1 /* 2 * videobuf2-core.c - video buffer 2 core framework 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * 6 * Author: Pawel Osciak <pawel@osciak.com> 7 * Marek Szyprowski <m.szyprowski@samsung.com> 8 * 9 * The vb2_thread implementation was based on code from videobuf-dvb.c: 10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs] 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/err.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mm.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/freezer.h> 27 #include <linux/kthread.h> 28 29 #include <media/videobuf2-core.h> 30 #include <media/v4l2-mc.h> 31 32 #include <trace/events/vb2.h> 33 34 static int debug; 35 module_param(debug, int, 0644); 36 37 #define dprintk(q, level, fmt, arg...) \ 38 do { \ 39 if (debug >= level) \ 40 pr_info("[%s] %s: " fmt, (q)->name, __func__, \ 41 ## arg); \ 42 } while (0) 43 44 #ifdef CONFIG_VIDEO_ADV_DEBUG 45 46 /* 47 * If advanced debugging is on, then count how often each op is called 48 * successfully, which can either be per-buffer or per-queue. 49 * 50 * This makes it easy to check that the 'init' and 'cleanup' 51 * (and variations thereof) stay balanced. 52 */ 53 54 #define log_memop(vb, op) \ 55 dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n", \ 56 (vb)->index, #op, \ 57 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)") 58 59 #define call_memop(vb, op, args...) \ 60 ({ \ 61 struct vb2_queue *_q = (vb)->vb2_queue; \ 62 int err; \ 63 \ 64 log_memop(vb, op); \ 65 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \ 66 if (!err) \ 67 (vb)->cnt_mem_ ## op++; \ 68 err; \ 69 }) 70 71 #define call_ptr_memop(vb, op, args...) \ 72 ({ \ 73 struct vb2_queue *_q = (vb)->vb2_queue; \ 74 void *ptr; \ 75 \ 76 log_memop(vb, op); \ 77 ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL; \ 78 if (!IS_ERR_OR_NULL(ptr)) \ 79 (vb)->cnt_mem_ ## op++; \ 80 ptr; \ 81 }) 82 83 #define call_void_memop(vb, op, args...) \ 84 ({ \ 85 struct vb2_queue *_q = (vb)->vb2_queue; \ 86 \ 87 log_memop(vb, op); \ 88 if (_q->mem_ops->op) \ 89 _q->mem_ops->op(args); \ 90 (vb)->cnt_mem_ ## op++; \ 91 }) 92 93 #define log_qop(q, op) \ 94 dprintk(q, 2, "call_qop(%s)%s\n", #op, \ 95 (q)->ops->op ? "" : " (nop)") 96 97 #define call_qop(q, op, args...) \ 98 ({ \ 99 int err; \ 100 \ 101 log_qop(q, op); \ 102 err = (q)->ops->op ? (q)->ops->op(args) : 0; \ 103 if (!err) \ 104 (q)->cnt_ ## op++; \ 105 err; \ 106 }) 107 108 #define call_void_qop(q, op, args...) \ 109 ({ \ 110 log_qop(q, op); \ 111 if ((q)->ops->op) \ 112 (q)->ops->op(args); \ 113 (q)->cnt_ ## op++; \ 114 }) 115 116 #define log_vb_qop(vb, op, args...) \ 117 dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n", \ 118 (vb)->index, #op, \ 119 (vb)->vb2_queue->ops->op ? "" : " (nop)") 120 121 #define call_vb_qop(vb, op, args...) \ 122 ({ \ 123 int err; \ 124 \ 125 log_vb_qop(vb, op); \ 126 err = (vb)->vb2_queue->ops->op ? \ 127 (vb)->vb2_queue->ops->op(args) : 0; \ 128 if (!err) \ 129 (vb)->cnt_ ## op++; \ 130 err; \ 131 }) 132 133 #define call_void_vb_qop(vb, op, args...) \ 134 ({ \ 135 log_vb_qop(vb, op); \ 136 if ((vb)->vb2_queue->ops->op) \ 137 (vb)->vb2_queue->ops->op(args); \ 138 (vb)->cnt_ ## op++; \ 139 }) 140 141 #else 142 143 #define call_memop(vb, op, args...) \ 144 ((vb)->vb2_queue->mem_ops->op ? \ 145 (vb)->vb2_queue->mem_ops->op(args) : 0) 146 147 #define call_ptr_memop(vb, op, args...) \ 148 ((vb)->vb2_queue->mem_ops->op ? \ 149 (vb)->vb2_queue->mem_ops->op(args) : NULL) 150 151 #define call_void_memop(vb, op, args...) \ 152 do { \ 153 if ((vb)->vb2_queue->mem_ops->op) \ 154 (vb)->vb2_queue->mem_ops->op(args); \ 155 } while (0) 156 157 #define call_qop(q, op, args...) \ 158 ((q)->ops->op ? (q)->ops->op(args) : 0) 159 160 #define call_void_qop(q, op, args...) \ 161 do { \ 162 if ((q)->ops->op) \ 163 (q)->ops->op(args); \ 164 } while (0) 165 166 #define call_vb_qop(vb, op, args...) \ 167 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0) 168 169 #define call_void_vb_qop(vb, op, args...) \ 170 do { \ 171 if ((vb)->vb2_queue->ops->op) \ 172 (vb)->vb2_queue->ops->op(args); \ 173 } while (0) 174 175 #endif 176 177 #define call_bufop(q, op, args...) \ 178 ({ \ 179 int ret = 0; \ 180 if (q && q->buf_ops && q->buf_ops->op) \ 181 ret = q->buf_ops->op(args); \ 182 ret; \ 183 }) 184 185 #define call_void_bufop(q, op, args...) \ 186 ({ \ 187 if (q && q->buf_ops && q->buf_ops->op) \ 188 q->buf_ops->op(args); \ 189 }) 190 191 static void __vb2_queue_cancel(struct vb2_queue *q); 192 static void __enqueue_in_driver(struct vb2_buffer *vb); 193 194 static const char *vb2_state_name(enum vb2_buffer_state s) 195 { 196 static const char * const state_names[] = { 197 [VB2_BUF_STATE_DEQUEUED] = "dequeued", 198 [VB2_BUF_STATE_IN_REQUEST] = "in request", 199 [VB2_BUF_STATE_PREPARING] = "preparing", 200 [VB2_BUF_STATE_QUEUED] = "queued", 201 [VB2_BUF_STATE_ACTIVE] = "active", 202 [VB2_BUF_STATE_DONE] = "done", 203 [VB2_BUF_STATE_ERROR] = "error", 204 }; 205 206 if ((unsigned int)(s) < ARRAY_SIZE(state_names)) 207 return state_names[s]; 208 return "unknown"; 209 } 210 211 /* 212 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer 213 */ 214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb) 215 { 216 struct vb2_queue *q = vb->vb2_queue; 217 void *mem_priv; 218 int plane; 219 int ret = -ENOMEM; 220 221 /* 222 * Allocate memory for all planes in this buffer 223 * NOTE: mmapped areas should be page aligned 224 */ 225 for (plane = 0; plane < vb->num_planes; ++plane) { 226 /* Memops alloc requires size to be page aligned. */ 227 unsigned long size = PAGE_ALIGN(vb->planes[plane].length); 228 229 /* Did it wrap around? */ 230 if (size < vb->planes[plane].length) 231 goto free; 232 233 mem_priv = call_ptr_memop(vb, alloc, 234 q->alloc_devs[plane] ? : q->dev, 235 q->dma_attrs, size, q->dma_dir, q->gfp_flags); 236 if (IS_ERR_OR_NULL(mem_priv)) { 237 if (mem_priv) 238 ret = PTR_ERR(mem_priv); 239 goto free; 240 } 241 242 /* Associate allocator private data with this plane */ 243 vb->planes[plane].mem_priv = mem_priv; 244 } 245 246 return 0; 247 free: 248 /* Free already allocated memory if one of the allocations failed */ 249 for (; plane > 0; --plane) { 250 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv); 251 vb->planes[plane - 1].mem_priv = NULL; 252 } 253 254 return ret; 255 } 256 257 /* 258 * __vb2_buf_mem_free() - free memory of the given buffer 259 */ 260 static void __vb2_buf_mem_free(struct vb2_buffer *vb) 261 { 262 unsigned int plane; 263 264 for (plane = 0; plane < vb->num_planes; ++plane) { 265 call_void_memop(vb, put, vb->planes[plane].mem_priv); 266 vb->planes[plane].mem_priv = NULL; 267 dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n", 268 plane, vb->index); 269 } 270 } 271 272 /* 273 * __vb2_buf_userptr_put() - release userspace memory associated with 274 * a USERPTR buffer 275 */ 276 static void __vb2_buf_userptr_put(struct vb2_buffer *vb) 277 { 278 unsigned int plane; 279 280 for (plane = 0; plane < vb->num_planes; ++plane) { 281 if (vb->planes[plane].mem_priv) 282 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 283 vb->planes[plane].mem_priv = NULL; 284 } 285 } 286 287 /* 288 * __vb2_plane_dmabuf_put() - release memory associated with 289 * a DMABUF shared plane 290 */ 291 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p) 292 { 293 if (!p->mem_priv) 294 return; 295 296 if (p->dbuf_mapped) 297 call_void_memop(vb, unmap_dmabuf, p->mem_priv); 298 299 call_void_memop(vb, detach_dmabuf, p->mem_priv); 300 dma_buf_put(p->dbuf); 301 p->mem_priv = NULL; 302 p->dbuf = NULL; 303 p->dbuf_mapped = 0; 304 } 305 306 /* 307 * __vb2_buf_dmabuf_put() - release memory associated with 308 * a DMABUF shared buffer 309 */ 310 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb) 311 { 312 unsigned int plane; 313 314 for (plane = 0; plane < vb->num_planes; ++plane) 315 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 316 } 317 318 /* 319 * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory 320 * to sync caches 321 */ 322 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb) 323 { 324 unsigned int plane; 325 326 if (vb->synced) 327 return; 328 329 if (vb->need_cache_sync_on_prepare) { 330 for (plane = 0; plane < vb->num_planes; ++plane) 331 call_void_memop(vb, prepare, 332 vb->planes[plane].mem_priv); 333 } 334 vb->synced = 1; 335 } 336 337 /* 338 * __vb2_buf_mem_finish() - call ->finish on buffer's private memory 339 * to sync caches 340 */ 341 static void __vb2_buf_mem_finish(struct vb2_buffer *vb) 342 { 343 unsigned int plane; 344 345 if (!vb->synced) 346 return; 347 348 if (vb->need_cache_sync_on_finish) { 349 for (plane = 0; plane < vb->num_planes; ++plane) 350 call_void_memop(vb, finish, 351 vb->planes[plane].mem_priv); 352 } 353 vb->synced = 0; 354 } 355 356 /* 357 * __setup_offsets() - setup unique offsets ("cookies") for every plane in 358 * the buffer. 359 */ 360 static void __setup_offsets(struct vb2_buffer *vb) 361 { 362 struct vb2_queue *q = vb->vb2_queue; 363 unsigned int plane; 364 unsigned long off = 0; 365 366 if (vb->index) { 367 struct vb2_buffer *prev = q->bufs[vb->index - 1]; 368 struct vb2_plane *p = &prev->planes[prev->num_planes - 1]; 369 370 off = PAGE_ALIGN(p->m.offset + p->length); 371 } 372 373 for (plane = 0; plane < vb->num_planes; ++plane) { 374 vb->planes[plane].m.offset = off; 375 376 dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n", 377 vb->index, plane, off); 378 379 off += vb->planes[plane].length; 380 off = PAGE_ALIGN(off); 381 } 382 } 383 384 /* 385 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type) 386 * video buffer memory for all buffers/planes on the queue and initializes the 387 * queue 388 * 389 * Returns the number of buffers successfully allocated. 