1 /* 2 * videobuf2-core.c - video buffer 2 core framework 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * 6 * Author: Pawel Osciak <pawel@osciak.com> 7 * Marek Szyprowski <m.szyprowski@samsung.com> 8 * 9 * The vb2_thread implementation was based on code from videobuf-dvb.c: 10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs] 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/err.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mm.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/freezer.h> 27 #include <linux/kthread.h> 28 29 #include <media/videobuf2-core.h> 30 #include <media/v4l2-mc.h> 31 32 #include <trace/events/vb2.h> 33 34 static int debug; 35 module_param(debug, int, 0644); 36 37 #define dprintk(q, level, fmt, arg...) \ 38 do { \ 39 if (debug >= level) \ 40 pr_info("[%s] %s: " fmt, (q)->name, __func__, \ 41 ## arg); \ 42 } while (0) 43 44 #ifdef CONFIG_VIDEO_ADV_DEBUG 45 46 /* 47 * If advanced debugging is on, then count how often each op is called 48 * successfully, which can either be per-buffer or per-queue. 49 * 50 * This makes it easy to check that the 'init' and 'cleanup' 51 * (and variations thereof) stay balanced. 52 */ 53 54 #define log_memop(vb, op) \ 55 dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n", \ 56 (vb)->index, #op, \ 57 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)") 58 59 #define call_memop(vb, op, args...) \ 60 ({ \ 61 struct vb2_queue *_q = (vb)->vb2_queue; \ 62 int err; \ 63 \ 64 log_memop(vb, op); \ 65 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \ 66 if (!err) \ 67 (vb)->cnt_mem_ ## op++; \ 68 err; \ 69 }) 70 71 #define call_ptr_memop(vb, op, args...) \ 72 ({ \ 73 struct vb2_queue *_q = (vb)->vb2_queue; \ 74 void *ptr; \ 75 \ 76 log_memop(vb, op); \ 77 ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL; \ 78 if (!IS_ERR_OR_NULL(ptr)) \ 79 (vb)->cnt_mem_ ## op++; \ 80 ptr; \ 81 }) 82 83 #define call_void_memop(vb, op, args...) \ 84 ({ \ 85 struct vb2_queue *_q = (vb)->vb2_queue; \ 86 \ 87 log_memop(vb, op); \ 88 if (_q->mem_ops->op) \ 89 _q->mem_ops->op(args); \ 90 (vb)->cnt_mem_ ## op++; \ 91 }) 92 93 #define log_qop(q, op) \ 94 dprintk(q, 2, "call_qop(%s)%s\n", #op, \ 95 (q)->ops->op ? "" : " (nop)") 96 97 #define call_qop(q, op, args...) \ 98 ({ \ 99 int err; \ 100 \ 101 log_qop(q, op); \ 102 err = (q)->ops->op ? (q)->ops->op(args) : 0; \ 103 if (!err) \ 104 (q)->cnt_ ## op++; \ 105 err; \ 106 }) 107 108 #define call_void_qop(q, op, args...) \ 109 ({ \ 110 log_qop(q, op); \ 111 if ((q)->ops->op) \ 112 (q)->ops->op(args); \ 113 (q)->cnt_ ## op++; \ 114 }) 115 116 #define log_vb_qop(vb, op, args...) \ 117 dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n", \ 118 (vb)->index, #op, \ 119 (vb)->vb2_queue->ops->op ? "" : " (nop)") 120 121 #define call_vb_qop(vb, op, args...) \ 122 ({ \ 123 int err; \ 124 \ 125 log_vb_qop(vb, op); \ 126 err = (vb)->vb2_queue->ops->op ? \ 127 (vb)->vb2_queue->ops->op(args) : 0; \ 128 if (!err) \ 129 (vb)->cnt_ ## op++; \ 130 err; \ 131 }) 132 133 #define call_void_vb_qop(vb, op, args...) \ 134 ({ \ 135 log_vb_qop(vb, op); \ 136 if ((vb)->vb2_queue->ops->op) \ 137 (vb)->vb2_queue->ops->op(args); \ 138 (vb)->cnt_ ## op++; \ 139 }) 140 141 #else 142 143 #define call_memop(vb, op, args...) \ 144 ((vb)->vb2_queue->mem_ops->op ? \ 145 (vb)->vb2_queue->mem_ops->op(args) : 0) 146 147 #define call_ptr_memop(vb, op, args...) \ 148 ((vb)->vb2_queue->mem_ops->op ? \ 149 (vb)->vb2_queue->mem_ops->op(args) : NULL) 150 151 #define call_void_memop(vb, op, args...) \ 152 do { \ 153 if ((vb)->vb2_queue->mem_ops->op) \ 154 (vb)->vb2_queue->mem_ops->op(args); \ 155 } while (0) 156 157 #define call_qop(q, op, args...) \ 158 ((q)->ops->op ? (q)->ops->op(args) : 0) 159 160 #define call_void_qop(q, op, args...) \ 161 do { \ 162 if ((q)->ops->op) \ 163 (q)->ops->op(args); \ 164 } while (0) 165 166 #define call_vb_qop(vb, op, args...) \ 167 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0) 168 169 #define call_void_vb_qop(vb, op, args...) \ 170 do { \ 171 if ((vb)->vb2_queue->ops->op) \ 172 (vb)->vb2_queue->ops->op(args); \ 173 } while (0) 174 175 #endif 176 177 #define call_bufop(q, op, args...) \ 178 ({ \ 179 int ret = 0; \ 180 if (q && q->buf_ops && q->buf_ops->op) \ 181 ret = q->buf_ops->op(args); \ 182 ret; \ 183 }) 184 185 #define call_void_bufop(q, op, args...) \ 186 ({ \ 187 if (q && q->buf_ops && q->buf_ops->op) \ 188 q->buf_ops->op(args); \ 189 }) 190 191 static void __vb2_queue_cancel(struct vb2_queue *q); 192 static void __enqueue_in_driver(struct vb2_buffer *vb); 193 194 static const char *vb2_state_name(enum vb2_buffer_state s) 195 { 196 static const char * const state_names[] = { 197 [VB2_BUF_STATE_DEQUEUED] = "dequeued", 198 [VB2_BUF_STATE_IN_REQUEST] = "in request", 199 [VB2_BUF_STATE_PREPARING] = "preparing", 200 [VB2_BUF_STATE_QUEUED] = "queued", 201 [VB2_BUF_STATE_ACTIVE] = "active", 202 [VB2_BUF_STATE_DONE] = "done", 203 [VB2_BUF_STATE_ERROR] = "error", 204 }; 205 206 if ((unsigned int)(s) < ARRAY_SIZE(state_names)) 207 return state_names[s]; 208 return "unknown"; 209 } 210 211 /* 212 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer 213 */ 214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb) 215 { 216 struct vb2_queue *q = vb->vb2_queue; 217 void *mem_priv; 218 int plane; 219 int ret = -ENOMEM; 220 221 /* 222 * Allocate memory for all planes in this buffer 223 * NOTE: mmapped areas should be page aligned 224 */ 225 for (plane = 0; plane < vb->num_planes; ++plane) { 226 /* Memops alloc requires size to be page aligned. */ 227 unsigned long size = PAGE_ALIGN(vb->planes[plane].length); 228 229 /* Did it wrap around? */ 230 if (size < vb->planes[plane].length) 231 goto free; 232 233 mem_priv = call_ptr_memop(vb, alloc, 234 q->alloc_devs[plane] ? : q->dev, 235 q->dma_attrs, size, q->dma_dir, q->gfp_flags); 236 if (IS_ERR_OR_NULL(mem_priv)) { 237 if (mem_priv) 238 ret = PTR_ERR(mem_priv); 239 goto free; 240 } 241 242 /* Associate allocator private data with this plane */ 243 vb->planes[plane].mem_priv = mem_priv; 244 } 245 246 return 0; 247 free: 248 /* Free already allocated memory if one of the allocations failed */ 249 for (; plane > 0; --plane) { 250 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv); 251 vb->planes[plane - 1].mem_priv = NULL; 252 } 253 254 return ret; 255 } 256 257 /* 258 * __vb2_buf_mem_free() - free memory of the given buffer 259 */ 260 static void __vb2_buf_mem_free(struct vb2_buffer *vb) 261 { 262 unsigned int plane; 263 264 for (plane = 0; plane < vb->num_planes; ++plane) { 265 call_void_memop(vb, put, vb->planes[plane].mem_priv); 266 vb->planes[plane].mem_priv = NULL; 267 dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n", 268 plane, vb->index); 269 } 270 } 271 272 /* 273 * __vb2_buf_userptr_put() - release userspace memory associated with 274 * a USERPTR buffer 275 */ 276 static void __vb2_buf_userptr_put(struct vb2_buffer *vb) 277 { 278 unsigned int plane; 279 280 for (plane = 0; plane < vb->num_planes; ++plane) { 281 if (vb->planes[plane].mem_priv) 282 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 283 vb->planes[plane].mem_priv = NULL; 284 } 285 } 286 287 /* 288 * __vb2_plane_dmabuf_put() - release memory associated with 289 * a DMABUF shared plane 290 */ 291 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p) 292 { 293 if (!p->mem_priv) 294 return; 295 296 if (p->dbuf_mapped) 297 call_void_memop(vb, unmap_dmabuf, p->mem_priv); 298 299 call_void_memop(vb, detach_dmabuf, p->mem_priv); 300 dma_buf_put(p->dbuf); 301 p->mem_priv = NULL; 302 p->dbuf = NULL; 303 p->dbuf_mapped = 0; 304 } 305 306 /* 307 * __vb2_buf_dmabuf_put() - release memory associated with 308 * a DMABUF shared buffer 309 */ 310 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb) 311 { 312 unsigned int plane; 313 314 for (plane = 0; plane < vb->num_planes; ++plane) 315 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 316 } 317 318 /* 319 * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory 320 * to sync caches 321 */ 322 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb) 323 { 324 unsigned int plane; 325 326 if (vb->synced) 327 return; 328 329 if (vb->need_cache_sync_on_prepare) { 330 for (plane = 0; plane < vb->num_planes; ++plane) 331 call_void_memop(vb, prepare, 332 vb->planes[plane].mem_priv); 333 } 334 vb->synced = 1; 335 } 336 337 /* 338 * __vb2_buf_mem_finish() - call ->finish on buffer's private memory 339 * to sync caches 340 */ 341 static void __vb2_buf_mem_finish(struct vb2_buffer *vb) 342 { 343 unsigned int plane; 344 345 if (!vb->synced) 346 return; 347 348 if (vb->need_cache_sync_on_finish) { 349 for (plane = 0; plane < vb->num_planes; ++plane) 350 call_void_memop(vb, finish, 351 vb->planes[plane].mem_priv); 352 } 353 vb->synced = 0; 354 } 355 356 /* 357 * __setup_offsets() - setup unique offsets ("cookies") for every plane in 358 * the buffer. 359 */ 360 static void __setup_offsets(struct vb2_buffer *vb) 361 { 362 struct vb2_queue *q = vb->vb2_queue; 363 unsigned int plane; 364 unsigned long off = 0; 365 366 if (vb->index) { 367 struct vb2_buffer *prev = q->bufs[vb->index - 1]; 368 struct vb2_plane *p = &prev->planes[prev->num_planes - 1]; 369 370 off = PAGE_ALIGN(p->m.offset + p->length); 371 } 372 373 for (plane = 0; plane < vb->num_planes; ++plane) { 374 vb->planes[plane].m.offset = off; 375 376 dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n", 377 vb->index, plane, off); 378 379 off += vb->planes[plane].length; 380 off = PAGE_ALIGN(off); 381 } 382 } 383 384 /* 385 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type) 386 * video buffer memory for all buffers/planes on the queue and initializes the 387 * queue 388 * 389 * Returns the number of buffers successfully allocated. 390 */ 391 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory, 392 unsigned int num_buffers, unsigned int num_planes, 393 const unsigned plane_sizes[VB2_MAX_PLANES]) 394 { 395 unsigned int buffer, plane; 396 struct vb2_buffer *vb; 397 int ret; 398 399 /* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */ 400 num_buffers = min_t(unsigned int, num_buffers, 401 VB2_MAX_FRAME - q->num_buffers); 402 403 for (buffer = 0; buffer < num_buffers; ++buffer) { 404 /* Allocate videobuf buffer structures */ 405 vb = kzalloc(q->buf_struct_size, GFP_KERNEL); 406 if (!vb) { 407 dprintk(q, 1, "memory alloc for buffer struct failed\n"); 408 break; 409 } 410 411 vb->state = VB2_BUF_STATE_DEQUEUED; 412 vb->vb2_queue = q; 413 vb->num_planes = num_planes; 414 vb->index = q->num_buffers + buffer; 415 vb->type = q->type; 416 vb->memory = memory; 417 for (plane = 0; plane < num_planes; ++plane) { 418 vb->planes[plane].length = plane_sizes[plane]; 419 vb->planes[plane].min_length = plane_sizes[plane]; 420 } 421 call_void_bufop(q, init_buffer, vb); 422 423 q->bufs[vb->index] = vb; 424 425 /* Allocate video buffer memory for the MMAP type */ 426 if (memory == VB2_MEMORY_MMAP) { 427 ret = __vb2_buf_mem_alloc(vb); 428 if (ret) { 429 dprintk(q, 1, "failed allocating memory for buffer %d\n", 430 buffer); 431 q->bufs[vb->index] = NULL; 432 kfree(vb); 433 break; 434 } 435 __setup_offsets(vb); 436 /* 437 * Call the driver-provided buffer initialization 438 * callback, if given. An error in initialization 439 * results in queue setup failure. 