1 /*
2  * videobuf2-core.c - video buffer 2 core framework
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  *
6  * Author: Pawel Osciak <pawel@osciak.com>
7  *	   Marek Szyprowski <m.szyprowski@samsung.com>
8  *
9  * The vb2_thread implementation was based on code from videobuf-dvb.c:
10  *	(c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/poll.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/freezer.h>
27 #include <linux/kthread.h>
28 
29 #include <media/videobuf2-core.h>
30 #include <media/v4l2-mc.h>
31 
32 #include <trace/events/vb2.h>
33 
34 static int debug;
35 module_param(debug, int, 0644);
36 
37 #define dprintk(level, fmt, arg...)				\
38 	do {							\
39 		if (debug >= level)				\
40 			pr_info("%s: " fmt, __func__, ## arg);	\
41 	} while (0)
42 
43 #ifdef CONFIG_VIDEO_ADV_DEBUG
44 
45 /*
46  * If advanced debugging is on, then count how often each op is called
47  * successfully, which can either be per-buffer or per-queue.
48  *
49  * This makes it easy to check that the 'init' and 'cleanup'
50  * (and variations thereof) stay balanced.
51  */
52 
53 #define log_memop(vb, op)						\
54 	dprintk(2, "call_memop(%p, %d, %s)%s\n",			\
55 		(vb)->vb2_queue, (vb)->index, #op,			\
56 		(vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
57 
58 #define call_memop(vb, op, args...)					\
59 ({									\
60 	struct vb2_queue *_q = (vb)->vb2_queue;				\
61 	int err;							\
62 									\
63 	log_memop(vb, op);						\
64 	err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0;		\
65 	if (!err)							\
66 		(vb)->cnt_mem_ ## op++;					\
67 	err;								\
68 })
69 
70 #define call_ptr_memop(vb, op, args...)					\
71 ({									\
72 	struct vb2_queue *_q = (vb)->vb2_queue;				\
73 	void *ptr;							\
74 									\
75 	log_memop(vb, op);						\
76 	ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL;		\
77 	if (!IS_ERR_OR_NULL(ptr))					\
78 		(vb)->cnt_mem_ ## op++;					\
79 	ptr;								\
80 })
81 
82 #define call_void_memop(vb, op, args...)				\
83 ({									\
84 	struct vb2_queue *_q = (vb)->vb2_queue;				\
85 									\
86 	log_memop(vb, op);						\
87 	if (_q->mem_ops->op)						\
88 		_q->mem_ops->op(args);					\
89 	(vb)->cnt_mem_ ## op++;						\
90 })
91 
92 #define log_qop(q, op)							\
93 	dprintk(2, "call_qop(%p, %s)%s\n", q, #op,			\
94 		(q)->ops->op ? "" : " (nop)")
95 
96 #define call_qop(q, op, args...)					\
97 ({									\
98 	int err;							\
99 									\
100 	log_qop(q, op);							\
101 	err = (q)->ops->op ? (q)->ops->op(args) : 0;			\
102 	if (!err)							\
103 		(q)->cnt_ ## op++;					\
104 	err;								\
105 })
106 
107 #define call_void_qop(q, op, args...)					\
108 ({									\
109 	log_qop(q, op);							\
110 	if ((q)->ops->op)						\
111 		(q)->ops->op(args);					\
112 	(q)->cnt_ ## op++;						\
113 })
114 
115 #define log_vb_qop(vb, op, args...)					\
116 	dprintk(2, "call_vb_qop(%p, %d, %s)%s\n",			\
117 		(vb)->vb2_queue, (vb)->index, #op,			\
118 		(vb)->vb2_queue->ops->op ? "" : " (nop)")
119 
120 #define call_vb_qop(vb, op, args...)					\
121 ({									\
122 	int err;							\
123 									\
124 	log_vb_qop(vb, op);						\
125 	err = (vb)->vb2_queue->ops->op ?				\
126 		(vb)->vb2_queue->ops->op(args) : 0;			\
127 	if (!err)							\
128 		(vb)->cnt_ ## op++;					\
129 	err;								\
130 })
131 
132 #define call_void_vb_qop(vb, op, args...)				\
133 ({									\
134 	log_vb_qop(vb, op);						\
135 	if ((vb)->vb2_queue->ops->op)					\
136 		(vb)->vb2_queue->ops->op(args);				\
137 	(vb)->cnt_ ## op++;						\
138 })
139 
140 #else
141 
142 #define call_memop(vb, op, args...)					\
143 	((vb)->vb2_queue->mem_ops->op ?					\
144 		(vb)->vb2_queue->mem_ops->op(args) : 0)
145 
146 #define call_ptr_memop(vb, op, args...)					\
147 	((vb)->vb2_queue->mem_ops->op ?					\
148 		(vb)->vb2_queue->mem_ops->op(args) : NULL)
149 
150 #define call_void_memop(vb, op, args...)				\
151 	do {								\
152 		if ((vb)->vb2_queue->mem_ops->op)			\
153 			(vb)->vb2_queue->mem_ops->op(args);		\
154 	} while (0)
155 
156 #define call_qop(q, op, args...)					\
157 	((q)->ops->op ? (q)->ops->op(args) : 0)
158 
159 #define call_void_qop(q, op, args...)					\
160 	do {								\
161 		if ((q)->ops->op)					\
162 			(q)->ops->op(args);				\
163 	} while (0)
164 
165 #define call_vb_qop(vb, op, args...)					\
166 	((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
167 
168 #define call_void_vb_qop(vb, op, args...)				\
169 	do {								\
170 		if ((vb)->vb2_queue->ops->op)				\
171 			(vb)->vb2_queue->ops->op(args);			\
172 	} while (0)
173 
174 #endif
175 
176 #define call_bufop(q, op, args...)					\
177 ({									\
178 	int ret = 0;							\
179 	if (q && q->buf_ops && q->buf_ops->op)				\
180 		ret = q->buf_ops->op(args);				\
181 	ret;								\
182 })
183 
184 #define call_void_bufop(q, op, args...)					\
185 ({									\
186 	if (q && q->buf_ops && q->buf_ops->op)				\
187 		q->buf_ops->op(args);					\
188 })
189 
190 static void __vb2_queue_cancel(struct vb2_queue *q);
191 static void __enqueue_in_driver(struct vb2_buffer *vb);
192 
193 /*
194  * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
195  */
196 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
197 {
198 	struct vb2_queue *q = vb->vb2_queue;
199 	void *mem_priv;
200 	int plane;
201 	int ret = -ENOMEM;
202 
203 	/*
204 	 * Allocate memory for all planes in this buffer
205 	 * NOTE: mmapped areas should be page aligned
206 	 */
207 	for (plane = 0; plane < vb->num_planes; ++plane) {
208 		unsigned long size = PAGE_ALIGN(vb->planes[plane].length);
209 
210 		mem_priv = call_ptr_memop(vb, alloc,
211 				q->alloc_devs[plane] ? : q->dev,
212 				q->dma_attrs, size, q->dma_dir, q->gfp_flags);
213 		if (IS_ERR_OR_NULL(mem_priv)) {
214 			if (mem_priv)
215 				ret = PTR_ERR(mem_priv);
216 			goto free;
217 		}
218 
219 		/* Associate allocator private data with this plane */
220 		vb->planes[plane].mem_priv = mem_priv;
221 	}
222 
223 	return 0;
224 free:
225 	/* Free already allocated memory if one of the allocations failed */
226 	for (; plane > 0; --plane) {
227 		call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
228 		vb->planes[plane - 1].mem_priv = NULL;
229 	}
230 
231 	return ret;
232 }
233 
234 /*
235  * __vb2_buf_mem_free() - free memory of the given buffer
236  */
237 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
238 {
239 	unsigned int plane;
240 
241 	for (plane = 0; plane < vb->num_planes; ++plane) {
242 		call_void_memop(vb, put, vb->planes[plane].mem_priv);
243 		vb->planes[plane].mem_priv = NULL;
244 		dprintk(3, "freed plane %d of buffer %d\n", plane, vb->index);
245 	}
246 }
247 
248 /*
249  * __vb2_buf_userptr_put() - release userspace memory associated with
250  * a USERPTR buffer
251  */
252 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
253 {
254 	unsigned int plane;
255 
256 	for (plane = 0; plane < vb->num_planes; ++plane) {
257 		if (vb->planes[plane].mem_priv)
258 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
259 		vb->planes[plane].mem_priv = NULL;
260 	}
261 }
262 
263 /*
264  * __vb2_plane_dmabuf_put() - release memory associated with
265  * a DMABUF shared plane
266  */
267 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
268 {
269 	if (!p->mem_priv)
270 		return;
271 
272 	if (p->dbuf_mapped)
273 		call_void_memop(vb, unmap_dmabuf, p->mem_priv);
274 
275 	call_void_memop(vb, detach_dmabuf, p->mem_priv);
276 	dma_buf_put(p->dbuf);
277 	p->mem_priv = NULL;
278 	p->dbuf = NULL;
279 	p->dbuf_mapped = 0;
280 }
281 
282 /*
283  * __vb2_buf_dmabuf_put() - release memory associated with
284  * a DMABUF shared buffer
285  */
286 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
287 {
288 	unsigned int plane;
289 
290 	for (plane = 0; plane < vb->num_planes; ++plane)
291 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
292 }
293 
294 /*
295  * __setup_offsets() - setup unique offsets ("cookies") for every plane in
296  * the buffer.
297  */
298 static void __setup_offsets(struct vb2_buffer *vb)
299 {
300 	struct vb2_queue *q = vb->vb2_queue;
301 	unsigned int plane;
302 	unsigned long off = 0;
303 
304 	if (vb->index) {
305 		struct vb2_buffer *prev = q->bufs[vb->index - 1];
306 		struct vb2_plane *p = &prev->planes[prev->num_planes - 1];
307 
308 		off = PAGE_ALIGN(p->m.offset + p->length);
309 	}
310 
311 	for (plane = 0; plane < vb->num_planes; ++plane) {
312 		vb->planes[plane].m.offset = off;
313 
314 		dprintk(3, "buffer %d, plane %d offset 0x%08lx\n",
315 				vb->index, plane, off);
316 
317 		off += vb->planes[plane].length;
318 		off = PAGE_ALIGN(off);
319 	}
320 }
321 
322 /*
323  * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type)
324  * video buffer memory for all buffers/planes on the queue and initializes the
325  * queue
326  *
327  * Returns the number of buffers successfully allocated.
