1 /* 2 * videobuf2-core.c - video buffer 2 core framework 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * 6 * Author: Pawel Osciak <pawel@osciak.com> 7 * Marek Szyprowski <m.szyprowski@samsung.com> 8 * 9 * The vb2_thread implementation was based on code from videobuf-dvb.c: 10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs] 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/err.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mm.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/freezer.h> 27 #include <linux/kthread.h> 28 29 #include <media/videobuf2-core.h> 30 #include <media/v4l2-mc.h> 31 32 #include <trace/events/vb2.h> 33 34 static int debug; 35 module_param(debug, int, 0644); 36 37 #define dprintk(q, level, fmt, arg...) \ 38 do { \ 39 if (debug >= level) \ 40 pr_info("[%s] %s: " fmt, (q)->name, __func__, \ 41 ## arg); \ 42 } while (0) 43 44 #ifdef CONFIG_VIDEO_ADV_DEBUG 45 46 /* 47 * If advanced debugging is on, then count how often each op is called 48 * successfully, which can either be per-buffer or per-queue. 49 * 50 * This makes it easy to check that the 'init' and 'cleanup' 51 * (and variations thereof) stay balanced. 52 */ 53 54 #define log_memop(vb, op) \ 55 dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n", \ 56 (vb)->index, #op, \ 57 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)") 58 59 #define call_memop(vb, op, args...) \ 60 ({ \ 61 struct vb2_queue *_q = (vb)->vb2_queue; \ 62 int err; \ 63 \ 64 log_memop(vb, op); \ 65 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \ 66 if (!err) \ 67 (vb)->cnt_mem_ ## op++; \ 68 err; \ 69 }) 70 71 #define call_ptr_memop(op, vb, args...) \ 72 ({ \ 73 struct vb2_queue *_q = (vb)->vb2_queue; \ 74 void *ptr; \ 75 \ 76 log_memop(vb, op); \ 77 ptr = _q->mem_ops->op ? _q->mem_ops->op(vb, args) : NULL; \ 78 if (!IS_ERR_OR_NULL(ptr)) \ 79 (vb)->cnt_mem_ ## op++; \ 80 ptr; \ 81 }) 82 83 #define call_void_memop(vb, op, args...) \ 84 ({ \ 85 struct vb2_queue *_q = (vb)->vb2_queue; \ 86 \ 87 log_memop(vb, op); \ 88 if (_q->mem_ops->op) \ 89 _q->mem_ops->op(args); \ 90 (vb)->cnt_mem_ ## op++; \ 91 }) 92 93 #define log_qop(q, op) \ 94 dprintk(q, 2, "call_qop(%s)%s\n", #op, \ 95 (q)->ops->op ? "" : " (nop)") 96 97 #define call_qop(q, op, args...) \ 98 ({ \ 99 int err; \ 100 \ 101 log_qop(q, op); \ 102 err = (q)->ops->op ? (q)->ops->op(args) : 0; \ 103 if (!err) \ 104 (q)->cnt_ ## op++; \ 105 err; \ 106 }) 107 108 #define call_void_qop(q, op, args...) \ 109 ({ \ 110 log_qop(q, op); \ 111 if ((q)->ops->op) \ 112 (q)->ops->op(args); \ 113 (q)->cnt_ ## op++; \ 114 }) 115 116 #define log_vb_qop(vb, op, args...) \ 117 dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n", \ 118 (vb)->index, #op, \ 119 (vb)->vb2_queue->ops->op ? "" : " (nop)") 120 121 #define call_vb_qop(vb, op, args...) \ 122 ({ \ 123 int err; \ 124 \ 125 log_vb_qop(vb, op); \ 126 err = (vb)->vb2_queue->ops->op ? \ 127 (vb)->vb2_queue->ops->op(args) : 0; \ 128 if (!err) \ 129 (vb)->cnt_ ## op++; \ 130 err; \ 131 }) 132 133 #define call_void_vb_qop(vb, op, args...) \ 134 ({ \ 135 log_vb_qop(vb, op); \ 136 if ((vb)->vb2_queue->ops->op) \ 137 (vb)->vb2_queue->ops->op(args); \ 138 (vb)->cnt_ ## op++; \ 139 }) 140 141 #else 142 143 #define call_memop(vb, op, args...) \ 144 ((vb)->vb2_queue->mem_ops->op ? \ 145 (vb)->vb2_queue->mem_ops->op(args) : 0) 146 147 #define call_ptr_memop(op, vb, args...) \ 148 ((vb)->vb2_queue->mem_ops->op ? \ 149 (vb)->vb2_queue->mem_ops->op(vb, args) : NULL) 150 151 #define call_void_memop(vb, op, args...) \ 152 do { \ 153 if ((vb)->vb2_queue->mem_ops->op) \ 154 (vb)->vb2_queue->mem_ops->op(args); \ 155 } while (0) 156 157 #define call_qop(q, op, args...) \ 158 ((q)->ops->op ? (q)->ops->op(args) : 0) 159 160 #define call_void_qop(q, op, args...) \ 161 do { \ 162 if ((q)->ops->op) \ 163 (q)->ops->op(args); \ 164 } while (0) 165 166 #define call_vb_qop(vb, op, args...) \ 167 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0) 168 169 #define call_void_vb_qop(vb, op, args...) \ 170 do { \ 171 if ((vb)->vb2_queue->ops->op) \ 172 (vb)->vb2_queue->ops->op(args); \ 173 } while (0) 174 175 #endif 176 177 #define call_bufop(q, op, args...) \ 178 ({ \ 179 int ret = 0; \ 180 if (q && q->buf_ops && q->buf_ops->op) \ 181 ret = q->buf_ops->op(args); \ 182 ret; \ 183 }) 184 185 #define call_void_bufop(q, op, args...) \ 186 ({ \ 187 if (q && q->buf_ops && q->buf_ops->op) \ 188 q->buf_ops->op(args); \ 189 }) 190 191 static void __vb2_queue_cancel(struct vb2_queue *q); 192 static void __enqueue_in_driver(struct vb2_buffer *vb); 193 194 static const char *vb2_state_name(enum vb2_buffer_state s) 195 { 196 static const char * const state_names[] = { 197 [VB2_BUF_STATE_DEQUEUED] = "dequeued", 198 [VB2_BUF_STATE_IN_REQUEST] = "in request", 199 [VB2_BUF_STATE_PREPARING] = "preparing", 200 [VB2_BUF_STATE_QUEUED] = "queued", 201 [VB2_BUF_STATE_ACTIVE] = "active", 202 [VB2_BUF_STATE_DONE] = "done", 203 [VB2_BUF_STATE_ERROR] = "error", 204 }; 205 206 if ((unsigned int)(s) < ARRAY_SIZE(state_names)) 207 return state_names[s]; 208 return "unknown"; 209 } 210 211 /* 212 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer 213 */ 214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb) 215 { 216 struct vb2_queue *q = vb->vb2_queue; 217 void *mem_priv; 218 int plane; 219 int ret = -ENOMEM; 220 221 /* 222 * Allocate memory for all planes in this buffer 223 * NOTE: mmapped areas should be page aligned 224 */ 225 for (plane = 0; plane < vb->num_planes; ++plane) { 226 /* Memops alloc requires size to be page aligned. */ 227 unsigned long size = PAGE_ALIGN(vb->planes[plane].length); 228 229 /* Did it wrap around? */ 230 if (size < vb->planes[plane].length) 231 goto free; 232 233 mem_priv = call_ptr_memop(alloc, 234 vb, 235 q->alloc_devs[plane] ? : q->dev, 236 size); 237 if (IS_ERR_OR_NULL(mem_priv)) { 238 if (mem_priv) 239 ret = PTR_ERR(mem_priv); 240 goto free; 241 } 242 243 /* Associate allocator private data with this plane */ 244 vb->planes[plane].mem_priv = mem_priv; 245 } 246 247 return 0; 248 free: 249 /* Free already allocated memory if one of the allocations failed */ 250 for (; plane > 0; --plane) { 251 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv); 252 vb->planes[plane - 1].mem_priv = NULL; 253 } 254 255 return ret; 256 } 257 258 /* 259 * __vb2_buf_mem_free() - free memory of the given buffer 260 */ 261 static void __vb2_buf_mem_free(struct vb2_buffer *vb) 262 { 263 unsigned int plane; 264 265 for (plane = 0; plane < vb->num_planes; ++plane) { 266 call_void_memop(vb, put, vb->planes[plane].mem_priv); 267 vb->planes[plane].mem_priv = NULL; 268 dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n", 269 plane, vb->index); 270 } 271 } 272 273 /* 274 * __vb2_buf_userptr_put() - release userspace memory associated with 275 * a USERPTR buffer 276 */ 277 static void __vb2_buf_userptr_put(struct vb2_buffer *vb) 278 { 279 unsigned int plane; 280 281 for (plane = 0; plane < vb->num_planes; ++plane) { 282 if (vb->planes[plane].mem_priv) 283 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 284 vb->planes[plane].mem_priv = NULL; 285 } 286 } 287 288 /* 289 * __vb2_plane_dmabuf_put() - release memory associated with 290 * a DMABUF shared plane 291 */ 292 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p) 293 { 294 if (!p->mem_priv) 295 return; 296 297 if (p->dbuf_mapped) 298 call_void_memop(vb, unmap_dmabuf, p->mem_priv); 299 300 call_void_memop(vb, detach_dmabuf, p->mem_priv); 301 dma_buf_put(p->dbuf); 302 p->mem_priv = NULL; 303 p->dbuf = NULL; 304 p->dbuf_mapped = 0; 305 } 306 307 /* 308 * __vb2_buf_dmabuf_put() - release memory associated with 309 * a DMABUF shared buffer 310 */ 311 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb) 312 { 313 unsigned int plane; 314 315 for (plane = 0; plane < vb->num_planes; ++plane) 316 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 317 } 318 319 /* 320 * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory 321 * to sync caches 322 */ 323 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb) 324 { 325 unsigned int plane; 326 327 if (vb->synced) 328 return; 329 330 vb->synced = 1; 331 for (plane = 0; plane < vb->num_planes; ++plane) 332 call_void_memop(vb, prepare, vb->planes[plane].mem_priv); 333 } 334 335 /* 336 * __vb2_buf_mem_finish() - call ->finish on buffer's private memory 337 * to sync caches 338 */ 339 static void __vb2_buf_mem_finish(struct vb2_buffer *vb) 340 { 341 unsigned int plane; 342 343 if (!vb->synced) 344 return; 345 346 vb->synced = 0; 347 for (plane = 0; plane < vb->num_planes; ++plane) 348 call_void_memop(vb, finish, vb->planes[plane].mem_priv); 349 } 350 351 /* 352 * __setup_offsets() - setup unique offsets ("cookies") for every plane in 353 * the buffer. 354 */ 355 static void __setup_offsets(struct vb2_buffer *vb) 356 { 357 struct vb2_queue *q = vb->vb2_queue; 358 unsigned int plane; 359 unsigned long off = 0; 360 361 if (vb->index) { 362 struct vb2_buffer *prev = q->bufs[vb->index - 1]; 363 struct vb2_plane *p = &prev->planes[prev->num_planes - 1]; 364 365 off = PAGE_ALIGN(p->m.offset + p->length); 366 } 367 368 for (plane = 0; plane < vb->num_planes; ++plane) { 369 vb->planes[plane].m.offset = off; 370 371 dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n", 372 vb->index, plane, off); 373 374 off += vb->planes[plane].length; 375 off = PAGE_ALIGN(off); 376 } 377 } 378 379 static void init_buffer_cache_hints(struct vb2_queue *q, struct vb2_buffer *vb) 380 { 381 /* 382 * DMA exporter should take care of cache syncs, so we can avoid 383 * explicit ->prepare()/->finish() syncs. For other ->memory types 384 * we always need ->prepare() or/and ->finish() cache sync. 385 */ 386 if (q->memory == VB2_MEMORY_DMABUF) { 387 vb->skip_cache_sync_on_finish = 1; 388 vb->skip_cache_sync_on_prepare = 1; 389 return; 390 } 391 392 /* 393 * ->finish() cache sync can be avoided when queue direction is 394 * TO_DEVICE. 395 */ 396 if (q->dma_dir == DMA_TO_DEVICE) 397 vb->skip_cache_sync_on_finish = 1; 398 } 399 400 /* 401 * __vb2_queue_alloc() - allocate vb2 buffer structures and (for MMAP type) 402 * video buffer memory for all buffers/planes on the queue and initializes the 403 * queue 404 * 405 * Returns the number of buffers successfully allocated. 