1 /* 2 * videobuf2-core.c - video buffer 2 core framework 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * 6 * Author: Pawel Osciak <pawel@osciak.com> 7 * Marek Szyprowski <m.szyprowski@samsung.com> 8 * 9 * The vb2_thread implementation was based on code from videobuf-dvb.c: 10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs] 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/err.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mm.h> 23 #include <linux/poll.h> 24 #include <linux/slab.h> 25 #include <linux/sched.h> 26 #include <linux/freezer.h> 27 #include <linux/kthread.h> 28 29 #include <media/videobuf2-core.h> 30 #include <media/v4l2-mc.h> 31 32 #include <trace/events/vb2.h> 33 34 static int debug; 35 module_param(debug, int, 0644); 36 37 #define dprintk(level, fmt, arg...) \ 38 do { \ 39 if (debug >= level) \ 40 pr_info("%s: " fmt, __func__, ## arg); \ 41 } while (0) 42 43 #ifdef CONFIG_VIDEO_ADV_DEBUG 44 45 /* 46 * If advanced debugging is on, then count how often each op is called 47 * successfully, which can either be per-buffer or per-queue. 48 * 49 * This makes it easy to check that the 'init' and 'cleanup' 50 * (and variations thereof) stay balanced. 51 */ 52 53 #define log_memop(vb, op) \ 54 dprintk(2, "call_memop(%p, %d, %s)%s\n", \ 55 (vb)->vb2_queue, (vb)->index, #op, \ 56 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)") 57 58 #define call_memop(vb, op, args...) \ 59 ({ \ 60 struct vb2_queue *_q = (vb)->vb2_queue; \ 61 int err; \ 62 \ 63 log_memop(vb, op); \ 64 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \ 65 if (!err) \ 66 (vb)->cnt_mem_ ## op++; \ 67 err; \ 68 }) 69 70 #define call_ptr_memop(vb, op, args...) \ 71 ({ \ 72 struct vb2_queue *_q = (vb)->vb2_queue; \ 73 void *ptr; \ 74 \ 75 log_memop(vb, op); \ 76 ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL; \ 77 if (!IS_ERR_OR_NULL(ptr)) \ 78 (vb)->cnt_mem_ ## op++; \ 79 ptr; \ 80 }) 81 82 #define call_void_memop(vb, op, args...) \ 83 ({ \ 84 struct vb2_queue *_q = (vb)->vb2_queue; \ 85 \ 86 log_memop(vb, op); \ 87 if (_q->mem_ops->op) \ 88 _q->mem_ops->op(args); \ 89 (vb)->cnt_mem_ ## op++; \ 90 }) 91 92 #define log_qop(q, op) \ 93 dprintk(2, "call_qop(%p, %s)%s\n", q, #op, \ 94 (q)->ops->op ? "" : " (nop)") 95 96 #define call_qop(q, op, args...) \ 97 ({ \ 98 int err; \ 99 \ 100 log_qop(q, op); \ 101 err = (q)->ops->op ? (q)->ops->op(args) : 0; \ 102 if (!err) \ 103 (q)->cnt_ ## op++; \ 104 err; \ 105 }) 106 107 #define call_void_qop(q, op, args...) \ 108 ({ \ 109 log_qop(q, op); \ 110 if ((q)->ops->op) \ 111 (q)->ops->op(args); \ 112 (q)->cnt_ ## op++; \ 113 }) 114 115 #define log_vb_qop(vb, op, args...) \ 116 dprintk(2, "call_vb_qop(%p, %d, %s)%s\n", \ 117 (vb)->vb2_queue, (vb)->index, #op, \ 118 (vb)->vb2_queue->ops->op ? "" : " (nop)") 119 120 #define call_vb_qop(vb, op, args...) \ 121 ({ \ 122 int err; \ 123 \ 124 log_vb_qop(vb, op); \ 125 err = (vb)->vb2_queue->ops->op ? \ 126 (vb)->vb2_queue->ops->op(args) : 0; \ 127 if (!err) \ 128 (vb)->cnt_ ## op++; \ 129 err; \ 130 }) 131 132 #define call_void_vb_qop(vb, op, args...) \ 133 ({ \ 134 log_vb_qop(vb, op); \ 135 if ((vb)->vb2_queue->ops->op) \ 136 (vb)->vb2_queue->ops->op(args); \ 137 (vb)->cnt_ ## op++; \ 138 }) 139 140 #else 141 142 #define call_memop(vb, op, args...) \ 143 ((vb)->vb2_queue->mem_ops->op ? \ 144 (vb)->vb2_queue->mem_ops->op(args) : 0) 145 146 #define call_ptr_memop(vb, op, args...) \ 147 ((vb)->vb2_queue->mem_ops->op ? \ 148 (vb)->vb2_queue->mem_ops->op(args) : NULL) 149 150 #define call_void_memop(vb, op, args...) \ 151 do { \ 152 if ((vb)->vb2_queue->mem_ops->op) \ 153 (vb)->vb2_queue->mem_ops->op(args); \ 154 } while (0) 155 156 #define call_qop(q, op, args...) \ 157 ((q)->ops->op ? (q)->ops->op(args) : 0) 158 159 #define call_void_qop(q, op, args...) \ 160 do { \ 161 if ((q)->ops->op) \ 162 (q)->ops->op(args); \ 163 } while (0) 164 165 #define call_vb_qop(vb, op, args...) \ 166 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0) 167 168 #define call_void_vb_qop(vb, op, args...) \ 169 do { \ 170 if ((vb)->vb2_queue->ops->op) \ 171 (vb)->vb2_queue->ops->op(args); \ 172 } while (0) 173 174 #endif 175 176 #define call_bufop(q, op, args...) \ 177 ({ \ 178 int ret = 0; \ 179 if (q && q->buf_ops && q->buf_ops->op) \ 180 ret = q->buf_ops->op(args); \ 181 ret; \ 182 }) 183 184 #define call_void_bufop(q, op, args...) \ 185 ({ \ 186 if (q && q->buf_ops && q->buf_ops->op) \ 187 q->buf_ops->op(args); \ 188 }) 189 190 static void __vb2_queue_cancel(struct vb2_queue *q); 191 static void __enqueue_in_driver(struct vb2_buffer *vb); 192 193 /* 194 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer 195 */ 196 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb) 197 { 198 struct vb2_queue *q = vb->vb2_queue; 199 void *mem_priv; 200 int plane; 201 int ret = -ENOMEM; 202 203 /* 204 * Allocate memory for all planes in this buffer 205 * NOTE: mmapped areas should be page aligned 206 */ 207 for (plane = 0; plane < vb->num_planes; ++plane) { 208 /* Memops alloc requires size to be page aligned. */ 209 unsigned long size = PAGE_ALIGN(vb->planes[plane].length); 210 211 /* Did it wrap around? */ 212 if (size < vb->planes[plane].length) 213 goto free; 214 215 mem_priv = call_ptr_memop(vb, alloc, 216 q->alloc_devs[plane] ? : q->dev, 217 q->dma_attrs, size, q->dma_dir, q->gfp_flags); 218 if (IS_ERR_OR_NULL(mem_priv)) { 219 if (mem_priv) 220 ret = PTR_ERR(mem_priv); 221 goto free; 222 } 223 224 /* Associate allocator private data with this plane */ 225 vb->planes[plane].mem_priv = mem_priv; 226 } 227 228 return 0; 229 free: 230 /* Free already allocated memory if one of the allocations failed */ 231 for (; plane > 0; --plane) { 232 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv); 233 vb->planes[plane - 1].mem_priv = NULL; 234 } 235 236 return ret; 237 } 238 239 /* 240 * __vb2_buf_mem_free() - free memory of the given buffer 241 */ 242 static void __vb2_buf_mem_free(struct vb2_buffer *vb) 243 { 244 unsigned int plane; 245 246 for (plane = 0; plane < vb->num_planes; ++plane) { 247 call_void_memop(vb, put, vb->planes[plane].mem_priv); 248 vb->planes[plane].mem_priv = NULL; 249 dprintk(3, "freed plane %d of buffer %d\n", plane, vb->index); 250 } 251 } 252 253 /* 254 * __vb2_buf_userptr_put() - release userspace memory associated with 255 * a USERPTR buffer 256 */ 257 static void __vb2_buf_userptr_put(struct vb2_buffer *vb) 258 { 259 unsigned int plane; 260 261 for (plane = 0; plane < vb->num_planes; ++plane) { 262 if (vb->planes[plane].mem_priv) 263 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 264 vb->planes[plane].mem_priv = NULL; 265 } 266 } 267 268 /* 269 * __vb2_plane_dmabuf_put() - release memory associated with 270 * a DMABUF shared plane 271 */ 272 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p) 273 { 274 if (!p->mem_priv) 275 return; 276 277 if (p->dbuf_mapped) 278 call_void_memop(vb, unmap_dmabuf, p->mem_priv); 279 280 call_void_memop(vb, detach_dmabuf, p->mem_priv); 281 dma_buf_put(p->dbuf); 282 p->mem_priv = NULL; 283 p->dbuf = NULL; 284 p->dbuf_mapped = 0; 285 } 286 287 /* 288 * __vb2_buf_dmabuf_put() - release memory associated with 289 * a DMABUF shared buffer 290 */ 291 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb) 292 { 293 unsigned int plane; 294 295 for (plane = 0; plane < vb->num_planes; ++plane) 296 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 297 } 298 299 /* 300 * __setup_offsets() - setup unique offsets ("cookies") for every plane in 301 * the buffer. 302 */ 303 static void __setup_offsets(struct vb2_buffer *vb) 304 { 305 struct vb2_queue *q = vb->vb2_queue; 306 unsigned int plane; 307 unsigned long off = 0; 308 309 if (vb->index) { 310 struct vb2_buffer *prev = q->bufs[vb->index - 1]; 311 struct vb2_plane *p = &prev->planes[prev->num_planes - 1]; 312 313 off = PAGE_ALIGN(p->m.offset + p->length); 314 } 315 316 for (plane = 0; plane < vb->num_planes; ++plane) { 317 vb->planes[plane].m.offset = off; 318 319 dprintk(3, "buffer %d, plane %d offset 0x%08lx\n", 320 vb->index, plane, off); 321 322 off += vb->planes[plane].length; 323 off = PAGE_ALIGN(off); 324 } 325 } 326 327 /* 328 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type) 329 * video buffer memory for all buffers/planes on the queue and initializes the 330 * queue 331 * 332 * Returns the number of buffers successfully allocated. 333 */ 334 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory, 335 unsigned int num_buffers, unsigned int num_planes, 336 const unsigned plane_sizes[VB2_MAX_PLANES]) 337 { 338 unsigned int buffer, plane; 339 struct vb2_buffer *vb; 340 int ret; 341 342 /* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */ 343 num_buffers = min_t(unsigned int, num_buffers, 344 VB2_MAX_FRAME - q->num_buffers); 345 346 for (buffer = 0; buffer < num_buffers; ++buffer) { 347 /* Allocate videobuf buffer structures */ 348 vb = kzalloc(q->buf_struct_size, GFP_KERNEL); 349 if (!vb) { 350 dprintk(1, "memory alloc for buffer struct failed\n"); 351 break; 352 } 353 354 vb->state = VB2_BUF_STATE_DEQUEUED; 355 vb->vb2_queue = q; 356 vb->num_planes = num_planes; 357 vb->index = q->num_buffers + buffer; 358 vb->type = q->type; 359 vb->memory = memory; 360 for (plane = 0; plane < num_planes; ++plane) { 361 vb->planes[plane].length = plane_sizes[plane]; 362 vb->planes[plane].min_length = plane_sizes[plane]; 363 } 364 call_void_bufop(q, init_buffer, vb); 365 366 q->bufs[vb->index] = vb; 367 368 /* Allocate video buffer memory for the MMAP type */ 369 if (memory == VB2_MEMORY_MMAP) { 370 ret = __vb2_buf_mem_alloc(vb); 371 if (ret) { 372 dprintk(1, "failed allocating memory for buffer %d\n", 373 buffer); 374 q->bufs[vb->index] = NULL; 375 kfree(vb); 376 break; 377 } 378 __setup_offsets(vb); 379 /* 380 * Call the driver-provided buffer initialization 381 * callback, if given. An error in initialization 382 * results in queue setup failure. 