390 */ 391 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory, 392 unsigned int num_buffers, unsigned int num_planes, 393 const unsigned plane_sizes[VB2_MAX_PLANES]) 394 { 395 unsigned int buffer, plane; 396 struct vb2_buffer *vb; 397 int ret; 398 399 /* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */ 400 num_buffers = min_t(unsigned int, num_buffers, 401 VB2_MAX_FRAME - q->num_buffers); 402 403 for (buffer = 0; buffer < num_buffers; ++buffer) { 404 /* Allocate videobuf buffer structures */ 405 vb = kzalloc(q->buf_struct_size, GFP_KERNEL); 406 if (!vb) { 407 dprintk(q, 1, "memory alloc for buffer struct failed\n"); 408 break; 409 } 410 411 vb->state = VB2_BUF_STATE_DEQUEUED; 412 vb->vb2_queue = q; 413 vb->num_planes = num_planes; 414 vb->index = q->num_buffers + buffer; 415 vb->type = q->type; 416 vb->memory = memory; 417 /* 418 * We need to set these flags here so that the videobuf2 core 419 * will call ->prepare()/->finish() cache sync/flush on vb2 420 * buffers when appropriate. However, we can avoid explicit 421 * ->prepare() and ->finish() cache sync for DMABUF buffers, 422 * because DMA exporter takes care of it. 423 */ 424 if (q->memory != VB2_MEMORY_DMABUF) { 425 vb->need_cache_sync_on_prepare = 1; 426 vb->need_cache_sync_on_finish = 1; 427 } 428 for (plane = 0; plane < num_planes; ++plane) { 429 vb->planes[plane].length = plane_sizes[plane]; 430 vb->planes[plane].min_length = plane_sizes[plane]; 431 } 432 call_void_bufop(q, init_buffer, vb); 433 434 q->bufs[vb->index] = vb; 435 436 /* Allocate video buffer memory for the MMAP type */ 437 if (memory == VB2_MEMORY_MMAP) { 438 ret = __vb2_buf_mem_alloc(vb); 439 if (ret) { 440 dprintk(q, 1, "failed allocating memory for buffer %d\n", 441 buffer); 442 q->bufs[vb->index] = NULL; 443 kfree(vb); 444 break; 445 } 446 __setup_offsets(vb); 447 /* 448 * Call the driver-provided buffer initialization 449 * callback, if given. An error in initialization 450 * results in queue setup failure. 451 */ 452 ret = call_vb_qop(vb, buf_init, vb); 453 if (ret) { 454 dprintk(q, 1, "buffer %d %p initialization failed\n", 455 buffer, vb); 456 __vb2_buf_mem_free(vb); 457 q->bufs[vb->index] = NULL; 458 kfree(vb); 459 break; 460 } 461 } 462 } 463 464 dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n", 465 buffer, num_planes); 466 467 return buffer; 468 } 469 470 /* 471 * __vb2_free_mem() - release all video buffer memory for a given queue 472 */ 473 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers) 474 { 475 unsigned int buffer; 476 struct vb2_buffer *vb; 477 478 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 479 ++buffer) { 480 vb = q->bufs[buffer]; 481 if (!vb) 482 continue; 483 484 /* Free MMAP buffers or release USERPTR buffers */ 485 if (q->memory == VB2_MEMORY_MMAP) 486 __vb2_buf_mem_free(vb); 487 else if (q->memory == VB2_MEMORY_DMABUF) 488 __vb2_buf_dmabuf_put(vb); 489 else 490 __vb2_buf_userptr_put(vb); 491 } 492 } 493 494 /* 495 * __vb2_queue_free() - free buffers at the end of the queue - video memory and 496 * related information, if no buffers are left return the queue to an 497 * uninitialized state. Might be called even if the queue has already been freed. 498 */ 499 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers) 500 { 501 unsigned int buffer; 502 503 /* 504 * Sanity check: when preparing a buffer the queue lock is released for 505 * a short while (see __buf_prepare for the details), which would allow 506 * a race with a reqbufs which can call this function. Removing the 507 * buffers from underneath __buf_prepare is obviously a bad idea, so we 508 * check if any of the buffers is in the state PREPARING, and if so we 509 * just return -EAGAIN. 510 */ 511 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 512 ++buffer) { 513 if (q->bufs[buffer] == NULL) 514 continue; 515 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) { 516 dprintk(q, 1, "preparing buffers, cannot free\n"); 517 return -EAGAIN; 518 } 519 } 520 521 /* Call driver-provided cleanup function for each buffer, if provided */ 522 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 523 ++buffer) { 524 struct vb2_buffer *vb = q->bufs[buffer]; 525 526 if (vb && vb->planes[0].mem_priv) 527 call_void_vb_qop(vb, buf_cleanup, vb); 528 } 529 530 /* Release video buffer memory */ 531 __vb2_free_mem(q, buffers); 532 533 #ifdef CONFIG_VIDEO_ADV_DEBUG 534 /* 535 * Check that all the calls were balances during the life-time of this 536 * queue. If not (or if the debug level is 1 or up), then dump the 537 * counters to the kernel log. 538 */ 539 if (q->num_buffers) { 540 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming || 541 q->cnt_wait_prepare != q->cnt_wait_finish; 542 543 if (unbalanced || debug) { 544 pr_info("counters for queue %p:%s\n", q, 545 unbalanced ? " UNBALANCED!" : ""); 546 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n", 547 q->cnt_queue_setup, q->cnt_start_streaming, 548 q->cnt_stop_streaming); 549 pr_info(" wait_prepare: %u wait_finish: %u\n", 550 q->cnt_wait_prepare, q->cnt_wait_finish); 551 } 552 q->cnt_queue_setup = 0; 553 q->cnt_wait_prepare = 0; 554 q->cnt_wait_finish = 0; 555 q->cnt_start_streaming = 0; 556 q->cnt_stop_streaming = 0; 557 } 558 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 559 struct vb2_buffer *vb = q->bufs[buffer]; 560 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put || 561 vb->cnt_mem_prepare != vb->cnt_mem_finish || 562 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr || 563 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf || 564 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf || 565 vb->cnt_buf_queue != vb->cnt_buf_done || 566 vb->cnt_buf_prepare != vb->cnt_buf_finish || 567 vb->cnt_buf_init != vb->cnt_buf_cleanup; 568 569 if (unbalanced || debug) { 570 pr_info(" counters for queue %p, buffer %d:%s\n", 571 q, buffer, unbalanced ? " UNBALANCED!" : ""); 572 pr_info(" buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n", 573 vb->cnt_buf_init, vb->cnt_buf_cleanup, 574 vb->cnt_buf_prepare, vb->cnt_buf_finish); 575 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n", 576 vb->cnt_buf_out_validate, vb->cnt_buf_queue, 577 vb->cnt_buf_done, vb->cnt_buf_request_complete); 578 pr_info(" alloc: %u put: %u prepare: %u finish: %u mmap: %u\n", 579 vb->cnt_mem_alloc, vb->cnt_mem_put, 580 vb->cnt_mem_prepare, vb->cnt_mem_finish, 581 vb->cnt_mem_mmap); 582 pr_info(" get_userptr: %u put_userptr: %u\n", 583 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr); 584 pr_info(" attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n", 585 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf, 586 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf); 587 pr_info(" get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n", 588 vb->cnt_mem_get_dmabuf, 589 vb->cnt_mem_num_users, 590 vb->cnt_mem_vaddr, 591 vb->cnt_mem_cookie); 592 } 593 } 594 #endif 595 596 /* Free videobuf buffers */ 597 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 598 ++buffer) { 599 kfree(q->bufs[buffer]); 600 q->bufs[buffer] = NULL; 601 } 602 603 q->num_buffers -= buffers; 604 if (!q->num_buffers) { 605 q->memory = VB2_MEMORY_UNKNOWN; 606 INIT_LIST_HEAD(&q->queued_list); 607 } 608 return 0; 609 } 610 611 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb) 612 { 613 unsigned int plane; 614 for (plane = 0; plane < vb->num_planes; ++plane) { 615 void *mem_priv = vb->planes[plane].mem_priv; 616 /* 617 * If num_users() has not been provided, call_memop 618 * will return 0, apparently nobody cares about this 619 * case anyway. If num_users() returns more than 1, 620 * we are not the only user of the plane's memory. 621 */ 622 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1) 623 return true; 624 } 625 return false; 626 } 627 EXPORT_SYMBOL(vb2_buffer_in_use); 628 629 /* 630 * __buffers_in_use() - return true if any buffers on the queue are in use and 631 * the queue cannot be freed (by the means of REQBUFS(0)) call 632 */ 633 static bool __buffers_in_use(struct vb2_queue *q) 634 { 635 unsigned int buffer; 636 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 637 if (vb2_buffer_in_use(q, q->bufs[buffer])) 638 return true; 639 } 640 return false; 641 } 642 643 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb) 644 { 645 call_void_bufop(q, fill_user_buffer, q->bufs[index], pb); 646 } 647 EXPORT_SYMBOL_GPL(vb2_core_querybuf); 648 649 /* 650 * __verify_userptr_ops() - verify that all memory operations required for 651 * USERPTR queue type have been provided 652 */ 653 static int __verify_userptr_ops(struct vb2_queue *q) 654 { 655 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr || 656 !q->mem_ops->put_userptr) 657 return -EINVAL; 658 659 return 0; 660 } 661 662 /* 663 * __verify_mmap_ops() - verify that all memory operations required for 664 * MMAP queue type have been provided 665 */ 666 static int __verify_mmap_ops(struct vb2_queue *q) 667 { 668 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc || 669 !q->mem_ops->put || !q->mem_ops->mmap) 670 return -EINVAL; 671 672 return 0; 673 } 674 675 /* 676 * __verify_dmabuf_ops() - verify that all memory operations required for 677 * DMABUF queue type have been provided 678 */ 679 static int __verify_dmabuf_ops(struct vb2_queue *q) 680 { 681 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf || 682 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf || 683 !q->mem_ops->unmap_dmabuf) 684 return -EINVAL; 685 686 return 0; 687 } 688 689 int vb2_verify_memory_type(struct vb2_queue *q, 690 enum vb2_memory memory, unsigned int type) 691 { 692 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR && 693 memory != VB2_MEMORY_DMABUF) { 694 dprintk(q, 1, "unsupported memory type\n"); 695 return -EINVAL; 696 } 697 698 if (type != q->type) { 699 dprintk(q, 1, "requested type is incorrect\n"); 700 return -EINVAL; 701 } 702 703 /* 704 * Make sure all the required memory ops for given memory type 705 * are available. 706 */ 707 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) { 708 dprintk(q, 1, "MMAP for current setup unsupported\n"); 709 return -EINVAL; 710 } 711 712 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) { 713 dprintk(q, 1, "USERPTR for current setup unsupported\n"); 714 return -EINVAL; 715 } 716 717 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) { 718 dprintk(q, 1, "DMABUF for current setup unsupported\n"); 719 return -EINVAL; 720 } 721 722 /* 723 * Place the busy tests at the end: -EBUSY can be ignored when 724 * create_bufs is called with count == 0, but count == 0 should still 725 * do the memory and type validation. 726 */ 727 if (vb2_fileio_is_active(q)) { 728 dprintk(q, 1, "file io in progress\n"); 729 return -EBUSY; 730 } 731 return 0; 732 } 733 EXPORT_SYMBOL(vb2_verify_memory_type); 734 735 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, 736 unsigned int *count) 737 { 738 unsigned int num_buffers, allocated_buffers, num_planes = 0; 739 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 740 unsigned int i; 741 int ret; 742 743 if (q->streaming) { 744 dprintk(q, 1, "streaming active\n"); 745 return -EBUSY; 746 } 747 748 if (q->waiting_in_dqbuf && *count) { 749 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 750 return -EBUSY; 751 } 752 753 if (*count == 0 || q->num_buffers != 0 || 754 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory)) { 755 /* 756 * We already have buffers allocated, so first check if they 757 * are not in use and can be freed. 