328  */
329 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory,
330 			     unsigned int num_buffers, unsigned int num_planes,
331 			     const unsigned plane_sizes[VB2_MAX_PLANES])
332 {
333 	unsigned int buffer, plane;
334 	struct vb2_buffer *vb;
335 	int ret;
336 
337 	/* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */
338 	num_buffers = min_t(unsigned int, num_buffers,
339 			    VB2_MAX_FRAME - q->num_buffers);
340 
341 	for (buffer = 0; buffer < num_buffers; ++buffer) {
342 		/* Allocate videobuf buffer structures */
343 		vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
344 		if (!vb) {
345 			dprintk(1, "memory alloc for buffer struct failed\n");
346 			break;
347 		}
348 
349 		vb->state = VB2_BUF_STATE_DEQUEUED;
350 		vb->vb2_queue = q;
351 		vb->num_planes = num_planes;
352 		vb->index = q->num_buffers + buffer;
353 		vb->type = q->type;
354 		vb->memory = memory;
355 		for (plane = 0; plane < num_planes; ++plane) {
356 			vb->planes[plane].length = plane_sizes[plane];
357 			vb->planes[plane].min_length = plane_sizes[plane];
358 		}
359 		q->bufs[vb->index] = vb;
360 
361 		/* Allocate video buffer memory for the MMAP type */
362 		if (memory == VB2_MEMORY_MMAP) {
363 			ret = __vb2_buf_mem_alloc(vb);
364 			if (ret) {
365 				dprintk(1, "failed allocating memory for buffer %d\n",
366 					buffer);
367 				q->bufs[vb->index] = NULL;
368 				kfree(vb);
369 				break;
370 			}
371 			__setup_offsets(vb);
372 			/*
373 			 * Call the driver-provided buffer initialization
374 			 * callback, if given. An error in initialization
375 			 * results in queue setup failure.
376 			 */
377 			ret = call_vb_qop(vb, buf_init, vb);
378 			if (ret) {
379 				dprintk(1, "buffer %d %p initialization failed\n",
380 					buffer, vb);
381 				__vb2_buf_mem_free(vb);
382 				q->bufs[vb->index] = NULL;
383 				kfree(vb);
384 				break;
385 			}
386 		}
387 	}
388 
389 	dprintk(1, "allocated %d buffers, %d plane(s) each\n",
390 			buffer, num_planes);
391 
392 	return buffer;
393 }
394 
395 /*
396  * __vb2_free_mem() - release all video buffer memory for a given queue
397  */
398 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
399 {
400 	unsigned int buffer;
401 	struct vb2_buffer *vb;
402 
403 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
404 	     ++buffer) {
405 		vb = q->bufs[buffer];
406 		if (!vb)
407 			continue;
408 
409 		/* Free MMAP buffers or release USERPTR buffers */
410 		if (q->memory == VB2_MEMORY_MMAP)
411 			__vb2_buf_mem_free(vb);
412 		else if (q->memory == VB2_MEMORY_DMABUF)
413 			__vb2_buf_dmabuf_put(vb);
414 		else
415 			__vb2_buf_userptr_put(vb);
416 	}
417 }
418 
419 /*
420  * __vb2_queue_free() - free buffers at the end of the queue - video memory and
421  * related information, if no buffers are left return the queue to an
422  * uninitialized state. Might be called even if the queue has already been freed.
423  */
424 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
425 {
426 	unsigned int buffer;
427 
428 	/*
429 	 * Sanity check: when preparing a buffer the queue lock is released for
430 	 * a short while (see __buf_prepare for the details), which would allow
431 	 * a race with a reqbufs which can call this function. Removing the
432 	 * buffers from underneath __buf_prepare is obviously a bad idea, so we
433 	 * check if any of the buffers is in the state PREPARING, and if so we
434 	 * just return -EAGAIN.
435 	 */
436 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
437 	     ++buffer) {
438 		if (q->bufs[buffer] == NULL)
439 			continue;
440 		if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
441 			dprintk(1, "preparing buffers, cannot free\n");
442 			return -EAGAIN;
443 		}
444 	}
445 
446 	/* Call driver-provided cleanup function for each buffer, if provided */
447 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
448 	     ++buffer) {
449 		struct vb2_buffer *vb = q->bufs[buffer];
450 
451 		if (vb && vb->planes[0].mem_priv)
452 			call_void_vb_qop(vb, buf_cleanup, vb);
453 	}
454 
455 	/* Release video buffer memory */
456 	__vb2_free_mem(q, buffers);
457 
458 #ifdef CONFIG_VIDEO_ADV_DEBUG
459 	/*
460 	 * Check that all the calls were balances during the life-time of this
461 	 * queue. If not (or if the debug level is 1 or up), then dump the
462 	 * counters to the kernel log.
463 	 */
464 	if (q->num_buffers) {
465 		bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
466 				  q->cnt_wait_prepare != q->cnt_wait_finish;
467 
468 		if (unbalanced || debug) {
469 			pr_info("counters for queue %p:%s\n", q,
470 				unbalanced ? " UNBALANCED!" : "");
471 			pr_info("     setup: %u start_streaming: %u stop_streaming: %u\n",
472 				q->cnt_queue_setup, q->cnt_start_streaming,
473 				q->cnt_stop_streaming);
474 			pr_info("     wait_prepare: %u wait_finish: %u\n",
475 				q->cnt_wait_prepare, q->cnt_wait_finish);
476 		}
477 		q->cnt_queue_setup = 0;
478 		q->cnt_wait_prepare = 0;
479 		q->cnt_wait_finish = 0;
480 		q->cnt_start_streaming = 0;
481 		q->cnt_stop_streaming = 0;
482 	}
483 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
484 		struct vb2_buffer *vb = q->bufs[buffer];
485 		bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
486 				  vb->cnt_mem_prepare != vb->cnt_mem_finish ||
487 				  vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
488 				  vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
489 				  vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
490 				  vb->cnt_buf_queue != vb->cnt_buf_done ||
491 				  vb->cnt_buf_prepare != vb->cnt_buf_finish ||
492 				  vb->cnt_buf_init != vb->cnt_buf_cleanup;
493 
494 		if (unbalanced || debug) {
495 			pr_info("   counters for queue %p, buffer %d:%s\n",
496 				q, buffer, unbalanced ? " UNBALANCED!" : "");
497 			pr_info("     buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
498 				vb->cnt_buf_init, vb->cnt_buf_cleanup,
499 				vb->cnt_buf_prepare, vb->cnt_buf_finish);
500 			pr_info("     buf_queue: %u buf_done: %u\n",
501 				vb->cnt_buf_queue, vb->cnt_buf_done);
502 			pr_info("     alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
503 				vb->cnt_mem_alloc, vb->cnt_mem_put,
504 				vb->cnt_mem_prepare, vb->cnt_mem_finish,
505 				vb->cnt_mem_mmap);
506 			pr_info("     get_userptr: %u put_userptr: %u\n",
507 				vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
508 			pr_info("     attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
509 				vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
510 				vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
511 			pr_info("     get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
512 				vb->cnt_mem_get_dmabuf,
513 				vb->cnt_mem_num_users,
514 				vb->cnt_mem_vaddr,
515 				vb->cnt_mem_cookie);
516 		}
517 	}
518 #endif
519 
520 	/* Free videobuf buffers */
521 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
522 	     ++buffer) {
523 		kfree(q->bufs[buffer]);
524 		q->bufs[buffer] = NULL;
525 	}
526 
527 	q->num_buffers -= buffers;
528 	if (!q->num_buffers) {
529 		q->memory = VB2_MEMORY_UNKNOWN;
530 		INIT_LIST_HEAD(&q->queued_list);
531 	}
532 	return 0;
533 }
534 
535 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
536 {
537 	unsigned int plane;
538 	for (plane = 0; plane < vb->num_planes; ++plane) {
539 		void *mem_priv = vb->planes[plane].mem_priv;
540 		/*
541 		 * If num_users() has not been provided, call_memop
542 		 * will return 0, apparently nobody cares about this
543 		 * case anyway. If num_users() returns more than 1,
544 		 * we are not the only user of the plane's memory.
545 		 */
546 		if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
547 			return true;
548 	}
549 	return false;
550 }
551 EXPORT_SYMBOL(vb2_buffer_in_use);
552 
553 /*
554  * __buffers_in_use() - return true if any buffers on the queue are in use and
555  * the queue cannot be freed (by the means of REQBUFS(0)) call
556  */
557 static bool __buffers_in_use(struct vb2_queue *q)
558 {
559 	unsigned int buffer;
560 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
561 		if (vb2_buffer_in_use(q, q->bufs[buffer]))
562 			return true;
563 	}
564 	return false;
565 }
566 
567 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb)
568 {
569 	call_void_bufop(q, fill_user_buffer, q->bufs[index], pb);
570 }
571 EXPORT_SYMBOL_GPL(vb2_core_querybuf);
572 
573 /*
574  * __verify_userptr_ops() - verify that all memory operations required for
575  * USERPTR queue type have been provided
576  */
577 static int __verify_userptr_ops(struct vb2_queue *q)
578 {
579 	if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
580 	    !q->mem_ops->put_userptr)
581 		return -EINVAL;
582 
583 	return 0;
584 }
585 
586 /*
587  * __verify_mmap_ops() - verify that all memory operations required for
588  * MMAP queue type have been provided
589  */
590 static int __verify_mmap_ops(struct vb2_queue *q)
591 {
592 	if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
593 	    !q->mem_ops->put || !q->mem_ops->mmap)
594 		return -EINVAL;
595 
596 	return 0;
597 }
598 
599 /*
600  * __verify_dmabuf_ops() - verify that all memory operations required for
601  * DMABUF queue type have been provided
602  */
603 static int __verify_dmabuf_ops(struct vb2_queue *q)
604 {
605 	if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
606 	    !q->mem_ops->detach_dmabuf  || !q->mem_ops->map_dmabuf ||
607 	    !q->mem_ops->unmap_dmabuf)
608 		return -EINVAL;
609 
610 	return 0;
611 }
612 
613 int vb2_verify_memory_type(struct vb2_queue *q,
614 		enum vb2_memory memory, unsigned int type)
615 {
616 	if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR &&
617 	    memory != VB2_MEMORY_DMABUF) {
618 		dprintk(1, "unsupported memory type\n");
619 		return -EINVAL;
620 	}
621 
622 	if (type != q->type) {
623 		dprintk(1, "requested type is incorrect\n");
624 		return -EINVAL;
625 	}
626 
627 	/*
628 	 * Make sure all the required memory ops for given memory type
629 	 * are available.
630 	 */
631 	if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) {
632 		dprintk(1, "MMAP for current setup unsupported\n");
633 		return -EINVAL;
634 	}
635 
636 	if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
637 		dprintk(1, "USERPTR for current setup unsupported\n");
638 		return -EINVAL;
639 	}
640 
641 	if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
642 		dprintk(1, "DMABUF for current setup unsupported\n");
643 		return -EINVAL;
644 	}
645 
646 	/*
647 	 * Place the busy tests at the end: -EBUSY can be ignored when
648 	 * create_bufs is called with count == 0, but count == 0 should still
649 	 * do the memory and type validation.
650 	 */
651 	if (vb2_fileio_is_active(q)) {
652 		dprintk(1, "file io in progress\n");
653 		return -EBUSY;
654 	}
655 	return 0;
656 }
657 EXPORT_SYMBOL(vb2_verify_memory_type);
658 
659 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
660 		unsigned int *count)
661 {
662 	unsigned int num_buffers, allocated_buffers, num_planes = 0;
663 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
664 	int ret;
665 
666 	if (q->streaming) {
667 		dprintk(1, "streaming active\n");
668 		return -EBUSY;
669 	}
670 
671 	if (*count == 0 || q->num_buffers != 0 ||
672 	    (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory)) {
673 		/*
674 		 * We already have buffers allocated, so first check if they
675 		 * are not in use and can be freed.
