xref: /openbmc/linux/drivers/media/common/videobuf2/videobuf2-core.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 /*
2  * videobuf2-core.c - video buffer 2 core framework
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  *
6  * Author: Pawel Osciak <pawel@osciak.com>
7  *	   Marek Szyprowski <m.szyprowski@samsung.com>
8  *
9  * The vb2_thread implementation was based on code from videobuf-dvb.c:
10  *	(c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/poll.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/freezer.h>
27 #include <linux/kthread.h>
28 
29 #include <media/videobuf2-core.h>
30 #include <media/v4l2-mc.h>
31 
32 #include <trace/events/vb2.h>
33 
34 static int debug;
35 module_param(debug, int, 0644);
36 
37 #define dprintk(q, level, fmt, arg...)					\
38 	do {								\
39 		if (debug >= level)					\
40 			pr_info("[%s] %s: " fmt, (q)->name, __func__,	\
41 				## arg);				\
42 	} while (0)
43 
44 #ifdef CONFIG_VIDEO_ADV_DEBUG
45 
46 /*
47  * If advanced debugging is on, then count how often each op is called
48  * successfully, which can either be per-buffer or per-queue.
49  *
50  * This makes it easy to check that the 'init' and 'cleanup'
51  * (and variations thereof) stay balanced.
52  */
53 
54 #define log_memop(vb, op)						\
55 	dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n",		\
56 		(vb)->index, #op,					\
57 		(vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
58 
59 #define call_memop(vb, op, args...)					\
60 ({									\
61 	struct vb2_queue *_q = (vb)->vb2_queue;				\
62 	int err;							\
63 									\
64 	log_memop(vb, op);						\
65 	err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0;		\
66 	if (!err)							\
67 		(vb)->cnt_mem_ ## op++;					\
68 	err;								\
69 })
70 
71 #define call_ptr_memop(op, vb, args...)					\
72 ({									\
73 	struct vb2_queue *_q = (vb)->vb2_queue;				\
74 	void *ptr;							\
75 									\
76 	log_memop(vb, op);						\
77 	ptr = _q->mem_ops->op ? _q->mem_ops->op(vb, args) : NULL;	\
78 	if (!IS_ERR_OR_NULL(ptr))					\
79 		(vb)->cnt_mem_ ## op++;					\
80 	ptr;								\
81 })
82 
83 #define call_void_memop(vb, op, args...)				\
84 ({									\
85 	struct vb2_queue *_q = (vb)->vb2_queue;				\
86 									\
87 	log_memop(vb, op);						\
88 	if (_q->mem_ops->op)						\
89 		_q->mem_ops->op(args);					\
90 	(vb)->cnt_mem_ ## op++;						\
91 })
92 
93 #define log_qop(q, op)							\
94 	dprintk(q, 2, "call_qop(%s)%s\n", #op,				\
95 		(q)->ops->op ? "" : " (nop)")
96 
97 #define call_qop(q, op, args...)					\
98 ({									\
99 	int err;							\
100 									\
101 	log_qop(q, op);							\
102 	err = (q)->ops->op ? (q)->ops->op(args) : 0;			\
103 	if (!err)							\
104 		(q)->cnt_ ## op++;					\
105 	err;								\
106 })
107 
108 #define call_void_qop(q, op, args...)					\
109 ({									\
110 	log_qop(q, op);							\
111 	if ((q)->ops->op)						\
112 		(q)->ops->op(args);					\
113 	(q)->cnt_ ## op++;						\
114 })
115 
116 #define log_vb_qop(vb, op, args...)					\
117 	dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n",		\
118 		(vb)->index, #op,					\
119 		(vb)->vb2_queue->ops->op ? "" : " (nop)")
120 
121 #define call_vb_qop(vb, op, args...)					\
122 ({									\
123 	int err;							\
124 									\
125 	log_vb_qop(vb, op);						\
126 	err = (vb)->vb2_queue->ops->op ?				\
127 		(vb)->vb2_queue->ops->op(args) : 0;			\
128 	if (!err)							\
129 		(vb)->cnt_ ## op++;					\
130 	err;								\
131 })
132 
133 #define call_void_vb_qop(vb, op, args...)				\
134 ({									\
135 	log_vb_qop(vb, op);						\
136 	if ((vb)->vb2_queue->ops->op)					\
137 		(vb)->vb2_queue->ops->op(args);				\
138 	(vb)->cnt_ ## op++;						\
139 })
140 
141 #else
142 
143 #define call_memop(vb, op, args...)					\
144 	((vb)->vb2_queue->mem_ops->op ?					\
145 		(vb)->vb2_queue->mem_ops->op(args) : 0)
146 
147 #define call_ptr_memop(op, vb, args...)					\
148 	((vb)->vb2_queue->mem_ops->op ?					\
149 		(vb)->vb2_queue->mem_ops->op(vb, args) : NULL)
150 
151 #define call_void_memop(vb, op, args...)				\
152 	do {								\
153 		if ((vb)->vb2_queue->mem_ops->op)			\
154 			(vb)->vb2_queue->mem_ops->op(args);		\
155 	} while (0)
156 
157 #define call_qop(q, op, args...)					\
158 	((q)->ops->op ? (q)->ops->op(args) : 0)
159 
160 #define call_void_qop(q, op, args...)					\
161 	do {								\
162 		if ((q)->ops->op)					\
163 			(q)->ops->op(args);				\
164 	} while (0)
165 
166 #define call_vb_qop(vb, op, args...)					\
167 	((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
168 
169 #define call_void_vb_qop(vb, op, args...)				\
170 	do {								\
171 		if ((vb)->vb2_queue->ops->op)				\
172 			(vb)->vb2_queue->ops->op(args);			\
173 	} while (0)
174 
175 #endif
176 
177 #define call_bufop(q, op, args...)					\
178 ({									\
179 	int ret = 0;							\
180 	if (q && q->buf_ops && q->buf_ops->op)				\
181 		ret = q->buf_ops->op(args);				\
182 	ret;								\
183 })
184 
185 #define call_void_bufop(q, op, args...)					\
186 ({									\
187 	if (q && q->buf_ops && q->buf_ops->op)				\
188 		q->buf_ops->op(args);					\
189 })
190 
191 static void __vb2_queue_cancel(struct vb2_queue *q);
192 static void __enqueue_in_driver(struct vb2_buffer *vb);
193 
194 static const char *vb2_state_name(enum vb2_buffer_state s)
195 {
196 	static const char * const state_names[] = {
197 		[VB2_BUF_STATE_DEQUEUED] = "dequeued",
198 		[VB2_BUF_STATE_IN_REQUEST] = "in request",
199 		[VB2_BUF_STATE_PREPARING] = "preparing",
200 		[VB2_BUF_STATE_QUEUED] = "queued",
201 		[VB2_BUF_STATE_ACTIVE] = "active",
202 		[VB2_BUF_STATE_DONE] = "done",
203 		[VB2_BUF_STATE_ERROR] = "error",
204 	};
205 
206 	if ((unsigned int)(s) < ARRAY_SIZE(state_names))
207 		return state_names[s];
208 	return "unknown";
209 }
210 
211 /*
212  * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
213  */
214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
215 {
216 	struct vb2_queue *q = vb->vb2_queue;
217 	void *mem_priv;
218 	int plane;
219 	int ret = -ENOMEM;
220 
221 	/*
222 	 * Allocate memory for all planes in this buffer
223 	 * NOTE: mmapped areas should be page aligned
224 	 */
225 	for (plane = 0; plane < vb->num_planes; ++plane) {
226 		/* Memops alloc requires size to be page aligned. */
227 		unsigned long size = PAGE_ALIGN(vb->planes[plane].length);
228 
229 		/* Did it wrap around? */
230 		if (size < vb->planes[plane].length)
231 			goto free;
232 
233 		mem_priv = call_ptr_memop(alloc,
234 					  vb,
235 					  q->alloc_devs[plane] ? : q->dev,
236 					  size);
237 		if (IS_ERR_OR_NULL(mem_priv)) {
238 			if (mem_priv)
239 				ret = PTR_ERR(mem_priv);
240 			goto free;
241 		}
242 
243 		/* Associate allocator private data with this plane */
244 		vb->planes[plane].mem_priv = mem_priv;
245 	}
246 
247 	return 0;
248 free:
249 	/* Free already allocated memory if one of the allocations failed */
250 	for (; plane > 0; --plane) {
251 		call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
252 		vb->planes[plane - 1].mem_priv = NULL;
253 	}
254 
255 	return ret;
256 }
257 
258 /*
259  * __vb2_buf_mem_free() - free memory of the given buffer
260  */
261 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
262 {
263 	unsigned int plane;
264 
265 	for (plane = 0; plane < vb->num_planes; ++plane) {
266 		call_void_memop(vb, put, vb->planes[plane].mem_priv);
267 		vb->planes[plane].mem_priv = NULL;
268 		dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n",
269 			plane, vb->index);
270 	}
271 }
272 
273 /*
274  * __vb2_buf_userptr_put() - release userspace memory associated with
275  * a USERPTR buffer
276  */
277 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
278 {
279 	unsigned int plane;
280 
281 	for (plane = 0; plane < vb->num_planes; ++plane) {
282 		if (vb->planes[plane].mem_priv)
283 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
284 		vb->planes[plane].mem_priv = NULL;
285 	}
286 }
287 
288 /*
289  * __vb2_plane_dmabuf_put() - release memory associated with
290  * a DMABUF shared plane
291  */
292 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
293 {
294 	if (!p->mem_priv)
295 		return;
296 
297 	if (p->dbuf_mapped)
298 		call_void_memop(vb, unmap_dmabuf, p->mem_priv);
299 
300 	call_void_memop(vb, detach_dmabuf, p->mem_priv);
301 	dma_buf_put(p->dbuf);
302 	p->mem_priv = NULL;
303 	p->dbuf = NULL;
304 	p->dbuf_mapped = 0;
305 }
306 
307 /*
308  * __vb2_buf_dmabuf_put() - release memory associated with
309  * a DMABUF shared buffer
310  */
311 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
312 {
313 	unsigned int plane;
314 
315 	for (plane = 0; plane < vb->num_planes; ++plane)
316 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
317 }
318 
319 /*
320  * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory
321  * to sync caches
322  */
323 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb)
324 {
325 	unsigned int plane;
326 
327 	if (vb->synced)
328 		return;
329 
330 	vb->synced = 1;
331 	for (plane = 0; plane < vb->num_planes; ++plane)
332 		call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
333 }
334 
335 /*
336  * __vb2_buf_mem_finish() - call ->finish on buffer's private memory
337  * to sync caches
338  */
339 static void __vb2_buf_mem_finish(struct vb2_buffer *vb)
340 {
341 	unsigned int plane;
342 
343 	if (!vb->synced)
344 		return;
345 
346 	vb->synced = 0;
347 	for (plane = 0; plane < vb->num_planes; ++plane)
348 		call_void_memop(vb, finish, vb->planes[plane].mem_priv);
349 }
350 
351 /*
352  * __setup_offsets() - setup unique offsets ("cookies") for every plane in
353  * the buffer.
354  */
355 static void __setup_offsets(struct vb2_buffer *vb)
356 {
357 	struct vb2_queue *q = vb->vb2_queue;
358 	unsigned int plane;
359 	unsigned long off = 0;
360 
361 	if (vb->index) {
362 		struct vb2_buffer *prev = q->bufs[vb->index - 1];
363 		struct vb2_plane *p = &prev->planes[prev->num_planes - 1];
364 
365 		off = PAGE_ALIGN(p->m.offset + p->length);
366 	}
367 
368 	for (plane = 0; plane < vb->num_planes; ++plane) {
369 		vb->planes[plane].m.offset = off;
370 
371 		dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n",
372 				vb->index, plane, off);
373 
374 		off += vb->planes[plane].length;
375 		off = PAGE_ALIGN(off);
376 	}
377 }
378 
379 static void init_buffer_cache_hints(struct vb2_queue *q, struct vb2_buffer *vb)
380 {
381 	/*
382 	 * DMA exporter should take care of cache syncs, so we can avoid
383 	 * explicit ->prepare()/->finish() syncs. For other ->memory types
384 	 * we always need ->prepare() or/and ->finish() cache sync.
385 	 */
386 	if (q->memory == VB2_MEMORY_DMABUF) {
387 		vb->skip_cache_sync_on_finish = 1;
388 		vb->skip_cache_sync_on_prepare = 1;
389 		return;
390 	}
391 
392 	/*
393 	 * ->finish() cache sync can be avoided when queue direction is
394 	 * TO_DEVICE.
395 	 */
396 	if (q->dma_dir == DMA_TO_DEVICE)
397 		vb->skip_cache_sync_on_finish = 1;
398 }
399 
400 /*
401  * __vb2_queue_alloc() - allocate vb2 buffer structures and (for MMAP type)
402  * video buffer memory for all buffers/planes on the queue and initializes the
403  * queue
404  *
405  * Returns the number of buffers successfully allocated.