406 */ 407 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory, 408 unsigned int num_buffers, unsigned int num_planes, 409 const unsigned plane_sizes[VB2_MAX_PLANES]) 410 { 411 unsigned int buffer, plane; 412 struct vb2_buffer *vb; 413 int ret; 414 415 /* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */ 416 num_buffers = min_t(unsigned int, num_buffers, 417 VB2_MAX_FRAME - q->num_buffers); 418 419 for (buffer = 0; buffer < num_buffers; ++buffer) { 420 /* Allocate vb2 buffer structures */ 421 vb = kzalloc(q->buf_struct_size, GFP_KERNEL); 422 if (!vb) { 423 dprintk(q, 1, "memory alloc for buffer struct failed\n"); 424 break; 425 } 426 427 vb->state = VB2_BUF_STATE_DEQUEUED; 428 vb->vb2_queue = q; 429 vb->num_planes = num_planes; 430 vb->index = q->num_buffers + buffer; 431 vb->type = q->type; 432 vb->memory = memory; 433 init_buffer_cache_hints(q, vb); 434 for (plane = 0; plane < num_planes; ++plane) { 435 vb->planes[plane].length = plane_sizes[plane]; 436 vb->planes[plane].min_length = plane_sizes[plane]; 437 } 438 call_void_bufop(q, init_buffer, vb); 439 440 q->bufs[vb->index] = vb; 441 442 /* Allocate video buffer memory for the MMAP type */ 443 if (memory == VB2_MEMORY_MMAP) { 444 ret = __vb2_buf_mem_alloc(vb); 445 if (ret) { 446 dprintk(q, 1, "failed allocating memory for buffer %d\n", 447 buffer); 448 q->bufs[vb->index] = NULL; 449 kfree(vb); 450 break; 451 } 452 __setup_offsets(vb); 453 /* 454 * Call the driver-provided buffer initialization 455 * callback, if given. An error in initialization 456 * results in queue setup failure. 457 */ 458 ret = call_vb_qop(vb, buf_init, vb); 459 if (ret) { 460 dprintk(q, 1, "buffer %d %p initialization failed\n", 461 buffer, vb); 462 __vb2_buf_mem_free(vb); 463 q->bufs[vb->index] = NULL; 464 kfree(vb); 465 break; 466 } 467 } 468 } 469 470 dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n", 471 buffer, num_planes); 472 473 return buffer; 474 } 475 476 /* 477 * __vb2_free_mem() - release all video buffer memory for a given queue 478 */ 479 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers) 480 { 481 unsigned int buffer; 482 struct vb2_buffer *vb; 483 484 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 485 ++buffer) { 486 vb = q->bufs[buffer]; 487 if (!vb) 488 continue; 489 490 /* Free MMAP buffers or release USERPTR buffers */ 491 if (q->memory == VB2_MEMORY_MMAP) 492 __vb2_buf_mem_free(vb); 493 else if (q->memory == VB2_MEMORY_DMABUF) 494 __vb2_buf_dmabuf_put(vb); 495 else 496 __vb2_buf_userptr_put(vb); 497 } 498 } 499 500 /* 501 * __vb2_queue_free() - free buffers at the end of the queue - video memory and 502 * related information, if no buffers are left return the queue to an 503 * uninitialized state. Might be called even if the queue has already been freed. 504 */ 505 static void __vb2_queue_free(struct vb2_queue *q, unsigned int buffers) 506 { 507 unsigned int buffer; 508 509 lockdep_assert_held(&q->mmap_lock); 510 511 /* Call driver-provided cleanup function for each buffer, if provided */ 512 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 513 ++buffer) { 514 struct vb2_buffer *vb = q->bufs[buffer]; 515 516 if (vb && vb->planes[0].mem_priv) 517 call_void_vb_qop(vb, buf_cleanup, vb); 518 } 519 520 /* Release video buffer memory */ 521 __vb2_free_mem(q, buffers); 522 523 #ifdef CONFIG_VIDEO_ADV_DEBUG 524 /* 525 * Check that all the calls were balances during the life-time of this 526 * queue. If not (or if the debug level is 1 or up), then dump the 527 * counters to the kernel log. 528 */ 529 if (q->num_buffers) { 530 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming || 531 q->cnt_prepare_streaming != q->cnt_unprepare_streaming || 532 q->cnt_wait_prepare != q->cnt_wait_finish; 533 534 if (unbalanced || debug) { 535 pr_info("counters for queue %p:%s\n", q, 536 unbalanced ? " UNBALANCED!" : ""); 537 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n", 538 q->cnt_queue_setup, q->cnt_start_streaming, 539 q->cnt_stop_streaming); 540 pr_info(" prepare_streaming: %u unprepare_streaming: %u\n", 541 q->cnt_prepare_streaming, q->cnt_unprepare_streaming); 542 pr_info(" wait_prepare: %u wait_finish: %u\n", 543 q->cnt_wait_prepare, q->cnt_wait_finish); 544 } 545 q->cnt_queue_setup = 0; 546 q->cnt_wait_prepare = 0; 547 q->cnt_wait_finish = 0; 548 q->cnt_prepare_streaming = 0; 549 q->cnt_start_streaming = 0; 550 q->cnt_stop_streaming = 0; 551 q->cnt_unprepare_streaming = 0; 552 } 553 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 554 struct vb2_buffer *vb = q->bufs[buffer]; 555 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put || 556 vb->cnt_mem_prepare != vb->cnt_mem_finish || 557 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr || 558 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf || 559 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf || 560 vb->cnt_buf_queue != vb->cnt_buf_done || 561 vb->cnt_buf_prepare != vb->cnt_buf_finish || 562 vb->cnt_buf_init != vb->cnt_buf_cleanup; 563 564 if (unbalanced || debug) { 565 pr_info(" counters for queue %p, buffer %d:%s\n", 566 q, buffer, unbalanced ? " UNBALANCED!" : ""); 567 pr_info(" buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n", 568 vb->cnt_buf_init, vb->cnt_buf_cleanup, 569 vb->cnt_buf_prepare, vb->cnt_buf_finish); 570 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n", 571 vb->cnt_buf_out_validate, vb->cnt_buf_queue, 572 vb->cnt_buf_done, vb->cnt_buf_request_complete); 573 pr_info(" alloc: %u put: %u prepare: %u finish: %u mmap: %u\n", 574 vb->cnt_mem_alloc, vb->cnt_mem_put, 575 vb->cnt_mem_prepare, vb->cnt_mem_finish, 576 vb->cnt_mem_mmap); 577 pr_info(" get_userptr: %u put_userptr: %u\n", 578 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr); 579 pr_info(" attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n", 580 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf, 581 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf); 582 pr_info(" get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n", 583 vb->cnt_mem_get_dmabuf, 584 vb->cnt_mem_num_users, 585 vb->cnt_mem_vaddr, 586 vb->cnt_mem_cookie); 587 } 588 } 589 #endif 590 591 /* Free vb2 buffers */ 592 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 593 ++buffer) { 594 kfree(q->bufs[buffer]); 595 q->bufs[buffer] = NULL; 596 } 597 598 q->num_buffers -= buffers; 599 if (!q->num_buffers) { 600 q->memory = VB2_MEMORY_UNKNOWN; 601 INIT_LIST_HEAD(&q->queued_list); 602 } 603 } 604 605 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb) 606 { 607 unsigned int plane; 608 for (plane = 0; plane < vb->num_planes; ++plane) { 609 void *mem_priv = vb->planes[plane].mem_priv; 610 /* 611 * If num_users() has not been provided, call_memop 612 * will return 0, apparently nobody cares about this 613 * case anyway. If num_users() returns more than 1, 614 * we are not the only user of the plane's memory. 615 */ 616 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1) 617 return true; 618 } 619 return false; 620 } 621 EXPORT_SYMBOL(vb2_buffer_in_use); 622 623 /* 624 * __buffers_in_use() - return true if any buffers on the queue are in use and 625 * the queue cannot be freed (by the means of REQBUFS(0)) call 626 */ 627 static bool __buffers_in_use(struct vb2_queue *q) 628 { 629 unsigned int buffer; 630 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 631 if (vb2_buffer_in_use(q, q->bufs[buffer])) 632 return true; 633 } 634 return false; 635 } 636 637 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb) 638 { 639 call_void_bufop(q, fill_user_buffer, q->bufs[index], pb); 640 } 641 EXPORT_SYMBOL_GPL(vb2_core_querybuf); 642 643 /* 644 * __verify_userptr_ops() - verify that all memory operations required for 645 * USERPTR queue type have been provided 646 */ 647 static int __verify_userptr_ops(struct vb2_queue *q) 648 { 649 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr || 650 !q->mem_ops->put_userptr) 651 return -EINVAL; 652 653 return 0; 654 } 655 656 /* 657 * __verify_mmap_ops() - verify that all memory operations required for 658 * MMAP queue type have been provided 659 */ 660 static int __verify_mmap_ops(struct vb2_queue *q) 661 { 662 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc || 663 !q->mem_ops->put || !q->mem_ops->mmap) 664 return -EINVAL; 665 666 return 0; 667 } 668 669 /* 670 * __verify_dmabuf_ops() - verify that all memory operations required for 671 * DMABUF queue type have been provided 672 */ 673 static int __verify_dmabuf_ops(struct vb2_queue *q) 674 { 675 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf || 676 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf || 677 !q->mem_ops->unmap_dmabuf) 678 return -EINVAL; 679 680 return 0; 681 } 682 683 int vb2_verify_memory_type(struct vb2_queue *q, 684 enum vb2_memory memory, unsigned int type) 685 { 686 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR && 687 memory != VB2_MEMORY_DMABUF) { 688 dprintk(q, 1, "unsupported memory type\n"); 689 return -EINVAL; 690 } 691 692 if (type != q->type) { 693 dprintk(q, 1, "requested type is incorrect\n"); 694 return -EINVAL; 695 } 696 697 /* 698 * Make sure all the required memory ops for given memory type 699 * are available. 700 */ 701 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) { 702 dprintk(q, 1, "MMAP for current setup unsupported\n"); 703 return -EINVAL; 704 } 705 706 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) { 707 dprintk(q, 1, "USERPTR for current setup unsupported\n"); 708 return -EINVAL; 709 } 710 711 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) { 712 dprintk(q, 1, "DMABUF for current setup unsupported\n"); 713 return -EINVAL; 714 } 715 716 /* 717 * Place the busy tests at the end: -EBUSY can be ignored when 718 * create_bufs is called with count == 0, but count == 0 should still 719 * do the memory and type validation. 720 */ 721 if (vb2_fileio_is_active(q)) { 722 dprintk(q, 1, "file io in progress\n"); 723 return -EBUSY; 724 } 725 return 0; 726 } 727 EXPORT_SYMBOL(vb2_verify_memory_type); 728 729 static void set_queue_coherency(struct vb2_queue *q, bool non_coherent_mem) 730 { 731 q->non_coherent_mem = 0; 732 733 if (!vb2_queue_allows_cache_hints(q)) 734 return; 735 q->non_coherent_mem = non_coherent_mem; 736 } 737 738 static bool verify_coherency_flags(struct vb2_queue *q, bool non_coherent_mem) 739 { 740 if (non_coherent_mem != q->non_coherent_mem) { 741 dprintk(q, 1, "memory coherency model mismatch\n"); 742 return false; 743 } 744 return true; 745 } 746 747 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, 748 unsigned int flags, unsigned int *count) 749 { 750 unsigned int num_buffers, allocated_buffers, num_planes = 0; 751 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 752 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT; 753 unsigned int i; 754 int ret; 755 756 if (q->streaming) { 757 dprintk(q, 1, "streaming active\n"); 758 return -EBUSY; 759 } 760 761 if (q->waiting_in_dqbuf && *count) { 762 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 763 return -EBUSY; 764 } 765 766 if (*count == 0 || q->num_buffers != 0 || 767 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory) || 768 !verify_coherency_flags(q, non_coherent_mem)) { 769 /* 770 * We already have buffers allocated, so first check if they 771 * are not in use and can be freed. 772 */ 773 mutex_lock(&q->mmap_lock); 774 if (debug && q->memory == VB2_MEMORY_MMAP && 775 __buffers_in_use(q)) 776 dprintk(q, 1, "memory in use, orphaning buffers\n"); 777 778 /* 779 * Call queue_cancel to clean up any buffers in the 780 * QUEUED state which is possible if buffers were prepared or 781 * queued without ever calling STREAMON. 