383 */ 384 ret = call_vb_qop(vb, buf_init, vb); 385 if (ret) { 386 dprintk(1, "buffer %d %p initialization failed\n", 387 buffer, vb); 388 __vb2_buf_mem_free(vb); 389 q->bufs[vb->index] = NULL; 390 kfree(vb); 391 break; 392 } 393 } 394 } 395 396 dprintk(3, "allocated %d buffers, %d plane(s) each\n", 397 buffer, num_planes); 398 399 return buffer; 400 } 401 402 /* 403 * __vb2_free_mem() - release all video buffer memory for a given queue 404 */ 405 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers) 406 { 407 unsigned int buffer; 408 struct vb2_buffer *vb; 409 410 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 411 ++buffer) { 412 vb = q->bufs[buffer]; 413 if (!vb) 414 continue; 415 416 /* Free MMAP buffers or release USERPTR buffers */ 417 if (q->memory == VB2_MEMORY_MMAP) 418 __vb2_buf_mem_free(vb); 419 else if (q->memory == VB2_MEMORY_DMABUF) 420 __vb2_buf_dmabuf_put(vb); 421 else 422 __vb2_buf_userptr_put(vb); 423 } 424 } 425 426 /* 427 * __vb2_queue_free() - free buffers at the end of the queue - video memory and 428 * related information, if no buffers are left return the queue to an 429 * uninitialized state. Might be called even if the queue has already been freed. 430 */ 431 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers) 432 { 433 unsigned int buffer; 434 435 /* 436 * Sanity check: when preparing a buffer the queue lock is released for 437 * a short while (see __buf_prepare for the details), which would allow 438 * a race with a reqbufs which can call this function. Removing the 439 * buffers from underneath __buf_prepare is obviously a bad idea, so we 440 * check if any of the buffers is in the state PREPARING, and if so we 441 * just return -EAGAIN. 442 */ 443 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 444 ++buffer) { 445 if (q->bufs[buffer] == NULL) 446 continue; 447 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) { 448 dprintk(1, "preparing buffers, cannot free\n"); 449 return -EAGAIN; 450 } 451 } 452 453 /* Call driver-provided cleanup function for each buffer, if provided */ 454 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 455 ++buffer) { 456 struct vb2_buffer *vb = q->bufs[buffer]; 457 458 if (vb && vb->planes[0].mem_priv) 459 call_void_vb_qop(vb, buf_cleanup, vb); 460 } 461 462 /* Release video buffer memory */ 463 __vb2_free_mem(q, buffers); 464 465 #ifdef CONFIG_VIDEO_ADV_DEBUG 466 /* 467 * Check that all the calls were balances during the life-time of this 468 * queue. If not (or if the debug level is 1 or up), then dump the 469 * counters to the kernel log. 470 */ 471 if (q->num_buffers) { 472 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming || 473 q->cnt_wait_prepare != q->cnt_wait_finish; 474 475 if (unbalanced || debug) { 476 pr_info("counters for queue %p:%s\n", q, 477 unbalanced ? " UNBALANCED!" : ""); 478 pr_info(" setup: %u start_streaming: %u stop_streaming: %u\n", 479 q->cnt_queue_setup, q->cnt_start_streaming, 480 q->cnt_stop_streaming); 481 pr_info(" wait_prepare: %u wait_finish: %u\n", 482 q->cnt_wait_prepare, q->cnt_wait_finish); 483 } 484 q->cnt_queue_setup = 0; 485 q->cnt_wait_prepare = 0; 486 q->cnt_wait_finish = 0; 487 q->cnt_start_streaming = 0; 488 q->cnt_stop_streaming = 0; 489 } 490 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 491 struct vb2_buffer *vb = q->bufs[buffer]; 492 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put || 493 vb->cnt_mem_prepare != vb->cnt_mem_finish || 494 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr || 495 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf || 496 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf || 497 vb->cnt_buf_queue != vb->cnt_buf_done || 498 vb->cnt_buf_prepare != vb->cnt_buf_finish || 499 vb->cnt_buf_init != vb->cnt_buf_cleanup; 500 501 if (unbalanced || debug) { 502 pr_info(" counters for queue %p, buffer %d:%s\n", 503 q, buffer, unbalanced ? " UNBALANCED!" : ""); 504 pr_info(" buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n", 505 vb->cnt_buf_init, vb->cnt_buf_cleanup, 506 vb->cnt_buf_prepare, vb->cnt_buf_finish); 507 pr_info(" buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n", 508 vb->cnt_buf_out_validate, vb->cnt_buf_queue, 509 vb->cnt_buf_done, vb->cnt_buf_request_complete); 510 pr_info(" alloc: %u put: %u prepare: %u finish: %u mmap: %u\n", 511 vb->cnt_mem_alloc, vb->cnt_mem_put, 512 vb->cnt_mem_prepare, vb->cnt_mem_finish, 513 vb->cnt_mem_mmap); 514 pr_info(" get_userptr: %u put_userptr: %u\n", 515 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr); 516 pr_info(" attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n", 517 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf, 518 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf); 519 pr_info(" get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n", 520 vb->cnt_mem_get_dmabuf, 521 vb->cnt_mem_num_users, 522 vb->cnt_mem_vaddr, 523 vb->cnt_mem_cookie); 524 } 525 } 526 #endif 527 528 /* Free videobuf buffers */ 529 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers; 530 ++buffer) { 531 kfree(q->bufs[buffer]); 532 q->bufs[buffer] = NULL; 533 } 534 535 q->num_buffers -= buffers; 536 if (!q->num_buffers) { 537 q->memory = VB2_MEMORY_UNKNOWN; 538 INIT_LIST_HEAD(&q->queued_list); 539 } 540 return 0; 541 } 542 543 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb) 544 { 545 unsigned int plane; 546 for (plane = 0; plane < vb->num_planes; ++plane) { 547 void *mem_priv = vb->planes[plane].mem_priv; 548 /* 549 * If num_users() has not been provided, call_memop 550 * will return 0, apparently nobody cares about this 551 * case anyway. If num_users() returns more than 1, 552 * we are not the only user of the plane's memory. 553 */ 554 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1) 555 return true; 556 } 557 return false; 558 } 559 EXPORT_SYMBOL(vb2_buffer_in_use); 560 561 /* 562 * __buffers_in_use() - return true if any buffers on the queue are in use and 563 * the queue cannot be freed (by the means of REQBUFS(0)) call 564 */ 565 static bool __buffers_in_use(struct vb2_queue *q) 566 { 567 unsigned int buffer; 568 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 569 if (vb2_buffer_in_use(q, q->bufs[buffer])) 570 return true; 571 } 572 return false; 573 } 574 575 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb) 576 { 577 call_void_bufop(q, fill_user_buffer, q->bufs[index], pb); 578 } 579 EXPORT_SYMBOL_GPL(vb2_core_querybuf); 580 581 /* 582 * __verify_userptr_ops() - verify that all memory operations required for 583 * USERPTR queue type have been provided 584 */ 585 static int __verify_userptr_ops(struct vb2_queue *q) 586 { 587 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr || 588 !q->mem_ops->put_userptr) 589 return -EINVAL; 590 591 return 0; 592 } 593 594 /* 595 * __verify_mmap_ops() - verify that all memory operations required for 596 * MMAP queue type have been provided 597 */ 598 static int __verify_mmap_ops(struct vb2_queue *q) 599 { 600 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc || 601 !q->mem_ops->put || !q->mem_ops->mmap) 602 return -EINVAL; 603 604 return 0; 605 } 606 607 /* 608 * __verify_dmabuf_ops() - verify that all memory operations required for 609 * DMABUF queue type have been provided 610 */ 611 static int __verify_dmabuf_ops(struct vb2_queue *q) 612 { 613 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf || 614 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf || 615 !q->mem_ops->unmap_dmabuf) 616 return -EINVAL; 617 618 return 0; 619 } 620 621 int vb2_verify_memory_type(struct vb2_queue *q, 622 enum vb2_memory memory, unsigned int type) 623 { 624 if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR && 625 memory != VB2_MEMORY_DMABUF) { 626 dprintk(1, "unsupported memory type\n"); 627 return -EINVAL; 628 } 629 630 if (type != q->type) { 631 dprintk(1, "requested type is incorrect\n"); 632 return -EINVAL; 633 } 634 635 /* 636 * Make sure all the required memory ops for given memory type 637 * are available. 638 */ 639 if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) { 640 dprintk(1, "MMAP for current setup unsupported\n"); 641 return -EINVAL; 642 } 643 644 if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) { 645 dprintk(1, "USERPTR for current setup unsupported\n"); 646 return -EINVAL; 647 } 648 649 if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) { 650 dprintk(1, "DMABUF for current setup unsupported\n"); 651 return -EINVAL; 652 } 653 654 /* 655 * Place the busy tests at the end: -EBUSY can be ignored when 656 * create_bufs is called with count == 0, but count == 0 should still 657 * do the memory and type validation. 658 */ 659 if (vb2_fileio_is_active(q)) { 660 dprintk(1, "file io in progress\n"); 661 return -EBUSY; 662 } 663 return 0; 664 } 665 EXPORT_SYMBOL(vb2_verify_memory_type); 666 667 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory, 668 unsigned int *count) 669 { 670 unsigned int num_buffers, allocated_buffers, num_planes = 0; 671 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 672 unsigned int i; 673 int ret; 674 675 if (q->streaming) { 676 dprintk(1, "streaming active\n"); 677 return -EBUSY; 678 } 679 680 if (q->waiting_in_dqbuf && *count) { 681 dprintk(1, "another dup()ped fd is waiting for a buffer\n"); 682 return -EBUSY; 683 } 684 685 if (*count == 0 || q->num_buffers != 0 || 686 (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory)) { 687 /* 688 * We already have buffers allocated, so first check if they 689 * are not in use and can be freed. 