1 /* 2 * videobuf2-core.c - video buffer 2 core framework 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * 6 * Author: Pawel Osciak <pawel@osciak.com> 7 * Marek Szyprowski <m.szyprowski@samsung.com> 8 * 9 * The vb2_thread implementation was based on code from videobuf-dvb.c: 10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs] 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/err.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mm.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/freezer.h> 27 #include <linux/kthread.h> 28 29 #include <media/videobuf2-core.h> 30 #include <media/v4l2-mc.h> 31 32 #include <trace/events/vb2.h> 33 34 static int debug; 35 module_param(debug, int, 0644); 36 37 #define dprintk(level, fmt, arg...) \ 38 do { \ 39 if (debug >= level) \ 40 pr_info("%s: " fmt, __func__, ## arg); \ 41 } while (0) 42 43 #ifdef CONFIG_VIDEO_ADV_DEBUG 44 45 /* 46 * If advanced debugging is on, then count how often each op is called 47 * successfully, which can either be per-buffer or per-queue. 48 * 49 * This makes it easy to check that the 'init' and 'cleanup' 50 * (and variations thereof) stay balanced. 51 */ 52 53 #define log_memop(vb, op) \ 54 dprintk(2, "call_memop(%p, %d, %s)%s\n", \ 55 (vb)->vb2_queue, (vb)->index, #op, \ 56 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)") 57 58 #define call_memop(vb, op, args...) \ 59 ({ \ 60 struct vb2_queue *_q = (vb)->vb2_queue; \ 61 int err; \ 62 \ 63 log_memop(vb, op); \ 64 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \ 65 if (!err) \ 66 (vb)->cnt_mem_ ## op++; \ 67 err; \ 68 }) 69 70 #define call_ptr_memop(vb, op, args...) \ 71 ({ \ 72 struct vb2_queue *_q = (vb)->vb2_queue; \ 73 void *ptr; \ 74 \ 75 log_memop(vb, op); \ 76 ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL; \ 77 if (!IS_ERR_OR_NULL(ptr)) \ 78 (vb)->cnt_mem_ ## op++; \ 79 ptr; \ 80 }) 81 82 #define call_void_memop(vb, op, args...) \ 83 ({ \ 84 struct vb2_queue *_q = (vb)->vb2_queue; \ 85 \ 86 log_memop(vb, op); \ 87 if (_q->mem_ops->op) \ 88 _q->mem_ops->op(args); \ 89 (vb)->cnt_mem_ ## op++; \ 90 }) 91 92 #define log_qop(q, op) \ 93 dprintk(2, "call_qop(%p, %s)%s\n", q, #op, \ 94 (q)->ops->op ? "" : " (nop)") 95 96 #define call_qop(q, op, args...) \ 97 ({ \ 98 int err; \ 99 \ 100 log_qop(q, op); \ 101 err = (q)->ops->op ? (q)->ops->op(args) : 0; \ 102 if (!err) \ 103 (q)->cnt_ ## op++; \ 104 err; \ 105 }) 106 107 #define call_void_qop(q, op, args...) \ 108 ({ \ 109 log_qop(q, op); \ 110 if ((q)->ops->op) \ 111 (q)->ops->op(args); \ 112 (q)->cnt_ ## op++; \ 113 }) 114 115 #define log_vb_qop(vb, op, args...) \ 116 dprintk(2, "call_vb_qop(%p, %d, %s)%s\n", \ 117 (vb)->vb2_queue, (vb)->index, #op, \ 118 (vb)->vb2_queue->ops->op ? "" : " (nop)") 119 120 #define call_vb_qop(vb, op, args...) \ 121 ({ \ 122 int err; \ 123 \ 124 log_vb_qop(vb, op); \ 125 err = (vb)->vb2_queue->ops->op ? \ 126 (vb)->vb2_queue->ops->op(args) : 0; \ 127 if (!err) \ 128 (vb)->cnt_ ## op++; \ 129 err; \ 130 }) 131 132 #define call_void_vb_qop(vb, op, args...) \ 133 ({ \ 134 log_vb_qop(vb, op); \ 135 if ((vb)->vb2_queue->ops->op) \ 136 (vb)->vb2_queue->ops->op(args); \ 137 (vb)->cnt_ ## op++; \ 138 }) 139 140 #else 141 142 #define call_memop(vb, op, args...) \ 143 ((vb)->vb2_queue->mem_ops->op ? \ 144 (vb)->vb2_queue->mem_ops->op(args) : 0) 145 146 #define call_ptr_memop(vb, op, args...) \ 147 ((vb)->vb2_queue->mem_ops->op ? \ 148 (vb)->vb2_queue->mem_ops->op(args) : NULL) 149 150 #define call_void_memop(vb, op, args...) \ 151 do { \ 152 if ((vb)->vb2_queue->mem_ops->op) \ 153 (vb)->vb2_queue->mem_ops->op(args); \ 154 } while (0) 155 156 #define call_qop(q, op, args...) \ 157 ((q)->ops->op ? (q)->ops->op(args) : 0) 158 159 #define call_void_qop(q, op, args...) \ 160 do { \ 161 if ((q)->ops->op) \ 162 (q)->ops->op(args); \ 163 } while (0) 164 165 #define call_vb_qop(vb, op, args...) \ 166 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0) 167 168 #define call_void_vb_qop(vb, op, args...) \ 169 do { \ 170 if ((vb)->vb2_queue->ops->op) \ 171 (vb)->vb2_queue->ops->op(args); \ 172 } while (0) 173 174 #endif 175 176 #define call_bufop(q, op, args...) \ 177 ({ \ 178 int ret = 0; \ 179 if (q && q->buf_ops && q->buf_ops->op) \ 180 ret = q->buf_ops->op(args); \ 181 ret; \ 182 }) 183 184 #define call_void_bufop(q, op, args...) \ 185 ({ \ 186 if (q && q->buf_ops && q->buf_ops->op) \ 187 q->buf_ops->op(args); \ 188 }) 189 190 static void __vb2_queue_cancel(struct vb2_queue *q); 191 static void __enqueue_in_driver(struct vb2_buffer *vb); 192 193 /* 194 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer 195 */ 196 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb) 197 { 198 struct vb2_queue *q = vb->vb2_queue; 199 void *mem_priv; 200 int plane; 201 int ret = -ENOMEM; 202 203 /* 204 * Allocate memory for all planes in this buffer 205 * NOTE: mmapped areas should be page aligned 206 */ 207 for (plane = 0; plane < vb->num_planes; ++plane) { 208 unsigned long size = PAGE_ALIGN(vb->planes[plane].length); 209 210 mem_priv = call_ptr_memop(vb, alloc, 211 q->alloc_devs[plane] ? : q->dev, 212 q->dma_attrs, size, q->dma_dir, q->gfp_flags); 213 if (IS_ERR_OR_NULL(mem_priv)) { 214 if (mem_priv) 215 ret = PTR_ERR(mem_priv); 216 goto free; 217 } 218 219 /* Associate allocator private data with this plane */ 220 vb->planes[plane].mem_priv = mem_priv; 221 } 222 223 return 0; 224 free: 225 /* Free already allocated memory if one of the allocations failed */ 226 for (; plane > 0; --plane) { 227 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv); 228 vb->planes[plane - 1].mem_priv = NULL; 229 } 230 231 return ret; 232 } 233 234 /* 235 * __vb2_buf_mem_free() - free memory of the given buffer 236 */ 237 static void __vb2_buf_mem_free(struct vb2_buffer *vb) 238 { 239 unsigned int plane; 240 241 for (plane = 0; plane < vb->num_planes; ++plane) { 242 call_void_memop(vb, put, vb->planes[plane].mem_priv); 243 vb->planes[plane].mem_priv = NULL; 244 dprintk(3, "freed plane %d of buffer %d\n", plane, vb->index); 245 } 246 } 247 248 /* 249 * __vb2_buf_userptr_put() - release userspace memory associated with 250 * a USERPTR buffer 251 */ 252 static void __vb2_buf_userptr_put(struct vb2_buffer *vb) 253 { 254 unsigned int plane; 255 256 for (plane = 0; plane < vb->num_planes; ++plane) { 257 if (vb->planes[plane].mem_priv) 258 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 259 vb->planes[plane].mem_priv = NULL; 260 } 261 } 262 263 /* 264 * __vb2_plane_dmabuf_put() - release memory associated with 265 * a DMABUF shared plane 266 */ 267 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p) 268 { 269 if (!p->mem_priv) 270 return; 271 272 if (p->dbuf_mapped) 273 call_void_memop(vb, unmap_dmabuf, p->mem_priv); 274 275 call_void_memop(vb, detach_dmabuf, p->mem_priv); 276 dma_buf_put(p->dbuf); 277 p->mem_priv = NULL; 278 p->dbuf = NULL; 279 p->dbuf_mapped = 0; 280 } 281 282 /* 283 * __vb2_buf_dmabuf_put() - release memory associated with 284 * a DMABUF shared buffer 285 */ 286 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb) 287 { 288 unsigned int plane; 289 290 for (plane = 0; plane < vb->num_planes; ++plane) 291 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 292 } 293 294 /* 295 * __setup_offsets() - setup unique offsets ("cookies") for every plane in 296 * the buffer. 297 */ 298 static void __setup_offsets(struct vb2_buffer *vb) 299 { 300 struct vb2_queue *q = vb->vb2_queue; 301 unsigned int plane; 302 unsigned long off = 0; 303 304 if (vb->index) { 305 struct vb2_buffer *prev = q->bufs[vb->index - 1]; 306 struct vb2_plane *p = &prev->planes[prev->num_planes - 1]; 307 308 off = PAGE_ALIGN(p->m.offset + p->length); 309 } 310 311 for (plane = 0; plane < vb->num_planes; ++plane) { 312 vb->planes[plane].m.offset = off; 313 314 dprintk(3, "buffer %d, plane %d offset 0x%08lx\n", 315 vb->index, plane, off); 316 317 off += vb->planes[plane].length; 318 off = PAGE_ALIGN(off); 319 } 320 } 321 322 /* 323 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type) 324 * video buffer memory for all buffers/planes on the queue and initializes the 325 * queue 326 * 327 * Returns the number of buffers successfully allocated. 328 */ 329 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory, 330 unsigned int num_buffers, unsigned int num_planes, 331 const unsigned plane_sizes[VB2_MAX_PLANES]) 332 { 333 unsigned int buffer, plane; 334 struct vb2_buffer *vb; 335 int ret; 336 337 /* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */ 338 num_buffers = min_t(unsigned int, num_buffers, 339 VB2_MAX_FRAME - q->num_buffers); 340 341 for (buffer = 0; buffer < num_buffers; ++buffer) { 342 /* Allocate videobuf buffer structures */ 343 vb = kzalloc(q->buf_struct_size, GFP_KERNEL); 344 if (!vb) { 345 dprintk(1, "memory alloc for buffer struct failed\n"); 346 break; 347 } 348 349 vb->state = VB2_BUF_STATE_DEQUEUED; 350 vb->vb2_queue = q; 351 vb->num_planes = num_planes; 352 vb->index = q->num_buffers + buffer; 353 vb->type = q->type; 354 vb->memory = memory; 355 for (plane = 0; plane < num_planes; ++plane) { 356 vb->planes[plane].length = plane_sizes[plane]; 357 vb->planes[plane].min_length = plane_sizes[plane]; 358 } 359 q->bufs[vb->index] = vb; 360 361 /* Allocate video buffer memory for the MMAP type */ 362 if (memory == VB2_MEMORY_MMAP) { 363 ret = __vb2_buf_mem_alloc(vb); 364 if (ret) { 365 dprintk(1, "failed allocating memory for buffer %d\n", 366 buffer); 367 q->bufs[vb->index] = NULL; 368 kfree(vb); 369 break; 370 } 371 __setup_offsets(vb); 372 /* 373 * Call the driver-provided buffer initialization 374 * callback, if given. An error in initialization 375 * results in queue setup failure. 