782 */ 783 __vb2_queue_cancel(q); 784 __vb2_queue_free(q, q->num_buffers); 785 mutex_unlock(&q->mmap_lock); 786 787 /* 788 * In case of REQBUFS(0) return immediately without calling 789 * driver's queue_setup() callback and allocating resources. 790 */ 791 if (*count == 0) 792 return 0; 793 } 794 795 /* 796 * Make sure the requested values and current defaults are sane. 797 */ 798 WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME); 799 num_buffers = max_t(unsigned int, *count, q->min_buffers_needed); 800 num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME); 801 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 802 /* 803 * Set this now to ensure that drivers see the correct q->memory value 804 * in the queue_setup op. 805 */ 806 mutex_lock(&q->mmap_lock); 807 q->memory = memory; 808 mutex_unlock(&q->mmap_lock); 809 set_queue_coherency(q, non_coherent_mem); 810 811 /* 812 * Ask the driver how many buffers and planes per buffer it requires. 813 * Driver also sets the size and allocator context for each plane. 814 */ 815 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes, 816 plane_sizes, q->alloc_devs); 817 if (ret) 818 goto error; 819 820 /* Check that driver has set sane values */ 821 if (WARN_ON(!num_planes)) { 822 ret = -EINVAL; 823 goto error; 824 } 825 826 for (i = 0; i < num_planes; i++) 827 if (WARN_ON(!plane_sizes[i])) { 828 ret = -EINVAL; 829 goto error; 830 } 831 832 /* Finally, allocate buffers and video memory */ 833 allocated_buffers = 834 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes); 835 if (allocated_buffers == 0) { 836 dprintk(q, 1, "memory allocation failed\n"); 837 ret = -ENOMEM; 838 goto error; 839 } 840 841 /* 842 * There is no point in continuing if we can't allocate the minimum 843 * number of buffers needed by this vb2_queue. 844 */ 845 if (allocated_buffers < q->min_buffers_needed) 846 ret = -ENOMEM; 847 848 /* 849 * Check if driver can handle the allocated number of buffers. 850 */ 851 if (!ret && allocated_buffers < num_buffers) { 852 num_buffers = allocated_buffers; 853 /* 854 * num_planes is set by the previous queue_setup(), but since it 855 * signals to queue_setup() whether it is called from create_bufs() 856 * vs reqbufs() we zero it here to signal that queue_setup() is 857 * called for the reqbufs() case. 858 */ 859 num_planes = 0; 860 861 ret = call_qop(q, queue_setup, q, &num_buffers, 862 &num_planes, plane_sizes, q->alloc_devs); 863 864 if (!ret && allocated_buffers < num_buffers) 865 ret = -ENOMEM; 866 867 /* 868 * Either the driver has accepted a smaller number of buffers, 869 * or .queue_setup() returned an error 870 */ 871 } 872 873 mutex_lock(&q->mmap_lock); 874 q->num_buffers = allocated_buffers; 875 876 if (ret < 0) { 877 /* 878 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 879 * from q->num_buffers and it will reset q->memory to 880 * VB2_MEMORY_UNKNOWN. 881 */ 882 __vb2_queue_free(q, allocated_buffers); 883 mutex_unlock(&q->mmap_lock); 884 return ret; 885 } 886 mutex_unlock(&q->mmap_lock); 887 888 /* 889 * Return the number of successfully allocated buffers 890 * to the userspace. 891 */ 892 *count = allocated_buffers; 893 q->waiting_for_buffers = !q->is_output; 894 895 return 0; 896 897 error: 898 mutex_lock(&q->mmap_lock); 899 q->memory = VB2_MEMORY_UNKNOWN; 900 mutex_unlock(&q->mmap_lock); 901 return ret; 902 } 903 EXPORT_SYMBOL_GPL(vb2_core_reqbufs); 904 905 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, 906 unsigned int flags, unsigned int *count, 907 unsigned int requested_planes, 908 const unsigned int requested_sizes[]) 909 { 910 unsigned int num_planes = 0, num_buffers, allocated_buffers; 911 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 912 bool non_coherent_mem = flags & V4L2_MEMORY_FLAG_NON_COHERENT; 913 bool no_previous_buffers = !q->num_buffers; 914 int ret; 915 916 if (q->num_buffers == VB2_MAX_FRAME) { 917 dprintk(q, 1, "maximum number of buffers already allocated\n"); 918 return -ENOBUFS; 919 } 920 921 if (no_previous_buffers) { 922 if (q->waiting_in_dqbuf && *count) { 923 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 924 return -EBUSY; 925 } 926 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 927 /* 928 * Set this now to ensure that drivers see the correct q->memory 929 * value in the queue_setup op. 930 */ 931 mutex_lock(&q->mmap_lock); 932 q->memory = memory; 933 mutex_unlock(&q->mmap_lock); 934 q->waiting_for_buffers = !q->is_output; 935 set_queue_coherency(q, non_coherent_mem); 936 } else { 937 if (q->memory != memory) { 938 dprintk(q, 1, "memory model mismatch\n"); 939 return -EINVAL; 940 } 941 if (!verify_coherency_flags(q, non_coherent_mem)) 942 return -EINVAL; 943 } 944 945 num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers); 946 947 if (requested_planes && requested_sizes) { 948 num_planes = requested_planes; 949 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes)); 950 } 951 952 /* 953 * Ask the driver, whether the requested number of buffers, planes per 954 * buffer and their sizes are acceptable 955 */ 956 ret = call_qop(q, queue_setup, q, &num_buffers, 957 &num_planes, plane_sizes, q->alloc_devs); 958 if (ret) 959 goto error; 960 961 /* Finally, allocate buffers and video memory */ 962 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers, 963 num_planes, plane_sizes); 964 if (allocated_buffers == 0) { 965 dprintk(q, 1, "memory allocation failed\n"); 966 ret = -ENOMEM; 967 goto error; 968 } 969 970 /* 971 * Check if driver can handle the so far allocated number of buffers. 972 */ 973 if (allocated_buffers < num_buffers) { 974 num_buffers = allocated_buffers; 975 976 /* 977 * q->num_buffers contains the total number of buffers, that the 978 * queue driver has set up 979 */ 980 ret = call_qop(q, queue_setup, q, &num_buffers, 981 &num_planes, plane_sizes, q->alloc_devs); 982 983 if (!ret && allocated_buffers < num_buffers) 984 ret = -ENOMEM; 985 986 /* 987 * Either the driver has accepted a smaller number of buffers, 988 * or .queue_setup() returned an error 989 */ 990 } 991 992 mutex_lock(&q->mmap_lock); 993 q->num_buffers += allocated_buffers; 994 995 if (ret < 0) { 996 /* 997 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 998 * from q->num_buffers and it will reset q->memory to 999 * VB2_MEMORY_UNKNOWN. 1000 */ 1001 __vb2_queue_free(q, allocated_buffers); 1002 mutex_unlock(&q->mmap_lock); 1003 return -ENOMEM; 1004 } 1005 mutex_unlock(&q->mmap_lock); 1006 1007 /* 1008 * Return the number of successfully allocated buffers 1009 * to the userspace. 1010 */ 1011 *count = allocated_buffers; 1012 1013 return 0; 1014 1015 error: 1016 if (no_previous_buffers) { 1017 mutex_lock(&q->mmap_lock); 1018 q->memory = VB2_MEMORY_UNKNOWN; 1019 mutex_unlock(&q->mmap_lock); 1020 } 1021 return ret; 1022 } 1023 EXPORT_SYMBOL_GPL(vb2_core_create_bufs); 1024 1025 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no) 1026 { 1027 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 1028 return NULL; 1029 1030 return call_ptr_memop(vaddr, vb, vb->planes[plane_no].mem_priv); 1031 1032 } 1033 EXPORT_SYMBOL_GPL(vb2_plane_vaddr); 1034 1035 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no) 1036 { 1037 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 1038 return NULL; 1039 1040 return call_ptr_memop(cookie, vb, vb->planes[plane_no].mem_priv); 1041 } 1042 EXPORT_SYMBOL_GPL(vb2_plane_cookie); 1043 1044 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state) 1045 { 1046 struct vb2_queue *q = vb->vb2_queue; 1047 unsigned long flags; 1048 1049 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE)) 1050 return; 1051 1052 if (WARN_ON(state != VB2_BUF_STATE_DONE && 1053 state != VB2_BUF_STATE_ERROR && 1054 state != VB2_BUF_STATE_QUEUED)) 1055 state = VB2_BUF_STATE_ERROR; 1056 1057 #ifdef CONFIG_VIDEO_ADV_DEBUG 1058 /* 1059 * Although this is not a callback, it still does have to balance 1060 * with the buf_queue op. So update this counter manually. 1061 */ 1062 vb->cnt_buf_done++; 1063 #endif 1064 dprintk(q, 4, "done processing on buffer %d, state: %s\n", 1065 vb->index, vb2_state_name(state)); 1066 1067 if (state != VB2_BUF_STATE_QUEUED) 1068 __vb2_buf_mem_finish(vb); 1069 1070 spin_lock_irqsave(&q->done_lock, flags); 1071 if (state == VB2_BUF_STATE_QUEUED) { 1072 vb->state = VB2_BUF_STATE_QUEUED; 1073 } else { 1074 /* Add the buffer to the done buffers list */ 1075 list_add_tail(&vb->done_entry, &q->done_list); 1076 vb->state = state; 1077 } 1078 atomic_dec(&q->owned_by_drv_count); 1079 1080 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) { 1081 media_request_object_unbind(&vb->req_obj); 1082 media_request_object_put(&vb->req_obj); 1083 } 1084 1085 spin_unlock_irqrestore(&q->done_lock, flags); 1086 1087 trace_vb2_buf_done(q, vb); 1088 1089 switch (state) { 1090 case VB2_BUF_STATE_QUEUED: 1091 return; 1092 default: 1093 /* Inform any processes that may be waiting for buffers */ 1094 wake_up(&q->done_wq); 1095 break; 1096 } 1097 } 1098 EXPORT_SYMBOL_GPL(vb2_buffer_done); 1099 1100 void vb2_discard_done(struct vb2_queue *q) 1101 { 1102 struct vb2_buffer *vb; 1103 unsigned long flags; 1104 1105 spin_lock_irqsave(&q->done_lock, flags); 1106 list_for_each_entry(vb, &q->done_list, done_entry) 1107 vb->state = VB2_BUF_STATE_ERROR; 1108 spin_unlock_irqrestore(&q->done_lock, flags); 1109 } 1110 EXPORT_SYMBOL_GPL(vb2_discard_done); 1111 1112 /* 1113 * __prepare_mmap() - prepare an MMAP buffer 1114 */ 1115 static int __prepare_mmap(struct vb2_buffer *vb) 1116 { 1117 int ret = 0; 1118 1119 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1120 vb, vb->planes); 1121 return ret ? ret : call_vb_qop(vb, buf_prepare, vb); 1122 } 1123 1124 /* 1125 * __prepare_userptr() - prepare a USERPTR buffer 1126 */ 1127 static int __prepare_userptr(struct vb2_buffer *vb) 1128 { 1129 struct vb2_plane planes[VB2_MAX_PLANES]; 1130 struct vb2_queue *q = vb->vb2_queue; 1131 void *mem_priv; 1132 unsigned int plane; 1133 int ret = 0; 1134 bool reacquired = vb->planes[0].mem_priv == NULL; 1135 1136 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1137 /* Copy relevant information provided by the userspace */ 1138 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1139 vb, planes); 1140 if (ret) 1141 return ret; 1142 1143 for (plane = 0; plane < vb->num_planes; ++plane) { 1144 /* Skip the plane if already verified */ 1145 if (vb->planes[plane].m.userptr && 1146 vb->planes[plane].m.userptr == planes[plane].m.userptr 1147 && vb->planes[plane].length == planes[plane].length) 1148 continue; 1149 1150 dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n", 1151 plane); 1152 1153 /* Check if the provided plane buffer is large enough */ 1154 if (planes[plane].length < vb->planes[plane].min_length) { 1155 dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n", 1156 planes[plane].length, 1157 vb->planes[plane].min_length, 1158 plane); 1159 ret = -EINVAL; 1160 goto err; 1161 } 1162 1163 /* Release previously acquired memory if present */ 1164 if (vb->planes[plane].mem_priv) { 1165 if (!reacquired) { 1166 reacquired = true; 1167 vb->copied_timestamp = 0; 1168 call_void_vb_qop(vb, buf_cleanup, vb); 1169 } 1170 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 1171 } 1172 1173 vb->planes[plane].mem_priv = NULL; 1174 vb->planes[plane].bytesused = 0; 1175 vb->planes[plane].length = 0; 1176 vb->planes[plane].m.userptr = 0; 1177 vb->planes[plane].data_offset = 0; 1178 1179 /* Acquire each plane's memory */ 1180 mem_priv = call_ptr_memop(get_userptr, 1181 vb, 1182 q->alloc_devs[plane] ? : q->dev, 1183 planes[plane].m.userptr, 1184 planes[plane].length); 1185 if (IS_ERR(mem_priv)) { 1186 dprintk(q, 1, "failed acquiring userspace memory for plane %d\n", 1187 plane); 1188 ret = PTR_ERR(mem_priv); 1189 goto err; 1190 } 1191 vb->planes[plane].mem_priv = mem_priv; 1192 } 1193 1194 /* 1195 * Now that everything is in order, copy relevant information 1196 * provided by userspace. 