406  */
407 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory,
408 			     unsigned int num_buffers, unsigned int num_planes,
409 			     const unsigned plane_sizes[VB2_MAX_PLANES])
410 {
411 	unsigned int buffer, plane;
412 	struct vb2_buffer *vb;
413 	int ret;
414 
415 	/* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */
416 	num_buffers = min_t(unsigned int, num_buffers,
417 			    VB2_MAX_FRAME - q->num_buffers);
418 
419 	for (buffer = 0; buffer < num_buffers; ++buffer) {
420 		/* Allocate vb2 buffer structures */
421 		vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
422 		if (!vb) {
423 			dprintk(q, 1, "memory alloc for buffer struct failed\n");
424 			break;
425 		}
426 
427 		vb->state = VB2_BUF_STATE_DEQUEUED;
428 		vb->vb2_queue = q;
429 		vb->num_planes = num_planes;
430 		vb->index = q->num_buffers + buffer;
431 		vb->type = q->type;
432 		vb->memory = memory;
433 		init_buffer_cache_hints(q, vb);
434 		for (plane = 0; plane < num_planes; ++plane) {
435 			vb->planes[plane].length = plane_sizes[plane];
436 			vb->planes[plane].min_length = plane_sizes[plane];
437 		}
438 		call_void_bufop(q, init_buffer, vb);
439 
440 		q->bufs[vb->index] = vb;
441 
442 		/* Allocate video buffer memory for the MMAP type */
443 		if (memory == VB2_MEMORY_MMAP) {
444 			ret = __vb2_buf_mem_alloc(vb);
445 			if (ret) {
446 				dprintk(q, 1, "failed allocating memory for buffer %d\n",
447 					buffer);
448 				q->bufs[vb->index] = NULL;
449 				kfree(vb);
450 				break;
451 			}
452 			__setup_offsets(vb);
453 			/*
454 			 * Call the driver-provided buffer initialization
455 			 * callback, if given. An error in initialization
456 			 * results in queue setup failure.
457 			 */
458 			ret = call_vb_qop(vb, buf_init, vb);
459 			if (ret) {
460 				dprintk(q, 1, "buffer %d %p initialization failed\n",
461 					buffer, vb);
462 				__vb2_buf_mem_free(vb);
463 				q->bufs[vb->index] = NULL;
464 				kfree(vb);
465 				break;
466 			}
467 		}
468 	}
469 
470 	dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n",
471 		buffer, num_planes);
472 
473 	return buffer;
474 }
475 
476 /*
477  * __vb2_free_mem() - release all video buffer memory for a given queue
478  */
479 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
480 {
481 	unsigned int buffer;
482 	struct vb2_buffer *vb;
483 
484 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
485 	     ++buffer) {
486 		vb = q->bufs[buffer];
487 		if (!vb)
488 			continue;
489 
490 		/* Free MMAP buffers or release USERPTR buffers */
491 		if (q->memory == VB2_MEMORY_MMAP)
492 			__vb2_buf_mem_free(vb);
493 		else if (q->memory == VB2_MEMORY_DMABUF)
494 			__vb2_buf_dmabuf_put(vb);
495 		else
496 			__vb2_buf_userptr_put(vb);
497 	}
498 }
499 
500 /*
501  * __vb2_queue_free() - free buffers at the end of the queue - video memory and
502  * related information, if no buffers are left return the queue to an
503  * uninitialized state. Might be called even if the queue has already been freed.
504  */
505 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
506 {
507 	unsigned int buffer;
508 
509 	/*
510 	 * Sanity check: when preparing a buffer the queue lock is released for
511 	 * a short while (see __buf_prepare for the details), which would allow
512 	 * a race with a reqbufs which can call this function. Removing the
513 	 * buffers from underneath __buf_prepare is obviously a bad idea, so we
514 	 * check if any of the buffers is in the state PREPARING, and if so we
515 	 * just return -EAGAIN.
516 	 */
517 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
518 	     ++buffer) {
519 		if (q->bufs[buffer] == NULL)
520 			continue;
521 		if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
522 			dprintk(q, 1, "preparing buffers, cannot free\n");
523 			return -EAGAIN;
524 		}
525 	}
526 
527 	/* Call driver-provided cleanup function for each buffer, if provided */
528 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
529 	     ++buffer) {
530 		struct vb2_buffer *vb = q->bufs[buffer];
531 
532 		if (vb && vb->planes[0].mem_priv)
533 			call_void_vb_qop(vb, buf_cleanup, vb);
534 	}
535 
536 	/* Release video buffer memory */
537 	__vb2_free_mem(q, buffers);
538 
539 #ifdef CONFIG_VIDEO_ADV_DEBUG
540 	/*
541 	 * Check that all the calls were balances during the life-time of this
542 	 * queue. If not (or if the debug level is 1 or up), then dump the
543 	 * counters to the kernel log.
544 	 */
545 	if (q->num_buffers) {
546 		bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
547 				  q->cnt_prepare_streaming != q->cnt_unprepare_streaming ||
548 				  q->cnt_wait_prepare != q->cnt_wait_finish;
549 
550 		if (unbalanced || debug) {
551 			pr_info("counters for queue %p:%s\n", q,
552 				unbalanced ? " UNBALANCED!" : "");
553 			pr_info("     setup: %u start_streaming: %u stop_streaming: %u\n",
554 				q->cnt_queue_setup, q->cnt_start_streaming,
555 				q->cnt_stop_streaming);
556 			pr_info("     prepare_streaming: %u unprepare_streaming: %u\n",
557 				q->cnt_prepare_streaming, q->cnt_unprepare_streaming);
558 			pr_info("     wait_prepare: %u wait_finish: %u\n",
559 				q->cnt_wait_prepare, q->cnt_wait_finish);
560 		}
561 		q->cnt_queue_setup = 0;
562 		q->cnt_wait_prepare = 0;
563 		q->cnt_wait_finish = 0;
564 		q->cnt_prepare_streaming = 0;
565 		q->cnt_start_streaming = 0;
566 		q->cnt_stop_streaming = 0;
567 		q->cnt_unprepare_streaming = 0;
568 	}
569 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
570 		struct vb2_buffer *vb = q->bufs[buffer];
571 		bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
572 				  vb->cnt_mem_prepare != vb->cnt_mem_finish ||
573 				  vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
574 				  vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
575 				  vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
576 				  vb->cnt_buf_queue != vb->cnt_buf_done ||
577 				  vb->cnt_buf_prepare != vb->cnt_buf_finish ||
578 				  vb->cnt_buf_init != vb->cnt_buf_cleanup;
579 
580 		if (unbalanced || debug) {
581 			pr_info("   counters for queue %p, buffer %d:%s\n",
582 				q, buffer, unbalanced ? " UNBALANCED!" : "");
583 			pr_info("     buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
584 				vb->cnt_buf_init, vb->cnt_buf_cleanup,
585 				vb->cnt_buf_prepare, vb->cnt_buf_finish);
586 			pr_info("     buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n",
587 				vb->cnt_buf_out_validate, vb->cnt_buf_queue,
588 				vb->cnt_buf_done, vb->cnt_buf_request_complete);
589 			pr_info("     alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
590 				vb->cnt_mem_alloc, vb->cnt_mem_put,
591 				vb->cnt_mem_prepare, vb->cnt_mem_finish,
592 				vb->cnt_mem_mmap);
593 			pr_info("     get_userptr: %u put_userptr: %u\n",
594 				vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
595 			pr_info("     attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
596 				vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
597 				vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
598 			pr_info("     get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
599 				vb->cnt_mem_get_dmabuf,
600 				vb->cnt_mem_num_users,
601 				vb->cnt_mem_vaddr,
602 				vb->cnt_mem_cookie);
603 		}
604 	}
605 #endif
606 
607 	/* Free vb2 buffers */
608 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
609 	     ++buffer) {
610 		kfree(q->bufs[buffer]);
611 		q->bufs[buffer] = NULL;
612 	}
613 
614 	q->num_buffers -= buffers;
615 	if (!q->num_buffers) {
616 		q->memory = VB2_MEMORY_UNKNOWN;
617 		INIT_LIST_HEAD(&q->queued_list);
618 	}
619 	return 0;
620 }
621 
622 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
623 {
624 	unsigned int plane;
625 	for (plane = 0; plane < vb->num_planes; ++plane) {
626 		void *mem_priv = vb->planes[plane].mem_priv;
627 		/*
628 		 * If num_users() has not been provided, call_memop
629 		 * will return 0, apparently nobody cares about this
630 		 * case anyway. If num_users() returns more than 1,
631 		 * we are not the only user of the plane's memory.
632 		 */
633 		if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
634 			return true;
635 	}
636 	return false;
637 }
638 EXPORT_SYMBOL(vb2_buffer_in_use);
639 
640 /*
641  * __buffers_in_use() - return true if any buffers on the queue are in use and
642  * the queue cannot be freed (by the means of REQBUFS(0)) call
643  */
644 static bool __buffers_in_use(struct vb2_queue *q)
645 {
646 	unsigned int buffer;
647 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
648 		if (vb2_buffer_in_use(q, q->bufs[buffer]))
649 			return true;
650 	}
651 	return false;
652 }
653 
654 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb)
655 {
656 	call_void_bufop(q, fill_user_buffer, q->bufs[index], pb);
657 }
658 EXPORT_SYMBOL_GPL(vb2_core_querybuf);
659 
660 /*
661  * __verify_userptr_ops() - verify that all memory operations required for
662  * USERPTR queue type have been provided
663  */
664 static int __verify_userptr_ops(struct vb2_queue *q)
665 {
666 	if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
667 	    !q->mem_ops->put_userptr)
668 		return -EINVAL;
669 
670 	return 0;
671 }
672 
673 /*
674  * __verify_mmap_ops() - verify that all memory operations required for
675  * MMAP queue type have been provided
676  */
677 static int __verify_mmap_ops(struct vb2_queue *q)
678 {
679 	if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
680 	    !q->mem_ops->put || !q->mem_ops->mmap)
681 		return -EINVAL;
682 
683 	return 0;
684 }
685 
686 /*
687  * __verify_dmabuf_ops() - verify that all memory operations required for
688  * DMABUF queue type have been provided
689  */
690 static int __verify_dmabuf_ops(struct vb2_queue *q)
691 {
692 	if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
693 	    !q->mem_ops->detach_dmabuf  || !q->mem_ops->map_dmabuf ||
694 	    !q->mem_ops->unmap_dmabuf)
695 		return -EINVAL;
696 
697 	return 0;
698 }
699 
700 int vb2_verify_memory_type(struct vb2_queue *q,
701 		enum vb2_memory memory, unsigned int type)
702 {
703 	if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR &&
704 	    memory != VB2_MEMORY_DMABUF) {
705 		dprintk(q, 1, "unsupported memory type\n");
706 		return -EINVAL;
707 	}
708 
709 	if (type != q->type) {
710 		dprintk(q, 1, "requested type is incorrect\n");
711 		return -EINVAL;
712 	}
713 
714 	/*
715 	 * Make sure all the required memory ops for given memory type
716 	 * are available.
717 	 */
718 	if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) {
719 		dprintk(q, 1, "MMAP for current setup unsupported\n");
720 		return -EINVAL;
721 	}
722 
723 	if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
724 		dprintk(q, 1, "USERPTR for current setup unsupported\n");
725 		return -EINVAL;
726 	}
727 
728 	if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
729 		dprintk(q, 1, "DMABUF for current setup unsupported\n");
730 		return -EINVAL;
731 	}
732 
733 	/*
734 	 * Place the busy tests at the end: -EBUSY can be ignored when
735 	 * create_bufs is called with count == 0, but count == 0 should still
736 	 * do the memory and type validation.
737 	 */
738 	if (vb2_fileio_is_active(q)) {
739 		dprintk(q, 1, "file io in progress\n");
740 		return -EBUSY;
741 	}
742 	return 0;
743 }
744 EXPORT_SYMBOL(vb2_verify_memory_type);
745 
746 static void set_queue_coherency(struct vb2_queue *q, bool non_coherent_mem)
747 {
748 	q->non_coherent_mem = 0;
749 
750 	if (!vb2_queue_allows_cache_hints(q))
751 		return;
752 	q->non_coherent_mem = non_coherent_mem;
753 }
754 
755 static bool verify_coherency_flags(struct vb2_queue *q, bool non_coherent_mem)
756 {
757 	if (non_coherent_mem != q->non_coherent_mem) {
758 		dprintk(q, 1, "memory coherency model mismatch\n");
759 		return false;
760 	}
761 	return true;
762 }
763 
764 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
765 		     unsigned int flags, unsigned int *count)
766 {
767 	unsigned int num_buffers, allocated_buffers, num_planes = 0;
768 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
769 	bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT;
770 	unsigned int i;
771 	int ret;
772 
773 	if (q->streaming) {
774 		dprintk(q, 1, "streaming active\n");
775 		return -EBUSY;
776 	}
777 
778 	if (q->waiting_in_dqbuf && *count) {
779 		dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
780 		return -EBUSY;
781 	}
782 
783 	if (*count == 0 || q->num_buffers != 0 ||
784 	    (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory) ||
785 	    !verify_coherency_flags(q, non_coherent_mem)) {
786 		/*
787 		 * We already have buffers allocated, so first check if they
788 		 * are not in use and can be freed.
789 		 */
790 		mutex_lock(&q->mmap_lock);
791 		if (debug && q->memory == VB2_MEMORY_MMAP &&
792 		    __buffers_in_use(q))
793 			dprintk(q, 1, "memory in use, orphaning buffers\n");
794 
795 		/*
796 		 * Call queue_cancel to clean up any buffers in the
797 		 * QUEUED state which is possible if buffers were prepared or
798 		 * queued without ever calling STREAMON.