690 */ 691 mutex_lock(&q->mmap_lock); 692 if (debug && q->memory == VB2_MEMORY_MMAP && 693 __buffers_in_use(q)) 694 dprintk(1, "memory in use, orphaning buffers\n"); 695 696 /* 697 * Call queue_cancel to clean up any buffers in the 698 * QUEUED state which is possible if buffers were prepared or 699 * queued without ever calling STREAMON. 700 */ 701 __vb2_queue_cancel(q); 702 ret = __vb2_queue_free(q, q->num_buffers); 703 mutex_unlock(&q->mmap_lock); 704 if (ret) 705 return ret; 706 707 /* 708 * In case of REQBUFS(0) return immediately without calling 709 * driver's queue_setup() callback and allocating resources. 710 */ 711 if (*count == 0) 712 return 0; 713 } 714 715 /* 716 * Make sure the requested values and current defaults are sane. 717 */ 718 WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME); 719 num_buffers = max_t(unsigned int, *count, q->min_buffers_needed); 720 num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME); 721 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 722 q->memory = memory; 723 724 /* 725 * Ask the driver how many buffers and planes per buffer it requires. 726 * Driver also sets the size and allocator context for each plane. 727 */ 728 ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes, 729 plane_sizes, q->alloc_devs); 730 if (ret) 731 return ret; 732 733 /* Check that driver has set sane values */ 734 if (WARN_ON(!num_planes)) 735 return -EINVAL; 736 737 for (i = 0; i < num_planes; i++) 738 if (WARN_ON(!plane_sizes[i])) 739 return -EINVAL; 740 741 /* Finally, allocate buffers and video memory */ 742 allocated_buffers = 743 __vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes); 744 if (allocated_buffers == 0) { 745 dprintk(1, "memory allocation failed\n"); 746 return -ENOMEM; 747 } 748 749 /* 750 * There is no point in continuing if we can't allocate the minimum 751 * number of buffers needed by this vb2_queue. 752 */ 753 if (allocated_buffers < q->min_buffers_needed) 754 ret = -ENOMEM; 755 756 /* 757 * Check if driver can handle the allocated number of buffers. 758 */ 759 if (!ret && allocated_buffers < num_buffers) { 760 num_buffers = allocated_buffers; 761 /* 762 * num_planes is set by the previous queue_setup(), but since it 763 * signals to queue_setup() whether it is called from create_bufs() 764 * vs reqbufs() we zero it here to signal that queue_setup() is 765 * called for the reqbufs() case. 766 */ 767 num_planes = 0; 768 769 ret = call_qop(q, queue_setup, q, &num_buffers, 770 &num_planes, plane_sizes, q->alloc_devs); 771 772 if (!ret && allocated_buffers < num_buffers) 773 ret = -ENOMEM; 774 775 /* 776 * Either the driver has accepted a smaller number of buffers, 777 * or .queue_setup() returned an error 778 */ 779 } 780 781 mutex_lock(&q->mmap_lock); 782 q->num_buffers = allocated_buffers; 783 784 if (ret < 0) { 785 /* 786 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 787 * from q->num_buffers. 788 */ 789 __vb2_queue_free(q, allocated_buffers); 790 mutex_unlock(&q->mmap_lock); 791 return ret; 792 } 793 mutex_unlock(&q->mmap_lock); 794 795 /* 796 * Return the number of successfully allocated buffers 797 * to the userspace. 798 */ 799 *count = allocated_buffers; 800 q->waiting_for_buffers = !q->is_output; 801 802 return 0; 803 } 804 EXPORT_SYMBOL_GPL(vb2_core_reqbufs); 805 806 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory, 807 unsigned int *count, unsigned requested_planes, 808 const unsigned requested_sizes[]) 809 { 810 unsigned int num_planes = 0, num_buffers, allocated_buffers; 811 unsigned plane_sizes[VB2_MAX_PLANES] = { }; 812 int ret; 813 814 if (q->num_buffers == VB2_MAX_FRAME) { 815 dprintk(1, "maximum number of buffers already allocated\n"); 816 return -ENOBUFS; 817 } 818 819 if (!q->num_buffers) { 820 if (q->waiting_in_dqbuf && *count) { 821 dprintk(1, "another dup()ped fd is waiting for a buffer\n"); 822 return -EBUSY; 823 } 824 memset(q->alloc_devs, 0, sizeof(q->alloc_devs)); 825 q->memory = memory; 826 q->waiting_for_buffers = !q->is_output; 827 } else if (q->memory != memory) { 828 dprintk(1, "memory model mismatch\n"); 829 return -EINVAL; 830 } 831 832 num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers); 833 834 if (requested_planes && requested_sizes) { 835 num_planes = requested_planes; 836 memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes)); 837 } 838 839 /* 840 * Ask the driver, whether the requested number of buffers, planes per 841 * buffer and their sizes are acceptable 842 */ 843 ret = call_qop(q, queue_setup, q, &num_buffers, 844 &num_planes, plane_sizes, q->alloc_devs); 845 if (ret) 846 return ret; 847 848 /* Finally, allocate buffers and video memory */ 849 allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers, 850 num_planes, plane_sizes); 851 if (allocated_buffers == 0) { 852 dprintk(1, "memory allocation failed\n"); 853 return -ENOMEM; 854 } 855 856 /* 857 * Check if driver can handle the so far allocated number of buffers. 858 */ 859 if (allocated_buffers < num_buffers) { 860 num_buffers = allocated_buffers; 861 862 /* 863 * q->num_buffers contains the total number of buffers, that the 864 * queue driver has set up 865 */ 866 ret = call_qop(q, queue_setup, q, &num_buffers, 867 &num_planes, plane_sizes, q->alloc_devs); 868 869 if (!ret && allocated_buffers < num_buffers) 870 ret = -ENOMEM; 871 872 /* 873 * Either the driver has accepted a smaller number of buffers, 874 * or .queue_setup() returned an error 875 */ 876 } 877 878 mutex_lock(&q->mmap_lock); 879 q->num_buffers += allocated_buffers; 880 881 if (ret < 0) { 882 /* 883 * Note: __vb2_queue_free() will subtract 'allocated_buffers' 884 * from q->num_buffers. 885 */ 886 __vb2_queue_free(q, allocated_buffers); 887 mutex_unlock(&q->mmap_lock); 888 return -ENOMEM; 889 } 890 mutex_unlock(&q->mmap_lock); 891 892 /* 893 * Return the number of successfully allocated buffers 894 * to the userspace. 895 */ 896 *count = allocated_buffers; 897 898 return 0; 899 } 900 EXPORT_SYMBOL_GPL(vb2_core_create_bufs); 901 902 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no) 903 { 904 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 905 return NULL; 906 907 return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv); 908 909 } 910 EXPORT_SYMBOL_GPL(vb2_plane_vaddr); 911 912 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no) 913 { 914 if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv) 915 return NULL; 916 917 return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv); 918 } 919 EXPORT_SYMBOL_GPL(vb2_plane_cookie); 920 921 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state) 922 { 923 struct vb2_queue *q = vb->vb2_queue; 924 unsigned long flags; 925 unsigned int plane; 926 927 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE)) 928 return; 929 930 if (WARN_ON(state != VB2_BUF_STATE_DONE && 931 state != VB2_BUF_STATE_ERROR && 932 state != VB2_BUF_STATE_QUEUED)) 933 state = VB2_BUF_STATE_ERROR; 934 935 #ifdef CONFIG_VIDEO_ADV_DEBUG 936 /* 937 * Although this is not a callback, it still does have to balance 938 * with the buf_queue op. So update this counter manually. 939 */ 940 vb->cnt_buf_done++; 941 #endif 942 dprintk(4, "done processing on buffer %d, state: %d\n", 943 vb->index, state); 944 945 if (state != VB2_BUF_STATE_QUEUED) { 946 /* sync buffers */ 947 for (plane = 0; plane < vb->num_planes; ++plane) 948 call_void_memop(vb, finish, vb->planes[plane].mem_priv); 949 vb->synced = 0; 950 } 951 952 spin_lock_irqsave(&q->done_lock, flags); 953 if (state == VB2_BUF_STATE_QUEUED) { 954 vb->state = VB2_BUF_STATE_QUEUED; 955 } else { 956 /* Add the buffer to the done buffers list */ 957 list_add_tail(&vb->done_entry, &q->done_list); 958 vb->state = state; 959 } 960 atomic_dec(&q->owned_by_drv_count); 961 962 if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) { 963 media_request_object_unbind(&vb->req_obj); 964 media_request_object_put(&vb->req_obj); 965 } 966 967 spin_unlock_irqrestore(&q->done_lock, flags); 968 969 trace_vb2_buf_done(q, vb); 970 971 switch (state) { 972 case VB2_BUF_STATE_QUEUED: 973 return; 974 default: 975 /* Inform any processes that may be waiting for buffers */ 976 wake_up(&q->done_wq); 977 break; 978 } 979 } 980 EXPORT_SYMBOL_GPL(vb2_buffer_done); 981 982 void vb2_discard_done(struct vb2_queue *q) 983 { 984 struct vb2_buffer *vb; 985 unsigned long flags; 986 987 spin_lock_irqsave(&q->done_lock, flags); 988 list_for_each_entry(vb, &q->done_list, done_entry) 989 vb->state = VB2_BUF_STATE_ERROR; 990 spin_unlock_irqrestore(&q->done_lock, flags); 991 } 992 EXPORT_SYMBOL_GPL(vb2_discard_done); 993 994 /* 995 * __prepare_mmap() - prepare an MMAP buffer 996 */ 997 static int __prepare_mmap(struct vb2_buffer *vb) 998 { 999 int ret = 0; 1000 1001 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1002 vb, vb->planes); 1003 return ret ? ret : call_vb_qop(vb, buf_prepare, vb); 1004 } 1005 1006 /* 1007 * __prepare_userptr() - prepare a USERPTR buffer 1008 */ 1009 static int __prepare_userptr(struct vb2_buffer *vb) 1010 { 1011 struct vb2_plane planes[VB2_MAX_PLANES]; 1012 struct vb2_queue *q = vb->vb2_queue; 1013 void *mem_priv; 1014 unsigned int plane; 1015 int ret = 0; 1016 bool reacquired = vb->planes[0].mem_priv == NULL; 1017 1018 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1019 /* Copy relevant information provided by the userspace */ 1020 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1021 vb, planes); 1022 if (ret) 1023 return ret; 1024 1025 for (plane = 0; plane < vb->num_planes; ++plane) { 