440 */ 441 ret = call_vb_qop(vb, buf_init, vb); 442 if (ret) { 443 dprintk(q, 1, "buffer %d %p initialization failed\n", 444 buffer, vb); 445 __vb2_buf_mem_free(vb); 446 q->bufs[vb->index] = NULL; 447 kfree(vb); 448 break; 449 } 450 } 451 } 452 453 dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n", 454 buffer, num_planes); 455 456 return buffer; 457 } 458 459 /* 460 * __vb2_free_mem() - release all video buffer memory for a given queue 461 */ 462 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers) 463 { 464 unsigned int buffer; 465 struct vb2_buffer *vb; 466 467 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 468 ++buffer) { 469 vb = q->bufs[buffer]; 470 if (!vb) 471 continue; 472 473 /* Free MMAP buffers or release USERPTR buffers */ 474 if (q->memory == VB2_MEMORY_MMAP) 475 __vb2_buf_mem_free(vb); 476 else if (q->memory == VB2_MEMORY_DMABUF) 477 __vb2_buf_dmabuf_put(vb); 478 else 479 __vb2_buf_userptr_put(vb); 480 } 481 } 482 483 /* 484 * __vb2_queue_free() - free buffers at the end of the queue - video memory and 485 * related information, if no buffers are left return the queue to an 486 * uninitialized state. Might be called even if the queue has already been freed. 487 */ 488 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers) 489 { 490 unsigned int buffer; 491 492 /* 493 * Sanity check: when preparing a buffer the queue lock is released for 494 * a short while (see __buf_prepare for the details), which would allow 495 * a race with a reqbufs which can call this function. Removing the 496 * buffers from underneath __buf_prepare is obviously a bad idea, so we 497 * check if any of the buffers is in the state PREPARING, and if so we 498 * just return -EAGAIN. 499 */ 500 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 501 ++buffer) { 502 if (q->bufs[buffer] == NULL) 503 continue; 504 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) { 505 dprintk(q, 1, "preparing buffers, cannot free\n"); 506 return -EAGAIN; 507 } 508 } 509 510 /* Call driver-provided cleanup function for each buffer, if provided */ 511 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 512 ++buffer) { 513 struct vb2_buffer *vb = q->bufs[buffer]; 514 515 if (vb && vb->planes[0].mem_priv) 516 call_void_vb_qop(vb, buf_cleanup, vb); 517 } 518 519 /* Release video buffer memory */ 520 __vb2_free_mem(q, buffers); 521 522 #ifdef CONFIG_VIDEO_ADV_DEBUG 523 /* 524 * Check that all the calls were balances during the life-time of this 525 * queue. If not (or if the debug level is 1 or up), then dump the 526 * counters to the kernel log. 527 */ 528 if (q->num_buffers) { 529 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming || 530 q->cnt_wait_prepare != q->cnt_wait_finish; 531 532 if (unbalanced || debug) { 533 pr_info("counters for queue %p:%s\n", q, 534 unbalanced ? " UNBALANCED!" : ""); 535 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n", 536 q->cnt_queue_setup, q->cnt_start_streaming, 537 q->cnt_stop_streaming); 538 pr_info(" wait_prepare: %u wait_finish: %u\n", 539 q->cnt_wait_prepare, q->cnt_wait_finish); 540 } 541 q->cnt_queue_setup = 0; 542 q->cnt_wait_prepare = 0; 543 q->cnt_wait_finish = 0; 544 q->cnt_start_streaming = 0; 545 q->cnt_stop_streaming = 0; 546 } 547 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 548 struct vb2_buffer *vb = q->bufs[buffer]; 549 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put || 550 vb->cnt_mem_prepare != vb->cnt_mem_finish || 551 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr || 552 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf || 553 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf || 554 vb->cnt_buf_queue != vb->cnt_buf_done || 555 vb->cnt_buf_prepare != vb->cnt_buf_finish || 556 vb->cnt_buf_init != vb->cnt_buf_cleanup; 557 558 if (unbalanced || debug) { 559 pr_info(" counters for queue %p, buffer %d:%s\n", 560 q, buffer, unbalanced ? " UNBALANCED!" : ""); 561 pr_info(" buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n", 562 vb->cnt_buf_init, vb->cnt_buf_cleanup, 563 vb->cnt_buf_prepare, vb->cnt_buf_finish); 564 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n", 565 vb->cnt_buf_out_validate, vb->cnt_buf_queue, 566 vb->cnt_buf_done, vb->cnt_buf_request_complete); 567 pr_info(" alloc: %u put: %u prepare: %u finish: %u mmap: %u\n", 568 vb->cnt_mem_alloc, vb->cnt_mem_put, 569 vb->cnt_mem_prepare, vb->cnt_mem_finish, 570 vb->cnt_mem_mmap); 571 pr_info(" get_userptr: %u put_userptr: %u\n", 572 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr); 573 pr_info(" attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n", 574 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf, 575 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf); 576 pr_info(" get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n", 577 vb->cnt_mem_get_dmabuf, 578 vb->cnt_mem_num_users, 579 vb->cnt_mem_vaddr, 580 vb->cnt_mem_cookie); 581 } 582 } 583 #endif 584 585 /* Free videobuf buffers */ 586 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 587 ++buffer) { 588 kfree(q->bufs[buffer]); 589 q->bufs[buffer] = NULL; 590 } 591 592 q->num_buffers -= buffers; 593 if (!q->num_buffers) { 594 q->memory = VB2_MEMORY_UNKNOWN; 595 INIT_LIST_HEAD(&q->queued_list); 596 } 597 return 0; 598 } 599 600 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb) 601 { 602 unsigned int plane; 603 for (plane = 0; plane < vb->num_planes; ++plane) { 604 void *mem_priv = vb->planes[plane].mem_priv; 605 /* 606 * If num_users() has not been provided, call_memop 607 * will return 0, apparently nobody cares about this 608 * case anyway. If num_users() returns more than 1, 609 * we are not the only user of the plane's memory. 610 */ 611 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1) 612 return true; 613 } 614 return false; 615 } 616 EXPORT_SYMBOL(vb2_buffer_in_use); 617 618 /* 619 * __buffers_in_use() - return true if any buffers on the queue are in use and 620 * the queue cannot be freed (by the means of REQBUFS(0)) call 621 */ 622 static bool __buffers_in_use(struct vb2_queue *q) 623 { 624 unsigned int buffer; 625 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 626 if (vb2_buffer_in_use(q, q->bufs[buffer])) 627 return true; 628 } 629 return false; 630 } 631 632 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb) 633 { 634 call_void_bufop(q, fill_user_buffer, q->bufs[index], pb); 635 } 636 EXPORT_SYMBOL_GPL(vb2_core_querybuf); 637 638 /* 639 * __verify_userptr_ops() - verify that all memory operations required for 640 * USERPTR queue type have been provided 641 */ 642 static int __verify_userptr_ops(struct vb2_queue *q) 643 { 644 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr || 645 !q->mem_ops->put_userptr) 646 return -EINVAL; 647 648 return 0; 649 } 650 651 /* 652 * __verify_mmap_ops() - verify that all memory operations required for 653 * MMAP queue type have been provided 654 */ 655 static int __verify_mmap_ops(struct vb2_queue *q) 656 { 657 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc || 658 !q->mem_ops->put || !q->mem_ops->mmap) 659 return -EINVAL; 660 661 return 0; 662 } 663 664 /* 665 * __verify_dmabuf_ops() - verify that all memory operations required for 666 * DMABUF queue type have been provided 667 */ 668 static int __verify_dmabuf_ops(struct vb2_queue *q) 669 { 670 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf || 671 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf || 672 !q->mem_ops->unmap_dmabuf) 673 return -EINVAL; 674 675 return 0; 676 } 677 678 int vb2_verify_memory_type(struct vb2_queue *q, 679 enum vb2_memory memory, unsigned int type) 680 { 681 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR && 682 memory != VB2_MEMORY_DMABUF) { 683 dprintk(q, 1, "unsupported memory type\n"); 684 return -EINVAL; 685 } 686 687 if (type != q->type) { 688 dprintk(q, 1, "requested type is incorrect\n"); 689 return -EINVAL; 690 } 691 692 /* 693 * Make sure all the required memory ops for given memory type 694 * are available. 695 */ 696 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) { 697 dprintk(q, 1, "MMAP for current setup unsupported\n"); 698 return -EINVAL; 699 } 700 701 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) { 702 dprintk(q, 1, "USERPTR for current setup unsupported\n"); 703 return -EINVAL; 704 } 705 706 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) { 707 dprintk(q, 1, "DMABUF for current setup unsupported\n"); 708 return -EINVAL; 709 } 710 711 /* 712 * Place the busy tests at the end: -EBUSY can be ignored when 713 * create_bufs is called with count == 0, but count == 0 should still 714 * do the memory and type validation. 715 */ 716 if (vb2_fileio_is_active(q)) { 717 dprintk(q, 1, "file io in progress\n"); 718 return -EBUSY; 719 } 720 return 0; 721 } 722 EXPORT_SYMBOL(vb2_verify_memory_type); 723 724 static void set_queue_consistency(struct vb2_queue *q, bool consistent_mem) 725 { 726 q->dma_attrs &= ~DMA_ATTR_NON_CONSISTENT; 727 728 if (!vb2_queue_allows_cache_hints(q)) 729 return; 730 if (!consistent_mem) 731 q->dma_attrs |= DMA_ATTR_NON_CONSISTENT; 732 } 733 734 static bool verify_consistency_attr(struct vb2_queue *q, bool consistent_mem) 735 { 736 bool queue_is_consistent = !(q->dma_attrs & DMA_ATTR_NON_CONSISTENT); 737 738 if (consistent_mem != queue_is_consistent) { 739 dprintk(q, 1, "memory consistency model mismatch\n"); 740 return false; 741 } 742 return true; 743 } 744 745 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, 746 unsigned int flags, unsigned int *count) 747 { 748 unsigned int num_buffers, allocated_buffers, num_planes = 0; 749 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 750 bool consistent_mem = true; 751 unsigned int i; 752 int ret; 753 754 if (flags & V4L2_FLAG_MEMORY_NON_CONSISTENT) 755 consistent_mem = false; 756 757 if (q->streaming) { 758 dprintk(q, 1, "streaming active\n"); 759 return -EBUSY; 760 } 761 762 if (q->waiting_in_dqbuf && *count) { 763 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 764 return -EBUSY; 765 } 766 767 if (*count == 0 || q->num_buffers != 0 || 768 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory) || 769 !verify_consistency_attr(q, consistent_mem)) { 770 /* 771 * We already have buffers allocated, so first check if they 772 * are not in use and can be freed. 