376 */ 377 ret = call_vb_qop(vb, buf_init, vb); 378 if (ret) { 379 dprintk(1, "buffer %d %p initialization failed\n", 380 buffer, vb); 381 __vb2_buf_mem_free(vb); 382 q->bufs[vb->index] = NULL; 383 kfree(vb); 384 break; 385 } 386 } 387 } 388 389 dprintk(1, "allocated %d buffers, %d plane(s) each\n", 390 buffer, num_planes); 391 392 return buffer; 393 } 394 395 /* 396 * __vb2_free_mem() - release all video buffer memory for a given queue 397 */ 398 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers) 399 { 400 unsigned int buffer; 401 struct vb2_buffer *vb; 402 403 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 404 ++buffer) { 405 vb = q->bufs[buffer]; 406 if (!vb) 407 continue; 408 409 /* Free MMAP buffers or release USERPTR buffers */ 410 if (q->memory == VB2_MEMORY_MMAP) 411 __vb2_buf_mem_free(vb); 412 else if (q->memory == VB2_MEMORY_DMABUF) 413 __vb2_buf_dmabuf_put(vb); 414 else 415 __vb2_buf_userptr_put(vb); 416 } 417 } 418 419 /* 420 * __vb2_queue_free() - free buffers at the end of the queue - video memory and 421 * related information, if no buffers are left return the queue to an 422 * uninitialized state. Might be called even if the queue has already been freed. 423 */ 424 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers) 425 { 426 unsigned int buffer; 427 428 /* 429 * Sanity check: when preparing a buffer the queue lock is released for 430 * a short while (see __buf_prepare for the details), which would allow 431 * a race with a reqbufs which can call this function. Removing the 432 * buffers from underneath __buf_prepare is obviously a bad idea, so we 433 * check if any of the buffers is in the state PREPARING, and if so we 434 * just return -EAGAIN. 435 */ 436 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 437 ++buffer) { 438 if (q->bufs[buffer] == NULL) 439 continue; 440 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) { 441 dprintk(1, "preparing buffers, cannot free\n"); 442 return -EAGAIN; 443 } 444 } 445 446 /* Call driver-provided cleanup function for each buffer, if provided */ 447 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 448 ++buffer) { 449 struct vb2_buffer *vb = q->bufs[buffer]; 450 451 if (vb && vb->planes[0].mem_priv) 452 call_void_vb_qop(vb, buf_cleanup, vb); 453 } 454 455 /* Release video buffer memory */ 456 __vb2_free_mem(q, buffers); 457 458 #ifdef CONFIG_VIDEO_ADV_DEBUG 459 /* 460 * Check that all the calls were balances during the life-time of this 461 * queue. If not (or if the debug level is 1 or up), then dump the 462 * counters to the kernel log. 463 */ 464 if (q->num_buffers) { 465 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming || 466 q->cnt_wait_prepare != q->cnt_wait_finish; 467 468 if (unbalanced || debug) { 469 pr_info("counters for queue %p:%s\n", q, 470 unbalanced ? " UNBALANCED!" : ""); 471 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n", 472 q->cnt_queue_setup, q->cnt_start_streaming, 473 q->cnt_stop_streaming); 474 pr_info(" wait_prepare: %u wait_finish: %u\n", 475 q->cnt_wait_prepare, q->cnt_wait_finish); 476 } 477 q->cnt_queue_setup = 0; 478 q->cnt_wait_prepare = 0; 479 q->cnt_wait_finish = 0; 480 q->cnt_start_streaming = 0; 481 q->cnt_stop_streaming = 0; 482 } 483 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 484 struct vb2_buffer *vb = q->bufs[buffer]; 485 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put || 486 vb->cnt_mem_prepare != vb->cnt_mem_finish || 487 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr || 488 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf || 489 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf || 490 vb->cnt_buf_queue != vb->cnt_buf_done || 491 vb->cnt_buf_prepare != vb->cnt_buf_finish || 492 vb->cnt_buf_init != vb->cnt_buf_cleanup; 493 494 if (unbalanced || debug) { 495 pr_info(" counters for queue %p, buffer %d:%s\n", 496 q, buffer, unbalanced ? " UNBALANCED!" : ""); 497 pr_info(" buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n", 498 vb->cnt_buf_init, vb->cnt_buf_cleanup, 499 vb->cnt_buf_prepare, vb->cnt_buf_finish); 500 pr_info(" buf_queue: %u buf_done: %u\n", 501 vb->cnt_buf_queue, vb->cnt_buf_done); 502 pr_info(" alloc: %u put: %u prepare: %u finish: %u mmap: %u\n", 503 vb->cnt_mem_alloc, vb->cnt_mem_put, 504 vb->cnt_mem_prepare, vb->cnt_mem_finish, 505 vb->cnt_mem_mmap); 506 pr_info(" get_userptr: %u put_userptr: %u\n", 507 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr); 508 pr_info(" attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n", 509 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf, 510 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf); 511 pr_info(" get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n", 512 vb->cnt_mem_get_dmabuf, 513 vb->cnt_mem_num_users, 514 vb->cnt_mem_vaddr, 515 vb->cnt_mem_cookie); 516 } 517 } 518 #endif 519 520 /* Free videobuf buffers */ 521 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 522 ++buffer) { 523 kfree(q->bufs[buffer]); 524 q->bufs[buffer] = NULL; 525 } 526 527 q->num_buffers -= buffers; 528 if (!q->num_buffers) { 529 q->memory = VB2_MEMORY_UNKNOWN; 530 INIT_LIST_HEAD(&q->queued_list); 531 } 532 return 0; 533 } 534 535 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb) 536 { 537 unsigned int plane; 538 for (plane = 0; plane < vb->num_planes; ++plane) { 539 void *mem_priv = vb->planes[plane].mem_priv; 540 /* 541 * If num_users() has not been provided, call_memop 542 * will return 0, apparently nobody cares about this 543 * case anyway. If num_users() returns more than 1, 544 * we are not the only user of the plane's memory. 545 */ 546 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1) 547 return true; 548 } 549 return false; 550 } 551 EXPORT_SYMBOL(vb2_buffer_in_use); 552 553 /* 554 * __buffers_in_use() - return true if any buffers on the queue are in use and 555 * the queue cannot be freed (by the means of REQBUFS(0)) call 556 */ 557 static bool __buffers_in_use(struct vb2_queue *q) 558 { 559 unsigned int buffer; 560 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 561 if (vb2_buffer_in_use(q, q->bufs[buffer])) 562 return true; 563 } 564 return false; 565 } 566 567 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb) 568 { 569 call_void_bufop(q, fill_user_buffer, q->bufs[index], pb); 570 } 571 EXPORT_SYMBOL_GPL(vb2_core_querybuf); 572 573 /* 574 * __verify_userptr_ops() - verify that all memory operations required for 575 * USERPTR queue type have been provided 576 */ 577 static int __verify_userptr_ops(struct vb2_queue *q) 578 { 579 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr || 580 !q->mem_ops->put_userptr) 581 return -EINVAL; 582 583 return 0; 584 } 585 586 /* 587 * __verify_mmap_ops() - verify that all memory operations required for 588 * MMAP queue type have been provided 589 */ 590 static int __verify_mmap_ops(struct vb2_queue *q) 591 { 592 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc || 593 !q->mem_ops->put || !q->mem_ops->mmap) 594 return -EINVAL; 595 596 return 0; 597 } 598 599 /* 600 * __verify_dmabuf_ops() - verify that all memory operations required for 601 * DMABUF queue type have been provided 602 */ 603 static int __verify_dmabuf_ops(struct vb2_queue *q) 604 { 605 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf || 606 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf || 607 !q->mem_ops->unmap_dmabuf) 608 return -EINVAL; 609 610 return 0; 611 } 612 613 int vb2_verify_memory_type(struct vb2_queue *q, 614 enum vb2_memory memory, unsigned int type) 615 { 616 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR && 617 memory != VB2_MEMORY_DMABUF) { 618 dprintk(1, "unsupported memory type\n"); 619 return -EINVAL; 620 } 621 622 if (type != q->type) { 623 dprintk(1, "requested type is incorrect\n"); 624 return -EINVAL; 625 } 626 627 /* 628 * Make sure all the required memory ops for given memory type 629 * are available. 630 */ 631 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) { 632 dprintk(1, "MMAP for current setup unsupported\n"); 633 return -EINVAL; 634 } 635 636 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) { 637 dprintk(1, "USERPTR for current setup unsupported\n"); 638 return -EINVAL; 639 } 640 641 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) { 642 dprintk(1, "DMABUF for current setup unsupported\n"); 643 return -EINVAL; 644 } 645 646 /* 647 * Place the busy tests at the end: -EBUSY can be ignored when 648 * create_bufs is called with count == 0, but count == 0 should still 649 * do the memory and type validation. 650 */ 651 if (vb2_fileio_is_active(q)) { 652 dprintk(1, "file io in progress\n"); 653 return -EBUSY; 654 } 655 return 0; 656 } 657 EXPORT_SYMBOL(vb2_verify_memory_type); 658 659 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, 660 unsigned int *count) 661 { 662 unsigned int num_buffers, allocated_buffers, num_planes = 0; 663 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 664 int ret; 665 666 if (q->streaming) { 667 dprintk(1, "streaming active\n"); 668 return -EBUSY; 669 } 670 671 if (*count == 0 || q->num_buffers != 0 || 672 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory)) { 673 /* 674 * We already have buffers allocated, so first check if they 675 * are not in use and can be freed. 