1026 /* Skip the plane if already verified */ 1027 if (vb->planes[plane].m.userptr && 1028 vb->planes[plane].m.userptr == planes[plane].m.userptr 1029 && vb->planes[plane].length == planes[plane].length) 1030 continue; 1031 1032 dprintk(3, "userspace address for plane %d changed, reacquiring memory\n", 1033 plane); 1034 1035 /* Check if the provided plane buffer is large enough */ 1036 if (planes[plane].length < vb->planes[plane].min_length) { 1037 dprintk(1, "provided buffer size %u is less than setup size %u for plane %d\n", 1038 planes[plane].length, 1039 vb->planes[plane].min_length, 1040 plane); 1041 ret = -EINVAL; 1042 goto err; 1043 } 1044 1045 /* Release previously acquired memory if present */ 1046 if (vb->planes[plane].mem_priv) { 1047 if (!reacquired) { 1048 reacquired = true; 1049 vb->copied_timestamp = 0; 1050 call_void_vb_qop(vb, buf_cleanup, vb); 1051 } 1052 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv); 1053 } 1054 1055 vb->planes[plane].mem_priv = NULL; 1056 vb->planes[plane].bytesused = 0; 1057 vb->planes[plane].length = 0; 1058 vb->planes[plane].m.userptr = 0; 1059 vb->planes[plane].data_offset = 0; 1060 1061 /* Acquire each plane's memory */ 1062 mem_priv = call_ptr_memop(vb, get_userptr, 1063 q->alloc_devs[plane] ? : q->dev, 1064 planes[plane].m.userptr, 1065 planes[plane].length, q->dma_dir); 1066 if (IS_ERR(mem_priv)) { 1067 dprintk(1, "failed acquiring userspace memory for plane %d\n", 1068 plane); 1069 ret = PTR_ERR(mem_priv); 1070 goto err; 1071 } 1072 vb->planes[plane].mem_priv = mem_priv; 1073 } 1074 1075 /* 1076 * Now that everything is in order, copy relevant information 1077 * provided by userspace. 1078 */ 1079 for (plane = 0; plane < vb->num_planes; ++plane) { 1080 vb->planes[plane].bytesused = planes[plane].bytesused; 1081 vb->planes[plane].length = planes[plane].length; 1082 vb->planes[plane].m.userptr = planes[plane].m.userptr; 1083 vb->planes[plane].data_offset = planes[plane].data_offset; 1084 } 1085 1086 if (reacquired) { 1087 /* 1088 * One or more planes changed, so we must call buf_init to do 1089 * the driver-specific initialization on the newly acquired 1090 * buffer, if provided. 1091 */ 1092 ret = call_vb_qop(vb, buf_init, vb); 1093 if (ret) { 1094 dprintk(1, "buffer initialization failed\n"); 1095 goto err; 1096 } 1097 } 1098 1099 ret = call_vb_qop(vb, buf_prepare, vb); 1100 if (ret) { 1101 dprintk(1, "buffer preparation failed\n"); 1102 call_void_vb_qop(vb, buf_cleanup, vb); 1103 goto err; 1104 } 1105 1106 return 0; 1107 err: 1108 /* In case of errors, release planes that were already acquired */ 1109 for (plane = 0; plane < vb->num_planes; ++plane) { 1110 if (vb->planes[plane].mem_priv) 1111 call_void_memop(vb, put_userptr, 1112 vb->planes[plane].mem_priv); 1113 vb->planes[plane].mem_priv = NULL; 1114 vb->planes[plane].m.userptr = 0; 1115 vb->planes[plane].length = 0; 1116 } 1117 1118 return ret; 1119 } 1120 1121 /* 1122 * __prepare_dmabuf() - prepare a DMABUF buffer 1123 */ 1124 static int __prepare_dmabuf(struct vb2_buffer *vb) 1125 { 1126 struct vb2_plane planes[VB2_MAX_PLANES]; 1127 struct vb2_queue *q = vb->vb2_queue; 1128 void *mem_priv; 1129 unsigned int plane; 1130 int ret = 0; 1131 bool reacquired = vb->planes[0].mem_priv == NULL; 1132 1133 memset(planes, 0, sizeof(planes[0]) * vb->num_planes); 1134 /* Copy relevant information provided by the userspace */ 1135 ret = call_bufop(vb->vb2_queue, fill_vb2_buffer, 1136 vb, planes); 1137 if (ret) 1138 return ret; 1139 1140 for (plane = 0; plane < vb->num_planes; ++plane) { 1141 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd); 1142 1143 if (IS_ERR_OR_NULL(dbuf)) { 1144 dprintk(1, "invalid dmabuf fd for plane %d\n", 1145 plane); 1146 ret = -EINVAL; 1147 goto err; 1148 } 1149 1150 /* use DMABUF size if length is not provided */ 1151 if (planes[plane].length == 0) 1152 planes[plane].length = dbuf->size; 1153 1154 if (planes[plane].length < vb->planes[plane].min_length) { 1155 dprintk(1, "invalid dmabuf length %u for plane %d, minimum length %u\n", 1156 planes[plane].length, plane, 1157 vb->planes[plane].min_length); 1158 dma_buf_put(dbuf); 1159 ret = -EINVAL; 1160 goto err; 1161 } 1162 1163 /* Skip the plane if already verified */ 1164 if (dbuf == vb->planes[plane].dbuf && 1165 vb->planes[plane].length == planes[plane].length) { 1166 dma_buf_put(dbuf); 1167 continue; 1168 } 1169 1170 dprintk(3, "buffer for plane %d changed\n", plane); 1171 1172 if (!reacquired) { 1173 reacquired = true; 1174 vb->copied_timestamp = 0; 1175 call_void_vb_qop(vb, buf_cleanup, vb); 1176 } 1177 1178 /* Release previously acquired memory if present */ 1179 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]); 1180 vb->planes[plane].bytesused = 0; 1181 vb->planes[plane].length = 0; 1182 vb->planes[plane].m.fd = 0; 1183 vb->planes[plane].data_offset = 0; 1184 1185 /* Acquire each plane's memory */ 1186 mem_priv = call_ptr_memop(vb, attach_dmabuf, 1187 q->alloc_devs[plane] ? : q->dev, 1188 dbuf, planes[plane].length, q->dma_dir); 1189 if (IS_ERR(mem_priv)) { 1190 dprintk(1, "failed to attach dmabuf\n"); 1191 ret = PTR_ERR(mem_priv); 1192 dma_buf_put(dbuf); 1193 goto err; 1194 } 1195 1196 vb->planes[plane].dbuf = dbuf; 1197 vb->planes[plane].mem_priv = mem_priv; 1198 } 1199 1200 /* 1201 * This pins the buffer(s) with dma_buf_map_attachment()). It's done 1202 * here instead just before the DMA, while queueing the buffer(s) so 1203 * userspace knows sooner rather than later if the dma-buf map fails. 1204 */ 1205 for (plane = 0; plane < vb->num_planes; ++plane) { 1206 if (vb->planes[plane].dbuf_mapped) 1207 continue; 1208 1209 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv); 1210 if (ret) { 1211 dprintk(1, "failed to map dmabuf for plane %d\n", 1212 plane); 1213 goto err; 1214 } 1215 vb->planes[plane].dbuf_mapped = 1; 1216 } 1217 1218 /* 1219 * Now that everything is in order, copy relevant information 1220 * provided by userspace. 1221 */ 1222 for (plane = 0; plane < vb->num_planes; ++plane) { 1223 vb->planes[plane].bytesused = planes[plane].bytesused; 1224 vb->planes[plane].length = planes[plane].length; 1225 vb->planes[plane].m.fd = planes[plane].m.fd; 1226 vb->planes[plane].data_offset = planes[plane].data_offset; 1227 } 1228 1229 if (reacquired) { 1230 /* 1231 * Call driver-specific initialization on the newly acquired buffer, 1232 * if provided. 1233 */ 1234 ret = call_vb_qop(vb, buf_init, vb); 1235 if (ret) { 1236 dprintk(1, "buffer initialization failed\n"); 1237 goto err; 1238 } 1239 } 1240 1241 ret = call_vb_qop(vb, buf_prepare, vb); 1242 if (ret) { 1243 dprintk(1, "buffer preparation failed\n"); 1244 call_void_vb_qop(vb, buf_cleanup, vb); 1245 goto err; 1246 } 1247 1248 return 0; 1249 err: 1250 /* In case of errors, release planes that were already acquired */ 1251 __vb2_buf_dmabuf_put(vb); 1252 1253 return ret; 1254 } 1255 1256 /* 1257 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing 1258 */ 1259 static void __enqueue_in_driver(struct vb2_buffer *vb) 1260 { 1261 struct vb2_queue *q = vb->vb2_queue; 1262 1263 vb->state = VB2_BUF_STATE_ACTIVE; 1264 atomic_inc(&q->owned_by_drv_count); 1265 1266 trace_vb2_buf_queue(q, vb); 1267 1268 call_void_vb_qop(vb, buf_queue, vb); 1269 } 1270 1271 static int __buf_prepare(struct vb2_buffer *vb) 1272 { 1273 struct vb2_queue *q = vb->vb2_queue; 1274 enum vb2_buffer_state orig_state = vb->state; 1275 unsigned int plane; 1276 int ret; 1277 1278 if (q->error) { 1279 dprintk(1, "fatal error occurred on queue\n"); 1280 return -EIO; 1281 } 1282 1283 if (vb->prepared) 1284 return 0; 1285 WARN_ON(vb->synced); 1286 1287 if (q->is_output) { 1288 ret = call_vb_qop(vb, buf_out_validate, vb); 1289 if (ret) { 1290 dprintk(1, "buffer validation failed\n"); 1291 return ret; 1292 } 1293 } 1294 1295 vb->state = VB2_BUF_STATE_PREPARING; 1296 1297 switch (q->memory) { 1298 case VB2_MEMORY_MMAP: 1299 ret = __prepare_mmap(vb); 1300 break; 1301 case VB2_MEMORY_USERPTR: 1302 ret = __prepare_userptr(vb); 1303 break; 1304 case VB2_MEMORY_DMABUF: 1305 ret = __prepare_dmabuf(vb); 1306 break; 1307 default: 1308 WARN(1, "Invalid queue type\n"); 1309 ret = -EINVAL; 1310 break; 1311 } 1312 1313 if (ret) { 1314 dprintk(1, "buffer preparation failed: %d\n", ret); 1315 vb->state = orig_state; 1316 return ret; 1317 } 1318 1319 /* sync buffers */ 1320 for (plane = 0; plane < vb->num_planes; ++plane) 1321 call_void_memop(vb, prepare, vb->planes[plane].mem_priv); 1322 1323 vb->synced = 1; 1324 vb->prepared = 1; 1325 vb->state = orig_state; 1326 1327 return 0; 1328 } 1329 1330 static int vb2_req_prepare(struct media_request_object *obj) 1331 { 1332 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1333 int ret; 1334 1335 if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST)) 1336 return -EINVAL; 1337 1338 mutex_lock(vb->vb2_queue->lock); 1339 ret = __buf_prepare(vb); 1340 mutex_unlock(vb->vb2_queue->lock); 1341 return ret; 1342 } 1343 1344 static void __vb2_dqbuf(struct vb2_buffer *vb); 1345 1346 static void vb2_req_unprepare(struct media_request_object *obj) 1347 { 1348 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1349 1350 mutex_lock(vb->vb2_queue->lock); 1351 __vb2_dqbuf(vb); 1352 vb->state = VB2_BUF_STATE_IN_REQUEST; 1353 mutex_unlock(vb->vb2_queue->lock); 1354 WARN_ON(!vb->req_obj.req); 1355 } 1356 1357 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1358 struct media_request *req); 1359 1360 static void vb2_req_queue(struct media_request_object *obj) 1361 { 1362 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1363 1364 mutex_lock(vb->vb2_queue->lock); 1365 vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL); 1366 