773 */ 774 mutex_lock(&q->mmap_lock); 775 if (debug && q->memory == VB2_MEMORY_MMAP && 776 __buffers_in_use(q)) 777 dprintk(q, 1, "memory in use, orphaning buffers\n"); 778 779 /* 780 * Call queue_cancel to clean up any buffers in the 781 * QUEUED state which is possible if buffers were prepared or 782 * queued without ever calling STREAMON. 783 */ 784 __vb2_queue_cancel(q); 785 ret = __vb2_queue_free(q, q->num_buffers); 786 mutex_unlock(&q->mmap_lock); 787 if (ret) 788 return ret; 789 790 /* 791 * In case of REQBUFS(0) return immediately without calling 792 * driver's queue_setup() callback and allocating resources. 793 */ 794 if (*count == 0) 795 return 0; 796 } 797 798 /* 799 * Make sure the requested values and current defaults are sane. 800 */ 801 WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME); 802 num_buffers = max_t(unsigned int, *count, q->min_buffers_needed); 803 num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME); 804 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 805 q->memory = memory; 806 set_queue_consistency(q, consistent_mem); 807 808 /* 809 * Ask the driver how many buffers and planes per buffer it requires. 810 * Driver also sets the size and allocator context for each plane. 811 */ 812 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes, 813 plane_sizes, q->alloc_devs); 814 if (ret) 815 return ret; 816 817 /* Check that driver has set sane values */ 818 if (WARN_ON(!num_planes)) 819 return -EINVAL; 820 821 for (i = 0; i < num_planes; i++) 822 if (WARN_ON(!plane_sizes[i])) 823 return -EINVAL; 824 825 /* Finally, allocate buffers and video memory */ 826 allocated_buffers = 827 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes); 828 if (allocated_buffers == 0) { 829 dprintk(q, 1, "memory allocation failed\n"); 830 return -ENOMEM; 831 } 832 833 /* 834 * There is no point in continuing if we can't allocate the minimum 835 * number of buffers needed by this vb2_queue. 836 */ 837 if (allocated_buffers < q->min_buffers_needed) 838 ret = -ENOMEM; 839 840 /* 841 * Check if driver can handle the allocated number of buffers. 842 */ 843 if (!ret && allocated_buffers < num_buffers) { 844 num_buffers = allocated_buffers; 845 /* 846 * num_planes is set by the previous queue_setup(), but since it 847 * signals to queue_setup() whether it is called from create_bufs() 848 * vs reqbufs() we zero it here to signal that queue_setup() is 849 * called for the reqbufs() case. 850 */ 851 num_planes = 0; 852 853 ret = call_qop(q, queue_setup, q, &num_buffers, 854 &num_planes, plane_sizes, q->alloc_devs); 855 856 if (!ret && allocated_buffers < num_buffers) 857 ret = -ENOMEM; 858 859 /* 860 * Either the driver has accepted a smaller number of buffers, 861 * or .queue_setup() returned an error 862 */ 863 } 864 865 mutex_lock(&q->mmap_lock); 866 q->num_buffers = allocated_buffers; 867 868 if (ret < 0) { 869 /* 870 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 871 * from q->num_buffers. 872 */ 873 __vb2_queue_free(q, allocated_buffers); 874 mutex_unlock(&q->mmap_lock); 875 return ret; 876 } 877 mutex_unlock(&q->mmap_lock); 878 879 /* 880 * Return the number of successfully allocated buffers 881 * to the userspace. 882 */ 883 *count = allocated_buffers; 884 q->waiting_for_buffers = !q->is_output; 885 886 return 0; 887 } 888 EXPORT_SYMBOL_GPL(vb2_core_reqbufs); 889 890 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, 891 unsigned int flags, unsigned int *count, 892 unsigned int requested_planes, 893 const unsigned int requested_sizes[]) 894 { 895 unsigned int num_planes = 0, num_buffers, allocated_buffers; 896 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 897 bool consistent_mem = true; 898 int ret; 899 900 if (flags & V4L2_FLAG_MEMORY_NON_CONSISTENT) 901 consistent_mem = false; 902 903 if (q->num_buffers == VB2_MAX_FRAME) { 904 dprintk(q, 1, "maximum number of buffers already allocated\n"); 905 return -ENOBUFS; 906 } 907 908 if (!q->num_buffers) { 909 if (q->waiting_in_dqbuf && *count) { 910 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 911 return -EBUSY; 912 } 913 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 914 q->memory = memory; 915 set_queue_consistency(q, consistent_mem); 916 q->waiting_for_buffers = !q->is_output; 917 } else { 918 if (q->memory != memory) { 919 dprintk(q, 1, "memory model mismatch\n"); 920 return -EINVAL; 921 } 922 if (!verify_consistency_attr(q, consistent_mem)) 923 return -EINVAL; 924 } 925 926 num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers); 927 928 if (requested_planes && requested_sizes) { 929 num_planes = requested_planes; 930 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes)); 931 } 932 933 /* 934 * Ask the driver, whether the requested number of buffers, planes per 935 * buffer and their sizes are acceptable 936 */ 937 ret = call_qop(q, queue_setup, q, &num_buffers, 938 &num_planes, plane_sizes, q->alloc_devs); 939 if (ret) 940 return ret; 941 942 /* Finally, allocate buffers and video memory */ 943 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers, 944 num_planes, plane_sizes); 945 if (allocated_buffers == 0) { 946 dprintk(q, 1, "memory allocation failed\n"); 947 return -ENOMEM; 948 } 949 950 /* 951 * Check if driver can handle the so far allocated number of buffers. 952 */ 953 if (allocated_buffers < num_buffers) { 954 num_buffers = allocated_buffers; 955 956 /* 957 * q->num_buffers contains the total number of buffers, that the 958 * queue driver has set up 959 */ 960 ret = call_qop(q, queue_setup, q, &num_buffers, 961 &num_planes, plane_sizes, q->alloc_devs); 962 963 if (!ret && allocated_buffers < num_buffers) 964 ret = -ENOMEM; 965 966 /* 967 * Either the driver has accepted a smaller number of buffers, 968 * or .queue_setup() returned an error 969 */ 970 } 971 972 mutex_lock(&q->mmap_lock); 973 q->num_buffers += allocated_buffers; 974 975 if (ret < 0) { 976 /* 977 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 978 * from q->num_buffers. 979 */ 980 __vb2_queue_free(q, allocated_buffers); 981 mutex_unlock(&q->mmap_lock); 982 return -ENOMEM; 983 } 984 mutex_unlock(&q->mmap_lock); 985 986 /* 987 * Return the number of successfully allocated buffers 988 * to the userspace. 989 */ 990 *count = allocated_buffers; 991 992 return 0; 993 } 994 EXPORT_SYMBOL_GPL(vb2_core_create_bufs); 995 996 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no) 997 { 998 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 999 return NULL; 1000 1001 return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv); 1002 1003 } 1004 EXPORT_SYMBOL_GPL(vb2_plane_vaddr); 1005 1006 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no) 1007 { 1008 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 1009 return NULL; 1010 1011 return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv); 1012 } 1013 EXPORT_SYMBOL_GPL(vb2_plane_cookie); 1014 1015 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state) 1016 { 1017 struct vb2_queue *q = vb->vb2_queue; 1018 unsigned long flags; 1019 1020 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE)) 1021 return; 1022 1023 if (WARN_ON(state != VB2_BUF_STATE_DONE && 1024 state != VB2_BUF_STATE_ERROR && 1025 state != VB2_BUF_STATE_QUEUED)) 1026 state = VB2_BUF_STATE_ERROR; 1027 1028 #ifdef CONFIG_VIDEO_ADV_DEBUG 1029 /* 1030 * Although this is not a callback, it still does have to balance 1031 * with the buf_queue op. So update this counter manually. 1032 */ 1033 vb->cnt_buf_done++; 1034 #endif 1035 dprintk(q, 4, "done processing on buffer %d, state: %s\n", 1036 vb->index, vb2_state_name(state)); 1037 1038 if (state != VB2_BUF_STATE_QUEUED) 1039 __vb2_buf_mem_finish(vb); 1040 1041 spin_lock_irqsave(&q->done_lock, flags); 1042 if (state == VB2_BUF_STATE_QUEUED) { 1043 vb->state = VB2_BUF_STATE_QUEUED; 1044 } else { 1045 /* Add the buffer to the done buffers list */ 1046 list_add_tail(&vb->done_entry, &q->done_list); 1047 vb->state = state; 1048 } 1049 atomic_dec(&q->owned_by_drv_count); 1050 1051 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) { 1052 media_request_object_unbind(&vb->req_obj); 1053 media_request_object_put(&vb->req_obj); 1054 } 1055 1056 spin_unlock_irqrestore(&q->done_lock, flags); 1057 1058 trace_vb2_buf_done(q, vb); 1059 1060 switch (state) { 1061 case VB2_BUF_STATE_QUEUED: 1062 return; 1063 default: 1064 /* Inform any processes that may be waiting for buffers */ 1065 wake_up(&q->done_wq); 1066 break; 1067 } 1068 } 1069 EXPORT_SYMBOL_GPL(vb2_buffer_done); 1070 1071 void vb2_discard_done(struct vb2_queue *q) 1072 { 1073 struct vb2_buffer *vb; 1074 unsigned long flags; 1075 1076 spin_lock_irqsave(&q->done_lock, flags); 1077 list_for_each_entry(vb, &q->done_list, done_entry) 1078 vb->state = VB2_BUF_STATE_ERROR; 1079 spin_unlock_irqrestore(&q->done_lock, flags); 1080 } 1081 EXPORT_SYMBOL_GPL(vb2_discard_done); 1082 1083 /* 1084 * __prepare_mmap() - prepare an MMAP buffer 1085 */ 1086 static int __prepare_mmap(struct vb2_buffer *vb) 1087 { 1088 int ret = 0; 1089 1090 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1091 vb, vb->planes); 1092 return ret ? ret : call_vb_qop(vb, buf_prepare, vb); 1093 } 1094 1095 /* 1096 * __prepare_userptr() - prepare a USERPTR buffer 1097 */ 1098 static int __prepare_userptr(struct vb2_buffer *vb) 1099 { 1100 struct vb2_plane planes[VB2_MAX_PLANES]; 1101 struct vb2_queue *q = vb->vb2_queue; 1102 void *mem_priv; 1103 unsigned int plane; 1104 int ret = 0; 1105 bool reacquired = vb->planes[0].mem_priv == NULL; 1106 1107 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1108 /* Copy relevant information provided by the userspace */ 1109 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1110 vb, planes); 1111 if (ret) 1112 return ret; 1113 1114 for (plane = 0; plane < vb->num_planes; ++plane) { 1115 /* Skip the plane if already verified */ 1116 if (vb->planes[plane].m.userptr && 1117 vb->planes[plane].m.userptr == planes[plane].m.userptr 1118 && vb->planes[plane].length == planes[plane].length) 1119 continue; 1120 1121 dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n", 1122 plane); 1123 1124 /* Check if the provided plane buffer is large enough */ 1125 if (planes[plane].length < vb->planes[plane].min_length) { 1126 dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n", 1127 planes[plane].length, 1128 vb->planes[plane].min_length, 1129 plane); 1130 ret = -EINVAL; 1131 goto err; 1132 } 1133 1134 /* Release previously acquired memory if present */ 1135 if (vb->planes[plane].mem_priv) { 1136 if (!reacquired) { 1137 reacquired = true; 1138 vb->copied_timestamp = 0; 1139 call_void_vb_qop(vb, buf_cleanup, vb); 1140 } 1141 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 1142 } 1143 1144 vb->planes[plane].mem_priv = NULL; 1145 vb->planes[plane].bytesused = 0; 1146 vb->planes[plane].length = 0; 1147 vb->planes[plane].m.userptr = 0; 1148 vb->planes[plane].data_offset = 0; 1149 1150 /* Acquire each plane's memory */ 1151 mem_priv = call_ptr_memop(vb, get_userptr, 1152 q->alloc_devs[plane] ? : q->dev, 1153 planes[plane].m.userptr, 1154 planes[plane].length, q->dma_dir); 1155 if (IS_ERR(mem_priv)) { 1156 dprintk(q, 1, "failed acquiring userspace memory for plane %d\n", 1157 plane); 1158 ret = PTR_ERR(mem_priv); 1159 goto err; 1160 } 1161 vb->planes[plane].mem_priv = mem_priv; 1162 } 1163 1164 /* 1165 * Now that everything is in order, copy relevant information 1166 * provided by userspace. 