799 		 */
800 		__vb2_queue_cancel(q);
801 		ret = __vb2_queue_free(q, q->num_buffers);
802 		mutex_unlock(&q->mmap_lock);
803 		if (ret)
804 			return ret;
805 
806 		/*
807 		 * In case of REQBUFS(0) return immediately without calling
808 		 * driver's queue_setup() callback and allocating resources.
809 		 */
810 		if (*count == 0)
811 			return 0;
812 	}
813 
814 	/*
815 	 * Make sure the requested values and current defaults are sane.
816 	 */
817 	WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME);
818 	num_buffers = max_t(unsigned int, *count, q->min_buffers_needed);
819 	num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME);
820 	memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
821 	/*
822 	 * Set this now to ensure that drivers see the correct q->memory value
823 	 * in the queue_setup op.
824 	 */
825 	mutex_lock(&q->mmap_lock);
826 	q->memory = memory;
827 	mutex_unlock(&q->mmap_lock);
828 	set_queue_coherency(q, non_coherent_mem);
829 
830 	/*
831 	 * Ask the driver how many buffers and planes per buffer it requires.
832 	 * Driver also sets the size and allocator context for each plane.
833 	 */
834 	ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes,
835 		       plane_sizes, q->alloc_devs);
836 	if (ret)
837 		goto error;
838 
839 	/* Check that driver has set sane values */
840 	if (WARN_ON(!num_planes)) {
841 		ret = -EINVAL;
842 		goto error;
843 	}
844 
845 	for (i = 0; i < num_planes; i++)
846 		if (WARN_ON(!plane_sizes[i])) {
847 			ret = -EINVAL;
848 			goto error;
849 		}
850 
851 	/* Finally, allocate buffers and video memory */
852 	allocated_buffers =
853 		__vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes);
854 	if (allocated_buffers == 0) {
855 		dprintk(q, 1, "memory allocation failed\n");
856 		ret = -ENOMEM;
857 		goto error;
858 	}
859 
860 	/*
861 	 * There is no point in continuing if we can't allocate the minimum
862 	 * number of buffers needed by this vb2_queue.
863 	 */
864 	if (allocated_buffers < q->min_buffers_needed)
865 		ret = -ENOMEM;
866 
867 	/*
868 	 * Check if driver can handle the allocated number of buffers.
869 	 */
870 	if (!ret && allocated_buffers < num_buffers) {
871 		num_buffers = allocated_buffers;
872 		/*
873 		 * num_planes is set by the previous queue_setup(), but since it
874 		 * signals to queue_setup() whether it is called from create_bufs()
875 		 * vs reqbufs() we zero it here to signal that queue_setup() is
876 		 * called for the reqbufs() case.
877 		 */
878 		num_planes = 0;
879 
880 		ret = call_qop(q, queue_setup, q, &num_buffers,
881 			       &num_planes, plane_sizes, q->alloc_devs);
882 
883 		if (!ret && allocated_buffers < num_buffers)
884 			ret = -ENOMEM;
885 
886 		/*
887 		 * Either the driver has accepted a smaller number of buffers,
888 		 * or .queue_setup() returned an error
889 		 */
890 	}
891 
892 	mutex_lock(&q->mmap_lock);
893 	q->num_buffers = allocated_buffers;
894 
895 	if (ret < 0) {
896 		/*
897 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
898 		 * from q->num_buffers and it will reset q->memory to
899 		 * VB2_MEMORY_UNKNOWN.
900 		 */
901 		__vb2_queue_free(q, allocated_buffers);
902 		mutex_unlock(&q->mmap_lock);
903 		return ret;
904 	}
905 	mutex_unlock(&q->mmap_lock);
906 
907 	/*
908 	 * Return the number of successfully allocated buffers
909 	 * to the userspace.
910 	 */
911 	*count = allocated_buffers;
912 	q->waiting_for_buffers = !q->is_output;
913 
914 	return 0;
915 
916 error:
917 	mutex_lock(&q->mmap_lock);
918 	q->memory = VB2_MEMORY_UNKNOWN;
919 	mutex_unlock(&q->mmap_lock);
920 	return ret;
921 }
922 EXPORT_SYMBOL_GPL(vb2_core_reqbufs);
923 
924 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
925 			 unsigned int flags, unsigned int *count,
926 			 unsigned int requested_planes,
927 			 const unsigned int requested_sizes[])
928 {
929 	unsigned int num_planes = 0, num_buffers, allocated_buffers;
930 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
931 	bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT;
932 	bool no_previous_buffers = !q->num_buffers;
933 	int ret;
934 
935 	if (q->num_buffers == VB2_MAX_FRAME) {
936 		dprintk(q, 1, "maximum number of buffers already allocated\n");
937 		return -ENOBUFS;
938 	}
939 
940 	if (no_previous_buffers) {
941 		if (q->waiting_in_dqbuf && *count) {
942 			dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
943 			return -EBUSY;
944 		}
945 		memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
946 		/*
947 		 * Set this now to ensure that drivers see the correct q->memory
948 		 * value in the queue_setup op.
949 		 */
950 		mutex_lock(&q->mmap_lock);
951 		q->memory = memory;
952 		mutex_unlock(&q->mmap_lock);
953 		q->waiting_for_buffers = !q->is_output;
954 		set_queue_coherency(q, non_coherent_mem);
955 	} else {
956 		if (q->memory != memory) {
957 			dprintk(q, 1, "memory model mismatch\n");
958 			return -EINVAL;
959 		}
960 		if (!verify_coherency_flags(q, non_coherent_mem))
961 			return -EINVAL;
962 	}
963 
964 	num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers);
965 
966 	if (requested_planes && requested_sizes) {
967 		num_planes = requested_planes;
968 		memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes));
969 	}
970 
971 	/*
972 	 * Ask the driver, whether the requested number of buffers, planes per
973 	 * buffer and their sizes are acceptable
974 	 */
975 	ret = call_qop(q, queue_setup, q, &num_buffers,
976 		       &num_planes, plane_sizes, q->alloc_devs);
977 	if (ret)
978 		goto error;
979 
980 	/* Finally, allocate buffers and video memory */
981 	allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers,
982 				num_planes, plane_sizes);
983 	if (allocated_buffers == 0) {
984 		dprintk(q, 1, "memory allocation failed\n");
985 		ret = -ENOMEM;
986 		goto error;
987 	}
988 
989 	/*
990 	 * Check if driver can handle the so far allocated number of buffers.
991 	 */
992 	if (allocated_buffers < num_buffers) {
993 		num_buffers = allocated_buffers;
994 
995 		/*
996 		 * q->num_buffers contains the total number of buffers, that the
997 		 * queue driver has set up
998 		 */
999 		ret = call_qop(q, queue_setup, q, &num_buffers,
1000 			       &num_planes, plane_sizes, q->alloc_devs);
1001 
1002 		if (!ret && allocated_buffers < num_buffers)
1003 			ret = -ENOMEM;
1004 
1005 		/*
1006 		 * Either the driver has accepted a smaller number of buffers,
1007 		 * or .queue_setup() returned an error
1008 		 */
1009 	}
1010 
1011 	mutex_lock(&q->mmap_lock);
1012 	q->num_buffers += allocated_buffers;
1013 
1014 	if (ret < 0) {
1015 		/*
1016 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
1017 		 * from q->num_buffers and it will reset q->memory to
1018 		 * VB2_MEMORY_UNKNOWN.
1019 		 */
1020 		__vb2_queue_free(q, allocated_buffers);
1021 		mutex_unlock(&q->mmap_lock);
1022 		return -ENOMEM;
1023 	}
1024 	mutex_unlock(&q->mmap_lock);
1025 
1026 	/*
1027 	 * Return the number of successfully allocated buffers
1028 	 * to the userspace.
1029 	 */
1030 	*count = allocated_buffers;
1031 
1032 	return 0;
1033 
1034 error:
1035 	if (no_previous_buffers) {
1036 		mutex_lock(&q->mmap_lock);
1037 		q->memory = VB2_MEMORY_UNKNOWN;
1038 		mutex_unlock(&q->mmap_lock);
1039 	}
1040 	return ret;
1041 }
1042 EXPORT_SYMBOL_GPL(vb2_core_create_bufs);
1043 
1044 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1045 {
1046 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1047 		return NULL;
1048 
1049 	return call_ptr_memop(vaddr, vb, vb->planes[plane_no].mem_priv);
1050 
1051 }
1052 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1053 
1054 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1055 {
1056 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1057 		return NULL;
1058 
1059 	return call_ptr_memop(cookie, vb, vb->planes[plane_no].mem_priv);
1060 }
1061 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1062 
1063 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1064 {
1065 	struct vb2_queue *q = vb->vb2_queue;
1066 	unsigned long flags;
1067 
1068 	if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1069 		return;
1070 
1071 	if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1072 		    state != VB2_BUF_STATE_ERROR &&
1073 		    state != VB2_BUF_STATE_QUEUED))
1074 		state = VB2_BUF_STATE_ERROR;
1075 
1076 #ifdef CONFIG_VIDEO_ADV_DEBUG
1077 	/*
1078 	 * Although this is not a callback, it still does have to balance
1079 	 * with the buf_queue op. So update this counter manually.
1080 	 */
1081 	vb->cnt_buf_done++;
1082 #endif
1083 	dprintk(q, 4, "done processing on buffer %d, state: %s\n",
1084 		vb->index, vb2_state_name(state));
1085 
1086 	if (state != VB2_BUF_STATE_QUEUED)
1087 		__vb2_buf_mem_finish(vb);
1088 
1089 	spin_lock_irqsave(&q->done_lock, flags);
1090 	if (state == VB2_BUF_STATE_QUEUED) {
1091 		vb->state = VB2_BUF_STATE_QUEUED;
1092 	} else {
1093 		/* Add the buffer to the done buffers list */
1094 		list_add_tail(&vb->done_entry, &q->done_list);
1095 		vb->state = state;
1096 	}
1097 	atomic_dec(&q->owned_by_drv_count);
1098 
1099 	if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) {
1100 		media_request_object_unbind(&vb->req_obj);
1101 		media_request_object_put(&vb->req_obj);
1102 	}
1103 
1104 	spin_unlock_irqrestore(&q->done_lock, flags);
1105 
1106 	trace_vb2_buf_done(q, vb);
1107 
1108 	switch (state) {
1109 	case VB2_BUF_STATE_QUEUED:
1110 		return;
1111 	default:
1112 		/* Inform any processes that may be waiting for buffers */
1113 		wake_up(&q->done_wq);
1114 		break;
1115 	}
1116 }
1117 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1118 
1119 void vb2_discard_done(struct vb2_queue *q)
1120 {
1121 	struct vb2_buffer *vb;
1122 	unsigned long flags;
1123 
1124 	spin_lock_irqsave(&q->done_lock, flags);
1125 	list_for_each_entry(vb, &q->done_list, done_entry)
1126 		vb->state = VB2_BUF_STATE_ERROR;
1127 	spin_unlock_irqrestore(&q->done_lock, flags);
1128 }
1129 EXPORT_SYMBOL_GPL(vb2_discard_done);
1130 
1131 /*
1132  * __prepare_mmap() - prepare an MMAP buffer
1133  */
1134 static int __prepare_mmap(struct vb2_buffer *vb)
1135 {
1136 	int ret = 0;
1137 
1138 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1139 			 vb, vb->planes);
1140 	return ret ? ret : call_vb_qop(vb, buf_prepare, vb);
1141 }
1142 
1143 /*
1144  * __prepare_userptr() - prepare a USERPTR buffer
1145  */
1146 static int __prepare_userptr(struct vb2_buffer *vb)
1147 {
1148 	struct vb2_plane planes[VB2_MAX_PLANES];
1149 	struct vb2_queue *q = vb->vb2_queue;
1150 	void *mem_priv;
1151 	unsigned int plane;
1152 	int ret = 0;
1153 	bool reacquired = vb->planes[0].mem_priv == NULL;
1154 
1155 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1156 	/* Copy relevant information provided by the userspace */
1157 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1158 			 vb, planes);
1159 	if (ret)
1160 		return ret;
1161 
1162 	for (plane = 0; plane < vb->num_planes; ++plane) {
1163 		/* Skip the plane if already verified */
1164 		if (vb->planes[plane].m.userptr &&
1165 			vb->planes[plane].m.userptr == planes[plane].m.userptr
1166 			&& vb->planes[plane].length == planes[plane].length)
1167 			continue;
1168 
1169 		dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n",
1170 			plane);
1171 
1172 		/* Check if the provided plane buffer is large enough */
1173 		if (planes[plane].length < vb->planes[plane].min_length) {
1174 			dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n",
1175 						planes[plane].length,
1176 						vb->planes[plane].min_length,
1177 						plane);
1178 			ret = -EINVAL;
1179 			goto err;
1180 		}
1181 
1182 		/* Release previously acquired memory if present */
1183 		if (vb->planes[plane].mem_priv) {
1184 			if (!reacquired) {
1185 				reacquired = true;
1186 				vb->copied_timestamp = 0;
1187 				call_void_vb_qop(vb, buf_cleanup, vb);
1188 			}
1189 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1190 		}
1191 
1192 		vb->planes[plane].mem_priv = NULL;
1193 		vb->planes[plane].bytesused = 0;
1194 		vb->planes[plane].length = 0;
1195 		vb->planes[plane].m.userptr = 0;
1196 		vb->planes[plane].data_offset = 0;
1197 
1198 		/* Acquire each plane's memory */
1199 		mem_priv = call_ptr_memop(get_userptr,
1200 					  vb,
1201 					  q->alloc_devs[plane] ? : q->dev,
1202 					  planes[plane].m.userptr,
1203 					  planes[plane].length);
1204 		if (IS_ERR(mem_priv)) {
1205 			dprintk(q, 1, "failed acquiring userspace memory for plane %d\n",
1206 				plane);
1207 			ret = PTR_ERR(mem_priv);
1208 			goto err;
1209 		}
1210 		vb->planes[plane].mem_priv = mem_priv;
1211 	}
1212 
1213 	/*
1214 	 * Now that everything is in order, copy relevant information
1215 	 * provided by userspace.