mutex_unlock(vb->vb2_queue->lock); 1367 } 1368 1369 static void vb2_req_unbind(struct media_request_object *obj) 1370 { 1371 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1372 1373 if (vb->state == VB2_BUF_STATE_IN_REQUEST) 1374 call_void_bufop(vb->vb2_queue, init_buffer, vb); 1375 } 1376 1377 static void vb2_req_release(struct media_request_object *obj) 1378 { 1379 struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj); 1380 1381 if (vb->state == VB2_BUF_STATE_IN_REQUEST) { 1382 vb->state = VB2_BUF_STATE_DEQUEUED; 1383 if (vb->request) 1384 media_request_put(vb->request); 1385 vb->request = NULL; 1386 } 1387 } 1388 1389 static const struct media_request_object_ops vb2_core_req_ops = { 1390 .prepare = vb2_req_prepare, 1391 .unprepare = vb2_req_unprepare, 1392 .queue = vb2_req_queue, 1393 .unbind = vb2_req_unbind, 1394 .release = vb2_req_release, 1395 }; 1396 1397 bool vb2_request_object_is_buffer(struct media_request_object *obj) 1398 { 1399 return obj->ops == &vb2_core_req_ops; 1400 } 1401 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer); 1402 1403 unsigned int vb2_request_buffer_cnt(struct media_request *req) 1404 { 1405 struct media_request_object *obj; 1406 unsigned long flags; 1407 unsigned int buffer_cnt = 0; 1408 1409 spin_lock_irqsave(&req->lock, flags); 1410 list_for_each_entry(obj, &req->objects, list) 1411 if (vb2_request_object_is_buffer(obj)) 1412 buffer_cnt++; 1413 spin_unlock_irqrestore(&req->lock, flags); 1414 1415 return buffer_cnt; 1416 } 1417 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt); 1418 1419 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb) 1420 { 1421 struct vb2_buffer *vb; 1422 int ret; 1423 1424 vb = q->bufs[index]; 1425 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1426 dprintk(1, "invalid buffer state %d\n", 1427 vb->state); 1428 return -EINVAL; 1429 } 1430 if (vb->prepared) { 1431 dprintk(1, "buffer already prepared\n"); 1432 return -EINVAL; 1433 } 1434 1435 ret = __buf_prepare(vb); 1436 if (ret) 1437 return ret; 1438 1439 /* Fill buffer information for the userspace */ 1440 call_void_bufop(q, fill_user_buffer, vb, pb); 1441 1442 dprintk(2, "prepare of buffer %d succeeded\n", vb->index); 1443 1444 return 0; 1445 } 1446 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf); 1447 1448 /* 1449 * vb2_start_streaming() - Attempt to start streaming. 1450 * @q: videobuf2 queue 1451 * 1452 * Attempt to start streaming. When this function is called there must be 1453 * at least q->min_buffers_needed buffers queued up (i.e. the minimum 1454 * number of buffers required for the DMA engine to function). If the 1455 * @start_streaming op fails it is supposed to return all the driver-owned 1456 * buffers back to vb2 in state QUEUED. Check if that happened and if 1457 * not warn and reclaim them forcefully. 1458 */ 1459 static int vb2_start_streaming(struct vb2_queue *q) 1460 { 1461 struct vb2_buffer *vb; 1462 int ret; 1463 1464 /* 1465 * If any buffers were queued before streamon, 1466 * we can now pass them to driver for processing. 1467 */ 1468 list_for_each_entry(vb, &q->queued_list, queued_entry) 1469 __enqueue_in_driver(vb); 1470 1471 /* Tell the driver to start streaming */ 1472 q->start_streaming_called = 1; 1473 ret = call_qop(q, start_streaming, q, 1474 atomic_read(&q->owned_by_drv_count)); 1475 if (!ret) 1476 return 0; 1477 1478 q->start_streaming_called = 0; 1479 1480 dprintk(1, "driver refused to start streaming\n"); 1481 /* 1482 * If you see this warning, then the driver isn't cleaning up properly 1483 * after a failed start_streaming(). See the start_streaming() 1484 * documentation in videobuf2-core.h for more information how buffers 1485 * should be returned to vb2 in start_streaming(). 1486 */ 1487 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1488 unsigned i; 1489 1490 /* 1491 * Forcefully reclaim buffers if the driver did not 1492 * correctly return them to vb2. 1493 */ 1494 for (i = 0; i < q->num_buffers; ++i) { 1495 vb = q->bufs[i]; 1496 if (vb->state == VB2_BUF_STATE_ACTIVE) 1497 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED); 1498 } 1499 /* Must be zero now */ 1500 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1501 } 1502 /* 1503 * If done_list is not empty, then start_streaming() didn't call 1504 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or 1505 * STATE_DONE. 1506 */ 1507 WARN_ON(!list_empty(&q->done_list)); 1508 return ret; 1509 } 1510 1511 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb, 1512 struct media_request *req) 1513 { 1514 struct vb2_buffer *vb; 1515 int ret; 1516 1517 if (q->error) { 1518 dprintk(1, "fatal error occurred on queue\n"); 1519 return -EIO; 1520 } 1521 1522 vb = q->bufs[index]; 1523 1524 if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1525 q->requires_requests) { 1526 dprintk(1, "qbuf requires a request\n"); 1527 return -EBADR; 1528 } 1529 1530 if ((req && q->uses_qbuf) || 1531 (!req && vb->state != VB2_BUF_STATE_IN_REQUEST && 1532 q->uses_requests)) { 1533 dprintk(1, "queue in wrong mode (qbuf vs requests)\n"); 1534 return -EBUSY; 1535 } 1536 1537 if (req) { 1538 int ret; 1539 1540 q->uses_requests = 1; 1541 if (vb->state != VB2_BUF_STATE_DEQUEUED) { 1542 dprintk(1, "buffer %d not in dequeued state\n", 1543 vb->index); 1544 return -EINVAL; 1545 } 1546 1547 if (q->is_output && !vb->prepared) { 1548 ret = call_vb_qop(vb, buf_out_validate, vb); 1549 if (ret) { 1550 dprintk(1, "buffer validation failed\n"); 1551 return ret; 1552 } 1553 } 1554 1555 media_request_object_init(&vb->req_obj); 1556 1557 /* Make sure the request is in a safe state for updating. */ 1558 ret = media_request_lock_for_update(req); 1559 if (ret) 1560 return ret; 1561 ret = media_request_object_bind(req, &vb2_core_req_ops, 1562 q, true, &vb->req_obj); 1563 media_request_unlock_for_update(req); 1564 if (ret) 1565 return ret; 1566 1567 vb->state = VB2_BUF_STATE_IN_REQUEST; 1568 1569 /* 1570 * Increment the refcount and store the request. 1571 * The request refcount is decremented again when the 1572 * buffer is dequeued. This is to prevent vb2_buffer_done() 1573 * from freeing the request from interrupt context, which can 1574 * happen if the application closed the request fd after 1575 * queueing the request. 1576 */ 1577 media_request_get(req); 1578 vb->request = req; 1579 1580 /* Fill buffer information for the userspace */ 1581 if (pb) { 1582 call_void_bufop(q, copy_timestamp, vb, pb); 1583 call_void_bufop(q, fill_user_buffer, vb, pb); 1584 } 1585 1586 dprintk(2, "qbuf of buffer %d succeeded\n", vb->index); 1587 return 0; 1588 } 1589 1590 if (vb->state != VB2_BUF_STATE_IN_REQUEST) 1591 q->uses_qbuf = 1; 1592 1593 switch (vb->state) { 1594 case VB2_BUF_STATE_DEQUEUED: 1595 case VB2_BUF_STATE_IN_REQUEST: 1596 if (!vb->prepared) { 1597 ret = __buf_prepare(vb); 1598 if (ret) 1599 return ret; 1600 } 1601 break; 1602 case VB2_BUF_STATE_PREPARING: 1603 dprintk(1, "buffer still being prepared\n"); 1604 return -EINVAL; 1605 default: 1606 dprintk(1, "invalid buffer state %d\n", vb->state); 1607 return -EINVAL; 1608 } 1609 1610 /* 1611 * Add to the queued buffers list, a buffer will stay on it until 1612 * dequeued in dqbuf. 1613 */ 1614 list_add_tail(&vb->queued_entry, &q->queued_list); 1615 q->queued_count++; 1616 q->waiting_for_buffers = false; 1617 vb->state = VB2_BUF_STATE_QUEUED; 1618 1619 if (pb) 1620 call_void_bufop(q, copy_timestamp, vb, pb); 1621 1622 trace_vb2_qbuf(q, vb); 1623 1624 /* 1625 * If already streaming, give the buffer to driver for processing. 1626 * If not, the buffer will be given to driver on next streamon. 1627 */ 1628 if (q->start_streaming_called) 1629 __enqueue_in_driver(vb); 1630 1631 /* Fill buffer information for the userspace */ 1632 if (pb) 1633 call_void_bufop(q, fill_user_buffer, vb, pb); 1634 1635 /* 1636 * If streamon has been called, and we haven't yet called 1637 * start_streaming() since not enough buffers were queued, and 1638 * we now have reached the minimum number of queued buffers, 1639 * then we can finally call start_streaming(). 1640 */ 1641 if (q->streaming && !q->start_streaming_called && 1642 q->queued_count >= q->min_buffers_needed) { 1643 ret = vb2_start_streaming(q); 1644 if (ret) 1645 return ret; 1646 } 1647 1648 dprintk(2, "qbuf of buffer %d succeeded\n", vb->index); 1649 return 0; 1650 } 1651 EXPORT_SYMBOL_GPL(vb2_core_qbuf); 1652 1653 /* 1654 * __vb2_wait_for_done_vb() - wait for a buffer to become available 1655 * for dequeuing 1656 * 1657 * Will sleep if required for nonblocking == false. 1658 */ 1659 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking) 1660 { 1661 /* 1662 * All operations on vb_done_list are performed under done_lock 1663 * spinlock protection. However, buffers may be removed from 1664 * it and returned to userspace only while holding both driver's 1665 * lock and the done_lock spinlock. Thus we can be sure that as 1666 * long as we hold the driver's lock, the list will remain not 1667 * empty if list_empty() check succeeds. 1668 */ 1669 1670 for (;;) { 1671 int ret; 1672 1673 if (q->waiting_in_dqbuf) { 1674 dprintk(1, "another dup()ped fd is waiting for a buffer\n"); 1675 return -EBUSY; 1676 } 1677 1678 if (!q->streaming) { 1679 dprintk(1, "streaming off, will not wait for buffers\n"); 1680 return -EINVAL; 1681 } 1682 1683 if (q->error) { 1684 dprintk(1, "Queue in error state, will not wait for buffers\n"); 1685 return -EIO; 1686 } 1687 1688 if (q->last_buffer_dequeued) { 1689 dprintk(3, "last buffer dequeued already, will not wait for buffers\n"); 1690 return -EPIPE; 1691 } 1692 1693 if (!list_empty(&q->done_list)) { 1694 /* 1695 * Found a buffer that we were waiting for. 1696 */ 1697 break; 1698 } 1699 1700 if (nonblocking) { 1701 dprintk(3, "nonblocking and no buffers to dequeue, will not wait\n"); 1702 return -EAGAIN; 1703 } 1704 1705 q->waiting_in_dqbuf = 1; 1706 /* 1707 * We are streaming and blocking, wait for another buffer to 1708 * become ready or for streamoff. Driver's lock is released to 1709 * allow streamoff or qbuf to be called while waiting. 