1167 */ 1168 for (plane = 0; plane < vb->num_planes; ++plane) { 1169 vb->planes[plane].bytesused = planes[plane].bytesused; 1170 vb->planes[plane].length = planes[plane].length; 1171 vb->planes[plane].m.userptr = planes[plane].m.userptr; 1172 vb->planes[plane].data_offset = planes[plane].data_offset; 1173 } 1174 1175 if (reacquired) { 1176 /* 1177 * One or more planes changed, so we must call buf_init to do 1178 * the driver-specific initialization on the newly acquired 1179 * buffer, if provided. 1180 */ 1181 ret = call_vb_qop(vb, buf_init, vb); 1182 if (ret) { 1183 dprintk(q, 1, "buffer initialization failed\n"); 1184 goto err; 1185 } 1186 } 1187 1188 ret = call_vb_qop(vb, buf_prepare, vb); 1189 if (ret) { 1190 dprintk(q, 1, "buffer preparation failed\n"); 1191 call_void_vb_qop(vb, buf_cleanup, vb); 1192 goto err; 1193 } 1194 1195 return 0; 1196 err: 1197 /* In case of errors, release planes that were already acquired */ 1198 for (plane = 0; plane < vb->num_planes; ++plane) { 1199 if (vb->planes[plane].mem_priv) 1200 call_void_memop(vb, put_userptr, 1201 vb->planes[plane].mem_priv); 1202 vb->planes[plane].mem_priv = NULL; 1203 vb->planes[plane].m.userptr = 0; 1204 vb->planes[plane].length = 0; 1205 } 1206 1207 return ret; 1208 } 1209 1210 /* 1211 * __prepare_dmabuf() - prepare a DMABUF buffer 1212 */ 1213 static int __prepare_dmabuf(struct vb2_buffer *vb) 1214 { 1215 struct vb2_plane planes[VB2_MAX_PLANES]; 1216 struct vb2_queue *q = vb->vb2_queue; 1217 void *mem_priv; 1218 unsigned int plane; 1219 int ret = 0; 1220 bool reacquired = vb->planes[0].mem_priv == NULL; 1221 1222 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1223 /* Copy relevant information provided by the userspace */ 1224 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1225 vb, planes); 1226 if (ret) 1227 return ret; 1228 1229 for (plane = 0; plane < vb->num_planes; ++plane) { 1230 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd); 1231 1232 if (IS_ERR_OR_NULL(dbuf)) { 1233 dprintk(q, 1, "invalid dmabuf fd for plane %d\n", 1234 plane); 1235 ret = -EINVAL; 1236 goto err; 1237 } 1238 1239 /* use DMABUF size if length is not provided */ 1240 if (planes[plane].length == 0) 1241 planes[plane].length = dbuf->size; 1242 1243 if (planes[plane].length < vb->planes[plane].min_length) { 1244 dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n", 1245 planes[plane].length, plane, 1246 vb->planes[plane].min_length); 1247 dma_buf_put(dbuf); 1248 ret = -EINVAL; 1249 goto err; 1250 } 1251 1252 /* Skip the plane if already verified */ 1253 if (dbuf == vb->planes[plane].dbuf && 1254 vb->planes[plane].length == planes[plane].length) { 1255 dma_buf_put(dbuf); 1256 continue; 1257 } 1258 1259 dprintk(q, 3, "buffer for plane %d changed\n", plane); 1260 1261 if (!reacquired) { 1262 reacquired = true; 1263 vb->copied_timestamp = 0; 1264 call_void_vb_qop(vb, buf_cleanup, vb); 1265 } 1266 1267 /* Release previously acquired memory if present */ 1268 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 1269 vb->planes[plane].bytesused = 0; 1270 vb->planes[plane].length = 0; 1271 vb->planes[plane].m.fd = 0; 1272 vb->planes[plane].data_offset = 0; 1273 1274 /* Acquire each plane's memory */ 1275 mem_priv = call_ptr_memop(vb, attach_dmabuf, 1276 q->alloc_devs[plane] ? : q->dev, 1277 dbuf, planes[plane].length, q->dma_dir); 1278 if (IS_ERR(mem_priv)) { 1279 dprintk(q, 1, "failed to attach dmabuf\n"); 1280 ret = PTR_ERR(mem_priv); 1281 dma_buf_put(dbuf); 1282 goto err; 1283 } 1284 1285 vb->planes[plane].dbuf = dbuf; 1286 vb->planes[plane].mem_priv = mem_priv; 1287 } 1288 1289 /* 1290 * This pins the buffer(s) with dma_buf_map_attachment()). It's done 1291 * here instead just before the DMA, while queueing the buffer(s) so 1292 * userspace knows sooner rather than later if the dma-buf map fails. 1293 */ 1294 for (plane = 0; plane < vb->num_planes; ++plane) { 1295 if (vb->planes[plane].dbuf_mapped) 1296 continue; 1297 1298 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv); 1299 if (ret) { 1300 dprintk(q, 1, "failed to map dmabuf for plane %d\n", 1301 plane); 1302 goto err; 1303 } 1304 vb->planes[plane].dbuf_mapped = 1; 1305 } 1306 1307 /* 1308 * Now that everything is in order, copy relevant information 1309 * provided by userspace. 1310 */ 1311 for (plane = 0; plane < vb->num_planes; ++plane) { 1312 vb->planes[plane].bytesused = planes[plane].bytesused; 1313 vb->planes[plane].length = planes[plane].length; 1314 vb->planes[plane].m.fd = planes[plane].m.fd; 1315 vb->planes[plane].data_offset = planes[plane].data_offset; 1316 } 1317 1318 if (reacquired) { 1319 /* 1320 * Call driver-specific initialization on the newly acquired buffer, 1321 * if provided. 1322 */ 1323 ret = call_vb_qop(vb, buf_init, vb); 1324 if (ret) { 1325 dprintk(q, 1, "buffer initialization failed\n"); 1326 goto err; 1327 } 1328 } 1329 1330 ret = call_vb_qop(vb, buf_prepare, vb); 1331 if (ret) { 1332 dprintk(q, 1, "buffer preparation failed\n"); 1333 call_void_vb_qop(vb, buf_cleanup, vb); 1334 goto err; 1335 } 1336 1337 return 0; 1338 err: 1339 /* In case of errors, release planes that were already acquired */ 1340 __vb2_buf_dmabuf_put(vb); 1341 1342 return ret; 1343 } 1344 1345 /* 1346 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing 1347 */ 1348 static void __enqueue_in_driver(struct vb2_buffer *vb) 1349 { 1350 struct vb2_queue *q = vb->vb2_queue; 1351 1352 vb->state = VB2_BUF_STATE_ACTIVE; 1353 atomic_inc(&q->owned_by_drv_count); 1354 1355 trace_vb2_buf_queue(q, vb); 1356 1357 call_void_vb_qop(vb, buf_queue, vb); 1358 } 1359 1360 static int __buf_prepare(struct vb2_buffer *vb) 1361 { 1362 struct vb2_queue *q = vb->vb2_queue; 1363 enum vb2_buffer_state orig_state = vb->state; 1364 int ret; 1365 1366 if (q->error) { 1367 dprintk(q, 1, "fatal error occurred on queue\n"); 1368 return -EIO; 1369 } 1370 1371 if (vb->prepared) 1372 return 0; 1373 WARN_ON(vb->synced); 1374 1375 if (q->is_output) { 1376 ret = call_vb_qop(vb, buf_out_validate, vb); 1377 if (ret) { 1378 dprintk(q, 1, "buffer validation failed\n"); 1379 return ret; 1380 } 1381 } 1382 1383 vb->state = VB2_BUF_STATE_PREPARING; 1384 1385 switch (q->memory) { 1386 case VB2_MEMORY_MMAP: 1387 ret = __prepare_mmap(vb); 1388 break; 1389 case VB2_MEMORY_USERPTR: 1390 ret = __prepare_userptr(vb); 1391 break; 1392 case VB2_MEMORY_DMABUF: 1393 ret = __prepare_dmabuf(vb); 1394 break; 1395 default: 1396 WARN(1, "Invalid queue type\n"); 1397 ret = -EINVAL; 1398 break; 1399 } 1400 1401 if (ret) { 1402 dprintk(q, 1, "buffer preparation failed: %d\n", ret); 1403 vb->state = orig_state; 1404 return ret; 1405 } 1406 1407 __vb2_buf_mem_prepare(vb); 1408 vb->prepared = 1; 1409 vb->state = orig_state; 1410 1411 return 0; 1412 } 1413 1414 static int vb2_req_prepare(struct media_request_object *obj) 1415 { 1416 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1417 int ret; 1418 1419 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST)) 1420 return -EINVAL; 1421 1422 mutex_lock(vb->vb2_queue->lock); 1423 ret = __buf_prepare(vb); 1424 mutex_unlock(vb->vb2_queue->lock); 1425 return ret; 1426 } 1427 1428 static void __vb2_dqbuf(struct vb2_buffer *vb); 1429 1430 static void vb2_req_unprepare(struct media_request_object *obj) 1431 { 1432 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1433 1434 mutex_lock(vb->vb2_queue->lock); 1435 __vb2_dqbuf(vb); 1436 vb->state = VB2_BUF_STATE_IN_REQUEST; 1437 mutex_unlock(vb->vb2_queue->lock); 1438 WARN_ON(!vb->req_obj.req); 1439 } 1440 1441 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1442 struct media_request *req); 1443 1444 static void vb2_req_queue(struct media_request_object *obj) 1445 { 1446 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1447 1448 mutex_lock(vb->vb2_queue->lock); 1449 vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL); 1450 mutex_unlock(vb->vb2_queue->lock); 1451 } 1452 1453 static void vb2_req_unbind(struct media_request_object *obj) 1454 { 1455 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1456 1457 if (vb->state == VB2_BUF_STATE_IN_REQUEST) 1458 call_void_bufop(vb->vb2_queue, init_buffer, vb); 1459 } 1460 1461 static void vb2_req_release(struct media_request_object *obj) 1462 { 1463 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1464 1465 if (vb->state == VB2_BUF_STATE_IN_REQUEST) { 1466 vb->state = VB2_BUF_STATE_DEQUEUED; 1467 if (vb->request) 1468 media_request_put(vb->request); 1469 vb->request = NULL; 1470 } 1471 } 1472 1473 static const struct media_request_object_ops vb2_core_req_ops = { 1474 .prepare = vb2_req_prepare, 1475 .unprepare = vb2_req_unprepare, 1476 .queue = vb2_req_queue, 1477 .unbind = vb2_req_unbind, 1478 .release = vb2_req_release, 1479 }; 1480 1481 bool vb2_request_object_is_buffer(struct media_request_object *obj) 1482 { 1483 return obj->ops == &vb2_core_req_ops; 1484 } 1485 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer); 1486 1487 unsigned int vb2_request_buffer_cnt(struct media_request *req) 1488 { 1489 struct media_request_object *obj; 1490 unsigned long flags; 1491 unsigned int buffer_cnt = 0; 1492 1493 spin_lock_irqsave(&req->lock, flags); 1494 list_for_each_entry(obj, &req->objects, list) 1495 if (vb2_request_object_is_buffer(obj)) 1496 buffer_cnt++; 1497 spin_unlock_irqrestore(&req->lock, flags); 1498 1499 return buffer_cnt; 1500 } 1501 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt); 1502 1503 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb) 1504 { 1505 struct vb2_buffer *vb; 1506 int ret; 1507 1508 vb = q->bufs[index]; 1509 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1510 dprintk(q, 1, "invalid buffer state %s\n", 1511 vb2_state_name(vb->state)); 1512 return -EINVAL; 1513 } 1514 if (vb->prepared) { 1515 dprintk(q, 1, "buffer already prepared\n"); 1516 return -EINVAL; 1517 } 1518 1519 ret = __buf_prepare(vb); 1520 if (ret) 1521 return ret; 1522 1523 /* Fill buffer information for the userspace */ 1524 call_void_bufop(q, fill_user_buffer, vb, pb); 1525 1526 dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index); 1527 1528 return 0; 1529 } 1530 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf); 1531 1532 /* 1533 * vb2_start_streaming() - Attempt to start streaming. 