676 		 */
677 		mutex_lock(&q->mmap_lock);
678 		if (q->memory == VB2_MEMORY_MMAP && __buffers_in_use(q)) {
679 			mutex_unlock(&q->mmap_lock);
680 			dprintk(1, "memory in use, cannot free\n");
681 			return -EBUSY;
682 		}
683 
684 		/*
685 		 * Call queue_cancel to clean up any buffers in the PREPARED or
686 		 * QUEUED state which is possible if buffers were prepared or
687 		 * queued without ever calling STREAMON.
688 		 */
689 		__vb2_queue_cancel(q);
690 		ret = __vb2_queue_free(q, q->num_buffers);
691 		mutex_unlock(&q->mmap_lock);
692 		if (ret)
693 			return ret;
694 
695 		/*
696 		 * In case of REQBUFS(0) return immediately without calling
697 		 * driver's queue_setup() callback and allocating resources.
698 		 */
699 		if (*count == 0)
700 			return 0;
701 	}
702 
703 	/*
704 	 * Make sure the requested values and current defaults are sane.
705 	 */
706 	WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME);
707 	num_buffers = max_t(unsigned int, *count, q->min_buffers_needed);
708 	num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME);
709 	memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
710 	q->memory = memory;
711 
712 	/*
713 	 * Ask the driver how many buffers and planes per buffer it requires.
714 	 * Driver also sets the size and allocator context for each plane.
715 	 */
716 	ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes,
717 		       plane_sizes, q->alloc_devs);
718 	if (ret)
719 		return ret;
720 
721 	/* Finally, allocate buffers and video memory */
722 	allocated_buffers =
723 		__vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes);
724 	if (allocated_buffers == 0) {
725 		dprintk(1, "memory allocation failed\n");
726 		return -ENOMEM;
727 	}
728 
729 	/*
730 	 * There is no point in continuing if we can't allocate the minimum
731 	 * number of buffers needed by this vb2_queue.
732 	 */
733 	if (allocated_buffers < q->min_buffers_needed)
734 		ret = -ENOMEM;
735 
736 	/*
737 	 * Check if driver can handle the allocated number of buffers.
738 	 */
739 	if (!ret && allocated_buffers < num_buffers) {
740 		num_buffers = allocated_buffers;
741 		/*
742 		 * num_planes is set by the previous queue_setup(), but since it
743 		 * signals to queue_setup() whether it is called from create_bufs()
744 		 * vs reqbufs() we zero it here to signal that queue_setup() is
745 		 * called for the reqbufs() case.
746 		 */
747 		num_planes = 0;
748 
749 		ret = call_qop(q, queue_setup, q, &num_buffers,
750 			       &num_planes, plane_sizes, q->alloc_devs);
751 
752 		if (!ret && allocated_buffers < num_buffers)
753 			ret = -ENOMEM;
754 
755 		/*
756 		 * Either the driver has accepted a smaller number of buffers,
757 		 * or .queue_setup() returned an error
758 		 */
759 	}
760 
761 	mutex_lock(&q->mmap_lock);
762 	q->num_buffers = allocated_buffers;
763 
764 	if (ret < 0) {
765 		/*
766 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
767 		 * from q->num_buffers.
768 		 */
769 		__vb2_queue_free(q, allocated_buffers);
770 		mutex_unlock(&q->mmap_lock);
771 		return ret;
772 	}
773 	mutex_unlock(&q->mmap_lock);
774 
775 	/*
776 	 * Return the number of successfully allocated buffers
777 	 * to the userspace.
778 	 */
779 	*count = allocated_buffers;
780 	q->waiting_for_buffers = !q->is_output;
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(vb2_core_reqbufs);
785 
786 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
787 		unsigned int *count, unsigned requested_planes,
788 		const unsigned requested_sizes[])
789 {
790 	unsigned int num_planes = 0, num_buffers, allocated_buffers;
791 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
792 	int ret;
793 
794 	if (q->num_buffers == VB2_MAX_FRAME) {
795 		dprintk(1, "maximum number of buffers already allocated\n");
796 		return -ENOBUFS;
797 	}
798 
799 	if (!q->num_buffers) {
800 		memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
801 		q->memory = memory;
802 		q->waiting_for_buffers = !q->is_output;
803 	}
804 
805 	num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers);
806 
807 	if (requested_planes && requested_sizes) {
808 		num_planes = requested_planes;
809 		memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes));
810 	}
811 
812 	/*
813 	 * Ask the driver, whether the requested number of buffers, planes per
814 	 * buffer and their sizes are acceptable
815 	 */
816 	ret = call_qop(q, queue_setup, q, &num_buffers,
817 		       &num_planes, plane_sizes, q->alloc_devs);
818 	if (ret)
819 		return ret;
820 
821 	/* Finally, allocate buffers and video memory */
822 	allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers,
823 				num_planes, plane_sizes);
824 	if (allocated_buffers == 0) {
825 		dprintk(1, "memory allocation failed\n");
826 		return -ENOMEM;
827 	}
828 
829 	/*
830 	 * Check if driver can handle the so far allocated number of buffers.
831 	 */
832 	if (allocated_buffers < num_buffers) {
833 		num_buffers = allocated_buffers;
834 
835 		/*
836 		 * q->num_buffers contains the total number of buffers, that the
837 		 * queue driver has set up
838 		 */
839 		ret = call_qop(q, queue_setup, q, &num_buffers,
840 			       &num_planes, plane_sizes, q->alloc_devs);
841 
842 		if (!ret && allocated_buffers < num_buffers)
843 			ret = -ENOMEM;
844 
845 		/*
846 		 * Either the driver has accepted a smaller number of buffers,
847 		 * or .queue_setup() returned an error
848 		 */
849 	}
850 
851 	mutex_lock(&q->mmap_lock);
852 	q->num_buffers += allocated_buffers;
853 
854 	if (ret < 0) {
855 		/*
856 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
857 		 * from q->num_buffers.
858 		 */
859 		__vb2_queue_free(q, allocated_buffers);
860 		mutex_unlock(&q->mmap_lock);
861 		return -ENOMEM;
862 	}
863 	mutex_unlock(&q->mmap_lock);
864 
865 	/*
866 	 * Return the number of successfully allocated buffers
867 	 * to the userspace.
868 	 */
869 	*count = allocated_buffers;
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(vb2_core_create_bufs);
874 
875 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
876 {
877 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
878 		return NULL;
879 
880 	return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv);
881 
882 }
883 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
884 
885 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
886 {
887 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
888 		return NULL;
889 
890 	return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv);
891 }
892 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
893 
894 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
895 {
896 	struct vb2_queue *q = vb->vb2_queue;
897 	unsigned long flags;
898 	unsigned int plane;
899 
900 	if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
901 		return;
902 
903 	if (WARN_ON(state != VB2_BUF_STATE_DONE &&
904 		    state != VB2_BUF_STATE_ERROR &&
905 		    state != VB2_BUF_STATE_QUEUED &&
906 		    state != VB2_BUF_STATE_REQUEUEING))
907 		state = VB2_BUF_STATE_ERROR;
908 
909 #ifdef CONFIG_VIDEO_ADV_DEBUG
910 	/*
911 	 * Although this is not a callback, it still does have to balance
912 	 * with the buf_queue op. So update this counter manually.
913 	 */
914 	vb->cnt_buf_done++;
915 #endif
916 	dprintk(4, "done processing on buffer %d, state: %d\n",
917 			vb->index, state);
918 
919 	/* sync buffers */
920 	for (plane = 0; plane < vb->num_planes; ++plane)
921 		call_void_memop(vb, finish, vb->planes[plane].mem_priv);
922 
923 	spin_lock_irqsave(&q->done_lock, flags);
924 	if (state == VB2_BUF_STATE_QUEUED ||
925 	    state == VB2_BUF_STATE_REQUEUEING) {
926 		vb->state = VB2_BUF_STATE_QUEUED;
927 	} else {
928 		/* Add the buffer to the done buffers list */
929 		list_add_tail(&vb->done_entry, &q->done_list);
930 		vb->state = state;
931 	}
932 	atomic_dec(&q->owned_by_drv_count);
933 	spin_unlock_irqrestore(&q->done_lock, flags);
934 
935 	trace_vb2_buf_done(q, vb);
936 
937 	switch (state) {
938 	case VB2_BUF_STATE_QUEUED:
939 		return;
940 	case VB2_BUF_STATE_REQUEUEING:
941 		if (q->start_streaming_called)
942 			__enqueue_in_driver(vb);
943 		return;
944 	default:
945 		/* Inform any processes that may be waiting for buffers */
946 		wake_up(&q->done_wq);
947 		break;
948 	}
949 }
950 EXPORT_SYMBOL_GPL(vb2_buffer_done);
951 
952 void vb2_discard_done(struct vb2_queue *q)
953 {
954 	struct vb2_buffer *vb;
955 	unsigned long flags;
956 
957 	spin_lock_irqsave(&q->done_lock, flags);
958 	list_for_each_entry(vb, &q->done_list, done_entry)
959 		vb->state = VB2_BUF_STATE_ERROR;
960 	spin_unlock_irqrestore(&q->done_lock, flags);
961 }
962 EXPORT_SYMBOL_GPL(vb2_discard_done);
963 
964 /*
965  * __prepare_mmap() - prepare an MMAP buffer
966  */
967 static int __prepare_mmap(struct vb2_buffer *vb, const void *pb)
968 {
969 	int ret = 0;
970 
971 	if (pb)
972 		ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
973 				 vb, pb, vb->planes);
974 	return ret ? ret : call_vb_qop(vb, buf_prepare, vb);
975 }
976 
977 /*
978  * __prepare_userptr() - prepare a USERPTR buffer
979  */
980 static int __prepare_userptr(struct vb2_buffer *vb, const void *pb)
981 {
982 	struct vb2_plane planes[VB2_MAX_PLANES];
983 	struct vb2_queue *q = vb->vb2_queue;
984 	void *mem_priv;
985 	unsigned int plane;
986 	int ret = 0;
987 	bool reacquired = vb->planes[0].mem_priv == NULL;
988 
989 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
990 	/* Copy relevant information provided by the userspace */
991 	if (pb) {
992 		ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
993 				 vb, pb, planes);
994 		if (ret)
995 			return ret;
996 	}
997 
998 	for (plane = 0; plane < vb->num_planes; ++plane) {
999 		/* Skip the plane if already verified */
1000 		if (vb->planes[plane].m.userptr &&
1001 			vb->planes[plane].m.userptr == planes[plane].m.userptr
1002 			&& vb->planes[plane].length == planes[plane].length)
1003 			continue;
1004 
1005 		dprintk(3, "userspace address for plane %d changed, reacquiring memory\n",
1006 			plane);
1007 
1008 		/* Check if the provided plane buffer is large enough */
1009 		if (planes[plane].length < vb->planes[plane].min_length) {
1010 			dprintk(1, "provided buffer size %u is less than setup size %u for plane %d\n",
1011 						planes[plane].length,
1012 						vb->planes[plane].min_length,
1013 						plane);
1014 			ret = -EINVAL;
1015 			goto err;
1016 		}
1017 
1018 		/* Release previously acquired memory if present */
1019 		if (vb->planes[plane].mem_priv) {
1020 			if (!reacquired) {
1021 				reacquired = true;
1022 				call_void_vb_qop(vb, buf_cleanup, vb);
1023 			}
1024 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1025 		}
1026 
1027 		vb->planes[plane].mem_priv = NULL;
1028 		vb->planes[plane].bytesused = 0;
1029 		vb->planes[plane].length = 0;
1030 		vb->planes[plane].m.userptr = 0;
1031 		vb->planes[plane].data_offset = 0;
1032 
1033 		/* Acquire each plane's memory */
1034 		mem_priv = call_ptr_memop(vb, get_userptr,
1035 				q->alloc_devs[plane] ? : q->dev,
1036 				planes[plane].m.userptr,
1037 				planes[plane].length, q->dma_dir);
1038 		if (IS_ERR(mem_priv)) {
1039 			dprintk(1, "failed acquiring userspace memory for plane %d\n",
1040 				plane);
1041 			ret = PTR_ERR(mem_priv);
1042 			goto err;
1043 		}
1044 		vb->planes[plane].mem_priv = mem_priv;
1045 	}
1046 
1047 	/*
1048 	 * Now that everything is in order, copy relevant information
1049 	 * provided by userspace.