676 */ 677 mutex_lock(&q->mmap_lock); 678 if (q->memory == VB2_MEMORY_MMAP && __buffers_in_use(q)) { 679 mutex_unlock(&q->mmap_lock); 680 dprintk(1, "memory in use, cannot free\n"); 681 return -EBUSY; 682 } 683 684 /* 685 * Call queue_cancel to clean up any buffers in the PREPARED or 686 * QUEUED state which is possible if buffers were prepared or 687 * queued without ever calling STREAMON. 688 */ 689 __vb2_queue_cancel(q); 690 ret = __vb2_queue_free(q, q->num_buffers); 691 mutex_unlock(&q->mmap_lock); 692 if (ret) 693 return ret; 694 695 /* 696 * In case of REQBUFS(0) return immediately without calling 697 * driver's queue_setup() callback and allocating resources. 698 */ 699 if (*count == 0) 700 return 0; 701 } 702 703 /* 704 * Make sure the requested values and current defaults are sane. 705 */ 706 WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME); 707 num_buffers = max_t(unsigned int, *count, q->min_buffers_needed); 708 num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME); 709 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 710 q->memory = memory; 711 712 /* 713 * Ask the driver how many buffers and planes per buffer it requires. 714 * Driver also sets the size and allocator context for each plane. 715 */ 716 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes, 717 plane_sizes, q->alloc_devs); 718 if (ret) 719 return ret; 720 721 /* Finally, allocate buffers and video memory */ 722 allocated_buffers = 723 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes); 724 if (allocated_buffers == 0) { 725 dprintk(1, "memory allocation failed\n"); 726 return -ENOMEM; 727 } 728 729 /* 730 * There is no point in continuing if we can't allocate the minimum 731 * number of buffers needed by this vb2_queue. 732 */ 733 if (allocated_buffers < q->min_buffers_needed) 734 ret = -ENOMEM; 735 736 /* 737 * Check if driver can handle the allocated number of buffers. 738 */ 739 if (!ret && allocated_buffers < num_buffers) { 740 num_buffers = allocated_buffers; 741 /* 742 * num_planes is set by the previous queue_setup(), but since it 743 * signals to queue_setup() whether it is called from create_bufs() 744 * vs reqbufs() we zero it here to signal that queue_setup() is 745 * called for the reqbufs() case. 746 */ 747 num_planes = 0; 748 749 ret = call_qop(q, queue_setup, q, &num_buffers, 750 &num_planes, plane_sizes, q->alloc_devs); 751 752 if (!ret && allocated_buffers < num_buffers) 753 ret = -ENOMEM; 754 755 /* 756 * Either the driver has accepted a smaller number of buffers, 757 * or .queue_setup() returned an error 758 */ 759 } 760 761 mutex_lock(&q->mmap_lock); 762 q->num_buffers = allocated_buffers; 763 764 if (ret < 0) { 765 /* 766 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 767 * from q->num_buffers. 768 */ 769 __vb2_queue_free(q, allocated_buffers); 770 mutex_unlock(&q->mmap_lock); 771 return ret; 772 } 773 mutex_unlock(&q->mmap_lock); 774 775 /* 776 * Return the number of successfully allocated buffers 777 * to the userspace. 778 */ 779 *count = allocated_buffers; 780 q->waiting_for_buffers = !q->is_output; 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(vb2_core_reqbufs); 785 786 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, 787 unsigned int *count, unsigned requested_planes, 788 const unsigned requested_sizes[]) 789 { 790 unsigned int num_planes = 0, num_buffers, allocated_buffers; 791 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 792 int ret; 793 794 if (q->num_buffers == VB2_MAX_FRAME) { 795 dprintk(1, "maximum number of buffers already allocated\n"); 796 return -ENOBUFS; 797 } 798 799 if (!q->num_buffers) { 800 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 801 q->memory = memory; 802 q->waiting_for_buffers = !q->is_output; 803 } 804 805 num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers); 806 807 if (requested_planes && requested_sizes) { 808 num_planes = requested_planes; 809 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes)); 810 } 811 812 /* 813 * Ask the driver, whether the requested number of buffers, planes per 814 * buffer and their sizes are acceptable 815 */ 816 ret = call_qop(q, queue_setup, q, &num_buffers, 817 &num_planes, plane_sizes, q->alloc_devs); 818 if (ret) 819 return ret; 820 821 /* Finally, allocate buffers and video memory */ 822 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers, 823 num_planes, plane_sizes); 824 if (allocated_buffers == 0) { 825 dprintk(1, "memory allocation failed\n"); 826 return -ENOMEM; 827 } 828 829 /* 830 * Check if driver can handle the so far allocated number of buffers. 831 */ 832 if (allocated_buffers < num_buffers) { 833 num_buffers = allocated_buffers; 834 835 /* 836 * q->num_buffers contains the total number of buffers, that the 837 * queue driver has set up 838 */ 839 ret = call_qop(q, queue_setup, q, &num_buffers, 840 &num_planes, plane_sizes, q->alloc_devs); 841 842 if (!ret && allocated_buffers < num_buffers) 843 ret = -ENOMEM; 844 845 /* 846 * Either the driver has accepted a smaller number of buffers, 847 * or .queue_setup() returned an error 848 */ 849 } 850 851 mutex_lock(&q->mmap_lock); 852 q->num_buffers += allocated_buffers; 853 854 if (ret < 0) { 855 /* 856 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 857 * from q->num_buffers. 858 */ 859 __vb2_queue_free(q, allocated_buffers); 860 mutex_unlock(&q->mmap_lock); 861 return -ENOMEM; 862 } 863 mutex_unlock(&q->mmap_lock); 864 865 /* 866 * Return the number of successfully allocated buffers 867 * to the userspace. 868 */ 869 *count = allocated_buffers; 870 871 return 0; 872 } 873 EXPORT_SYMBOL_GPL(vb2_core_create_bufs); 874 875 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no) 876 { 877 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 878 return NULL; 879 880 return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv); 881 882 } 883 EXPORT_SYMBOL_GPL(vb2_plane_vaddr); 884 885 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no) 886 { 887 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 888 return NULL; 889 890 return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv); 891 } 892 EXPORT_SYMBOL_GPL(vb2_plane_cookie); 893 894 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state) 895 { 896 struct vb2_queue *q = vb->vb2_queue; 897 unsigned long flags; 898 unsigned int plane; 899 900 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE)) 901 return; 902 903 if (WARN_ON(state != VB2_BUF_STATE_DONE && 904 state != VB2_BUF_STATE_ERROR && 905 state != VB2_BUF_STATE_QUEUED && 906 state != VB2_BUF_STATE_REQUEUEING)) 907 state = VB2_BUF_STATE_ERROR; 908 909 #ifdef CONFIG_VIDEO_ADV_DEBUG 910 /* 911 * Although this is not a callback, it still does have to balance 912 * with the buf_queue op. So update this counter manually. 913 */ 914 vb->cnt_buf_done++; 915 #endif 916 dprintk(4, "done processing on buffer %d, state: %d\n", 917 vb->index, state); 918 919 /* sync buffers */ 920 for (plane = 0; plane < vb->num_planes; ++plane) 921 call_void_memop(vb, finish, vb->planes[plane].mem_priv); 922 923 spin_lock_irqsave(&q->done_lock, flags); 924 if (state == VB2_BUF_STATE_QUEUED || 925 state == VB2_BUF_STATE_REQUEUEING) { 926 vb->state = VB2_BUF_STATE_QUEUED; 927 } else { 928 /* Add the buffer to the done buffers list */ 929 list_add_tail(&vb->done_entry, &q->done_list); 930 vb->state = state; 931 } 932 atomic_dec(&q->owned_by_drv_count); 933 spin_unlock_irqrestore(&q->done_lock, flags); 934 935 trace_vb2_buf_done(q, vb); 936 937 switch (state) { 938 case VB2_BUF_STATE_QUEUED: 939 return; 940 case VB2_BUF_STATE_REQUEUEING: 941 if (q->start_streaming_called) 942 __enqueue_in_driver(vb); 943 return; 944 default: 945 /* Inform any processes that may be waiting for buffers */ 946 wake_up(&q->done_wq); 947 break; 948 } 949 } 950 EXPORT_SYMBOL_GPL(vb2_buffer_done); 951 952 void vb2_discard_done(struct vb2_queue *q) 953 { 954 struct vb2_buffer *vb; 955 unsigned long flags; 956 957 spin_lock_irqsave(&q->done_lock, flags); 958 list_for_each_entry(vb, &q->done_list, done_entry) 959 vb->state = VB2_BUF_STATE_ERROR; 960 spin_unlock_irqrestore(&q->done_lock, flags); 961 } 962 EXPORT_SYMBOL_GPL(vb2_discard_done); 963 964 /* 965 * __prepare_mmap() - prepare an MMAP buffer 966 */ 967 static int __prepare_mmap(struct vb2_buffer *vb, const void *pb) 968 { 969 int ret = 0; 970 971 if (pb) 972 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 973 vb, pb, vb->planes); 974 return ret ? ret : call_vb_qop(vb, buf_prepare, vb); 975 } 976 977 /* 978 * __prepare_userptr() - prepare a USERPTR buffer 979 */ 980 static int __prepare_userptr(struct vb2_buffer *vb, const void *pb) 981 { 982 struct vb2_plane planes[VB2_MAX_PLANES]; 983 struct vb2_queue *q = vb->vb2_queue; 984 void *mem_priv; 985 unsigned int plane; 986 int ret = 0; 987 bool reacquired = vb->planes[0].mem_priv == NULL; 988 989 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 990 /* Copy relevant information provided by the userspace */ 991 if (pb) { 992 