1534 * @q: videobuf2 queue 1535 * 1536 * Attempt to start streaming. When this function is called there must be 1537 * at least q->min_buffers_needed buffers queued up (i.e. the minimum 1538 * number of buffers required for the DMA engine to function). If the 1539 * @start_streaming op fails it is supposed to return all the driver-owned 1540 * buffers back to vb2 in state QUEUED. Check if that happened and if 1541 * not warn and reclaim them forcefully. 1542 */ 1543 static int vb2_start_streaming(struct vb2_queue *q) 1544 { 1545 struct vb2_buffer *vb; 1546 int ret; 1547 1548 /* 1549 * If any buffers were queued before streamon, 1550 * we can now pass them to driver for processing. 1551 */ 1552 list_for_each_entry(vb, &q->queued_list, queued_entry) 1553 __enqueue_in_driver(vb); 1554 1555 /* Tell the driver to start streaming */ 1556 q->start_streaming_called = 1; 1557 ret = call_qop(q, start_streaming, q, 1558 atomic_read(&q->owned_by_drv_count)); 1559 if (!ret) 1560 return 0; 1561 1562 q->start_streaming_called = 0; 1563 1564 dprintk(q, 1, "driver refused to start streaming\n"); 1565 /* 1566 * If you see this warning, then the driver isn't cleaning up properly 1567 * after a failed start_streaming(). See the start_streaming() 1568 * documentation in videobuf2-core.h for more information how buffers 1569 * should be returned to vb2 in start_streaming(). 1570 */ 1571 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1572 unsigned i; 1573 1574 /* 1575 * Forcefully reclaim buffers if the driver did not 1576 * correctly return them to vb2. 1577 */ 1578 for (i = 0; i < q->num_buffers; ++i) { 1579 vb = q->bufs[i]; 1580 if (vb->state == VB2_BUF_STATE_ACTIVE) 1581 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED); 1582 } 1583 /* Must be zero now */ 1584 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1585 } 1586 /* 1587 * If done_list is not empty, then start_streaming() didn't call 1588 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or 1589 * STATE_DONE. 1590 */ 1591 WARN_ON(!list_empty(&q->done_list)); 1592 return ret; 1593 } 1594 1595 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1596 struct media_request *req) 1597 { 1598 struct vb2_buffer *vb; 1599 int ret; 1600 1601 if (q->error) { 1602 dprintk(q, 1, "fatal error occurred on queue\n"); 1603 return -EIO; 1604 } 1605 1606 vb = q->bufs[index]; 1607 1608 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1609 q->requires_requests) { 1610 dprintk(q, 1, "qbuf requires a request\n"); 1611 return -EBADR; 1612 } 1613 1614 if ((req && q->uses_qbuf) || 1615 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1616 q->uses_requests)) { 1617 dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n"); 1618 return -EBUSY; 1619 } 1620 1621 if (req) { 1622 int ret; 1623 1624 q->uses_requests = 1; 1625 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1626 dprintk(q, 1, "buffer %d not in dequeued state\n", 1627 vb->index); 1628 return -EINVAL; 1629 } 1630 1631 if (q->is_output && !vb->prepared) { 1632 ret = call_vb_qop(vb, buf_out_validate, vb); 1633 if (ret) { 1634 dprintk(q, 1, "buffer validation failed\n"); 1635 return ret; 1636 } 1637 } 1638 1639 media_request_object_init(&vb->req_obj); 1640 1641 /* Make sure the request is in a safe state for updating. */ 1642 ret = media_request_lock_for_update(req); 1643 if (ret) 1644 return ret; 1645 ret = media_request_object_bind(req, &vb2_core_req_ops, 1646 q, true, &vb->req_obj); 1647 media_request_unlock_for_update(req); 1648 if (ret) 1649 return ret; 1650 1651 vb->state = VB2_BUF_STATE_IN_REQUEST; 1652 1653 /* 1654 * Increment the refcount and store the request. 1655 * The request refcount is decremented again when the 1656 * buffer is dequeued. This is to prevent vb2_buffer_done() 1657 * from freeing the request from interrupt context, which can 1658 * happen if the application closed the request fd after 1659 * queueing the request. 1660 */ 1661 media_request_get(req); 1662 vb->request = req; 1663 1664 /* Fill buffer information for the userspace */ 1665 if (pb) { 1666 call_void_bufop(q, copy_timestamp, vb, pb); 1667 call_void_bufop(q, fill_user_buffer, vb, pb); 1668 } 1669 1670 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1671 return 0; 1672 } 1673 1674 if (vb->state != VB2_BUF_STATE_IN_REQUEST) 1675 q->uses_qbuf = 1; 1676 1677 switch (vb->state) { 1678 case VB2_BUF_STATE_DEQUEUED: 1679 case VB2_BUF_STATE_IN_REQUEST: 1680 if (!vb->prepared) { 1681 ret = __buf_prepare(vb); 1682 if (ret) 1683 return ret; 1684 } 1685 break; 1686 case VB2_BUF_STATE_PREPARING: 1687 dprintk(q, 1, "buffer still being prepared\n"); 1688 return -EINVAL; 1689 default: 1690 dprintk(q, 1, "invalid buffer state %s\n", 1691 vb2_state_name(vb->state)); 1692 return -EINVAL; 1693 } 1694 1695 /* 1696 * Add to the queued buffers list, a buffer will stay on it until 1697 * dequeued in dqbuf. 1698 */ 1699 list_add_tail(&vb->queued_entry, &q->queued_list); 1700 q->queued_count++; 1701 q->waiting_for_buffers = false; 1702 vb->state = VB2_BUF_STATE_QUEUED; 1703 1704 if (pb) 1705 call_void_bufop(q, copy_timestamp, vb, pb); 1706 1707 trace_vb2_qbuf(q, vb); 1708 1709 /* 1710 * If already streaming, give the buffer to driver for processing. 1711 * If not, the buffer will be given to driver on next streamon. 1712 */ 1713 if (q->start_streaming_called) 1714 __enqueue_in_driver(vb); 1715 1716 /* Fill buffer information for the userspace */ 1717 if (pb) 1718 call_void_bufop(q, fill_user_buffer, vb, pb); 1719 1720 /* 1721 * If streamon has been called, and we haven't yet called 1722 * start_streaming() since not enough buffers were queued, and 1723 * we now have reached the minimum number of queued buffers, 1724 * then we can finally call start_streaming(). 1725 */ 1726 if (q->streaming && !q->start_streaming_called && 1727 q->queued_count >= q->min_buffers_needed) { 1728 ret = vb2_start_streaming(q); 1729 if (ret) 1730 return ret; 1731 } 1732 1733 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1734 return 0; 1735 } 1736 EXPORT_SYMBOL_GPL(vb2_core_qbuf); 1737 1738 /* 1739 * __vb2_wait_for_done_vb() - wait for a buffer to become available 1740 * for dequeuing 1741 * 1742 * Will sleep if required for nonblocking == false. 1743 */ 1744 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking) 1745 { 1746 /* 1747 * All operations on vb_done_list are performed under done_lock 1748 * spinlock protection. However, buffers may be removed from 1749 * it and returned to userspace only while holding both driver's 1750 * lock and the done_lock spinlock. Thus we can be sure that as 1751 * long as we hold the driver's lock, the list will remain not 1752 * empty if list_empty() check succeeds. 1753 */ 1754 1755 for (;;) { 1756 int ret; 1757 1758 if (q->waiting_in_dqbuf) { 1759 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 1760 return -EBUSY; 1761 } 1762 1763 if (!q->streaming) { 1764 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1765 return -EINVAL; 1766 } 1767 1768 if (q->error) { 1769 dprintk(q, 1, "Queue in error state, will not wait for buffers\n"); 1770 return -EIO; 1771 } 1772 1773 if (q->last_buffer_dequeued) { 1774 dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n"); 1775 return -EPIPE; 1776 } 1777 1778 if (!list_empty(&q->done_list)) { 1779 /* 1780 * Found a buffer that we were waiting for. 1781 */ 1782 break; 1783 } 1784 1785 if (nonblocking) { 1786 dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n"); 1787 return -EAGAIN; 1788 } 1789 1790 q->waiting_in_dqbuf = 1; 1791 /* 1792 * We are streaming and blocking, wait for another buffer to 1793 * become ready or for streamoff. Driver's lock is released to 1794 * allow streamoff or qbuf to be called while waiting. 1795 */ 1796 call_void_qop(q, wait_prepare, q); 1797 1798 /* 1799 * All locks have been released, it is safe to sleep now. 1800 */ 1801 dprintk(q, 3, "will sleep waiting for buffers\n"); 1802 ret = wait_event_interruptible(q->done_wq, 1803 !list_empty(&q->done_list) || !q->streaming || 1804 q->error); 1805 1806 /* 1807 * We need to reevaluate both conditions again after reacquiring 1808 * the locks or return an error if one occurred. 1809 */ 1810 call_void_qop(q, wait_finish, q); 1811 q->waiting_in_dqbuf = 0; 1812 if (ret) { 1813 dprintk(q, 1, "sleep was interrupted\n"); 1814 return ret; 1815 } 1816 } 1817 return 0; 1818 } 1819 1820 /* 1821 * __vb2_get_done_vb() - get a buffer ready for dequeuing 1822 * 1823 * Will sleep if required for nonblocking == false. 1824 */ 1825 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb, 1826 void *pb, int nonblocking) 1827 { 1828 unsigned long flags; 1829 int ret = 0; 1830 1831 /* 1832 * Wait for at least one buffer to become available on the done_list. 1833 */ 1834 ret = __vb2_wait_for_done_vb(q, nonblocking); 1835 if (ret) 1836 return ret; 1837 1838 /* 1839 * Driver's lock has been held since we last verified that done_list 1840 * is not empty, so no need for another list_empty(done_list) check. 1841 */ 1842 spin_lock_irqsave(&q->done_lock, flags); 1843 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry); 1844 /* 1845 * Only remove the buffer from done_list if all planes can be 1846 * handled. Some cases such as V4L2 file I/O and DVB have pb 1847 * == NULL; skip the check then as there's nothing to verify. 