1050 	 */
1051 	for (plane = 0; plane < vb->num_planes; ++plane) {
1052 		vb->planes[plane].bytesused = planes[plane].bytesused;
1053 		vb->planes[plane].length = planes[plane].length;
1054 		vb->planes[plane].m.userptr = planes[plane].m.userptr;
1055 		vb->planes[plane].data_offset = planes[plane].data_offset;
1056 	}
1057 
1058 	if (reacquired) {
1059 		/*
1060 		 * One or more planes changed, so we must call buf_init to do
1061 		 * the driver-specific initialization on the newly acquired
1062 		 * buffer, if provided.
1063 		 */
1064 		ret = call_vb_qop(vb, buf_init, vb);
1065 		if (ret) {
1066 			dprintk(1, "buffer initialization failed\n");
1067 			goto err;
1068 		}
1069 	}
1070 
1071 	ret = call_vb_qop(vb, buf_prepare, vb);
1072 	if (ret) {
1073 		dprintk(1, "buffer preparation failed\n");
1074 		call_void_vb_qop(vb, buf_cleanup, vb);
1075 		goto err;
1076 	}
1077 
1078 	return 0;
1079 err:
1080 	/* In case of errors, release planes that were already acquired */
1081 	for (plane = 0; plane < vb->num_planes; ++plane) {
1082 		if (vb->planes[plane].mem_priv)
1083 			call_void_memop(vb, put_userptr,
1084 				vb->planes[plane].mem_priv);
1085 		vb->planes[plane].mem_priv = NULL;
1086 		vb->planes[plane].m.userptr = 0;
1087 		vb->planes[plane].length = 0;
1088 	}
1089 
1090 	return ret;
1091 }
1092 
1093 /*
1094  * __prepare_dmabuf() - prepare a DMABUF buffer
1095  */
1096 static int __prepare_dmabuf(struct vb2_buffer *vb, const void *pb)
1097 {
1098 	struct vb2_plane planes[VB2_MAX_PLANES];
1099 	struct vb2_queue *q = vb->vb2_queue;
1100 	void *mem_priv;
1101 	unsigned int plane;
1102 	int ret = 0;
1103 	bool reacquired = vb->planes[0].mem_priv == NULL;
1104 
1105 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1106 	/* Copy relevant information provided by the userspace */
1107 	if (pb) {
1108 		ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1109 				 vb, pb, planes);
1110 		if (ret)
1111 			return ret;
1112 	}
1113 
1114 	for (plane = 0; plane < vb->num_planes; ++plane) {
1115 		struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1116 
1117 		if (IS_ERR_OR_NULL(dbuf)) {
1118 			dprintk(1, "invalid dmabuf fd for plane %d\n",
1119 				plane);
1120 			ret = -EINVAL;
1121 			goto err;
1122 		}
1123 
1124 		/* use DMABUF size if length is not provided */
1125 		if (planes[plane].length == 0)
1126 			planes[plane].length = dbuf->size;
1127 
1128 		if (planes[plane].length < vb->planes[plane].min_length) {
1129 			dprintk(1, "invalid dmabuf length %u for plane %d, minimum length %u\n",
1130 				planes[plane].length, plane,
1131 				vb->planes[plane].min_length);
1132 			dma_buf_put(dbuf);
1133 			ret = -EINVAL;
1134 			goto err;
1135 		}
1136 
1137 		/* Skip the plane if already verified */
1138 		if (dbuf == vb->planes[plane].dbuf &&
1139 			vb->planes[plane].length == planes[plane].length) {
1140 			dma_buf_put(dbuf);
1141 			continue;
1142 		}
1143 
1144 		dprintk(3, "buffer for plane %d changed\n", plane);
1145 
1146 		if (!reacquired) {
1147 			reacquired = true;
1148 			call_void_vb_qop(vb, buf_cleanup, vb);
1149 		}
1150 
1151 		/* Release previously acquired memory if present */
1152 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1153 		vb->planes[plane].bytesused = 0;
1154 		vb->planes[plane].length = 0;
1155 		vb->planes[plane].m.fd = 0;
1156 		vb->planes[plane].data_offset = 0;
1157 
1158 		/* Acquire each plane's memory */
1159 		mem_priv = call_ptr_memop(vb, attach_dmabuf,
1160 				q->alloc_devs[plane] ? : q->dev,
1161 				dbuf, planes[plane].length, q->dma_dir);
1162 		if (IS_ERR(mem_priv)) {
1163 			dprintk(1, "failed to attach dmabuf\n");
1164 			ret = PTR_ERR(mem_priv);
1165 			dma_buf_put(dbuf);
1166 			goto err;
1167 		}
1168 
1169 		vb->planes[plane].dbuf = dbuf;
1170 		vb->planes[plane].mem_priv = mem_priv;
1171 	}
1172 
1173 	/*
1174 	 * This pins the buffer(s) with dma_buf_map_attachment()). It's done
1175 	 * here instead just before the DMA, while queueing the buffer(s) so
1176 	 * userspace knows sooner rather than later if the dma-buf map fails.
1177 	 */
1178 	for (plane = 0; plane < vb->num_planes; ++plane) {
1179 		ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1180 		if (ret) {
1181 			dprintk(1, "failed to map dmabuf for plane %d\n",
1182 				plane);
1183 			goto err;
1184 		}
1185 		vb->planes[plane].dbuf_mapped = 1;
1186 	}
1187 
1188 	/*
1189 	 * Now that everything is in order, copy relevant information
1190 	 * provided by userspace.
1191 	 */
1192 	for (plane = 0; plane < vb->num_planes; ++plane) {
1193 		vb->planes[plane].bytesused = planes[plane].bytesused;
1194 		vb->planes[plane].length = planes[plane].length;
1195 		vb->planes[plane].m.fd = planes[plane].m.fd;
1196 		vb->planes[plane].data_offset = planes[plane].data_offset;
1197 	}
1198 
1199 	if (reacquired) {
1200 		/*
1201 		 * Call driver-specific initialization on the newly acquired buffer,
1202 		 * if provided.
1203 		 */
1204 		ret = call_vb_qop(vb, buf_init, vb);
1205 		if (ret) {
1206 			dprintk(1, "buffer initialization failed\n");
1207 			goto err;
1208 		}
1209 	}
1210 
1211 	ret = call_vb_qop(vb, buf_prepare, vb);
1212 	if (ret) {
1213 		dprintk(1, "buffer preparation failed\n");
1214 		call_void_vb_qop(vb, buf_cleanup, vb);
1215 		goto err;
1216 	}
1217 
1218 	return 0;
1219 err:
1220 	/* In case of errors, release planes that were already acquired */
1221 	__vb2_buf_dmabuf_put(vb);
1222 
1223 	return ret;
1224 }
1225 
1226 /*
1227  * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1228  */
1229 static void __enqueue_in_driver(struct vb2_buffer *vb)
1230 {
1231 	struct vb2_queue *q = vb->vb2_queue;
1232 
1233 	vb->state = VB2_BUF_STATE_ACTIVE;
1234 	atomic_inc(&q->owned_by_drv_count);
1235 
1236 	trace_vb2_buf_queue(q, vb);
1237 
1238 	call_void_vb_qop(vb, buf_queue, vb);
1239 }
1240 
1241 static int __buf_prepare(struct vb2_buffer *vb, const void *pb)
1242 {
1243 	struct vb2_queue *q = vb->vb2_queue;
1244 	unsigned int plane;
1245 	int ret;
1246 
1247 	if (q->error) {
1248 		dprintk(1, "fatal error occurred on queue\n");
1249 		return -EIO;
1250 	}
1251 
1252 	vb->state = VB2_BUF_STATE_PREPARING;
1253 
1254 	switch (q->memory) {
1255 	case VB2_MEMORY_MMAP:
1256 		ret = __prepare_mmap(vb, pb);
1257 		break;
1258 	case VB2_MEMORY_USERPTR:
1259 		ret = __prepare_userptr(vb, pb);
1260 		break;
1261 	case VB2_MEMORY_DMABUF:
1262 		ret = __prepare_dmabuf(vb, pb);
1263 		break;
1264 	default:
1265 		WARN(1, "Invalid queue type\n");
1266 		ret = -EINVAL;
1267 	}
1268 
1269 	if (ret) {
1270 		dprintk(1, "buffer preparation failed: %d\n", ret);
1271 		vb->state = VB2_BUF_STATE_DEQUEUED;
1272 		return ret;
1273 	}
1274 
1275 	/* sync buffers */
1276 	for (plane = 0; plane < vb->num_planes; ++plane)
1277 		call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
1278 
1279 	vb->state = VB2_BUF_STATE_PREPARED;
1280 
1281 	return 0;
1282 }
1283 
1284 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb)
1285 {
1286 	struct vb2_buffer *vb;
1287 	int ret;
1288 
1289 	vb = q->bufs[index];
1290 	if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1291 		dprintk(1, "invalid buffer state %d\n",
1292 			vb->state);
1293 		return -EINVAL;
1294 	}
1295 
1296 	ret = __buf_prepare(vb, pb);
1297 	if (ret)
1298 		return ret;
1299 
1300 	/* Fill buffer information for the userspace */
1301 	call_void_bufop(q, fill_user_buffer, vb, pb);
1302 
1303 	dprintk(2, "prepare of buffer %d succeeded\n", vb->index);
1304 
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf);
1308 
1309 /*
1310  * vb2_start_streaming() - Attempt to start streaming.
1311  * @q:		videobuf2 queue
1312  *
1313  * Attempt to start streaming. When this function is called there must be
1314  * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1315  * number of buffers required for the DMA engine to function). If the
1316  * @start_streaming op fails it is supposed to return all the driver-owned
1317  * buffers back to vb2 in state QUEUED. Check if that happened and if
1318  * not warn and reclaim them forcefully.
1319  */
1320 static int vb2_start_streaming(struct vb2_queue *q)
1321 {
1322 	struct vb2_buffer *vb;
1323 	int ret;
1324 
1325 	/*
1326 	 * If any buffers were queued before streamon,
1327 	 * we can now pass them to driver for processing.
