 2:
940 		c->code_rate_HP = FEC_3_4;
941 		break;
942 	case 3:
943 		c->code_rate_HP = FEC_5_6;
944 		break;
945 	case 4:
946 		c->code_rate_HP = FEC_7_8;
947 		break;
948 	}
949 
950 	switch ((buf[2] >> 3) & 7) {
951 	case 0:
952 		c->code_rate_LP = FEC_1_2;
953 		break;
954 	case 1:
955 		c->code_rate_LP = FEC_2_3;
956 		break;
957 	case 2:
958 		c->code_rate_LP = FEC_3_4;
959 		break;
960 	case 3:
961 		c->code_rate_LP = FEC_5_6;
962 		break;
963 	case 4:
964 		c->code_rate_LP = FEC_7_8;
965 		break;
966 	}
967 
968 	switch ((buf[1] >> 2) & 3) {
969 	case 0:
970 		c->bandwidth_hz = 6000000;
971 		break;
972 	case 1:
973 		c->bandwidth_hz = 7000000;
974 		break;
975 	case 2:
976 		c->bandwidth_hz = 8000000;
977 		break;
978 	}
979 
980 	return ret;
981 err:
982 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
983 	return ret;
984 }
985 
986 static int af9013_read_status(struct dvb_frontend *fe, enum fe_status *status)
987 {
988 	struct af9013_state *state = fe->demodulator_priv;
989 	int ret;
990 	u8 tmp;
991 
992 	/*
993 	 * Return status from the cache if it is younger than 2000ms with the
994 	 * exception of last tune is done during 4000ms.
995 	 */
996 	if (time_is_after_jiffies(
997 		state->read_status_jiffies + msecs_to_jiffies(2000)) &&
998 		time_is_before_jiffies(
999 		state->set_frontend_jiffies + msecs_to_jiffies(4000))
1000 	) {
1001 			*status = state->fe_status;
1002 			return 0;
1003 	} else {
1004 		*status = 0;
1005 	}
1006 
1007 	/* MPEG2 lock */
1008 	ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
1009 	if (ret)
1010 		goto err;
1011 
1012 	if (tmp)
1013 		*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
1014 			FE_HAS_SYNC | FE_HAS_LOCK;
1015 
1016 	if (!*status) {
1017 		/* TPS lock */
1018 		ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
1019 		if (ret)
1020 			goto err;
1021 
1022 		if (tmp)
1023 			*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1024 				FE_HAS_VITERBI;
1025 	}
1026 
1027 	state->fe_status = *status;
1028 	state->read_status_jiffies = jiffies;
1029 
1030 	return ret;
1031 err:
1032 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1033 	return ret;
1034 }
1035 
1036 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1037 {
1038 	struct af9013_state *state = fe->demodulator_priv;
1039 	*snr = state->snr;
1040 	return 0;
1041 }
1042 
1043 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1044 {
1045 	struct af9013_state *state = fe->demodulator_priv;
1046 	*strength = state->signal_strength;
1047 	return 0;
1048 }
1049 
1050 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1051 {
1052 	struct af9013_state *state = fe->demodulator_priv;
1053 	*ber = state->ber;
1054 	return 0;
1055 }
1056 
1057 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1058 {
1059 	struct af9013_state *state = fe->demodulator_priv;
1060 	*ucblocks = state->ucblocks;
1061 	return 0;
1062 }
1063 
1064 static int af9013_init(struct dvb_frontend *fe)
1065 {
1066 	struct af9013_state *state = fe->demodulator_priv;
1067 	int ret, i, len;
1068 	u8 buf[3], tmp;
1069 	u32 adc_cw;
1070 	const struct af9013_reg_bit *init;
1071 
1072 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1073 
1074 	/* power on */
1075 	ret = af9013_power_ctrl(state, 1);
1076 	if (ret)
1077 		goto err;
1078 
1079 	/* enable ADC */
1080 	ret = af9013_wr_reg(state, 0xd73a, 0xa4);
1081 	if (ret)