1848 */ 1849 if (pb) 1850 ret = call_bufop(q, verify_planes_array, *vb, pb); 1851 if (!ret) 1852 list_del(&(*vb)->done_entry); 1853 spin_unlock_irqrestore(&q->done_lock, flags); 1854 1855 return ret; 1856 } 1857 1858 int vb2_wait_for_all_buffers(struct vb2_queue *q) 1859 { 1860 if (!q->streaming) { 1861 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1862 return -EINVAL; 1863 } 1864 1865 if (q->start_streaming_called) 1866 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count)); 1867 return 0; 1868 } 1869 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers); 1870 1871 /* 1872 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state 1873 */ 1874 static void __vb2_dqbuf(struct vb2_buffer *vb) 1875 { 1876 struct vb2_queue *q = vb->vb2_queue; 1877 1878 /* nothing to do if the buffer is already dequeued */ 1879 if (vb->state == VB2_BUF_STATE_DEQUEUED) 1880 return; 1881 1882 vb->state = VB2_BUF_STATE_DEQUEUED; 1883 1884 call_void_bufop(q, init_buffer, vb); 1885 } 1886 1887 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb, 1888 bool nonblocking) 1889 { 1890 struct vb2_buffer *vb = NULL; 1891 int ret; 1892 1893 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking); 1894 if (ret < 0) 1895 return ret; 1896 1897 switch (vb->state) { 1898 case VB2_BUF_STATE_DONE: 1899 dprintk(q, 3, "returning done buffer\n"); 1900 break; 1901 case VB2_BUF_STATE_ERROR: 1902 dprintk(q, 3, "returning done buffer with errors\n"); 1903 break; 1904 default: 1905 dprintk(q, 1, "invalid buffer state %s\n", 1906 vb2_state_name(vb->state)); 1907 return -EINVAL; 1908 } 1909 1910 call_void_vb_qop(vb, buf_finish, vb); 1911 vb->prepared = 0; 1912 1913 if (pindex) 1914 *pindex = vb->index; 1915 1916 /* Fill buffer information for the userspace */ 1917 if (pb) 1918 call_void_bufop(q, fill_user_buffer, vb, pb); 1919 1920 /* Remove from videobuf queue */ 1921 list_del(&vb->queued_entry); 1922 q->queued_count--; 1923 1924 trace_vb2_dqbuf(q, vb); 1925 1926 /* go back to dequeued state */ 1927 __vb2_dqbuf(vb); 1928 1929 if (WARN_ON(vb->req_obj.req)) { 1930 media_request_object_unbind(&vb->req_obj); 1931 media_request_object_put(&vb->req_obj); 1932 } 1933 if (vb->request) 1934 media_request_put(vb->request); 1935 vb->request = NULL; 1936 1937 dprintk(q, 2, "dqbuf of buffer %d, state: %s\n", 1938 vb->index, vb2_state_name(vb->state)); 1939 1940 return 0; 1941 1942 } 1943 EXPORT_SYMBOL_GPL(vb2_core_dqbuf); 1944 1945 /* 1946 * __vb2_queue_cancel() - cancel and stop (pause) streaming 1947 * 1948 * Removes all queued buffers from driver's queue and all buffers queued by 1949 * userspace from videobuf's queue. Returns to state after reqbufs. 1950 */ 1951 static void __vb2_queue_cancel(struct vb2_queue *q) 1952 { 1953 unsigned int i; 1954 1955 /* 1956 * Tell driver to stop all transactions and release all queued 1957 * buffers. 1958 */ 1959 if (q->start_streaming_called) 1960 call_void_qop(q, stop_streaming, q); 1961 1962 /* 1963 * If you see this warning, then the driver isn't cleaning up properly 1964 * in stop_streaming(). See the stop_streaming() documentation in 1965 * videobuf2-core.h for more information how buffers should be returned 1966 * to vb2 in stop_streaming(). 1967 */ 1968 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1969 for (i = 0; i < q->num_buffers; ++i) 1970 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) { 1971 pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n", 1972 q->bufs[i]); 1973 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR); 1974 } 1975 /* Must be zero now */ 1976 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1977 } 1978 1979 q->streaming = 0; 1980 q->start_streaming_called = 0; 1981 q->queued_count = 0; 1982 q->error = 0; 1983 q->uses_requests = 0; 1984 q->uses_qbuf = 0; 1985 1986 /* 1987 * Remove all buffers from videobuf's list... 1988 */ 1989 INIT_LIST_HEAD(&q->queued_list); 1990 /* 1991 * ...and done list; userspace will not receive any buffers it 1992 * has not already dequeued before initiating cancel. 1993 */ 1994 INIT_LIST_HEAD(&q->done_list); 1995 atomic_set(&q->owned_by_drv_count, 0); 1996 wake_up_all(&q->done_wq); 1997 1998 /* 1999 * Reinitialize all buffers for next use. 2000 * Make sure to call buf_finish for any queued buffers. Normally 2001 * that's done in dqbuf, but that's not going to happen when we 2002 * cancel the whole queue. Note: this code belongs here, not in 2003 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical 2004 * call to __fill_user_buffer() after buf_finish(). That order can't 2005 * be changed, so we can't move the buf_finish() to __vb2_dqbuf(). 2006 */ 2007 for (i = 0; i < q->num_buffers; ++i) { 2008 struct vb2_buffer *vb = q->bufs[i]; 2009 struct media_request *req = vb->req_obj.req; 2010 2011 /* 2012 * If a request is associated with this buffer, then 2013 * call buf_request_cancel() to give the driver to complete() 2014 * related request objects. Otherwise those objects would 2015 * never complete. 2016 */ 2017 if (req) { 2018 enum media_request_state state; 2019 unsigned long flags; 2020 2021 spin_lock_irqsave(&req->lock, flags); 2022 state = req->state; 2023 spin_unlock_irqrestore(&req->lock, flags); 2024 2025 if (state == MEDIA_REQUEST_STATE_QUEUED) 2026 call_void_vb_qop(vb, buf_request_complete, vb); 2027 } 2028 2029 __vb2_buf_mem_finish(vb); 2030 2031 if (vb->prepared) { 2032 call_void_vb_qop(vb, buf_finish, vb); 2033 vb->prepared = 0; 2034 } 2035 __vb2_dqbuf(vb); 2036 2037 if (vb->req_obj.req) { 2038 media_request_object_unbind(&vb->req_obj); 2039 media_request_object_put(&vb->req_obj); 2040 } 2041 if (vb->request) 2042 media_request_put(vb->request); 2043 vb->request = NULL; 2044 vb->copied_timestamp = 0; 2045 } 2046 } 2047 2048 int vb2_core_streamon(struct vb2_queue *q, unsigned int type) 2049 { 2050 int ret; 2051 2052 if (type != q->type) { 2053 dprintk(q, 1, "invalid stream type\n"); 2054 return -EINVAL; 2055 } 2056 2057 if (q->streaming) { 2058 dprintk(q, 3, "already streaming\n"); 2059 return 0; 2060 } 2061 2062 if (!q->num_buffers) { 2063 dprintk(q, 1, "no buffers have been allocated\n"); 2064 return -EINVAL; 2065 } 2066 2067 if (q->num_buffers < q->min_buffers_needed) { 2068 dprintk(q, 1, "need at least %u allocated buffers\n", 2069 q->min_buffers_needed); 2070 return -EINVAL; 2071 } 2072 2073 /* 2074 * Tell driver to start streaming provided sufficient buffers 2075 * are available. 2076 */ 2077 if (q->queued_count >= q->min_buffers_needed) { 2078 ret = v4l_vb2q_enable_media_source(q); 2079 if (ret) 2080 return ret; 2081 ret = vb2_start_streaming(q); 2082 if (ret) 2083 return ret; 2084 } 2085 2086 q->streaming = 1; 2087 2088 dprintk(q, 3, "successful\n"); 2089 return 0; 2090 } 2091 EXPORT_SYMBOL_GPL(vb2_core_streamon); 2092 2093 void vb2_queue_error(struct vb2_queue *q) 2094 { 2095 q->error = 1; 2096 2097 wake_up_all(&q->done_wq); 2098 } 2099 EXPORT_SYMBOL_GPL(vb2_queue_error); 2100 2101 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type) 2102 { 2103 if (type != q->type) { 2104 dprintk(q, 1, "invalid stream type\n"); 2105 return -EINVAL; 2106 } 2107 2108 /* 2109 * Cancel will pause streaming and remove all buffers from the driver 2110 * and videobuf, effectively returning control over them to userspace. 2111 * 2112 * Note that we do this even if q->streaming == 0: if you prepare or 2113 * queue buffers, and then call streamoff without ever having called 2114 * streamon, you would still expect those buffers to be returned to 2115 * their normal dequeued state. 2116 */ 2117 __vb2_queue_cancel(q); 2118 q->waiting_for_buffers = !q->is_output; 2119 q->last_buffer_dequeued = false; 2120 2121 dprintk(q, 3, "successful\n"); 2122 return 0; 2123 } 2124 EXPORT_SYMBOL_GPL(vb2_core_streamoff); 2125 2126 /* 2127 * __find_plane_by_offset() - find plane associated with the given offset off 2128 */ 2129 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off, 2130 unsigned int *_buffer, unsigned int *_plane) 2131 { 2132 struct vb2_buffer *vb; 2133 unsigned int buffer, plane; 2134 2135 /* 2136 * Go over all buffers and their planes, comparing the given offset 2137 * with an offset assigned to each plane. If a match is found, 2138 * return its buffer and plane numbers. 2139 */ 2140 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 2141 vb = q->bufs[buffer]; 2142 2143 for (plane = 0; plane < vb->num_planes; ++plane) { 2144 if (vb->planes[plane].m.offset == off) { 2145 *_buffer = buffer; 2146 *_plane = plane; 2147 return 0; 2148 } 2149 } 2150 } 2151 2152 return -EINVAL; 2153 } 2154 2155 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, 2156 unsigned int index, unsigned int plane, unsigned int flags) 2157 { 2158 struct vb2_buffer *vb = NULL; 2159 struct vb2_plane *vb_plane; 2160 int ret; 2161 struct dma_buf *dbuf; 2162 2163 if (q->memory != VB2_MEMORY_MMAP) { 2164 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2165 return -EINVAL; 2166 } 2167 2168 if (!q->mem_ops->get_dmabuf) { 2169 dprintk(q, 1, "queue does not support DMA buffer exporting\n"); 2170 return -EINVAL; 2171 } 2172 2173 if (flags & ~(O_CLOEXEC | O_ACCMODE)) { 2174 dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n"); 2175 return -EINVAL; 2176 } 2177 2178 if (type != q->type) { 2179 dprintk(q, 1, "invalid buffer type\n"); 2180 return -EINVAL; 2181 } 2182 2183 if (index >= q->num_buffers) { 2184 dprintk(q, 1, "buffer index out of range\n"); 2185 return -EINVAL; 2186 } 2187 2188 vb = q->bufs[index]; 2189 2190 if (plane >= vb->num_planes) { 2191 dprintk(q, 1, "buffer plane out of range\n"); 2192 return -EINVAL; 2193 } 2194 2195 if (vb2_fileio_is_active(q)) { 2196 dprintk(q, 1, "expbuf: file io in progress\n"); 2197 return -EBUSY; 2198 } 2199 2200 vb_plane = &vb->planes[plane]; 2201 2202 dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv, 2203 flags & O_ACCMODE); 2204 if (IS_ERR_OR_NULL(dbuf)) { 2205 dprintk(q, 1, "failed to export buffer %d, plane %d\n", 2206 index, plane); 2207 return -EINVAL; 2208 } 2209 2210 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE); 2211 if (ret < 0) { 2212 dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n", 2213 index, plane, ret); 2214 dma_buf_put(dbuf); 2215 return ret; 2216 } 2217 2218 dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n", 2219 index, plane, ret); 2220 *fd = ret; 2221 2222 return 0; 2223 } 2224 EXPORT_SYMBOL_GPL(vb2_core_expbuf); 2225 2226 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma) 2227 { 2228 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 2229 struct vb2_buffer *vb; 2230 unsigned int buffer = 0, plane = 0; 2231 int ret; 2232 unsigned long length; 2233 2234 if (q->memory != VB2_MEMORY_MMAP) { 2235 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2236 return -EINVAL; 2237 } 2238 2239 /* 2240 * Check memory area access mode. 2241 */ 2242 if (!