1197 */ 1198 for (plane = 0; plane < vb->num_planes; ++plane) { 1199 vb->planes[plane].bytesused = planes[plane].bytesused; 1200 vb->planes[plane].length = planes[plane].length; 1201 vb->planes[plane].m.userptr = planes[plane].m.userptr; 1202 vb->planes[plane].data_offset = planes[plane].data_offset; 1203 } 1204 1205 if (reacquired) { 1206 /* 1207 * One or more planes changed, so we must call buf_init to do 1208 * the driver-specific initialization on the newly acquired 1209 * buffer, if provided. 1210 */ 1211 ret = call_vb_qop(vb, buf_init, vb); 1212 if (ret) { 1213 dprintk(q, 1, "buffer initialization failed\n"); 1214 goto err; 1215 } 1216 } 1217 1218 ret = call_vb_qop(vb, buf_prepare, vb); 1219 if (ret) { 1220 dprintk(q, 1, "buffer preparation failed\n"); 1221 call_void_vb_qop(vb, buf_cleanup, vb); 1222 goto err; 1223 } 1224 1225 return 0; 1226 err: 1227 /* In case of errors, release planes that were already acquired */ 1228 for (plane = 0; plane < vb->num_planes; ++plane) { 1229 if (vb->planes[plane].mem_priv) 1230 call_void_memop(vb, put_userptr, 1231 vb->planes[plane].mem_priv); 1232 vb->planes[plane].mem_priv = NULL; 1233 vb->planes[plane].m.userptr = 0; 1234 vb->planes[plane].length = 0; 1235 } 1236 1237 return ret; 1238 } 1239 1240 /* 1241 * __prepare_dmabuf() - prepare a DMABUF buffer 1242 */ 1243 static int __prepare_dmabuf(struct vb2_buffer *vb) 1244 { 1245 struct vb2_plane planes[VB2_MAX_PLANES]; 1246 struct vb2_queue *q = vb->vb2_queue; 1247 void *mem_priv; 1248 unsigned int plane; 1249 int ret = 0; 1250 bool reacquired = vb->planes[0].mem_priv == NULL; 1251 1252 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1253 /* Copy relevant information provided by the userspace */ 1254 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1255 vb, planes); 1256 if (ret) 1257 return ret; 1258 1259 for (plane = 0; plane < vb->num_planes; ++plane) { 1260 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd); 1261 1262 if (IS_ERR_OR_NULL(dbuf)) { 1263 dprintk(q, 1, "invalid dmabuf fd for plane %d\n", 1264 plane); 1265 ret = -EINVAL; 1266 goto err; 1267 } 1268 1269 /* use DMABUF size if length is not provided */ 1270 if (planes[plane].length == 0) 1271 planes[plane].length = dbuf->size; 1272 1273 if (planes[plane].length < vb->planes[plane].min_length) { 1274 dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n", 1275 planes[plane].length, plane, 1276 vb->planes[plane].min_length); 1277 dma_buf_put(dbuf); 1278 ret = -EINVAL; 1279 goto err; 1280 } 1281 1282 /* Skip the plane if already verified */ 1283 if (dbuf == vb->planes[plane].dbuf && 1284 vb->planes[plane].length == planes[plane].length) { 1285 dma_buf_put(dbuf); 1286 continue; 1287 } 1288 1289 dprintk(q, 3, "buffer for plane %d changed\n", plane); 1290 1291 if (!reacquired) { 1292 reacquired = true; 1293 vb->copied_timestamp = 0; 1294 call_void_vb_qop(vb, buf_cleanup, vb); 1295 } 1296 1297 /* Release previously acquired memory if present */ 1298 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 1299 vb->planes[plane].bytesused = 0; 1300 vb->planes[plane].length = 0; 1301 vb->planes[plane].m.fd = 0; 1302 vb->planes[plane].data_offset = 0; 1303 1304 /* Acquire each plane's memory */ 1305 mem_priv = call_ptr_memop(attach_dmabuf, 1306 vb, 1307 q->alloc_devs[plane] ? : q->dev, 1308 dbuf, 1309 planes[plane].length); 1310 if (IS_ERR(mem_priv)) { 1311 dprintk(q, 1, "failed to attach dmabuf\n"); 1312 ret = PTR_ERR(mem_priv); 1313 dma_buf_put(dbuf); 1314 goto err; 1315 } 1316 1317 vb->planes[plane].dbuf = dbuf; 1318 vb->planes[plane].mem_priv = mem_priv; 1319 } 1320 1321 /* 1322 * This pins the buffer(s) with dma_buf_map_attachment()). It's done 1323 * here instead just before the DMA, while queueing the buffer(s) so 1324 * userspace knows sooner rather than later if the dma-buf map fails. 1325 */ 1326 for (plane = 0; plane < vb->num_planes; ++plane) { 1327 if (vb->planes[plane].dbuf_mapped) 1328 continue; 1329 1330 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv); 1331 if (ret) { 1332 dprintk(q, 1, "failed to map dmabuf for plane %d\n", 1333 plane); 1334 goto err; 1335 } 1336 vb->planes[plane].dbuf_mapped = 1; 1337 } 1338 1339 /* 1340 * Now that everything is in order, copy relevant information 1341 * provided by userspace. 1342 */ 1343 for (plane = 0; plane < vb->num_planes; ++plane) { 1344 vb->planes[plane].bytesused = planes[plane].bytesused; 1345 vb->planes[plane].length = planes[plane].length; 1346 vb->planes[plane].m.fd = planes[plane].m.fd; 1347 vb->planes[plane].data_offset = planes[plane].data_offset; 1348 } 1349 1350 if (reacquired) { 1351 /* 1352 * Call driver-specific initialization on the newly acquired buffer, 1353 * if provided. 1354 */ 1355 ret = call_vb_qop(vb, buf_init, vb); 1356 if (ret) { 1357 dprintk(q, 1, "buffer initialization failed\n"); 1358 goto err; 1359 } 1360 } 1361 1362 ret = call_vb_qop(vb, buf_prepare, vb); 1363 if (ret) { 1364 dprintk(q, 1, "buffer preparation failed\n"); 1365 call_void_vb_qop(vb, buf_cleanup, vb); 1366 goto err; 1367 } 1368 1369 return 0; 1370 err: 1371 /* In case of errors, release planes that were already acquired */ 1372 __vb2_buf_dmabuf_put(vb); 1373 1374 return ret; 1375 } 1376 1377 /* 1378 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing 1379 */ 1380 static void __enqueue_in_driver(struct vb2_buffer *vb) 1381 { 1382 struct vb2_queue *q = vb->vb2_queue; 1383 1384 vb->state = VB2_BUF_STATE_ACTIVE; 1385 atomic_inc(&q->owned_by_drv_count); 1386 1387 trace_vb2_buf_queue(q, vb); 1388 1389 call_void_vb_qop(vb, buf_queue, vb); 1390 } 1391 1392 static int __buf_prepare(struct vb2_buffer *vb) 1393 { 1394 struct vb2_queue *q = vb->vb2_queue; 1395 enum vb2_buffer_state orig_state = vb->state; 1396 int ret; 1397 1398 if (q->error) { 1399 dprintk(q, 1, "fatal error occurred on queue\n"); 1400 return -EIO; 1401 } 1402 1403 if (vb->prepared) 1404 return 0; 1405 WARN_ON(vb->synced); 1406 1407 if (q->is_output) { 1408 ret = call_vb_qop(vb, buf_out_validate, vb); 1409 if (ret) { 1410 dprintk(q, 1, "buffer validation failed\n"); 1411 return ret; 1412 } 1413 } 1414 1415 vb->state = VB2_BUF_STATE_PREPARING; 1416 1417 switch (q->memory) { 1418 case VB2_MEMORY_MMAP: 1419 ret = __prepare_mmap(vb); 1420 break; 1421 case VB2_MEMORY_USERPTR: 1422 ret = __prepare_userptr(vb); 1423 break; 1424 case VB2_MEMORY_DMABUF: 1425 ret = __prepare_dmabuf(vb); 1426 break; 1427 default: 1428 WARN(1, "Invalid queue type\n"); 1429 ret = -EINVAL; 1430 break; 1431 } 1432 1433 if (ret) { 1434 dprintk(q, 1, "buffer preparation failed: %d\n", ret); 1435 vb->state = orig_state; 1436 return ret; 1437 } 1438 1439 __vb2_buf_mem_prepare(vb); 1440 vb->prepared = 1; 1441 vb->state = orig_state; 1442 1443 return 0; 1444 } 1445 1446 static int vb2_req_prepare(struct media_request_object *obj) 1447 { 1448 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1449 int ret; 1450 1451 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST)) 1452 return -EINVAL; 1453 1454 mutex_lock(vb->vb2_queue->lock); 1455 ret = __buf_prepare(vb); 1456 mutex_unlock(vb->vb2_queue->lock); 1457 return ret; 1458 } 1459 1460 static void __vb2_dqbuf(struct vb2_buffer *vb); 1461 1462 static void vb2_req_unprepare(struct media_request_object *obj) 1463 { 1464 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1465 1466 mutex_lock(vb->vb2_queue->lock); 1467 __vb2_dqbuf(vb); 1468 vb->state = VB2_BUF_STATE_IN_REQUEST; 1469 mutex_unlock(vb->vb2_queue->lock); 1470 WARN_ON(!vb->req_obj.req); 1471 } 1472 1473 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1474 struct media_request *req); 1475 1476 static void vb2_req_queue(struct media_request_object *obj) 1477 { 1478 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1479 int err; 1480 1481 mutex_lock(vb->vb2_queue->lock); 1482 /* 1483 * There is no method to propagate an error from vb2_core_qbuf(), 1484 * so if this returns a non-0 value, then WARN. 1485 * 1486 * The only exception is -EIO which is returned if q->error is 1487 * set. We just ignore that, and expect this will be caught the 1488 * next time vb2_req_prepare() is called. 1489 */ 1490 err = vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL); 1491 WARN_ON_ONCE(err && err != -EIO); 1492 mutex_unlock(vb->vb2_queue->lock); 1493 } 1494 1495 static void vb2_req_unbind(struct media_request_object *obj) 1496 { 1497 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1498 1499 if (vb->state == VB2_BUF_STATE_IN_REQUEST) 1500 call_void_bufop(vb->vb2_queue, init_buffer, vb); 1501 } 1502 1503 static void vb2_req_release(struct media_request_object *obj) 1504 { 1505 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1506 1507 if (vb->state == VB2_BUF_STATE_IN_REQUEST) { 1508 vb->state = VB2_BUF_STATE_DEQUEUED; 1509 if (vb->request) 1510 media_request_put(vb->request); 1511 vb->request = NULL; 1512 } 1513 } 1514 1515 static const struct media_request_object_ops vb2_core_req_ops = { 1516 .prepare = vb2_req_prepare, 1517 .unprepare = vb2_req_unprepare, 1518 .queue = vb2_req_queue, 1519 .unbind = vb2_req_unbind, 1520 .release = vb2_req_release, 1521 }; 1522 1523 bool vb2_request_object_is_buffer(struct media_request_object *obj) 1524 { 1525 return obj->ops == &vb2_core_req_ops; 1526 } 1527 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer); 1528 1529 unsigned int vb2_request_buffer_cnt(struct media_request *req) 1530 { 1531 struct media_request_object *obj; 1532 unsigned long flags; 1533 unsigned int buffer_cnt = 0; 1534 1535 spin_lock_irqsave(&req->lock, flags); 1536 list_for_each_entry(obj, &req->objects, list) 1537 if (vb2_request_object_is_buffer(obj)) 1538 buffer_cnt++; 1539 spin_unlock_irqrestore(&req->lock, flags); 1540 1541 return buffer_cnt; 1542 } 1543 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt); 1544 1545 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb) 1546 { 1547 struct vb2_buffer *vb; 1548 int ret; 1549 1550 vb = q->bufs[index]; 1551 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1552 dprintk(q, 1, "invalid buffer state %s\n", 1553 vb2_state_name(vb->state)); 1554 return -EINVAL; 1555 } 1556 if (vb->prepared) { 1557 dprintk(q, 1, "buffer already prepared\n"); 1558 return -EINVAL; 1559 } 1560 1561 ret = __buf_prepare(vb); 1562 if (ret) 1563 return ret; 1564 1565 /* Fill buffer information for the userspace */ 1566 call_void_bufop(q, fill_user_buffer, vb, pb); 1567 1568 dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index); 1569 1570 return 0; 1571 } 1572 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf); 1573 1574 /* 1575 * vb2_start_streaming() - Attempt to start streaming. 