758 */ 759 mutex_lock(&q->mmap_lock); 760 if (debug && q->memory == VB2_MEMORY_MMAP && 761 __buffers_in_use(q)) 762 dprintk(q, 1, "memory in use, orphaning buffers\n"); 763 764 /* 765 * Call queue_cancel to clean up any buffers in the 766 * QUEUED state which is possible if buffers were prepared or 767 * queued without ever calling STREAMON. 768 */ 769 __vb2_queue_cancel(q); 770 ret = __vb2_queue_free(q, q->num_buffers); 771 mutex_unlock(&q->mmap_lock); 772 if (ret) 773 return ret; 774 775 /* 776 * In case of REQBUFS(0) return immediately without calling 777 * driver's queue_setup() callback and allocating resources. 778 */ 779 if (*count == 0) 780 return 0; 781 } 782 783 /* 784 * Make sure the requested values and current defaults are sane. 785 */ 786 WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME); 787 num_buffers = max_t(unsigned int, *count, q->min_buffers_needed); 788 num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME); 789 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 790 q->memory = memory; 791 792 /* 793 * Ask the driver how many buffers and planes per buffer it requires. 794 * Driver also sets the size and allocator context for each plane. 795 */ 796 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes, 797 plane_sizes, q->alloc_devs); 798 if (ret) 799 return ret; 800 801 /* Check that driver has set sane values */ 802 if (WARN_ON(!num_planes)) 803 return -EINVAL; 804 805 for (i = 0; i < num_planes; i++) 806 if (WARN_ON(!plane_sizes[i])) 807 return -EINVAL; 808 809 /* Finally, allocate buffers and video memory */ 810 allocated_buffers = 811 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes); 812 if (allocated_buffers == 0) { 813 dprintk(q, 1, "memory allocation failed\n"); 814 return -ENOMEM; 815 } 816 817 /* 818 * There is no point in continuing if we can't allocate the minimum 819 * number of buffers needed by this vb2_queue. 820 */ 821 if (allocated_buffers < q->min_buffers_needed) 822 ret = -ENOMEM; 823 824 /* 825 * Check if driver can handle the allocated number of buffers. 826 */ 827 if (!ret && allocated_buffers < num_buffers) { 828 num_buffers = allocated_buffers; 829 /* 830 * num_planes is set by the previous queue_setup(), but since it 831 * signals to queue_setup() whether it is called from create_bufs() 832 * vs reqbufs() we zero it here to signal that queue_setup() is 833 * called for the reqbufs() case. 834 */ 835 num_planes = 0; 836 837 ret = call_qop(q, queue_setup, q, &num_buffers, 838 &num_planes, plane_sizes, q->alloc_devs); 839 840 if (!ret && allocated_buffers < num_buffers) 841 ret = -ENOMEM; 842 843 /* 844 * Either the driver has accepted a smaller number of buffers, 845 * or .queue_setup() returned an error 846 */ 847 } 848 849 mutex_lock(&q->mmap_lock); 850 q->num_buffers = allocated_buffers; 851 852 if (ret < 0) { 853 /* 854 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 855 * from q->num_buffers. 856 */ 857 __vb2_queue_free(q, allocated_buffers); 858 mutex_unlock(&q->mmap_lock); 859 return ret; 860 } 861 mutex_unlock(&q->mmap_lock); 862 863 /* 864 * Return the number of successfully allocated buffers 865 * to the userspace. 866 */ 867 *count = allocated_buffers; 868 q->waiting_for_buffers = !q->is_output; 869 870 return 0; 871 } 872 EXPORT_SYMBOL_GPL(vb2_core_reqbufs); 873 874 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, 875 unsigned int *count, 876 unsigned int requested_planes, 877 const unsigned int requested_sizes[]) 878 { 879 unsigned int num_planes = 0, num_buffers, allocated_buffers; 880 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 881 int ret; 882 883 if (q->num_buffers == VB2_MAX_FRAME) { 884 dprintk(q, 1, "maximum number of buffers already allocated\n"); 885 return -ENOBUFS; 886 } 887 888 if (!q->num_buffers) { 889 if (q->waiting_in_dqbuf && *count) { 890 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 891 return -EBUSY; 892 } 893 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 894 q->memory = memory; 895 q->waiting_for_buffers = !q->is_output; 896 } else { 897 if (q->memory != memory) { 898 dprintk(q, 1, "memory model mismatch\n"); 899 return -EINVAL; 900 } 901 } 902 903 num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers); 904 905 if (requested_planes && requested_sizes) { 906 num_planes = requested_planes; 907 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes)); 908 } 909 910 /* 911 * Ask the driver, whether the requested number of buffers, planes per 912 * buffer and their sizes are acceptable 913 */ 914 ret = call_qop(q, queue_setup, q, &num_buffers, 915 &num_planes, plane_sizes, q->alloc_devs); 916 if (ret) 917 return ret; 918 919 /* Finally, allocate buffers and video memory */ 920 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers, 921 num_planes, plane_sizes); 922 if (allocated_buffers == 0) { 923 dprintk(q, 1, "memory allocation failed\n"); 924 return -ENOMEM; 925 } 926 927 /* 928 * Check if driver can handle the so far allocated number of buffers. 929 */ 930 if (allocated_buffers < num_buffers) { 931 num_buffers = allocated_buffers; 932 933 /* 934 * q->num_buffers contains the total number of buffers, that the 935 * queue driver has set up 936 */ 937 ret = call_qop(q, queue_setup, q, &num_buffers, 938 &num_planes, plane_sizes, q->alloc_devs); 939 940 if (!ret && allocated_buffers < num_buffers) 941 ret = -ENOMEM; 942 943 /* 944 * Either the driver has accepted a smaller number of buffers, 945 * or .queue_setup() returned an error 946 */ 947 } 948 949 mutex_lock(&q->mmap_lock); 950 q->num_buffers += allocated_buffers; 951 952 if (ret < 0) { 953 /* 954 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 955 * from q->num_buffers. 956 */ 957 __vb2_queue_free(q, allocated_buffers); 958 mutex_unlock(&q->mmap_lock); 959 return -ENOMEM; 960 } 961 mutex_unlock(&q->mmap_lock); 962 963 /* 964 * Return the number of successfully allocated buffers 965 * to the userspace. 966 */ 967 *count = allocated_buffers; 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(vb2_core_create_bufs); 972 973 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no) 974 { 975 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 976 return NULL; 977 978 return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv); 979 980 } 981 EXPORT_SYMBOL_GPL(vb2_plane_vaddr); 982 983 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no) 984 { 985 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 986 return NULL; 987 988 return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv); 989 } 990 EXPORT_SYMBOL_GPL(vb2_plane_cookie); 991 992 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state) 993 { 994 struct vb2_queue *q = vb->vb2_queue; 995 unsigned long flags; 996 997 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE)) 998 return; 999 1000 if (WARN_ON(state != VB2_BUF_STATE_DONE && 1001 state != VB2_BUF_STATE_ERROR && 1002 state != VB2_BUF_STATE_QUEUED)) 1003 state = VB2_BUF_STATE_ERROR; 1004 1005 #ifdef CONFIG_VIDEO_ADV_DEBUG 1006 /* 1007 * Although this is not a callback, it still does have to balance 1008 * with the buf_queue op. So update this counter manually. 1009 */ 1010 vb->cnt_buf_done++; 1011 #endif 1012 dprintk(q, 4, "done processing on buffer %d, state: %s\n", 1013 vb->index, vb2_state_name(state)); 1014 1015 if (state != VB2_BUF_STATE_QUEUED) 1016 __vb2_buf_mem_finish(vb); 1017 1018 spin_lock_irqsave(&q->done_lock, flags); 1019 if (state == VB2_BUF_STATE_QUEUED) { 1020 vb->state = VB2_BUF_STATE_QUEUED; 1021 } else { 1022 /* Add the buffer to the done buffers list */ 1023 list_add_tail(&vb->done_entry, &q->done_list); 1024 vb->state = state; 1025 } 1026 atomic_dec(&q->owned_by_drv_count); 1027 1028 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) { 1029 media_request_object_unbind(&vb->req_obj); 1030 media_request_object_put(&vb->req_obj); 1031 } 1032 1033 spin_unlock_irqrestore(&q->done_lock, flags); 1034 1035 trace_vb2_buf_done(q, vb); 1036 1037 switch (state) { 1038 case VB2_BUF_STATE_QUEUED: 1039 return; 1040 default: 1041 /* Inform any processes that may be waiting for buffers */ 1042 wake_up(&q->done_wq); 1043 break; 1044 } 1045 } 1046 EXPORT_SYMBOL_GPL(vb2_buffer_done); 1047 1048 void vb2_discard_done(struct vb2_queue *q) 1049 { 1050 struct vb2_buffer *vb; 1051 unsigned long flags; 1052 1053 spin_lock_irqsave(&q->done_lock, flags); 1054 list_for_each_entry(vb, &q->done_list, done_entry) 1055 vb->state = VB2_BUF_STATE_ERROR; 1056 spin_unlock_irqrestore(&q->done_lock, flags); 1057 } 1058 EXPORT_SYMBOL_GPL(vb2_discard_done); 1059 1060 /* 1061 * __prepare_mmap() - prepare an MMAP buffer 1062 */ 1063 static int __prepare_mmap(struct vb2_buffer *vb) 1064 { 1065 int ret = 0; 1066 1067 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1068 vb, vb->planes); 1069 return ret ? ret : call_vb_qop(vb, buf_prepare, vb); 1070 } 1071 1072 /* 1073 * __prepare_userptr() - prepare a USERPTR buffer 1074 */ 1075 static int __prepare_userptr(struct vb2_buffer *vb) 1076 { 1077 struct vb2_plane planes[VB2_MAX_PLANES]; 1078 struct vb2_queue *q = vb->vb2_queue; 1079 void *mem_priv; 1080 unsigned int plane; 1081 int ret = 0; 1082 bool reacquired = vb->planes[0].mem_priv == NULL; 1083 1084 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1085 /* Copy relevant information provided by the userspace */ 1086 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1087 vb, planes); 1088 if (ret) 1089 return ret; 1090 1091 for (plane = 0; plane < vb->num_planes; ++plane) { 1092 /* Skip the plane if already verified */ 1093 if (vb->planes[plane].m.userptr && 1094 vb->planes[plane].m.userptr == planes[plane].m.userptr 1095 && vb->planes[plane].length == planes[plane].length) 1096 continue; 1097 1098 dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n", 1099 plane); 1100 1101 /* Check if the provided plane buffer is large enough */ 1102 if (planes[plane].length < vb->planes[plane].min_length) { 1103 dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n", 1104 planes[plane].length, 1105 vb->planes[plane].min_length, 1106 plane); 1107 ret = -EINVAL; 1108 goto err; 1109 } 1110 1111 /* Release previously acquired memory if present */ 1112 if (vb->planes[plane].mem_priv) { 1113 if (!reacquired) { 1114 reacquired = true; 1115 vb->copied_timestamp = 0; 1116 call_void_vb_qop(vb, buf_cleanup, vb); 1117 } 1118 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 1119 } 1120 1121 vb->planes[plane].mem_priv = NULL; 1122 vb->planes[plane].bytesused = 0; 1123 vb->planes[plane].length = 0; 1124 vb->planes[plane].m.userptr = 0; 1125 vb->planes[plane].data_offset = 0; 1126 1127 /* Acquire each plane's memory */ 1128 mem_priv = call_ptr_memop(vb, get_userptr, 1129 q->alloc_devs[plane] ? : q->dev, 1130 planes[plane].m.userptr, 1131 planes[plane].length, q->dma_dir); 1132 if (IS_ERR(mem_priv)) { 1133 dprintk(q, 1, "failed acquiring userspace memory for plane %d\n", 1134 plane); 1135 ret = PTR_ERR(mem_priv); 1136 goto err; 1137 } 1138 vb->planes[plane].mem_priv = mem_priv; 1139 } 1140 1141 /* 1142 * Now that everything is in order, copy relevant information 1143 * provided by userspace. 