1328 	 */
1329 	list_for_each_entry(vb, &q->queued_list, queued_entry)
1330 		__enqueue_in_driver(vb);
1331 
1332 	/* Tell the driver to start streaming */
1333 	q->start_streaming_called = 1;
1334 	ret = call_qop(q, start_streaming, q,
1335 		       atomic_read(&q->owned_by_drv_count));
1336 	if (!ret)
1337 		return 0;
1338 
1339 	q->start_streaming_called = 0;
1340 
1341 	dprintk(1, "driver refused to start streaming\n");
1342 	/*
1343 	 * If you see this warning, then the driver isn't cleaning up properly
1344 	 * after a failed start_streaming(). See the start_streaming()
1345 	 * documentation in videobuf2-core.h for more information how buffers
1346 	 * should be returned to vb2 in start_streaming().
1347 	 */
1348 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1349 		unsigned i;
1350 
1351 		/*
1352 		 * Forcefully reclaim buffers if the driver did not
1353 		 * correctly return them to vb2.
1354 		 */
1355 		for (i = 0; i < q->num_buffers; ++i) {
1356 			vb = q->bufs[i];
1357 			if (vb->state == VB2_BUF_STATE_ACTIVE)
1358 				vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1359 		}
1360 		/* Must be zero now */
1361 		WARN_ON(atomic_read(&q->owned_by_drv_count));
1362 	}
1363 	/*
1364 	 * If done_list is not empty, then start_streaming() didn't call
1365 	 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1366 	 * STATE_DONE.
1367 	 */
1368 	WARN_ON(!list_empty(&q->done_list));
1369 	return ret;
1370 }
1371 
1372 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb)
1373 {
1374 	struct vb2_buffer *vb;
1375 	int ret;
1376 
1377 	vb = q->bufs[index];
1378 
1379 	switch (vb->state) {
1380 	case VB2_BUF_STATE_DEQUEUED:
1381 		ret = __buf_prepare(vb, pb);
1382 		if (ret)
1383 			return ret;
1384 		break;
1385 	case VB2_BUF_STATE_PREPARED:
1386 		break;
1387 	case VB2_BUF_STATE_PREPARING:
1388 		dprintk(1, "buffer still being prepared\n");
1389 		return -EINVAL;
1390 	default:
1391 		dprintk(1, "invalid buffer state %d\n", vb->state);
1392 		return -EINVAL;
1393 	}
1394 
1395 	/*
1396 	 * Add to the queued buffers list, a buffer will stay on it until
1397 	 * dequeued in dqbuf.
1398 	 */
1399 	list_add_tail(&vb->queued_entry, &q->queued_list);
1400 	q->queued_count++;
1401 	q->waiting_for_buffers = false;
1402 	vb->state = VB2_BUF_STATE_QUEUED;
1403 
1404 	if (pb)
1405 		call_void_bufop(q, copy_timestamp, vb, pb);
1406 
1407 	trace_vb2_qbuf(q, vb);
1408 
1409 	/*
1410 	 * If already streaming, give the buffer to driver for processing.
1411 	 * If not, the buffer will be given to driver on next streamon.
1412 	 */
1413 	if (q->start_streaming_called)
1414 		__enqueue_in_driver(vb);
1415 
1416 	/* Fill buffer information for the userspace */
1417 	if (pb)
1418 		call_void_bufop(q, fill_user_buffer, vb, pb);
1419 
1420 	/*
1421 	 * If streamon has been called, and we haven't yet called
1422 	 * start_streaming() since not enough buffers were queued, and
1423 	 * we now have reached the minimum number of queued buffers,
1424 	 * then we can finally call start_streaming().
1425 	 */
1426 	if (q->streaming && !q->start_streaming_called &&
1427 	    q->queued_count >= q->min_buffers_needed) {
1428 		ret = vb2_start_streaming(q);
1429 		if (ret)
1430 			return ret;
1431 	}
1432 
1433 	dprintk(2, "qbuf of buffer %d succeeded\n", vb->index);
1434 	return 0;
1435 }
1436 EXPORT_SYMBOL_GPL(vb2_core_qbuf);
1437 
1438 /*
1439  * __vb2_wait_for_done_vb() - wait for a buffer to become available
1440  * for dequeuing
1441  *
1442  * Will sleep if required for nonblocking == false.
1443  */
1444 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1445 {
1446 	/*
1447 	 * All operations on vb_done_list are performed under done_lock
1448 	 * spinlock protection. However, buffers may be removed from
1449 	 * it and returned to userspace only while holding both driver's
1450 	 * lock and the done_lock spinlock. Thus we can be sure that as
1451 	 * long as we hold the driver's lock, the list will remain not
1452 	 * empty if list_empty() check succeeds.
1453 	 */
1454 
1455 	for (;;) {
1456 		int ret;
1457 
1458 		if (!q->streaming) {
1459 			dprintk(1, "streaming off, will not wait for buffers\n");
1460 			return -EINVAL;
1461 		}
1462 
1463 		if (q->error) {
1464 			dprintk(1, "Queue in error state, will not wait for buffers\n");
1465 			return -EIO;
1466 		}
1467 
1468 		if (q->last_buffer_dequeued) {
1469 			dprintk(3, "last buffer dequeued already, will not wait for buffers\n");
1470 			return -EPIPE;
1471 		}
1472 
1473 		if (!list_empty(&q->done_list)) {
1474 			/*
1475 			 * Found a buffer that we were waiting for.
1476 			 */
1477 			break;
1478 		}
1479 
1480 		if (nonblocking) {
1481 			dprintk(3, "nonblocking and no buffers to dequeue, will not wait\n");
1482 			return -EAGAIN;
1483 		}
1484 
1485 		/*
1486 		 * We are streaming and blocking, wait for another buffer to
1487 		 * become ready or for streamoff. Driver's lock is released to
1488 		 * allow streamoff or qbuf to be called while waiting.
1489 		 */
1490 		call_void_qop(q, wait_prepare, q);
1491 
1492 		/*
1493 		 * All locks have been released, it is safe to sleep now.
1494 		 */
1495 		dprintk(3, "will sleep waiting for buffers\n");
1496 		ret = wait_event_interruptible(q->done_wq,
1497 				!list_empty(&q->done_list) || !q->streaming ||
1498 				q->error);
1499 
1500 		/*
1501 		 * We need to reevaluate both conditions again after reacquiring
1502 		 * the locks or return an error if one occurred.
1503 		 */
1504 		call_void_qop(q, wait_finish, q);
1505 		if (ret) {
1506 			dprintk(1, "sleep was interrupted\n");
1507 			return ret;
1508 		}
1509 	}
1510 	return 0;
1511 }
1512 
1513 /*
1514  * __vb2_get_done_vb() - get a buffer ready for dequeuing
1515  *
1516  * Will sleep if required for nonblocking == false.
1517  */
1518 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
1519 			     void *pb, int nonblocking)
1520 {
1521 	unsigned long flags;
1522 	int ret = 0;
1523 
1524 	/*
1525 	 * Wait for at least one buffer to become available on the done_list.
1526 	 */
1527 	ret = __vb2_wait_for_done_vb(q, nonblocking);
1528 	if (ret)
1529 		return ret;
1530 
1531 	/*
1532 	 * Driver's lock has been held since we last verified that done_list
1533 	 * is not empty, so no need for another list_empty(done_list) check.
1534 	 */
1535 	spin_lock_irqsave(&q->done_lock, flags);
1536 	*vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
1537 	/*
1538 	 * Only remove the buffer from done_list if all planes can be
1539 	 * handled. Some cases such as V4L2 file I/O and DVB have pb
1540 	 * == NULL; skip the check then as there's nothing to verify.
1541 	 */
1542 	if (pb)
1543 		ret = call_bufop(q, verify_planes_array, *vb, pb);
1544 	if (!ret)
1545 		list_del(&(*vb)->done_entry);
1546 	spin_unlock_irqrestore(&q->done_lock, flags);
1547 
1548 	return ret;
1549 }
1550 
1551 int vb2_wait_for_all_buffers(struct vb2_queue *q)
1552 {
1553 	if (!q->streaming) {
1554 		dprintk(1, "streaming off, will not wait for buffers\n");
1555 		return -EINVAL;
1556 	}
1557 
1558 	if (q->start_streaming_called)
1559 		wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
1560 	return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
1563 
1564 /*
1565  * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
1566  */
1567 static void __vb2_dqbuf(struct vb2_buffer *vb)
1568 {
1569 	struct vb2_queue *q = vb->vb2_queue;
1570 	unsigned int i;
1571 
1572 	/* nothing to do if the buffer is already dequeued */
1573 	if (vb->state == VB2_BUF_STATE_DEQUEUED)
1574 		return;
1575 
1576 	vb->state = VB2_BUF_STATE_DEQUEUED;
1577 
1578 	/* unmap DMABUF buffer */
1579 	if (q->memory == VB2_MEMORY_DMABUF)
1580 		for (i = 0; i < vb->num_planes; ++i) {
1581 			if (!vb->planes[i].dbuf_mapped)
1582 				continue;
1583 			call_void_memop(vb, unmap_dmabuf, vb->planes[i].mem_priv);
1584 			vb->planes[i].dbuf_mapped = 0;
1585 		}
1586 }
1587 
1588 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
1589 		   bool nonblocking)
1590 {
1591 	struct vb2_buffer *vb = NULL;
1592 	int ret;
1593 
1594 	ret = __vb2_get_done_vb(q, &vb, pb, nonblocking);
1595 	if (ret < 0)
1596 		return ret;
1597 
1598 	switch (vb->state) {
1599 	case VB2_BUF_STATE_DONE:
1600 		dprintk(3, "returning done buffer\n");
1601 		break;
1602 	case VB2_BUF_STATE_ERROR:
1603 		dprintk(3, "returning done buffer with errors\n");
1604 		break;
1605 	default:
1606 		dprintk(1, "invalid buffer state\n");
1607 		return -EINVAL;
1608 	}
1609 
1610 	call_void_vb_qop(vb, buf_finish, vb);
1611 
1612 	if (pindex)
1613 		*pindex = vb->index;
1614 
1615 	/* Fill buffer information for the userspace */
1616 	if (pb)
1617 		call_void_bufop(q, fill_user_buffer, vb, pb);
1618 
1619 	/* Remove from videobuf queue */
1620 	list_del(&vb->queued_entry);
1621 	q->queued_count--;
1622 
1623 	trace_vb2_dqbuf(q, vb);
1624 
1625 	/* go back to dequeued state */
1626 	__vb2_dqbuf(vb);
1627 
1628 	dprintk(2, "dqbuf of buffer %d, with state %d\n",
1629 			vb->index, vb->state);
1630 
1631 	return 0;
1632 
1633 }
1634 EXPORT_SYMBOL_GPL(vb2_core_dqbuf);
1635 
1636 /*
1637  * __vb2_queue_cancel() - cancel and stop (pause) streaming
1638  *
1639  * Removes all queued buffers from driver's queue and all buffers queued by
1640  * userspace from videobuf's queue. Returns to state after reqbufs.
1641  */
1642 static void __vb2_queue_cancel(struct vb2_queue *q)
1643 {
1644 	unsigned int i;
1645 
1646 	/*
1647 	 * Tell driver to stop all transactions and release all queued
1648 	 * buffers.
1649 	 */
1650 	if (q->start_streaming_called)
1651 		call_void_qop(q, stop_streaming, q);
1652 
1653 	/*
1654 	 * If you see this warning, then the driver isn't cleaning up properly
1655 	 * in stop_streaming(). See the stop_streaming() documentation in
1656 	 * videobuf2-core.h for more information how buffers should be returned
1657 	 * to vb2 in stop_streaming().