1576 * @q: videobuf2 queue 1577 * 1578 * Attempt to start streaming. When this function is called there must be 1579 * at least q->min_buffers_needed buffers queued up (i.e. the minimum 1580 * number of buffers required for the DMA engine to function). If the 1581 * @start_streaming op fails it is supposed to return all the driver-owned 1582 * buffers back to vb2 in state QUEUED. Check if that happened and if 1583 * not warn and reclaim them forcefully. 1584 */ 1585 static int vb2_start_streaming(struct vb2_queue *q) 1586 { 1587 struct vb2_buffer *vb; 1588 int ret; 1589 1590 /* 1591 * If any buffers were queued before streamon, 1592 * we can now pass them to driver for processing. 1593 */ 1594 list_for_each_entry(vb, &q->queued_list, queued_entry) 1595 __enqueue_in_driver(vb); 1596 1597 /* Tell the driver to start streaming */ 1598 q->start_streaming_called = 1; 1599 ret = call_qop(q, start_streaming, q, 1600 atomic_read(&q->owned_by_drv_count)); 1601 if (!ret) 1602 return 0; 1603 1604 q->start_streaming_called = 0; 1605 1606 dprintk(q, 1, "driver refused to start streaming\n"); 1607 /* 1608 * If you see this warning, then the driver isn't cleaning up properly 1609 * after a failed start_streaming(). See the start_streaming() 1610 * documentation in videobuf2-core.h for more information how buffers 1611 * should be returned to vb2 in start_streaming(). 1612 */ 1613 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1614 unsigned i; 1615 1616 /* 1617 * Forcefully reclaim buffers if the driver did not 1618 * correctly return them to vb2. 1619 */ 1620 for (i = 0; i < q->num_buffers; ++i) { 1621 vb = q->bufs[i]; 1622 if (vb->state == VB2_BUF_STATE_ACTIVE) 1623 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED); 1624 } 1625 /* Must be zero now */ 1626 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1627 } 1628 /* 1629 * If done_list is not empty, then start_streaming() didn't call 1630 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or 1631 * STATE_DONE. 1632 */ 1633 WARN_ON(!list_empty(&q->done_list)); 1634 return ret; 1635 } 1636 1637 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1638 struct media_request *req) 1639 { 1640 struct vb2_buffer *vb; 1641 enum vb2_buffer_state orig_state; 1642 int ret; 1643 1644 if (q->error) { 1645 dprintk(q, 1, "fatal error occurred on queue\n"); 1646 return -EIO; 1647 } 1648 1649 vb = q->bufs[index]; 1650 1651 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1652 q->requires_requests) { 1653 dprintk(q, 1, "qbuf requires a request\n"); 1654 return -EBADR; 1655 } 1656 1657 if ((req && q->uses_qbuf) || 1658 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1659 q->uses_requests)) { 1660 dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n"); 1661 return -EBUSY; 1662 } 1663 1664 if (req) { 1665 int ret; 1666 1667 q->uses_requests = 1; 1668 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1669 dprintk(q, 1, "buffer %d not in dequeued state\n", 1670 vb->index); 1671 return -EINVAL; 1672 } 1673 1674 if (q->is_output && !vb->prepared) { 1675 ret = call_vb_qop(vb, buf_out_validate, vb); 1676 if (ret) { 1677 dprintk(q, 1, "buffer validation failed\n"); 1678 return ret; 1679 } 1680 } 1681 1682 media_request_object_init(&vb->req_obj); 1683 1684 /* Make sure the request is in a safe state for updating. */ 1685 ret = media_request_lock_for_update(req); 1686 if (ret) 1687 return ret; 1688 ret = media_request_object_bind(req, &vb2_core_req_ops, 1689 q, true, &vb->req_obj); 1690 media_request_unlock_for_update(req); 1691 if (ret) 1692 return ret; 1693 1694 vb->state = VB2_BUF_STATE_IN_REQUEST; 1695 1696 /* 1697 * Increment the refcount and store the request. 1698 * The request refcount is decremented again when the 1699 * buffer is dequeued. This is to prevent vb2_buffer_done() 1700 * from freeing the request from interrupt context, which can 1701 * happen if the application closed the request fd after 1702 * queueing the request. 1703 */ 1704 media_request_get(req); 1705 vb->request = req; 1706 1707 /* Fill buffer information for the userspace */ 1708 if (pb) { 1709 call_void_bufop(q, copy_timestamp, vb, pb); 1710 call_void_bufop(q, fill_user_buffer, vb, pb); 1711 } 1712 1713 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1714 return 0; 1715 } 1716 1717 if (vb->state != VB2_BUF_STATE_IN_REQUEST) 1718 q->uses_qbuf = 1; 1719 1720 switch (vb->state) { 1721 case VB2_BUF_STATE_DEQUEUED: 1722 case VB2_BUF_STATE_IN_REQUEST: 1723 if (!vb->prepared) { 1724 ret = __buf_prepare(vb); 1725 if (ret) 1726 return ret; 1727 } 1728 break; 1729 case VB2_BUF_STATE_PREPARING: 1730 dprintk(q, 1, "buffer still being prepared\n"); 1731 return -EINVAL; 1732 default: 1733 dprintk(q, 1, "invalid buffer state %s\n", 1734 vb2_state_name(vb->state)); 1735 return -EINVAL; 1736 } 1737 1738 /* 1739 * Add to the queued buffers list, a buffer will stay on it until 1740 * dequeued in dqbuf. 1741 */ 1742 orig_state = vb->state; 1743 list_add_tail(&vb->queued_entry, &q->queued_list); 1744 q->queued_count++; 1745 q->waiting_for_buffers = false; 1746 vb->state = VB2_BUF_STATE_QUEUED; 1747 1748 if (pb) 1749 call_void_bufop(q, copy_timestamp, vb, pb); 1750 1751 trace_vb2_qbuf(q, vb); 1752 1753 /* 1754 * If already streaming, give the buffer to driver for processing. 1755 * If not, the buffer will be given to driver on next streamon. 1756 */ 1757 if (q->start_streaming_called) 1758 __enqueue_in_driver(vb); 1759 1760 /* Fill buffer information for the userspace */ 1761 if (pb) 1762 call_void_bufop(q, fill_user_buffer, vb, pb); 1763 1764 /* 1765 * If streamon has been called, and we haven't yet called 1766 * start_streaming() since not enough buffers were queued, and 1767 * we now have reached the minimum number of queued buffers, 1768 * then we can finally call start_streaming(). 1769 */ 1770 if (q->streaming && !q->start_streaming_called && 1771 q->queued_count >= q->min_buffers_needed) { 1772 ret = vb2_start_streaming(q); 1773 if (ret) { 1774 /* 1775 * Since vb2_core_qbuf will return with an error, 1776 * we should return it to state DEQUEUED since 1777 * the error indicates that the buffer wasn't queued. 1778 */ 1779 list_del(&vb->queued_entry); 1780 q->queued_count--; 1781 vb->state = orig_state; 1782 return ret; 1783 } 1784 } 1785 1786 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1787 return 0; 1788 } 1789 EXPORT_SYMBOL_GPL(vb2_core_qbuf); 1790 1791 /* 1792 * __vb2_wait_for_done_vb() - wait for a buffer to become available 1793 * for dequeuing 1794 * 1795 * Will sleep if required for nonblocking == false. 1796 */ 1797 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking) 1798 { 1799 /* 1800 * All operations on vb_done_list are performed under done_lock 1801 * spinlock protection. However, buffers may be removed from 1802 * it and returned to userspace only while holding both driver's 1803 * lock and the done_lock spinlock. Thus we can be sure that as 1804 * long as we hold the driver's lock, the list will remain not 1805 * empty if list_empty() check succeeds. 1806 */ 1807 1808 for (;;) { 1809 int ret; 1810 1811 if (q->waiting_in_dqbuf) { 1812 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 1813 return -EBUSY; 1814 } 1815 1816 if (!q->streaming) { 1817 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1818 return -EINVAL; 1819 } 1820 1821 if (q->error) { 1822 dprintk(q, 1, "Queue in error state, will not wait for buffers\n"); 1823 return -EIO; 1824 } 1825 1826 if (q->last_buffer_dequeued) { 1827 dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n"); 1828 return -EPIPE; 1829 } 1830 1831 if (!list_empty(&q->done_list)) { 1832 /* 1833 * Found a buffer that we were waiting for. 1834 */ 1835 break; 1836 } 1837 1838 if (nonblocking) { 1839 dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n"); 1840 return -EAGAIN; 1841 } 1842 1843 q->waiting_in_dqbuf = 1; 1844 /* 1845 * We are streaming and blocking, wait for another buffer to 1846 * become ready or for streamoff. Driver's lock is released to 1847 * allow streamoff or qbuf to be called while waiting. 1848 */ 1849 call_void_qop(q, wait_prepare, q); 1850 1851 /* 1852 * All locks have been released, it is safe to sleep now. 1853 */ 1854 dprintk(q, 3, "will sleep waiting for buffers\n"); 1855 ret = wait_event_interruptible(q->done_wq, 1856 !list_empty(&q->done_list) || !q->streaming || 1857 q->error); 1858 1859 /* 1860 * We need to reevaluate both conditions again after reacquiring 1861 * the locks or return an error if one occurred. 1862 */ 1863 call_void_qop(q, wait_finish, q); 1864 q->waiting_in_dqbuf = 0; 1865 if (ret) { 1866 dprintk(q, 1, "sleep was interrupted\n"); 1867 return ret; 1868 } 1869 } 1870 return 0; 1871 } 1872 1873 /* 1874 * __vb2_get_done_vb() - get a buffer ready for dequeuing 1875 * 1876 * Will sleep if required for nonblocking == false. 1877 */ 1878 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb, 1879 void *pb, int nonblocking) 1880 { 1881 unsigned long flags; 1882 int ret = 0; 1883 1884 /* 1885 * Wait for at least one buffer to become available on the done_list. 1886 */ 1887 ret = __vb2_wait_for_done_vb(q, nonblocking); 1888 if (ret) 1889 return ret; 1890 1891 /* 1892 * Driver's lock has been held since we last verified that done_list 1893 * is not empty, so no need for another list_empty(done_list) check. 1894 */ 1895 spin_lock_irqsave(&q->done_lock, flags); 1896 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry); 1897 /* 1898 * Only remove the buffer from done_list if all planes can be 1899 * handled. Some cases such as V4L2 file I/O and DVB have pb 1900 * == NULL; skip the check then as there's nothing to verify. 