1 /* 2 * videobuf2-core.c - video buffer 2 core framework 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * 6 * Author: Pawel Osciak <pawel@osciak.com> 7 * Marek Szyprowski <m.szyprowski@samsung.com> 8 * 9 * The vb2_thread implementation was based on code from videobuf-dvb.c: 10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs] 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/err.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mm.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/freezer.h> 27 #include <linux/kthread.h> 28 29 #include <media/videobuf2-core.h> 30 #include <media/v4l2-mc.h> 31 32 #include <trace/events/vb2.h> 33 34 static int debug; 35 module_param(debug, int, 0644); 36 37 #define dprintk(q, level, fmt, arg...) \ 38 do { \ 39 if (debug >= level) \ 40 pr_info("[%s] %s: " fmt, (q)->name, __func__, \ 41 ## arg); \ 42 } while (0) 43 44 #ifdef CONFIG_VIDEO_ADV_DEBUG 45 46 /* 47 * If advanced debugging is on, then count how often each op is called 48 * successfully, which can either be per-buffer or per-queue. 49 * 50 * This makes it easy to check that the 'init' and 'cleanup' 51 * (and variations thereof) stay balanced. 52 */ 53 54 #define log_memop(vb, op) \ 55 dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n", \ 56 (vb)->index, #op, \ 57 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)") 58 59 #define call_memop(vb, op, args...) \ 60 ({ \ 61 struct vb2_queue *_q = (vb)->vb2_queue; \ 62 int err; \ 63 \ 64 log_memop(vb, op); \ 65 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \ 66 if (!err) \ 67 (vb)->cnt_mem_ ## op++; \ 68 err; \ 69 }) 70 71 #define call_ptr_memop(vb, op, args...) \ 72 ({ \ 73 struct vb2_queue *_q = (vb)->vb2_queue; \ 74 void *ptr; \ 75 \ 76 log_memop(vb, op); \ 77 ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL; \ 78 if (!IS_ERR_OR_NULL(ptr)) \ 79 (vb)->cnt_mem_ ## op++; \ 80 ptr; \ 81 }) 82 83 #define call_void_memop(vb, op, args...) \ 84 ({ \ 85 struct vb2_queue *_q = (vb)->vb2_queue; \ 86 \ 87 log_memop(vb, op); \ 88 if (_q->mem_ops->op) \ 89 _q->mem_ops->op(args); \ 90 (vb)->cnt_mem_ ## op++; \ 91 }) 92 93 #define log_qop(q, op) \ 94 dprintk(q, 2, "call_qop(%s)%s\n", #op, \ 95 (q)->ops->op ? "" : " (nop)") 96 97 #define call_qop(q, op, args...) \ 98 ({ \ 99 int err; \ 100 \ 101 log_qop(q, op); \ 102 err = (q)->ops->op ? (q)->ops->op(args) : 0; \ 103 if (!err) \ 104 (q)->cnt_ ## op++; \ 105 err; \ 106 }) 107 108 #define call_void_qop(q, op, args...) \ 109 ({ \ 110 log_qop(q, op); \ 111 if ((q)->ops->op) \ 112 (q)->ops->op(args); \ 113 (q)->cnt_ ## op++; \ 114 }) 115 116 #define log_vb_qop(vb, op, args...) \ 117 dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n", \ 118 (vb)->index, #op, \ 119 (vb)->vb2_queue->ops->op ? "" : " (nop)") 120 121 #define call_vb_qop(vb, op, args...) \ 122 ({ \ 123 int err; \ 124 \ 125 log_vb_qop(vb, op); \ 126 err = (vb)->vb2_queue->ops->op ? \ 127 (vb)->vb2_queue->ops->op(args) : 0; \ 128 if (!err) \ 129 (vb)->cnt_ ## op++; \ 130 err; \ 131 }) 132 133 #define call_void_vb_qop(vb, op, args...) \ 134 ({ \ 135 log_vb_qop(vb, op); \ 136 if ((vb)->vb2_queue->ops->op) \ 137 (vb)->vb2_queue->ops->op(args); \ 138 (vb)->cnt_ ## op++; \ 139 }) 140 141 #else 142 143 #define call_memop(vb, op, args...) \ 144 ((vb)->vb2_queue->mem_ops->op ? \ 145 (vb)->vb2_queue->mem_ops->op(args) : 0) 146 147 #define call_ptr_memop(vb, op, args...) \ 148 ((vb)->vb2_queue->mem_ops->op ? \ 149 (vb)->vb2_queue->mem_ops->op(args) : NULL) 150 151 #define call_void_memop(vb, op, args...) \ 152 do { \ 153 if ((vb)->vb2_queue->mem_ops->op) \ 154 (vb)->vb2_queue->mem_ops->op(args); \ 155 } while (0) 156 157 #define call_qop(q, op, args...) \ 158 ((q)->ops->op ? (q)->ops->op(args) : 0) 159 160 #define call_void_qop(q, op, args...) \ 161 do { \ 162 if ((q)->ops->op) \ 163 (q)->ops->op(args); \ 164 } while (0) 165 166 #define call_vb_qop(vb, op, args...) \ 167 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0) 168 169 #define call_void_vb_qop(vb, op, args...) \ 170 do { \ 171 if ((vb)->vb2_queue->ops->op) \ 172 (vb)->vb2_queue->ops->op(args); \ 173 } while (0) 174 175 #endif 176 177 #define call_bufop(q, op, args...) \ 178 ({ \ 179 int ret = 0; \ 180 if (q && q->buf_ops && q->buf_ops->op) \ 181 ret = q->buf_ops->op(args); \ 182 ret; \ 183 }) 184 185 #define call_void_bufop(q, op, args...) \ 186 ({ \ 187 if (q && q->buf_ops && q->buf_ops->op) \ 188 q->buf_ops->op(args); \ 189 }) 190 191 static void __vb2_queue_cancel(struct vb2_queue *q); 192 static void __enqueue_in_driver(struct vb2_buffer *vb); 193 194 static const char *vb2_state_name(enum vb2_buffer_state s) 195 { 196 static const char * const state_names[] = { 197 [VB2_BUF_STATE_DEQUEUED] = "dequeued", 198 [VB2_BUF_STATE_IN_REQUEST] = "in request", 199 [VB2_BUF_STATE_PREPARING] = "preparing", 200 [VB2_BUF_STATE_QUEUED] = "queued", 201 [VB2_BUF_STATE_ACTIVE] = "active", 202 [VB2_BUF_STATE_DONE] = "done", 203 [VB2_BUF_STATE_ERROR] = "error", 204 }; 205 206 if ((unsigned int)(s) < ARRAY_SIZE(state_names)) 207 return state_names[s]; 208 return "unknown"; 209 } 210 211 /* 212 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer 213 */ 214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb) 215 { 216 struct vb2_queue *q = vb->vb2_queue; 217 void *mem_priv; 218 int plane; 219 int ret = -ENOMEM; 220 221 /* 222 * Allocate memory for all planes in this buffer 223 * NOTE: mmapped areas should be page aligned 224 */ 225 for (plane = 0; plane < vb->num_planes; ++plane) { 226 /* Memops alloc requires size to be page aligned. */ 227 unsigned long size = PAGE_ALIGN(vb->planes[plane].length); 228 229 /* Did it wrap around? */ 230 if (size < vb->planes[plane].length) 231 goto free; 232 233 mem_priv = call_ptr_memop(vb, alloc, 234 q->alloc_devs[plane] ? : q->dev, 235 q->dma_attrs, size, q->dma_dir, q->gfp_flags); 236 if (IS_ERR_OR_NULL(mem_priv)) { 237 if (mem_priv) 238 ret = PTR_ERR(mem_priv); 239 goto free; 240 } 241 242 /* Associate allocator private data with this plane */ 243 vb->planes[plane].mem_priv = mem_priv; 244 } 245 246 return 0; 247 free: 248 /* Free already allocated memory if one of the allocations failed */ 249 for (; plane > 0; --plane) { 250 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv); 251 vb->planes[plane - 1].mem_priv = NULL; 252 } 253 254 return ret; 255 } 256 257 /* 258 * __vb2_buf_mem_free() - free memory of the given buffer 259 */ 260 static void __vb2_buf_mem_free(struct vb2_buffer *vb) 261 { 262 unsigned int plane; 263 264 for (plane = 0; plane < vb->num_planes; ++plane) { 265 call_void_memop(vb, put, vb->planes[plane].mem_priv); 266 vb->planes[plane].mem_priv = NULL; 267 dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n", 268 plane, vb->index); 269 } 270 } 271 272 /* 273 * __vb2_buf_userptr_put() - release userspace memory associated with 274 * a USERPTR buffer 275 */ 276 static void __vb2_buf_userptr_put(struct vb2_buffer *vb) 277 { 278 unsigned int plane; 279 280 for (plane = 0; plane < vb->num_planes; ++plane) { 281 if (vb->planes[plane].mem_priv) 282 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 283 vb->planes[plane].mem_priv = NULL; 284 } 285 } 286 287 /* 288 * __vb2_plane_dmabuf_put() - release memory associated with 289 * a DMABUF shared plane 290 */ 291 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p) 292 { 293 if (!p->mem_priv) 294 return; 295 296 if (p->dbuf_mapped) 297 call_void_memop(vb, unmap_dmabuf, p->mem_priv); 298 299 call_void_memop(vb, detach_dmabuf, p->mem_priv); 300 dma_buf_put(p->dbuf); 301 p->mem_priv = NULL; 302 p->dbuf = NULL; 303 p->dbuf_mapped = 0; 304 } 305 306 /* 307 * __vb2_buf_dmabuf_put() - release memory associated with 308 * a DMABUF shared buffer 309 */ 310 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb) 311 { 312 unsigned int plane; 313 314 for (plane = 0; plane < vb->num_planes; ++plane) 315 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 316 } 317 318 /* 319 * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory 320 * to sync caches 321 */ 322 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb) 323 { 324 unsigned int plane; 325 326 if (vb->synced) 327 return; 328 329 if (vb->need_cache_sync_on_prepare) { 330 for (plane = 0; plane < vb->num_planes; ++plane) 331 call_void_memop(vb, prepare, 332 vb->planes[plane].mem_priv); 333 } 334 vb->synced = 1; 335 } 336 337 /* 338 * __vb2_buf_mem_finish() - call ->finish on buffer's private memory 339 * to sync caches 340 */ 341 static void __vb2_buf_mem_finish(struct vb2_buffer *vb) 342 { 343 unsigned int plane; 344 345 if (!vb->synced) 346 return; 347 348 if (vb->need_cache_sync_on_finish) { 349 for (plane = 0; plane < vb->num_planes; ++plane) 350 call_void_memop(vb, finish, 351 vb->planes[plane].mem_priv); 352 } 353 vb->synced = 0; 354 } 355 356 /* 357 * __setup_offsets() - setup unique offsets ("cookies") for every plane in 358 * the buffer. 359 */ 360 static void __setup_offsets(struct vb2_buffer *vb) 361 { 362 struct vb2_queue *q = vb->vb2_queue; 363 unsigned int plane; 364 unsigned long off = 0; 365 366 if (vb->index) { 367 struct vb2_buffer *prev = q->bufs[vb->index - 1]; 368 struct vb2_plane *p = &prev->planes[prev->num_planes - 1]; 369 370 off = PAGE_ALIGN(p->m.offset + p->length); 371 } 372 373 for (plane = 0; plane < vb->num_planes; ++plane) { 374 vb->planes[plane].m.offset = off; 375 376 dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n", 377 vb->index, plane, off); 378 379 off += vb->planes[plane].length; 380 off = PAGE_ALIGN(off); 381 } 382 } 383 384 /* 385 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type) 386 * video buffer memory for all buffers/planes on the queue and initializes the 387 * queue 388 * 389 * Returns the number of buffers successfully allocated. 