1216 	 */
1217 	for (plane = 0; plane < vb->num_planes; ++plane) {
1218 		vb->planes[plane].bytesused = planes[plane].bytesused;
1219 		vb->planes[plane].length = planes[plane].length;
1220 		vb->planes[plane].m.userptr = planes[plane].m.userptr;
1221 		vb->planes[plane].data_offset = planes[plane].data_offset;
1222 	}
1223 
1224 	if (reacquired) {
1225 		/*
1226 		 * One or more planes changed, so we must call buf_init to do
1227 		 * the driver-specific initialization on the newly acquired
1228 		 * buffer, if provided.
1229 		 */
1230 		ret = call_vb_qop(vb, buf_init, vb);
1231 		if (ret) {
1232 			dprintk(q, 1, "buffer initialization failed\n");
1233 			goto err;
1234 		}
1235 	}
1236 
1237 	ret = call_vb_qop(vb, buf_prepare, vb);
1238 	if (ret) {
1239 		dprintk(q, 1, "buffer preparation failed\n");
1240 		call_void_vb_qop(vb, buf_cleanup, vb);
1241 		goto err;
1242 	}
1243 
1244 	return 0;
1245 err:
1246 	/* In case of errors, release planes that were already acquired */
1247 	for (plane = 0; plane < vb->num_planes; ++plane) {
1248 		if (vb->planes[plane].mem_priv)
1249 			call_void_memop(vb, put_userptr,
1250 				vb->planes[plane].mem_priv);
1251 		vb->planes[plane].mem_priv = NULL;
1252 		vb->planes[plane].m.userptr = 0;
1253 		vb->planes[plane].length = 0;
1254 	}
1255 
1256 	return ret;
1257 }
1258 
1259 /*
1260  * __prepare_dmabuf() - prepare a DMABUF buffer
1261  */
1262 static int __prepare_dmabuf(struct vb2_buffer *vb)
1263 {
1264 	struct vb2_plane planes[VB2_MAX_PLANES];
1265 	struct vb2_queue *q = vb->vb2_queue;
1266 	void *mem_priv;
1267 	unsigned int plane;
1268 	int ret = 0;
1269 	bool reacquired = vb->planes[0].mem_priv == NULL;
1270 
1271 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1272 	/* Copy relevant information provided by the userspace */
1273 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1274 			 vb, planes);
1275 	if (ret)
1276 		return ret;
1277 
1278 	for (plane = 0; plane < vb->num_planes; ++plane) {
1279 		struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1280 
1281 		if (IS_ERR_OR_NULL(dbuf)) {
1282 			dprintk(q, 1, "invalid dmabuf fd for plane %d\n",
1283 				plane);
1284 			ret = -EINVAL;
1285 			goto err;
1286 		}
1287 
1288 		/* use DMABUF size if length is not provided */
1289 		if (planes[plane].length == 0)
1290 			planes[plane].length = dbuf->size;
1291 
1292 		if (planes[plane].length < vb->planes[plane].min_length) {
1293 			dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n",
1294 				planes[plane].length, plane,
1295 				vb->planes[plane].min_length);
1296 			dma_buf_put(dbuf);
1297 			ret = -EINVAL;
1298 			goto err;
1299 		}
1300 
1301 		/* Skip the plane if already verified */
1302 		if (dbuf == vb->planes[plane].dbuf &&
1303 			vb->planes[plane].length == planes[plane].length) {
1304 			dma_buf_put(dbuf);
1305 			continue;
1306 		}
1307 
1308 		dprintk(q, 3, "buffer for plane %d changed\n", plane);
1309 
1310 		if (!reacquired) {
1311 			reacquired = true;
1312 			vb->copied_timestamp = 0;
1313 			call_void_vb_qop(vb, buf_cleanup, vb);
1314 		}
1315 
1316 		/* Release previously acquired memory if present */
1317 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1318 		vb->planes[plane].bytesused = 0;
1319 		vb->planes[plane].length = 0;
1320 		vb->planes[plane].m.fd = 0;
1321 		vb->planes[plane].data_offset = 0;
1322 
1323 		/* Acquire each plane's memory */
1324 		mem_priv = call_ptr_memop(attach_dmabuf,
1325 					  vb,
1326 					  q->alloc_devs[plane] ? : q->dev,
1327 					  dbuf,
1328 					  planes[plane].length);
1329 		if (IS_ERR(mem_priv)) {
1330 			dprintk(q, 1, "failed to attach dmabuf\n");
1331 			ret = PTR_ERR(mem_priv);
1332 			dma_buf_put(dbuf);
1333 			goto err;
1334 		}
1335 
1336 		vb->planes[plane].dbuf = dbuf;
1337 		vb->planes[plane].mem_priv = mem_priv;
1338 	}
1339 
1340 	/*
1341 	 * This pins the buffer(s) with dma_buf_map_attachment()). It's done
1342 	 * here instead just before the DMA, while queueing the buffer(s) so
1343 	 * userspace knows sooner rather than later if the dma-buf map fails.
1344 	 */
1345 	for (plane = 0; plane < vb->num_planes; ++plane) {
1346 		if (vb->planes[plane].dbuf_mapped)
1347 			continue;
1348 
1349 		ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1350 		if (ret) {
1351 			dprintk(q, 1, "failed to map dmabuf for plane %d\n",
1352 				plane);
1353 			goto err;
1354 		}
1355 		vb->planes[plane].dbuf_mapped = 1;
1356 	}
1357 
1358 	/*
1359 	 * Now that everything is in order, copy relevant information
1360 	 * provided by userspace.
1361 	 */
1362 	for (plane = 0; plane < vb->num_planes; ++plane) {
1363 		vb->planes[plane].bytesused = planes[plane].bytesused;
1364 		vb->planes[plane].length = planes[plane].length;
1365 		vb->planes[plane].m.fd = planes[plane].m.fd;
1366 		vb->planes[plane].data_offset = planes[plane].data_offset;
1367 	}
1368 
1369 	if (reacquired) {
1370 		/*
1371 		 * Call driver-specific initialization on the newly acquired buffer,
1372 		 * if provided.
1373 		 */
1374 		ret = call_vb_qop(vb, buf_init, vb);
1375 		if (ret) {
1376 			dprintk(q, 1, "buffer initialization failed\n");
1377 			goto err;
1378 		}
1379 	}
1380 
1381 	ret = call_vb_qop(vb, buf_prepare, vb);
1382 	if (ret) {
1383 		dprintk(q, 1, "buffer preparation failed\n");
1384 		call_void_vb_qop(vb, buf_cleanup, vb);
1385 		goto err;
1386 	}
1387 
1388 	return 0;
1389 err:
1390 	/* In case of errors, release planes that were already acquired */
1391 	__vb2_buf_dmabuf_put(vb);
1392 
1393 	return ret;
1394 }
1395 
1396 /*
1397  * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1398  */
1399 static void __enqueue_in_driver(struct vb2_buffer *vb)
1400 {
1401 	struct vb2_queue *q = vb->vb2_queue;
1402 
1403 	vb->state = VB2_BUF_STATE_ACTIVE;
1404 	atomic_inc(&q->owned_by_drv_count);
1405 
1406 	trace_vb2_buf_queue(q, vb);
1407 
1408 	call_void_vb_qop(vb, buf_queue, vb);
1409 }
1410 
1411 static int __buf_prepare(struct vb2_buffer *vb)
1412 {
1413 	struct vb2_queue *q = vb->vb2_queue;
1414 	enum vb2_buffer_state orig_state = vb->state;
1415 	int ret;
1416 
1417 	if (q->error) {
1418 		dprintk(q, 1, "fatal error occurred on queue\n");
1419 		return -EIO;
1420 	}
1421 
1422 	if (vb->prepared)
1423 		return 0;
1424 	WARN_ON(vb->synced);
1425 
1426 	if (q->is_output) {
1427 		ret = call_vb_qop(vb, buf_out_validate, vb);
1428 		if (ret) {
1429 			dprintk(q, 1, "buffer validation failed\n");
1430 			return ret;
1431 		}
1432 	}
1433 
1434 	vb->state = VB2_BUF_STATE_PREPARING;
1435 
1436 	switch (q->memory) {
1437 	case VB2_MEMORY_MMAP:
1438 		ret = __prepare_mmap(vb);
1439 		break;
1440 	case VB2_MEMORY_USERPTR:
1441 		ret = __prepare_userptr(vb);
1442 		break;
1443 	case VB2_MEMORY_DMABUF:
1444 		ret = __prepare_dmabuf(vb);
1445 		break;
1446 	default:
1447 		WARN(1, "Invalid queue type\n");
1448 		ret = -EINVAL;
1449 		break;
1450 	}
1451 
1452 	if (ret) {
1453 		dprintk(q, 1, "buffer preparation failed: %d\n", ret);
1454 		vb->state = orig_state;
1455 		return ret;
1456 	}
1457 
1458 	__vb2_buf_mem_prepare(vb);
1459 	vb->prepared = 1;
1460 	vb->state = orig_state;
1461 
1462 	return 0;
1463 }
1464 
1465 static int vb2_req_prepare(struct media_request_object *obj)
1466 {
1467 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1468 	int ret;
1469 
1470 	if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST))
1471 		return -EINVAL;
1472 
1473 	mutex_lock(vb->vb2_queue->lock);
1474 	ret = __buf_prepare(vb);
1475 	mutex_unlock(vb->vb2_queue->lock);
1476 	return ret;
1477 }
1478 
1479 static void __vb2_dqbuf(struct vb2_buffer *vb);
1480 
1481 static void vb2_req_unprepare(struct media_request_object *obj)
1482 {
1483 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1484 
1485 	mutex_lock(vb->vb2_queue->lock);
1486 	__vb2_dqbuf(vb);
1487 	vb->state = VB2_BUF_STATE_IN_REQUEST;
1488 	mutex_unlock(vb->vb2_queue->lock);
1489 	WARN_ON(!vb->req_obj.req);
1490 }
1491 
1492 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
1493 		  struct media_request *req);
1494 
1495 static void vb2_req_queue(struct media_request_object *obj)
1496 {
1497 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1498 	int err;
1499 
1500 	mutex_lock(vb->vb2_queue->lock);
1501 	/*
1502 	 * There is no method to propagate an error from vb2_core_qbuf(),
1503 	 * so if this returns a non-0 value, then WARN.
1504 	 *
1505 	 * The only exception is -EIO which is returned if q->error is
1506 	 * set. We just ignore that, and expect this will be caught the
1507 	 * next time vb2_req_prepare() is called.
1508 	 */
1509 	err = vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL);
1510 	WARN_ON_ONCE(err && err != -EIO);
1511 	mutex_unlock(vb->vb2_queue->lock);
1512 }
1513 
1514 static void vb2_req_unbind(struct media_request_object *obj)
1515 {
1516 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1517 
1518 	if (vb->state == VB2_BUF_STATE_IN_REQUEST)
1519 		call_void_bufop(vb->vb2_queue, init_buffer, vb);
1520 }
1521 
1522 static void vb2_req_release(struct media_request_object *obj)
1523 {
1524 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1525 
1526 	if (vb->state == VB2_BUF_STATE_IN_REQUEST) {
1527 		vb->state = VB2_BUF_STATE_DEQUEUED;
1528 		if (vb->request)
1529 			media_request_put(vb->request);
1530 		vb->request = NULL;
1531 	}
1532 }
1533 
1534 static const struct media_request_object_ops vb2_core_req_ops = {
1535 	.prepare = vb2_req_prepare,
1536 	.unprepare = vb2_req_unprepare,
1537 	.queue = vb2_req_queue,
1538 	.unbind = vb2_req_unbind,
1539 	.release = vb2_req_release,
1540 };
1541 
1542 bool vb2_request_object_is_buffer(struct media_request_object *obj)
1543 {
1544 	return obj->ops == &vb2_core_req_ops;
1545 }
1546 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer);
1547 
1548 unsigned int vb2_request_buffer_cnt(struct media_request *req)
1549 {
1550 	struct media_request_object *obj;
1551 	unsigned long flags;
1552 	unsigned int buffer_cnt = 0;
1553 
1554 	spin_lock_irqsave(&req->lock, flags);
1555 	list_for_each_entry(obj, &req->objects, list)
1556 		if (vb2_request_object_is_buffer(obj))
1557 			buffer_cnt++;
1558 	spin_unlock_irqrestore(&req->lock, flags);
1559 
1560 	return buffer_cnt;
1561 }
1562 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt);
1563 
1564 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb)
1565 {
1566 	struct vb2_buffer *vb;
1567 	int ret;
1568 
1569 	vb = q->bufs[index];
1570 	if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1571 		dprintk(q, 1, "invalid buffer state %s\n",
1572 			vb2_state_name(vb->state));
1573 		return -EINVAL;
1574 	}
1575 	if (vb->prepared) {
1576 		dprintk(q, 1, "buffer already prepared\n");
1577 		return -EINVAL;
1578 	}
1579 
1580 	ret = __buf_prepare(vb);
1581 	if (ret)
1582 		return ret;
1583 
1584 	/* Fill buffer information for the userspace */
1585 	call_void_bufop(q, fill_user_buffer, vb, pb);
1586 
1587 	dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index);
1588 
1589 	return 0;
1590 }
1591 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf);
1592 
1593 /*
1594  * vb2_start_streaming() - Attempt to start streaming.