1144 */ 1145 for (plane = 0; plane < vb->num_planes; ++plane) { 1146 vb->planes[plane].bytesused = planes[plane].bytesused; 1147 vb->planes[plane].length = planes[plane].length; 1148 vb->planes[plane].m.userptr = planes[plane].m.userptr; 1149 vb->planes[plane].data_offset = planes[plane].data_offset; 1150 } 1151 1152 if (reacquired) { 1153 /* 1154 * One or more planes changed, so we must call buf_init to do 1155 * the driver-specific initialization on the newly acquired 1156 * buffer, if provided. 1157 */ 1158 ret = call_vb_qop(vb, buf_init, vb); 1159 if (ret) { 1160 dprintk(q, 1, "buffer initialization failed\n"); 1161 goto err; 1162 } 1163 } 1164 1165 ret = call_vb_qop(vb, buf_prepare, vb); 1166 if (ret) { 1167 dprintk(q, 1, "buffer preparation failed\n"); 1168 call_void_vb_qop(vb, buf_cleanup, vb); 1169 goto err; 1170 } 1171 1172 return 0; 1173 err: 1174 /* In case of errors, release planes that were already acquired */ 1175 for (plane = 0; plane < vb->num_planes; ++plane) { 1176 if (vb->planes[plane].mem_priv) 1177 call_void_memop(vb, put_userptr, 1178 vb->planes[plane].mem_priv); 1179 vb->planes[plane].mem_priv = NULL; 1180 vb->planes[plane].m.userptr = 0; 1181 vb->planes[plane].length = 0; 1182 } 1183 1184 return ret; 1185 } 1186 1187 /* 1188 * __prepare_dmabuf() - prepare a DMABUF buffer 1189 */ 1190 static int __prepare_dmabuf(struct vb2_buffer *vb) 1191 { 1192 struct vb2_plane planes[VB2_MAX_PLANES]; 1193 struct vb2_queue *q = vb->vb2_queue; 1194 void *mem_priv; 1195 unsigned int plane; 1196 int ret = 0; 1197 bool reacquired = vb->planes[0].mem_priv == NULL; 1198 1199 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1200 /* Copy relevant information provided by the userspace */ 1201 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1202 vb, planes); 1203 if (ret) 1204 return ret; 1205 1206 for (plane = 0; plane < vb->num_planes; ++plane) { 1207 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd); 1208 1209 if (IS_ERR_OR_NULL(dbuf)) { 1210 dprintk(q, 1, "invalid dmabuf fd for plane %d\n", 1211 plane); 1212 ret = -EINVAL; 1213 goto err; 1214 } 1215 1216 /* use DMABUF size if length is not provided */ 1217 if (planes[plane].length == 0) 1218 planes[plane].length = dbuf->size; 1219 1220 if (planes[plane].length < vb->planes[plane].min_length) { 1221 dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n", 1222 planes[plane].length, plane, 1223 vb->planes[plane].min_length); 1224 dma_buf_put(dbuf); 1225 ret = -EINVAL; 1226 goto err; 1227 } 1228 1229 /* Skip the plane if already verified */ 1230 if (dbuf == vb->planes[plane].dbuf && 1231 vb->planes[plane].length == planes[plane].length) { 1232 dma_buf_put(dbuf); 1233 continue; 1234 } 1235 1236 dprintk(q, 3, "buffer for plane %d changed\n", plane); 1237 1238 if (!reacquired) { 1239 reacquired = true; 1240 vb->copied_timestamp = 0; 1241 call_void_vb_qop(vb, buf_cleanup, vb); 1242 } 1243 1244 /* Release previously acquired memory if present */ 1245 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 1246 vb->planes[plane].bytesused = 0; 1247 vb->planes[plane].length = 0; 1248 vb->planes[plane].m.fd = 0; 1249 vb->planes[plane].data_offset = 0; 1250 1251 /* Acquire each plane's memory */ 1252 mem_priv = call_ptr_memop(vb, attach_dmabuf, 1253 q->alloc_devs[plane] ? : q->dev, 1254 dbuf, planes[plane].length, q->dma_dir); 1255 if (IS_ERR(mem_priv)) { 1256 dprintk(q, 1, "failed to attach dmabuf\n"); 1257 ret = PTR_ERR(mem_priv); 1258 dma_buf_put(dbuf); 1259 goto err; 1260 } 1261 1262 vb->planes[plane].dbuf = dbuf; 1263 vb->planes[plane].mem_priv = mem_priv; 1264 } 1265 1266 /* 1267 * This pins the buffer(s) with dma_buf_map_attachment()). It's done 1268 * here instead just before the DMA, while queueing the buffer(s) so 1269 * userspace knows sooner rather than later if the dma-buf map fails. 1270 */ 1271 for (plane = 0; plane < vb->num_planes; ++plane) { 1272 if (vb->planes[plane].dbuf_mapped) 1273 continue; 1274 1275 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv); 1276 if (ret) { 1277 dprintk(q, 1, "failed to map dmabuf for plane %d\n", 1278 plane); 1279 goto err; 1280 } 1281 vb->planes[plane].dbuf_mapped = 1; 1282 } 1283 1284 /* 1285 * Now that everything is in order, copy relevant information 1286 * provided by userspace. 1287 */ 1288 for (plane = 0; plane < vb->num_planes; ++plane) { 1289 vb->planes[plane].bytesused = planes[plane].bytesused; 1290 vb->planes[plane].length = planes[plane].length; 1291 vb->planes[plane].m.fd = planes[plane].m.fd; 1292 vb->planes[plane].data_offset = planes[plane].data_offset; 1293 } 1294 1295 if (reacquired) { 1296 /* 1297 * Call driver-specific initialization on the newly acquired buffer, 1298 * if provided. 1299 */ 1300 ret = call_vb_qop(vb, buf_init, vb); 1301 if (ret) { 1302 dprintk(q, 1, "buffer initialization failed\n"); 1303 goto err; 1304 } 1305 } 1306 1307 ret = call_vb_qop(vb, buf_prepare, vb); 1308 if (ret) { 1309 dprintk(q, 1, "buffer preparation failed\n"); 1310 call_void_vb_qop(vb, buf_cleanup, vb); 1311 goto err; 1312 } 1313 1314 return 0; 1315 err: 1316 /* In case of errors, release planes that were already acquired */ 1317 __vb2_buf_dmabuf_put(vb); 1318 1319 return ret; 1320 } 1321 1322 /* 1323 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing 1324 */ 1325 static void __enqueue_in_driver(struct vb2_buffer *vb) 1326 { 1327 struct vb2_queue *q = vb->vb2_queue; 1328 1329 vb->state = VB2_BUF_STATE_ACTIVE; 1330 atomic_inc(&q->owned_by_drv_count); 1331 1332 trace_vb2_buf_queue(q, vb); 1333 1334 call_void_vb_qop(vb, buf_queue, vb); 1335 } 1336 1337 static int __buf_prepare(struct vb2_buffer *vb) 1338 { 1339 struct vb2_queue *q = vb->vb2_queue; 1340 enum vb2_buffer_state orig_state = vb->state; 1341 int ret; 1342 1343 if (q->error) { 1344 dprintk(q, 1, "fatal error occurred on queue\n"); 1345 return -EIO; 1346 } 1347 1348 if (vb->prepared) 1349 return 0; 1350 WARN_ON(vb->synced); 1351 1352 if (q->is_output) { 1353 ret = call_vb_qop(vb, buf_out_validate, vb); 1354 if (ret) { 1355 dprintk(q, 1, "buffer validation failed\n"); 1356 return ret; 1357 } 1358 } 1359 1360 vb->state = VB2_BUF_STATE_PREPARING; 1361 1362 switch (q->memory) { 1363 case VB2_MEMORY_MMAP: 1364 ret = __prepare_mmap(vb); 1365 break; 1366 case VB2_MEMORY_USERPTR: 1367 ret = __prepare_userptr(vb); 1368 break; 1369 case VB2_MEMORY_DMABUF: 1370 ret = __prepare_dmabuf(vb); 1371 break; 1372 default: 1373 WARN(1, "Invalid queue type\n"); 1374 ret = -EINVAL; 1375 break; 1376 } 1377 1378 if (ret) { 1379 dprintk(q, 1, "buffer preparation failed: %d\n", ret); 1380 vb->state = orig_state; 1381 return ret; 1382 } 1383 1384 __vb2_buf_mem_prepare(vb); 1385 vb->prepared = 1; 1386 vb->state = orig_state; 1387 1388 return 0; 1389 } 1390 1391 static int vb2_req_prepare(struct media_request_object *obj) 1392 { 1393 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1394 int ret; 1395 1396 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST)) 1397 return -EINVAL; 1398 1399 mutex_lock(vb->vb2_queue->lock); 1400 ret = __buf_prepare(vb); 1401 mutex_unlock(vb->vb2_queue->lock); 1402 return ret; 1403 } 1404 1405 static void __vb2_dqbuf(struct vb2_buffer *vb); 1406 1407 static void vb2_req_unprepare(struct media_request_object *obj) 1408 { 1409 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1410 1411 mutex_lock(vb->vb2_queue->lock); 1412 __vb2_dqbuf(vb); 1413 vb->state = VB2_BUF_STATE_IN_REQUEST; 1414 mutex_unlock(vb->vb2_queue->lock); 1415 WARN_ON(!vb->req_obj.req); 1416 } 1417 1418 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1419 struct media_request *req); 1420 1421 static void vb2_req_queue(struct media_request_object *obj) 1422 { 1423 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1424 1425 mutex_lock(vb->vb2_queue->lock); 1426 vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL); 1427 mutex_unlock(vb->vb2_queue->lock); 1428 } 1429 1430 static void vb2_req_unbind(struct media_request_object *obj) 1431 { 1432 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1433 1434 if (vb->state == VB2_BUF_STATE_IN_REQUEST) 1435 call_void_bufop(vb->vb2_queue, init_buffer, vb); 1436 } 1437 1438 static void vb2_req_release(struct media_request_object *obj) 1439 { 1440 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1441 1442 if (vb->state == VB2_BUF_STATE_IN_REQUEST) { 1443 vb->state = VB2_BUF_STATE_DEQUEUED; 1444 if (vb->request) 1445 media_request_put(vb->request); 1446 vb->request = NULL; 1447 } 1448 } 1449 1450 static const struct media_request_object_ops vb2_core_req_ops = { 1451 .prepare = vb2_req_prepare, 1452 .unprepare = vb2_req_unprepare, 1453 .queue = vb2_req_queue, 1454 .unbind = vb2_req_unbind, 1455 .release = vb2_req_release, 1456 }; 1457 1458 bool vb2_request_object_is_buffer(struct media_request_object *obj) 1459 { 1460 return obj->ops == &vb2_core_req_ops; 1461 } 1462 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer); 1463 1464 unsigned int vb2_request_buffer_cnt(struct media_request *req) 1465 { 1466 struct media_request_object *obj; 1467 unsigned long flags; 1468 unsigned int buffer_cnt = 0; 1469 1470 spin_lock_irqsave(&req->lock, flags); 1471 list_for_each_entry(obj, &req->objects, list) 1472 if (vb2_request_object_is_buffer(obj)) 1473 buffer_cnt++; 1474 spin_unlock_irqrestore(&req->lock, flags); 1475 1476 return buffer_cnt; 1477 } 1478 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt); 1479 1480 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb) 1481 { 1482 struct vb2_buffer *vb; 1483 int ret; 1484 1485 vb = q->bufs[index]; 1486 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1487 dprintk(q, 1, "invalid buffer state %s\n", 1488 vb2_state_name(vb->state)); 1489 return -EINVAL; 1490 } 1491 if (vb->prepared) { 1492 dprintk(q, 1, "buffer already prepared\n"); 1493 return -EINVAL; 1494 } 1495 1496 ret = __buf_prepare(vb); 1497 if (ret) 1498 return ret; 1499 1500 /* Fill buffer information for the userspace */ 1501 call_void_bufop(q, fill_user_buffer, vb, pb); 1502 1503 dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index); 1504 1505 return 0; 1506 } 1507 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf); 1508 1509 /* 1510 * vb2_start_streaming() - Attempt to start streaming. 