390 */ 391 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory, 392 unsigned int num_buffers, unsigned int num_planes, 393 const unsigned plane_sizes[VB2_MAX_PLANES]) 394 { 395 unsigned int buffer, plane; 396 struct vb2_buffer *vb; 397 int ret; 398 399 /* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */ 400 num_buffers = min_t(unsigned int, num_buffers, 401 VB2_MAX_FRAME - q->num_buffers); 402 403 for (buffer = 0; buffer < num_buffers; ++buffer) { 404 /* Allocate videobuf buffer structures */ 405 vb = kzalloc(q->buf_struct_size, GFP_KERNEL); 406 if (!vb) { 407 dprintk(q, 1, "memory alloc for buffer struct failed\n"); 408 break; 409 } 410 411 vb->state = VB2_BUF_STATE_DEQUEUED; 412 vb->vb2_queue = q; 413 vb->num_planes = num_planes; 414 vb->index = q->num_buffers + buffer; 415 vb->type = q->type; 416 vb->memory = memory; 417 /* 418 * We need to set these flags here so that the videobuf2 core 419 * will call ->prepare()/->finish() cache sync/flush on vb2 420 * buffers when appropriate. However, we can avoid explicit 421 * ->prepare() and ->finish() cache sync for DMABUF buffers, 422 * because DMA exporter takes care of it. 423 */ 424 if (q->memory != VB2_MEMORY_DMABUF) { 425 vb->need_cache_sync_on_prepare = 1; 426 vb->need_cache_sync_on_finish = 1; 427 } 428 for (plane = 0; plane < num_planes; ++plane) { 429 vb->planes[plane].length = plane_sizes[plane]; 430 vb->planes[plane].min_length = plane_sizes[plane]; 431 } 432 call_void_bufop(q, init_buffer, vb); 433 434 q->bufs[vb->index] = vb; 435 436 /* Allocate video buffer memory for the MMAP type */ 437 if (memory == VB2_MEMORY_MMAP) { 438 ret = __vb2_buf_mem_alloc(vb); 439 if (ret) { 440 dprintk(q, 1, "failed allocating memory for buffer %d\n", 441 buffer); 442 q->bufs[vb->index] = NULL; 443 kfree(vb); 444 break; 445 } 446 __setup_offsets(vb); 447 /* 448 * Call the driver-provided buffer initialization 449 * callback, if given. An error in initialization 450 * results in queue setup failure. 451 */ 452 ret = call_vb_qop(vb, buf_init, vb); 453 if (ret) { 454 dprintk(q, 1, "buffer %d %p initialization failed\n", 455 buffer, vb); 456 __vb2_buf_mem_free(vb); 457 q->bufs[vb->index] = NULL; 458 kfree(vb); 459 break; 460 } 461 } 462 } 463 464 dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n", 465 buffer, num_planes); 466 467 return buffer; 468 } 469 470 /* 471 * __vb2_free_mem() - release all video buffer memory for a given queue 472 */ 473 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers) 474 { 475 unsigned int buffer; 476 struct vb2_buffer *vb; 477 478 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 479 ++buffer) { 480 vb = q->bufs[buffer]; 481 if (!vb) 482 continue; 483 484 /* Free MMAP buffers or release USERPTR buffers */ 485 if (q->memory == VB2_MEMORY_MMAP) 486 __vb2_buf_mem_free(vb); 487 else if (q->memory == VB2_MEMORY_DMABUF) 488 __vb2_buf_dmabuf_put(vb); 489 else 490 __vb2_buf_userptr_put(vb); 491 } 492 } 493 494 /* 495 * __vb2_queue_free() - free buffers at the end of the queue - video memory and 496 * related information, if no buffers are left return the queue to an 497 * uninitialized state. Might be called even if the queue has already been freed. 498 */ 499 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers) 500 { 501 unsigned int buffer; 502 503 /* 504 * Sanity check: when preparing a buffer the queue lock is released for 505 * a short while (see __buf_prepare for the details), which would allow 506 * a race with a reqbufs which can call this function. Removing the 507 * buffers from underneath __buf_prepare is obviously a bad idea, so we 508 * check if any of the buffers is in the state PREPARING, and if so we 509 * just return -EAGAIN. 510 */ 511 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 512 ++buffer) { 513 if (q->bufs[buffer] == NULL) 514 continue; 515 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) { 516 dprintk(q, 1, "preparing buffers, cannot free\n"); 517 return -EAGAIN; 518 } 519 } 520 521 /* Call driver-provided cleanup function for each buffer, if provided */ 522 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 523 ++buffer) { 524 struct vb2_buffer *vb = q->bufs[buffer]; 525 526 if (vb && vb->planes[0].mem_priv) 527 call_void_vb_qop(vb, buf_cleanup, vb); 528 } 529 530 /* Release video buffer memory */ 531 __vb2_free_mem(q, buffers); 532 533 #ifdef CONFIG_VIDEO_ADV_DEBUG 534 /* 535 * Check that all the calls were balances during the life-time of this 536 * queue. If not (or if the debug level is 1 or up), then dump the 537 * counters to the kernel log. 538 */ 539 if (q->num_buffers) { 540 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming || 541 q->cnt_wait_prepare != q->cnt_wait_finish; 542 543 if (unbalanced || debug) { 544 pr_info("counters for queue %p:%s\n", q, 545 unbalanced ? " UNBALANCED!" : ""); 546 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n", 547 q->cnt_queue_setup, q->cnt_start_streaming, 548 q->cnt_stop_streaming); 549 pr_info(" wait_prepare: %u wait_finish: %u\n", 550 q->cnt_wait_prepare, q->cnt_wait_finish); 551 } 552 q->cnt_queue_setup = 0; 553 q->cnt_wait_prepare = 0; 554 q->cnt_wait_finish = 0; 555 q->cnt_start_streaming = 0; 556 q->cnt_stop_streaming = 0; 557 } 558 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 559 struct vb2_buffer *vb = q->bufs[buffer]; 560 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put || 561 vb->cnt_mem_prepare != vb->cnt_mem_finish || 562 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr || 563 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf || 564 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf || 565 vb->cnt_buf_queue != vb->cnt_buf_done || 566 vb->cnt_buf_prepare != vb->cnt_buf_finish || 567 vb->cnt_buf_init != vb->cnt_buf_cleanup; 568 569 if (unbalanced || debug) { 570 pr_info(" counters for queue %p, buffer %d:%s\n", 571 q, buffer, unbalanced ? " UNBALANCED!" : ""); 572 pr_info(" buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n", 573 vb->cnt_buf_init, vb->cnt_buf_cleanup, 574 vb->cnt_buf_prepare, vb->cnt_buf_finish); 575 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n", 576 vb->cnt_buf_out_validate, vb->cnt_buf_queue, 577 vb->cnt_buf_done, vb->cnt_buf_request_complete); 578 pr_info(" alloc: %u put: %u prepare: %u finish: %u mmap: %u\n", 579 vb->cnt_mem_alloc, vb->cnt_mem_put, 580 vb->cnt_mem_prepare, vb->cnt_mem_finish, 581 vb->cnt_mem_mmap); 582 pr_info(" get_userptr: %u put_userptr: %u\n", 583 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr); 584 pr_info(" attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n", 585 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf, 586 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf); 587 pr_info(" get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n", 588 vb->cnt_mem_get_dmabuf, 589 vb->cnt_mem_num_users, 590 vb->cnt_mem_vaddr, 591 vb->cnt_mem_cookie); 592 } 593 } 594 #endif 595 596 /* Free videobuf buffers */ 597 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 598 ++buffer) { 599 kfree(q->bufs[buffer]); 600 q->bufs[buffer] = NULL; 601 } 602 603 q->num_buffers -= buffers; 604 if (!q->num_buffers) { 605 q->memory = VB2_MEMORY_UNKNOWN; 606 INIT_LIST_HEAD(&q->queued_list); 607 } 608 return 0; 609 } 610 611 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb) 612 { 613 unsigned int plane; 614 for (plane = 0; plane < vb->num_planes; ++plane) { 615 void *mem_priv = vb->planes[plane].mem_priv; 616 /* 617 * If num_users() has not been provided, call_memop 618 * will return 0, apparently nobody cares about this 619 * case anyway. If num_users() returns more than 1, 620 * we are not the only user of the plane's memory. 621 */ 622 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1) 623 return true; 624 } 625 return false; 626 } 627 EXPORT_SYMBOL(vb2_buffer_in_use); 628 629 /* 630 * __buffers_in_use() - return true if any buffers on the queue are in use and 631 * the queue cannot be freed (by the means of REQBUFS(0)) call 632 */ 633 static bool __buffers_in_use(struct vb2_queue *q) 634 { 635 unsigned int buffer; 636 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 637 if (vb2_buffer_in_use(q, q->bufs[buffer])) 638 return true; 639 } 640 return false; 641 } 642 643 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb) 644 { 645 call_void_bufop(q, fill_user_buffer, q->bufs[index], pb); 646 } 647 EXPORT_SYMBOL_GPL(vb2_core_querybuf); 648 649 /* 650 * __verify_userptr_ops() - verify that all memory operations required for 651 * USERPTR queue type have been provided 652 */ 653 static int __verify_userptr_ops(struct vb2_queue *q) 654 { 655 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr || 656 !q->mem_ops->put_userptr) 657 return -EINVAL; 658 659 return 0; 660 } 661 662 /* 663 * __verify_mmap_ops() - verify that all memory operations required for 664 * MMAP queue type have been provided 665 */ 666 static int __verify_mmap_ops(struct vb2_queue *q) 667 { 668 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc || 669 !q->mem_ops->put || !q->mem_ops->mmap) 670 return -EINVAL; 671 672 return 0; 673 } 674 675 /* 676 * __verify_dmabuf_ops() - verify that all memory operations required for 677 * DMABUF queue type have been provided 678 */ 679 static int __verify_dmabuf_ops(struct vb2_queue *q) 680 { 681 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf || 682 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf || 683 !q->mem_ops->unmap_dmabuf) 684 return -EINVAL; 685 686 return 0; 687 } 688 689 int vb2_verify_memory_type(struct vb2_queue *q, 690 enum vb2_memory memory, unsigned int type) 691 { 692 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR && 693 memory != VB2_MEMORY_DMABUF) { 694 dprintk(q, 1, "unsupported memory type\n"); 695 return -EINVAL; 696 } 697 698 if (type != q->type) { 699 dprintk(q, 1, "requested type is incorrect\n"); 700 return -EINVAL; 701 } 702 703 /* 704 * Make sure all the required memory ops for given memory type 705 * are available. 706 */ 707 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) { 708 dprintk(q, 1, "MMAP for current setup unsupported\n"); 709 return -EINVAL; 710 } 711 712 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) { 713 dprintk(q, 1, "USERPTR for current setup unsupported\n"); 714 return -EINVAL; 715 } 716 717 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) { 718 dprintk(q, 1, "DMABUF for current setup unsupported\n"); 719 return -EINVAL; 720 } 721 722 /* 723 * Place the busy tests at the end: -EBUSY can be ignored when 724 * create_bufs is called with count == 0, but count == 0 should still 725 * do the memory and type validation. 726 */ 727 if (vb2_fileio_is_active(q)) { 728 dprintk(q, 1, "file io in progress\n"); 729 return -EBUSY; 730 } 731 return 0; 732 } 733 EXPORT_SYMBOL(vb2_verify_memory_type); 734 735 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, 736 unsigned int *count) 737 { 738 unsigned int num_buffers, allocated_buffers, num_planes = 0; 739 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 740 unsigned int i; 741 int ret; 742 743 if (q->streaming) { 744 dprintk(q, 1, "streaming active\n"); 745 return -EBUSY; 746 } 747 748 if (q->waiting_in_dqbuf && *count) { 749 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 750 return -EBUSY; 751 } 752 753 if (*count == 0 || q->num_buffers != 0 || 754 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory)) { 755 /* 756 * We already have buffers allocated, so first check if they 757 * are not in use and can be freed. 