1658 	 */
1659 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1660 		for (i = 0; i < q->num_buffers; ++i)
1661 			if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) {
1662 				pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n",
1663 					q->bufs[i]);
1664 				vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
1665 			}
1666 		/* Must be zero now */
1667 		WARN_ON(atomic_read(&q->owned_by_drv_count));
1668 	}
1669 
1670 	q->streaming = 0;
1671 	q->start_streaming_called = 0;
1672 	q->queued_count = 0;
1673 	q->error = 0;
1674 
1675 	/*
1676 	 * Remove all buffers from videobuf's list...
1677 	 */
1678 	INIT_LIST_HEAD(&q->queued_list);
1679 	/*
1680 	 * ...and done list; userspace will not receive any buffers it
1681 	 * has not already dequeued before initiating cancel.
1682 	 */
1683 	INIT_LIST_HEAD(&q->done_list);
1684 	atomic_set(&q->owned_by_drv_count, 0);
1685 	wake_up_all(&q->done_wq);
1686 
1687 	/*
1688 	 * Reinitialize all buffers for next use.
1689 	 * Make sure to call buf_finish for any queued buffers. Normally
1690 	 * that's done in dqbuf, but that's not going to happen when we
1691 	 * cancel the whole queue. Note: this code belongs here, not in
1692 	 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical
1693 	 * call to __fill_user_buffer() after buf_finish(). That order can't
1694 	 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
1695 	 */
1696 	for (i = 0; i < q->num_buffers; ++i) {
1697 		struct vb2_buffer *vb = q->bufs[i];
1698 
1699 		if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1700 			vb->state = VB2_BUF_STATE_PREPARED;
1701 			call_void_vb_qop(vb, buf_finish, vb);
1702 		}
1703 		__vb2_dqbuf(vb);
1704 	}
1705 }
1706 
1707 int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
1708 {
1709 	int ret;
1710 
1711 	if (type != q->type) {
1712 		dprintk(1, "invalid stream type\n");
1713 		return -EINVAL;
1714 	}
1715 
1716 	if (q->streaming) {
1717 		dprintk(3, "already streaming\n");
1718 		return 0;
1719 	}
1720 
1721 	if (!q->num_buffers) {
1722 		dprintk(1, "no buffers have been allocated\n");
1723 		return -EINVAL;
1724 	}
1725 
1726 	if (q->num_buffers < q->min_buffers_needed) {
1727 		dprintk(1, "need at least %u allocated buffers\n",
1728 				q->min_buffers_needed);
1729 		return -EINVAL;
1730 	}
1731 
1732 	/*
1733 	 * Tell driver to start streaming provided sufficient buffers
1734 	 * are available.
1735 	 */
1736 	if (q->queued_count >= q->min_buffers_needed) {
1737 		ret = v4l_vb2q_enable_media_source(q);
1738 		if (ret)
1739 			return ret;
1740 		ret = vb2_start_streaming(q);
1741 		if (ret) {
1742 			__vb2_queue_cancel(q);
1743 			return ret;
1744 		}
1745 	}
1746 
1747 	q->streaming = 1;
1748 
1749 	dprintk(3, "successful\n");
1750 	return 0;
1751 }
1752 EXPORT_SYMBOL_GPL(vb2_core_streamon);
1753 
1754 void vb2_queue_error(struct vb2_queue *q)
1755 {
1756 	q->error = 1;
1757 
1758 	wake_up_all(&q->done_wq);
1759 }
1760 EXPORT_SYMBOL_GPL(vb2_queue_error);
1761 
1762 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
1763 {
1764 	if (type != q->type) {
1765 		dprintk(1, "invalid stream type\n");
1766 		return -EINVAL;
1767 	}
1768 
1769 	/*
1770 	 * Cancel will pause streaming and remove all buffers from the driver
1771 	 * and videobuf, effectively returning control over them to userspace.
1772 	 *
1773 	 * Note that we do this even if q->streaming == 0: if you prepare or
1774 	 * queue buffers, and then call streamoff without ever having called
1775 	 * streamon, you would still expect those buffers to be returned to
1776 	 * their normal dequeued state.
1777 	 */
1778 	__vb2_queue_cancel(q);
1779 	q->waiting_for_buffers = !q->is_output;
1780 	q->last_buffer_dequeued = false;
1781 
1782 	dprintk(3, "successful\n");
1783 	return 0;
1784 }
1785 EXPORT_SYMBOL_GPL(vb2_core_streamoff);
1786 
1787 /*
1788  * __find_plane_by_offset() - find plane associated with the given offset off
1789  */
1790 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
1791 			unsigned int *_buffer, unsigned int *_plane)
1792 {
1793 	struct vb2_buffer *vb;
1794 	unsigned int buffer, plane;
1795 
1796 	/*
1797 	 * Go over all buffers and their planes, comparing the given offset
1798 	 * with an offset assigned to each plane. If a match is found,
1799 	 * return its buffer and plane numbers.
1800 	 */
1801 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
1802 		vb = q->bufs[buffer];
1803 
1804 		for (plane = 0; plane < vb->num_planes; ++plane) {
1805 			if (vb->planes[plane].m.offset == off) {
1806 				*_buffer = buffer;
1807 				*_plane = plane;
1808 				return 0;
1809 			}
1810 		}
1811 	}
1812 
1813 	return -EINVAL;
1814 }
1815 
1816 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
1817 		unsigned int index, unsigned int plane, unsigned int flags)
1818 {
1819 	struct vb2_buffer *vb = NULL;
1820 	struct vb2_plane *vb_plane;
1821 	int ret;
1822 	struct dma_buf *dbuf;
1823 
1824 	if (q->memory != VB2_MEMORY_MMAP) {
1825 		dprintk(1, "queue is not currently set up for mmap\n");
1826 		return -EINVAL;
1827 	}
1828 
1829 	if (!q->mem_ops->get_dmabuf) {
1830 		dprintk(1, "queue does not support DMA buffer exporting\n");
1831 		return -EINVAL;
1832 	}
1833 
1834 	if (flags & ~(O_CLOEXEC | O_ACCMODE)) {
1835 		dprintk(1, "queue does support only O_CLOEXEC and access mode flags\n");
1836 		return -EINVAL;
1837 	}
1838 
1839 	if (type != q->type) {
1840 		dprintk(1, "invalid buffer type\n");
1841 		return -EINVAL;
1842 	}
1843 
1844 	if (index >= q->num_buffers) {
1845 		dprintk(1, "buffer index out of range\n");
1846 		return -EINVAL;
1847 	}
1848 
1849 	vb = q->bufs[index];
1850 
1851 	if (plane >= vb->num_planes) {
1852 		dprintk(1, "buffer plane out of range\n");
1853 		return -EINVAL;
1854 	}
1855 
1856 	if (vb2_fileio_is_active(q)) {
1857 		dprintk(1, "expbuf: file io in progress\n");
1858 		return -EBUSY;
1859 	}
1860 
1861 	vb_plane = &vb->planes[plane];
1862 
1863 	dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv,
1864 				flags & O_ACCMODE);
1865 	if (IS_ERR_OR_NULL(dbuf)) {
1866 		dprintk(1, "failed to export buffer %d, plane %d\n",
1867 			index, plane);
1868 		return -EINVAL;
1869 	}
1870 
1871 	ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE);
1872 	if (ret < 0) {
1873 		dprintk(3, "buffer %d, plane %d failed to export (%d)\n",
1874 			index, plane, ret);
1875 		dma_buf_put(dbuf);
1876 		return ret;
1877 	}
1878 
1879 	dprintk(3, "buffer %d, plane %d exported as %d descriptor\n",
1880 		index, plane, ret);
1881 	*fd = ret;
1882 
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(vb2_core_expbuf);
1886 
1887 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
1888 {
1889 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1890 	struct vb2_buffer *vb;
1891 	unsigned int buffer = 0, plane = 0;
1892 	int ret;
1893 	unsigned long length;
1894 
1895 	if (q->memory != VB2_MEMORY_MMAP) {
1896 		dprintk(1, "queue is not currently set up for mmap\n");
1897 		return -EINVAL;
1898 	}
1899 
1900 	/*
1901 	 * Check memory area access mode.
1902 	 */
1903 	if (!(vma->vm_flags & VM_SHARED)) {
1904 		dprintk(1, "invalid vma flags, VM_SHARED needed\n");
1905 		return -EINVAL;
1906 	}
1907 	if (q->is_output) {
1908 		if (!(vma->vm_flags & VM_WRITE)) {
1909 			dprintk(1, "invalid vma flags, VM_WRITE needed\n");
1910 			return -EINVAL;
1911 		}
1912 	} else {
1913 		if (!(vma->vm_flags & VM_READ)) {
1914 			dprintk(1, "invalid vma flags, VM_READ needed\n");
1915 			return -EINVAL;
1916 		}
1917 	}
1918 	if (vb2_fileio_is_active(q)) {
1919 		dprintk(1, "mmap: file io in progress\n");
1920 		return -EBUSY;
1921 	}
1922 
1923 	/*
1924 	 * Find the plane corresponding to the offset passed by userspace.
1925 	 */
1926 	ret = __find_plane_by_offset(q, off, &buffer, &plane);
1927 	if (ret)
1928 		return ret;
1929 
1930 	vb = q->bufs[buffer];
1931 
1932 	/*
1933 	 * MMAP requires page_aligned buffers.
1934 	 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
1935 	 * so, we need to do the same here.
1936 	 */
1937 	length = PAGE_ALIGN(vb->planes[plane].length);
1938 	if (length < (vma->vm_end - vma->vm_start)) {
1939 		dprintk(1,
1940 			"MMAP invalid, as it would overflow buffer length\n");
1941 		return -EINVAL;
1942 	}
1943 
1944 	mutex_lock(&q->mmap_lock);
1945 	ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
1946 	mutex_unlock(&q->mmap_lock);
1947 	if (ret)
1948 		return ret;
1949 
1950 	dprintk(3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
1951 	return 0;
1952 }
1953 EXPORT_SYMBOL_GPL(vb2_mmap);
1954 
1955 #ifndef CONFIG_MMU
1956 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
1957 				    unsigned long addr,
1958 				    unsigned long len,
1959 				    unsigned long pgoff,
1960 				    unsigned long flags)
1961 {
1962 	unsigned long off = pgoff << PAGE_SHIFT;
1963 	struct vb2_buffer *vb;
1964 	unsigned int buffer, plane;
1965 	void *vaddr;
1966 	int ret;
1967 
1968 	if (q->memory != VB2_MEMORY_MMAP) {
1969 		dprintk(1, "queue is not currently set up for mmap\n");
1970 		return -EINVAL;
1971 	}
1972 
1973 	/*
1974 	 * Find the plane corresponding to the offset passed by userspace.