1901 */ 1902 if (pb) 1903 ret = call_bufop(q, verify_planes_array, *vb, pb); 1904 if (!ret) 1905 list_del(&(*vb)->done_entry); 1906 spin_unlock_irqrestore(&q->done_lock, flags); 1907 1908 return ret; 1909 } 1910 1911 int vb2_wait_for_all_buffers(struct vb2_queue *q) 1912 { 1913 if (!q->streaming) { 1914 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1915 return -EINVAL; 1916 } 1917 1918 if (q->start_streaming_called) 1919 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count)); 1920 return 0; 1921 } 1922 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers); 1923 1924 /* 1925 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state 1926 */ 1927 static void __vb2_dqbuf(struct vb2_buffer *vb) 1928 { 1929 struct vb2_queue *q = vb->vb2_queue; 1930 1931 /* nothing to do if the buffer is already dequeued */ 1932 if (vb->state == VB2_BUF_STATE_DEQUEUED) 1933 return; 1934 1935 vb->state = VB2_BUF_STATE_DEQUEUED; 1936 1937 call_void_bufop(q, init_buffer, vb); 1938 } 1939 1940 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb, 1941 bool nonblocking) 1942 { 1943 struct vb2_buffer *vb = NULL; 1944 int ret; 1945 1946 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking); 1947 if (ret < 0) 1948 return ret; 1949 1950 switch (vb->state) { 1951 case VB2_BUF_STATE_DONE: 1952 dprintk(q, 3, "returning done buffer\n"); 1953 break; 1954 case VB2_BUF_STATE_ERROR: 1955 dprintk(q, 3, "returning done buffer with errors\n"); 1956 break; 1957 default: 1958 dprintk(q, 1, "invalid buffer state %s\n", 1959 vb2_state_name(vb->state)); 1960 return -EINVAL; 1961 } 1962 1963 call_void_vb_qop(vb, buf_finish, vb); 1964 vb->prepared = 0; 1965 1966 if (pindex) 1967 *pindex = vb->index; 1968 1969 /* Fill buffer information for the userspace */ 1970 if (pb) 1971 call_void_bufop(q, fill_user_buffer, vb, pb); 1972 1973 /* Remove from vb2 queue */ 1974 list_del(&vb->queued_entry); 1975 q->queued_count--; 1976 1977 trace_vb2_dqbuf(q, vb); 1978 1979 /* go back to dequeued state */ 1980 __vb2_dqbuf(vb); 1981 1982 if (WARN_ON(vb->req_obj.req)) { 1983 media_request_object_unbind(&vb->req_obj); 1984 media_request_object_put(&vb->req_obj); 1985 } 1986 if (vb->request) 1987 media_request_put(vb->request); 1988 vb->request = NULL; 1989 1990 dprintk(q, 2, "dqbuf of buffer %d, state: %s\n", 1991 vb->index, vb2_state_name(vb->state)); 1992 1993 return 0; 1994 1995 } 1996 EXPORT_SYMBOL_GPL(vb2_core_dqbuf); 1997 1998 /* 1999 * __vb2_queue_cancel() - cancel and stop (pause) streaming 2000 * 2001 * Removes all queued buffers from driver's queue and all buffers queued by 2002 * userspace from vb2's queue. Returns to state after reqbufs. 2003 */ 2004 static void __vb2_queue_cancel(struct vb2_queue *q) 2005 { 2006 unsigned int i; 2007 2008 /* 2009 * Tell driver to stop all transactions and release all queued 2010 * buffers. 2011 */ 2012 if (q->start_streaming_called) 2013 call_void_qop(q, stop_streaming, q); 2014 2015 if (q->streaming) 2016 call_void_qop(q, unprepare_streaming, q); 2017 2018 /* 2019 * If you see this warning, then the driver isn't cleaning up properly 2020 * in stop_streaming(). See the stop_streaming() documentation in 2021 * videobuf2-core.h for more information how buffers should be returned 2022 * to vb2 in stop_streaming(). 2023 */ 2024 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 2025 for (i = 0; i < q->num_buffers; ++i) 2026 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) { 2027 pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n", 2028 q->bufs[i]); 2029 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR); 2030 } 2031 /* Must be zero now */ 2032 WARN_ON(atomic_read(&q->owned_by_drv_count)); 2033 } 2034 2035 q->streaming = 0; 2036 q->start_streaming_called = 0; 2037 q->queued_count = 0; 2038 q->error = 0; 2039 q->uses_requests = 0; 2040 q->uses_qbuf = 0; 2041 2042 /* 2043 * Remove all buffers from vb2's list... 2044 */ 2045 INIT_LIST_HEAD(&q->queued_list); 2046 /* 2047 * ...and done list; userspace will not receive any buffers it 2048 * has not already dequeued before initiating cancel. 2049 */ 2050 INIT_LIST_HEAD(&q->done_list); 2051 atomic_set(&q->owned_by_drv_count, 0); 2052 wake_up_all(&q->done_wq); 2053 2054 /* 2055 * Reinitialize all buffers for next use. 2056 * Make sure to call buf_finish for any queued buffers. Normally 2057 * that's done in dqbuf, but that's not going to happen when we 2058 * cancel the whole queue. Note: this code belongs here, not in 2059 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical 2060 * call to __fill_user_buffer() after buf_finish(). That order can't 2061 * be changed, so we can't move the buf_finish() to __vb2_dqbuf(). 2062 */ 2063 for (i = 0; i < q->num_buffers; ++i) { 2064 struct vb2_buffer *vb = q->bufs[i]; 2065 struct media_request *req = vb->req_obj.req; 2066 2067 /* 2068 * If a request is associated with this buffer, then 2069 * call buf_request_cancel() to give the driver to complete() 2070 * related request objects. Otherwise those objects would 2071 * never complete. 2072 */ 2073 if (req) { 2074 enum media_request_state state; 2075 unsigned long flags; 2076 2077 spin_lock_irqsave(&req->lock, flags); 2078 state = req->state; 2079 spin_unlock_irqrestore(&req->lock, flags); 2080 2081 if (state == MEDIA_REQUEST_STATE_QUEUED) 2082 call_void_vb_qop(vb, buf_request_complete, vb); 2083 } 2084 2085 __vb2_buf_mem_finish(vb); 2086 2087 if (vb->prepared) { 2088 call_void_vb_qop(vb, buf_finish, vb); 2089 vb->prepared = 0; 2090 } 2091 __vb2_dqbuf(vb); 2092 2093 if (vb->req_obj.req) { 2094 media_request_object_unbind(&vb->req_obj); 2095 media_request_object_put(&vb->req_obj); 2096 } 2097 if (vb->request) 2098 media_request_put(vb->request); 2099 vb->request = NULL; 2100 vb->copied_timestamp = 0; 2101 } 2102 } 2103 2104 int vb2_core_streamon(struct vb2_queue *q, unsigned int type) 2105 { 2106 int ret; 2107 2108 if (type != q->type) { 2109 dprintk(q, 1, "invalid stream type\n"); 2110 return -EINVAL; 2111 } 2112 2113 if (q->streaming) { 2114 dprintk(q, 3, "already streaming\n"); 2115 return 0; 2116 } 2117 2118 if (!q->num_buffers) { 2119 dprintk(q, 1, "no buffers have been allocated\n"); 2120 return -EINVAL; 2121 } 2122 2123 if (q->num_buffers < q->min_buffers_needed) { 2124 dprintk(q, 1, "need at least %u allocated buffers\n", 2125 q->min_buffers_needed); 2126 return -EINVAL; 2127 } 2128 2129 ret = call_qop(q, prepare_streaming, q); 2130 if (ret) 2131 return ret; 2132 2133 /* 2134 * Tell driver to start streaming provided sufficient buffers 2135 * are available. 2136 */ 2137 if (q->queued_count >= q->min_buffers_needed) { 2138 ret = vb2_start_streaming(q); 2139 if (ret) 2140 goto unprepare; 2141 } 2142 2143 q->streaming = 1; 2144 2145 dprintk(q, 3, "successful\n"); 2146 return 0; 2147 2148 unprepare: 2149 call_void_qop(q, unprepare_streaming, q); 2150 return ret; 2151 } 2152 EXPORT_SYMBOL_GPL(vb2_core_streamon); 2153 2154 void vb2_queue_error(struct vb2_queue *q) 2155 { 2156 q->error = 1; 2157 2158 wake_up_all(&q->done_wq); 2159 } 2160 EXPORT_SYMBOL_GPL(vb2_queue_error); 2161 2162 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type) 2163 { 2164 if (type != q->type) { 2165 dprintk(q, 1, "invalid stream type\n"); 2166 return -EINVAL; 2167 } 2168 2169 /* 2170 * Cancel will pause streaming and remove all buffers from the driver 2171 * and vb2, effectively returning control over them to userspace. 2172 * 2173 * Note that we do this even if q->streaming == 0: if you prepare or 2174 * queue buffers, and then call streamoff without ever having called 2175 * streamon, you would still expect those buffers to be returned to 2176 * their normal dequeued state. 2177 */ 2178 __vb2_queue_cancel(q); 2179 q->waiting_for_buffers = !q->is_output; 2180 q->last_buffer_dequeued = false; 2181 2182 dprintk(q, 3, "successful\n"); 2183 return 0; 2184 } 2185 EXPORT_SYMBOL_GPL(vb2_core_streamoff); 2186 2187 /* 2188 * __find_plane_by_offset() - find plane associated with the given offset off 2189 */ 2190 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off, 2191 unsigned int *_buffer, unsigned int *_plane) 2192 { 2193 struct vb2_buffer *vb; 2194 unsigned int buffer, plane; 2195 2196 /* 2197 * Sanity checks to ensure the lock is held, MEMORY_MMAP is 2198 * used and fileio isn't active. 2199 */ 2200 lockdep_assert_held(&q->mmap_lock); 2201 2202 if (q->memory != VB2_MEMORY_MMAP) { 2203 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2204 return -EINVAL; 2205 } 2206 2207 if (vb2_fileio_is_active(q)) { 2208 dprintk(q, 1, "file io in progress\n"); 2209 return -EBUSY; 2210 } 2211 2212 /* 2213 * Go over all buffers and their planes, comparing the given offset 2214 * with an offset assigned to each plane. If a match is found, 2215 * return its buffer and plane numbers. 2216 */ 2217 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 2218 vb = q->bufs[buffer]; 2219 2220 for (plane = 0; plane < vb->num_planes; ++plane) { 2221 if (vb->planes[plane].m.offset == off) { 2222 *_buffer = buffer; 2223 *_plane = plane; 2224 return 0; 2225 } 2226 } 2227 } 2228 2229 return -EINVAL; 2230 } 2231 2232 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, 2233 unsigned int index, unsigned int plane, unsigned int flags) 2234 { 2235 struct vb2_buffer *vb = NULL; 2236 struct vb2_plane *vb_plane; 2237 int ret; 2238 struct dma_buf *dbuf; 2239 2240 if (q->memory != VB2_MEMORY_MMAP) { 2241 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2242 return -EINVAL; 2243 } 2244 2245 if (!q->mem_ops->get_dmabuf) { 2246 dprintk(q, 1, "queue does not support DMA buffer exporting\n"); 2247 return -EINVAL; 2248 } 2249 2250 if (flags & ~(O_CLOEXEC | O_ACCMODE)) { 2251 dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n"); 2252 return -EINVAL; 2253 } 2254 2255 if (type != q->type) { 2256 dprintk(q, 1, "invalid buffer type\n"); 2257 return -EINVAL; 2258 } 2259 2260 if (index >= q->num_buffers) { 2261 dprintk(q, 1, "buffer index out of range\n"); 2262 return -EINVAL; 2263 } 2264 2265 vb = q->bufs[index]; 2266 2267 if (plane >= vb->num_planes) { 2268 dprintk(q, 1, "buffer plane out of range\n"); 2269 return -EINVAL; 2270 } 2271 2272 if (vb2_fileio_is_active(q)) { 2273 dprintk(q, 1, "expbuf: file io in progress\n"); 2274 return -EBUSY; 2275 } 2276 2277 vb_plane = &vb->planes[plane]; 2278 2279 dbuf = call_ptr_memop(get_dmabuf, 2280 vb, 2281 vb_plane->mem_priv, 2282 flags & O_ACCMODE); 2283 if (IS_ERR_OR_NULL(dbuf)) { 2284 dprintk(q, 1, "failed to export buffer %d, plane %d\n", 2285 index, plane); 2286 return -EINVAL; 2287 } 2288 2289 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE); 2290 if (ret < 0) { 2291 dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n", 2292 index, plane, ret); 2293 dma_buf_put(dbuf); 2294 return ret; 2295 } 2296 2297 dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n", 2298 index, plane, ret); 2299 *fd = ret; 2300 2301 return 0; 2302 } 2303 EXPORT_SYMBOL_GPL(vb2_core_expbuf); 2304 2305 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma) 2306 { 2307 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 2308 struct vb2_buffer *vb; 2309 unsigned int buffer = 0, plane = 0; 2310 int ret; 2311 unsigned long length; 2312 2313 /* 2314 * Check memory area access mode. 2315 */ 2316 if (!(vma->vm_flags & VM_SHARED)) { 2317 dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n"); 2318 return -EINVAL; 2319 } 2320 if (q->is_output) { 2321 if (!