758 */ 759 mutex_lock(&q->mmap_lock); 760 if (debug && q->memory == VB2_MEMORY_MMAP && 761 __buffers_in_use(q)) 762 dprintk(q, 1, "memory in use, orphaning buffers\n"); 763 764 /* 765 * Call queue_cancel to clean up any buffers in the 766 * QUEUED state which is possible if buffers were prepared or 767 * queued without ever calling STREAMON. 768 */ 769 __vb2_queue_cancel(q); 770 ret = __vb2_queue_free(q, q->num_buffers); 771 mutex_unlock(&q->mmap_lock); 772 if (ret) 773 return ret; 774 775 /* 776 * In case of REQBUFS(0) return immediately without calling 777 * driver's queue_setup() callback and allocating resources. 778 */ 779 if (*count == 0) 780 return 0; 781 } 782 783 /* 784 * Make sure the requested values and current defaults are sane. 785 */ 786 WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME); 787 num_buffers = max_t(unsigned int, *count, q->min_buffers_needed); 788 num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME); 789 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 790 q->memory = memory; 791 792 /* 793 * Ask the driver how many buffers and planes per buffer it requires. 794 * Driver also sets the size and allocator context for each plane. 795 */ 796 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes, 797 plane_sizes, q->alloc_devs); 798 if (ret) 799 return ret; 800 801 /* Check that driver has set sane values */ 802 if (WARN_ON(!num_planes)) 803 return -EINVAL; 804 805 for (i = 0; i < num_planes; i++) 806 if (WARN_ON(!plane_sizes[i])) 807 return -EINVAL; 808 809 /* Finally, allocate buffers and video memory */ 810 allocated_buffers = 811 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes); 812 if (allocated_buffers == 0) { 813 dprintk(q, 1, "memory allocation failed\n"); 814 return -ENOMEM; 815 } 816 817 /* 818 * There is no point in continuing if we can't allocate the minimum 819 * number of buffers needed by this vb2_queue. 820 */ 821 if (allocated_buffers < q->min_buffers_needed) 822 ret = -ENOMEM; 823 824 /* 825 * Check if driver can handle the allocated number of buffers. 826 */ 827 if (!ret && allocated_buffers < num_buffers) { 828 num_buffers = allocated_buffers; 829 /* 830 * num_planes is set by the previous queue_setup(), but since it 831 * signals to queue_setup() whether it is called from create_bufs() 832 * vs reqbufs() we zero it here to signal that queue_setup() is 833 * called for the reqbufs() case. 834 */ 835 num_planes = 0; 836 837 ret = call_qop(q, queue_setup, q, &num_buffers, 838 &num_planes, plane_sizes, q->alloc_devs); 839 840 if (!ret && allocated_buffers < num_buffers) 841 ret = -ENOMEM; 842 843 /* 844 * Either the driver has accepted a smaller number of buffers, 845 * or .queue_setup() returned an error 846 */ 847 } 848 849 mutex_lock(&q->mmap_lock); 850 q->num_buffers = allocated_buffers; 851 852 if (ret < 0) { 853 /* 854 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 855 * from q->num_buffers. 856 */ 857 __vb2_queue_free(q, allocated_buffers); 858 mutex_unlock(&q->mmap_lock); 859 return ret; 860 } 861 mutex_unlock(&q->mmap_lock); 862 863 /* 864 * Return the number of successfully allocated buffers 865 * to the userspace. 866 */ 867 *count = allocated_buffers; 868 q->waiting_for_buffers = !q->is_output; 869 870 return 0; 871 } 872 EXPORT_SYMBOL_GPL(vb2_core_reqbufs); 873 874 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, 875 unsigned int *count, 876 unsigned int requested_planes, 877 const unsigned int requested_sizes[]) 878 { 879 unsigned int num_planes = 0, num_buffers, allocated_buffers; 880 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 881 int ret; 882 883 if (q->num_buffers == VB2_MAX_FRAME) { 884 dprintk(q, 1, "maximum number of buffers already allocated\n"); 885 return -ENOBUFS; 886 } 887 888 if (!q->num_buffers) { 889 if (q->waiting_in_dqbuf && *count) { 890 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 891 return -EBUSY; 892 } 893 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 894 q->memory = memory; 895 q->waiting_for_buffers = !q->is_output; 896 } else { 897 if (q->memory != memory) { 898 dprintk(q, 1, "memory model mismatch\n"); 899 return -EINVAL; 900 } 901 } 902 903 num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers); 904 905 if (requested_planes && requested_sizes) { 906 num_planes = requested_planes; 907 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes)); 908 } 909 910 /* 911 * Ask the driver, whether the requested number of buffers, planes per 912 * buffer and their sizes are acceptable 913 */ 914 ret = call_qop(q, queue_setup, q, &num_buffers, 915 &num_planes, plane_sizes, q->alloc_devs); 916 if (ret) 917 return ret; 918 919 /* Finally, allocate buffers and video memory */ 920 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers, 921 num_planes, plane_sizes); 922 if (allocated_buffers == 0) { 923 dprintk(q, 1, "memory allocation failed\n"); 924 return -ENOMEM; 925 } 926 927 /* 928 * Check if driver can handle the so far allocated number of buffers. 929 */ 930 if (allocated_buffers < num_buffers) { 931 num_buffers = allocated_buffers; 932 933 /* 934 * q->num_buffers contains the total number of buffers, that the 935 * queue driver has set up 936 */ 937 ret = call_qop(q, queue_setup, q, &num_buffers, 938 &num_planes, plane_sizes, q->alloc_devs); 939 940 if (!ret && allocated_buffers < num_buffers) 941 ret = -ENOMEM; 942 943 /* 944 * Either the driver has accepted a smaller number of buffers, 945 * or .queue_setup() returned an error 946 */ 947 } 948 949 mutex_lock(&q->mmap_lock); 950 q->num_buffers += allocated_buffers; 951 952 if (ret < 0) { 953 /* 954 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 955 * from q->num_buffers. 956 */ 957 __vb2_queue_free(q, allocated_buffers); 958 mutex_unlock(&q->mmap_lock); 959 return -ENOMEM; 960 } 961 mutex_unlock(&q->mmap_lock); 962 963 /* 964 * Return the number of successfully allocated buffers 965 * to the userspace. 966 */ 967 *count = allocated_buffers; 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(vb2_core_create_bufs); 972 973 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no) 974 { 975 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 976 return NULL; 977 978 return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv); 979 980 } 981 EXPORT_SYMBOL_GPL(vb2_plane_vaddr); 982 983 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no) 984 { 985 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 986 return NULL; 987 988 return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv); 989 } 990 EXPORT_SYMBOL_GPL(vb2_plane_cookie); 991 992 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state) 993 { 994 struct vb2_queue *q = vb->vb2_queue; 995 unsigned long flags; 996 997 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE)) 998 return; 999 1000 if (WARN_ON(state != VB2_BUF_STATE_DONE && 1001 state != VB2_BUF_STATE_ERROR && 1002 state != VB2_BUF_STATE_QUEUED)) 1003 state = VB2_BUF_STATE_ERROR; 1004 1005 #ifdef CONFIG_VIDEO_ADV_DEBUG 1006 /* 1007 * Although this is not a callback, it still does have to balance 1008 * with the buf_queue op. So update this counter manually. 1009 */ 1010 vb->cnt_buf_done++; 1011 #endif 1012 dprintk(q, 4, "done processing on buffer %d, state: %s\n", 1013 vb->index, vb2_state_name(state)); 1014 1015 if (state != VB2_BUF_STATE_QUEUED) 1016 __vb2_buf_mem_finish(vb); 1017 1018 spin_lock_irqsave(&q->done_lock, flags); 1019 if (state == VB2_BUF_STATE_QUEUED) { 1020 vb->state = VB2_BUF_STATE_QUEUED; 1021 } else { 1022 /* Add the buffer to the done buffers list */ 1023 list_add_tail(&vb->done_entry, &q->done_list); 1024 vb->state = state; 1025 } 1026 atomic_dec(&q->owned_by_drv_count); 1027 1028 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) { 1029 media_request_object_unbind(&vb->req_obj); 1030 media_request_object_put(&vb->req_obj); 1031 } 1032 1033 spin_unlock_irqrestore(&q->done_lock, flags); 1034 1035 trace_vb2_buf_done(q, vb); 1036 1037 switch (state) { 1038 case VB2_BUF_STATE_QUEUED: 1039 return; 1040 default: 1041 /* Inform any processes that may be waiting for buffers */ 1042 wake_up(&q->done_wq); 1043 break; 1044 } 1045 } 1046 EXPORT_SYMBOL_GPL(vb2_buffer_done); 1047 1048 void vb2_discard_done(struct vb2_queue *q) 1049 { 1050 struct vb2_buffer *vb; 1051 unsigned long flags; 1052 1053 spin_lock_irqsave(&q->done_lock, flags); 1054 list_for_each_entry(vb, &q->done_list, done_entry) 1055 vb->state = VB2_BUF_STATE_ERROR; 1056 spin_unlock_irqrestore(&q->done_lock, flags); 1057 } 1058 EXPORT_SYMBOL_GPL(vb2_discard_done); 1059 1060 /* 1061 * __prepare_mmap() - prepare an MMAP buffer 1062 */ 1063 static int __prepare_mmap(struct vb2_buffer *vb) 1064 { 1065 int ret = 0; 1066 1067 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1068 vb, vb->planes); 1069 return ret ? ret : call_vb_qop(vb, buf_prepare, vb); 1070 } 1071 1072 /* 1073 * __prepare_userptr() - prepare a USERPTR buffer 1074 */ 1075 static int __prepare_userptr(struct vb2_buffer *vb) 1076 { 1077 struct vb2_plane planes[VB2_MAX_PLANES]; 1078 struct vb2_queue *q = vb->vb2_queue; 1079 void *mem_priv; 1080 unsigned int plane; 1081 int ret = 0; 1082 bool reacquired = vb->planes[0].mem_priv == NULL; 1083 1084 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1085 /* Copy relevant information provided by the userspace */ 1086 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1087 vb, planes); 1088 if (ret) 1089 return ret; 1090 1091 for (plane = 0; plane < vb->num_planes; ++plane) { 1092 /* Skip the plane if already verified */ 1093 if (vb->planes[plane].m.userptr && 1094 vb->planes[plane].m.userptr == planes[plane].m.userptr 1095 && vb->planes[plane].length == planes[plane].length) 1096 continue; 1097 1098 dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n", 1099 plane); 1100 1101 /* Check if the provided plane buffer is large enough */ 1102 if (planes[plane].length < vb->planes[plane].min_length) { 1103 dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n", 1104 planes[plane].length, 1105 vb->planes[plane].min_length, 1106 plane); 1107 ret = -EINVAL; 1108 goto err; 1109 } 1110 1111 /* Release previously acquired memory if present */ 1112 if (vb->planes[plane].mem_priv) { 1113 if (!reacquired) { 1114 reacquired = true; 1115 vb->copied_timestamp = 0; 1116 call_void_vb_qop(vb, buf_cleanup, vb); 1117 } 1118 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 1119 } 1120 1121 vb->planes[plane].mem_priv = NULL; 1122 vb->planes[plane].bytesused = 0; 1123 vb->planes[plane].length = 0; 1124 vb->planes[plane].m.userptr = 0; 1125 vb->planes[plane].data_offset = 0; 1126 1127 /* Acquire each plane's memory */ 1128 mem_priv = call_ptr_memop(vb, get_userptr, 1129 q->alloc_devs[plane] ? : q->dev, 1130 planes[plane].m.userptr, 1131 planes[plane].length, q->dma_dir); 1132 if (IS_ERR(mem_priv)) { 1133 dprintk(q, 1, "failed acquiring userspace memory for plane %d\n", 1134 plane); 1135 ret = PTR_ERR(mem_priv); 1136 goto err; 1137 } 1138 vb->planes[plane].mem_priv = mem_priv; 1139 } 1140 1141 /* 1142 * Now that everything is in order, copy relevant information 1143 * provided by userspace. 