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 993 vb, pb, planes); 994 if (ret) 995 return ret; 996 } 997 998 for (plane = 0; plane < vb->num_planes; ++plane) { 999 /* Skip the plane if already verified */ 1000 if (vb->planes[plane].m.userptr && 1001 vb->planes[plane].m.userptr == planes[plane].m.userptr 1002 && vb->planes[plane].length == planes[plane].length) 1003 continue; 1004 1005 dprintk(3, "userspace address for plane %d changed, reacquiring memory\n", 1006 plane); 1007 1008 /* Check if the provided plane buffer is large enough */ 1009 if (planes[plane].length < vb->planes[plane].min_length) { 1010 dprintk(1, "provided buffer size %u is less than setup size %u for plane %d\n", 1011 planes[plane].length, 1012 vb->planes[plane].min_length, 1013 plane); 1014 ret = -EINVAL; 1015 goto err; 1016 } 1017 1018 /* Release previously acquired memory if present */ 1019 if (vb->planes[plane].mem_priv) { 1020 if (!reacquired) { 1021 reacquired = true; 1022 call_void_vb_qop(vb, buf_cleanup, vb); 1023 } 1024 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 1025 } 1026 1027 vb->planes[plane].mem_priv = NULL; 1028 vb->planes[plane].bytesused = 0; 1029 vb->planes[plane].length = 0; 1030 vb->planes[plane].m.userptr = 0; 1031 vb->planes[plane].data_offset = 0; 1032 1033 /* Acquire each plane's memory */ 1034 mem_priv = call_ptr_memop(vb, get_userptr, 1035 q->alloc_devs[plane] ? : q->dev, 1036 planes[plane].m.userptr, 1037 planes[plane].length, q->dma_dir); 1038 if (IS_ERR(mem_priv)) { 1039 dprintk(1, "failed acquiring userspace memory for plane %d\n", 1040 plane); 1041 ret = PTR_ERR(mem_priv); 1042 goto err; 1043 } 1044 vb->planes[plane].mem_priv = mem_priv; 1045 } 1046 1047 /* 1048 * Now that everything is in order, copy relevant information 1049 * provided by userspace. 1050 */ 1051 for (plane = 0; plane < vb->num_planes; ++plane) { 1052 vb->planes[plane].bytesused = planes[plane].bytesused; 1053 vb->planes[plane].length = planes[plane].length; 1054 vb->planes[plane].m.userptr = planes[plane].m.userptr; 1055 vb->planes[plane].data_offset = planes[plane].data_offset; 1056 } 1057 1058 if (reacquired) { 1059 /* 1060 * One or more planes changed, so we must call buf_init to do 1061 * the driver-specific initialization on the newly acquired 1062 * buffer, if provided. 1063 */ 1064 ret = call_vb_qop(vb, buf_init, vb); 1065 if (ret) { 1066 dprintk(1, "buffer initialization failed\n"); 1067 goto err; 1068 } 1069 } 1070 1071 ret = call_vb_qop(vb, buf_prepare, vb); 1072 if (ret) { 1073 dprintk(1, "buffer preparation failed\n"); 1074 call_void_vb_qop(vb, buf_cleanup, vb); 1075 goto err; 1076 } 1077 1078 return 0; 1079 err: 1080 /* In case of errors, release planes that were already acquired */ 1081 for (plane = 0; plane < vb->num_planes; ++plane) { 1082 if (vb->planes[plane].mem_priv) 1083 call_void_memop(vb, put_userptr, 1084 vb->planes[plane].mem_priv); 1085 vb->planes[plane].mem_priv = NULL; 1086 vb->planes[plane].m.userptr = 0; 1087 vb->planes[plane].length = 0; 1088 } 1089 1090 return ret; 1091 } 1092 1093 /* 1094 * __prepare_dmabuf() - prepare a DMABUF buffer 1095 */ 1096 static int __prepare_dmabuf(struct vb2_buffer *vb, const void *pb) 1097 { 1098 struct vb2_plane planes[VB2_MAX_PLANES]; 1099 struct vb2_queue *q = vb->vb2_queue; 1100 void *mem_priv; 1101 unsigned int plane; 1102 int ret = 0; 1103 bool reacquired = vb->planes[0].mem_priv == NULL; 1104 1105 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1106 /* Copy relevant information provided by the userspace */ 1107 if (pb) { 1108 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1109 vb, pb, planes); 1110 if (ret) 1111 return ret; 1112 } 1113 1114 for (plane = 0; plane < vb->num_planes; ++plane) { 1115 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd); 1116 1117 if (IS_ERR_OR_NULL(dbuf)) { 1118 dprintk(1, "invalid dmabuf fd for plane %d\n", 1119 plane); 1120 ret = -EINVAL; 1121 goto err; 1122 } 1123 1124 /* use DMABUF size if length is not provided */ 1125 if (planes[plane].length == 0) 1126 planes[plane].length = dbuf->size; 1127 1128 if (planes[plane].length < vb->planes[plane].min_length) { 1129 dprintk(1, "invalid dmabuf length %u for plane %d, minimum length %u\n", 1130 planes[plane].length, plane, 1131 vb->planes[plane].min_length); 1132 dma_buf_put(dbuf); 1133 ret = -EINVAL; 1134 goto err; 1135 } 1136 1137 /* Skip the plane if already verified */ 1138 if (dbuf == vb->planes[plane].dbuf && 1139 vb->planes[plane].length == planes[plane].length) { 1140 dma_buf_put(dbuf); 1141 continue; 1142 } 1143 1144 dprintk(3, "buffer for plane %d changed\n", plane); 1145 1146 if (!reacquired) { 1147 reacquired = true; 1148 call_void_vb_qop(vb, buf_cleanup, vb); 1149 } 1150 1151 /* Release previously acquired memory if present */ 1152 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 1153 vb->planes[plane].bytesused = 0; 1154 vb->planes[plane].length = 0; 1155 vb->planes[plane].m.fd = 0; 1156 vb->planes[plane].data_offset = 0; 1157 1158 /* Acquire each plane's memory */ 1159 mem_priv = call_ptr_memop(vb, attach_dmabuf, 1160 q->alloc_devs[plane] ? : q->dev, 1161 dbuf, planes[plane].length, q->dma_dir); 1162 if (IS_ERR(mem_priv)) { 1163 dprintk(1, "failed to attach dmabuf\n"); 1164 ret = PTR_ERR(mem_priv); 1165 dma_buf_put(dbuf); 1166 goto err; 1167 } 1168 1169 vb->planes[plane].dbuf = dbuf; 1170 vb->planes[plane].mem_priv = mem_priv; 1171 } 1172 1173 /* 1174 * This pins the buffer(s) with dma_buf_map_attachment()). It's done 1175 * here instead just before the DMA, while queueing the buffer(s) so 1176 * userspace knows sooner rather than later if the dma-buf map fails. 1177 */ 1178 for (plane = 0; plane < vb->num_planes; ++plane) { 1179 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv); 1180 if (ret) { 1181 dprintk(1, "failed to map dmabuf for plane %d\n", 1182 plane); 1183 goto err; 1184 } 1185 vb->planes[plane].dbuf_mapped = 1; 1186 } 1187 1188 /* 1189 * Now that everything is in order, copy relevant information 1190 * provided by userspace. 1191 */ 1192 for (plane = 0; plane < vb->num_planes; ++plane) { 1193 vb->planes[plane].bytesused = planes[plane].bytesused; 1194 vb->planes[plane].length = planes[plane].length; 1195 vb->planes[plane].m.fd = planes[plane].m.fd; 1196 vb->planes[plane].data_offset = planes[plane].data_offset; 1197 } 1198 1199 if (reacquired) { 1200 /* 1201 * Call driver-specific initialization on the newly acquired buffer, 1202 * if provided. 1203 */ 1204 ret = call_vb_qop(vb, buf_init, vb); 1205 if (ret) { 1206 dprintk(1, "buffer initialization failed\n"); 1207 goto err; 1208 } 1209 } 1210 1211 ret = call_vb_qop(vb, buf_prepare, vb); 1212 if (ret) { 1213 dprintk(1, "buffer preparation failed\n"); 1214 call_void_vb_qop(vb, buf_cleanup, vb); 1215 goto err; 1216 } 1217 1218 return 0; 1219 err: 1220 /* In case of errors, release planes that were already acquired */ 1221 __vb2_buf_dmabuf_put(vb); 1222 1223 return ret; 1224 } 1225 1226 /* 1227 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing 1228 */ 1229 static void __enqueue_in_driver(struct vb2_buffer *vb) 1230 { 1231 struct vb2_queue *q = vb->vb2_queue; 1232 1233 vb->state = VB2_BUF_STATE_ACTIVE; 1234 atomic_inc(&q->owned_by_drv_count); 1235 1236 trace_vb2_buf_queue(q, vb); 1237 1238 call_void_vb_qop(vb, buf_queue, vb); 1239 } 1240 1241 static int __buf_prepare(struct vb2_buffer *vb, const void *pb) 1242 { 1243 struct vb2_queue *q = vb->vb2_queue; 1244 unsigned int plane; 1245 int ret; 1246 1247 if (q->error) { 1248 dprintk(1, "fatal error occurred on queue\n"); 1249 return -EIO; 1250 } 1251 1252 vb->state = VB2_BUF_STATE_PREPARING; 1253 1254 switch (q->memory) { 1255 case VB2_MEMORY_MMAP: 1256 ret = __prepare_mmap(vb, pb); 1257 break; 1258 case VB2_MEMORY_USERPTR: 1259 ret = __prepare_userptr(vb, pb); 1260 break; 1261 case VB2_MEMORY_DMABUF: 1262 ret = __prepare_dmabuf(vb, pb); 1263 break; 1264 default: 1265 WARN(1, "Invalid queue type\n"); 1266 ret = -EINVAL; 1267 } 1268 1269 if (ret) { 1270 dprintk(1, "buffer preparation failed: %d\n", ret); 1271 vb->state = VB2_BUF_STATE_DEQUEUED; 1272 return ret; 1273 } 1274 1275 /* sync buffers */ 1276 for (plane = 0; plane < vb->num_planes; ++plane) 1277 call_void_memop(vb, prepare, vb->planes[plane].mem_priv); 1278 1279 vb->state = VB2_BUF_STATE_PREPARED; 1280 1281 return 0; 1282 } 1283 1284 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb) 1285 { 1286 struct vb2_buffer *vb; 1287 int ret; 1288 1289 vb = q->bufs[index]; 1290 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1291 dprintk(1, "invalid buffer state %d\n", 1292 vb->state); 1293 return -EINVAL; 1294 } 1295 1296 ret = __buf_prepare(vb, pb); 1297 if (ret) 1298 return ret; 1299 1300 /* Fill buffer information for the userspace */ 1301 call_void_bufop(q, fill_user_buffer, vb, pb); 1302 1303 dprintk(2, "prepare of buffer %d succeeded\n", vb->index); 1304 1305 return ret; 1306 } 1307 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf); 1308 1309 /* 1310 * vb2_start_streaming() - Attempt to start streaming. 1311 * @q: videobuf2 queue 1312 * 1313 * Attempt to start streaming. When this function is called there must be 1314 * at least q->min_buffers_needed buffers queued up (i.e. the minimum 1315 * number of buffers required for the DMA engine to function). If the 1316 * @start_streaming op fails it is supposed to return all the driver-owned 1317 * buffers back to vb2 in state QUEUED. Check if that happened and if 1318 * not warn and reclaim them forcefully. 