1710 */ 1711 call_void_qop(q, wait_prepare, q); 1712 1713 /* 1714 * All locks have been released, it is safe to sleep now. 1715 */ 1716 dprintk(3, "will sleep waiting for buffers\n"); 1717 ret = wait_event_interruptible(q->done_wq, 1718 !list_empty(&q->done_list) || !q->streaming || 1719 q->error); 1720 1721 /* 1722 * We need to reevaluate both conditions again after reacquiring 1723 * the locks or return an error if one occurred. 1724 */ 1725 call_void_qop(q, wait_finish, q); 1726 q->waiting_in_dqbuf = 0; 1727 if (ret) { 1728 dprintk(1, "sleep was interrupted\n"); 1729 return ret; 1730 } 1731 } 1732 return 0; 1733 } 1734 1735 /* 1736 * __vb2_get_done_vb() - get a buffer ready for dequeuing 1737 * 1738 * Will sleep if required for nonblocking == false. 1739 */ 1740 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb, 1741 void *pb, int nonblocking) 1742 { 1743 unsigned long flags; 1744 int ret = 0; 1745 1746 /* 1747 * Wait for at least one buffer to become available on the done_list. 1748 */ 1749 ret = __vb2_wait_for_done_vb(q, nonblocking); 1750 if (ret) 1751 return ret; 1752 1753 /* 1754 * Driver's lock has been held since we last verified that done_list 1755 * is not empty, so no need for another list_empty(done_list) check. 1756 */ 1757 spin_lock_irqsave(&q->done_lock, flags); 1758 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry); 1759 /* 1760 * Only remove the buffer from done_list if all planes can be 1761 * handled. Some cases such as V4L2 file I/O and DVB have pb 1762 * == NULL; skip the check then as there's nothing to verify. 1763 */ 1764 if (pb) 1765 ret = call_bufop(q, verify_planes_array, *vb, pb); 1766 if (!ret) 1767 list_del(&(*vb)->done_entry); 1768 spin_unlock_irqrestore(&q->done_lock, flags); 1769 1770 return ret; 1771 } 1772 1773 int vb2_wait_for_all_buffers(struct vb2_queue *q) 1774 { 1775 if (!q->streaming) { 1776 dprintk(1, "streaming off, will not wait for buffers\n"); 1777 return -EINVAL; 1778 } 1779 1780 if (q->start_streaming_called) 1781 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count)); 1782 return 0; 1783 } 1784 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers); 1785 1786 /* 1787 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state 1788 */ 1789 static void __vb2_dqbuf(struct vb2_buffer *vb) 1790 { 1791 struct vb2_queue *q = vb->vb2_queue; 1792 1793 /* nothing to do if the buffer is already dequeued */ 1794 if (vb->state == VB2_BUF_STATE_DEQUEUED) 1795 return; 1796 1797 vb->state = VB2_BUF_STATE_DEQUEUED; 1798 1799 call_void_bufop(q, init_buffer, vb); 1800 } 1801 1802 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb, 1803 bool nonblocking) 1804 { 1805 struct vb2_buffer *vb = NULL; 1806 int ret; 1807 1808 ret = __vb2_get_done_vb(q, &vb, pb, nonblocking); 1809 if (ret < 0) 1810 return ret; 1811 1812 switch (vb->state) { 1813 case VB2_BUF_STATE_DONE: 1814 dprintk(3, "returning done buffer\n"); 1815 break; 1816 case VB2_BUF_STATE_ERROR: 1817 dprintk(3, "returning done buffer with errors\n"); 1818 break; 1819 default: 1820 dprintk(1, "invalid buffer state\n"); 1821 return -EINVAL; 1822 } 1823 1824 call_void_vb_qop(vb, buf_finish, vb); 1825 vb->prepared = 0; 1826 1827 if (pindex) 1828 *pindex = vb->index; 1829 1830 /* Fill buffer information for the userspace */ 1831 if (pb) 1832 call_void_bufop(q, fill_user_buffer, vb, pb); 1833 1834 /* Remove from videobuf queue */ 1835 list_del(&vb->queued_entry); 1836 q->queued_count--; 1837 1838 trace_vb2_dqbuf(q, vb); 1839 1840 /* go back to dequeued state */ 1841 __vb2_dqbuf(vb); 1842 1843 if (WARN_ON(vb->req_obj.req)) { 1844 media_request_object_unbind(&vb->req_obj); 1845 media_request_object_put(&vb->req_obj); 1846 } 1847 if (vb->request) 1848 media_request_put(vb->request); 1849 vb->request = NULL; 1850 1851 dprintk(2, "dqbuf of buffer %d, with state %d\n", 1852 vb->index, vb->state); 1853 1854 return 0; 1855 1856 } 1857 EXPORT_SYMBOL_GPL(vb2_core_dqbuf); 1858 1859 /* 1860 * __vb2_queue_cancel() - cancel and stop (pause) streaming 1861 * 1862 * Removes all queued buffers from driver's queue and all buffers queued by 1863 * userspace from videobuf's queue. Returns to state after reqbufs. 1864 */ 1865 static void __vb2_queue_cancel(struct vb2_queue *q) 1866 { 1867 unsigned int i; 1868 1869 /* 1870 * Tell driver to stop all transactions and release all queued 1871 * buffers. 1872 */ 1873 if (q->start_streaming_called) 1874 call_void_qop(q, stop_streaming, q); 1875 1876 /* 1877 * If you see this warning, then the driver isn't cleaning up properly 1878 * in stop_streaming(). See the stop_streaming() documentation in 1879 * videobuf2-core.h for more information how buffers should be returned 1880 * to vb2 in stop_streaming(). 1881 */ 1882 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) { 1883 for (i = 0; i < q->num_buffers; ++i) 1884 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) { 1885 pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n", 1886 q->bufs[i]); 1887 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR); 1888 } 1889 /* Must be zero now */ 1890 WARN_ON(atomic_read(&q->owned_by_drv_count)); 1891 } 1892 1893 q->streaming = 0; 1894 q->start_streaming_called = 0; 1895 q->queued_count = 0; 1896 q->error = 0; 1897 q->uses_requests = 0; 1898 q->uses_qbuf = 0; 1899 1900 /* 1901 * Remove all buffers from videobuf's list... 1902 */ 1903 INIT_LIST_HEAD(&q->queued_list); 1904 /* 1905 * ...and done list; userspace will not receive any buffers it 1906 * has not already dequeued before initiating cancel. 1907 */ 1908 INIT_LIST_HEAD(&q->done_list); 1909 atomic_set(&q->owned_by_drv_count, 0); 1910 wake_up_all(&q->done_wq); 1911 1912 /* 1913 * Reinitialize all buffers for next use. 1914 * Make sure to call buf_finish for any queued buffers. Normally 1915 * that's done in dqbuf, but that's not going to happen when we 1916 * cancel the whole queue. Note: this code belongs here, not in 1917 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical 1918 * call to __fill_user_buffer() after buf_finish(). That order can't 1919 * be changed, so we can't move the buf_finish() to __vb2_dqbuf(). 1920 */ 1921 for (i = 0; i < q->num_buffers; ++i) { 1922 struct vb2_buffer *vb = q->bufs[i]; 1923 struct media_request *req = vb->req_obj.req; 1924 1925 /* 1926 * If a request is associated with this buffer, then 1927 * call buf_request_cancel() to give the driver to complete() 1928 * related request objects. Otherwise those objects would 1929 * never complete. 1930 */ 1931 if (req) { 1932 enum media_request_state state; 1933 unsigned long flags; 1934 1935 spin_lock_irqsave(&req->lock, flags); 1936 state = req->state; 1937 spin_unlock_irqrestore(&req->lock, flags); 1938 1939 if (state == MEDIA_REQUEST_STATE_QUEUED) 1940 call_void_vb_qop(vb, buf_request_complete, vb); 1941 } 1942 1943 if (vb->synced) { 1944 unsigned int plane; 1945 1946 for (plane = 0; plane < vb->num_planes; ++plane) 1947 call_void_memop(vb, finish, 1948 vb->planes[plane].mem_priv); 1949 vb->synced = 0; 1950 } 1951 1952 if (vb->prepared) { 1953 call_void_vb_qop(vb, buf_finish, vb); 1954 vb->prepared = 0; 1955 } 1956 __vb2_dqbuf(vb); 1957 1958 if (vb->req_obj.req) { 1959 media_request_object_unbind(&vb->req_obj); 1960 media_request_object_put(&vb->req_obj); 1961 } 1962 if (vb->request) 1963 media_request_put(vb->request); 1964 vb->request = NULL; 1965 vb->copied_timestamp = 0; 1966 } 1967 } 1968 1969 int vb2_core_streamon(struct vb2_queue *q, unsigned int type) 1970 { 1971 int ret; 1972 1973 if (type != q->type) { 1974 dprintk(1, "invalid stream type\n"); 1975 return -EINVAL; 1976 } 1977 1978 if (q->streaming) { 1979 dprintk(3, "already streaming\n"); 1980 return 0; 1981 } 1982 1983 if (!q->num_buffers) { 1984 dprintk(1, "no buffers have been allocated\n"); 1985 return -EINVAL; 1986 } 1987 1988 if (q->num_buffers < q->min_buffers_needed) { 1989 dprintk(1, "need at least %u allocated buffers\n", 1990 q->min_buffers_needed); 1991 return -EINVAL; 1992 } 1993 1994 /* 1995 * Tell driver to start streaming provided sufficient buffers 1996 * are available. 1997 */ 1998 if (q->queued_count >= q->min_buffers_needed) { 1999 ret = v4l_vb2q_enable_media_source(q); 2000 if (ret) 2001 return ret; 2002 ret = vb2_start_streaming(q); 2003 if (ret) 2004 return ret; 2005 } 2006 2007 q->streaming = 1; 2008 2009 dprintk(3, "successful\n"); 2010 return 0; 2011 } 2012 EXPORT_SYMBOL_GPL(vb2_core_streamon); 2013 2014 void vb2_queue_error(struct vb2_queue *q) 2015 { 2016 q->error = 1; 2017 2018 wake_up_all(&q->done_wq); 2019 } 2020 EXPORT_SYMBOL_GPL(vb2_queue_error); 2021 2022 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type) 2023 { 2024 if (type != q->type) { 2025 dprintk(1, "invalid stream type\n"); 2026 return -EINVAL; 2027 } 2028 2029 /* 2030 * Cancel will pause streaming and remove all buffers from the driver 2031 * and videobuf, effectively returning control over them to userspace. 2032 * 2033 * Note that we do this even if q->streaming == 0: if you prepare or 2034 * queue buffers, and then call streamoff without ever having called 2035 * streamon, you would still expect those buffers to be returned to 2036 * their normal dequeued state. 