1144 */ 1145 for (plane = 0; plane < vb->num_planes; ++plane) { 1146 vb->planes[plane].bytesused = planes[plane].bytesused; 1147 vb->planes[plane].length = planes[plane].length; 1148 vb->planes[plane].m.userptr = planes[plane].m.userptr; 1149 vb->planes[plane].data_offset = planes[plane].data_offset; 1150 } 1151 1152 if (reacquired) { 1153 /* 1154 * One or more planes changed, so we must call buf_init to do 1155 * the driver-specific initialization on the newly acquired 1156 * buffer, if provided. 1157 */ 1158 ret = call_vb_qop(vb, buf_init, vb); 1159 if (ret) { 1160 dprintk(q, 1, "buffer initialization failed\n"); 1161 goto err; 1162 } 1163 } 1164 1165 ret = call_vb_qop(vb, buf_prepare, vb); 1166 if (ret) { 1167 dprintk(q, 1, "buffer preparation failed\n"); 1168 call_void_vb_qop(vb, buf_cleanup, vb); 1169 goto err; 1170 } 1171 1172 return 0; 1173 err: 1174 /* In case of errors, release planes that were already acquired */ 1175 for (plane = 0; plane < vb->num_planes; ++plane) { 1176 if (vb->planes[plane].mem_priv) 1177 call_void_memop(vb, put_userptr, 1178 vb->planes[plane].mem_priv); 1179 vb->planes[plane].mem_priv = NULL; 1180 vb->planes[plane].m.userptr = 0; 1181 vb->planes[plane].length = 0; 1182 } 1183 1184 return ret; 1185 } 1186 1187 /* 1188 * __prepare_dmabuf() - prepare a DMABUF buffer 1189 */ 1190 static int __prepare_dmabuf(struct vb2_buffer *vb) 1191 { 1192 struct vb2_plane planes[VB2_MAX_PLANES]; 1193 struct vb2_queue *q = vb->vb2_queue; 1194 void *mem_priv; 1195 unsigned int plane; 1196 int ret = 0; 1197 bool reacquired = vb->planes[0].mem_priv == NULL; 1198 1199 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1200 /* Copy relevant information provided by the userspace */ 1201 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1202 vb, planes); 1203 if (ret) 1204 return ret; 1205 1206 for (plane = 0; plane < vb->num_planes; ++plane) { 1207 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd); 1208 1209 if (IS_ERR_OR_NULL(dbuf)) { 1210 dprintk(q, 1, "invalid dmabuf fd for plane %d\n", 1211 plane); 1212 ret = -EINVAL; 1213 goto err; 1214 } 1215 1216 /* use DMABUF size if length is not provided */ 1217 if (planes[plane].length == 0) 1218 planes[plane].length = dbuf->size; 1219 1220 if (planes[plane].length < vb->planes[plane].min_length) { 1221 dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n", 1222 planes[plane].length, plane, 1223 vb->planes[plane].min_length); 1224 dma_buf_put(dbuf); 1225 ret = -EINVAL; 1226 goto err; 1227 } 1228 1229 /* Skip the plane if already verified */ 1230 if (dbuf == vb->planes[plane].dbuf && 1231 vb->planes[plane].length == planes[plane].length) { 1232 dma_buf_put(dbuf); 1233 continue; 1234 } 1235 1236 dprintk(q, 3, "buffer for plane %d changed\n", plane); 1237 1238 if (!reacquired) { 1239 reacquired = true; 1240 vb->copied_timestamp = 0; 1241 call_void_vb_qop(vb, buf_cleanup, vb); 1242 } 1243 1244 /* Release previously acquired memory if present */ 1245 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 1246 vb->planes[plane].bytesused = 0; 1247 vb->planes[plane].length = 0; 1248 vb->planes[plane].m.fd = 0; 1249 vb->planes[plane].data_offset = 0; 1250 1251 /* Acquire each plane's memory */ 1252 mem_priv = call_ptr_memop(vb, attach_dmabuf, 1253 q->alloc_devs[plane] ? : q->dev, 1254 dbuf, planes[plane].length, q->dma_dir); 1255 if (IS_ERR(mem_priv)) { 1256 dprintk(q, 1, "failed to attach dmabuf\n"); 1257 ret = PTR_ERR(mem_priv); 1258 dma_buf_put(dbuf); 1259 goto err; 1260 } 1261 1262 vb->planes[plane].dbuf = dbuf; 1263 vb->planes[plane].mem_priv = mem_priv; 1264 } 1265 1266 /* 1267 * This pins the buffer(s) with dma_buf_map_attachment()). It's done 1268 * here instead just before the DMA, while queueing the buffer(s) so 1269 * userspace knows sooner rather than later if the dma-buf map fails. 1270 */ 1271 for (plane = 0; plane < vb->num_planes; ++plane) { 1272 if (vb->planes[plane].dbuf_mapped) 1273 continue; 1274 1275 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv); 1276 if (ret) { 1277 dprintk(q, 1, "failed to map dmabuf for plane %d\n", 1278 plane); 1279 goto err; 1280 } 1281 vb->planes[plane].dbuf_mapped = 1; 1282 } 1283 1284 /* 1285 * Now that everything is in order, copy relevant information 1286 * provided by userspace. 1287 */ 1288 for (plane = 0; plane < vb->num_planes; ++plane) { 1289 vb->planes[plane].bytesused = planes[plane].bytesused; 1290 vb->planes[plane].length = planes[plane].length; 1291 vb->planes[plane].m.fd = planes[plane].m.fd; 1292 vb->planes[plane].data_offset = planes[plane].data_offset; 1293 } 1294 1295 if (reacquired) { 1296 /* 1297 * Call driver-specific initialization on the newly acquired buffer, 1298 * if provided. 1299 */ 1300 ret = call_vb_qop(vb, buf_init, vb); 1301 if (ret) { 1302 dprintk(q, 1, "buffer initialization failed\n"); 1303 goto err; 1304 } 1305 } 1306 1307 ret = call_vb_qop(vb, buf_prepare, vb); 1308 if (ret) { 1309 dprintk(q, 1, "buffer preparation failed\n"); 1310 call_void_vb_qop(vb, buf_cleanup, vb); 1311 goto err; 1312 } 1313 1314 return 0; 1315 err: 1316 /* In case of errors, release planes that were already acquired */ 1317 __vb2_buf_dmabuf_put(vb); 1318 1319 return ret; 1320 } 1321 1322 /* 1323 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing 1324 */ 1325 static void __enqueue_in_driver(struct vb2_buffer *vb) 1326 { 1327 struct vb2_queue *q = vb->vb2_queue; 1328 1329 vb->state = VB2_BUF_STATE_ACTIVE; 1330 atomic_inc(&q->owned_by_drv_count); 1331 1332 trace_vb2_buf_queue(q, vb); 1333 1334 call_void_vb_qop(vb, buf_queue, vb); 1335 } 1336 1337 static int __buf_prepare(struct vb2_buffer *vb) 1338 { 1339 struct vb2_queue *q = vb->vb2_queue; 1340 enum vb2_buffer_state orig_state = vb->state; 1341 int ret; 1342 1343 if (q->error) { 1344 dprintk(q, 1, "fatal error occurred on queue\n"); 1345 return -EIO; 1346 } 1347 1348 if (vb->prepared) 1349 return 0; 1350 WARN_ON(vb->synced); 1351 1352 if (q->is_output) { 1353 ret = call_vb_qop(vb, buf_out_validate, vb); 1354 if (ret) { 1355 dprintk(q, 1, "buffer validation failed\n"); 1356 return ret; 1357 } 1358 } 1359 1360 vb->state = VB2_BUF_STATE_PREPARING; 1361 1362 switch (q->memory) { 1363 case VB2_MEMORY_MMAP: 1364 ret = __prepare_mmap(vb); 1365 break; 1366 case VB2_MEMORY_USERPTR: 1367 ret = __prepare_userptr(vb); 1368 break; 1369 case VB2_MEMORY_DMABUF: 1370 ret = __prepare_dmabuf(vb); 1371 break; 1372 default: 1373 WARN(1, "Invalid queue type\n"); 1374 ret = -EINVAL; 1375 break; 1376 } 1377 1378 if (ret) { 1379 dprintk(q, 1, "buffer preparation failed: %d\n", ret); 1380 vb->state = orig_state; 1381 return ret; 1382 } 1383 1384 __vb2_buf_mem_prepare(vb); 1385 vb->prepared = 1; 1386 vb->state = orig_state; 1387 1388 return 0; 1389 } 1390 1391 static int vb2_req_prepare(struct media_request_object *obj) 1392 { 1393 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1394 int ret; 1395 1396 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST)) 1397 return -EINVAL; 1398 1399 mutex_lock(vb->vb2_queue->lock); 1400 ret = __buf_prepare(vb); 1401 mutex_unlock(vb->vb2_queue->lock); 1402 return ret; 1403 } 1404 1405 static void __vb2_dqbuf(struct vb2_buffer *vb); 1406 1407 static void vb2_req_unprepare(struct media_request_object *obj) 1408 { 1409 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1410 1411 mutex_lock(vb->vb2_queue->lock); 1412 __vb2_dqbuf(vb); 1413 vb->state = VB2_BUF_STATE_IN_REQUEST; 1414 mutex_unlock(vb->vb2_queue->lock); 1415 WARN_ON(!vb->req_obj.req); 1416 } 1417 1418 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1419 struct media_request *req); 1420 1421 static void vb2_req_queue(struct media_request_object *obj) 1422 { 1423 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1424 1425 mutex_lock(vb->vb2_queue->lock); 1426 vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL); 1427 mutex_unlock(vb->vb2_queue->lock); 1428 } 1429 1430 static void vb2_req_unbind(struct media_request_object *obj) 1431 { 1432 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1433 1434 if (vb->state == VB2_BUF_STATE_IN_REQUEST) 1435 call_void_bufop(vb->vb2_queue, init_buffer, vb); 1436 } 1437 1438 static void vb2_req_release(struct media_request_object *obj) 1439 { 1440 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1441 1442 if (vb->state == VB2_BUF_STATE_IN_REQUEST) { 1443 vb->state = VB2_BUF_STATE_DEQUEUED; 1444 if (vb->request) 1445 media_request_put(vb->request); 1446 vb->request = NULL; 1447 } 1448 } 1449 1450 static const struct media_request_object_ops vb2_core_req_ops = { 1451 .prepare = vb2_req_prepare, 1452 .unprepare = vb2_req_unprepare, 1453 .queue = vb2_req_queue, 1454 .unbind = vb2_req_unbind, 1455 .release = vb2_req_release, 1456 }; 1457 1458 bool vb2_request_object_is_buffer(struct media_request_object *obj) 1459 { 1460 return obj->ops == &vb2_core_req_ops; 1461 } 1462 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer); 1463 1464 unsigned int vb2_request_buffer_cnt(struct media_request *req) 1465 { 1466 struct media_request_object *obj; 1467 unsigned long flags; 1468 unsigned int buffer_cnt = 0; 1469 1470 spin_lock_irqsave(&req->lock, flags); 1471 list_for_each_entry(obj, &req->objects, list) 1472 if (vb2_request_object_is_buffer(obj)) 1473 buffer_cnt++; 1474 spin_unlock_irqrestore(&req->lock, flags); 1475 1476 return buffer_cnt; 1477 } 1478 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt); 1479 1480 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb) 1481 { 1482 struct vb2_buffer *vb; 1483 int ret; 1484 1485 vb = q->bufs[index]; 1486 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1487 dprintk(q, 1, "invalid buffer state %s\n", 1488 vb2_state_name(vb->state)); 1489 return -EINVAL; 1490 } 1491 if (vb->prepared) { 1492 dprintk(q, 1, "buffer already prepared\n"); 1493 return -EINVAL; 1494 } 1495 1496 ret = __buf_prepare(vb); 1497 if (ret) 1498 return ret; 1499 1500 /* Fill buffer information for the userspace */ 1501 call_void_bufop(q, fill_user_buffer, vb, pb); 1502 1503 dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index); 1504 1505 return 0; 1506 } 1507 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf); 1508 1509 /* 1510 * vb2_start_streaming() - Attempt to start streaming. 