(vma->vm_flags & VM_WRITE)) { 2322 dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n"); 2323 return -EINVAL; 2324 } 2325 } else { 2326 if (!(vma->vm_flags & VM_READ)) { 2327 dprintk(q, 1, "invalid vma flags, VM_READ needed\n"); 2328 return -EINVAL; 2329 } 2330 } 2331 2332 mutex_lock(&q->mmap_lock); 2333 2334 /* 2335 * Find the plane corresponding to the offset passed by userspace. This 2336 * will return an error if not MEMORY_MMAP or file I/O is in progress. 2337 */ 2338 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2339 if (ret) 2340 goto unlock; 2341 2342 vb = q->bufs[buffer]; 2343 2344 /* 2345 * MMAP requires page_aligned buffers. 2346 * The buffer length was page_aligned at __vb2_buf_mem_alloc(), 2347 * so, we need to do the same here. 2348 */ 2349 length = PAGE_ALIGN(vb->planes[plane].length); 2350 if (length < (vma->vm_end - vma->vm_start)) { 2351 dprintk(q, 1, 2352 "MMAP invalid, as it would overflow buffer length\n"); 2353 ret = -EINVAL; 2354 goto unlock; 2355 } 2356 2357 /* 2358 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer, 2359 * not as a in-buffer offset. We always want to mmap a whole buffer 2360 * from its beginning. 2361 */ 2362 vma->vm_pgoff = 0; 2363 2364 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma); 2365 2366 unlock: 2367 mutex_unlock(&q->mmap_lock); 2368 if (ret) 2369 return ret; 2370 2371 dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane); 2372 return 0; 2373 } 2374 EXPORT_SYMBOL_GPL(vb2_mmap); 2375 2376 #ifndef CONFIG_MMU 2377 unsigned long vb2_get_unmapped_area(struct vb2_queue *q, 2378 unsigned long addr, 2379 unsigned long len, 2380 unsigned long pgoff, 2381 unsigned long flags) 2382 { 2383 unsigned long off = pgoff << PAGE_SHIFT; 2384 struct vb2_buffer *vb; 2385 unsigned int buffer, plane; 2386 void *vaddr; 2387 int ret; 2388 2389 mutex_lock(&q->mmap_lock); 2390 2391 /* 2392 * Find the plane corresponding to the offset passed by userspace. This 2393 * will return an error if not MEMORY_MMAP or file I/O is in progress. 2394 */ 2395 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2396 if (ret) 2397 goto unlock; 2398 2399 vb = q->bufs[buffer]; 2400 2401 vaddr = vb2_plane_vaddr(vb, plane); 2402 mutex_unlock(&q->mmap_lock); 2403 return vaddr ? (unsigned long)vaddr : -EINVAL; 2404 2405 unlock: 2406 mutex_unlock(&q->mmap_lock); 2407 return ret; 2408 } 2409 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area); 2410 #endif 2411 2412 int vb2_core_queue_init(struct vb2_queue *q) 2413 { 2414 /* 2415 * Sanity check 2416 */ 2417 if (WARN_ON(!q) || 2418 WARN_ON(!q->ops) || 2419 WARN_ON(!q->mem_ops) || 2420 WARN_ON(!q->type) || 2421 WARN_ON(!q->io_modes) || 2422 WARN_ON(!q->ops->queue_setup) || 2423 WARN_ON(!q->ops->buf_queue)) 2424 return -EINVAL; 2425 2426 if (WARN_ON(q->requires_requests && !q->supports_requests)) 2427 return -EINVAL; 2428 2429 /* 2430 * This combination is not allowed since a non-zero value of 2431 * q->min_buffers_needed can cause vb2_core_qbuf() to fail if 2432 * it has to call start_streaming(), and the Request API expects 2433 * that queueing a request (and thus queueing a buffer contained 2434 * in that request) will always succeed. There is no method of 2435 * propagating an error back to userspace. 2436 */ 2437 if (WARN_ON(q->supports_requests && q->min_buffers_needed)) 2438 return -EINVAL; 2439 2440 INIT_LIST_HEAD(&q->queued_list); 2441 INIT_LIST_HEAD(&q->done_list); 2442 spin_lock_init(&q->done_lock); 2443 mutex_init(&q->mmap_lock); 2444 init_waitqueue_head(&q->done_wq); 2445 2446 q->memory = VB2_MEMORY_UNKNOWN; 2447 2448 if (q->buf_struct_size == 0) 2449 q->buf_struct_size = sizeof(struct vb2_buffer); 2450 2451 if (q->bidirectional) 2452 q->dma_dir = DMA_BIDIRECTIONAL; 2453 else 2454 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2455 2456 if (q->name[0] == '\0') 2457 snprintf(q->name, sizeof(q->name), "%s-%p", 2458 q->is_output ? "out" : "cap", q); 2459 2460 return 0; 2461 } 2462 EXPORT_SYMBOL_GPL(vb2_core_queue_init); 2463 2464 static int __vb2_init_fileio(struct vb2_queue *q, int read); 2465 static int __vb2_cleanup_fileio(struct vb2_queue *q); 2466 void vb2_core_queue_release(struct vb2_queue *q) 2467 { 2468 __vb2_cleanup_fileio(q); 2469 __vb2_queue_cancel(q); 2470 mutex_lock(&q->mmap_lock); 2471 __vb2_queue_free(q, q->num_buffers); 2472 mutex_unlock(&q->mmap_lock); 2473 } 2474 EXPORT_SYMBOL_GPL(vb2_core_queue_release); 2475 2476 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, 2477 poll_table *wait) 2478 { 2479 __poll_t req_events = poll_requested_events(wait); 2480 struct vb2_buffer *vb = NULL; 2481 unsigned long flags; 2482 2483 /* 2484 * poll_wait() MUST be called on the first invocation on all the 2485 * potential queues of interest, even if we are not interested in their 2486 * events during this first call. Failure to do so will result in 2487 * queue's events to be ignored because the poll_table won't be capable 2488 * of adding new wait queues thereafter. 2489 */ 2490 poll_wait(file, &q->done_wq, wait); 2491 2492 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM))) 2493 return 0; 2494 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM))) 2495 return 0; 2496 2497 /* 2498 * Start file I/O emulator only if streaming API has not been used yet. 2499 */ 2500 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) { 2501 if (!q->is_output && (q->io_modes & VB2_READ) && 2502 (req_events & (EPOLLIN | EPOLLRDNORM))) { 2503 if (__vb2_init_fileio(q, 1)) 2504 return EPOLLERR; 2505 } 2506 if (q->is_output && (q->io_modes & VB2_WRITE) && 2507 (req_events & (EPOLLOUT | EPOLLWRNORM))) { 2508 if (__vb2_init_fileio(q, 0)) 2509 return EPOLLERR; 2510 /* 2511 * Write to OUTPUT queue can be done immediately. 2512 */ 2513 return EPOLLOUT | EPOLLWRNORM; 2514 } 2515 } 2516 2517 /* 2518 * There is nothing to wait for if the queue isn't streaming, or if the 2519 * error flag is set. 2520 */ 2521 if (!vb2_is_streaming(q) || q->error) 2522 return EPOLLERR; 2523 2524 /* 2525 * If this quirk is set and QBUF hasn't been called yet then 2526 * return EPOLLERR as well. This only affects capture queues, output 2527 * queues will always initialize waiting_for_buffers to false. 2528 * This quirk is set by V4L2 for backwards compatibility reasons. 2529 */ 2530 if (q->quirk_poll_must_check_waiting_for_buffers && 2531 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM))) 2532 return EPOLLERR; 2533 2534 /* 2535 * For output streams you can call write() as long as there are fewer 2536 * buffers queued than there are buffers available. 2537 */ 2538 if (q->is_output && q->fileio && q->queued_count < q->num_buffers) 2539 return EPOLLOUT | EPOLLWRNORM; 2540 2541 if (list_empty(&q->done_list)) { 2542 /* 2543 * If the last buffer was dequeued from a capture queue, 2544 * return immediately. DQBUF will return -EPIPE. 2545 */ 2546 if (q->last_buffer_dequeued) 2547 return EPOLLIN | EPOLLRDNORM; 2548 } 2549 2550 /* 2551 * Take first buffer available for dequeuing. 2552 */ 2553 spin_lock_irqsave(&q->done_lock, flags); 2554 if (!list_empty(&q->done_list)) 2555 vb = list_first_entry(&q->done_list, struct vb2_buffer, 2556 done_entry); 2557 spin_unlock_irqrestore(&q->done_lock, flags); 2558 2559 if (vb && (vb->state == VB2_BUF_STATE_DONE 2560 || vb->state == VB2_BUF_STATE_ERROR)) { 2561 return (q->is_output) ? 2562 EPOLLOUT | EPOLLWRNORM : 2563 EPOLLIN | EPOLLRDNORM; 2564 } 2565 return 0; 2566 } 2567 EXPORT_SYMBOL_GPL(vb2_core_poll); 2568 2569 /* 2570 * struct vb2_fileio_buf - buffer context used by file io emulator 2571 * 2572 * vb2 provides a compatibility layer and emulator of file io (read and 2573 * write) calls on top of streaming API. This structure is used for 2574 * tracking context related to the buffers. 2575 */ 2576 struct vb2_fileio_buf { 2577 void *vaddr; 2578 unsigned int size; 2579 unsigned int pos; 2580 unsigned int queued:1; 2581 }; 2582 2583 /* 2584 * struct vb2_fileio_data - queue context used by file io emulator 2585 * 2586 * @cur_index: the index of the buffer currently being read from or 2587 * written to. If equal to q->num_buffers then a new buffer 2588 * must be dequeued. 2589 * @initial_index: in the read() case all buffers are queued up immediately 2590 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles 2591 * buffers. However, in the write() case no buffers are initially 2592 * queued, instead whenever a buffer is full it is queued up by 2593 * __vb2_perform_fileio(). Only once all available buffers have 2594 * been queued up will __vb2_perform_fileio() start to dequeue 2595 * buffers. This means that initially __vb2_perform_fileio() 2596 * needs to know what buffer index to use when it is queuing up 2597 * the buffers for the first time. That initial index is stored 2598 * in this field. Once it is equal to q->num_buffers all 2599 * available buffers have been queued and __vb2_perform_fileio() 2600 * should start the normal dequeue/queue cycle. 2601 * 2602 * vb2 provides a compatibility layer and emulator of file io (read and 2603 * write) calls on top of streaming API. For proper operation it required 2604 * this structure to save the driver state between each call of the read 2605 * or write function. 2606 */ 2607 struct vb2_fileio_data { 2608 unsigned int count; 2609 unsigned int type; 2610 unsigned int memory; 2611 struct vb2_fileio_buf bufs[VB2_MAX_FRAME]; 2612 unsigned int cur_index; 2613 unsigned int initial_index; 2614 unsigned int q_count; 2615 unsigned int dq_count; 2616 unsigned read_once:1; 2617 unsigned write_immediately:1; 2618 }; 2619 2620 /* 2621 * __vb2_init_fileio() - initialize file io emulator 2622 * @q: videobuf2 queue 2623 * @read: mode selector (1 means read, 0 means write) 2624 */ 2625 static int __vb2_init_fileio(struct vb2_queue *q, int read) 2626 { 2627 struct vb2_fileio_data *fileio; 2628 int i, ret; 2629 unsigned int count = 0; 2630 2631 /* 2632 * Sanity check 2633 */ 2634 if (WARN_ON((read && !(q->io_modes & VB2_READ)) || 2635 (!read && !(q->io_modes & VB2_WRITE)))) 2636 return -EINVAL; 2637 2638 /* 2639 * Check if device supports mapping buffers to kernel virtual space. 2640 */ 2641 if (!q->mem_ops->vaddr) 2642 return -EBUSY; 2643 2644 /* 2645 * Check if streaming api has not been already activated. 2646 */ 2647 if (q->streaming || q->num_buffers > 0) 2648 return -EBUSY; 2649 2650 /* 2651 * Start with count 1, driver can increase it in queue_setup() 2652 */ 2653 count = 1; 2654 2655 dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n", 2656 (read) ? "read" : "write", count, q->fileio_read_once, 2657 q->fileio_write_immediately); 2658 2659 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL); 2660 if (fileio == NULL) 2661 return -ENOMEM; 2662 2663 fileio->read_once = q->fileio_read_once; 2664 fileio->write_immediately = q->fileio_write_immediately; 2665 2666 /* 2667 * Request buffers and use MMAP type to force driver 2668 * to allocate buffers by itself. 