1975 	 */
1976 	ret = __find_plane_by_offset(q, off, &buffer, &plane);
1977 	if (ret)
1978 		return ret;
1979 
1980 	vb = q->bufs[buffer];
1981 
1982 	vaddr = vb2_plane_vaddr(vb, plane);
1983 	return vaddr ? (unsigned long)vaddr : -EINVAL;
1984 }
1985 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
1986 #endif
1987 
1988 int vb2_core_queue_init(struct vb2_queue *q)
1989 {
1990 	/*
1991 	 * Sanity check
1992 	 */
1993 	if (WARN_ON(!q)			  ||
1994 	    WARN_ON(!q->ops)		  ||
1995 	    WARN_ON(!q->mem_ops)	  ||
1996 	    WARN_ON(!q->type)		  ||
1997 	    WARN_ON(!q->io_modes)	  ||
1998 	    WARN_ON(!q->ops->queue_setup) ||
1999 	    WARN_ON(!q->ops->buf_queue))
2000 		return -EINVAL;
2001 
2002 	INIT_LIST_HEAD(&q->queued_list);
2003 	INIT_LIST_HEAD(&q->done_list);
2004 	spin_lock_init(&q->done_lock);
2005 	mutex_init(&q->mmap_lock);
2006 	init_waitqueue_head(&q->done_wq);
2007 
2008 	q->memory = VB2_MEMORY_UNKNOWN;
2009 
2010 	if (q->buf_struct_size == 0)
2011 		q->buf_struct_size = sizeof(struct vb2_buffer);
2012 
2013 	if (q->bidirectional)
2014 		q->dma_dir = DMA_BIDIRECTIONAL;
2015 	else
2016 		q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2017 
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL_GPL(vb2_core_queue_init);
2021 
2022 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2023 static int __vb2_cleanup_fileio(struct vb2_queue *q);
2024 void vb2_core_queue_release(struct vb2_queue *q)
2025 {
2026 	__vb2_cleanup_fileio(q);
2027 	__vb2_queue_cancel(q);
2028 	mutex_lock(&q->mmap_lock);
2029 	__vb2_queue_free(q, q->num_buffers);
2030 	mutex_unlock(&q->mmap_lock);
2031 }
2032 EXPORT_SYMBOL_GPL(vb2_core_queue_release);
2033 
2034 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file,
2035 		poll_table *wait)
2036 {
2037 	__poll_t req_events = poll_requested_events(wait);
2038 	struct vb2_buffer *vb = NULL;
2039 	unsigned long flags;
2040 
2041 	if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM)))
2042 		return 0;
2043 	if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM)))
2044 		return 0;
2045 
2046 	/*
2047 	 * Start file I/O emulator only if streaming API has not been used yet.
2048 	 */
2049 	if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2050 		if (!q->is_output && (q->io_modes & VB2_READ) &&
2051 				(req_events & (EPOLLIN | EPOLLRDNORM))) {
2052 			if (__vb2_init_fileio(q, 1))
2053 				return EPOLLERR;
2054 		}
2055 		if (q->is_output && (q->io_modes & VB2_WRITE) &&
2056 				(req_events & (EPOLLOUT | EPOLLWRNORM))) {
2057 			if (__vb2_init_fileio(q, 0))
2058 				return EPOLLERR;
2059 			/*
2060 			 * Write to OUTPUT queue can be done immediately.
2061 			 */
2062 			return EPOLLOUT | EPOLLWRNORM;
2063 		}
2064 	}
2065 
2066 	/*
2067 	 * There is nothing to wait for if the queue isn't streaming, or if the
2068 	 * error flag is set.
2069 	 */
2070 	if (!vb2_is_streaming(q) || q->error)
2071 		return EPOLLERR;
2072 
2073 	/*
2074 	 * If this quirk is set and QBUF hasn't been called yet then
2075 	 * return EPOLLERR as well. This only affects capture queues, output
2076 	 * queues will always initialize waiting_for_buffers to false.
2077 	 * This quirk is set by V4L2 for backwards compatibility reasons.
2078 	 */
2079 	if (q->quirk_poll_must_check_waiting_for_buffers &&
2080 	    q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM)))
2081 		return EPOLLERR;
2082 
2083 	/*
2084 	 * For output streams you can call write() as long as there are fewer
2085 	 * buffers queued than there are buffers available.
2086 	 */
2087 	if (q->is_output && q->fileio && q->queued_count < q->num_buffers)
2088 		return EPOLLOUT | EPOLLWRNORM;
2089 
2090 	if (list_empty(&q->done_list)) {
2091 		/*
2092 		 * If the last buffer was dequeued from a capture queue,
2093 		 * return immediately. DQBUF will return -EPIPE.
2094 		 */
2095 		if (q->last_buffer_dequeued)
2096 			return EPOLLIN | EPOLLRDNORM;
2097 
2098 		poll_wait(file, &q->done_wq, wait);
2099 	}
2100 
2101 	/*
2102 	 * Take first buffer available for dequeuing.
2103 	 */
2104 	spin_lock_irqsave(&q->done_lock, flags);
2105 	if (!list_empty(&q->done_list))
2106 		vb = list_first_entry(&q->done_list, struct vb2_buffer,
2107 					done_entry);
2108 	spin_unlock_irqrestore(&q->done_lock, flags);
2109 
2110 	if (vb && (vb->state == VB2_BUF_STATE_DONE
2111 			|| vb->state == VB2_BUF_STATE_ERROR)) {
2112 		return (q->is_output) ?
2113 				EPOLLOUT | EPOLLWRNORM :
2114 				EPOLLIN | EPOLLRDNORM;
2115 	}
2116 	return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(vb2_core_poll);
2119 
2120 /*
2121  * struct vb2_fileio_buf - buffer context used by file io emulator
2122  *
2123  * vb2 provides a compatibility layer and emulator of file io (read and
2124  * write) calls on top of streaming API. This structure is used for
2125  * tracking context related to the buffers.
2126  */
2127 struct vb2_fileio_buf {
2128 	void *vaddr;
2129 	unsigned int size;
2130 	unsigned int pos;
2131 	unsigned int queued:1;
2132 };
2133 
2134 /*
2135  * struct vb2_fileio_data - queue context used by file io emulator
2136  *
2137  * @cur_index:	the index of the buffer currently being read from or
2138  *		written to. If equal to q->num_buffers then a new buffer
2139  *		must be dequeued.
2140  * @initial_index: in the read() case all buffers are queued up immediately
2141  *		in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2142  *		buffers. However, in the write() case no buffers are initially
2143  *		queued, instead whenever a buffer is full it is queued up by
2144  *		__vb2_perform_fileio(). Only once all available buffers have
2145  *		been queued up will __vb2_perform_fileio() start to dequeue
2146  *		buffers. This means that initially __vb2_perform_fileio()
2147  *		needs to know what buffer index to use when it is queuing up
2148  *		the buffers for the first time. That initial index is stored
2149  *		in this field. Once it is equal to q->num_buffers all
2150  *		available buffers have been queued and __vb2_perform_fileio()
2151  *		should start the normal dequeue/queue cycle.
2152  *
2153  * vb2 provides a compatibility layer and emulator of file io (read and
2154  * write) calls on top of streaming API. For proper operation it required
2155  * this structure to save the driver state between each call of the read
2156  * or write function.
2157  */
2158 struct vb2_fileio_data {
2159 	unsigned int count;
2160 	unsigned int type;
2161 	unsigned int memory;
2162 	struct vb2_fileio_buf bufs[VB2_MAX_FRAME];
2163 	unsigned int cur_index;
2164 	unsigned int initial_index;
2165 	unsigned int q_count;
2166 	unsigned int dq_count;
2167 	unsigned read_once:1;
2168 	unsigned write_immediately:1;
2169 };
2170 
2171 /*
2172  * __vb2_init_fileio() - initialize file io emulator
2173  * @q:		videobuf2 queue
2174  * @read:	mode selector (1 means read, 0 means write)
2175  */
2176 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2177 {
2178 	struct vb2_fileio_data *fileio;
2179 	int i, ret;
2180 	unsigned int count = 0;
2181 
2182 	/*
2183 	 * Sanity check
2184 	 */
2185 	if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2186 		    (!read && !(q->io_modes & VB2_WRITE))))
2187 		return -EINVAL;
2188 
2189 	/*
2190 	 * Check if device supports mapping buffers to kernel virtual space.
2191 	 */
2192 	if (!q->mem_ops->vaddr)
2193 		return -EBUSY;
2194 
2195 	/*
2196 	 * Check if streaming api has not been already activated.
2197 	 */
2198 	if (q->streaming || q->num_buffers > 0)
2199 		return -EBUSY;
2200 
2201 	/*
2202 	 * Start with count 1, driver can increase it in queue_setup()
2203 	 */
2204 	count = 1;
2205 
2206 	dprintk(3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2207 		(read) ? "read" : "write", count, q->fileio_read_once,
2208 		q->fileio_write_immediately);
2209 
2210 	fileio = kzalloc(sizeof(*fileio), GFP_KERNEL);
2211 	if (fileio == NULL)
2212 		return -ENOMEM;
2213 
2214 	fileio->read_once = q->fileio_read_once;
2215 	fileio->write_immediately = q->fileio_write_immediately;
2216 
2217 	/*
2218 	 * Request buffers and use MMAP type to force driver
2219 	 * to allocate buffers by itself.
2220 	 */
2221 	fileio->count = count;
2222 	fileio->memory = VB2_MEMORY_MMAP;
2223 	fileio->type = q->type;
2224 	q->fileio = fileio;
2225 	ret = vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2226 	if (ret)
2227 		goto err_kfree;
2228 
2229 	/*
2230 	 * Check if plane_count is correct
2231 	 * (multiplane buffers are not supported).
2232 	 */
2233 	if (q->bufs[0]->num_planes != 1) {
2234 		ret = -EBUSY;
2235 		goto err_reqbufs;
2236 	}
2237 
2238 	/*
2239 	 * Get kernel address of each buffer.
2240 	 */
2241 	for (i = 0; i < q->num_buffers; i++) {
2242 		fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2243 		if (fileio->bufs[i].vaddr == NULL) {
2244 			ret = -EINVAL;
2245 			goto err_reqbufs;
2246 		}
2247 		fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2248 	}
2249 
2250 	/*
2251 	 * Read mode requires pre queuing of all buffers.
2252 	 */
2253 	if (read) {
2254 		/*
2255 		 * Queue all buffers.
2256 		 */
2257 		for (i = 0; i < q->num_buffers; i++) {
2258 			ret = vb2_core_qbuf(q, i, NULL);
2259 			if (ret)
2260 				goto err_reqbufs;
2261 			fileio->bufs[i].queued = 1;
2262 		}
2263 		/*
2264 		 * All buffers have been queued, so mark that by setting
2265 		 * initial_index to q->num_buffers
2266 		 */
2267 		fileio->initial_index = q->num_buffers;
2268 		fileio->cur_index = q->num_buffers;
2269 	}
2270 
2271 	/*
2272 	 * Start streaming.