1511 * @q: videobuf2 queue 1512 * 1513 * Attempt to start streaming. When this function is called there must be 1514 * at least q->min_buffers_needed buffers queued up (i.e. the minimum 1515 * number of buffers required for the DMA engine to function). If the 1516 * @start_streaming op fails it is supposed to return all the driver-owned 1517 * buffers back to vb2 in state QUEUED. Check if that happened and if 1518 * not warn and reclaim them forcefully. 1519 */ 1520 static int vb2_start_streaming(struct vb2_queue *q) 1521 { 1522 struct vb2_buffer *vb; 1523 int ret; 1524 1525 /* 1526 * If any buffers were queued before streamon, 1527 * we can now pass them to driver for processing. 1528 */ 1529 list_for_each_entry(vb, &q->queued_list, queued_entry) 1530 __enqueue_in_driver(vb); 1531 1532 /* Tell the driver to start streaming */ 1533 q->start_streaming_called = 1; 1534 ret = call_qop(q, start_streaming, q, 1535 atomic_read(&q->owned_by_drv_count)); 1536 if (!ret) 1537 return 0; 1538 1539 q->start_streaming_called = 0; 1540 1541 dprintk(q, 1, "driver refused to start streaming\n"); 1542 /* 1543 * If you see this warning, then the driver isn't cleaning up properly 1544 * after a failed start_streaming(). See the start_streaming() 1545 * documentation in videobuf2-core.h for more information how buffers 1546 * should be returned to vb2 in start_streaming(). 1547 */ 1548 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1549 unsigned i; 1550 1551 /* 1552 * Forcefully reclaim buffers if the driver did not 1553 * correctly return them to vb2. 1554 */ 1555 for (i = 0; i < q->num_buffers; ++i) { 1556 vb = q->bufs[i]; 1557 if (vb->state == VB2_BUF_STATE_ACTIVE) 1558 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED); 1559 } 1560 /* Must be zero now */ 1561 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1562 } 1563 /* 1564 * If done_list is not empty, then start_streaming() didn't call 1565 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or 1566 * STATE_DONE. 1567 */ 1568 WARN_ON(!list_empty(&q->done_list)); 1569 return ret; 1570 } 1571 1572 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1573 struct media_request *req) 1574 { 1575 struct vb2_buffer *vb; 1576 enum vb2_buffer_state orig_state; 1577 int ret; 1578 1579 if (q->error) { 1580 dprintk(q, 1, "fatal error occurred on queue\n"); 1581 return -EIO; 1582 } 1583 1584 vb = q->bufs[index]; 1585 1586 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1587 q->requires_requests) { 1588 dprintk(q, 1, "qbuf requires a request\n"); 1589 return -EBADR; 1590 } 1591 1592 if ((req && q->uses_qbuf) || 1593 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1594 q->uses_requests)) { 1595 dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n"); 1596 return -EBUSY; 1597 } 1598 1599 if (req) { 1600 int ret; 1601 1602 q->uses_requests = 1; 1603 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1604 dprintk(q, 1, "buffer %d not in dequeued state\n", 1605 vb->index); 1606 return -EINVAL; 1607 } 1608 1609 if (q->is_output && !vb->prepared) { 1610 ret = call_vb_qop(vb, buf_out_validate, vb); 1611 if (ret) { 1612 dprintk(q, 1, "buffer validation failed\n"); 1613 return ret; 1614 } 1615 } 1616 1617 media_request_object_init(&vb->req_obj); 1618 1619 /* Make sure the request is in a safe state for updating. */ 1620 ret = media_request_lock_for_update(req); 1621 if (ret) 1622 return ret; 1623 ret = media_request_object_bind(req, &vb2_core_req_ops, 1624 q, true, &vb->req_obj); 1625 media_request_unlock_for_update(req); 1626 if (ret) 1627 return ret; 1628 1629 vb->state = VB2_BUF_STATE_IN_REQUEST; 1630 1631 /* 1632 * Increment the refcount and store the request. 1633 * The request refcount is decremented again when the 1634 * buffer is dequeued. This is to prevent vb2_buffer_done() 1635 * from freeing the request from interrupt context, which can 1636 * happen if the application closed the request fd after 1637 * queueing the request. 1638 */ 1639 media_request_get(req); 1640 vb->request = req; 1641 1642 /* Fill buffer information for the userspace */ 1643 if (pb) { 1644 call_void_bufop(q, copy_timestamp, vb, pb); 1645 call_void_bufop(q, fill_user_buffer, vb, pb); 1646 } 1647 1648 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1649 return 0; 1650 } 1651 1652 if (vb->state != VB2_BUF_STATE_IN_REQUEST) 1653 q->uses_qbuf = 1; 1654 1655 switch (vb->state) { 1656 case VB2_BUF_STATE_DEQUEUED: 1657 case VB2_BUF_STATE_IN_REQUEST: 1658 if (!vb->prepared) { 1659 ret = __buf_prepare(vb); 1660 if (ret) 1661 return ret; 1662 } 1663 break; 1664 case VB2_BUF_STATE_PREPARING: 1665 dprintk(q, 1, "buffer still being prepared\n"); 1666 return -EINVAL; 1667 default: 1668 dprintk(q, 1, "invalid buffer state %s\n", 1669 vb2_state_name(vb->state)); 1670 return -EINVAL; 1671 } 1672 1673 /* 1674 * Add to the queued buffers list, a buffer will stay on it until 1675 * dequeued in dqbuf. 1676 */ 1677 orig_state = vb->state; 1678 list_add_tail(&vb->queued_entry, &q->queued_list); 1679 q->queued_count++; 1680 q->waiting_for_buffers = false; 1681 vb->state = VB2_BUF_STATE_QUEUED; 1682 1683 if (pb) 1684 call_void_bufop(q, copy_timestamp, vb, pb); 1685 1686 trace_vb2_qbuf(q, vb); 1687 1688 /* 1689 * If already streaming, give the buffer to driver for processing. 1690 * If not, the buffer will be given to driver on next streamon. 1691 */ 1692 if (q->start_streaming_called) 1693 __enqueue_in_driver(vb); 1694 1695 /* Fill buffer information for the userspace */ 1696 if (pb) 1697 call_void_bufop(q, fill_user_buffer, vb, pb); 1698 1699 /* 1700 * If streamon has been called, and we haven't yet called 1701 * start_streaming() since not enough buffers were queued, and 1702 * we now have reached the minimum number of queued buffers, 1703 * then we can finally call start_streaming(). 1704 */ 1705 if (q->streaming && !q->start_streaming_called && 1706 q->queued_count >= q->min_buffers_needed) { 1707 ret = vb2_start_streaming(q); 1708 if (ret) { 1709 /* 1710 * Since vb2_core_qbuf will return with an error, 1711 * we should return it to state DEQUEUED since 1712 * the error indicates that the buffer wasn't queued. 1713 */ 1714 list_del(&vb->queued_entry); 1715 q->queued_count--; 1716 vb->state = orig_state; 1717 return ret; 1718 } 1719 } 1720 1721 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1722 return 0; 1723 } 1724 EXPORT_SYMBOL_GPL(vb2_core_qbuf); 1725 1726 /* 1727 * __vb2_wait_for_done_vb() - wait for a buffer to become available 1728 * for dequeuing 1729 * 1730 * Will sleep if required for nonblocking == false. 1731 */ 1732 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking) 1733 { 1734 /* 1735 * All operations on vb_done_list are performed under done_lock 1736 * spinlock protection. However, buffers may be removed from 1737 * it and returned to userspace only while holding both driver's 1738 * lock and the done_lock spinlock. Thus we can be sure that as 1739 * long as we hold the driver's lock, the list will remain not 1740 * empty if list_empty() check succeeds. 1741 */ 1742 1743 for (;;) { 1744 int ret; 1745 1746 if (q->waiting_in_dqbuf) { 1747 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 1748 return -EBUSY; 1749 } 1750 1751 if (!q->streaming) { 1752 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1753 return -EINVAL; 1754 } 1755 1756 if (q->error) { 1757 dprintk(q, 1, "Queue in error state, will not wait for buffers\n"); 1758 return -EIO; 1759 } 1760 1761 if (q->last_buffer_dequeued) { 1762 dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n"); 1763 return -EPIPE; 1764 } 1765 1766 if (!list_empty(&q->done_list)) { 1767 /* 1768 * Found a buffer that we were waiting for. 1769 */ 1770 break; 1771 } 1772 1773 if (nonblocking) { 1774 dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n"); 1775 return -EAGAIN; 1776 } 1777 1778 q->waiting_in_dqbuf = 1; 1779 /* 1780 * We are streaming and blocking, wait for another buffer to 1781 * become ready or for streamoff. Driver's lock is released to 1782 * allow streamoff or qbuf to be called while waiting. 1783 */ 1784 call_void_qop(q, wait_prepare, q); 1785 1786 /* 1787 * All locks have been released, it is safe to sleep now. 1788 */ 1789 dprintk(q, 3, "will sleep waiting for buffers\n"); 1790 ret = wait_event_interruptible(q->done_wq, 1791 !list_empty(&q->done_list) || !q->streaming || 1792 q->error); 1793 1794 /* 1795 * We need to reevaluate both conditions again after reacquiring 1796 * the locks or return an error if one occurred. 1797 */ 1798 call_void_qop(q, wait_finish, q); 1799 q->waiting_in_dqbuf = 0; 1800 if (ret) { 1801 dprintk(q, 1, "sleep was interrupted\n"); 1802 return ret; 1803 } 1804 } 1805 return 0; 1806 } 1807 1808 /* 1809 * __vb2_get_done_vb() - get a buffer ready for dequeuing 1810 * 1811 * Will sleep if required for nonblocking == false. 1812 */ 1813 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb, 1814 void *pb, int nonblocking) 1815 { 1816 unsigned long flags; 1817 int ret = 0; 1818 1819 /* 1820 * Wait for at least one buffer to become available on the done_list. 1821 */ 1822 ret = __vb2_wait_for_done_vb(q, nonblocking); 1823 if (ret) 1824 return ret; 1825 1826 /* 1827 * Driver's lock has been held since we last verified that done_list 1828 * is not empty, so no need for another list_empty(done_list) check. 1829 */ 1830 spin_lock_irqsave(&q->done_lock, flags); 1831 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry); 1832 /* 1833 * Only remove the buffer from done_list if all planes can be 1834 * handled. Some cases such as V4L2 file I/O and DVB have pb 1835 * == NULL; skip the check then as there's nothing to verify. 