1319 */ 1320 static int vb2_start_streaming(struct vb2_queue *q) 1321 { 1322 struct vb2_buffer *vb; 1323 int ret; 1324 1325 /* 1326 * If any buffers were queued before streamon, 1327 * we can now pass them to driver for processing. 1328 */ 1329 list_for_each_entry(vb, &q->queued_list, queued_entry) 1330 __enqueue_in_driver(vb); 1331 1332 /* Tell the driver to start streaming */ 1333 q->start_streaming_called = 1; 1334 ret = call_qop(q, start_streaming, q, 1335 atomic_read(&q->owned_by_drv_count)); 1336 if (!ret) 1337 return 0; 1338 1339 q->start_streaming_called = 0; 1340 1341 dprintk(1, "driver refused to start streaming\n"); 1342 /* 1343 * If you see this warning, then the driver isn't cleaning up properly 1344 * after a failed start_streaming(). See the start_streaming() 1345 * documentation in videobuf2-core.h for more information how buffers 1346 * should be returned to vb2 in start_streaming(). 1347 */ 1348 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1349 unsigned i; 1350 1351 /* 1352 * Forcefully reclaim buffers if the driver did not 1353 * correctly return them to vb2. 1354 */ 1355 for (i = 0; i < q->num_buffers; ++i) { 1356 vb = q->bufs[i]; 1357 if (vb->state == VB2_BUF_STATE_ACTIVE) 1358 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED); 1359 } 1360 /* Must be zero now */ 1361 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1362 } 1363 /* 1364 * If done_list is not empty, then start_streaming() didn't call 1365 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or 1366 * STATE_DONE. 1367 */ 1368 WARN_ON(!list_empty(&q->done_list)); 1369 return ret; 1370 } 1371 1372 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb) 1373 { 1374 struct vb2_buffer *vb; 1375 int ret; 1376 1377 vb = q->bufs[index]; 1378 1379 switch (vb->state) { 1380 case VB2_BUF_STATE_DEQUEUED: 1381 ret = __buf_prepare(vb, pb); 1382 if (ret) 1383 return ret; 1384 break; 1385 case VB2_BUF_STATE_PREPARED: 1386 break; 1387 case VB2_BUF_STATE_PREPARING: 1388 dprintk(1, "buffer still being prepared\n"); 1389 return -EINVAL; 1390 default: 1391 dprintk(1, "invalid buffer state %d\n", vb->state); 1392 return -EINVAL; 1393 } 1394 1395 /* 1396 * Add to the queued buffers list, a buffer will stay on it until 1397 * dequeued in dqbuf. 1398 */ 1399 list_add_tail(&vb->queued_entry, &q->queued_list); 1400 q->queued_count++; 1401 q->waiting_for_buffers = false; 1402 vb->state = VB2_BUF_STATE_QUEUED; 1403 1404 if (pb) 1405 call_void_bufop(q, copy_timestamp, vb, pb); 1406 1407 trace_vb2_qbuf(q, vb); 1408 1409 /* 1410 * If already streaming, give the buffer to driver for processing. 1411 * If not, the buffer will be given to driver on next streamon. 1412 */ 1413 if (q->start_streaming_called) 1414 __enqueue_in_driver(vb); 1415 1416 /* Fill buffer information for the userspace */ 1417 if (pb) 1418 call_void_bufop(q, fill_user_buffer, vb, pb); 1419 1420 /* 1421 * If streamon has been called, and we haven't yet called 1422 * start_streaming() since not enough buffers were queued, and 1423 * we now have reached the minimum number of queued buffers, 1424 * then we can finally call start_streaming(). 1425 */ 1426 if (q->streaming && !q->start_streaming_called && 1427 q->queued_count >= q->min_buffers_needed) { 1428 ret = vb2_start_streaming(q); 1429 if (ret) 1430 return ret; 1431 } 1432 1433 dprintk(2, "qbuf of buffer %d succeeded\n", vb->index); 1434 return 0; 1435 } 1436 EXPORT_SYMBOL_GPL(vb2_core_qbuf); 1437 1438 /* 1439 * __vb2_wait_for_done_vb() - wait for a buffer to become available 1440 * for dequeuing 1441 * 1442 * Will sleep if required for nonblocking == false. 1443 */ 1444 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking) 1445 { 1446 /* 1447 * All operations on vb_done_list are performed under done_lock 1448 * spinlock protection. However, buffers may be removed from 1449 * it and returned to userspace only while holding both driver's 1450 * lock and the done_lock spinlock. Thus we can be sure that as 1451 * long as we hold the driver's lock, the list will remain not 1452 * empty if list_empty() check succeeds. 1453 */ 1454 1455 for (;;) { 1456 int ret; 1457 1458 if (!q->streaming) { 1459 dprintk(1, "streaming off, will not wait for buffers\n"); 1460 return -EINVAL; 1461 } 1462 1463 if (q->error) { 1464 dprintk(1, "Queue in error state, will not wait for buffers\n"); 1465 return -EIO; 1466 } 1467 1468 if (q->last_buffer_dequeued) { 1469 dprintk(3, "last buffer dequeued already, will not wait for buffers\n"); 1470 return -EPIPE; 1471 } 1472 1473 if (!list_empty(&q->done_list)) { 1474 /* 1475 * Found a buffer that we were waiting for. 1476 */ 1477 break; 1478 } 1479 1480 if (nonblocking) { 1481 dprintk(3, "nonblocking and no buffers to dequeue, will not wait\n"); 1482 return -EAGAIN; 1483 } 1484 1485 /* 1486 * We are streaming and blocking, wait for another buffer to 1487 * become ready or for streamoff. Driver's lock is released to 1488 * allow streamoff or qbuf to be called while waiting. 1489 */ 1490 call_void_qop(q, wait_prepare, q); 1491 1492 /* 1493 * All locks have been released, it is safe to sleep now. 1494 */ 1495 dprintk(3, "will sleep waiting for buffers\n"); 1496 ret = wait_event_interruptible(q->done_wq, 1497 !list_empty(&q->done_list) || !q->streaming || 1498 q->error); 1499 1500 /* 1501 * We need to reevaluate both conditions again after reacquiring 1502 * the locks or return an error if one occurred. 1503 */ 1504 call_void_qop(q, wait_finish, q); 1505 if (ret) { 1506 dprintk(1, "sleep was interrupted\n"); 1507 return ret; 1508 } 1509 } 1510 return 0; 1511 } 1512 1513 /* 1514 * __vb2_get_done_vb() - get a buffer ready for dequeuing 1515 * 1516 * Will sleep if required for nonblocking == false. 1517 */ 1518 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb, 1519 void *pb, int nonblocking) 1520 { 1521 unsigned long flags; 1522 int ret = 0; 1523 1524 /* 1525 * Wait for at least one buffer to become available on the done_list. 1526 */ 1527 ret = __vb2_wait_for_done_vb(q, nonblocking); 1528 if (ret) 1529 return ret; 1530 1531 /* 1532 * Driver's lock has been held since we last verified that done_list 1533 * is not empty, so no need for another list_empty(done_list) check. 1534 */ 1535 spin_lock_irqsave(&q->done_lock, flags); 1536 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry); 1537 /* 1538 * Only remove the buffer from done_list if all planes can be 1539 * handled. Some cases such as V4L2 file I/O and DVB have pb 1540 * == NULL; skip the check then as there's nothing to verify. 1541 */ 1542 if (pb) 1543 ret = call_bufop(q, verify_planes_array, *vb, pb); 1544 if (!ret) 1545 list_del(&(*vb)->done_entry); 1546 spin_unlock_irqrestore(&q->done_lock, flags); 1547 1548 return ret; 1549 } 1550 1551 int vb2_wait_for_all_buffers(struct vb2_queue *q) 1552 { 1553 if (!q->streaming) { 1554 dprintk(1, "streaming off, will not wait for buffers\n"); 1555 return -EINVAL; 1556 } 1557 1558 if (q->start_streaming_called) 1559 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count)); 1560 return 0; 1561 } 1562 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers); 1563 1564 /* 1565 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state 1566 */ 1567 static void __vb2_dqbuf(struct vb2_buffer *vb) 1568 { 1569 struct vb2_queue *q = vb->vb2_queue; 1570 unsigned int i; 1571 1572 /* nothing to do if the buffer is already dequeued */ 1573 if (vb->state == VB2_BUF_STATE_DEQUEUED) 1574 return; 1575 1576 vb->state = VB2_BUF_STATE_DEQUEUED; 1577 1578 /* unmap DMABUF buffer */ 1579 if (q->memory == VB2_MEMORY_DMABUF) 1580 for (i = 0; i < vb->num_planes; ++i) { 1581 if (!vb->planes[i].dbuf_mapped) 1582 continue; 1583 call_void_memop(vb, unmap_dmabuf, vb->planes[i].mem_priv); 1584 vb->planes[i].dbuf_mapped = 0; 1585 } 1586 } 1587 1588 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb, 1589 bool nonblocking) 1590 { 1591 struct vb2_buffer *vb = NULL; 1592 int ret; 1593 1594 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking); 1595 if (ret < 0) 1596 return ret; 1597 1598 switch (vb->state) { 1599 case VB2_BUF_STATE_DONE: 1600 dprintk(3, "returning done buffer\n"); 1601 break; 1602 case VB2_BUF_STATE_ERROR: 1603 dprintk(3, "returning done buffer with errors\n"); 1604 break; 1605 default: 1606 dprintk(1, "invalid buffer state\n"); 1607 return -EINVAL; 1608 } 1609 1610 call_void_vb_qop(vb, buf_finish, vb); 1611 1612 if (pindex) 1613 *pindex = vb->index; 1614 1615 /* Fill buffer information for the userspace */ 1616 if (pb) 1617 call_void_bufop(q, fill_user_buffer, vb, pb); 1618 1619 /* Remove from videobuf queue */ 1620 list_del(&vb->queued_entry); 1621 q->queued_count--; 1622 1623 trace_vb2_dqbuf(q, vb); 1624 1625 /* go back to dequeued state */ 1626 __vb2_dqbuf(vb); 1627 1628 dprintk(2, "dqbuf of buffer %d, with state %d\n", 1629 vb->index, vb->state); 1630 1631 return 0; 1632 1633 } 1634 EXPORT_SYMBOL_GPL(vb2_core_dqbuf); 1635 1636 /* 1637 * __vb2_queue_cancel() - cancel and stop (pause) streaming 1638 * 1639 * Removes all queued buffers from driver's queue and all buffers queued by 1640 * userspace from videobuf's queue. Returns to state after reqbufs. 