1595  * @q:		videobuf2 queue
1596  *
1597  * Attempt to start streaming. When this function is called there must be
1598  * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1599  * number of buffers required for the DMA engine to function). If the
1600  * @start_streaming op fails it is supposed to return all the driver-owned
1601  * buffers back to vb2 in state QUEUED. Check if that happened and if
1602  * not warn and reclaim them forcefully.
1603  */
1604 static int vb2_start_streaming(struct vb2_queue *q)
1605 {
1606 	struct vb2_buffer *vb;
1607 	int ret;
1608 
1609 	/*
1610 	 * If any buffers were queued before streamon,
1611 	 * we can now pass them to driver for processing.
1612 	 */
1613 	list_for_each_entry(vb, &q->queued_list, queued_entry)
1614 		__enqueue_in_driver(vb);
1615 
1616 	/* Tell the driver to start streaming */
1617 	q->start_streaming_called = 1;
1618 	ret = call_qop(q, start_streaming, q,
1619 		       atomic_read(&q->owned_by_drv_count));
1620 	if (!ret)
1621 		return 0;
1622 
1623 	q->start_streaming_called = 0;
1624 
1625 	dprintk(q, 1, "driver refused to start streaming\n");
1626 	/*
1627 	 * If you see this warning, then the driver isn't cleaning up properly
1628 	 * after a failed start_streaming(). See the start_streaming()
1629 	 * documentation in videobuf2-core.h for more information how buffers
1630 	 * should be returned to vb2 in start_streaming().
1631 	 */
1632 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1633 		unsigned i;
1634 
1635 		/*
1636 		 * Forcefully reclaim buffers if the driver did not
1637 		 * correctly return them to vb2.
1638 		 */
1639 		for (i = 0; i < q->num_buffers; ++i) {
1640 			vb = q->bufs[i];
1641 			if (vb->state == VB2_BUF_STATE_ACTIVE)
1642 				vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1643 		}
1644 		/* Must be zero now */
1645 		WARN_ON(atomic_read(&q->owned_by_drv_count));
1646 	}
1647 	/*
1648 	 * If done_list is not empty, then start_streaming() didn't call
1649 	 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1650 	 * STATE_DONE.
1651 	 */
1652 	WARN_ON(!list_empty(&q->done_list));
1653 	return ret;
1654 }
1655 
1656 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
1657 		  struct media_request *req)
1658 {
1659 	struct vb2_buffer *vb;
1660 	enum vb2_buffer_state orig_state;
1661 	int ret;
1662 
1663 	if (q->error) {
1664 		dprintk(q, 1, "fatal error occurred on queue\n");
1665 		return -EIO;
1666 	}
1667 
1668 	vb = q->bufs[index];
1669 
1670 	if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1671 	    q->requires_requests) {
1672 		dprintk(q, 1, "qbuf requires a request\n");
1673 		return -EBADR;
1674 	}
1675 
1676 	if ((req && q->uses_qbuf) ||
1677 	    (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1678 	     q->uses_requests)) {
1679 		dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n");
1680 		return -EBUSY;
1681 	}
1682 
1683 	if (req) {
1684 		int ret;
1685 
1686 		q->uses_requests = 1;
1687 		if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1688 			dprintk(q, 1, "buffer %d not in dequeued state\n",
1689 				vb->index);
1690 			return -EINVAL;
1691 		}
1692 
1693 		if (q->is_output && !vb->prepared) {
1694 			ret = call_vb_qop(vb, buf_out_validate, vb);
1695 			if (ret) {
1696 				dprintk(q, 1, "buffer validation failed\n");
1697 				return ret;
1698 			}
1699 		}
1700 
1701 		media_request_object_init(&vb->req_obj);
1702 
1703 		/* Make sure the request is in a safe state for updating. */
1704 		ret = media_request_lock_for_update(req);
1705 		if (ret)
1706 			return ret;
1707 		ret = media_request_object_bind(req, &vb2_core_req_ops,
1708 						q, true, &vb->req_obj);
1709 		media_request_unlock_for_update(req);
1710 		if (ret)
1711 			return ret;
1712 
1713 		vb->state = VB2_BUF_STATE_IN_REQUEST;
1714 
1715 		/*
1716 		 * Increment the refcount and store the request.
1717 		 * The request refcount is decremented again when the
1718 		 * buffer is dequeued. This is to prevent vb2_buffer_done()
1719 		 * from freeing the request from interrupt context, which can
1720 		 * happen if the application closed the request fd after
1721 		 * queueing the request.
1722 		 */
1723 		media_request_get(req);
1724 		vb->request = req;
1725 
1726 		/* Fill buffer information for the userspace */
1727 		if (pb) {
1728 			call_void_bufop(q, copy_timestamp, vb, pb);
1729 			call_void_bufop(q, fill_user_buffer, vb, pb);
1730 		}
1731 
1732 		dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1733 		return 0;
1734 	}
1735 
1736 	if (vb->state != VB2_BUF_STATE_IN_REQUEST)
1737 		q->uses_qbuf = 1;
1738 
1739 	switch (vb->state) {
1740 	case VB2_BUF_STATE_DEQUEUED:
1741 	case VB2_BUF_STATE_IN_REQUEST:
1742 		if (!vb->prepared) {
1743 			ret = __buf_prepare(vb);
1744 			if (ret)
1745 				return ret;
1746 		}
1747 		break;
1748 	case VB2_BUF_STATE_PREPARING:
1749 		dprintk(q, 1, "buffer still being prepared\n");
1750 		return -EINVAL;
1751 	default:
1752 		dprintk(q, 1, "invalid buffer state %s\n",
1753 			vb2_state_name(vb->state));
1754 		return -EINVAL;
1755 	}
1756 
1757 	/*
1758 	 * Add to the queued buffers list, a buffer will stay on it until
1759 	 * dequeued in dqbuf.
1760 	 */
1761 	orig_state = vb->state;
1762 	list_add_tail(&vb->queued_entry, &q->queued_list);
1763 	q->queued_count++;
1764 	q->waiting_for_buffers = false;
1765 	vb->state = VB2_BUF_STATE_QUEUED;
1766 
1767 	if (pb)
1768 		call_void_bufop(q, copy_timestamp, vb, pb);
1769 
1770 	trace_vb2_qbuf(q, vb);
1771 
1772 	/*
1773 	 * If already streaming, give the buffer to driver for processing.
1774 	 * If not, the buffer will be given to driver on next streamon.
1775 	 */
1776 	if (q->start_streaming_called)
1777 		__enqueue_in_driver(vb);
1778 
1779 	/* Fill buffer information for the userspace */
1780 	if (pb)
1781 		call_void_bufop(q, fill_user_buffer, vb, pb);
1782 
1783 	/*
1784 	 * If streamon has been called, and we haven't yet called
1785 	 * start_streaming() since not enough buffers were queued, and
1786 	 * we now have reached the minimum number of queued buffers,
1787 	 * then we can finally call start_streaming().
1788 	 */
1789 	if (q->streaming && !q->start_streaming_called &&
1790 	    q->queued_count >= q->min_buffers_needed) {
1791 		ret = vb2_start_streaming(q);
1792 		if (ret) {
1793 			/*
1794 			 * Since vb2_core_qbuf will return with an error,
1795 			 * we should return it to state DEQUEUED since
1796 			 * the error indicates that the buffer wasn't queued.
1797 			 */
1798 			list_del(&vb->queued_entry);
1799 			q->queued_count--;
1800 			vb->state = orig_state;
1801 			return ret;
1802 		}
1803 	}
1804 
1805 	dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL_GPL(vb2_core_qbuf);
1809 
1810 /*
1811  * __vb2_wait_for_done_vb() - wait for a buffer to become available
1812  * for dequeuing
1813  *
1814  * Will sleep if required for nonblocking == false.
1815  */
1816 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1817 {
1818 	/*
1819 	 * All operations on vb_done_list are performed under done_lock
1820 	 * spinlock protection. However, buffers may be removed from
1821 	 * it and returned to userspace only while holding both driver's
1822 	 * lock and the done_lock spinlock. Thus we can be sure that as
1823 	 * long as we hold the driver's lock, the list will remain not
1824 	 * empty if list_empty() check succeeds.
1825 	 */
1826 
1827 	for (;;) {
1828 		int ret;
1829 
1830 		if (q->waiting_in_dqbuf) {
1831 			dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
1832 			return -EBUSY;
1833 		}
1834 
1835 		if (!q->streaming) {
1836 			dprintk(q, 1, "streaming off, will not wait for buffers\n");
1837 			return -EINVAL;
1838 		}
1839 
1840 		if (q->error) {
1841 			dprintk(q, 1, "Queue in error state, will not wait for buffers\n");
1842 			return -EIO;
1843 		}
1844 
1845 		if (q->last_buffer_dequeued) {
1846 			dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n");
1847 			return -EPIPE;
1848 		}
1849 
1850 		if (!list_empty(&q->done_list)) {
1851 			/*
1852 			 * Found a buffer that we were waiting for.
1853 			 */
1854 			break;
1855 		}
1856 
1857 		if (nonblocking) {
1858 			dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n");
1859 			return -EAGAIN;
1860 		}
1861 
1862 		q->waiting_in_dqbuf = 1;
1863 		/*
1864 		 * We are streaming and blocking, wait for another buffer to
1865 		 * become ready or for streamoff. Driver's lock is released to
1866 		 * allow streamoff or qbuf to be called while waiting.
1867 		 */
1868 		call_void_qop(q, wait_prepare, q);
1869 
1870 		/*
1871 		 * All locks have been released, it is safe to sleep now.
1872 		 */
1873 		dprintk(q, 3, "will sleep waiting for buffers\n");
1874 		ret = wait_event_interruptible(q->done_wq,
1875 				!list_empty(&q->done_list) || !q->streaming ||
1876 				q->error);
1877 
1878 		/*
1879 		 * We need to reevaluate both conditions again after reacquiring
1880 		 * the locks or return an error if one occurred.
1881 		 */
1882 		call_void_qop(q, wait_finish, q);
1883 		q->waiting_in_dqbuf = 0;
1884 		if (ret) {
1885 			dprintk(q, 1, "sleep was interrupted\n");
1886 			return ret;
1887 		}
1888 	}
1889 	return 0;
1890 }
1891 
1892 /*
1893  * __vb2_get_done_vb() - get a buffer ready for dequeuing
1894  *
1895  * Will sleep if required for nonblocking == false.
1896  */
1897 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
1898 			     void *pb, int nonblocking)
1899 {
1900 	unsigned long flags;
1901 	int ret = 0;
1902 
1903 	/*
1904 	 * Wait for at least one buffer to become available on the done_list.
1905 	 */
1906 	ret = __vb2_wait_for_done_vb(q, nonblocking);
1907 	if (ret)
1908 		return ret;
1909 
1910 	/*
1911 	 * Driver's lock has been held since we last verified that done_list
1912 	 * is not empty, so no need for another list_empty(done_list) check.
1913 	 */
1914 	spin_lock_irqsave(&q->done_lock, flags);
1915 	*vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
1916 	/*
1917 	 * Only remove the buffer from done_list if all planes can be
1918 	 * handled. Some cases such as V4L2 file I/O and DVB have pb
1919 	 * == NULL; skip the check then as there's nothing to verify.