2669 */ 2670 fileio->count = count; 2671 fileio->memory = VB2_MEMORY_MMAP; 2672 fileio->type = q->type; 2673 q->fileio = fileio; 2674 ret = vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2675 if (ret) 2676 goto err_kfree; 2677 2678 /* 2679 * Check if plane_count is correct 2680 * (multiplane buffers are not supported). 2681 */ 2682 if (q->bufs[0]->num_planes != 1) { 2683 ret = -EBUSY; 2684 goto err_reqbufs; 2685 } 2686 2687 /* 2688 * Get kernel address of each buffer. 2689 */ 2690 for (i = 0; i < q->num_buffers; i++) { 2691 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0); 2692 if (fileio->bufs[i].vaddr == NULL) { 2693 ret = -EINVAL; 2694 goto err_reqbufs; 2695 } 2696 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0); 2697 } 2698 2699 /* 2700 * Read mode requires pre queuing of all buffers. 2701 */ 2702 if (read) { 2703 /* 2704 * Queue all buffers. 2705 */ 2706 for (i = 0; i < q->num_buffers; i++) { 2707 ret = vb2_core_qbuf(q, i, NULL, NULL); 2708 if (ret) 2709 goto err_reqbufs; 2710 fileio->bufs[i].queued = 1; 2711 } 2712 /* 2713 * All buffers have been queued, so mark that by setting 2714 * initial_index to q->num_buffers 2715 */ 2716 fileio->initial_index = q->num_buffers; 2717 fileio->cur_index = q->num_buffers; 2718 } 2719 2720 /* 2721 * Start streaming. 2722 */ 2723 ret = vb2_core_streamon(q, q->type); 2724 if (ret) 2725 goto err_reqbufs; 2726 2727 return ret; 2728 2729 err_reqbufs: 2730 fileio->count = 0; 2731 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2732 2733 err_kfree: 2734 q->fileio = NULL; 2735 kfree(fileio); 2736 return ret; 2737 } 2738 2739 /* 2740 * __vb2_cleanup_fileio() - free resourced used by file io emulator 2741 * @q: videobuf2 queue 2742 */ 2743 static int __vb2_cleanup_fileio(struct vb2_queue *q) 2744 { 2745 struct vb2_fileio_data *fileio = q->fileio; 2746 2747 if (fileio) { 2748 vb2_core_streamoff(q, q->type); 2749 q->fileio = NULL; 2750 fileio->count = 0; 2751 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2752 kfree(fileio); 2753 dprintk(q, 3, "file io emulator closed\n"); 2754 } 2755 return 0; 2756 } 2757 2758 /* 2759 * __vb2_perform_fileio() - perform a single file io (read or write) operation 2760 * @q: videobuf2 queue 2761 * @data: pointed to target userspace buffer 2762 * @count: number of bytes to read or write 2763 * @ppos: file handle position tracking pointer 2764 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking) 2765 * @read: access mode selector (1 means read, 0 means write) 2766 */ 2767 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count, 2768 loff_t *ppos, int nonblock, int read) 2769 { 2770 struct vb2_fileio_data *fileio; 2771 struct vb2_fileio_buf *buf; 2772 bool is_multiplanar = q->is_multiplanar; 2773 /* 2774 * When using write() to write data to an output video node the vb2 core 2775 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody 2776 * else is able to provide this information with the write() operation. 2777 */ 2778 bool copy_timestamp = !read && q->copy_timestamp; 2779 unsigned index; 2780 int ret; 2781 2782 dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n", 2783 read ? "read" : "write", (long)*ppos, count, 2784 nonblock ? "non" : ""); 2785 2786 if (!data) 2787 return -EINVAL; 2788 2789 if (q->waiting_in_dqbuf) { 2790 dprintk(q, 3, "another dup()ped fd is %s\n", 2791 read ? "reading" : "writing"); 2792 return -EBUSY; 2793 } 2794 2795 /* 2796 * Initialize emulator on first call. 2797 */ 2798 if (!vb2_fileio_is_active(q)) { 2799 ret = __vb2_init_fileio(q, read); 2800 dprintk(q, 3, "vb2_init_fileio result: %d\n", ret); 2801 if (ret) 2802 return ret; 2803 } 2804 fileio = q->fileio; 2805 2806 /* 2807 * Check if we need to dequeue the buffer. 2808 */ 2809 index = fileio->cur_index; 2810 if (index >= q->num_buffers) { 2811 struct vb2_buffer *b; 2812 2813 /* 2814 * Call vb2_dqbuf to get buffer back. 2815 */ 2816 ret = vb2_core_dqbuf(q, &index, NULL, nonblock); 2817 dprintk(q, 5, "vb2_dqbuf result: %d\n", ret); 2818 if (ret) 2819 return ret; 2820 fileio->dq_count += 1; 2821 2822 fileio->cur_index = index; 2823 buf = &fileio->bufs[index]; 2824 b = q->bufs[index]; 2825 2826 /* 2827 * Get number of bytes filled by the driver 2828 */ 2829 buf->pos = 0; 2830 buf->queued = 0; 2831 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0) 2832 : vb2_plane_size(q->bufs[index], 0); 2833 /* Compensate for data_offset on read in the multiplanar case. */ 2834 if (is_multiplanar && read && 2835 b->planes[0].data_offset < buf->size) { 2836 buf->pos = b->planes[0].data_offset; 2837 buf->size -= buf->pos; 2838 } 2839 } else { 2840 buf = &fileio->bufs[index]; 2841 } 2842 2843 /* 2844 * Limit count on last few bytes of the buffer. 2845 */ 2846 if (buf->pos + count > buf->size) { 2847 count = buf->size - buf->pos; 2848 dprintk(q, 5, "reducing read count: %zd\n", count); 2849 } 2850 2851 /* 2852 * Transfer data to userspace. 2853 */ 2854 dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n", 2855 count, index, buf->pos); 2856 if (read) 2857 ret = copy_to_user(data, buf->vaddr + buf->pos, count); 2858 else 2859 ret = copy_from_user(buf->vaddr + buf->pos, data, count); 2860 if (ret) { 2861 dprintk(q, 3, "error copying data\n"); 2862 return -EFAULT; 2863 } 2864 2865 /* 2866 * Update counters. 2867 */ 2868 buf->pos += count; 2869 *ppos += count; 2870 2871 /* 2872 * Queue next buffer if required. 2873 */ 2874 if (buf->pos == buf->size || (!read && fileio->write_immediately)) { 2875 struct vb2_buffer *b = q->bufs[index]; 2876 2877 /* 2878 * Check if this is the last buffer to read. 2879 */ 2880 if (read && fileio->read_once && fileio->dq_count == 1) { 2881 dprintk(q, 3, "read limit reached\n"); 2882 return __vb2_cleanup_fileio(q); 2883 } 2884 2885 /* 2886 * Call vb2_qbuf and give buffer to the driver. 2887 */ 2888 b->planes[0].bytesused = buf->pos; 2889 2890 if (copy_timestamp) 2891 b->timestamp = ktime_get_ns(); 2892 ret = vb2_core_qbuf(q, index, NULL, NULL); 2893 dprintk(q, 5, "vb2_dbuf result: %d\n", ret); 2894 if (ret) 2895 return ret; 2896 2897 /* 2898 * Buffer has been queued, update the status 2899 */ 2900 buf->pos = 0; 2901 buf->queued = 1; 2902 buf->size = vb2_plane_size(q->bufs[index], 0); 2903 fileio->q_count += 1; 2904 /* 2905 * If we are queuing up buffers for the first time, then 2906 * increase initial_index by one. 2907 */ 2908 if (fileio->initial_index < q->num_buffers) 2909 fileio->initial_index++; 2910 /* 2911 * The next buffer to use is either a buffer that's going to be 2912 * queued for the first time (initial_index < q->num_buffers) 2913 * or it is equal to q->num_buffers, meaning that the next 2914 * time we need to dequeue a buffer since we've now queued up 2915 * all the 'first time' buffers. 2916 */ 2917 fileio->cur_index = fileio->initial_index; 2918 } 2919 2920 /* 2921 * Return proper number of bytes processed. 2922 */ 2923 if (ret == 0) 2924 ret = count; 2925 return ret; 2926 } 2927 2928 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, 2929 loff_t *ppos, int nonblocking) 2930 { 2931 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1); 2932 } 2933 EXPORT_SYMBOL_GPL(vb2_read); 2934 2935 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, 2936 loff_t *ppos, int nonblocking) 2937 { 2938 return __vb2_perform_fileio(q, (char __user *) data, count, 2939 ppos, nonblocking, 0); 2940 } 2941 EXPORT_SYMBOL_GPL(vb2_write); 2942 2943 struct vb2_threadio_data { 2944 struct task_struct *thread; 2945 vb2_thread_fnc fnc; 2946 void *priv; 2947 bool stop; 2948 }; 2949 2950 static int vb2_thread(void *data) 2951 { 2952 struct vb2_queue *q = data; 2953 struct vb2_threadio_data *threadio = q->threadio; 2954 bool copy_timestamp = false; 2955 unsigned prequeue = 0; 2956 unsigned index = 0; 2957 int ret = 0; 2958 2959 if (q->is_output) { 2960 prequeue = q->num_buffers; 2961 copy_timestamp = q->copy_timestamp; 2962 } 2963 2964 set_freezable(); 2965 2966 for (;;) { 2967 struct vb2_buffer *vb; 2968 2969 /* 2970 * Call vb2_dqbuf to get buffer back. 2971 */ 2972 if (prequeue) { 2973 vb = q->bufs[index++]; 2974 prequeue--; 2975 } else { 2976 call_void_qop(q, wait_finish, q); 2977 if (!threadio->stop) 2978 ret = vb2_core_dqbuf(q, &index, NULL, 0); 2979 call_void_qop(q, wait_prepare, q); 2980 dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret); 2981 if (!ret) 2982 vb = q->bufs[index]; 2983 } 2984 if (ret || threadio->stop) 2985 break; 2986 try_to_freeze(); 2987 2988 if (vb->state != VB2_BUF_STATE_ERROR) 2989 if (threadio->fnc(vb, threadio->priv)) 2990 break; 2991 call_void_qop(q, wait_finish, q); 2992 if (copy_timestamp) 2993 vb->timestamp = ktime_get_ns(); 2994 if (!threadio->stop) 2995 ret = vb2_core_qbuf(q, vb->index, NULL, NULL); 2996 call_void_qop(q, wait_prepare, q); 2997 if (ret || threadio->stop) 2998 break; 2999 } 3000 3001 /* Hmm, linux becomes *very* unhappy without this ... */ 3002 while (!kthread_should_stop()) { 3003 set_current_state(TASK_INTERRUPTIBLE); 3004 schedule(); 3005 } 3006 return 0; 3007 } 3008 3009 /* 3010 * This function should not be used for anything else but the videobuf2-dvb 3011 * support. If you think you have another good use-case for this, then please 3012 * contact the linux-media mailinglist first. 3013 */ 3014 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, 3015 const char *thread_name) 3016 { 3017 struct vb2_threadio_data *threadio; 3018 int ret = 0; 3019 3020 if (q->threadio) 3021 return -EBUSY; 3022 if (vb2_is_busy(q)) 3023 return -EBUSY; 3024 if (WARN_ON(q->fileio)) 3025 return -EBUSY; 3026 3027 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL); 3028 if (threadio == NULL) 3029 return -ENOMEM; 3030 threadio->fnc = fnc; 3031 threadio->priv = priv; 3032 3033 ret = __vb2_init_fileio(q, !q->is_output); 3034 dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret); 3035 if (ret) 3036 goto nomem; 3037 q->threadio = threadio; 3038 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name); 3039 if (IS_ERR(threadio->thread)) { 3040 ret = PTR_ERR(threadio->thread); 3041 threadio->thread = NULL; 3042 goto nothread; 3043 } 3044 return 0; 3045 3046 nothread: 3047 __vb2_cleanup_fileio(q); 3048 nomem: 3049 kfree(threadio); 3050 return ret; 3051 } 3052 EXPORT_SYMBOL_GPL(vb2_thread_start); 3053 3054 int vb2_thread_stop(struct vb2_queue *q) 3055 { 3056 struct vb2_threadio_data *threadio = q->threadio; 3057 int err; 3058 3059 if (threadio == NULL) 3060 return 0; 3061 threadio->stop = true; 3062 /* Wake up all pending sleeps in the thread */ 3063 vb2_queue_error(q); 3064 err = kthread_stop(threadio->thread); 3065 __vb2_cleanup_fileio(q); 3066 threadio->thread = NULL; 3067 kfree(threadio); 3068 q->threadio = NULL; 3069 return err; 3070 } 3071 EXPORT_SYMBOL_GPL(vb2_thread_stop); 3072 3073 MODULE_DESCRIPTION("Media buffer core framework"); 3074 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski"); 3075 MODULE_LICENSE("GPL"); 3076 MODULE_IMPORT_NS(DMA_BUF); 3077