1641 */ 1642 static void __vb2_queue_cancel(struct vb2_queue *q) 1643 { 1644 unsigned int i; 1645 1646 /* 1647 * Tell driver to stop all transactions and release all queued 1648 * buffers. 1649 */ 1650 if (q->start_streaming_called) 1651 call_void_qop(q, stop_streaming, q); 1652 1653 /* 1654 * If you see this warning, then the driver isn't cleaning up properly 1655 * in stop_streaming(). See the stop_streaming() documentation in 1656 * videobuf2-core.h for more information how buffers should be returned 1657 * to vb2 in stop_streaming(). 1658 */ 1659 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1660 for (i = 0; i < q->num_buffers; ++i) 1661 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) { 1662 pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n", 1663 q->bufs[i]); 1664 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR); 1665 } 1666 /* Must be zero now */ 1667 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1668 } 1669 1670 q->streaming = 0; 1671 q->start_streaming_called = 0; 1672 q->queued_count = 0; 1673 q->error = 0; 1674 1675 /* 1676 * Remove all buffers from videobuf's list... 1677 */ 1678 INIT_LIST_HEAD(&q->queued_list); 1679 /* 1680 * ...and done list; userspace will not receive any buffers it 1681 * has not already dequeued before initiating cancel. 1682 */ 1683 INIT_LIST_HEAD(&q->done_list); 1684 atomic_set(&q->owned_by_drv_count, 0); 1685 wake_up_all(&q->done_wq); 1686 1687 /* 1688 * Reinitialize all buffers for next use. 1689 * Make sure to call buf_finish for any queued buffers. Normally 1690 * that's done in dqbuf, but that's not going to happen when we 1691 * cancel the whole queue. Note: this code belongs here, not in 1692 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical 1693 * call to __fill_user_buffer() after buf_finish(). That order can't 1694 * be changed, so we can't move the buf_finish() to __vb2_dqbuf(). 1695 */ 1696 for (i = 0; i < q->num_buffers; ++i) { 1697 struct vb2_buffer *vb = q->bufs[i]; 1698 1699 if (vb->state == VB2_BUF_STATE_PREPARED || 1700 vb->state == VB2_BUF_STATE_QUEUED) { 1701 unsigned int plane; 1702 1703 for (plane = 0; plane < vb->num_planes; ++plane) 1704 call_void_memop(vb, finish, 1705 vb->planes[plane].mem_priv); 1706 } 1707 1708 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1709 vb->state = VB2_BUF_STATE_PREPARED; 1710 call_void_vb_qop(vb, buf_finish, vb); 1711 } 1712 __vb2_dqbuf(vb); 1713 } 1714 } 1715 1716 int vb2_core_streamon(struct vb2_queue *q, unsigned int type) 1717 { 1718 int ret; 1719 1720 if (type != q->type) { 1721 dprintk(1, "invalid stream type\n"); 1722 return -EINVAL; 1723 } 1724 1725 if (q->streaming) { 1726 dprintk(3, "already streaming\n"); 1727 return 0; 1728 } 1729 1730 if (!q->num_buffers) { 1731 dprintk(1, "no buffers have been allocated\n"); 1732 return -EINVAL; 1733 } 1734 1735 if (q->num_buffers < q->min_buffers_needed) { 1736 dprintk(1, "need at least %u allocated buffers\n", 1737 q->min_buffers_needed); 1738 return -EINVAL; 1739 } 1740 1741 /* 1742 * Tell driver to start streaming provided sufficient buffers 1743 * are available. 1744 */ 1745 if (q->queued_count >= q->min_buffers_needed) { 1746 ret = v4l_vb2q_enable_media_source(q); 1747 if (ret) 1748 return ret; 1749 ret = vb2_start_streaming(q); 1750 if (ret) { 1751 __vb2_queue_cancel(q); 1752 return ret; 1753 } 1754 } 1755 1756 q->streaming = 1; 1757 1758 dprintk(3, "successful\n"); 1759 return 0; 1760 } 1761 EXPORT_SYMBOL_GPL(vb2_core_streamon); 1762 1763 void vb2_queue_error(struct vb2_queue *q) 1764 { 1765 q->error = 1; 1766 1767 wake_up_all(&q->done_wq); 1768 } 1769 EXPORT_SYMBOL_GPL(vb2_queue_error); 1770 1771 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type) 1772 { 1773 if (type != q->type) { 1774 dprintk(1, "invalid stream type\n"); 1775 return -EINVAL; 1776 } 1777 1778 /* 1779 * Cancel will pause streaming and remove all buffers from the driver 1780 * and videobuf, effectively returning control over them to userspace. 1781 * 1782 * Note that we do this even if q->streaming == 0: if you prepare or 1783 * queue buffers, and then call streamoff without ever having called 1784 * streamon, you would still expect those buffers to be returned to 1785 * their normal dequeued state. 1786 */ 1787 __vb2_queue_cancel(q); 1788 q->waiting_for_buffers = !q->is_output; 1789 q->last_buffer_dequeued = false; 1790 1791 dprintk(3, "successful\n"); 1792 return 0; 1793 } 1794 EXPORT_SYMBOL_GPL(vb2_core_streamoff); 1795 1796 /* 1797 * __find_plane_by_offset() - find plane associated with the given offset off 1798 */ 1799 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off, 1800 unsigned int *_buffer, unsigned int *_plane) 1801 { 1802 struct vb2_buffer *vb; 1803 unsigned int buffer, plane; 1804 1805 /* 1806 * Go over all buffers and their planes, comparing the given offset 1807 * with an offset assigned to each plane. If a match is found, 1808 * return its buffer and plane numbers. 1809 */ 1810 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 1811 vb = q->bufs[buffer]; 1812 1813 for (plane = 0; plane < vb->num_planes; ++plane) { 1814 if (vb->planes[plane].m.offset == off) { 1815 *_buffer = buffer; 1816 *_plane = plane; 1817 return 0; 1818 } 1819 } 1820 } 1821 1822 return -EINVAL; 1823 } 1824 1825 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, 1826 unsigned int index, unsigned int plane, unsigned int flags) 1827 { 1828 struct vb2_buffer *vb = NULL; 1829 struct vb2_plane *vb_plane; 1830 int ret; 1831 struct dma_buf *dbuf; 1832 1833 if (q->memory != VB2_MEMORY_MMAP) { 1834 dprintk(1, "queue is not currently set up for mmap\n"); 1835 return -EINVAL; 1836 } 1837 1838 if (!q->mem_ops->get_dmabuf) { 1839 dprintk(1, "queue does not support DMA buffer exporting\n"); 1840 return -EINVAL; 1841 } 1842 1843 if (flags & ~(O_CLOEXEC | O_ACCMODE)) { 1844 dprintk(1, "queue does support only O_CLOEXEC and access mode flags\n"); 1845 return -EINVAL; 1846 } 1847 1848 if (type != q->type) { 1849 dprintk(1, "invalid buffer type\n"); 1850 return -EINVAL; 1851 } 1852 1853 if (index >= q->num_buffers) { 1854 dprintk(1, "buffer index out of range\n"); 1855 return -EINVAL; 1856 } 1857 1858 vb = q->bufs[index]; 1859 1860 if (plane >= vb->num_planes) { 1861 dprintk(1, "buffer plane out of range\n"); 1862 return -EINVAL; 1863 } 1864 1865 if (vb2_fileio_is_active(q)) { 1866 dprintk(1, "expbuf: file io in progress\n"); 1867 return -EBUSY; 1868 } 1869 1870 vb_plane = &vb->planes[plane]; 1871 1872 dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv, 1873 flags & O_ACCMODE); 1874 if (IS_ERR_OR_NULL(dbuf)) { 1875 dprintk(1, "failed to export buffer %d, plane %d\n", 1876 index, plane); 1877 return -EINVAL; 1878 } 1879 1880 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE); 1881 if (ret < 0) { 1882 dprintk(3, "buffer %d, plane %d failed to export (%d)\n", 1883 index, plane, ret); 1884 dma_buf_put(dbuf); 1885 return ret; 1886 } 1887 1888 dprintk(3, "buffer %d, plane %d exported as %d descriptor\n", 1889 index, plane, ret); 1890 *fd = ret; 1891 1892 return 0; 1893 } 1894 EXPORT_SYMBOL_GPL(vb2_core_expbuf); 1895 1896 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma) 1897 { 1898 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 1899 struct vb2_buffer *vb; 1900 unsigned int buffer = 0, plane = 0; 1901 int ret; 1902 unsigned long length; 1903 1904 if (q->memory != VB2_MEMORY_MMAP) { 1905 dprintk(1, "queue is not currently set up for mmap\n"); 1906 return -EINVAL; 1907 } 1908 1909 /* 1910 * Check memory area access mode. 1911 */ 1912 if (!(vma->vm_flags & VM_SHARED)) { 1913 dprintk(1, "invalid vma flags, VM_SHARED needed\n"); 1914 return -EINVAL; 1915 } 1916 if (q->is_output) { 1917 if (!(vma->vm_flags & VM_WRITE)) { 1918 dprintk(1, "invalid vma flags, VM_WRITE needed\n"); 1919 return -EINVAL; 1920 } 1921 } else { 1922 if (!(vma->vm_flags & VM_READ)) { 1923 dprintk(1, "invalid vma flags, VM_READ needed\n"); 1924 return -EINVAL; 1925 } 1926 } 1927 if (vb2_fileio_is_active(q)) { 1928 dprintk(1, "mmap: file io in progress\n"); 1929 return -EBUSY; 1930 } 1931 1932 /* 1933 * Find the plane corresponding to the offset passed by userspace. 1934 */ 1935 ret = __find_plane_by_offset(q, off, &buffer, &plane); 1936 if (ret) 1937 return ret; 1938 1939 vb = q->bufs[buffer]; 1940 1941 /* 1942 * MMAP requires page_aligned buffers. 1943 * The buffer length was page_aligned at __vb2_buf_mem_alloc(), 1944 * so, we need to do the same here. 1945 */ 1946 length = PAGE_ALIGN(vb->planes[plane].length); 1947 if (length < (vma->vm_end - vma->vm_start)) { 1948 dprintk(1, 1949 "MMAP invalid, as it would overflow buffer length\n"); 1950 return -EINVAL; 1951 } 1952 1953 mutex_lock(&q->mmap_lock); 1954 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma); 1955 mutex_unlock(&q->mmap_lock); 1956 if (ret) 1957 return ret; 1958 1959 dprintk(3, "buffer %d, plane %d successfully mapped\n", buffer, plane); 1960 return 0; 1961 } 1962 EXPORT_SYMBOL_GPL(vb2_mmap); 1963 1964 #ifndef CONFIG_MMU 1965 unsigned long vb2_get_unmapped_area(struct vb2_queue *q, 1966 unsigned long addr, 1967 unsigned long len, 1968 unsigned long pgoff, 1969 unsigned long flags) 1970 { 1971 unsigned long off = pgoff << PAGE_SHIFT; 1972 struct vb2_buffer *vb; 1973 unsigned int buffer, plane; 1974 void *vaddr; 1975 int ret; 1976 1977 if (q->memory != VB2_MEMORY_MMAP) { 1978 dprintk(1, "queue is not currently set up for mmap\n"); 1979 return -EINVAL; 1980 } 1981 1982 /* 1983 * Find the plane corresponding to the offset passed by userspace. 