(vma->vm_flags & VM_SHARED)) { 2243 dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n"); 2244 return -EINVAL; 2245 } 2246 if (q->is_output) { 2247 if (!(vma->vm_flags & VM_WRITE)) { 2248 dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n"); 2249 return -EINVAL; 2250 } 2251 } else { 2252 if (!(vma->vm_flags & VM_READ)) { 2253 dprintk(q, 1, "invalid vma flags, VM_READ needed\n"); 2254 return -EINVAL; 2255 } 2256 } 2257 2258 mutex_lock(&q->mmap_lock); 2259 2260 if (vb2_fileio_is_active(q)) { 2261 dprintk(q, 1, "mmap: file io in progress\n"); 2262 ret = -EBUSY; 2263 goto unlock; 2264 } 2265 2266 /* 2267 * Find the plane corresponding to the offset passed by userspace. 2268 */ 2269 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2270 if (ret) 2271 goto unlock; 2272 2273 vb = q->bufs[buffer]; 2274 2275 /* 2276 * MMAP requires page_aligned buffers. 2277 * The buffer length was page_aligned at __vb2_buf_mem_alloc(), 2278 * so, we need to do the same here. 2279 */ 2280 length = PAGE_ALIGN(vb->planes[plane].length); 2281 if (length < (vma->vm_end - vma->vm_start)) { 2282 dprintk(q, 1, 2283 "MMAP invalid, as it would overflow buffer length\n"); 2284 ret = -EINVAL; 2285 goto unlock; 2286 } 2287 2288 /* 2289 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer, 2290 * not as a in-buffer offset. We always want to mmap a whole buffer 2291 * from its beginning. 2292 */ 2293 vma->vm_pgoff = 0; 2294 2295 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma); 2296 2297 unlock: 2298 mutex_unlock(&q->mmap_lock); 2299 if (ret) 2300 return ret; 2301 2302 dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane); 2303 return 0; 2304 } 2305 EXPORT_SYMBOL_GPL(vb2_mmap); 2306 2307 #ifndef CONFIG_MMU 2308 unsigned long vb2_get_unmapped_area(struct vb2_queue *q, 2309 unsigned long addr, 2310 unsigned long len, 2311 unsigned long pgoff, 2312 unsigned long flags) 2313 { 2314 unsigned long off = pgoff << PAGE_SHIFT; 2315 struct vb2_buffer *vb; 2316 unsigned int buffer, plane; 2317 void *vaddr; 2318 int ret; 2319 2320 if (q->memory != VB2_MEMORY_MMAP) { 2321 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2322 return -EINVAL; 2323 } 2324 2325 /* 2326 * Find the plane corresponding to the offset passed by userspace. 2327 */ 2328 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2329 if (ret) 2330 return ret; 2331 2332 vb = q->bufs[buffer]; 2333 2334 vaddr = vb2_plane_vaddr(vb, plane); 2335 return vaddr ? (unsigned long)vaddr : -EINVAL; 2336 } 2337 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area); 2338 #endif 2339 2340 int vb2_core_queue_init(struct vb2_queue *q) 2341 { 2342 /* 2343 * Sanity check 2344 */ 2345 if (WARN_ON(!q) || 2346 WARN_ON(!q->ops) || 2347 WARN_ON(!q->mem_ops) || 2348 WARN_ON(!q->type) || 2349 WARN_ON(!q->io_modes) || 2350 WARN_ON(!q->ops->queue_setup) || 2351 WARN_ON(!q->ops->buf_queue)) 2352 return -EINVAL; 2353 2354 if (WARN_ON(q->requires_requests && !q->supports_requests)) 2355 return -EINVAL; 2356 2357 INIT_LIST_HEAD(&q->queued_list); 2358 INIT_LIST_HEAD(&q->done_list); 2359 spin_lock_init(&q->done_lock); 2360 mutex_init(&q->mmap_lock); 2361 init_waitqueue_head(&q->done_wq); 2362 2363 q->memory = VB2_MEMORY_UNKNOWN; 2364 2365 if (q->buf_struct_size == 0) 2366 q->buf_struct_size = sizeof(struct vb2_buffer); 2367 2368 if (q->bidirectional) 2369 q->dma_dir = DMA_BIDIRECTIONAL; 2370 else 2371 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2372 2373 if (q->name[0] == '\0') 2374 snprintf(q->name, sizeof(q->name), "%s-%p", 2375 q->is_output ? "out" : "cap", q); 2376 2377 return 0; 2378 } 2379 EXPORT_SYMBOL_GPL(vb2_core_queue_init); 2380 2381 static int __vb2_init_fileio(struct vb2_queue *q, int read); 2382 static int __vb2_cleanup_fileio(struct vb2_queue *q); 2383 void vb2_core_queue_release(struct vb2_queue *q) 2384 { 2385 __vb2_cleanup_fileio(q); 2386 __vb2_queue_cancel(q); 2387 mutex_lock(&q->mmap_lock); 2388 __vb2_queue_free(q, q->num_buffers); 2389 mutex_unlock(&q->mmap_lock); 2390 } 2391 EXPORT_SYMBOL_GPL(vb2_core_queue_release); 2392 2393 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, 2394 poll_table *wait) 2395 { 2396 __poll_t req_events = poll_requested_events(wait); 2397 struct vb2_buffer *vb = NULL; 2398 unsigned long flags; 2399 2400 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM))) 2401 return 0; 2402 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM))) 2403 return 0; 2404 2405 poll_wait(file, &q->done_wq, wait); 2406 2407 /* 2408 * Start file I/O emulator only if streaming API has not been used yet. 2409 */ 2410 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) { 2411 if (!q->is_output && (q->io_modes & VB2_READ) && 2412 (req_events & (EPOLLIN | EPOLLRDNORM))) { 2413 if (__vb2_init_fileio(q, 1)) 2414 return EPOLLERR; 2415 } 2416 if (q->is_output && (q->io_modes & VB2_WRITE) && 2417 (req_events & (EPOLLOUT | EPOLLWRNORM))) { 2418 if (__vb2_init_fileio(q, 0)) 2419 return EPOLLERR; 2420 /* 2421 * Write to OUTPUT queue can be done immediately. 2422 */ 2423 return EPOLLOUT | EPOLLWRNORM; 2424 } 2425 } 2426 2427 /* 2428 * There is nothing to wait for if the queue isn't streaming, or if the 2429 * error flag is set. 2430 */ 2431 if (!vb2_is_streaming(q) || q->error) 2432 return EPOLLERR; 2433 2434 /* 2435 * If this quirk is set and QBUF hasn't been called yet then 2436 * return EPOLLERR as well. This only affects capture queues, output 2437 * queues will always initialize waiting_for_buffers to false. 2438 * This quirk is set by V4L2 for backwards compatibility reasons. 2439 */ 2440 if (q->quirk_poll_must_check_waiting_for_buffers && 2441 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM))) 2442 return EPOLLERR; 2443 2444 /* 2445 * For output streams you can call write() as long as there are fewer 2446 * buffers queued than there are buffers available. 2447 */ 2448 if (q->is_output && q->fileio && q->queued_count < q->num_buffers) 2449 return EPOLLOUT | EPOLLWRNORM; 2450 2451 if (list_empty(&q->done_list)) { 2452 /* 2453 * If the last buffer was dequeued from a capture queue, 2454 * return immediately. DQBUF will return -EPIPE. 2455 */ 2456 if (q->last_buffer_dequeued) 2457 return EPOLLIN | EPOLLRDNORM; 2458 } 2459 2460 /* 2461 * Take first buffer available for dequeuing. 2462 */ 2463 spin_lock_irqsave(&q->done_lock, flags); 2464 if (!list_empty(&q->done_list)) 2465 vb = list_first_entry(&q->done_list, struct vb2_buffer, 2466 done_entry); 2467 spin_unlock_irqrestore(&q->done_lock, flags); 2468 2469 if (vb && (vb->state == VB2_BUF_STATE_DONE 2470 || vb->state == VB2_BUF_STATE_ERROR)) { 2471 return (q->is_output) ? 2472 EPOLLOUT | EPOLLWRNORM : 2473 EPOLLIN | EPOLLRDNORM; 2474 } 2475 return 0; 2476 } 2477 EXPORT_SYMBOL_GPL(vb2_core_poll); 2478 2479 /* 2480 * struct vb2_fileio_buf - buffer context used by file io emulator 2481 * 2482 * vb2 provides a compatibility layer and emulator of file io (read and 2483 * write) calls on top of streaming API. This structure is used for 2484 * tracking context related to the buffers. 2485 */ 2486 struct vb2_fileio_buf { 2487 void *vaddr; 2488 unsigned int size; 2489 unsigned int pos; 2490 unsigned int queued:1; 2491 }; 2492 2493 /* 2494 * struct vb2_fileio_data - queue context used by file io emulator 2495 * 2496 * @cur_index: the index of the buffer currently being read from or 2497 * written to. If equal to q->num_buffers then a new buffer 2498 * must be dequeued. 2499 * @initial_index: in the read() case all buffers are queued up immediately 2500 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles 2501 * buffers. However, in the write() case no buffers are initially 2502 * queued, instead whenever a buffer is full it is queued up by 2503 * __vb2_perform_fileio(). Only once all available buffers have 2504 * been queued up will __vb2_perform_fileio() start to dequeue 2505 * buffers. This means that initially __vb2_perform_fileio() 2506 * needs to know what buffer index to use when it is queuing up 2507 * the buffers for the first time. That initial index is stored 2508 * in this field. Once it is equal to q->num_buffers all 2509 * available buffers have been queued and __vb2_perform_fileio() 2510 * should start the normal dequeue/queue cycle. 2511 * 2512 * vb2 provides a compatibility layer and emulator of file io (read and 2513 * write) calls on top of streaming API. For proper operation it required 2514 * this structure to save the driver state between each call of the read 2515 * or write function. 2516 */ 2517 struct vb2_fileio_data { 2518 unsigned int count; 2519 unsigned int type; 2520 unsigned int memory; 2521 struct vb2_fileio_buf bufs[VB2_MAX_FRAME]; 2522 unsigned int cur_index; 2523 unsigned int initial_index; 2524 unsigned int q_count; 2525 unsigned int dq_count; 2526 unsigned read_once:1; 2527 unsigned write_immediately:1; 2528 }; 2529 2530 /* 2531 * __vb2_init_fileio() - initialize file io emulator 2532 * @q: videobuf2 queue 2533 * @read: mode selector (1 means read, 0 means write) 2534 */ 2535 static int __vb2_init_fileio(struct vb2_queue *q, int read) 2536 { 2537 struct vb2_fileio_data *fileio; 2538 int i, ret; 2539 unsigned int count = 0; 2540 2541 /* 2542 * Sanity check 2543 */ 2544 if (WARN_ON((read && !(q->io_modes & VB2_READ)) || 2545 (!read && !(q->io_modes & VB2_WRITE)))) 2546 return -EINVAL; 2547 2548 /* 2549 * Check if device supports mapping buffers to kernel virtual space. 2550 */ 2551 if (!q->mem_ops->vaddr) 2552 return -EBUSY; 2553 2554 /* 2555 * Check if streaming api has not been already activated. 2556 */ 2557 if (q->streaming || q->num_buffers > 0) 2558 return -EBUSY; 2559 2560 /* 2561 * Start with count 1, driver can increase it in queue_setup() 2562 */ 2563 count = 1; 2564 2565 dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n", 2566 (read) ? "read" : "write", count, q->fileio_read_once, 2567 q->fileio_write_immediately); 2568 2569 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL); 2570 if (fileio == NULL) 2571 return -ENOMEM; 2572 2573 fileio->read_once = q->fileio_read_once; 2574 fileio->write_immediately = q->fileio_write_immediately; 2575 2576 /* 2577 * Request buffers and use MMAP type to force driver 2578 * to allocate buffers by itself. 2579 */ 2580 fileio->count = count; 2581 fileio->memory = VB2_MEMORY_MMAP; 2582 fileio->type = q->type; 2583 q->fileio = fileio; 2584 ret = vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2585 if (ret) 2586 goto err_kfree; 2587 2588 /* 2589 * Check if plane_count is correct 2590 * (multiplane buffers are not supported). 