1082 		goto err;
1083 
1084 	/* write API version to firmware */
1085 	ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
1086 	if (ret)
1087 		goto err;
1088 
1089 	/* program ADC control */
1090 	switch (state->config.clock) {
1091 	case 28800000: /* 28.800 MHz */
1092 		tmp = 0;
1093 		break;
1094 	case 20480000: /* 20.480 MHz */
1095 		tmp = 1;
1096 		break;
1097 	case 28000000: /* 28.000 MHz */
1098 		tmp = 2;
1099 		break;
1100 	case 25000000: /* 25.000 MHz */
1101 		tmp = 3;
1102 		break;
1103 	default:
1104 		dev_err(&state->i2c->dev, "%s: invalid clock\n",
1105 				KBUILD_MODNAME);
1106 		return -EINVAL;
1107 	}
1108 
1109 	adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
1110 	buf[0] = (adc_cw >>  0) & 0xff;
1111 	buf[1] = (adc_cw >>  8) & 0xff;
1112 	buf[2] = (adc_cw >> 16) & 0xff;
1113 
1114 	ret = af9013_wr_regs(state, 0xd180, buf, 3);
1115 	if (ret)
1116 		goto err;
1117 
1118 	ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
1119 	if (ret)
1120 		goto err;
1121 
1122 	/* set I2C master clock */
1123 	ret = af9013_wr_reg(state, 0xd416, 0x14);
1124 	if (ret)
1125 		goto err;
1126 
1127 	/* set 16 embx */
1128 	ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
1129 	if (ret)
1130 		goto err;
1131 
1132 	/* set no trigger */
1133 	ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
1134 	if (ret)
1135 		goto err;
1136 
1137 	/* set read-update bit for constellation */
1138 	ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
1139 	if (ret)
1140 		goto err;
1141 
1142 	/* settings for mp2if */
1143 	if (state->config.ts_mode == AF9013_TS_USB) {
1144 		/* AF9015 split PSB to 1.5k + 0.5k */
1145 		ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
1146 		if (ret)
1147 			goto err;
1148 	} else {
1149 		/* AF9013 change the output bit to data7 */
1150 		ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
1151 		if (ret)
1152 			goto err;
1153 
1154 		/* AF9013 set mpeg to full speed */
1155 		ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
1156 		if (ret)
1157 			goto err;
1158 	}
1159 
1160 	ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
1161 	if (ret)
1162 		goto err;
1163 
1164 	/* load OFSM settings */
1165 	dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
1166 	len = ARRAY_SIZE(ofsm_init);
1167 	init = ofsm_init;
1168 	for (i = 0; i < len; i++) {
1169 		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1170 			init[i].len, init[i].val);
1171 		if (ret)
1172 			goto err;
1173 	}
1174 
1175 	/* load tuner specific settings */
1176 	dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
1177 			__func__);
1178 	switch (state->config.tuner) {
1179 	case AF9013_TUNER_MXL5003D:
1180 		len = ARRAY_SIZE(tuner_init_mxl5003d);
1181 		init = tuner_init_mxl5003d;
1182 		break;
1183 	case AF9013_TUNER_MXL5005D:
1184 	case AF9013_TUNER_MXL5005R:
1185 	case AF9013_TUNER_MXL5007T:
1186 		len = ARRAY_SIZE(tuner_init_mxl5005);
1187 		init = tuner_init_mxl5005;
1188 		break;
1189 	case AF9013_TUNER_ENV77H11D5:
1190 		len = ARRAY_SIZE(tuner_init_env77h11d5);
1191 		init = tuner_init_env77h11d5;
1192 		break;
1193 	case AF9013_TUNER_MT2060:
1194 		len = ARRAY_SIZE(tuner_init_mt2060);
1195 		init = tuner_init_mt2060;
1196 		break;
1197 	case AF9013_TUNER_MC44S803:
1198 		len = ARRAY_SIZE(tuner_init_mc44s803);
1199 		init = tuner_init_mc44s803;
1200 		break;
1201 	case AF9013_TUNER_QT1010:
1202 	case AF9013_TUNER_QT1010A:
1203 		len = ARRAY_SIZE(tuner_init_qt1010);
1204 		init = tuner_init_qt1010;
1205 		break;
1206 	case AF9013_TUNER_MT2060_2:
1207 		len = ARRAY_SIZE(tuner_init_mt2060_2);
1208 		init = tuner_init_mt2060_2;
1209 		break;
1210 	case AF9013_TUNER_TDA18271:
1211 	case AF9013_TUNER_TDA18218:
1212 		len = ARRAY_SIZE(tuner_init_tda18271);
1213 		init = tuner_init_tda18271;
1214 		break;
1215 	case AF9013_TUNER_UNKNOWN:
1216 	default:
1217 		len = ARRAY_SIZE(tuner_init_unknown);
1218 		init = tuner_init_unknown;
1219 		break;
1220 	}
1221 
1222 	for (i = 0; i < len; i++) {
1223 		ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1224 			init[i].len, init[i].val);
1225 		if (ret)
1226 			goto err;
1227 	}
1228 
1229 	/* TS mode */
1230 	ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
1231 	if (ret)
1232 		goto err;
1233 
1234 	/* enable lock led */
1235 	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
1236 	if (ret)
1237 		goto err;
1238 
1239 	/* check if we support signal strength */
1240 	if (!state->signal_strength_en) {
1241 		ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
1242 			&state->signal_strength_en);
1243 		if (ret)
1244 			goto err;
1245 	}
1246 
1247 	/* read values needed for signal strength calculation */
1248 	if (state->signal_strength_en && !state->rf_50) {
1249 		ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
1250 		if (ret)
1251 			goto err;
1252 
1253 		ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
1254 		if (ret)
1255 			goto err;
1256 
1257 		ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
1258 		if (ret)
1259 			goto err;
1260 
1261 		ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
1262 		if (ret)
1263 			goto err;
1264 	}
1265 
1266 	/* SNR */
1267 	ret = af9013_wr_reg(state, 0xd2e2, 1);
1268 	if (ret)
1269 		goto err;
1270 
1271 	/* BER / UCB */
1272 	buf[0] = (10000 >> 0) & 0xff;
1273 	buf[1] = (10000 >> 8) & 0xff;
1274 	ret = af9013_wr_regs(state, 0xd385, buf, 2);
1275 	if (ret)
1276 		goto err;
1277 
1278 	/* enable FEC monitor */
1279 	ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
1280 	if (ret)
1281 		goto err;
1282 
1283 	state->first_tune = true;
1284 	schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1285 
1286 	return ret;
1287 err:
1288 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1289 	return ret;
1290 }
1291 
1292 static int af9013_sleep(struct dvb_frontend *fe)
1293 {
1294 	struct af9013_state *state = fe->demodulator_priv;
1295 	int ret;
1296 
1297 	dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1298 
1299 	/* stop statistics polling */
1300 	cancel_delayed_work_sync(&state->statistics_work);
1301 
1302 	/* disable lock led */
1303 	ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
1304 	if (ret)
1305 		goto err;
1306 
1307 	/* power off */
1308 	ret = af9013_power_ctrl(state, 0);
1309 	if (ret)
1310 		goto err;
1311 
1312 	return ret;
1313 err:
1314 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1315 	return ret;
1316 }
1317 
1318 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1319 {
1320 	int ret;
1321 	struct af9013_state *state = fe->demodulator_priv;
1322 
1323 	dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
1324 
1325 	/* gate already open or close */
1326 	if (state->i2c_gate_state == enable)
1327 		return 0;
1328 
1329 	if (state->config.ts_mode == AF9013_TS_USB)