1920 	 */
1921 	if (pb)
1922 		ret = call_bufop(q, verify_planes_array, *vb, pb);
1923 	if (!ret)
1924 		list_del(&(*vb)->done_entry);
1925 	spin_unlock_irqrestore(&q->done_lock, flags);
1926 
1927 	return ret;
1928 }
1929 
1930 int vb2_wait_for_all_buffers(struct vb2_queue *q)
1931 {
1932 	if (!q->streaming) {
1933 		dprintk(q, 1, "streaming off, will not wait for buffers\n");
1934 		return -EINVAL;
1935 	}
1936 
1937 	if (q->start_streaming_called)
1938 		wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
1939 	return 0;
1940 }
1941 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
1942 
1943 /*
1944  * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
1945  */
1946 static void __vb2_dqbuf(struct vb2_buffer *vb)
1947 {
1948 	struct vb2_queue *q = vb->vb2_queue;
1949 
1950 	/* nothing to do if the buffer is already dequeued */
1951 	if (vb->state == VB2_BUF_STATE_DEQUEUED)
1952 		return;
1953 
1954 	vb->state = VB2_BUF_STATE_DEQUEUED;
1955 
1956 	call_void_bufop(q, init_buffer, vb);
1957 }
1958 
1959 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
1960 		   bool nonblocking)
1961 {
1962 	struct vb2_buffer *vb = NULL;
1963 	int ret;
1964 
1965 	ret = __vb2_get_done_vb(q, &vb, pb, nonblocking);
1966 	if (ret < 0)
1967 		return ret;
1968 
1969 	switch (vb->state) {
1970 	case VB2_BUF_STATE_DONE:
1971 		dprintk(q, 3, "returning done buffer\n");
1972 		break;
1973 	case VB2_BUF_STATE_ERROR:
1974 		dprintk(q, 3, "returning done buffer with errors\n");
1975 		break;
1976 	default:
1977 		dprintk(q, 1, "invalid buffer state %s\n",
1978 			vb2_state_name(vb->state));
1979 		return -EINVAL;
1980 	}
1981 
1982 	call_void_vb_qop(vb, buf_finish, vb);
1983 	vb->prepared = 0;
1984 
1985 	if (pindex)
1986 		*pindex = vb->index;
1987 
1988 	/* Fill buffer information for the userspace */
1989 	if (pb)
1990 		call_void_bufop(q, fill_user_buffer, vb, pb);
1991 
1992 	/* Remove from vb2 queue */
1993 	list_del(&vb->queued_entry);
1994 	q->queued_count--;
1995 
1996 	trace_vb2_dqbuf(q, vb);
1997 
1998 	/* go back to dequeued state */
1999 	__vb2_dqbuf(vb);
2000 
2001 	if (WARN_ON(vb->req_obj.req)) {
2002 		media_request_object_unbind(&vb->req_obj);
2003 		media_request_object_put(&vb->req_obj);
2004 	}
2005 	if (vb->request)
2006 		media_request_put(vb->request);
2007 	vb->request = NULL;
2008 
2009 	dprintk(q, 2, "dqbuf of buffer %d, state: %s\n",
2010 		vb->index, vb2_state_name(vb->state));
2011 
2012 	return 0;
2013 
2014 }
2015 EXPORT_SYMBOL_GPL(vb2_core_dqbuf);
2016 
2017 /*
2018  * __vb2_queue_cancel() - cancel and stop (pause) streaming
2019  *
2020  * Removes all queued buffers from driver's queue and all buffers queued by
2021  * userspace from vb2's queue. Returns to state after reqbufs.
2022  */
2023 static void __vb2_queue_cancel(struct vb2_queue *q)
2024 {
2025 	unsigned int i;
2026 
2027 	/*
2028 	 * Tell driver to stop all transactions and release all queued
2029 	 * buffers.
2030 	 */
2031 	if (q->start_streaming_called)
2032 		call_void_qop(q, stop_streaming, q);
2033 
2034 	if (q->streaming)
2035 		call_void_qop(q, unprepare_streaming, q);
2036 
2037 	/*
2038 	 * If you see this warning, then the driver isn't cleaning up properly
2039 	 * in stop_streaming(). See the stop_streaming() documentation in
2040 	 * videobuf2-core.h for more information how buffers should be returned
2041 	 * to vb2 in stop_streaming().
2042 	 */
2043 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
2044 		for (i = 0; i < q->num_buffers; ++i)
2045 			if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) {
2046 				pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n",
2047 					q->bufs[i]);
2048 				vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
2049 			}
2050 		/* Must be zero now */
2051 		WARN_ON(atomic_read(&q->owned_by_drv_count));
2052 	}
2053 
2054 	q->streaming = 0;
2055 	q->start_streaming_called = 0;
2056 	q->queued_count = 0;
2057 	q->error = 0;
2058 	q->uses_requests = 0;
2059 	q->uses_qbuf = 0;
2060 
2061 	/*
2062 	 * Remove all buffers from vb2's list...
2063 	 */
2064 	INIT_LIST_HEAD(&q->queued_list);
2065 	/*
2066 	 * ...and done list; userspace will not receive any buffers it
2067 	 * has not already dequeued before initiating cancel.
2068 	 */
2069 	INIT_LIST_HEAD(&q->done_list);
2070 	atomic_set(&q->owned_by_drv_count, 0);
2071 	wake_up_all(&q->done_wq);
2072 
2073 	/*
2074 	 * Reinitialize all buffers for next use.
2075 	 * Make sure to call buf_finish for any queued buffers. Normally
2076 	 * that's done in dqbuf, but that's not going to happen when we
2077 	 * cancel the whole queue. Note: this code belongs here, not in
2078 	 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical
2079 	 * call to __fill_user_buffer() after buf_finish(). That order can't
2080 	 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2081 	 */
2082 	for (i = 0; i < q->num_buffers; ++i) {
2083 		struct vb2_buffer *vb = q->bufs[i];
2084 		struct media_request *req = vb->req_obj.req;
2085 
2086 		/*
2087 		 * If a request is associated with this buffer, then
2088 		 * call buf_request_cancel() to give the driver to complete()
2089 		 * related request objects. Otherwise those objects would
2090 		 * never complete.
2091 		 */
2092 		if (req) {
2093 			enum media_request_state state;
2094 			unsigned long flags;
2095 
2096 			spin_lock_irqsave(&req->lock, flags);
2097 			state = req->state;
2098 			spin_unlock_irqrestore(&req->lock, flags);
2099 
2100 			if (state == MEDIA_REQUEST_STATE_QUEUED)
2101 				call_void_vb_qop(vb, buf_request_complete, vb);
2102 		}
2103 
2104 		__vb2_buf_mem_finish(vb);
2105 
2106 		if (vb->prepared) {
2107 			call_void_vb_qop(vb, buf_finish, vb);
2108 			vb->prepared = 0;
2109 		}
2110 		__vb2_dqbuf(vb);
2111 
2112 		if (vb->req_obj.req) {
2113 			media_request_object_unbind(&vb->req_obj);
2114 			media_request_object_put(&vb->req_obj);
2115 		}
2116 		if (vb->request)
2117 			media_request_put(vb->request);
2118 		vb->request = NULL;
2119 		vb->copied_timestamp = 0;
2120 	}
2121 }
2122 
2123 int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
2124 {
2125 	int ret;
2126 
2127 	if (type != q->type) {
2128 		dprintk(q, 1, "invalid stream type\n");
2129 		return -EINVAL;
2130 	}
2131 
2132 	if (q->streaming) {
2133 		dprintk(q, 3, "already streaming\n");
2134 		return 0;
2135 	}
2136 
2137 	if (!q->num_buffers) {
2138 		dprintk(q, 1, "no buffers have been allocated\n");
2139 		return -EINVAL;
2140 	}
2141 
2142 	if (q->num_buffers < q->min_buffers_needed) {
2143 		dprintk(q, 1, "need at least %u allocated buffers\n",
2144 				q->min_buffers_needed);
2145 		return -EINVAL;
2146 	}
2147 
2148 	ret = call_qop(q, prepare_streaming, q);
2149 	if (ret)
2150 		return ret;
2151 
2152 	q->streaming = 1;
2153 
2154 	/*
2155 	 * Tell driver to start streaming provided sufficient buffers
2156 	 * are available.
2157 	 */
2158 	if (q->queued_count >= q->min_buffers_needed) {
2159 		ret = vb2_start_streaming(q);
2160 		if (ret)
2161 			goto unprepare;
2162 	}
2163 
2164 	dprintk(q, 3, "successful\n");
2165 	return 0;
2166 
2167 unprepare:
2168 	call_void_qop(q, unprepare_streaming, q);
2169 	q->streaming = 0;
2170 	return ret;
2171 }
2172 EXPORT_SYMBOL_GPL(vb2_core_streamon);
2173 
2174 void vb2_queue_error(struct vb2_queue *q)
2175 {
2176 	q->error = 1;
2177 
2178 	wake_up_all(&q->done_wq);
2179 }
2180 EXPORT_SYMBOL_GPL(vb2_queue_error);
2181 
2182 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
2183 {
2184 	if (type != q->type) {
2185 		dprintk(q, 1, "invalid stream type\n");
2186 		return -EINVAL;
2187 	}
2188 
2189 	/*
2190 	 * Cancel will pause streaming and remove all buffers from the driver
2191 	 * and vb2, effectively returning control over them to userspace.
2192 	 *
2193 	 * Note that we do this even if q->streaming == 0: if you prepare or
2194 	 * queue buffers, and then call streamoff without ever having called
2195 	 * streamon, you would still expect those buffers to be returned to
2196 	 * their normal dequeued state.
2197 	 */
2198 	__vb2_queue_cancel(q);
2199 	q->waiting_for_buffers = !q->is_output;
2200 	q->last_buffer_dequeued = false;
2201 
2202 	dprintk(q, 3, "successful\n");
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(vb2_core_streamoff);
2206 
2207 /*
2208  * __find_plane_by_offset() - find plane associated with the given offset off
2209  */
2210 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
2211 			unsigned int *_buffer, unsigned int *_plane)
2212 {
2213 	struct vb2_buffer *vb;
2214 	unsigned int buffer, plane;
2215 
2216 	/*
2217 	 * Sanity checks to ensure the lock is held, MEMORY_MMAP is
2218 	 * used and fileio isn't active.
2219 	 */
2220 	lockdep_assert_held(&q->mmap_lock);
2221 
2222 	if (q->memory != VB2_MEMORY_MMAP) {
2223 		dprintk(q, 1, "queue is not currently set up for mmap\n");
2224 		return -EINVAL;
2225 	}
2226 
2227 	if (vb2_fileio_is_active(q)) {
2228 		dprintk(q, 1, "file io in progress\n");
2229 		return -EBUSY;
2230 	}
2231 
2232 	/*
2233 	 * Go over all buffers and their planes, comparing the given offset
2234 	 * with an offset assigned to each plane. If a match is found,
2235 	 * return its buffer and plane numbers.
2236 	 */
2237 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
2238 		vb = q->bufs[buffer];
2239 
2240 		for (plane = 0; plane < vb->num_planes; ++plane) {
2241 			if (vb->planes[plane].m.offset == off) {
2242 				*_buffer = buffer;
2243 				*_plane = plane;
2244 				return 0;
2245 			}
2246 		}
2247 	}
2248 
2249 	return -EINVAL;
2250 }
2251 
2252 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
2253 		unsigned int index, unsigned int plane, unsigned int flags)
2254 {
2255 	struct vb2_buffer *vb = NULL;
2256 	struct vb2_plane *vb_plane;
2257 	int ret;
2258 	struct dma_buf *dbuf;
2259 
2260 	if (q->memory != VB2_MEMORY_MMAP) {
2261 		dprintk(q, 1, "queue is not currently set up for mmap\n");
2262 		return -EINVAL;
2263 	}
2264 
2265 	if (!q->mem_ops->get_dmabuf) {
2266 		dprintk(q, 1, "queue does not support DMA buffer exporting\n");
2267 		return -EINVAL;
2268 	}
2269 
2270 	if (flags & ~(O_CLOEXEC | O_ACCMODE)) {
2271 		dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n");
2272 		return -EINVAL;
2273 	}
2274 
2275 	if (type != q->type) {
2276 		dprintk(q, 1, "invalid buffer type\n");
2277 		return -EINVAL;
2278 	}
2279 
2280 	if (index >= q->num_buffers) {
2281 		dprintk(q, 1, "buffer index out of range\n");
2282 		return -EINVAL;
2283 	}
2284 
2285 	vb = q->bufs[index];
2286 
2287 	if (plane >= vb->num_planes) {
2288 		dprintk(q, 1, "buffer plane out of range\n");
2289 		return -EINVAL;
2290 	}
2291 
2292 	if (vb2_fileio_is_active(q)) {
2293 		dprintk(q, 1, "expbuf: file io in progress\n");
2294 		return -EBUSY;
2295 	}
2296 
2297 	vb_plane = &vb->planes[plane];
2298 
2299 	dbuf = call_ptr_memop(get_dmabuf,
2300 			      vb,
2301 			      vb_plane->mem_priv,
2302 			      flags & O_ACCMODE);
2303 	if (IS_ERR_OR_NULL(dbuf)) {
2304 		dprintk(q, 1, "failed to export buffer %d, plane %d\n",
2305 			index, plane);
2306 		return -EINVAL;
2307 	}
2308 
2309 	ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE);
2310 	if (ret < 0) {
2311 		dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n",
2312 			index, plane, ret);
2313 		dma_buf_put(dbuf);
2314 		return ret;
2315 	}
2316 
2317 	dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n",
2318 		index, plane, ret);
2319 	*fd = ret;
2320 
2321 	return 0;
2322 }
2323 EXPORT_SYMBOL_GPL(vb2_core_expbuf);
2324 
2325 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2326 {
2327 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
2328 	struct vb2_buffer *vb;
2329 	unsigned int buffer = 0, plane = 0;
2330 	int ret;
2331 	unsigned long length;
2332 
2333 	/*
2334 	 * Check memory area access mode.