2591 */ 2592 if (q->bufs[0]->num_planes != 1) { 2593 ret = -EBUSY; 2594 goto err_reqbufs; 2595 } 2596 2597 /* 2598 * Get kernel address of each buffer. 2599 */ 2600 for (i = 0; i < q->num_buffers; i++) { 2601 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0); 2602 if (fileio->bufs[i].vaddr == NULL) { 2603 ret = -EINVAL; 2604 goto err_reqbufs; 2605 } 2606 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0); 2607 } 2608 2609 /* 2610 * Read mode requires pre queuing of all buffers. 2611 */ 2612 if (read) { 2613 /* 2614 * Queue all buffers. 2615 */ 2616 for (i = 0; i < q->num_buffers; i++) { 2617 ret = vb2_core_qbuf(q, i, NULL, NULL); 2618 if (ret) 2619 goto err_reqbufs; 2620 fileio->bufs[i].queued = 1; 2621 } 2622 /* 2623 * All buffers have been queued, so mark that by setting 2624 * initial_index to q->num_buffers 2625 */ 2626 fileio->initial_index = q->num_buffers; 2627 fileio->cur_index = q->num_buffers; 2628 } 2629 2630 /* 2631 * Start streaming. 2632 */ 2633 ret = vb2_core_streamon(q, q->type); 2634 if (ret) 2635 goto err_reqbufs; 2636 2637 return ret; 2638 2639 err_reqbufs: 2640 fileio->count = 0; 2641 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2642 2643 err_kfree: 2644 q->fileio = NULL; 2645 kfree(fileio); 2646 return ret; 2647 } 2648 2649 /* 2650 * __vb2_cleanup_fileio() - free resourced used by file io emulator 2651 * @q: videobuf2 queue 2652 */ 2653 static int __vb2_cleanup_fileio(struct vb2_queue *q) 2654 { 2655 struct vb2_fileio_data *fileio = q->fileio; 2656 2657 if (fileio) { 2658 vb2_core_streamoff(q, q->type); 2659 q->fileio = NULL; 2660 fileio->count = 0; 2661 vb2_core_reqbufs(q, fileio->memory, 0, &fileio->count); 2662 kfree(fileio); 2663 dprintk(q, 3, "file io emulator closed\n"); 2664 } 2665 return 0; 2666 } 2667 2668 /* 2669 * __vb2_perform_fileio() - perform a single file io (read or write) operation 2670 * @q: videobuf2 queue 2671 * @data: pointed to target userspace buffer 2672 * @count: number of bytes to read or write 2673 * @ppos: file handle position tracking pointer 2674 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking) 2675 * @read: access mode selector (1 means read, 0 means write) 2676 */ 2677 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count, 2678 loff_t *ppos, int nonblock, int read) 2679 { 2680 struct vb2_fileio_data *fileio; 2681 struct vb2_fileio_buf *buf; 2682 bool is_multiplanar = q->is_multiplanar; 2683 /* 2684 * When using write() to write data to an output video node the vb2 core 2685 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody 2686 * else is able to provide this information with the write() operation. 2687 */ 2688 bool copy_timestamp = !read && q->copy_timestamp; 2689 unsigned index; 2690 int ret; 2691 2692 dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n", 2693 read ? "read" : "write", (long)*ppos, count, 2694 nonblock ? "non" : ""); 2695 2696 if (!data) 2697 return -EINVAL; 2698 2699 if (q->waiting_in_dqbuf) { 2700 dprintk(q, 3, "another dup()ped fd is %s\n", 2701 read ? "reading" : "writing"); 2702 return -EBUSY; 2703 } 2704 2705 /* 2706 * Initialize emulator on first call. 2707 */ 2708 if (!vb2_fileio_is_active(q)) { 2709 ret = __vb2_init_fileio(q, read); 2710 dprintk(q, 3, "vb2_init_fileio result: %d\n", ret); 2711 if (ret) 2712 return ret; 2713 } 2714 fileio = q->fileio; 2715 2716 /* 2717 * Check if we need to dequeue the buffer. 2718 */ 2719 index = fileio->cur_index; 2720 if (index >= q->num_buffers) { 2721 struct vb2_buffer *b; 2722 2723 /* 2724 * Call vb2_dqbuf to get buffer back. 2725 */ 2726 ret = vb2_core_dqbuf(q, &index, NULL, nonblock); 2727 dprintk(q, 5, "vb2_dqbuf result: %d\n", ret); 2728 if (ret) 2729 return ret; 2730 fileio->dq_count += 1; 2731 2732 fileio->cur_index = index; 2733 buf = &fileio->bufs[index]; 2734 b = q->bufs[index]; 2735 2736 /* 2737 * Get number of bytes filled by the driver 2738 */ 2739 buf->pos = 0; 2740 buf->queued = 0; 2741 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0) 2742 : vb2_plane_size(q->bufs[index], 0); 2743 /* Compensate for data_offset on read in the multiplanar case. */ 2744 if (is_multiplanar && read && 2745 b->planes[0].data_offset < buf->size) { 2746 buf->pos = b->planes[0].data_offset; 2747 buf->size -= buf->pos; 2748 } 2749 } else { 2750 buf = &fileio->bufs[index]; 2751 } 2752 2753 /* 2754 * Limit count on last few bytes of the buffer. 2755 */ 2756 if (buf->pos + count > buf->size) { 2757 count = buf->size - buf->pos; 2758 dprintk(q, 5, "reducing read count: %zd\n", count); 2759 } 2760 2761 /* 2762 * Transfer data to userspace. 2763 */ 2764 dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n", 2765 count, index, buf->pos); 2766 if (read) 2767 ret = copy_to_user(data, buf->vaddr + buf->pos, count); 2768 else 2769 ret = copy_from_user(buf->vaddr + buf->pos, data, count); 2770 if (ret) { 2771 dprintk(q, 3, "error copying data\n"); 2772 return -EFAULT; 2773 } 2774 2775 /* 2776 * Update counters. 2777 */ 2778 buf->pos += count; 2779 *ppos += count; 2780 2781 /* 2782 * Queue next buffer if required. 2783 */ 2784 if (buf->pos == buf->size || (!read && fileio->write_immediately)) { 2785 struct vb2_buffer *b = q->bufs[index]; 2786 2787 /* 2788 * Check if this is the last buffer to read. 2789 */ 2790 if (read && fileio->read_once && fileio->dq_count == 1) { 2791 dprintk(q, 3, "read limit reached\n"); 2792 return __vb2_cleanup_fileio(q); 2793 } 2794 2795 /* 2796 * Call vb2_qbuf and give buffer to the driver. 2797 */ 2798 b->planes[0].bytesused = buf->pos; 2799 2800 if (copy_timestamp) 2801 b->timestamp = ktime_get_ns(); 2802 ret = vb2_core_qbuf(q, index, NULL, NULL); 2803 dprintk(q, 5, "vb2_dbuf result: %d\n", ret); 2804 if (ret) 2805 return ret; 2806 2807 /* 2808 * Buffer has been queued, update the status 2809 */ 2810 buf->pos = 0; 2811 buf->queued = 1; 2812 buf->size = vb2_plane_size(q->bufs[index], 0); 2813 fileio->q_count += 1; 2814 /* 2815 * If we are queuing up buffers for the first time, then 2816 * increase initial_index by one. 2817 */ 2818 if (fileio->initial_index < q->num_buffers) 2819 fileio->initial_index++; 2820 /* 2821 * The next buffer to use is either a buffer that's going to be 2822 * queued for the first time (initial_index < q->num_buffers) 2823 * or it is equal to q->num_buffers, meaning that the next 2824 * time we need to dequeue a buffer since we've now queued up 2825 * all the 'first time' buffers. 2826 */ 2827 fileio->cur_index = fileio->initial_index; 2828 } 2829 2830 /* 2831 * Return proper number of bytes processed. 2832 */ 2833 if (ret == 0) 2834 ret = count; 2835 return ret; 2836 } 2837 2838 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, 2839 loff_t *ppos, int nonblocking) 2840 { 2841 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1); 2842 } 2843 EXPORT_SYMBOL_GPL(vb2_read); 2844 2845 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, 2846 loff_t *ppos, int nonblocking) 2847 { 2848 return __vb2_perform_fileio(q, (char __user *) data, count, 2849 ppos, nonblocking, 0); 2850 } 2851 EXPORT_SYMBOL_GPL(vb2_write); 2852 2853 struct vb2_threadio_data { 2854 struct task_struct *thread; 2855 vb2_thread_fnc fnc; 2856 void *priv; 2857 bool stop; 2858 }; 2859 2860 static int vb2_thread(void *data) 2861 { 2862 struct vb2_queue *q = data; 2863 struct vb2_threadio_data *threadio = q->threadio; 2864 bool copy_timestamp = false; 2865 unsigned prequeue = 0; 2866 unsigned index = 0; 2867 int ret = 0; 2868 2869 if (q->is_output) { 2870 prequeue = q->num_buffers; 2871 copy_timestamp = q->copy_timestamp; 2872 } 2873 2874 set_freezable(); 2875 2876 for (;;) { 2877 struct vb2_buffer *vb; 2878 2879 /* 2880 * Call vb2_dqbuf to get buffer back. 2881 */ 2882 if (prequeue) { 2883 vb = q->bufs[index++]; 2884 prequeue--; 2885 } else { 2886 call_void_qop(q, wait_finish, q); 2887 if (!threadio->stop) 2888 ret = vb2_core_dqbuf(q, &index, NULL, 0); 2889 call_void_qop(q, wait_prepare, q); 2890 dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret); 2891 if (!ret) 2892 vb = q->bufs[index]; 2893 } 2894 if (ret || threadio->stop) 2895 break; 2896 try_to_freeze(); 2897 2898 if (vb->state != VB2_BUF_STATE_ERROR) 2899 if (threadio->fnc(vb, threadio->priv)) 2900 break; 2901 call_void_qop(q, wait_finish, q); 2902 if (copy_timestamp) 2903 vb->timestamp = ktime_get_ns(); 2904 if (!threadio->stop) 2905 ret = vb2_core_qbuf(q, vb->index, NULL, NULL); 2906 call_void_qop(q, wait_prepare, q); 2907 if (ret || threadio->stop) 2908 break; 2909 } 2910 2911 /* Hmm, linux becomes *very* unhappy without this ... */ 2912 while (!kthread_should_stop()) { 2913 set_current_state(TASK_INTERRUPTIBLE); 2914 schedule(); 2915 } 2916 return 0; 2917 } 2918 2919 /* 2920 * This function should not be used for anything else but the videobuf2-dvb 2921 * support. If you think you have another good use-case for this, then please 2922 * contact the linux-media mailinglist first. 2923 */ 2924 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, 2925 const char *thread_name) 2926 { 2927 struct vb2_threadio_data *threadio; 2928 int ret = 0; 2929 2930 if (q->threadio) 2931 return -EBUSY; 2932 if (vb2_is_busy(q)) 2933 return -EBUSY; 2934 if (WARN_ON(q->fileio)) 2935 return -EBUSY; 2936 2937 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL); 2938 if (threadio == NULL) 2939 return -ENOMEM; 2940 threadio->fnc = fnc; 2941 threadio->priv = priv; 2942 2943 ret = __vb2_init_fileio(q, !q->is_output); 2944 dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret); 2945 if (ret) 2946 goto nomem; 2947 q->threadio = threadio; 2948 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name); 2949 if (IS_ERR(threadio->thread)) { 2950 ret = PTR_ERR(threadio->thread); 2951 threadio->thread = NULL; 2952 goto nothread; 2953 } 2954 return 0; 2955 2956 nothread: 2957 __vb2_cleanup_fileio(q); 2958 nomem: 2959 kfree(threadio); 2960 return ret; 2961 } 2962 EXPORT_SYMBOL_GPL(vb2_thread_start); 2963 2964 int vb2_thread_stop(struct vb2_queue *q) 2965 { 2966 struct vb2_threadio_data *threadio = q->threadio; 2967 int err; 2968 2969 if (threadio == NULL) 2970 return 0; 2971 threadio->stop = true; 2972 /* Wake up all pending sleeps in the thread */ 2973 vb2_queue_error(q); 2974 err = kthread_stop(threadio->thread); 2975 __vb2_cleanup_fileio(q); 2976 threadio->thread = NULL; 2977 kfree(threadio); 2978 q->threadio = NULL; 2979 return err; 2980 } 2981 EXPORT_SYMBOL_GPL(vb2_thread_stop); 2982 2983 MODULE_DESCRIPTION("Media buffer core framework"); 2984 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski"); 2985 MODULE_LICENSE("GPL"); 2986