1330 		ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
1331 	else
1332 		ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
1333 	if (ret)
1334 		goto err;
1335 
1336 	state->i2c_gate_state = enable;
1337 
1338 	return ret;
1339 err:
1340 	dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1341 	return ret;
1342 }
1343 
1344 static void af9013_release(struct dvb_frontend *fe)
1345 {
1346 	struct af9013_state *state = fe->demodulator_priv;
1347 
1348 	/* stop statistics polling */
1349 	cancel_delayed_work_sync(&state->statistics_work);
1350 
1351 	kfree(state);
1352 }
1353 
1354 static struct dvb_frontend_ops af9013_ops;
1355 
1356 static int af9013_download_firmware(struct af9013_state *state)
1357 {
1358 	int i, len, remaining, ret;
1359 	const struct firmware *fw;
1360 	u16 checksum = 0;
1361 	u8 val;
1362 	u8 fw_params[4];
1363 	u8 *fw_file = AF9013_FIRMWARE;
1364 
1365 	msleep(100);
1366 	/* check whether firmware is already running */
1367 	ret = af9013_rd_reg(state, 0x98be, &val);
1368 	if (ret)
1369 		goto err;
1370 	else
1371 		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1372 				__func__, val);
1373 
1374 	if (val == 0x0c) /* fw is running, no need for download */
1375 		goto exit;
1376 
1377 	dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
1378 			"to load a firmware\n",
1379 			KBUILD_MODNAME, af9013_ops.info.name);
1380 
1381 	/* request the firmware, this will block and timeout */
1382 	ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1383 	if (ret) {
1384 		dev_info(&state->i2c->dev, "%s: did not find the firmware " \
1385 			"file. (%s) Please see linux/Documentation/dvb/ for " \
1386 			"more details on firmware-problems. (%d)\n",
1387 			KBUILD_MODNAME, fw_file, ret);
1388 		goto err;
1389 	}
1390 
1391 	dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
1392 			KBUILD_MODNAME, fw_file);
1393 
1394 	/* calc checksum */
1395 	for (i = 0; i < fw->size; i++)
1396 		checksum += fw->data[i];
1397 
1398 	fw_params[0] = checksum >> 8;
1399 	fw_params[1] = checksum & 0xff;
1400 	fw_params[2] = fw->size >> 8;
1401 	fw_params[3] = fw->size & 0xff;
1402 
1403 	/* write fw checksum & size */
1404 	ret = af9013_write_ofsm_regs(state, 0x50fc,
1405 		fw_params, sizeof(fw_params));
1406 	if (ret)
1407 		goto err_release;
1408 
1409 	#define FW_ADDR 0x5100 /* firmware start address */
1410 	#define LEN_MAX 16 /* max packet size */
1411 	for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
1412 		len = remaining;
1413 		if (len > LEN_MAX)
1414 			len = LEN_MAX;
1415 
1416 		ret = af9013_write_ofsm_regs(state,
1417 			FW_ADDR + fw->size - remaining,
1418 			(u8 *) &fw->data[fw->size - remaining], len);
1419 		if (ret) {
1420 			dev_err(&state->i2c->dev,
1421 					"%s: firmware download failed=%d\n",
1422 					KBUILD_MODNAME, ret);
1423 			goto err_release;
1424 		}
1425 	}
1426 
1427 	/* request boot firmware */
1428 	ret = af9013_wr_reg(state, 0xe205, 1);
1429 	if (ret)
1430 		goto err_release;
1431 
1432 	for (i = 0; i < 15; i++) {
1433 		msleep(100);
1434 
1435 		/* check firmware status */
1436 		ret = af9013_rd_reg(state, 0x98be, &val);
1437 		if (ret)
1438 			goto err_release;
1439 
1440 		dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1441 				__func__, val);
1442 
1443 		if (val == 0x0c || val == 0x04) /* success or fail */
1444 			break;
1445 	}