1836 */ 1837 if (pb) 1838 ret = call_bufop(q, verify_planes_array, *vb, pb); 1839 if (!ret) 1840 list_del(&(*vb)->done_entry); 1841 spin_unlock_irqrestore(&q->done_lock, flags); 1842 1843 return ret; 1844 } 1845 1846 int vb2_wait_for_all_buffers(struct vb2_queue *q) 1847 { 1848 if (!q->streaming) { 1849 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1850 return -EINVAL; 1851 } 1852 1853 if (q->start_streaming_called) 1854 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count)); 1855 return 0; 1856 } 1857 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers); 1858 1859 /* 1860 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state 1861 */ 1862 static void __vb2_dqbuf(struct vb2_buffer *vb) 1863 { 1864 struct vb2_queue *q = vb->vb2_queue; 1865 1866 /* nothing to do if the buffer is already dequeued */ 1867 if (vb->state == VB2_BUF_STATE_DEQUEUED) 1868 return; 1869 1870 vb->state = VB2_BUF_STATE_DEQUEUED; 1871 1872 call_void_bufop(q, init_buffer, vb); 1873 } 1874 1875 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb, 1876 bool nonblocking) 1877 { 1878 struct vb2_buffer *vb = NULL; 1879 int ret; 1880 1881 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking); 1882 if (ret < 0) 1883 return ret; 1884 1885 switch (vb->state) { 1886 case VB2_BUF_STATE_DONE: 1887 dprintk(q, 3, "returning done buffer\n"); 1888 break; 1889 case VB2_BUF_STATE_ERROR: 1890 dprintk(q, 3, "returning done buffer with errors\n"); 1891 break; 1892 default: 1893 dprintk(q, 1, "invalid buffer state %s\n", 1894 vb2_state_name(vb->state)); 1895 return -EINVAL; 1896 } 1897 1898 call_void_vb_qop(vb, buf_finish, vb); 1899 vb->prepared = 0; 1900 1901 if (pindex) 1902 *pindex = vb->index; 1903 1904 /* Fill buffer information for the userspace */ 1905 if (pb) 1906 call_void_bufop(q, fill_user_buffer, vb, pb); 1907 1908 /* Remove from videobuf queue */ 1909 list_del(&vb->queued_entry); 1910 q->queued_count--; 1911 1912 trace_vb2_dqbuf(q, vb); 1913 1914 /* go back to dequeued state */ 1915 __vb2_dqbuf(vb); 1916 1917 if (WARN_ON(vb->req_obj.req)) { 1918 media_request_object_unbind(&vb->req_obj); 1919 media_request_object_put(&vb->req_obj); 1920 } 1921 if (vb->request) 1922 media_request_put(vb->request); 1923 vb->request = NULL; 1924 1925 dprintk(q, 2, "dqbuf of buffer %d, state: %s\n", 1926 vb->index, vb2_state_name(vb->state)); 1927 1928 return 0; 1929 1930 } 1931 EXPORT_SYMBOL_GPL(vb2_core_dqbuf); 1932 1933 /* 1934 * __vb2_queue_cancel() - cancel and stop (pause) streaming 1935 * 1936 * Removes all queued buffers from driver's queue and all buffers queued by 1937 * userspace from videobuf's queue. Returns to state after reqbufs. 1938 */ 1939 static void __vb2_queue_cancel(struct vb2_queue *q) 1940 { 1941 unsigned int i; 1942 1943 /* 1944 * Tell driver to stop all transactions and release all queued 1945 * buffers. 1946 */ 1947 if (q->start_streaming_called) 1948 call_void_qop(q, stop_streaming, q); 1949 1950 /* 1951 * If you see this warning, then the driver isn't cleaning up properly 1952 * in stop_streaming(). See the stop_streaming() documentation in 1953 * videobuf2-core.h for more information how buffers should be returned 1954 * to vb2 in stop_streaming(). 1955 */ 1956 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1957 for (i = 0; i < q->num_buffers; ++i) 1958 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) { 1959 pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n", 1960 q->bufs[i]); 1961 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR); 1962 } 1963 /* Must be zero now */ 1964 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1965 } 1966 1967 q->streaming = 0; 1968 q->start_streaming_called = 0; 1969 q->queued_count = 0; 1970 q->error = 0; 1971 q->uses_requests = 0; 1972 q->uses_qbuf = 0; 1973 1974 /* 1975 * Remove all buffers from videobuf's list... 1976 */ 1977 INIT_LIST_HEAD(&q->queued_list); 1978 /* 1979 * ...and done list; userspace will not receive any buffers it 1980 * has not already dequeued before initiating cancel. 1981 */ 1982 INIT_LIST_HEAD(&q->done_list); 1983 atomic_set(&q->owned_by_drv_count, 0); 1984 wake_up_all(&q->done_wq); 1985 1986 /* 1987 * Reinitialize all buffers for next use. 1988 * Make sure to call buf_finish for any queued buffers. Normally 1989 * that's done in dqbuf, but that's not going to happen when we 1990 * cancel the whole queue. Note: this code belongs here, not in 1991 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical 1992 * call to __fill_user_buffer() after buf_finish(). That order can't 1993 * be changed, so we can't move the buf_finish() to __vb2_dqbuf(). 1994 */ 1995 for (i = 0; i < q->num_buffers; ++i) { 1996 struct vb2_buffer *vb = q->bufs[i]; 1997 struct media_request *req = vb->req_obj.req; 1998 1999 /* 2000 * If a request is associated with this buffer, then 2001 * call buf_request_cancel() to give the driver to complete() 2002 * related request objects. Otherwise those objects would 2003 * never complete. 2004 */ 2005 if (req) { 2006 enum media_request_state state; 2007 unsigned long flags; 2008 2009 spin_lock_irqsave(&req->lock, flags); 2010 state = req->state; 2011 spin_unlock_irqrestore(&req->lock, flags); 2012 2013 if (state == MEDIA_REQUEST_STATE_QUEUED) 2014 call_void_vb_qop(vb, buf_request_complete, vb); 2015 } 2016 2017 __vb2_buf_mem_finish(vb); 2018 2019 if (vb->prepared) { 2020 call_void_vb_qop(vb, buf_finish, vb); 2021 vb->prepared = 0; 2022 } 2023 __vb2_dqbuf(vb); 2024 2025 if (vb->req_obj.req) { 2026 media_request_object_unbind(&vb->req_obj); 2027 media_request_object_put(&vb->req_obj); 2028 } 2029 if (vb->request) 2030 media_request_put(vb->request); 2031 vb->request = NULL; 2032 vb->copied_timestamp = 0; 2033 } 2034 } 2035 2036 int vb2_core_streamon(struct vb2_queue *q, unsigned int type) 2037 { 2038 int ret; 2039 2040 if (type != q->type) { 2041 dprintk(q, 1, "invalid stream type\n"); 2042 return -EINVAL; 2043 } 2044 2045 if (q->streaming) { 2046 dprintk(q, 3, "already streaming\n"); 2047 return 0; 2048 } 2049 2050 if (!q->num_buffers) { 2051 dprintk(q, 1, "no buffers have been allocated\n"); 2052 return -EINVAL; 2053 } 2054 2055 if (q->num_buffers < q->min_buffers_needed) { 2056 dprintk(q, 1, "need at least %u allocated buffers\n", 2057 q->min_buffers_needed); 2058 return -EINVAL; 2059 } 2060 2061 /* 2062 * Tell driver to start streaming provided sufficient buffers 2063 * are available. 2064 */ 2065 if (q->queued_count >= q->min_buffers_needed) { 2066 ret = v4l_vb2q_enable_media_source(q); 2067 if (ret) 2068 return ret; 2069 ret = vb2_start_streaming(q); 2070 if (ret) 2071 return ret; 2072 } 2073 2074 q->streaming = 1; 2075 2076 dprintk(q, 3, "successful\n"); 2077 return 0; 2078 } 2079 EXPORT_SYMBOL_GPL(vb2_core_streamon); 2080 2081 void vb2_queue_error(struct vb2_queue *q) 2082 { 2083 q->error = 1; 2084 2085 wake_up_all(&q->done_wq); 2086 } 2087 EXPORT_SYMBOL_GPL(vb2_queue_error); 2088 2089 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type) 2090 { 2091 if (type != q->type) { 2092 dprintk(q, 1, "invalid stream type\n"); 2093 return -EINVAL; 2094 } 2095 2096 /* 2097 * Cancel will pause streaming and remove all buffers from the driver 2098 * and videobuf, effectively returning control over them to userspace. 2099 * 2100 * Note that we do this even if q->streaming == 0: if you prepare or 2101 * queue buffers, and then call streamoff without ever having called 2102 * streamon, you would still expect those buffers to be returned to 2103 * their normal dequeued state. 2104 */ 2105 __vb2_queue_cancel(q); 2106 q->waiting_for_buffers = !q->is_output; 2107 q->last_buffer_dequeued = false; 2108 2109 dprintk(q, 3, "successful\n"); 2110 return 0; 2111 } 2112 EXPORT_SYMBOL_GPL(vb2_core_streamoff); 2113 2114 /* 2115 * __find_plane_by_offset() - find plane associated with the given offset off 2116 */ 2117 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off, 2118 unsigned int *_buffer, unsigned int *_plane) 2119 { 2120 struct vb2_buffer *vb; 2121 unsigned int buffer, plane; 2122 2123 /* 2124 * Go over all buffers and their planes, comparing the given offset 2125 * with an offset assigned to each plane. If a match is found, 2126 * return its buffer and plane numbers. 2127 */ 2128 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 2129 vb = q->bufs[buffer]; 2130 2131 for (plane = 0; plane < vb->num_planes; ++plane) { 2132 if (vb->planes[plane].m.offset == off) { 2133 *_buffer = buffer; 2134 *_plane = plane; 2135 return 0; 2136 } 2137 } 2138 } 2139 2140 return -EINVAL; 2141 } 2142 2143 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, 2144 unsigned int index, unsigned int plane, unsigned int flags) 2145 { 2146 struct vb2_buffer *vb = NULL; 2147 struct vb2_plane *vb_plane; 2148 int ret; 2149 struct dma_buf *dbuf; 2150 2151 if (q->memory != VB2_MEMORY_MMAP) { 2152 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2153 return -EINVAL; 2154 } 2155 2156 if (!q->mem_ops->get_dmabuf) { 2157 dprintk(q, 1, "queue does not support DMA buffer exporting\n"); 2158 return -EINVAL; 2159 } 2160 2161 if (flags & ~(O_CLOEXEC | O_ACCMODE)) { 2162 dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n"); 2163 return -EINVAL; 2164 } 2165 2166 if (type != q->type) { 2167 dprintk(q, 1, "invalid buffer type\n"); 2168 return -EINVAL; 2169 } 2170 2171 if (index >= q->num_buffers) { 2172 dprintk(q, 1, "buffer index out of range\n"); 2173 return -EINVAL; 2174 } 2175 2176 vb = q->bufs[index]; 2177 2178 if (plane >= vb->num_planes) { 2179 dprintk(q, 1, "buffer plane out of range\n"); 2180 return -EINVAL; 2181 } 2182 2183 if (vb2_fileio_is_active(q)) { 2184 dprintk(q, 1, "expbuf: file io in progress\n"); 2185 return -EBUSY; 2186 } 2187 2188 vb_plane = &vb->planes[plane]; 2189 2190 dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv, 2191 flags & O_ACCMODE); 2192 if (IS_ERR_OR_NULL(dbuf)) { 2193 dprintk(q, 1, "failed to export buffer %d, plane %d\n", 2194 index, plane); 2195 return -EINVAL; 2196 } 2197 2198 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE); 2199 if (ret < 0) { 2200 dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n", 2201 index, plane, ret); 2202 dma_buf_put(dbuf); 2203 return ret; 2204 } 2205 2206 dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n", 2207 index, plane, ret); 2208 *fd = ret; 2209 2210 return 0; 2211 } 2212 EXPORT_SYMBOL_GPL(vb2_core_expbuf); 2213 2214 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma) 2215 { 2216 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 2217 struct vb2_buffer *vb; 2218 unsigned int buffer = 0, plane = 0; 2219 int ret; 2220 unsigned long length; 2221 2222 if (q->memory != VB2_MEMORY_MMAP) { 2223 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2224 return -EINVAL; 2225 } 2226 2227 /* 2228 * Check memory area access mode. 2229 */ 2230 if (!(vma->vm_flags & VM_SHARED)) { 2231 dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n"); 2232 return -EINVAL; 2233 } 2234 if (q->is_output) { 2235 if (!(vma->vm_flags & VM_WRITE)) { 2236 dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n"); 2237 return -EINVAL; 2238 } 2239 } else { 2240 if (!