2037 */ 2038 __vb2_queue_cancel(q); 2039 q->waiting_for_buffers = !q->is_output; 2040 q->last_buffer_dequeued = false; 2041 2042 dprintk(3, "successful\n"); 2043 return 0; 2044 } 2045 EXPORT_SYMBOL_GPL(vb2_core_streamoff); 2046 2047 /* 2048 * __find_plane_by_offset() - find plane associated with the given offset off 2049 */ 2050 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off, 2051 unsigned int *_buffer, unsigned int *_plane) 2052 { 2053 struct vb2_buffer *vb; 2054 unsigned int buffer, plane; 2055 2056 /* 2057 * Go over all buffers and their planes, comparing the given offset 2058 * with an offset assigned to each plane. If a match is found, 2059 * return its buffer and plane numbers. 2060 */ 2061 for (buffer = 0; buffer < q->num_buffers; ++buffer) { 2062 vb = q->bufs[buffer]; 2063 2064 for (plane = 0; plane < vb->num_planes; ++plane) { 2065 if (vb->planes[plane].m.offset == off) { 2066 *_buffer = buffer; 2067 *_plane = plane; 2068 return 0; 2069 } 2070 } 2071 } 2072 2073 return -EINVAL; 2074 } 2075 2076 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type, 2077 unsigned int index, unsigned int plane, unsigned int flags) 2078 { 2079 struct vb2_buffer *vb = NULL; 2080 struct vb2_plane *vb_plane; 2081 int ret; 2082 struct dma_buf *dbuf; 2083 2084 if (q->memory != VB2_MEMORY_MMAP) { 2085 dprintk(1, "queue is not currently set up for mmap\n"); 2086 return -EINVAL; 2087 } 2088 2089 if (!q->mem_ops->get_dmabuf) { 2090 dprintk(1, "queue does not support DMA buffer exporting\n"); 2091 return -EINVAL; 2092 } 2093 2094 if (flags & ~(O_CLOEXEC | O_ACCMODE)) { 2095 dprintk(1, "queue does support only O_CLOEXEC and access mode flags\n"); 2096 return -EINVAL; 2097 } 2098 2099 if (type != q->type) { 2100 dprintk(1, "invalid buffer type\n"); 2101 return -EINVAL; 2102 } 2103 2104 if (index >= q->num_buffers) { 2105 dprintk(1, "buffer index out of range\n"); 2106 return -EINVAL; 2107 } 2108 2109 vb = q->bufs[index]; 2110 2111 if (plane >= vb->num_planes) { 2112 dprintk(1, "buffer plane out of range\n"); 2113 return -EINVAL; 2114 } 2115 2116 if (vb2_fileio_is_active(q)) { 2117 dprintk(1, "expbuf: file io in progress\n"); 2118 return -EBUSY; 2119 } 2120 2121 vb_plane = &vb->planes[plane]; 2122 2123 dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv, 2124 flags & O_ACCMODE); 2125 if (IS_ERR_OR_NULL(dbuf)) { 2126 dprintk(1, "failed to export buffer %d, plane %d\n", 2127 index, plane); 2128 return -EINVAL; 2129 } 2130 2131 ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE); 2132 if (ret < 0) { 2133 dprintk(3, "buffer %d, plane %d failed to export (%d)\n", 2134 index, plane, ret); 2135 dma_buf_put(dbuf); 2136 return ret; 2137 } 2138 2139 dprintk(3, "buffer %d, plane %d exported as %d descriptor\n", 2140 index, plane, ret); 2141 *fd = ret; 2142 2143 return 0; 2144 } 2145 EXPORT_SYMBOL_GPL(vb2_core_expbuf); 2146 2147 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma) 2148 { 2149 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 2150 struct vb2_buffer *vb; 2151 unsigned int buffer = 0, plane = 0; 2152 int ret; 2153 unsigned long length; 2154 2155 if (q->memory != VB2_MEMORY_MMAP) { 2156 dprintk(1, "queue is not currently set up for mmap\n"); 2157 return -EINVAL; 2158 } 2159 2160 /* 2161 * Check memory area access mode. 2162 */ 2163 if (!(vma->vm_flags & VM_SHARED)) { 2164 dprintk(1, "invalid vma flags, VM_SHARED needed\n"); 2165 return -EINVAL; 2166 } 2167 if (q->is_output) { 2168 if (!(vma->vm_flags & VM_WRITE)) { 2169 dprintk(1, "invalid vma flags, VM_WRITE needed\n"); 2170 return -EINVAL; 2171 } 2172 } else { 2173 if (!(vma->vm_flags & VM_READ)) { 2174 dprintk(1, "invalid vma flags, VM_READ needed\n"); 2175 return -EINVAL; 2176 } 2177 } 2178 2179 mutex_lock(&q->mmap_lock); 2180 2181 if (vb2_fileio_is_active(q)) { 2182 dprintk(1, "mmap: file io in progress\n"); 2183 ret = -EBUSY; 2184 goto unlock; 2185 } 2186 2187 /* 2188 * Find the plane corresponding to the offset passed by userspace. 2189 */ 2190 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2191 if (ret) 2192 goto unlock; 2193 2194 vb = q->bufs[buffer]; 2195 2196 /* 2197 * MMAP requires page_aligned buffers. 2198 * The buffer length was page_aligned at __vb2_buf_mem_alloc(), 2199 * so, we need to do the same here. 2200 */ 2201 length = PAGE_ALIGN(vb->planes[plane].length); 2202 if (length < (vma->vm_end - vma->vm_start)) { 2203 dprintk(1, 2204 "MMAP invalid, as it would overflow buffer length\n"); 2205 ret = -EINVAL; 2206 goto unlock; 2207 } 2208 2209 /* 2210 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer, 2211 * not as a in-buffer offset. We always want to mmap a whole buffer 2212 * from its beginning. 2213 */ 2214 vma->vm_pgoff = 0; 2215 2216 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma); 2217 2218 unlock: 2219 mutex_unlock(&q->mmap_lock); 2220 if (ret) 2221 return ret; 2222 2223 dprintk(3, "buffer %d, plane %d successfully mapped\n", buffer, plane); 2224 return 0; 2225 } 2226 EXPORT_SYMBOL_GPL(vb2_mmap); 2227 2228 #ifndef CONFIG_MMU 2229 unsigned long vb2_get_unmapped_area(struct vb2_queue *q, 2230 unsigned long addr, 2231 unsigned long len, 2232 unsigned long pgoff, 2233 unsigned long flags) 2234 { 2235 unsigned long off = pgoff << PAGE_SHIFT; 2236 struct vb2_buffer *vb; 2237 unsigned int buffer, plane; 2238 void *vaddr; 2239 int ret; 2240 2241 if (q->memory != VB2_MEMORY_MMAP) { 2242 dprintk(1, "queue is not currently set up for mmap\n"); 2243 return -EINVAL; 2244 } 2245 2246 /* 2247 * Find the plane corresponding to the offset passed by userspace. 2248 */ 2249 ret = __find_plane_by_offset(q, off, &buffer, &plane); 2250 if (ret) 2251 return ret; 2252 2253 vb = q->bufs[buffer]; 2254 2255 vaddr = vb2_plane_vaddr(vb, plane); 2256 return vaddr ? (unsigned long)vaddr : -EINVAL; 2257 } 2258 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area); 2259 #endif 2260 2261 int vb2_core_queue_init(struct vb2_queue *q) 2262 { 2263 /* 2264 * Sanity check 2265 */ 2266 if (WARN_ON(!q) || 2267 WARN_ON(!q->ops) || 2268 WARN_ON(!q->mem_ops) || 2269 WARN_ON(!q->type) || 2270 WARN_ON(!q->io_modes) || 2271 WARN_ON(!q->ops->queue_setup) || 2272 WARN_ON(!q->ops->buf_queue)) 2273 return -EINVAL; 2274 2275 if (WARN_ON(q->requires_requests && !q->supports_requests)) 2276 return -EINVAL; 2277 2278 INIT_LIST_HEAD(&q->queued_list); 2279 INIT_LIST_HEAD(&q->done_list); 2280 spin_lock_init(&q->done_lock); 2281 mutex_init(&q->mmap_lock); 2282 init_waitqueue_head(&q->done_wq); 2283 2284 q->memory = VB2_MEMORY_UNKNOWN; 2285 2286 if (q->buf_struct_size == 0) 2287 q->buf_struct_size = sizeof(struct vb2_buffer); 2288 2289 if (q->bidirectional) 2290 q->dma_dir = DMA_BIDIRECTIONAL; 2291 else 2292 q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2293 2294 return 0; 2295 } 2296 EXPORT_SYMBOL_GPL(vb2_core_queue_init); 2297 2298 static int __vb2_init_fileio(struct vb2_queue *q, int read); 2299 static int __vb2_cleanup_fileio(struct vb2_queue *q); 2300 void vb2_core_queue_release(struct vb2_queue *q) 2301 { 2302 __vb2_cleanup_fileio(q); 2303 __vb2_queue_cancel(q); 2304 mutex_lock(&q->mmap_lock); 2305 __vb2_queue_free(q, q->num_buffers); 2306 mutex_unlock(&q->mmap_lock); 2307 } 2308 EXPORT_SYMBOL_GPL(vb2_core_queue_release); 2309 2310 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file, 2311 poll_table *wait) 2312 { 2313 __poll_t req_events = poll_requested_events(wait); 2314 struct vb2_buffer *vb = NULL; 2315 unsigned long flags; 2316 2317 if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM))) 2318 return 0; 2319 if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM))) 2320 return 0; 2321 2322 poll_wait(file, &q->done_wq, wait); 2323 2324 /* 2325 * Start file I/O emulator only if streaming API has not been used yet. 2326 */ 2327 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) { 2328 if (!q->is_output && (q->io_modes & VB2_READ) && 2329 (req_events & (EPOLLIN | EPOLLRDNORM))) { 2330 if (__vb2_init_fileio(q, 1)) 2331 return EPOLLERR; 2332 } 2333 if (q->is_output && (q->io_modes & VB2_WRITE) && 2334 (req_events & (EPOLLOUT | EPOLLWRNORM))) { 2335 if (__vb2_init_fileio(q, 0)) 2336 return EPOLLERR; 2337 /* 2338 * Write to OUTPUT queue can be done immediately. 2339 */ 2340 return EPOLLOUT | EPOLLWRNORM; 2341 } 2342 } 2343 2344 /* 2345 * There is nothing to wait for if the queue isn't streaming, or if the 2346 * error flag is set. 2347 */ 2348 if (!vb2_is_streaming(q) || q->error) 2349 return EPOLLERR; 2350 2351 /* 2352 * If this quirk is set and QBUF hasn't been called yet then 2353 * return EPOLLERR as well. This only affects capture queues, output 2354 * queues will always initialize waiting_for_buffers to false. 2355 * This quirk is set by V4L2 for backwards compatibility reasons. 2356 */ 2357 if (q->quirk_poll_must_check_waiting_for_buffers && 2358 q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM))) 2359 return EPOLLERR; 2360 2361 /* 2362 * For output streams you can call write() as long as there are fewer 2363 * buffers queued than there are buffers available. 2364 */ 2365 if (q->is_output && q->fileio && q->queued_count < q->num_buffers) 2366 return EPOLLOUT | EPOLLWRNORM; 2367 2368 if (list_empty(&q->done_list)) { 2369 /* 2370 * If the last buffer was dequeued from a capture queue, 2371 * return immediately. DQBUF will return -EPIPE. 2372 */ 2373 if (q->last_buffer_dequeued) 2374 return EPOLLIN | EPOLLRDNORM; 2375 } 2376 2377 /* 2378 * Take first buffer available for dequeuing. 2379 */ 2380 spin_lock_irqsave(&q->done_lock, flags); 2381 if (!list_empty(&q->done_list)) 2382 vb = list_first_entry(&q->done_list, struct vb2_buffer, 2383 done_entry); 2384 spin_unlock_irqrestore(&q->done_lock, flags); 2385 2386 if (vb && (vb->state == VB2_BUF_STATE_DONE 2387 || vb->state == VB2_BUF_STATE_ERROR)) { 2388 return (q->is_output) ? 