1446 
1447 	if (val == 0x04) {
1448 		dev_err(&state->i2c->dev, "%s: firmware did not run\n",
1449 				KBUILD_MODNAME);
1450 		ret = -ENODEV;
1451 	} else if (val != 0x0c) {
1452 		dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
1453 				KBUILD_MODNAME);
1454 		ret = -ENODEV;
1455 	}
1456 
1457 err_release:
1458 	release_firmware(fw);
1459 err:
1460 exit:
1461 	if (!ret)
1462 		dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
1463 				KBUILD_MODNAME, af9013_ops.info.name);
1464 	return ret;
1465 }
1466 
1467 struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1468 	struct i2c_adapter *i2c)
1469 {
1470 	int ret;
1471 	struct af9013_state *state = NULL;
1472 	u8 buf[4], i;
1473 
1474 	/* allocate memory for the internal state */
1475 	state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1476 	if (state == NULL)
1477 		goto err;
1478 
1479 	/* setup the state */
1480 	state->i2c = i2c;
1481 	memcpy(&state->config, config, sizeof(struct af9013_config));
1482 
1483 	/* download firmware */
1484 	if (state->config.ts_mode != AF9013_TS_USB) {
1485 		ret = af9013_download_firmware(state);
1486 		if (ret)
1487 			goto err;
1488 	}
1489 
1490 	/* firmware version */
1491 	ret = af9013_rd_regs(state, 0x5103, buf, 4);
1492 	if (ret)
1493 		goto err;
1494 
1495 	dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
1496 			KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
1497 
1498 	/* set GPIOs */
1499 	for (i = 0; i < sizeof(state->config.gpio); i++) {
1500 		ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1501 		if (ret)
1502 			goto err;
1503 	}
1504 
1505 	/* create dvb_frontend */
1506 	memcpy(&state->fe.ops, &af9013_ops,
1507 		sizeof(struct dvb_frontend_ops));
1508 	state->fe.demodulator_priv = state;
1509 
1510 	INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1511 
1512 	return &state->fe;
1513 err:
1514 	kfree(state);
1515 	return NULL;
1516 }
1517 EXPORT_SYMBOL(af9013_attach);
1518 
1519 static struct dvb_frontend_ops af9013_ops = {
1520 	.delsys = { SYS_DVBT },
1521 	.info = {
1522 		.name = "Afatech AF9013",
1523 		.frequency_min = 174000000,
1524 		.frequency_max = 862000000,
1525 		.frequency_stepsize = 250000,
1526 		.frequency_tolerance = 0,
1527 		.caps =	FE_CAN_FEC_1_2 |
1528 			FE_CAN_FEC_2_3 |
1529 			FE_CAN_FEC_3_4 |
1530 			FE_CAN_FEC_5_6 |
1531 			FE_CAN_FEC_7_8 |
1532 			FE_CAN_FEC_AUTO |
1533 			FE_CAN_QPSK |
1534 			FE_CAN_QAM_16 |
1535 			FE_CAN_QAM_64 |
1536 			FE_CAN_QAM_AUTO |
1537 			FE_CAN_TRANSMISSION_MODE_AUTO |
1538 			FE_CAN_GUARD_INTERVAL_AUTO |
1539 			FE_CAN_HIERARCHY_AUTO |
1540 			FE_CAN_RECOVER |
1541 			FE_CAN_MUTE_TS
1542 	},
1543 
1544 	.release = af9013_release,
1545 
1546 	.init = af9013_init,
1547 	.sleep = af9013_sleep,
1548 
1549 	.get_tune_settings = af9013_get_tune_settings,
1550 	.set_frontend = af9013_set_frontend,
1551 	.get_frontend = af9013_get_frontend,
1552 
1553 	.read_status = af9013_read_status,
1554 	.read_snr = af9013_read_snr,
1555 	.read_signal_strength = af9013_read_signal_strength,
1556 	.read_ber = af9013_read_ber,
1557 	.read_ucblocks = af9013_read_ucblocks,
1558 
1559 	.i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1560 };
1561 
1562 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1563 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1564 MODULE_LICENSE("GPL");
1565 MODULE_FIRMWARE(AF9013_FIRMWARE);
1566