1511 * @q: videobuf2 queue 1512 * 1513 * Attempt to start streaming. When this function is called there must be 1514 * at least q->min_buffers_needed buffers queued up (i.e. the minimum 1515 * number of buffers required for the DMA engine to function). If the 1516 * @start_streaming op fails it is supposed to return all the driver-owned 1517 * buffers back to vb2 in state QUEUED. Check if that happened and if 1518 * not warn and reclaim them forcefully. 1519 */ 1520 static int vb2_start_streaming(struct vb2_queue *q) 1521 { 1522 struct vb2_buffer *vb; 1523 int ret; 1524 1525 /* 1526 * If any buffers were queued before streamon, 1527 * we can now pass them to driver for processing. 1528 */ 1529 list_for_each_entry(vb, &q->queued_list, queued_entry) 1530 __enqueue_in_driver(vb); 1531 1532 /* Tell the driver to start streaming */ 1533 q->start_streaming_called = 1; 1534 ret = call_qop(q, start_streaming, q, 1535 atomic_read(&q->owned_by_drv_count)); 1536 if (!ret) 1537 return 0; 1538 1539 q->start_streaming_called = 0; 1540 1541 dprintk(q, 1, "driver refused to start streaming\n"); 1542 /* 1543 * If you see this warning, then the driver isn't cleaning up properly 1544 * after a failed start_streaming(). See the start_streaming() 1545 * documentation in videobuf2-core.h for more information how buffers 1546 * should be returned to vb2 in start_streaming(). 1547 */ 1548 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1549 unsigned i; 1550 1551 /* 1552 * Forcefully reclaim buffers if the driver did not 1553 * correctly return them to vb2. 1554 */ 1555 for (i = 0; i < q->num_buffers; ++i) { 1556 vb = q->bufs[i]; 1557 if (vb->state == VB2_BUF_STATE_ACTIVE) 1558 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED); 1559 } 1560 /* Must be zero now */ 1561 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1562 } 1563 /* 1564 * If done_list is not empty, then start_streaming() didn't call 1565 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or 1566 * STATE_DONE. 1567 */ 1568 WARN_ON(!list_empty(&q->done_list)); 1569 return ret; 1570 } 1571 1572 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1573 struct media_request *req) 1574 { 1575 struct vb2_buffer *vb; 1576 int ret; 1577 1578 if (q->error) { 1579 dprintk(q, 1, "fatal error occurred on queue\n"); 1580 return -EIO; 1581 } 1582 1583 vb = q->bufs[index]; 1584 1585 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1586 q->requires_requests) { 1587 dprintk(q, 1, "qbuf requires a request\n"); 1588 return -EBADR; 1589 } 1590 1591 if ((req && q->uses_qbuf) || 1592 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1593 q->uses_requests)) { 1594 dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n"); 1595 return -EBUSY; 1596 } 1597 1598 if (req) { 1599 int ret; 1600 1601 q->uses_requests = 1; 1602 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1603 dprintk(q, 1, "buffer %d not in dequeued state\n", 1604 vb->index); 1605 return -EINVAL; 1606 } 1607 1608 if (q->is_output && !vb->prepared) { 1609 ret = call_vb_qop(vb, buf_out_validate, vb); 1610 if (ret) { 1611 dprintk(q, 1, "buffer validation failed\n"); 1612 return ret; 1613 } 1614 } 1615 1616 media_request_object_init(&vb->req_obj); 1617 1618 /* Make sure the request is in a safe state for updating. */ 1619 ret = media_request_lock_for_update(req); 1620 if (ret) 1621 return ret; 1622 ret = media_request_object_bind(req, &vb2_core_req_ops, 1623 q, true, &vb->req_obj); 1624 media_request_unlock_for_update(req); 1625 if (ret) 1626 return ret; 1627 1628 vb->state = VB2_BUF_STATE_IN_REQUEST; 1629 1630 /* 1631 * Increment the refcount and store the request. 1632 * The request refcount is decremented again when the 1633 * buffer is dequeued. This is to prevent vb2_buffer_done() 1634 * from freeing the request from interrupt context, which can 1635 * happen if the application closed the request fd after 1636 * queueing the request. 1637 */ 1638 media_request_get(req); 1639 vb->request = req; 1640 1641 /* Fill buffer information for the userspace */ 1642 if (pb) { 1643 call_void_bufop(q, copy_timestamp, vb, pb); 1644 call_void_bufop(q, fill_user_buffer, vb, pb); 1645 } 1646 1647 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1648 return 0; 1649 } 1650 1651 if (vb->state != VB2_BUF_STATE_IN_REQUEST) 1652 q->uses_qbuf = 1; 1653 1654 switch (vb->state) { 1655 case VB2_BUF_STATE_DEQUEUED: 1656 case VB2_BUF_STATE_IN_REQUEST: 1657 if (!vb->prepared) { 1658 ret = __buf_prepare(vb); 1659 if (ret) 1660 return ret; 1661 } 1662 break; 1663 case VB2_BUF_STATE_PREPARING: 1664 dprintk(q, 1, "buffer still being prepared\n"); 1665 return -EINVAL; 1666 default: 1667 dprintk(q, 1, "invalid buffer state %s\n", 1668 vb2_state_name(vb->state)); 1669 return -EINVAL; 1670 } 1671 1672 /* 1673 * Add to the queued buffers list, a buffer will stay on it until 1674 * dequeued in dqbuf. 1675 */ 1676 list_add_tail(&vb->queued_entry, &q->queued_list); 1677 q->queued_count++; 1678 q->waiting_for_buffers = false; 1679 vb->state = VB2_BUF_STATE_QUEUED; 1680 1681 if (pb) 1682 call_void_bufop(q, copy_timestamp, vb, pb); 1683 1684 trace_vb2_qbuf(q, vb); 1685 1686 /* 1687 * If already streaming, give the buffer to driver for processing. 1688 * If not, the buffer will be given to driver on next streamon. 1689 */ 1690 if (q->start_streaming_called) 1691 __enqueue_in_driver(vb); 1692 1693 /* Fill buffer information for the userspace */ 1694 if (pb) 1695 call_void_bufop(q, fill_user_buffer, vb, pb); 1696 1697 /* 1698 * If streamon has been called, and we haven't yet called 1699 * start_streaming() since not enough buffers were queued, and 1700 * we now have reached the minimum number of queued buffers, 1701 * then we can finally call start_streaming(). 1702 */ 1703 if (q->streaming && !q->start_streaming_called && 1704 q->queued_count >= q->min_buffers_needed) { 1705 ret = vb2_start_streaming(q); 1706 if (ret) 1707 return ret; 1708 } 1709 1710 dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index); 1711 return 0; 1712 } 1713 EXPORT_SYMBOL_GPL(vb2_core_qbuf); 1714 1715 /* 1716 * __vb2_wait_for_done_vb() - wait for a buffer to become available 1717 * for dequeuing 1718 * 1719 * Will sleep if required for nonblocking == false. 1720 */ 1721 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking) 1722 { 1723 /* 1724 * All operations on vb_done_list are performed under done_lock 1725 * spinlock protection. However, buffers may be removed from 1726 * it and returned to userspace only while holding both driver's 1727 * lock and the done_lock spinlock. Thus we can be sure that as 1728 * long as we hold the driver's lock, the list will remain not 1729 * empty if list_empty() check succeeds. 1730 */ 1731 1732 for (;;) { 1733 int ret; 1734 1735 if (q->waiting_in_dqbuf) { 1736 dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n"); 1737 return -EBUSY; 1738 } 1739 1740 if (!q->streaming) { 1741 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1742 return -EINVAL; 1743 } 1744 1745 if (q->error) { 1746 dprintk(q, 1, "Queue in error state, will not wait for buffers\n"); 1747 return -EIO; 1748 } 1749 1750 if (q->last_buffer_dequeued) { 1751 dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n"); 1752 return -EPIPE; 1753 } 1754 1755 if (!list_empty(&q->done_list)) { 1756 /* 1757 * Found a buffer that we were waiting for. 1758 */ 1759 break; 1760 } 1761 1762 if (nonblocking) { 1763 dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n"); 1764 return -EAGAIN; 1765 } 1766 1767 q->waiting_in_dqbuf = 1; 1768 /* 1769 * We are streaming and blocking, wait for another buffer to 1770 * become ready or for streamoff. Driver's lock is released to 1771 * allow streamoff or qbuf to be called while waiting. 1772 */ 1773 call_void_qop(q, wait_prepare, q); 1774 1775 /* 1776 * All locks have been released, it is safe to sleep now. 1777 */ 1778 dprintk(q, 3, "will sleep waiting for buffers\n"); 1779 ret = wait_event_interruptible(q->done_wq, 1780 !list_empty(&q->done_list) || !q->streaming || 1781 q->error); 1782 1783 /* 1784 * We need to reevaluate both conditions again after reacquiring 1785 * the locks or return an error if one occurred. 1786 */ 1787 call_void_qop(q, wait_finish, q); 1788 q->waiting_in_dqbuf = 0; 1789 if (ret) { 1790 dprintk(q, 1, "sleep was interrupted\n"); 1791 return ret; 1792 } 1793 } 1794 return 0; 1795 } 1796 1797 /* 1798 * __vb2_get_done_vb() - get a buffer ready for dequeuing 1799 * 1800 * Will sleep if required for nonblocking == false. 1801 */ 1802 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb, 1803 void *pb, int nonblocking) 1804 { 1805 unsigned long flags; 1806 int ret = 0; 1807 1808 /* 1809 * Wait for at least one buffer to become available on the done_list. 1810 */ 1811 ret = __vb2_wait_for_done_vb(q, nonblocking); 1812 if (ret) 1813 return ret; 1814 1815 /* 1816 * Driver's lock has been held since we last verified that done_list 1817 * is not empty, so no need for another list_empty(done_list) check. 1818 */ 1819 spin_lock_irqsave(&q->done_lock, flags); 1820 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry); 1821 /* 1822 * Only remove the buffer from done_list if all planes can be 1823 * handled. Some cases such as V4L2 file I/O and DVB have pb 1824 * == NULL; skip the check then as there's nothing to verify. 