2335 	 */
2336 	if (!(vma->vm_flags & VM_SHARED)) {
2337 		dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n");
2338 		return -EINVAL;
2339 	}
2340 	if (q->is_output) {
2341 		if (!(vma->vm_flags & VM_WRITE)) {
2342 			dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n");
2343 			return -EINVAL;
2344 		}
2345 	} else {
2346 		if (!(vma->vm_flags & VM_READ)) {
2347 			dprintk(q, 1, "invalid vma flags, VM_READ needed\n");
2348 			return -EINVAL;
2349 		}
2350 	}
2351 
2352 	mutex_lock(&q->mmap_lock);
2353 
2354 	/*
2355 	 * Find the plane corresponding to the offset passed by userspace. This
2356 	 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2357 	 */
2358 	ret = __find_plane_by_offset(q, off, &buffer, &plane);
2359 	if (ret)
2360 		goto unlock;
2361 
2362 	vb = q->bufs[buffer];
2363 
2364 	/*
2365 	 * MMAP requires page_aligned buffers.
2366 	 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2367 	 * so, we need to do the same here.
2368 	 */
2369 	length = PAGE_ALIGN(vb->planes[plane].length);
2370 	if (length < (vma->vm_end - vma->vm_start)) {
2371 		dprintk(q, 1,
2372 			"MMAP invalid, as it would overflow buffer length\n");
2373 		ret = -EINVAL;
2374 		goto unlock;
2375 	}
2376 
2377 	/*
2378 	 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer,
2379 	 * not as a in-buffer offset. We always want to mmap a whole buffer
2380 	 * from its beginning.
2381 	 */
2382 	vma->vm_pgoff = 0;
2383 
2384 	ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2385 
2386 unlock:
2387 	mutex_unlock(&q->mmap_lock);
2388 	if (ret)
2389 		return ret;
2390 
2391 	dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL_GPL(vb2_mmap);
2395 
2396 #ifndef CONFIG_MMU
2397 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2398 				    unsigned long addr,
2399 				    unsigned long len,
2400 				    unsigned long pgoff,
2401 				    unsigned long flags)
2402 {
2403 	unsigned long off = pgoff << PAGE_SHIFT;
2404 	struct vb2_buffer *vb;
2405 	unsigned int buffer, plane;
2406 	void *vaddr;
2407 	int ret;
2408 
2409 	mutex_lock(&q->mmap_lock);
2410 
2411 	/*
2412 	 * Find the plane corresponding to the offset passed by userspace. This
2413 	 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2414 	 */
2415 	ret = __find_plane_by_offset(q, off, &buffer, &plane);
2416 	if (ret)
2417 		goto unlock;
2418 
2419 	vb = q->bufs[buffer];
2420 
2421 	vaddr = vb2_plane_vaddr(vb, plane);
2422 	mutex_unlock(&q->mmap_lock);
2423 	return vaddr ? (unsigned long)vaddr : -EINVAL;
2424 
2425 unlock:
2426 	mutex_unlock(&q->mmap_lock);
2427 	return ret;
2428 }
2429 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2430 #endif
2431 
2432 int vb2_core_queue_init(struct vb2_queue *q)
2433 {
2434 	/*
2435 	 * Sanity check
2436 	 */
2437 	if (WARN_ON(!q)			  ||
2438 	    WARN_ON(!q->ops)		  ||
2439 	    WARN_ON(!q->mem_ops)	  ||
2440 	    WARN_ON(!q->type)		  ||
2441 	    WARN_ON(!q->io_modes)	  ||
2442 	    WARN_ON(!q->ops->queue_setup) ||
2443 	    WARN_ON(!q->ops->buf_queue))
2444 		return -EINVAL;
2445 
2446 	if (WARN_ON(q->requires_requests && !q->supports_requests))
2447 		return -EINVAL;
2448 
2449 	/*
2450 	 * This combination is not allowed since a non-zero value of
2451 	 * q->min_buffers_needed can cause vb2_core_qbuf() to fail if
2452 	 * it has to call start_streaming(), and the Request API expects
2453 	 * that queueing a request (and thus queueing a buffer contained
2454 	 * in that request) will always succeed. There is no method of
2455 	 * propagating an error back to userspace.
2456 	 */
2457 	if (WARN_ON(q->supports_requests && q->min_buffers_needed))
2458 		return -EINVAL;
2459 
2460 	INIT_LIST_HEAD(&q->queued_list);
2461 	INIT_LIST_HEAD(&q->done_list);
2462 	spin_lock_init(&q->done_lock);
2463 	mutex_init(&q->mmap_lock);
2464 	init_waitqueue_head(&q->done_wq);
2465 
2466 	q->memory = VB2_MEMORY_UNKNOWN;
2467 
2468 	if (q->buf_struct_size == 0)
2469 		q->buf_struct_size = sizeof(struct vb2_buffer);
2470 
2471 	if (q->bidirectional)
2472 		q->dma_dir = DMA_BIDIRECTIONAL;
2473 	else
2474 		q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2475 
2476 	if (q->name[0] == '\0')
2477 		snprintf(q->name, sizeof(q->name), "%s-%p",
2478 			 q->is_output ? "out" : "cap", q);
2479 
2480 	return 0;
2481 }
2482 EXPORT_SYMBOL_GPL(vb2_core_queue_init);
2483 
2484 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2485 static int __vb2_cleanup_fileio(struct vb2_queue *q);
2486 void vb2_core_queue_release(struct vb2_queue *q)
2487 {
2488 	__vb2_cleanup_fileio(q);
2489 	__vb2_queue_cancel(q);
2490 	mutex_lock(&q->mmap_lock);
2491 	__vb2_queue_free(q, q->num_buffers);
2492 	mutex_unlock(&q->mmap_lock);
2493 }
2494 EXPORT_SYMBOL_GPL(vb2_core_queue_release);
2495 
2496 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file,
2497 		poll_table *wait)
2498 {
2499 	__poll_t req_events = poll_requested_events(wait);
2500 	struct vb2_buffer *vb = NULL;
2501 	unsigned long flags;
2502 
2503 	/*
2504 	 * poll_wait() MUST be called on the first invocation on all the
2505 	 * potential queues of interest, even if we are not interested in their
2506 	 * events during this first call. Failure to do so will result in
2507 	 * queue's events to be ignored because the poll_table won't be capable
2508 	 * of adding new wait queues thereafter.
2509 	 */
2510 	poll_wait(file, &q->done_wq, wait);
2511 
2512 	if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM)))
2513 		return 0;
2514 	if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM)))
2515 		return 0;
2516 
2517 	/*
2518 	 * Start file I/O emulator only if streaming API has not been used yet.
2519 	 */
2520 	if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2521 		if (!q->is_output && (q->io_modes & VB2_READ) &&
2522 				(req_events & (EPOLLIN | EPOLLRDNORM))) {
2523 			if (__vb2_init_fileio(q, 1))
2524 				return EPOLLERR;
2525 		}
2526 		if (q->is_output && (q->io_modes & VB2_WRITE) &&
2527 				(req_events & (EPOLLOUT | EPOLLWRNORM))) {
2528 			if (__vb2_init_fileio(q, 0))
2529 				return EPOLLERR;
2530 			/*
2531 			 * Write to OUTPUT queue can be done immediately.
2532 			 */
2533 			return EPOLLOUT | EPOLLWRNORM;
2534 		}
2535 	}
2536 
2537 	/*
2538 	 * There is nothing to wait for if the queue isn't streaming, or if the
2539 	 * error flag is set.
2540 	 */
2541 	if (!vb2_is_streaming(q) || q->error)
2542 		return EPOLLERR;
2543 
2544 	/*
2545 	 * If this quirk is set and QBUF hasn't been called yet then
2546 	 * return EPOLLERR as well. This only affects capture queues, output
2547 	 * queues will always initialize waiting_for_buffers to false.
2548 	 * This quirk is set by V4L2 for backwards compatibility reasons.
2549 	 */
2550 	if (q->quirk_poll_must_check_waiting_for_buffers &&
2551 	    q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM)))
2552 		return EPOLLERR;
2553 
2554 	/*
2555 	 * For output streams you can call write() as long as there are fewer
2556 	 * buffers queued than there are buffers available.
2557 	 */
2558 	if (q->is_output && q->fileio && q->queued_count < q->num_buffers)
2559 		return EPOLLOUT | EPOLLWRNORM;
2560 
2561 	if (list_empty(&q->done_list)) {
2562 		/*
2563 		 * If the last buffer was dequeued from a capture queue,
2564 		 * return immediately. DQBUF will return -EPIPE.
2565 		 */
2566 		if (q->last_buffer_dequeued)
2567 			return EPOLLIN | EPOLLRDNORM;
2568 	}
2569 
2570 	/*
2571 	 * Take first buffer available for dequeuing.
2572 	 */
2573 	spin_lock_irqsave(&q->done_lock, flags);
2574 	if (!list_empty(&q->done_list))
2575 		vb = list_first_entry(&q->done_list, struct vb2_buffer,
2576 					done_entry);
2577 	spin_unlock_irqrestore(&q->done_lock, flags);
2578 
2579 	if (vb && (vb->state == VB2_BUF_STATE_DONE
2580 			|| vb->state == VB2_BUF_STATE_ERROR)) {
2581 		return (q->is_output) ?
2582 				EPOLLOUT | EPOLLWRNORM :
2583 				EPOLLIN | EPOLLRDNORM;
2584 	}
2585 	return 0;
2586 }
2587 EXPORT_SYMBOL_GPL(vb2_core_poll);
2588 
2589 /*
2590  * struct vb2_fileio_buf - buffer context used by file io emulator
2591  *
2592  * vb2 provides a compatibility layer and emulator of file io (read and
2593  * write) calls on top of streaming API. This structure is used for
2594  * tracking context related to the buffers.
2595  */
2596 struct vb2_fileio_buf {
2597 	void *vaddr;
2598 	unsigned int size;
2599 	unsigned int pos;
2600 	unsigned int queued:1;
2601 };
2602 
2603 /*
2604  * struct vb2_fileio_data - queue context used by file io emulator
2605  *
2606  * @cur_index:	the index of the buffer currently being read from or
2607  *		written to. If equal to q->num_buffers then a new buffer
2608  *		must be dequeued.
2609  * @initial_index: in the read() case all buffers are queued up immediately
2610  *		in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2611  *		buffers. However, in the write() case no buffers are initially
2612  *		queued, instead whenever a buffer is full it is queued up by
2613  *		__vb2_perform_fileio(). Only once all available buffers have
2614  *		been queued up will __vb2_perform_fileio() start to dequeue
2615  *		buffers. This means that initially __vb2_perform_fileio()
2616  *		needs to know what buffer index to use when it is queuing up
2617  *		the buffers for the first time. That initial index is stored
2618  *		in this field. Once it is equal to q->num_buffers all
2619  *		available buffers have been queued and __vb2_perform_fileio()
2620  *		should start the normal dequeue/queue cycle.
2621  *
2622  * vb2 provides a compatibility layer and emulator of file io (read and
2623  * write) calls on top of streaming API. For proper operation it required
2624  * this structure to save the driver state between each call of the read
2625  * or write function.
2626  */
2627 struct vb2_fileio_data {
2628 	unsigned int count;
2629 	unsigned int type;
2630 	unsigned int memory;
2631 	struct vb2_fileio_buf bufs[VB2_MAX_FRAME];
2632 	unsigned int cur_index;
2633 	unsigned int initial_index;
2634 	unsigned int q_count;
2635 	unsigned int dq_count;
2636 	unsigned read_once:1;
2637 	unsigned write_immediately:1;
2638 };
2639 
2640 /*
2641  * __vb2_init_fileio() - initialize file io emulator
2642  * @q:		videobuf2 queue
2643  * @read:	mode selector (1 means read, 0 means write)
2644  */
2645 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2646 {
2647 	struct vb2_fileio_data *fileio;
2648 	int i, ret;
2649 	unsigned int count = 0;
2650 
2651 	/*
2652 	 * Sanity check
2653 	 */
2654 	if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2655 		    (!read && !(q->io_modes & VB2_WRITE))))
2656 		return -EINVAL;
2657 
2658 	/*
2659 	 * Check if device supports mapping buffers to kernel virtual space.
2660 	 */
2661 	if (!q->mem_ops->vaddr)
2662 		return -EBUSY;
2663 
2664 	/*
2665 	 * Check if streaming api has not been already activated.
2666 	 */
2667 	if (q->streaming || q->num_buffers > 0)
2668 		return -EBUSY;
2669 
2670 	/*
2671 	 * Start with count 1, driver can increase it in queue_setup()
2672 	 */
2673 	count = 1;
2674 
2675 	dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2676 		(read) ? "read" : "write", count, q->fileio_read_once,
2677 		q->fileio_write_immediately);
2678 
2679 	fileio = kzalloc(sizeof(*fileio), GFP_KERNEL);
2680 	if (fileio == NULL)
2681 		return -ENOMEM;
2682 
2683 	fileio->read_once = q->fileio_read_once;
2684 	fileio->write_immediately = q->fileio_write_immediately;
2685 
2686 	/*
2687 	 * Request buffers and use MMAP type to force driver
2688 	 * to allocate buffers by itself.
2689 	 */
2690 	fileio->count = count;
2691 	fileio->memory = VB2_MEMORY_MMAP;
2692 	fileio->type = q->type;
2693 	q->fileio = fileio;
2694 	ret = vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2695 	if (ret)
2696 		goto err_kfree;
2697 
2698 	/*
2699 	 * Check if plane_count is correct
2700 	 * (multiplane buffers are not supported).