(vma->vm_flags & VM_READ)) { 2241 dprintk(q, 1, "invalid vma flags, VM_READ needed\n"); 2242 return -EINVAL; 2243 } 2244 } 2245 2246 mutex_lock(&q->mmap_lock); 2247 2248 if (vb2_fileio_is_active(q)) { 2249 dprintk(q, 1, "mmap: file io in progress\n"); 2250 ret = -EBUSY; 2251 goto unlock; 2252 } 2253 2254 /* 2255 * Find the plane corresponding to the offset passed by userspace. 2256 */ 2257 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2258 if (ret) 2259 goto unlock; 2260 2261 vb = q->bufs[buffer]; 2262 2263 /* 2264 * MMAP requires page_aligned buffers. 2265 * The buffer length was page_aligned at __vb2_buf_mem_alloc(), 2266 * so, we need to do the same here. 2267 */ 2268 length = PAGE_ALIGN(vb->planes[plane].length); 2269 if (length < (vma->vm_end - vma->vm_start)) { 2270 dprintk(q, 1, 2271 "MMAP invalid, as it would overflow buffer length\n"); 2272 ret = -EINVAL; 2273 goto unlock; 2274 } 2275 2276 /* 2277 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer, 2278 * not as a in-buffer offset. We always want to mmap a whole buffer 2279 * from its beginning. 2280 */ 2281 vma->vm_pgoff = 0; 2282 2283 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma); 2284 2285 unlock: 2286 mutex_unlock(&q->mmap_lock); 2287 if (ret) 2288 return ret; 2289 2290 dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane); 2291 return 0; 2292 } 2293 EXPORT_SYMBOL_GPL(vb2_mmap); 2294 2295 #ifndef CONFIG_MMU 2296 unsigned long vb2_get_unmapped_area(struct vb2_queue *q, 2297 unsigned long addr, 2298 unsigned long len, 2299 unsigned long pgoff, 2300 unsigned long flags) 2301 { 2302 unsigned long off = pgoff << PAGE_SHIFT; 2303 struct vb2_buffer *vb; 2304 unsigned int buffer, plane; 2305 void *vaddr; 2306 int ret; 2307 2308 if (q->memory != VB2_MEMORY_MMAP) { 2309 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2310 return -EINVAL; 2311 } 2312 2313 /* 2314 * Find the plane corresponding to the offset passed by userspace. 2315 */ 2316 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2317 if (ret) 2318 return ret; 2319 2320 vb = q->bufs[buffer]; 2321 2322 vaddr = vb2_plane_vaddr(vb, plane); 2323 return vaddr ? (unsigned long)vaddr : -EINVAL; 2324 } 2325 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area); 2326 #endif 2327 2328 int vb2_core_queue_init(struct vb2_queue *q) 2329 { 2330 /* 2331 * Sanity check 2332 */ 2333 if (WARN_ON(!q) || 2334 WARN_ON(!q->ops) || 2335 WARN_ON(!q->mem_ops) || 2336 WARN_ON(!q->type) || 2337 WARN_ON(!q->io_modes) || 2338 WARN_ON(!q->ops->queue_setup) || 2339 WARN_ON(!q->ops->buf_queue)) 2340 return -EINVAL; 2341 2342 if (WARN_ON(q->requires_requests && !q->supports_requests)) 2343 return -EINVAL; 2344 2345 INIT_LIST_HEAD(&q->queued_list); 2346 INIT_LIST_HEAD(&q->done_list); 2347 spin_lock_init(&q->done_lock); 2348 mutex_init(&q->mmap_lock); 2349 init_waitqueue_head(&q->done_wq); 2350 2351 q->memory = VB2_MEMORY_UNKNOWN; 2352 2353 if (q->buf_struct_size == 0) 2354 q->buf_struct_size = sizeof(struct vb2_buffer); 2355 2356 if (q->bidirectional) 2357 q->dma_dir = DMA_BIDIRECTIONAL; 2358 else 2359 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2360 2361 if (q->name[0] == '\0') 2362 snprintf(q->name, sizeof(q->name), "%s-%p", 2363 q->is_output ? "out" : "cap", q); 2364 2365 return 0; 2366 } 2367 EXPORT_SYMBOL_GPL(vb2_core_queue_init); 2368 2369 static int __vb2_init_fileio(struct vb2_queue *q, int read); 2370 static int __vb2_cleanup_fileio(struct vb2_queue *q); 2371 void vb2_core_queue_release(struct vb2_queue *q) 2372 { 2373 __vb2_cleanup_fileio(q); 2374 __vb2_queue_cancel(q); 2375 mutex_lock(&q->mmap_lock); 2376 __vb2_queue_free(q, q->num_buffers); 2377 mutex_unlock(&q->mmap_lock); 2378 } 2379 EXPORT_SYMBOL_GPL(vb2_core_queue_release); 2380 2381 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, 2382 poll_table *wait) 2383 { 2384 __poll_t req_events = poll_requested_events(wait); 2385 struct vb2_buffer *vb = NULL; 2386 unsigned long flags; 2387 2388 /* 2389 * poll_wait() MUST be called on the first invocation on all the 2390 * potential queues of interest, even if we are not interested in their 2391 * events during this first call. Failure to do so will result in 2392 * queue's events to be ignored because the poll_table won't be capable 2393 * of adding new wait queues thereafter. 2394 */ 2395 poll_wait(file, &q->done_wq, wait); 2396 2397 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM))) 2398 return 0; 2399 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM))) 2400 return 0; 2401 2402 /* 2403 * Start file I/O emulator only if streaming API has not been used yet. 2404 */ 2405 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) { 2406 if (!q->is_output && (q->io_modes & VB2_READ) && 2407 (req_events & (EPOLLIN | EPOLLRDNORM))) { 2408 if (__vb2_init_fileio(q, 1)) 2409 return EPOLLERR; 2410 } 2411 if (q->is_output && (q->io_modes & VB2_WRITE) && 2412 (req_events & (EPOLLOUT | EPOLLWRNORM))) { 2413 if (__vb2_init_fileio(q, 0)) 2414 return EPOLLERR; 2415 /* 2416 * Write to OUTPUT queue can be done immediately. 2417 */ 2418 return EPOLLOUT | EPOLLWRNORM; 2419 } 2420 } 2421 2422 /* 2423 * There is nothing to wait for if the queue isn't streaming, or if the 2424 * error flag is set. 2425 */ 2426 if (!vb2_is_streaming(q) || q->error) 2427 return EPOLLERR; 2428 2429 /* 2430 * If this quirk is set and QBUF hasn't been called yet then 2431 * return EPOLLERR as well. This only affects capture queues, output 2432 * queues will always initialize waiting_for_buffers to false. 2433 * This quirk is set by V4L2 for backwards compatibility reasons. 2434 */ 2435 if (q->quirk_poll_must_check_waiting_for_buffers && 2436 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM))) 2437 return EPOLLERR; 2438 2439 /* 2440 * For output streams you can call write() as long as there are fewer 2441 * buffers queued than there are buffers available. 2442 */ 2443 if (q->is_output && q->fileio && q->queued_count < q->num_buffers) 2444 return EPOLLOUT | EPOLLWRNORM; 2445 2446 if (list_empty(&q->done_list)) { 2447 /* 2448 * If the last buffer was dequeued from a capture queue, 2449 * return immediately. DQBUF will return -EPIPE. 2450 */ 2451 if (q->last_buffer_dequeued) 2452 return EPOLLIN | EPOLLRDNORM; 2453 } 2454 2455 /* 2456 * Take first buffer available for dequeuing. 2457 */ 2458 spin_lock_irqsave(&q->done_lock, flags); 2459 if (!list_empty(&q->done_list)) 2460 vb = list_first_entry(&q->done_list, struct vb2_buffer, 2461 done_entry); 2462 spin_unlock_irqrestore(&q->done_lock, flags); 2463 2464 if (vb && (vb->state == VB2_BUF_STATE_DONE 2465 || vb->state == VB2_BUF_STATE_ERROR)) { 2466 return (q->is_output) ? 2467 EPOLLOUT | EPOLLWRNORM : 2468 EPOLLIN | EPOLLRDNORM; 2469 } 2470 return 0; 2471 } 2472 EXPORT_SYMBOL_GPL(vb2_core_poll); 2473 2474 /* 2475 * struct vb2_fileio_buf - buffer context used by file io emulator 2476 * 2477 * vb2 provides a compatibility layer and emulator of file io (read and 2478 * write) calls on top of streaming API. This structure is used for 2479 * tracking context related to the buffers. 2480 */ 2481 struct vb2_fileio_buf { 2482 void *vaddr; 2483 unsigned int size; 2484 unsigned int pos; 2485 unsigned int queued:1; 2486 }; 2487 2488 /* 2489 * struct vb2_fileio_data - queue context used by file io emulator 2490 * 2491 * @cur_index: the index of the buffer currently being read from or 2492 * written to. If equal to q->num_buffers then a new buffer 2493 * must be dequeued. 2494 * @initial_index: in the read() case all buffers are queued up immediately 2495 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles 2496 * buffers. However, in the write() case no buffers are initially 2497 * queued, instead whenever a buffer is full it is queued up by 2498 * __vb2_perform_fileio(). Only once all available buffers have 2499 * been queued up will __vb2_perform_fileio() start to dequeue 2500 * buffers. This means that initially __vb2_perform_fileio() 2501 * needs to know what buffer index to use when it is queuing up 2502 * the buffers for the first time. That initial index is stored 2503 * in this field. Once it is equal to q->num_buffers all 2504 * available buffers have been queued and __vb2_perform_fileio() 2505 * should start the normal dequeue/queue cycle. 2506 * 2507 * vb2 provides a compatibility layer and emulator of file io (read and 2508 * write) calls on top of streaming API. For proper operation it required 2509 * this structure to save the driver state between each call of the read 2510 * or write function. 2511 */ 2512 struct vb2_fileio_data { 2513 unsigned int count; 2514 unsigned int type; 2515 unsigned int memory; 2516 struct vb2_fileio_buf bufs[VB2_MAX_FRAME]; 2517 unsigned int cur_index; 2518 unsigned int initial_index; 2519 unsigned int q_count; 2520 unsigned int dq_count; 2521 unsigned read_once:1; 2522 unsigned write_immediately:1; 2523 }; 2524 2525 /* 2526 * __vb2_init_fileio() - initialize file io emulator 2527 * @q: videobuf2 queue 2528 * @read: mode selector (1 means read, 0 means write) 2529 */ 2530 static int __vb2_init_fileio(struct vb2_queue *q, int read) 2531 { 2532 struct vb2_fileio_data *fileio; 2533 int i, ret; 2534 unsigned int count = 0; 2535 2536 /* 2537 * Sanity check 2538 */ 2539 if (WARN_ON((read && !(q->io_modes & VB2_READ)) || 2540 (!read && !(q->io_modes & VB2_WRITE)))) 2541 return -EINVAL; 2542 2543 /* 2544 * Check if device supports mapping buffers to kernel virtual space. 2545 */ 2546 if (!q->mem_ops->vaddr) 2547 return -EBUSY; 2548 2549 /* 2550 * Check if streaming api has not been already activated. 2551 */ 2552 if (q->streaming || q->num_buffers > 0) 2553 return -EBUSY; 2554 2555 /* 2556 * Start with count 1, driver can increase it in queue_setup() 2557 */ 2558 count = 1; 2559 2560 dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n", 2561 (read) ? "read" : "write", count, q->fileio_read_once, 2562 q->fileio_write_immediately); 2563 2564 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL); 2565 if (fileio == NULL) 2566 return -ENOMEM; 2567 2568 fileio->read_once = q->fileio_read_once; 2569 fileio->write_immediately = q->fileio_write_immediately; 2570 2571 /* 2572 * Request buffers and use MMAP type to force driver 2573 * to allocate buffers by itself. 2574 */ 2575 fileio->count = count; 2576 fileio->memory = VB2_MEMORY_MMAP; 2577 fileio->type = q->type; 2578 q->fileio = fileio; 2579 ret = vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2580 if (ret) 2581 goto err_kfree; 2582 2583 /* 2584 * Check if plane_count is correct 2585 * (multiplane buffers are not supported). 