1825 */ 1826 if (pb) 1827 ret = call_bufop(q, verify_planes_array, *vb, pb); 1828 if (!ret) 1829 list_del(&(*vb)->done_entry); 1830 spin_unlock_irqrestore(&q->done_lock, flags); 1831 1832 return ret; 1833 } 1834 1835 int vb2_wait_for_all_buffers(struct vb2_queue *q) 1836 { 1837 if (!q->streaming) { 1838 dprintk(q, 1, "streaming off, will not wait for buffers\n"); 1839 return -EINVAL; 1840 } 1841 1842 if (q->start_streaming_called) 1843 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count)); 1844 return 0; 1845 } 1846 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers); 1847 1848 /* 1849 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state 1850 */ 1851 static void __vb2_dqbuf(struct vb2_buffer *vb) 1852 { 1853 struct vb2_queue *q = vb->vb2_queue; 1854 1855 /* nothing to do if the buffer is already dequeued */ 1856 if (vb->state == VB2_BUF_STATE_DEQUEUED) 1857 return; 1858 1859 vb->state = VB2_BUF_STATE_DEQUEUED; 1860 1861 call_void_bufop(q, init_buffer, vb); 1862 } 1863 1864 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb, 1865 bool nonblocking) 1866 { 1867 struct vb2_buffer *vb = NULL; 1868 int ret; 1869 1870 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking); 1871 if (ret < 0) 1872 return ret; 1873 1874 switch (vb->state) { 1875 case VB2_BUF_STATE_DONE: 1876 dprintk(q, 3, "returning done buffer\n"); 1877 break; 1878 case VB2_BUF_STATE_ERROR: 1879 dprintk(q, 3, "returning done buffer with errors\n"); 1880 break; 1881 default: 1882 dprintk(q, 1, "invalid buffer state %s\n", 1883 vb2_state_name(vb->state)); 1884 return -EINVAL; 1885 } 1886 1887 call_void_vb_qop(vb, buf_finish, vb); 1888 vb->prepared = 0; 1889 1890 if (pindex) 1891 *pindex = vb->index; 1892 1893 /* Fill buffer information for the userspace */ 1894 if (pb) 1895 call_void_bufop(q, fill_user_buffer, vb, pb); 1896 1897 /* Remove from videobuf queue */ 1898 list_del(&vb->queued_entry); 1899 q->queued_count--; 1900 1901 trace_vb2_dqbuf(q, vb); 1902 1903 /* go back to dequeued state */ 1904 __vb2_dqbuf(vb); 1905 1906 if (WARN_ON(vb->req_obj.req)) { 1907 media_request_object_unbind(&vb->req_obj); 1908 media_request_object_put(&vb->req_obj); 1909 } 1910 if (vb->request) 1911 media_request_put(vb->request); 1912 vb->request = NULL; 1913 1914 dprintk(q, 2, "dqbuf of buffer %d, state: %s\n", 1915 vb->index, vb2_state_name(vb->state)); 1916 1917 return 0; 1918 1919 } 1920 EXPORT_SYMBOL_GPL(vb2_core_dqbuf); 1921 1922 /* 1923 * __vb2_queue_cancel() - cancel and stop (pause) streaming 1924 * 1925 * Removes all queued buffers from driver's queue and all buffers queued by 1926 * userspace from videobuf's queue. Returns to state after reqbufs. 1927 */ 1928 static void __vb2_queue_cancel(struct vb2_queue *q) 1929 { 1930 unsigned int i; 1931 1932 /* 1933 * Tell driver to stop all transactions and release all queued 1934 * buffers. 1935 */ 1936 if (q->start_streaming_called) 1937 call_void_qop(q, stop_streaming, q); 1938 1939 /* 1940 * If you see this warning, then the driver isn't cleaning up properly 1941 * in stop_streaming(). See the stop_streaming() documentation in 1942 * videobuf2-core.h for more information how buffers should be returned 1943 * to vb2 in stop_streaming(). 1944 */ 1945 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1946 for (i = 0; i < q->num_buffers; ++i) 1947 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) { 1948 pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n", 1949 q->bufs[i]); 1950 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR); 1951 } 1952 /* Must be zero now */ 1953 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1954 } 1955 1956 q->streaming = 0; 1957 q->start_streaming_called = 0; 1958 q->queued_count = 0; 1959 q->error = 0; 1960 q->uses_requests = 0; 1961 q->uses_qbuf = 0; 1962 1963 /* 1964 * Remove all buffers from videobuf's list... 1965 */ 1966 INIT_LIST_HEAD(&q->queued_list); 1967 /* 1968 * ...and done list; userspace will not receive any buffers it 1969 * has not already dequeued before initiating cancel. 1970 */ 1971 INIT_LIST_HEAD(&q->done_list); 1972 atomic_set(&q->owned_by_drv_count, 0); 1973 wake_up_all(&q->done_wq); 1974 1975 /* 1976 * Reinitialize all buffers for next use. 1977 * Make sure to call buf_finish for any queued buffers. Normally 1978 * that's done in dqbuf, but that's not going to happen when we 1979 * cancel the whole queue. Note: this code belongs here, not in 1980 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical 1981 * call to __fill_user_buffer() after buf_finish(). That order can't 1982 * be changed, so we can't move the buf_finish() to __vb2_dqbuf(). 1983 */ 1984 for (i = 0; i < q->num_buffers; ++i) { 1985 struct vb2_buffer *vb = q->bufs[i]; 1986 struct media_request *req = vb->req_obj.req; 1987 1988 /* 1989 * If a request is associated with this buffer, then 1990 * call buf_request_cancel() to give the driver to complete() 1991 * related request objects. Otherwise those objects would 1992 * never complete. 1993 */ 1994 if (req) { 1995 enum media_request_state state; 1996 unsigned long flags; 1997 1998 spin_lock_irqsave(&req->lock, flags); 1999 state = req->state; 2000 spin_unlock_irqrestore(&req->lock, flags); 2001 2002 if (state == MEDIA_REQUEST_STATE_QUEUED) 2003 call_void_vb_qop(vb, buf_request_complete, vb); 2004 } 2005 2006 __vb2_buf_mem_finish(vb); 2007 2008 if (vb->prepared) { 2009 call_void_vb_qop(vb, buf_finish, vb); 2010 vb->prepared = 0; 2011 } 2012 __vb2_dqbuf(vb); 2013 2014 if (vb->req_obj.req) { 2015 media_request_object_unbind(&vb->req_obj); 2016 media_request_object_put(&vb->req_obj); 2017 } 2018 if (vb->request) 2019 media_request_put(vb->request); 2020 vb->request = NULL; 2021 vb->copied_timestamp = 0; 2022 } 2023 } 2024 2025 int vb2_core_streamon(struct vb2_queue *q, unsigned int type) 2026 { 2027 int ret; 2028 2029 if (type != q->type) { 2030 dprintk(q, 1, "invalid stream type\n"); 2031 return -EINVAL; 2032 } 2033 2034 if (q->streaming) { 2035 dprintk(q, 3, "already streaming\n"); 2036 return 0; 2037 } 2038 2039 if (!q->num_buffers) { 2040 dprintk(q, 1, "no buffers have been allocated\n"); 2041 return -EINVAL; 2042 } 2043 2044 if (q->num_buffers < q->min_buffers_needed) { 2045 dprintk(q, 1, "need at least %u allocated buffers\n", 2046 q->min_buffers_needed); 2047 return -EINVAL; 2048 } 2049 2050 /* 2051 * Tell driver to start streaming provided sufficient buffers 2052 * are available. 2053 */ 2054 if (q->queued_count >= q->min_buffers_needed) { 2055 ret = v4l_vb2q_enable_media_source(q); 2056 if (ret) 2057 return ret; 2058 ret = vb2_start_streaming(q); 2059 if (ret) 2060 return ret; 2061 } 2062 2063 q->streaming = 1; 2064 2065 dprintk(q, 3, "successful\n"); 2066 return 0; 2067 } 2068 EXPORT_SYMBOL_GPL(vb2_core_streamon); 2069 2070 void vb2_queue_error(struct vb2_queue *q) 2071 { 2072 q->error = 1; 2073 2074 wake_up_all(&q->done_wq); 2075 } 2076 EXPORT_SYMBOL_GPL(vb2_queue_error); 2077 2078 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type) 2079 { 2080 if (type != q->type) { 2081 dprintk(q, 1, "invalid stream type\n"); 2082 return -EINVAL; 2083 } 2084 2085 /* 2086 * Cancel will pause streaming and remove all buffers from the driver 2087 * and videobuf, effectively returning control over them to userspace. 2088 * 2089 * Note that we do this even if q->streaming == 0: if you prepare or 2090 * queue buffers, and then call streamoff without ever having called 2091 * streamon, you would still expect those buffers to be returned to 2092 * their normal dequeued state. 2093 */ 2094 __vb2_queue_cancel(q); 2095 q->waiting_for_buffers = !q->is_output; 2096 q->last_buffer_dequeued = false; 2097 2098 dprintk(q, 3, "successful\n"); 2099 return 0; 2100 } 2101 EXPORT_SYMBOL_GPL(vb2_core_streamoff); 2102 2103 /* 2104 * __find_plane_by_offset() - find plane associated with the given offset off 2105 */ 2106 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off, 2107 unsigned int *_buffer, unsigned int *_plane) 2108 { 2109 struct vb2_buffer *vb; 2110 unsigned int buffer, plane; 2111 2112 /* 2113 * Go over all buffers and their planes, comparing the given offset 2114 * with an offset assigned to each plane. If a match is found, 2115 * return its buffer and plane numbers. 2116 */ 2117 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 2118 vb = q->bufs[buffer]; 2119 2120 for (plane = 0; plane < vb->num_planes; ++plane) { 2121 if (vb->planes[plane].m.offset == off) { 2122 *_buffer = buffer; 2123 *_plane = plane; 2124 return 0; 2125 } 2126 } 2127 } 2128 2129 return -EINVAL; 2130 } 2131 2132 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, 2133 unsigned int index, unsigned int plane, unsigned int flags) 2134 { 2135 struct vb2_buffer *vb = NULL; 2136 struct vb2_plane *vb_plane; 2137 int ret; 2138 struct dma_buf *dbuf; 2139 2140 if (q->memory != VB2_MEMORY_MMAP) { 2141 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2142 return -EINVAL; 2143 } 2144 2145 if (!q->mem_ops->get_dmabuf) { 2146 dprintk(q, 1, "queue does not support DMA buffer exporting\n"); 2147 return -EINVAL; 2148 } 2149 2150 if (flags & ~(O_CLOEXEC | O_ACCMODE)) { 2151 dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n"); 2152 return -EINVAL; 2153 } 2154 2155 if (type != q->type) { 2156 dprintk(q, 1, "invalid buffer type\n"); 2157 return -EINVAL; 2158 } 2159 2160 if (index >= q->num_buffers) { 2161 dprintk(q, 1, "buffer index out of range\n"); 2162 return -EINVAL; 2163 } 2164 2165 vb = q->bufs[index]; 2166 2167 if (plane >= vb->num_planes) { 2168 dprintk(q, 1, "buffer plane out of range\n"); 2169 return -EINVAL; 2170 } 2171 2172 if (vb2_fileio_is_active(q)) { 2173 dprintk(q, 1, "expbuf: file io in progress\n"); 2174 return -EBUSY; 2175 } 2176 2177 vb_plane = &vb->planes[plane]; 2178 2179 dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv, 2180 flags & O_ACCMODE); 2181 if (IS_ERR_OR_NULL(dbuf)) { 2182 dprintk(q, 1, "failed to export buffer %d, plane %d\n", 2183 index, plane); 2184 return -EINVAL; 2185 } 2186 2187 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE); 2188 if (ret < 0) { 2189 dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n", 2190 index, plane, ret); 2191 dma_buf_put(dbuf); 2192 return ret; 2193 } 2194 2195 dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n", 2196 index, plane, ret); 2197 *fd = ret; 2198 2199 return 0; 2200 } 2201 EXPORT_SYMBOL_GPL(vb2_core_expbuf); 2202 2203 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma) 2204 { 2205 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 2206 struct vb2_buffer *vb; 2207 unsigned int buffer = 0, plane = 0; 2208 int ret; 2209 unsigned long length; 2210 2211 if (q->memory != VB2_MEMORY_MMAP) { 2212 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2213 return -EINVAL; 2214 } 2215 2216 /* 2217 * Check memory area access mode. 2218 */ 2219 if (!(vma->vm_flags & VM_SHARED)) { 2220 dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n"); 2221 return -EINVAL; 2222 } 2223 if (q->is_output) { 2224 if (!(vma->vm_flags & VM_WRITE)) { 2225 dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n"); 2226 return -EINVAL; 2227 } 2228 } else { 2229 if (!