1984 */ 1985 ret = __find_plane_by_offset(q, off, &buffer, &plane); 1986 if (ret) 1987 return ret; 1988 1989 vb = q->bufs[buffer]; 1990 1991 vaddr = vb2_plane_vaddr(vb, plane); 1992 return vaddr ? (unsigned long)vaddr : -EINVAL; 1993 } 1994 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area); 1995 #endif 1996 1997 int vb2_core_queue_init(struct vb2_queue *q) 1998 { 1999 /* 2000 * Sanity check 2001 */ 2002 if (WARN_ON(!q) || 2003 WARN_ON(!q->ops) || 2004 WARN_ON(!q->mem_ops) || 2005 WARN_ON(!q->type) || 2006 WARN_ON(!q->io_modes) || 2007 WARN_ON(!q->ops->queue_setup) || 2008 WARN_ON(!q->ops->buf_queue)) 2009 return -EINVAL; 2010 2011 INIT_LIST_HEAD(&q->queued_list); 2012 INIT_LIST_HEAD(&q->done_list); 2013 spin_lock_init(&q->done_lock); 2014 mutex_init(&q->mmap_lock); 2015 init_waitqueue_head(&q->done_wq); 2016 2017 q->memory = VB2_MEMORY_UNKNOWN; 2018 2019 if (q->buf_struct_size == 0) 2020 q->buf_struct_size = sizeof(struct vb2_buffer); 2021 2022 if (q->bidirectional) 2023 q->dma_dir = DMA_BIDIRECTIONAL; 2024 else 2025 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2026 2027 return 0; 2028 } 2029 EXPORT_SYMBOL_GPL(vb2_core_queue_init); 2030 2031 static int __vb2_init_fileio(struct vb2_queue *q, int read); 2032 static int __vb2_cleanup_fileio(struct vb2_queue *q); 2033 void vb2_core_queue_release(struct vb2_queue *q) 2034 { 2035 __vb2_cleanup_fileio(q); 2036 __vb2_queue_cancel(q); 2037 mutex_lock(&q->mmap_lock); 2038 __vb2_queue_free(q, q->num_buffers); 2039 mutex_unlock(&q->mmap_lock); 2040 } 2041 EXPORT_SYMBOL_GPL(vb2_core_queue_release); 2042 2043 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, 2044 poll_table *wait) 2045 { 2046 __poll_t req_events = poll_requested_events(wait); 2047 struct vb2_buffer *vb = NULL; 2048 unsigned long flags; 2049 2050 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM))) 2051 return 0; 2052 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM))) 2053 return 0; 2054 2055 /* 2056 * Start file I/O emulator only if streaming API has not been used yet. 2057 */ 2058 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) { 2059 if (!q->is_output && (q->io_modes & VB2_READ) && 2060 (req_events & (EPOLLIN | EPOLLRDNORM))) { 2061 if (__vb2_init_fileio(q, 1)) 2062 return EPOLLERR; 2063 } 2064 if (q->is_output && (q->io_modes & VB2_WRITE) && 2065 (req_events & (EPOLLOUT | EPOLLWRNORM))) { 2066 if (__vb2_init_fileio(q, 0)) 2067 return EPOLLERR; 2068 /* 2069 * Write to OUTPUT queue can be done immediately. 2070 */ 2071 return EPOLLOUT | EPOLLWRNORM; 2072 } 2073 } 2074 2075 /* 2076 * There is nothing to wait for if the queue isn't streaming, or if the 2077 * error flag is set. 2078 */ 2079 if (!vb2_is_streaming(q) || q->error) 2080 return EPOLLERR; 2081 2082 /* 2083 * If this quirk is set and QBUF hasn't been called yet then 2084 * return EPOLLERR as well. This only affects capture queues, output 2085 * queues will always initialize waiting_for_buffers to false. 2086 * This quirk is set by V4L2 for backwards compatibility reasons. 2087 */ 2088 if (q->quirk_poll_must_check_waiting_for_buffers && 2089 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM))) 2090 return EPOLLERR; 2091 2092 /* 2093 * For output streams you can call write() as long as there are fewer 2094 * buffers queued than there are buffers available. 2095 */ 2096 if (q->is_output && q->fileio && q->queued_count < q->num_buffers) 2097 return EPOLLOUT | EPOLLWRNORM; 2098 2099 if (list_empty(&q->done_list)) { 2100 /* 2101 * If the last buffer was dequeued from a capture queue, 2102 * return immediately. DQBUF will return -EPIPE. 2103 */ 2104 if (q->last_buffer_dequeued) 2105 return EPOLLIN | EPOLLRDNORM; 2106 2107 poll_wait(file, &q->done_wq, wait); 2108 } 2109 2110 /* 2111 * Take first buffer available for dequeuing. 2112 */ 2113 spin_lock_irqsave(&q->done_lock, flags); 2114 if (!list_empty(&q->done_list)) 2115 vb = list_first_entry(&q->done_list, struct vb2_buffer, 2116 done_entry); 2117 spin_unlock_irqrestore(&q->done_lock, flags); 2118 2119 if (vb && (vb->state == VB2_BUF_STATE_DONE 2120 || vb->state == VB2_BUF_STATE_ERROR)) { 2121 return (q->is_output) ? 2122 EPOLLOUT | EPOLLWRNORM : 2123 EPOLLIN | EPOLLRDNORM; 2124 } 2125 return 0; 2126 } 2127 EXPORT_SYMBOL_GPL(vb2_core_poll); 2128 2129 /* 2130 * struct vb2_fileio_buf - buffer context used by file io emulator 2131 * 2132 * vb2 provides a compatibility layer and emulator of file io (read and 2133 * write) calls on top of streaming API. This structure is used for 2134 * tracking context related to the buffers. 2135 */ 2136 struct vb2_fileio_buf { 2137 void *vaddr; 2138 unsigned int size; 2139 unsigned int pos; 2140 unsigned int queued:1; 2141 }; 2142 2143 /* 2144 * struct vb2_fileio_data - queue context used by file io emulator 2145 * 2146 * @cur_index: the index of the buffer currently being read from or 2147 * written to. If equal to q->num_buffers then a new buffer 2148 * must be dequeued. 2149 * @initial_index: in the read() case all buffers are queued up immediately 2150 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles 2151 * buffers. However, in the write() case no buffers are initially 2152 * queued, instead whenever a buffer is full it is queued up by 2153 * __vb2_perform_fileio(). Only once all available buffers have 2154 * been queued up will __vb2_perform_fileio() start to dequeue 2155 * buffers. This means that initially __vb2_perform_fileio() 2156 * needs to know what buffer index to use when it is queuing up 2157 * the buffers for the first time. That initial index is stored 2158 * in this field. Once it is equal to q->num_buffers all 2159 * available buffers have been queued and __vb2_perform_fileio() 2160 * should start the normal dequeue/queue cycle. 2161 * 2162 * vb2 provides a compatibility layer and emulator of file io (read and 2163 * write) calls on top of streaming API. For proper operation it required 2164 * this structure to save the driver state between each call of the read 2165 * or write function. 2166 */ 2167 struct vb2_fileio_data { 2168 unsigned int count; 2169 unsigned int type; 2170 unsigned int memory; 2171 struct vb2_fileio_buf bufs[VB2_MAX_FRAME]; 2172 unsigned int cur_index; 2173 unsigned int initial_index; 2174 unsigned int q_count; 2175 unsigned int dq_count; 2176 unsigned read_once:1; 2177 unsigned write_immediately:1; 2178 }; 2179 2180 /* 2181 * __vb2_init_fileio() - initialize file io emulator 2182 * @q: videobuf2 queue 2183 * @read: mode selector (1 means read, 0 means write) 2184 */ 2185 static int __vb2_init_fileio(struct vb2_queue *q, int read) 2186 { 2187 struct vb2_fileio_data *fileio; 2188 int i, ret; 2189 unsigned int count = 0; 2190 2191 /* 2192 * Sanity check 2193 */ 2194 if (WARN_ON((read && !(q->io_modes & VB2_READ)) || 2195 (!read && !(q->io_modes & VB2_WRITE)))) 2196 return -EINVAL; 2197 2198 /* 2199 * Check if device supports mapping buffers to kernel virtual space. 2200 */ 2201 if (!q->mem_ops->vaddr) 2202 return -EBUSY; 2203 2204 /* 2205 * Check if streaming api has not been already activated. 2206 */ 2207 if (q->streaming || q->num_buffers > 0) 2208 return -EBUSY; 2209 2210 /* 2211 * Start with count 1, driver can increase it in queue_setup() 2212 */ 2213 count = 1; 2214 2215 dprintk(3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n", 2216 (read) ? "read" : "write", count, q->fileio_read_once, 2217 q->fileio_write_immediately); 2218 2219 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL); 2220 if (fileio == NULL) 2221 return -ENOMEM; 2222 2223 fileio->read_once = q->fileio_read_once; 2224 fileio->write_immediately = q->fileio_write_immediately; 2225 2226 /* 2227 * Request buffers and use MMAP type to force driver 2228 * to allocate buffers by itself. 2229 */ 2230 fileio->count = count; 2231 fileio->memory = VB2_MEMORY_MMAP; 2232 fileio->type = q->type; 2233 q->fileio = fileio; 2234 ret = vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2235 if (ret) 2236 goto err_kfree; 2237 2238 /* 2239 * Check if plane_count is correct 2240 * (multiplane buffers are not supported). 2241 */ 2242 if (q->bufs[0]->num_planes != 1) { 2243 ret = -EBUSY; 2244 goto err_reqbufs; 2245 } 2246 2247 /* 2248 * Get kernel address of each buffer. 2249 */ 2250 for (i = 0; i < q->num_buffers; i++) { 2251 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0); 2252 if (fileio->bufs[i].vaddr == NULL) { 2253 ret = -EINVAL; 2254 goto err_reqbufs; 2255 } 2256 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0); 2257 } 2258 2259 /* 2260 * Read mode requires pre queuing of all buffers. 2261 */ 2262 if (read) { 2263 /* 2264 * Queue all buffers. 2265 */ 2266 for (i = 0; i < q->num_buffers; i++) { 2267 ret = vb2_core_qbuf(q, i, NULL); 2268 if (ret) 2269 goto err_reqbufs; 2270 fileio->bufs[i].queued = 1; 2271 } 2272 /* 2273 * All buffers have been queued, so mark that by setting 2274 * initial_index to q->num_buffers 2275 */ 2276 fileio->initial_index = q->num_buffers; 2277 fileio->cur_index = q->num_buffers; 2278 } 2279 2280 /* 2281 * Start streaming. 