2586 */ 2587 if (q->bufs[0]->num_planes != 1) { 2588 ret = -EBUSY; 2589 goto err_reqbufs; 2590 } 2591 2592 /* 2593 * Get kernel address of each buffer. 2594 */ 2595 for (i = 0; i < q->num_buffers; i++) { 2596 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0); 2597 if (fileio->bufs[i].vaddr == NULL) { 2598 ret = -EINVAL; 2599 goto err_reqbufs; 2600 } 2601 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0); 2602 } 2603 2604 /* 2605 * Read mode requires pre queuing of all buffers. 2606 */ 2607 if (read) { 2608 /* 2609 * Queue all buffers. 2610 */ 2611 for (i = 0; i < q->num_buffers; i++) { 2612 ret = vb2_core_qbuf(q, i, NULL, NULL); 2613 if (ret) 2614 goto err_reqbufs; 2615 fileio->bufs[i].queued = 1; 2616 } 2617 /* 2618 * All buffers have been queued, so mark that by setting 2619 * initial_index to q->num_buffers 2620 */ 2621 fileio->initial_index = q->num_buffers; 2622 fileio->cur_index = q->num_buffers; 2623 } 2624 2625 /* 2626 * Start streaming. 2627 */ 2628 ret = vb2_core_streamon(q, q->type); 2629 if (ret) 2630 goto err_reqbufs; 2631 2632 return ret; 2633 2634 err_reqbufs: 2635 fileio->count = 0; 2636 vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2637 2638 err_kfree: 2639 q->fileio = NULL; 2640 kfree(fileio); 2641 return ret; 2642 } 2643 2644 /* 2645 * __vb2_cleanup_fileio() - free resourced used by file io emulator 2646 * @q: videobuf2 queue 2647 */ 2648 static int __vb2_cleanup_fileio(struct vb2_queue *q) 2649 { 2650 struct vb2_fileio_data *fileio = q->fileio; 2651 2652 if (fileio) { 2653 vb2_core_streamoff(q, q->type); 2654 q->fileio = NULL; 2655 fileio->count = 0; 2656 vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2657 kfree(fileio); 2658 dprintk(q, 3, "file io emulator closed\n"); 2659 } 2660 return 0; 2661 } 2662 2663 /* 2664 * __vb2_perform_fileio() - perform a single file io (read or write) operation 2665 * @q: videobuf2 queue 2666 * @data: pointed to target userspace buffer 2667 * @count: number of bytes to read or write 2668 * @ppos: file handle position tracking pointer 2669 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking) 2670 * @read: access mode selector (1 means read, 0 means write) 2671 */ 2672 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count, 2673 loff_t *ppos, int nonblock, int read) 2674 { 2675 struct vb2_fileio_data *fileio; 2676 struct vb2_fileio_buf *buf; 2677 bool is_multiplanar = q->is_multiplanar; 2678 /* 2679 * When using write() to write data to an output video node the vb2 core 2680 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody 2681 * else is able to provide this information with the write() operation. 2682 */ 2683 bool copy_timestamp = !read && q->copy_timestamp; 2684 unsigned index; 2685 int ret; 2686 2687 dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n", 2688 read ? "read" : "write", (long)*ppos, count, 2689 nonblock ? "non" : ""); 2690 2691 if (!data) 2692 return -EINVAL; 2693 2694 if (q->waiting_in_dqbuf) { 2695 dprintk(q, 3, "another dup()ped fd is %s\n", 2696 read ? "reading" : "writing"); 2697 return -EBUSY; 2698 } 2699 2700 /* 2701 * Initialize emulator on first call. 2702 */ 2703 if (!vb2_fileio_is_active(q)) { 2704 ret = __vb2_init_fileio(q, read); 2705 dprintk(q, 3, "vb2_init_fileio result: %d\n", ret); 2706 if (ret) 2707 return ret; 2708 } 2709 fileio = q->fileio; 2710 2711 /* 2712 * Check if we need to dequeue the buffer. 2713 */ 2714 index = fileio->cur_index; 2715 if (index >= q->num_buffers) { 2716 struct vb2_buffer *b; 2717 2718 /* 2719 * Call vb2_dqbuf to get buffer back. 2720 */ 2721 ret = vb2_core_dqbuf(q, &index, NULL, nonblock); 2722 dprintk(q, 5, "vb2_dqbuf result: %d\n", ret); 2723 if (ret) 2724 return ret; 2725 fileio->dq_count += 1; 2726 2727 fileio->cur_index = index; 2728 buf = &fileio->bufs[index]; 2729 b = q->bufs[index]; 2730 2731 /* 2732 * Get number of bytes filled by the driver 2733 */ 2734 buf->pos = 0; 2735 buf->queued = 0; 2736 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0) 2737 : vb2_plane_size(q->bufs[index], 0); 2738 /* Compensate for data_offset on read in the multiplanar case. */ 2739 if (is_multiplanar && read && 2740 b->planes[0].data_offset < buf->size) { 2741 buf->pos = b->planes[0].data_offset; 2742 buf->size -= buf->pos; 2743 } 2744 } else { 2745 buf = &fileio->bufs[index]; 2746 } 2747 2748 /* 2749 * Limit count on last few bytes of the buffer. 2750 */ 2751 if (buf->pos + count > buf->size) { 2752 count = buf->size - buf->pos; 2753 dprintk(q, 5, "reducing read count: %zd\n", count); 2754 } 2755 2756 /* 2757 * Transfer data to userspace. 2758 */ 2759 dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n", 2760 count, index, buf->pos); 2761 if (read) 2762 ret = copy_to_user(data, buf->vaddr + buf->pos, count); 2763 else 2764 ret = copy_from_user(buf->vaddr + buf->pos, data, count); 2765 if (ret) { 2766 dprintk(q, 3, "error copying data\n"); 2767 return -EFAULT; 2768 } 2769 2770 /* 2771 * Update counters. 2772 */ 2773 buf->pos += count; 2774 *ppos += count; 2775 2776 /* 2777 * Queue next buffer if required. 2778 */ 2779 if (buf->pos == buf->size || (!read && fileio->write_immediately)) { 2780 struct vb2_buffer *b = q->bufs[index]; 2781 2782 /* 2783 * Check if this is the last buffer to read. 2784 */ 2785 if (read && fileio->read_once && fileio->dq_count == 1) { 2786 dprintk(q, 3, "read limit reached\n"); 2787 return __vb2_cleanup_fileio(q); 2788 } 2789 2790 /* 2791 * Call vb2_qbuf and give buffer to the driver. 2792 */ 2793 b->planes[0].bytesused = buf->pos; 2794 2795 if (copy_timestamp) 2796 b->timestamp = ktime_get_ns(); 2797 ret = vb2_core_qbuf(q, index, NULL, NULL); 2798 dprintk(q, 5, "vb2_dbuf result: %d\n", ret); 2799 if (ret) 2800 return ret; 2801 2802 /* 2803 * Buffer has been queued, update the status 2804 */ 2805 buf->pos = 0; 2806 buf->queued = 1; 2807 buf->size = vb2_plane_size(q->bufs[index], 0); 2808 fileio->q_count += 1; 2809 /* 2810 * If we are queuing up buffers for the first time, then 2811 * increase initial_index by one. 2812 */ 2813 if (fileio->initial_index < q->num_buffers) 2814 fileio->initial_index++; 2815 /* 2816 * The next buffer to use is either a buffer that's going to be 2817 * queued for the first time (initial_index < q->num_buffers) 2818 * or it is equal to q->num_buffers, meaning that the next 2819 * time we need to dequeue a buffer since we've now queued up 2820 * all the 'first time' buffers. 2821 */ 2822 fileio->cur_index = fileio->initial_index; 2823 } 2824 2825 /* 2826 * Return proper number of bytes processed. 2827 */ 2828 if (ret == 0) 2829 ret = count; 2830 return ret; 2831 } 2832 2833 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, 2834 loff_t *ppos, int nonblocking) 2835 { 2836 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1); 2837 } 2838 EXPORT_SYMBOL_GPL(vb2_read); 2839 2840 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, 2841 loff_t *ppos, int nonblocking) 2842 { 2843 return __vb2_perform_fileio(q, (char __user *) data, count, 2844 ppos, nonblocking, 0); 2845 } 2846 EXPORT_SYMBOL_GPL(vb2_write); 2847 2848 struct vb2_threadio_data { 2849 struct task_struct *thread; 2850 vb2_thread_fnc fnc; 2851 void *priv; 2852 bool stop; 2853 }; 2854 2855 static int vb2_thread(void *data) 2856 { 2857 struct vb2_queue *q = data; 2858 struct vb2_threadio_data *threadio = q->threadio; 2859 bool copy_timestamp = false; 2860 unsigned prequeue = 0; 2861 unsigned index = 0; 2862 int ret = 0; 2863 2864 if (q->is_output) { 2865 prequeue = q->num_buffers; 2866 copy_timestamp = q->copy_timestamp; 2867 } 2868 2869 set_freezable(); 2870 2871 for (;;) { 2872 struct vb2_buffer *vb; 2873 2874 /* 2875 * Call vb2_dqbuf to get buffer back. 2876 */ 2877 if (prequeue) { 2878 vb = q->bufs[index++]; 2879 prequeue--; 2880 } else { 2881 call_void_qop(q, wait_finish, q); 2882 if (!threadio->stop) 2883 ret = vb2_core_dqbuf(q, &index, NULL, 0); 2884 call_void_qop(q, wait_prepare, q); 2885 dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret); 2886 if (!ret) 2887 vb = q->bufs[index]; 2888 } 2889 if (ret || threadio->stop) 2890 break; 2891 try_to_freeze(); 2892 2893 if (vb->state != VB2_BUF_STATE_ERROR) 2894 if (threadio->fnc(vb, threadio->priv)) 2895 break; 2896 call_void_qop(q, wait_finish, q); 2897 if (copy_timestamp) 2898 vb->timestamp = ktime_get_ns(); 2899 if (!threadio->stop) 2900 ret = vb2_core_qbuf(q, vb->index, NULL, NULL); 2901 call_void_qop(q, wait_prepare, q); 2902 if (ret || threadio->stop) 2903 break; 2904 } 2905 2906 /* Hmm, linux becomes *very* unhappy without this ... */ 2907 while (!kthread_should_stop()) { 2908 set_current_state(TASK_INTERRUPTIBLE); 2909 schedule(); 2910 } 2911 return 0; 2912 } 2913 2914 /* 2915 * This function should not be used for anything else but the videobuf2-dvb 2916 * support. If you think you have another good use-case for this, then please 2917 * contact the linux-media mailinglist first. 2918 */ 2919 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, 2920 const char *thread_name) 2921 { 2922 struct vb2_threadio_data *threadio; 2923 int ret = 0; 2924 2925 if (q->threadio) 2926 return -EBUSY; 2927 if (vb2_is_busy(q)) 2928 return -EBUSY; 2929 if (WARN_ON(q->fileio)) 2930 return -EBUSY; 2931 2932 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL); 2933 if (threadio == NULL) 2934 return -ENOMEM; 2935 threadio->fnc = fnc; 2936 threadio->priv = priv; 2937 2938 ret = __vb2_init_fileio(q, !q->is_output); 2939 dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret); 2940 if (ret) 2941 goto nomem; 2942 q->threadio = threadio; 2943 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name); 2944 if (IS_ERR(threadio->thread)) { 2945 ret = PTR_ERR(threadio->thread); 2946 threadio->thread = NULL; 2947 goto nothread; 2948 } 2949 return 0; 2950 2951 nothread: 2952 __vb2_cleanup_fileio(q); 2953 nomem: 2954 kfree(threadio); 2955 return ret; 2956 } 2957 EXPORT_SYMBOL_GPL(vb2_thread_start); 2958 2959 int vb2_thread_stop(struct vb2_queue *q) 2960 { 2961 struct vb2_threadio_data *threadio = q->threadio; 2962 int err; 2963 2964 if (threadio == NULL) 2965 return 0; 2966 threadio->stop = true; 2967 /* Wake up all pending sleeps in the thread */ 2968 vb2_queue_error(q); 2969 err = kthread_stop(threadio->thread); 2970 __vb2_cleanup_fileio(q); 2971 threadio->thread = NULL; 2972 kfree(threadio); 2973 q->threadio = NULL; 2974 return err; 2975 } 2976 EXPORT_SYMBOL_GPL(vb2_thread_stop); 2977 2978 MODULE_DESCRIPTION("Media buffer core framework"); 2979 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski"); 2980 MODULE_LICENSE("GPL"); 2981