(vma->vm_flags & VM_READ)) { 2230 dprintk(q, 1, "invalid vma flags, VM_READ needed\n"); 2231 return -EINVAL; 2232 } 2233 } 2234 2235 mutex_lock(&q->mmap_lock); 2236 2237 if (vb2_fileio_is_active(q)) { 2238 dprintk(q, 1, "mmap: file io in progress\n"); 2239 ret = -EBUSY; 2240 goto unlock; 2241 } 2242 2243 /* 2244 * Find the plane corresponding to the offset passed by userspace. 2245 */ 2246 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2247 if (ret) 2248 goto unlock; 2249 2250 vb = q->bufs[buffer]; 2251 2252 /* 2253 * MMAP requires page_aligned buffers. 2254 * The buffer length was page_aligned at __vb2_buf_mem_alloc(), 2255 * so, we need to do the same here. 2256 */ 2257 length = PAGE_ALIGN(vb->planes[plane].length); 2258 if (length < (vma->vm_end - vma->vm_start)) { 2259 dprintk(q, 1, 2260 "MMAP invalid, as it would overflow buffer length\n"); 2261 ret = -EINVAL; 2262 goto unlock; 2263 } 2264 2265 /* 2266 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer, 2267 * not as a in-buffer offset. We always want to mmap a whole buffer 2268 * from its beginning. 2269 */ 2270 vma->vm_pgoff = 0; 2271 2272 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma); 2273 2274 unlock: 2275 mutex_unlock(&q->mmap_lock); 2276 if (ret) 2277 return ret; 2278 2279 dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane); 2280 return 0; 2281 } 2282 EXPORT_SYMBOL_GPL(vb2_mmap); 2283 2284 #ifndef CONFIG_MMU 2285 unsigned long vb2_get_unmapped_area(struct vb2_queue *q, 2286 unsigned long addr, 2287 unsigned long len, 2288 unsigned long pgoff, 2289 unsigned long flags) 2290 { 2291 unsigned long off = pgoff << PAGE_SHIFT; 2292 struct vb2_buffer *vb; 2293 unsigned int buffer, plane; 2294 void *vaddr; 2295 int ret; 2296 2297 if (q->memory != VB2_MEMORY_MMAP) { 2298 dprintk(q, 1, "queue is not currently set up for mmap\n"); 2299 return -EINVAL; 2300 } 2301 2302 /* 2303 * Find the plane corresponding to the offset passed by userspace. 2304 */ 2305 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2306 if (ret) 2307 return ret; 2308 2309 vb = q->bufs[buffer]; 2310 2311 vaddr = vb2_plane_vaddr(vb, plane); 2312 return vaddr ? (unsigned long)vaddr : -EINVAL; 2313 } 2314 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area); 2315 #endif 2316 2317 int vb2_core_queue_init(struct vb2_queue *q) 2318 { 2319 /* 2320 * Sanity check 2321 */ 2322 if (WARN_ON(!q) || 2323 WARN_ON(!q->ops) || 2324 WARN_ON(!q->mem_ops) || 2325 WARN_ON(!q->type) || 2326 WARN_ON(!q->io_modes) || 2327 WARN_ON(!q->ops->queue_setup) || 2328 WARN_ON(!q->ops->buf_queue)) 2329 return -EINVAL; 2330 2331 if (WARN_ON(q->requires_requests && !q->supports_requests)) 2332 return -EINVAL; 2333 2334 INIT_LIST_HEAD(&q->queued_list); 2335 INIT_LIST_HEAD(&q->done_list); 2336 spin_lock_init(&q->done_lock); 2337 mutex_init(&q->mmap_lock); 2338 init_waitqueue_head(&q->done_wq); 2339 2340 q->memory = VB2_MEMORY_UNKNOWN; 2341 2342 if (q->buf_struct_size == 0) 2343 q->buf_struct_size = sizeof(struct vb2_buffer); 2344 2345 if (q->bidirectional) 2346 q->dma_dir = DMA_BIDIRECTIONAL; 2347 else 2348 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2349 2350 if (q->name[0] == '\0') 2351 snprintf(q->name, sizeof(q->name), "%s-%p", 2352 q->is_output ? "out" : "cap", q); 2353 2354 return 0; 2355 } 2356 EXPORT_SYMBOL_GPL(vb2_core_queue_init); 2357 2358 static int __vb2_init_fileio(struct vb2_queue *q, int read); 2359 static int __vb2_cleanup_fileio(struct vb2_queue *q); 2360 void vb2_core_queue_release(struct vb2_queue *q) 2361 { 2362 __vb2_cleanup_fileio(q); 2363 __vb2_queue_cancel(q); 2364 mutex_lock(&q->mmap_lock); 2365 __vb2_queue_free(q, q->num_buffers); 2366 mutex_unlock(&q->mmap_lock); 2367 } 2368 EXPORT_SYMBOL_GPL(vb2_core_queue_release); 2369 2370 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, 2371 poll_table *wait) 2372 { 2373 __poll_t req_events = poll_requested_events(wait); 2374 struct vb2_buffer *vb = NULL; 2375 unsigned long flags; 2376 2377 /* 2378 * poll_wait() MUST be called on the first invocation on all the 2379 * potential queues of interest, even if we are not interested in their 2380 * events during this first call. Failure to do so will result in 2381 * queue's events to be ignored because the poll_table won't be capable 2382 * of adding new wait queues thereafter. 2383 */ 2384 poll_wait(file, &q->done_wq, wait); 2385 2386 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM))) 2387 return 0; 2388 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM))) 2389 return 0; 2390 2391 /* 2392 * Start file I/O emulator only if streaming API has not been used yet. 2393 */ 2394 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) { 2395 if (!q->is_output && (q->io_modes & VB2_READ) && 2396 (req_events & (EPOLLIN | EPOLLRDNORM))) { 2397 if (__vb2_init_fileio(q, 1)) 2398 return EPOLLERR; 2399 } 2400 if (q->is_output && (q->io_modes & VB2_WRITE) && 2401 (req_events & (EPOLLOUT | EPOLLWRNORM))) { 2402 if (__vb2_init_fileio(q, 0)) 2403 return EPOLLERR; 2404 /* 2405 * Write to OUTPUT queue can be done immediately. 2406 */ 2407 return EPOLLOUT | EPOLLWRNORM; 2408 } 2409 } 2410 2411 /* 2412 * There is nothing to wait for if the queue isn't streaming, or if the 2413 * error flag is set. 2414 */ 2415 if (!vb2_is_streaming(q) || q->error) 2416 return EPOLLERR; 2417 2418 /* 2419 * If this quirk is set and QBUF hasn't been called yet then 2420 * return EPOLLERR as well. This only affects capture queues, output 2421 * queues will always initialize waiting_for_buffers to false. 2422 * This quirk is set by V4L2 for backwards compatibility reasons. 2423 */ 2424 if (q->quirk_poll_must_check_waiting_for_buffers && 2425 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM))) 2426 return EPOLLERR; 2427 2428 /* 2429 * For output streams you can call write() as long as there are fewer 2430 * buffers queued than there are buffers available. 2431 */ 2432 if (q->is_output && q->fileio && q->queued_count < q->num_buffers) 2433 return EPOLLOUT | EPOLLWRNORM; 2434 2435 if (list_empty(&q->done_list)) { 2436 /* 2437 * If the last buffer was dequeued from a capture queue, 2438 * return immediately. DQBUF will return -EPIPE. 2439 */ 2440 if (q->last_buffer_dequeued) 2441 return EPOLLIN | EPOLLRDNORM; 2442 } 2443 2444 /* 2445 * Take first buffer available for dequeuing. 2446 */ 2447 spin_lock_irqsave(&q->done_lock, flags); 2448 if (!list_empty(&q->done_list)) 2449 vb = list_first_entry(&q->done_list, struct vb2_buffer, 2450 done_entry); 2451 spin_unlock_irqrestore(&q->done_lock, flags); 2452 2453 if (vb && (vb->state == VB2_BUF_STATE_DONE 2454 || vb->state == VB2_BUF_STATE_ERROR)) { 2455 return (q->is_output) ? 2456 EPOLLOUT | EPOLLWRNORM : 2457 EPOLLIN | EPOLLRDNORM; 2458 } 2459 return 0; 2460 } 2461 EXPORT_SYMBOL_GPL(vb2_core_poll); 2462 2463 /* 2464 * struct vb2_fileio_buf - buffer context used by file io emulator 2465 * 2466 * vb2 provides a compatibility layer and emulator of file io (read and 2467 * write) calls on top of streaming API. This structure is used for 2468 * tracking context related to the buffers. 2469 */ 2470 struct vb2_fileio_buf { 2471 void *vaddr; 2472 unsigned int size; 2473 unsigned int pos; 2474 unsigned int queued:1; 2475 }; 2476 2477 /* 2478 * struct vb2_fileio_data - queue context used by file io emulator 2479 * 2480 * @cur_index: the index of the buffer currently being read from or 2481 * written to. If equal to q->num_buffers then a new buffer 2482 * must be dequeued. 2483 * @initial_index: in the read() case all buffers are queued up immediately 2484 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles 2485 * buffers. However, in the write() case no buffers are initially 2486 * queued, instead whenever a buffer is full it is queued up by 2487 * __vb2_perform_fileio(). Only once all available buffers have 2488 * been queued up will __vb2_perform_fileio() start to dequeue 2489 * buffers. This means that initially __vb2_perform_fileio() 2490 * needs to know what buffer index to use when it is queuing up 2491 * the buffers for the first time. That initial index is stored 2492 * in this field. Once it is equal to q->num_buffers all 2493 * available buffers have been queued and __vb2_perform_fileio() 2494 * should start the normal dequeue/queue cycle. 2495 * 2496 * vb2 provides a compatibility layer and emulator of file io (read and 2497 * write) calls on top of streaming API. For proper operation it required 2498 * this structure to save the driver state between each call of the read 2499 * or write function. 2500 */ 2501 struct vb2_fileio_data { 2502 unsigned int count; 2503 unsigned int type; 2504 unsigned int memory; 2505 struct vb2_fileio_buf bufs[VB2_MAX_FRAME]; 2506 unsigned int cur_index; 2507 unsigned int initial_index; 2508 unsigned int q_count; 2509 unsigned int dq_count; 2510 unsigned read_once:1; 2511 unsigned write_immediately:1; 2512 }; 2513 2514 /* 2515 * __vb2_init_fileio() - initialize file io emulator 2516 * @q: videobuf2 queue 2517 * @read: mode selector (1 means read, 0 means write) 2518 */ 2519 static int __vb2_init_fileio(struct vb2_queue *q, int read) 2520 { 2521 struct vb2_fileio_data *fileio; 2522 int i, ret; 2523 unsigned int count = 0; 2524 2525 /* 2526 * Sanity check 2527 */ 2528 if (WARN_ON((read && !(q->io_modes & VB2_READ)) || 2529 (!read && !(q->io_modes & VB2_WRITE)))) 2530 return -EINVAL; 2531 2532 /* 2533 * Check if device supports mapping buffers to kernel virtual space. 2534 */ 2535 if (!q->mem_ops->vaddr) 2536 return -EBUSY; 2537 2538 /* 2539 * Check if streaming api has not been already activated. 2540 */ 2541 if (q->streaming || q->num_buffers > 0) 2542 return -EBUSY; 2543 2544 /* 2545 * Start with count 1, driver can increase it in queue_setup() 2546 */ 2547 count = 1; 2548 2549 dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n", 2550 (read) ? "read" : "write", count, q->fileio_read_once, 2551 q->fileio_write_immediately); 2552 2553 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL); 2554 if (fileio == NULL) 2555 return -ENOMEM; 2556 2557 fileio->read_once = q->fileio_read_once; 2558 fileio->write_immediately = q->fileio_write_immediately; 2559 2560 /* 2561 * Request buffers and use MMAP type to force driver 2562 * to allocate buffers by itself. 2563 */ 2564 fileio->count = count; 2565 fileio->memory = VB2_MEMORY_MMAP; 2566 fileio->type = q->type; 2567 q->fileio = fileio; 2568 ret = vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2569 if (ret) 2570 goto err_kfree; 2571 2572 /* 2573 * Check if plane_count is correct 2574 * (multiplane buffers are not supported). 