2282 */ 2283 ret = vb2_core_streamon(q, q->type); 2284 if (ret) 2285 goto err_reqbufs; 2286 2287 return ret; 2288 2289 err_reqbufs: 2290 fileio->count = 0; 2291 vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2292 2293 err_kfree: 2294 q->fileio = NULL; 2295 kfree(fileio); 2296 return ret; 2297 } 2298 2299 /* 2300 * __vb2_cleanup_fileio() - free resourced used by file io emulator 2301 * @q: videobuf2 queue 2302 */ 2303 static int __vb2_cleanup_fileio(struct vb2_queue *q) 2304 { 2305 struct vb2_fileio_data *fileio = q->fileio; 2306 2307 if (fileio) { 2308 vb2_core_streamoff(q, q->type); 2309 q->fileio = NULL; 2310 fileio->count = 0; 2311 vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2312 kfree(fileio); 2313 dprintk(3, "file io emulator closed\n"); 2314 } 2315 return 0; 2316 } 2317 2318 /* 2319 * __vb2_perform_fileio() - perform a single file io (read or write) operation 2320 * @q: videobuf2 queue 2321 * @data: pointed to target userspace buffer 2322 * @count: number of bytes to read or write 2323 * @ppos: file handle position tracking pointer 2324 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking) 2325 * @read: access mode selector (1 means read, 0 means write) 2326 */ 2327 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count, 2328 loff_t *ppos, int nonblock, int read) 2329 { 2330 struct vb2_fileio_data *fileio; 2331 struct vb2_fileio_buf *buf; 2332 bool is_multiplanar = q->is_multiplanar; 2333 /* 2334 * When using write() to write data to an output video node the vb2 core 2335 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody 2336 * else is able to provide this information with the write() operation. 2337 */ 2338 bool copy_timestamp = !read && q->copy_timestamp; 2339 unsigned index; 2340 int ret; 2341 2342 dprintk(3, "mode %s, offset %ld, count %zd, %sblocking\n", 2343 read ? "read" : "write", (long)*ppos, count, 2344 nonblock ? "non" : ""); 2345 2346 if (!data) 2347 return -EINVAL; 2348 2349 /* 2350 * Initialize emulator on first call. 2351 */ 2352 if (!vb2_fileio_is_active(q)) { 2353 ret = __vb2_init_fileio(q, read); 2354 dprintk(3, "vb2_init_fileio result: %d\n", ret); 2355 if (ret) 2356 return ret; 2357 } 2358 fileio = q->fileio; 2359 2360 /* 2361 * Check if we need to dequeue the buffer. 2362 */ 2363 index = fileio->cur_index; 2364 if (index >= q->num_buffers) { 2365 struct vb2_buffer *b; 2366 2367 /* 2368 * Call vb2_dqbuf to get buffer back. 2369 */ 2370 ret = vb2_core_dqbuf(q, &index, NULL, nonblock); 2371 dprintk(5, "vb2_dqbuf result: %d\n", ret); 2372 if (ret) 2373 return ret; 2374 fileio->dq_count += 1; 2375 2376 fileio->cur_index = index; 2377 buf = &fileio->bufs[index]; 2378 b = q->bufs[index]; 2379 2380 /* 2381 * Get number of bytes filled by the driver 2382 */ 2383 buf->pos = 0; 2384 buf->queued = 0; 2385 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0) 2386 : vb2_plane_size(q->bufs[index], 0); 2387 /* Compensate for data_offset on read in the multiplanar case. */ 2388 if (is_multiplanar && read && 2389 b->planes[0].data_offset < buf->size) { 2390 buf->pos = b->planes[0].data_offset; 2391 buf->size -= buf->pos; 2392 } 2393 } else { 2394 buf = &fileio->bufs[index]; 2395 } 2396 2397 /* 2398 * Limit count on last few bytes of the buffer. 2399 */ 2400 if (buf->pos + count > buf->size) { 2401 count = buf->size - buf->pos; 2402 dprintk(5, "reducing read count: %zd\n", count); 2403 } 2404 2405 /* 2406 * Transfer data to userspace. 2407 */ 2408 dprintk(3, "copying %zd bytes - buffer %d, offset %u\n", 2409 count, index, buf->pos); 2410 if (read) 2411 ret = copy_to_user(data, buf->vaddr + buf->pos, count); 2412 else 2413 ret = copy_from_user(buf->vaddr + buf->pos, data, count); 2414 if (ret) { 2415 dprintk(3, "error copying data\n"); 2416 return -EFAULT; 2417 } 2418 2419 /* 2420 * Update counters. 2421 */ 2422 buf->pos += count; 2423 *ppos += count; 2424 2425 /* 2426 * Queue next buffer if required. 2427 */ 2428 if (buf->pos == buf->size || (!read && fileio->write_immediately)) { 2429 struct vb2_buffer *b = q->bufs[index]; 2430 2431 /* 2432 * Check if this is the last buffer to read. 2433 */ 2434 if (read && fileio->read_once && fileio->dq_count == 1) { 2435 dprintk(3, "read limit reached\n"); 2436 return __vb2_cleanup_fileio(q); 2437 } 2438 2439 /* 2440 * Call vb2_qbuf and give buffer to the driver. 2441 */ 2442 b->planes[0].bytesused = buf->pos; 2443 2444 if (copy_timestamp) 2445 b->timestamp = ktime_get_ns(); 2446 ret = vb2_core_qbuf(q, index, NULL); 2447 dprintk(5, "vb2_dbuf result: %d\n", ret); 2448 if (ret) 2449 return ret; 2450 2451 /* 2452 * Buffer has been queued, update the status 2453 */ 2454 buf->pos = 0; 2455 buf->queued = 1; 2456 buf->size = vb2_plane_size(q->bufs[index], 0); 2457 fileio->q_count += 1; 2458 /* 2459 * If we are queuing up buffers for the first time, then 2460 * increase initial_index by one. 2461 */ 2462 if (fileio->initial_index < q->num_buffers) 2463 fileio->initial_index++; 2464 /* 2465 * The next buffer to use is either a buffer that's going to be 2466 * queued for the first time (initial_index < q->num_buffers) 2467 * or it is equal to q->num_buffers, meaning that the next 2468 * time we need to dequeue a buffer since we've now queued up 2469 * all the 'first time' buffers. 2470 */ 2471 fileio->cur_index = fileio->initial_index; 2472 } 2473 2474 /* 2475 * Return proper number of bytes processed. 2476 */ 2477 if (ret == 0) 2478 ret = count; 2479 return ret; 2480 } 2481 2482 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, 2483 loff_t *ppos, int nonblocking) 2484 { 2485 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1); 2486 } 2487 EXPORT_SYMBOL_GPL(vb2_read); 2488 2489 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, 2490 loff_t *ppos, int nonblocking) 2491 { 2492 return __vb2_perform_fileio(q, (char __user *) data, count, 2493 ppos, nonblocking, 0); 2494 } 2495 EXPORT_SYMBOL_GPL(vb2_write); 2496 2497 struct vb2_threadio_data { 2498 struct task_struct *thread; 2499 vb2_thread_fnc fnc; 2500 void *priv; 2501 bool stop; 2502 }; 2503 2504 static int vb2_thread(void *data) 2505 { 2506 struct vb2_queue *q = data; 2507 struct vb2_threadio_data *threadio = q->threadio; 2508 bool copy_timestamp = false; 2509 unsigned prequeue = 0; 2510 unsigned index = 0; 2511 int ret = 0; 2512 2513 if (q->is_output) { 2514 prequeue = q->num_buffers; 2515 copy_timestamp = q->copy_timestamp; 2516 } 2517 2518 set_freezable(); 2519 2520 for (;;) { 2521 struct vb2_buffer *vb; 2522 2523 /* 2524 * Call vb2_dqbuf to get buffer back. 2525 */ 2526 if (prequeue) { 2527 vb = q->bufs[index++]; 2528 prequeue--; 2529 } else { 2530 call_void_qop(q, wait_finish, q); 2531 if (!threadio->stop) 2532 ret = vb2_core_dqbuf(q, &index, NULL, 0); 2533 call_void_qop(q, wait_prepare, q); 2534 dprintk(5, "file io: vb2_dqbuf result: %d\n", ret); 2535 if (!ret) 2536 vb = q->bufs[index]; 2537 } 2538 if (ret || threadio->stop) 2539 break; 2540 try_to_freeze(); 2541 2542 if (vb->state != VB2_BUF_STATE_ERROR) 2543 if (threadio->fnc(vb, threadio->priv)) 2544 break; 2545 call_void_qop(q, wait_finish, q); 2546 if (copy_timestamp) 2547 vb->timestamp = ktime_get_ns(); 2548 if (!threadio->stop) 2549 ret = vb2_core_qbuf(q, vb->index, NULL); 2550 call_void_qop(q, wait_prepare, q); 2551 if (ret || threadio->stop) 2552 break; 2553 } 2554 2555 /* Hmm, linux becomes *very* unhappy without this ... */ 2556 while (!kthread_should_stop()) { 2557 set_current_state(TASK_INTERRUPTIBLE); 2558 schedule(); 2559 } 2560 return 0; 2561 } 2562 2563 /* 2564 * This function should not be used for anything else but the videobuf2-dvb 2565 * support. If you think you have another good use-case for this, then please 2566 * contact the linux-media mailinglist first. 2567 */ 2568 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, 2569 const char *thread_name) 2570 { 2571 struct vb2_threadio_data *threadio; 2572 int ret = 0; 2573 2574 if (q->threadio) 2575 return -EBUSY; 2576 if (vb2_is_busy(q)) 2577 return -EBUSY; 2578 if (WARN_ON(q->fileio)) 2579 return -EBUSY; 2580 2581 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL); 2582 if (threadio == NULL) 2583 return -ENOMEM; 2584 threadio->fnc = fnc; 2585 threadio->priv = priv; 2586 2587 ret = __vb2_init_fileio(q, !q->is_output); 2588 dprintk(3, "file io: vb2_init_fileio result: %d\n", ret); 2589 if (ret) 2590 goto nomem; 2591 q->threadio = threadio; 2592 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name); 2593 if (IS_ERR(threadio->thread)) { 2594 ret = PTR_ERR(threadio->thread); 2595 threadio->thread = NULL; 2596 goto nothread; 2597 } 2598 return 0; 2599 2600 nothread: 2601 __vb2_cleanup_fileio(q); 2602 nomem: 2603 kfree(threadio); 2604 return ret; 2605 } 2606 EXPORT_SYMBOL_GPL(vb2_thread_start); 2607 2608 int vb2_thread_stop(struct vb2_queue *q) 2609 { 2610 struct vb2_threadio_data *threadio = q->threadio; 2611 int err; 2612 2613 if (threadio == NULL) 2614 return 0; 2615 threadio->stop = true; 2616 /* Wake up all pending sleeps in the thread */ 2617 vb2_queue_error(q); 2618 err = kthread_stop(threadio->thread); 2619 __vb2_cleanup_fileio(q); 2620 threadio->thread = NULL; 2621 kfree(threadio); 2622 q->threadio = NULL; 2623 return err; 2624 } 2625 EXPORT_SYMBOL_GPL(vb2_thread_stop); 2626 2627 MODULE_DESCRIPTION("Media buffer core framework"); 2628 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski"); 2629 MODULE_LICENSE("GPL"); 2630