2701 	 */
2702 	if (q->bufs[0]->num_planes != 1) {
2703 		ret = -EBUSY;
2704 		goto err_reqbufs;
2705 	}
2706 
2707 	/*
2708 	 * Get kernel address of each buffer.
2709 	 */
2710 	for (i = 0; i < q->num_buffers; i++) {
2711 		fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2712 		if (fileio->bufs[i].vaddr == NULL) {
2713 			ret = -EINVAL;
2714 			goto err_reqbufs;
2715 		}
2716 		fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2717 	}
2718 
2719 	/*
2720 	 * Read mode requires pre queuing of all buffers.
2721 	 */
2722 	if (read) {
2723 		/*
2724 		 * Queue all buffers.
2725 		 */
2726 		for (i = 0; i < q->num_buffers; i++) {
2727 			ret = vb2_core_qbuf(q, i, NULL, NULL);
2728 			if (ret)
2729 				goto err_reqbufs;
2730 			fileio->bufs[i].queued = 1;
2731 		}
2732 		/*
2733 		 * All buffers have been queued, so mark that by setting
2734 		 * initial_index to q->num_buffers
2735 		 */
2736 		fileio->initial_index = q->num_buffers;
2737 		fileio->cur_index = q->num_buffers;
2738 	}
2739 
2740 	/*
2741 	 * Start streaming.
2742 	 */
2743 	ret = vb2_core_streamon(q, q->type);
2744 	if (ret)
2745 		goto err_reqbufs;
2746 
2747 	return ret;
2748 
2749 err_reqbufs:
2750 	fileio->count = 0;
2751 	vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2752 
2753 err_kfree:
2754 	q->fileio = NULL;
2755 	kfree(fileio);
2756 	return ret;
2757 }
2758 
2759 /*
2760  * __vb2_cleanup_fileio() - free resourced used by file io emulator
2761  * @q:		videobuf2 queue
2762  */
2763 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2764 {
2765 	struct vb2_fileio_data *fileio = q->fileio;
2766 
2767 	if (fileio) {
2768 		vb2_core_streamoff(q, q->type);
2769 		q->fileio = NULL;
2770 		fileio->count = 0;
2771 		vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count);
2772 		kfree(fileio);
2773 		dprintk(q, 3, "file io emulator closed\n");
2774 	}
2775 	return 0;
2776 }
2777 
2778 /*
2779  * __vb2_perform_fileio() - perform a single file io (read or write) operation
2780  * @q:		videobuf2 queue
2781  * @data:	pointed to target userspace buffer
2782  * @count:	number of bytes to read or write
2783  * @ppos:	file handle position tracking pointer
2784  * @nonblock:	mode selector (1 means blocking calls, 0 means nonblocking)
2785  * @read:	access mode selector (1 means read, 0 means write)
2786  */
2787 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2788 		loff_t *ppos, int nonblock, int read)
2789 {
2790 	struct vb2_fileio_data *fileio;
2791 	struct vb2_fileio_buf *buf;
2792 	bool is_multiplanar = q->is_multiplanar;
2793 	/*
2794 	 * When using write() to write data to an output video node the vb2 core
2795 	 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2796 	 * else is able to provide this information with the write() operation.
2797 	 */
2798 	bool copy_timestamp = !read && q->copy_timestamp;
2799 	unsigned index;
2800 	int ret;
2801 
2802 	dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n",
2803 		read ? "read" : "write", (long)*ppos, count,
2804 		nonblock ? "non" : "");
2805 
2806 	if (!data)
2807 		return -EINVAL;
2808 
2809 	if (q->waiting_in_dqbuf) {
2810 		dprintk(q, 3, "another dup()ped fd is %s\n",
2811 			read ? "reading" : "writing");
2812 		return -EBUSY;
2813 	}
2814 
2815 	/*
2816 	 * Initialize emulator on first call.
2817 	 */
2818 	if (!vb2_fileio_is_active(q)) {
2819 		ret = __vb2_init_fileio(q, read);
2820 		dprintk(q, 3, "vb2_init_fileio result: %d\n", ret);
2821 		if (ret)
2822 			return ret;
2823 	}
2824 	fileio = q->fileio;
2825 
2826 	/*
2827 	 * Check if we need to dequeue the buffer.
2828 	 */
2829 	index = fileio->cur_index;
2830 	if (index >= q->num_buffers) {
2831 		struct vb2_buffer *b;
2832 
2833 		/*
2834 		 * Call vb2_dqbuf to get buffer back.
2835 		 */
2836 		ret = vb2_core_dqbuf(q, &index, NULL, nonblock);
2837 		dprintk(q, 5, "vb2_dqbuf result: %d\n", ret);
2838 		if (ret)
2839 			return ret;
2840 		fileio->dq_count += 1;
2841 
2842 		fileio->cur_index = index;
2843 		buf = &fileio->bufs[index];
2844 		b = q->bufs[index];
2845 
2846 		/*
2847 		 * Get number of bytes filled by the driver
2848 		 */
2849 		buf->pos = 0;
2850 		buf->queued = 0;
2851 		buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
2852 				 : vb2_plane_size(q->bufs[index], 0);
2853 		/* Compensate for data_offset on read in the multiplanar case. */
2854 		if (is_multiplanar && read &&
2855 				b->planes[0].data_offset < buf->size) {
2856 			buf->pos = b->planes[0].data_offset;
2857 			buf->size -= buf->pos;
2858 		}
2859 	} else {
2860 		buf = &fileio->bufs[index];
2861 	}
2862 
2863 	/*
2864 	 * Limit count on last few bytes of the buffer.
2865 	 */
2866 	if (buf->pos + count > buf->size) {
2867 		count = buf->size - buf->pos;
2868 		dprintk(q, 5, "reducing read count: %zd\n", count);
2869 	}
2870 
2871 	/*
2872 	 * Transfer data to userspace.
2873 	 */
2874 	dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n",
2875 		count, index, buf->pos);
2876 	if (read)
2877 		ret = copy_to_user(data, buf->vaddr + buf->pos, count);
2878 	else
2879 		ret = copy_from_user(buf->vaddr + buf->pos, data, count);
2880 	if (ret) {
2881 		dprintk(q, 3, "error copying data\n");
2882 		return -EFAULT;
2883 	}
2884 
2885 	/*
2886 	 * Update counters.
2887 	 */
2888 	buf->pos += count;
2889 	*ppos += count;
2890 
2891 	/*
2892 	 * Queue next buffer if required.
2893 	 */
2894 	if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
2895 		struct vb2_buffer *b = q->bufs[index];
2896 
2897 		/*
2898 		 * Check if this is the last buffer to read.
2899 		 */
2900 		if (read && fileio->read_once && fileio->dq_count == 1) {
2901 			dprintk(q, 3, "read limit reached\n");
2902 			return __vb2_cleanup_fileio(q);
2903 		}
2904 
2905 		/*
2906 		 * Call vb2_qbuf and give buffer to the driver.
2907 		 */
2908 		b->planes[0].bytesused = buf->pos;
2909 
2910 		if (copy_timestamp)
2911 			b->timestamp = ktime_get_ns();
2912 		ret = vb2_core_qbuf(q, index, NULL, NULL);
2913 		dprintk(q, 5, "vb2_dbuf result: %d\n", ret);
2914 		if (ret)
2915 			return ret;
2916 
2917 		/*
2918 		 * Buffer has been queued, update the status
2919 		 */
2920 		buf->pos = 0;
2921 		buf->queued = 1;
2922 		buf->size = vb2_plane_size(q->bufs[index], 0);
2923 		fileio->q_count += 1;
2924 		/*
2925 		 * If we are queuing up buffers for the first time, then
2926 		 * increase initial_index by one.
2927 		 */
2928 		if (fileio->initial_index < q->num_buffers)
2929 			fileio->initial_index++;
2930 		/*
2931 		 * The next buffer to use is either a buffer that's going to be
2932 		 * queued for the first time (initial_index < q->num_buffers)
2933 		 * or it is equal to q->num_buffers, meaning that the next
2934 		 * time we need to dequeue a buffer since we've now queued up
2935 		 * all the 'first time' buffers.
2936 		 */
2937 		fileio->cur_index = fileio->initial_index;
2938 	}
2939 
2940 	/*
2941 	 * Return proper number of bytes processed.
2942 	 */
2943 	if (ret == 0)
2944 		ret = count;
2945 	return ret;
2946 }
2947 
2948 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
2949 		loff_t *ppos, int nonblocking)
2950 {
2951 	return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
2952 }
2953 EXPORT_SYMBOL_GPL(vb2_read);
2954 
2955 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
2956 		loff_t *ppos, int nonblocking)
2957 {
2958 	return __vb2_perform_fileio(q, (char __user *) data, count,
2959 							ppos, nonblocking, 0);
2960 }
2961 EXPORT_SYMBOL_GPL(vb2_write);
2962 
2963 struct vb2_threadio_data {
2964 	struct task_struct *thread;
2965 	vb2_thread_fnc fnc;
2966 	void *priv;
2967 	bool stop;
2968 };
2969 
2970 static int vb2_thread(void *data)
2971 {
2972 	struct vb2_queue *q = data;
2973 	struct vb2_threadio_data *threadio = q->threadio;
2974 	bool copy_timestamp = false;
2975 	unsigned prequeue = 0;
2976 	unsigned index = 0;
2977 	int ret = 0;
2978 
2979 	if (q->is_output) {
2980 		prequeue = q->num_buffers;
2981 		copy_timestamp = q->copy_timestamp;
2982 	}
2983 
2984 	set_freezable();
2985 
2986 	for (;;) {
2987 		struct vb2_buffer *vb;
2988 
2989 		/*
2990 		 * Call vb2_dqbuf to get buffer back.
2991 		 */
2992 		if (prequeue) {
2993 			vb = q->bufs[index++];
2994 			prequeue--;
2995 		} else {
2996 			call_void_qop(q, wait_finish, q);
2997 			if (!threadio->stop)
2998 				ret = vb2_core_dqbuf(q, &index, NULL, 0);
2999 			call_void_qop(q, wait_prepare, q);
3000 			dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret);
3001 			if (!ret)
3002 				vb = q->bufs[index];
3003 		}
3004 		if (ret || threadio->stop)
3005 			break;
3006 		try_to_freeze();
3007 
3008 		if (vb->state != VB2_BUF_STATE_ERROR)
3009 			if (threadio->fnc(vb, threadio->priv))
3010 				break;
3011 		call_void_qop(q, wait_finish, q);
3012 		if (copy_timestamp)
3013 			vb->timestamp = ktime_get_ns();
3014 		if (!threadio->stop)
3015 			ret = vb2_core_qbuf(q, vb->index, NULL, NULL);
3016 		call_void_qop(q, wait_prepare, q);
3017 		if (ret || threadio->stop)
3018 			break;
3019 	}
3020 
3021 	/* Hmm, linux becomes *very* unhappy without this ... */
3022 	while (!kthread_should_stop()) {
3023 		set_current_state(TASK_INTERRUPTIBLE);
3024 		schedule();
3025 	}
3026 	return 0;
3027 }
3028 
3029 /*
3030  * This function should not be used for anything else but the videobuf2-dvb
3031  * support. If you think you have another good use-case for this, then please
3032  * contact the linux-media mailinglist first.
3033  */
3034 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
3035 		     const char *thread_name)
3036 {
3037 	struct vb2_threadio_data *threadio;
3038 	int ret = 0;
3039 
3040 	if (q->threadio)
3041 		return -EBUSY;
3042 	if (vb2_is_busy(q))
3043 		return -EBUSY;
3044 	if (WARN_ON(q->fileio))
3045 		return -EBUSY;
3046 
3047 	threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
3048 	if (threadio == NULL)
3049 		return -ENOMEM;
3050 	threadio->fnc = fnc;
3051 	threadio->priv = priv;
3052 
3053 	ret = __vb2_init_fileio(q, !q->is_output);
3054 	dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret);
3055 	if (ret)
3056 		goto nomem;
3057 	q->threadio = threadio;
3058 	threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
3059 	if (IS_ERR(threadio->thread)) {
3060 		ret = PTR_ERR(threadio->thread);
3061 		threadio->thread = NULL;
3062 		goto nothread;
3063 	}
3064 	return 0;
3065 
3066 nothread:
3067 	__vb2_cleanup_fileio(q);
3068 nomem:
3069 	kfree(threadio);
3070 	return ret;
3071 }
3072 EXPORT_SYMBOL_GPL(vb2_thread_start);
3073 
3074 int vb2_thread_stop(struct vb2_queue *q)
3075 {
3076 	struct vb2_threadio_data *threadio = q->threadio;
3077 	int err;
3078 
3079 	if (threadio == NULL)
3080 		return 0;
3081 	threadio->stop = true;
3082 	/* Wake up all pending sleeps in the thread */
3083 	vb2_queue_error(q);
3084 	err = kthread_stop(threadio->thread);
3085 	__vb2_cleanup_fileio(q);
3086 	threadio->thread = NULL;
3087 	kfree(threadio);
3088 	q->threadio = NULL;
3089 	return err;
3090 }
3091 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3092 
3093 MODULE_DESCRIPTION("Media buffer core framework");
3094 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3095 MODULE_LICENSE("GPL");
3096 MODULE_IMPORT_NS(DMA_BUF);
3097