2575 */ 2576 if (q->bufs[0]->num_planes != 1) { 2577 ret = -EBUSY; 2578 goto err_reqbufs; 2579 } 2580 2581 /* 2582 * Get kernel address of each buffer. 2583 */ 2584 for (i = 0; i < q->num_buffers; i++) { 2585 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0); 2586 if (fileio->bufs[i].vaddr == NULL) { 2587 ret = -EINVAL; 2588 goto err_reqbufs; 2589 } 2590 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0); 2591 } 2592 2593 /* 2594 * Read mode requires pre queuing of all buffers. 2595 */ 2596 if (read) { 2597 /* 2598 * Queue all buffers. 2599 */ 2600 for (i = 0; i < q->num_buffers; i++) { 2601 ret = vb2_core_qbuf(q, i, NULL, NULL); 2602 if (ret) 2603 goto err_reqbufs; 2604 fileio->bufs[i].queued = 1; 2605 } 2606 /* 2607 * All buffers have been queued, so mark that by setting 2608 * initial_index to q->num_buffers 2609 */ 2610 fileio->initial_index = q->num_buffers; 2611 fileio->cur_index = q->num_buffers; 2612 } 2613 2614 /* 2615 * Start streaming. 2616 */ 2617 ret = vb2_core_streamon(q, q->type); 2618 if (ret) 2619 goto err_reqbufs; 2620 2621 return ret; 2622 2623 err_reqbufs: 2624 fileio->count = 0; 2625 vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2626 2627 err_kfree: 2628 q->fileio = NULL; 2629 kfree(fileio); 2630 return ret; 2631 } 2632 2633 /* 2634 * __vb2_cleanup_fileio() - free resourced used by file io emulator 2635 * @q: videobuf2 queue 2636 */ 2637 static int __vb2_cleanup_fileio(struct vb2_queue *q) 2638 { 2639 struct vb2_fileio_data *fileio = q->fileio; 2640 2641 if (fileio) { 2642 vb2_core_streamoff(q, q->type); 2643 q->fileio = NULL; 2644 fileio->count = 0; 2645 vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2646 kfree(fileio); 2647 dprintk(q, 3, "file io emulator closed\n"); 2648 } 2649 return 0; 2650 } 2651 2652 /* 2653 * __vb2_perform_fileio() - perform a single file io (read or write) operation 2654 * @q: videobuf2 queue 2655 * @data: pointed to target userspace buffer 2656 * @count: number of bytes to read or write 2657 * @ppos: file handle position tracking pointer 2658 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking) 2659 * @read: access mode selector (1 means read, 0 means write) 2660 */ 2661 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count, 2662 loff_t *ppos, int nonblock, int read) 2663 { 2664 struct vb2_fileio_data *fileio; 2665 struct vb2_fileio_buf *buf; 2666 bool is_multiplanar = q->is_multiplanar; 2667 /* 2668 * When using write() to write data to an output video node the vb2 core 2669 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody 2670 * else is able to provide this information with the write() operation. 2671 */ 2672 bool copy_timestamp = !read && q->copy_timestamp; 2673 unsigned index; 2674 int ret; 2675 2676 dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n", 2677 read ? "read" : "write", (long)*ppos, count, 2678 nonblock ? "non" : ""); 2679 2680 if (!data) 2681 return -EINVAL; 2682 2683 if (q->waiting_in_dqbuf) { 2684 dprintk(q, 3, "another dup()ped fd is %s\n", 2685 read ? "reading" : "writing"); 2686 return -EBUSY; 2687 } 2688 2689 /* 2690 * Initialize emulator on first call. 2691 */ 2692 if (!vb2_fileio_is_active(q)) { 2693 ret = __vb2_init_fileio(q, read); 2694 dprintk(q, 3, "vb2_init_fileio result: %d\n", ret); 2695 if (ret) 2696 return ret; 2697 } 2698 fileio = q->fileio; 2699 2700 /* 2701 * Check if we need to dequeue the buffer. 2702 */ 2703 index = fileio->cur_index; 2704 if (index >= q->num_buffers) { 2705 struct vb2_buffer *b; 2706 2707 /* 2708 * Call vb2_dqbuf to get buffer back. 2709 */ 2710 ret = vb2_core_dqbuf(q, &index, NULL, nonblock); 2711 dprintk(q, 5, "vb2_dqbuf result: %d\n", ret); 2712 if (ret) 2713 return ret; 2714 fileio->dq_count += 1; 2715 2716 fileio->cur_index = index; 2717 buf = &fileio->bufs[index]; 2718 b = q->bufs[index]; 2719 2720 /* 2721 * Get number of bytes filled by the driver 2722 */ 2723 buf->pos = 0; 2724 buf->queued = 0; 2725 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0) 2726 : vb2_plane_size(q->bufs[index], 0); 2727 /* Compensate for data_offset on read in the multiplanar case. */ 2728 if (is_multiplanar && read && 2729 b->planes[0].data_offset < buf->size) { 2730 buf->pos = b->planes[0].data_offset; 2731 buf->size -= buf->pos; 2732 } 2733 } else { 2734 buf = &fileio->bufs[index]; 2735 } 2736 2737 /* 2738 * Limit count on last few bytes of the buffer. 2739 */ 2740 if (buf->pos + count > buf->size) { 2741 count = buf->size - buf->pos; 2742 dprintk(q, 5, "reducing read count: %zd\n", count); 2743 } 2744 2745 /* 2746 * Transfer data to userspace. 2747 */ 2748 dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n", 2749 count, index, buf->pos); 2750 if (read) 2751 ret = copy_to_user(data, buf->vaddr + buf->pos, count); 2752 else 2753 ret = copy_from_user(buf->vaddr + buf->pos, data, count); 2754 if (ret) { 2755 dprintk(q, 3, "error copying data\n"); 2756 return -EFAULT; 2757 } 2758 2759 /* 2760 * Update counters. 2761 */ 2762 buf->pos += count; 2763 *ppos += count; 2764 2765 /* 2766 * Queue next buffer if required. 2767 */ 2768 if (buf->pos == buf->size || (!read && fileio->write_immediately)) { 2769 struct vb2_buffer *b = q->bufs[index]; 2770 2771 /* 2772 * Check if this is the last buffer to read. 2773 */ 2774 if (read && fileio->read_once && fileio->dq_count == 1) { 2775 dprintk(q, 3, "read limit reached\n"); 2776 return __vb2_cleanup_fileio(q); 2777 } 2778 2779 /* 2780 * Call vb2_qbuf and give buffer to the driver. 2781 */ 2782 b->planes[0].bytesused = buf->pos; 2783 2784 if (copy_timestamp) 2785 b->timestamp = ktime_get_ns(); 2786 ret = vb2_core_qbuf(q, index, NULL, NULL); 2787 dprintk(q, 5, "vb2_dbuf result: %d\n", ret); 2788 if (ret) 2789 return ret; 2790 2791 /* 2792 * Buffer has been queued, update the status 2793 */ 2794 buf->pos = 0; 2795 buf->queued = 1; 2796 buf->size = vb2_plane_size(q->bufs[index], 0); 2797 fileio->q_count += 1; 2798 /* 2799 * If we are queuing up buffers for the first time, then 2800 * increase initial_index by one. 2801 */ 2802 if (fileio->initial_index < q->num_buffers) 2803 fileio->initial_index++; 2804 /* 2805 * The next buffer to use is either a buffer that's going to be 2806 * queued for the first time (initial_index < q->num_buffers) 2807 * or it is equal to q->num_buffers, meaning that the next 2808 * time we need to dequeue a buffer since we've now queued up 2809 * all the 'first time' buffers. 2810 */ 2811 fileio->cur_index = fileio->initial_index; 2812 } 2813 2814 /* 2815 * Return proper number of bytes processed. 2816 */ 2817 if (ret == 0) 2818 ret = count; 2819 return ret; 2820 } 2821 2822 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, 2823 loff_t *ppos, int nonblocking) 2824 { 2825 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1); 2826 } 2827 EXPORT_SYMBOL_GPL(vb2_read); 2828 2829 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, 2830 loff_t *ppos, int nonblocking) 2831 { 2832 return __vb2_perform_fileio(q, (char __user *) data, count, 2833 ppos, nonblocking, 0); 2834 } 2835 EXPORT_SYMBOL_GPL(vb2_write); 2836 2837 struct vb2_threadio_data { 2838 struct task_struct *thread; 2839 vb2_thread_fnc fnc; 2840 void *priv; 2841 bool stop; 2842 }; 2843 2844 static int vb2_thread(void *data) 2845 { 2846 struct vb2_queue *q = data; 2847 struct vb2_threadio_data *threadio = q->threadio; 2848 bool copy_timestamp = false; 2849 unsigned prequeue = 0; 2850 unsigned index = 0; 2851 int ret = 0; 2852 2853 if (q->is_output) { 2854 prequeue = q->num_buffers; 2855 copy_timestamp = q->copy_timestamp; 2856 } 2857 2858 set_freezable(); 2859 2860 for (;;) { 2861 struct vb2_buffer *vb; 2862 2863 /* 2864 * Call vb2_dqbuf to get buffer back. 2865 */ 2866 if (prequeue) { 2867 vb = q->bufs[index++]; 2868 prequeue--; 2869 } else { 2870 call_void_qop(q, wait_finish, q); 2871 if (!threadio->stop) 2872 ret = vb2_core_dqbuf(q, &index, NULL, 0); 2873 call_void_qop(q, wait_prepare, q); 2874 dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret); 2875 if (!ret) 2876 vb = q->bufs[index]; 2877 } 2878 if (ret || threadio->stop) 2879 break; 2880 try_to_freeze(); 2881 2882 if (vb->state != VB2_BUF_STATE_ERROR) 2883 if (threadio->fnc(vb, threadio->priv)) 2884 break; 2885 call_void_qop(q, wait_finish, q); 2886 if (copy_timestamp) 2887 vb->timestamp = ktime_get_ns(); 2888 if (!threadio->stop) 2889 ret = vb2_core_qbuf(q, vb->index, NULL, NULL); 2890 call_void_qop(q, wait_prepare, q); 2891 if (ret || threadio->stop) 2892 break; 2893 } 2894 2895 /* Hmm, linux becomes *very* unhappy without this ... */ 2896 while (!kthread_should_stop()) { 2897 set_current_state(TASK_INTERRUPTIBLE); 2898 schedule(); 2899 } 2900 return 0; 2901 } 2902 2903 /* 2904 * This function should not be used for anything else but the videobuf2-dvb 2905 * support. If you think you have another good use-case for this, then please 2906 * contact the linux-media mailinglist first. 2907 */ 2908 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, 2909 const char *thread_name) 2910 { 2911 struct vb2_threadio_data *threadio; 2912 int ret = 0; 2913 2914 if (q->threadio) 2915 return -EBUSY; 2916 if (vb2_is_busy(q)) 2917 return -EBUSY; 2918 if (WARN_ON(q->fileio)) 2919 return -EBUSY; 2920 2921 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL); 2922 if (threadio == NULL) 2923 return -ENOMEM; 2924 threadio->fnc = fnc; 2925 threadio->priv = priv; 2926 2927 ret = __vb2_init_fileio(q, !q->is_output); 2928 dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret); 2929 if (ret) 2930 goto nomem; 2931 q->threadio = threadio; 2932 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name); 2933 if (IS_ERR(threadio->thread)) { 2934 ret = PTR_ERR(threadio->thread); 2935 threadio->thread = NULL; 2936 goto nothread; 2937 } 2938 return 0; 2939 2940 nothread: 2941 __vb2_cleanup_fileio(q); 2942 nomem: 2943 kfree(threadio); 2944 return ret; 2945 } 2946 EXPORT_SYMBOL_GPL(vb2_thread_start); 2947 2948 int vb2_thread_stop(struct vb2_queue *q) 2949 { 2950 struct vb2_threadio_data *threadio = q->threadio; 2951 int err; 2952 2953 if (threadio == NULL) 2954 return 0; 2955 threadio->stop = true; 2956 /* Wake up all pending sleeps in the thread */ 2957 vb2_queue_error(q); 2958 err = kthread_stop(threadio->thread); 2959 __vb2_cleanup_fileio(q); 2960 threadio->thread = NULL; 2961 kfree(threadio); 2962 q->threadio = NULL; 2963 return err; 2964 } 2965 EXPORT_SYMBOL_GPL(vb2_thread_stop); 2966 2967 MODULE_DESCRIPTION("Media buffer core framework"); 2968 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski"); 2969 MODULE_LICENSE("GPL"); 2970