2273 	 */
2274 	ret = vb2_core_streamon(q, q->type);
2275 	if (ret)
2276 		goto err_reqbufs;
2277 
2278 	return ret;
2279 
2280 err_reqbufs:
2281 	fileio->count = 0;
2282 	vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2283 
2284 err_kfree:
2285 	q->fileio = NULL;
2286 	kfree(fileio);
2287 	return ret;
2288 }
2289 
2290 /*
2291  * __vb2_cleanup_fileio() - free resourced used by file io emulator
2292  * @q:		videobuf2 queue
2293  */
2294 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2295 {
2296 	struct vb2_fileio_data *fileio = q->fileio;
2297 
2298 	if (fileio) {
2299 		vb2_core_streamoff(q, q->type);
2300 		q->fileio = NULL;
2301 		fileio->count = 0;
2302 		vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2303 		kfree(fileio);
2304 		dprintk(3, "file io emulator closed\n");
2305 	}
2306 	return 0;
2307 }
2308 
2309 /*
2310  * __vb2_perform_fileio() - perform a single file io (read or write) operation
2311  * @q:		videobuf2 queue
2312  * @data:	pointed to target userspace buffer
2313  * @count:	number of bytes to read or write
2314  * @ppos:	file handle position tracking pointer
2315  * @nonblock:	mode selector (1 means blocking calls, 0 means nonblocking)
2316  * @read:	access mode selector (1 means read, 0 means write)
2317  */
2318 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2319 		loff_t *ppos, int nonblock, int read)
2320 {
2321 	struct vb2_fileio_data *fileio;
2322 	struct vb2_fileio_buf *buf;
2323 	bool is_multiplanar = q->is_multiplanar;
2324 	/*
2325 	 * When using write() to write data to an output video node the vb2 core
2326 	 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2327 	 * else is able to provide this information with the write() operation.
2328 	 */
2329 	bool copy_timestamp = !read && q->copy_timestamp;
2330 	unsigned index;
2331 	int ret;
2332 
2333 	dprintk(3, "mode %s, offset %ld, count %zd, %sblocking\n",
2334 		read ? "read" : "write", (long)*ppos, count,
2335 		nonblock ? "non" : "");
2336 
2337 	if (!data)
2338 		return -EINVAL;
2339 
2340 	/*
2341 	 * Initialize emulator on first call.
2342 	 */
2343 	if (!vb2_fileio_is_active(q)) {
2344 		ret = __vb2_init_fileio(q, read);
2345 		dprintk(3, "vb2_init_fileio result: %d\n", ret);
2346 		if (ret)
2347 			return ret;
2348 	}
2349 	fileio = q->fileio;
2350 
2351 	/*
2352 	 * Check if we need to dequeue the buffer.
2353 	 */
2354 	index = fileio->cur_index;
2355 	if (index >= q->num_buffers) {
2356 		struct vb2_buffer *b;
2357 
2358 		/*
2359 		 * Call vb2_dqbuf to get buffer back.
2360 		 */
2361 		ret = vb2_core_dqbuf(q, &index, NULL, nonblock);
2362 		dprintk(5, "vb2_dqbuf result: %d\n", ret);
2363 		if (ret)
2364 			return ret;
2365 		fileio->dq_count += 1;
2366 
2367 		fileio->cur_index = index;
2368 		buf = &fileio->bufs[index];
2369 		b = q->bufs[index];
2370 
2371 		/*
2372 		 * Get number of bytes filled by the driver
2373 		 */
2374 		buf->pos = 0;
2375 		buf->queued = 0;
2376 		buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
2377 				 : vb2_plane_size(q->bufs[index], 0);
2378 		/* Compensate for data_offset on read in the multiplanar case. */
2379 		if (is_multiplanar && read &&
2380 				b->planes[0].data_offset < buf->size) {
2381 			buf->pos = b->planes[0].data_offset;
2382 			buf->size -= buf->pos;
2383 		}
2384 	} else {
2385 		buf = &fileio->bufs[index];
2386 	}
2387 
2388 	/*
2389 	 * Limit count on last few bytes of the buffer.
2390 	 */
2391 	if (buf->pos + count > buf->size) {
2392 		count = buf->size - buf->pos;
2393 		dprintk(5, "reducing read count: %zd\n", count);
2394 	}
2395 
2396 	/*
2397 	 * Transfer data to userspace.
2398 	 */
2399 	dprintk(3, "copying %zd bytes - buffer %d, offset %u\n",
2400 		count, index, buf->pos);
2401 	if (read)
2402 		ret = copy_to_user(data, buf->vaddr + buf->pos, count);
2403 	else
2404 		ret = copy_from_user(buf->vaddr + buf->pos, data, count);
2405 	if (ret) {
2406 		dprintk(3, "error copying data\n");
2407 		return -EFAULT;
2408 	}
2409 
2410 	/*
2411 	 * Update counters.
2412 	 */
2413 	buf->pos += count;
2414 	*ppos += count;
2415 
2416 	/*
2417 	 * Queue next buffer if required.
2418 	 */
2419 	if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
2420 		struct vb2_buffer *b = q->bufs[index];
2421 
2422 		/*
2423 		 * Check if this is the last buffer to read.
2424 		 */
2425 		if (read && fileio->read_once && fileio->dq_count == 1) {
2426 			dprintk(3, "read limit reached\n");
2427 			return __vb2_cleanup_fileio(q);
2428 		}
2429 
2430 		/*
2431 		 * Call vb2_qbuf and give buffer to the driver.
2432 		 */
2433 		b->planes[0].bytesused = buf->pos;
2434 
2435 		if (copy_timestamp)
2436 			b->timestamp = ktime_get_ns();
2437 		ret = vb2_core_qbuf(q, index, NULL);
2438 		dprintk(5, "vb2_dbuf result: %d\n", ret);
2439 		if (ret)
2440 			return ret;
2441 
2442 		/*
2443 		 * Buffer has been queued, update the status
2444 		 */
2445 		buf->pos = 0;
2446 		buf->queued = 1;
2447 		buf->size = vb2_plane_size(q->bufs[index], 0);
2448 		fileio->q_count += 1;
2449 		/*
2450 		 * If we are queuing up buffers for the first time, then
2451 		 * increase initial_index by one.
2452 		 */
2453 		if (fileio->initial_index < q->num_buffers)
2454 			fileio->initial_index++;
2455 		/*
2456 		 * The next buffer to use is either a buffer that's going to be
2457 		 * queued for the first time (initial_index < q->num_buffers)
2458 		 * or it is equal to q->num_buffers, meaning that the next
2459 		 * time we need to dequeue a buffer since we've now queued up
2460 		 * all the 'first time' buffers.
2461 		 */
2462 		fileio->cur_index = fileio->initial_index;
2463 	}
2464 
2465 	/*
2466 	 * Return proper number of bytes processed.
2467 	 */
2468 	if (ret == 0)
2469 		ret = count;
2470 	return ret;
2471 }
2472 
2473 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
2474 		loff_t *ppos, int nonblocking)
2475 {
2476 	return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
2477 }
2478 EXPORT_SYMBOL_GPL(vb2_read);
2479 
2480 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
2481 		loff_t *ppos, int nonblocking)
2482 {
2483 	return __vb2_perform_fileio(q, (char __user *) data, count,
2484 							ppos, nonblocking, 0);
2485 }
2486 EXPORT_SYMBOL_GPL(vb2_write);
2487 
2488 struct vb2_threadio_data {
2489 	struct task_struct *thread;
2490 	vb2_thread_fnc fnc;
2491 	void *priv;
2492 	bool stop;
2493 };
2494 
2495 static int vb2_thread(void *data)
2496 {
2497 	struct vb2_queue *q = data;
2498 	struct vb2_threadio_data *threadio = q->threadio;
2499 	bool copy_timestamp = false;
2500 	unsigned prequeue = 0;
2501 	unsigned index = 0;
2502 	int ret = 0;
2503 
2504 	if (q->is_output) {
2505 		prequeue = q->num_buffers;
2506 		copy_timestamp = q->copy_timestamp;
2507 	}
2508 
2509 	set_freezable();
2510 
2511 	for (;;) {
2512 		struct vb2_buffer *vb;
2513 
2514 		/*
2515 		 * Call vb2_dqbuf to get buffer back.
2516 		 */
2517 		if (prequeue) {
2518 			vb = q->bufs[index++];
2519 			prequeue--;
2520 		} else {
2521 			call_void_qop(q, wait_finish, q);
2522 			if (!threadio->stop)
2523 				ret = vb2_core_dqbuf(q, &index, NULL, 0);
2524 			call_void_qop(q, wait_prepare, q);
2525 			dprintk(5, "file io: vb2_dqbuf result: %d\n", ret);
2526 			if (!ret)
2527 				vb = q->bufs[index];
2528 		}
2529 		if (ret || threadio->stop)
2530 			break;
2531 		try_to_freeze();
2532 
2533 		if (vb->state != VB2_BUF_STATE_ERROR)
2534 			if (threadio->fnc(vb, threadio->priv))
2535 				break;
2536 		call_void_qop(q, wait_finish, q);
2537 		if (copy_timestamp)
2538 			vb->timestamp = ktime_get_ns();
2539 		if (!threadio->stop)
2540 			ret = vb2_core_qbuf(q, vb->index, NULL);
2541 		call_void_qop(q, wait_prepare, q);
2542 		if (ret || threadio->stop)
2543 			break;
2544 	}
2545 
2546 	/* Hmm, linux becomes *very* unhappy without this ... */
2547 	while (!kthread_should_stop()) {
2548 		set_current_state(TASK_INTERRUPTIBLE);
2549 		schedule();
2550 	}
2551 	return 0;
2552 }
2553 
2554 /*
2555  * This function should not be used for anything else but the videobuf2-dvb
2556  * support. If you think you have another good use-case for this, then please
2557  * contact the linux-media mailinglist first.
2558  */
2559 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
2560 		     const char *thread_name)
2561 {
2562 	struct vb2_threadio_data *threadio;
2563 	int ret = 0;
2564 
2565 	if (q->threadio)
2566 		return -EBUSY;
2567 	if (vb2_is_busy(q))
2568 		return -EBUSY;
2569 	if (WARN_ON(q->fileio))
2570 		return -EBUSY;
2571 
2572 	threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
2573 	if (threadio == NULL)
2574 		return -ENOMEM;
2575 	threadio->fnc = fnc;
2576 	threadio->priv = priv;
2577 
2578 	ret = __vb2_init_fileio(q, !q->is_output);
2579 	dprintk(3, "file io: vb2_init_fileio result: %d\n", ret);
2580 	if (ret)
2581 		goto nomem;
2582 	q->threadio = threadio;
2583 	threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
2584 	if (IS_ERR(threadio->thread)) {
2585 		ret = PTR_ERR(threadio->thread);
2586 		threadio->thread = NULL;
2587 		goto nothread;
2588 	}
2589 	return 0;
2590 
2591 nothread:
2592 	__vb2_cleanup_fileio(q);
2593 nomem:
2594 	kfree(threadio);
2595 	return ret;
2596 }
2597 EXPORT_SYMBOL_GPL(vb2_thread_start);
2598 
2599 int vb2_thread_stop(struct vb2_queue *q)
2600 {
2601 	struct vb2_threadio_data *threadio = q->threadio;
2602 	int err;
2603 
2604 	if (threadio == NULL)
2605 		return 0;
2606 	threadio->stop = true;
2607 	/* Wake up all pending sleeps in the thread */
2608 	vb2_queue_error(q);
2609 	err = kthread_stop(threadio->thread);
2610 	__vb2_cleanup_fileio(q);
2611 	threadio->thread = NULL;
2612 	kfree(threadio);
2613 	q->threadio = NULL;
2614 	return err;
2615 }
2616 EXPORT_SYMBOL_GPL(vb2_thread_stop);
2617 
2618 MODULE_DESCRIPTION("Media buffer core framework");
2619 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
2620 MODULE_LICENSE("GPL");
2621