2389 EPOLLOUT | EPOLLWRNORM : 2390 EPOLLIN | EPOLLRDNORM; 2391 } 2392 return 0; 2393 } 2394 EXPORT_SYMBOL_GPL(vb2_core_poll); 2395 2396 /* 2397 * struct vb2_fileio_buf - buffer context used by file io emulator 2398 * 2399 * vb2 provides a compatibility layer and emulator of file io (read and 2400 * write) calls on top of streaming API. This structure is used for 2401 * tracking context related to the buffers. 2402 */ 2403 struct vb2_fileio_buf { 2404 void *vaddr; 2405 unsigned int size; 2406 unsigned int pos; 2407 unsigned int queued:1; 2408 }; 2409 2410 /* 2411 * struct vb2_fileio_data - queue context used by file io emulator 2412 * 2413 * @cur_index: the index of the buffer currently being read from or 2414 * written to. If equal to q->num_buffers then a new buffer 2415 * must be dequeued. 2416 * @initial_index: in the read() case all buffers are queued up immediately 2417 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles 2418 * buffers. However, in the write() case no buffers are initially 2419 * queued, instead whenever a buffer is full it is queued up by 2420 * __vb2_perform_fileio(). Only once all available buffers have 2421 * been queued up will __vb2_perform_fileio() start to dequeue 2422 * buffers. This means that initially __vb2_perform_fileio() 2423 * needs to know what buffer index to use when it is queuing up 2424 * the buffers for the first time. That initial index is stored 2425 * in this field. Once it is equal to q->num_buffers all 2426 * available buffers have been queued and __vb2_perform_fileio() 2427 * should start the normal dequeue/queue cycle. 2428 * 2429 * vb2 provides a compatibility layer and emulator of file io (read and 2430 * write) calls on top of streaming API. For proper operation it required 2431 * this structure to save the driver state between each call of the read 2432 * or write function. 2433 */ 2434 struct vb2_fileio_data { 2435 unsigned int count; 2436 unsigned int type; 2437 unsigned int memory; 2438 struct vb2_fileio_buf bufs[VB2_MAX_FRAME]; 2439 unsigned int cur_index; 2440 unsigned int initial_index; 2441 unsigned int q_count; 2442 unsigned int dq_count; 2443 unsigned read_once:1; 2444 unsigned write_immediately:1; 2445 }; 2446 2447 /* 2448 * __vb2_init_fileio() - initialize file io emulator 2449 * @q: videobuf2 queue 2450 * @read: mode selector (1 means read, 0 means write) 2451 */ 2452 static int __vb2_init_fileio(struct vb2_queue *q, int read) 2453 { 2454 struct vb2_fileio_data *fileio; 2455 int i, ret; 2456 unsigned int count = 0; 2457 2458 /* 2459 * Sanity check 2460 */ 2461 if (WARN_ON((read && !(q->io_modes & VB2_READ)) || 2462 (!read && !(q->io_modes & VB2_WRITE)))) 2463 return -EINVAL; 2464 2465 /* 2466 * Check if device supports mapping buffers to kernel virtual space. 2467 */ 2468 if (!q->mem_ops->vaddr) 2469 return -EBUSY; 2470 2471 /* 2472 * Check if streaming api has not been already activated. 2473 */ 2474 if (q->streaming || q->num_buffers > 0) 2475 return -EBUSY; 2476 2477 /* 2478 * Start with count 1, driver can increase it in queue_setup() 2479 */ 2480 count = 1; 2481 2482 dprintk(3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n", 2483 (read) ? "read" : "write", count, q->fileio_read_once, 2484 q->fileio_write_immediately); 2485 2486 fileio = kzalloc(sizeof(*fileio), GFP_KERNEL); 2487 if (fileio == NULL) 2488 return -ENOMEM; 2489 2490 fileio->read_once = q->fileio_read_once; 2491 fileio->write_immediately = q->fileio_write_immediately; 2492 2493 /* 2494 * Request buffers and use MMAP type to force driver 2495 * to allocate buffers by itself. 2496 */ 2497 fileio->count = count; 2498 fileio->memory = VB2_MEMORY_MMAP; 2499 fileio->type = q->type; 2500 q->fileio = fileio; 2501 ret = vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2502 if (ret) 2503 goto err_kfree; 2504 2505 /* 2506 * Check if plane_count is correct 2507 * (multiplane buffers are not supported). 2508 */ 2509 if (q->bufs[0]->num_planes != 1) { 2510 ret = -EBUSY; 2511 goto err_reqbufs; 2512 } 2513 2514 /* 2515 * Get kernel address of each buffer. 2516 */ 2517 for (i = 0; i < q->num_buffers; i++) { 2518 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0); 2519 if (fileio->bufs[i].vaddr == NULL) { 2520 ret = -EINVAL; 2521 goto err_reqbufs; 2522 } 2523 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0); 2524 } 2525 2526 /* 2527 * Read mode requires pre queuing of all buffers. 2528 */ 2529 if (read) { 2530 /* 2531 * Queue all buffers. 2532 */ 2533 for (i = 0; i < q->num_buffers; i++) { 2534 ret = vb2_core_qbuf(q, i, NULL, NULL); 2535 if (ret) 2536 goto err_reqbufs; 2537 fileio->bufs[i].queued = 1; 2538 } 2539 /* 2540 * All buffers have been queued, so mark that by setting 2541 * initial_index to q->num_buffers 2542 */ 2543 fileio->initial_index = q->num_buffers; 2544 fileio->cur_index = q->num_buffers; 2545 } 2546 2547 /* 2548 * Start streaming. 2549 */ 2550 ret = vb2_core_streamon(q, q->type); 2551 if (ret) 2552 goto err_reqbufs; 2553 2554 return ret; 2555 2556 err_reqbufs: 2557 fileio->count = 0; 2558 vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2559 2560 err_kfree: 2561 q->fileio = NULL; 2562 kfree(fileio); 2563 return ret; 2564 } 2565 2566 /* 2567 * __vb2_cleanup_fileio() - free resourced used by file io emulator 2568 * @q: videobuf2 queue 2569 */ 2570 static int __vb2_cleanup_fileio(struct vb2_queue *q) 2571 { 2572 struct vb2_fileio_data *fileio = q->fileio; 2573 2574 if (fileio) { 2575 vb2_core_streamoff(q, q->type); 2576 q->fileio = NULL; 2577 fileio->count = 0; 2578 vb2_core_reqbufs(q, fileio->memory, &fileio->count); 2579 kfree(fileio); 2580 dprintk(3, "file io emulator closed\n"); 2581 } 2582 return 0; 2583 } 2584 2585 /* 2586 * __vb2_perform_fileio() - perform a single file io (read or write) operation 2587 * @q: videobuf2 queue 2588 * @data: pointed to target userspace buffer 2589 * @count: number of bytes to read or write 2590 * @ppos: file handle position tracking pointer 2591 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking) 2592 * @read: access mode selector (1 means read, 0 means write) 2593 */ 2594 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count, 2595 loff_t *ppos, int nonblock, int read) 2596 { 2597 struct vb2_fileio_data *fileio; 2598 struct vb2_fileio_buf *buf; 2599 bool is_multiplanar = q->is_multiplanar; 2600 /* 2601 * When using write() to write data to an output video node the vb2 core 2602 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody 2603 * else is able to provide this information with the write() operation. 2604 */ 2605 bool copy_timestamp = !read && q->copy_timestamp; 2606 unsigned index; 2607 int ret; 2608 2609 dprintk(3, "mode %s, offset %ld, count %zd, %sblocking\n", 2610 read ? "read" : "write", (long)*ppos, count, 2611 nonblock ? "non" : ""); 2612 2613 if (!data) 2614 return -EINVAL; 2615 2616 if (q->waiting_in_dqbuf) { 2617 dprintk(3, "another dup()ped fd is %s\n", 2618 read ? "reading" : "writing"); 2619 return -EBUSY; 2620 } 2621 2622 /* 2623 * Initialize emulator on first call. 2624 */ 2625 if (!vb2_fileio_is_active(q)) { 2626 ret = __vb2_init_fileio(q, read); 2627 dprintk(3, "vb2_init_fileio result: %d\n", ret); 2628 if (ret) 2629 return ret; 2630 } 2631 fileio = q->fileio; 2632 2633 /* 2634 * Check if we need to dequeue the buffer. 2635 */ 2636 index = fileio->cur_index; 2637 if (index >= q->num_buffers) { 2638 struct vb2_buffer *b; 2639 2640 /* 2641 * Call vb2_dqbuf to get buffer back. 2642 */ 2643 ret = vb2_core_dqbuf(q, &index, NULL, nonblock); 2644 dprintk(5, "vb2_dqbuf result: %d\n", ret); 2645 if (ret) 2646 return ret; 2647 fileio->dq_count += 1; 2648 2649 fileio->cur_index = index; 2650 buf = &fileio->bufs[index]; 2651 b = q->bufs[index]; 2652 2653 /* 2654 * Get number of bytes filled by the driver 2655 */ 2656 buf->pos = 0; 2657 buf->queued = 0; 2658 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0) 2659 : vb2_plane_size(q->bufs[index], 0); 2660 /* Compensate for data_offset on read in the multiplanar case. */ 2661 if (is_multiplanar && read && 2662 b->planes[0].data_offset < buf->size) { 2663 buf->pos = b->planes[0].data_offset; 2664 buf->size -= buf->pos; 2665 } 2666 } else { 2667 buf = &fileio->bufs[index]; 2668 } 2669 2670 /* 2671 * Limit count on last few bytes of the buffer. 2672 */ 2673 if (buf->pos + count > buf->size) { 2674 count = buf->size - buf->pos; 2675 dprintk(5, "reducing read count: %zd\n", count); 2676 } 2677 2678 /* 2679 * Transfer data to userspace. 2680 */ 2681 dprintk(3, "copying %zd bytes - buffer %d, offset %u\n", 2682 count, index, buf->pos); 2683 if (read) 2684 ret = copy_to_user(data, buf->vaddr + buf->pos, count); 2685 else 2686 ret = copy_from_user(buf->vaddr + buf->pos, data, count); 2687 if (ret) { 2688 dprintk(3, "error copying data\n"); 2689 return -EFAULT; 2690 } 2691 2692 /* 2693 * Update counters. 2694 */ 2695 buf->pos += count; 2696 *ppos += count; 2697 2698 /* 2699 * Queue next buffer if required. 2700 */ 2701 if (buf->pos == buf->size || (!read && fileio->write_immediately)) { 2702 struct vb2_buffer *b = q->bufs[index]; 2703 2704 /* 2705 * Check if this is the last buffer to read. 2706 */ 2707 if (read && fileio->read_once && fileio->dq_count == 1) { 2708 dprintk(3, "read limit reached\n"); 2709 return __vb2_cleanup_fileio(q); 2710 } 2711 2712 /* 2713 * Call vb2_qbuf and give buffer to the driver. 2714 */ 2715 b->planes[0].bytesused = buf->pos; 2716 2717 if (copy_timestamp) 2718 b->timestamp = ktime_get_ns(); 2719 ret = vb2_core_qbuf(q, index, NULL, NULL); 2720 dprintk(5, "vb2_dbuf result: %d\n", ret); 2721 if (ret) 2722 return ret; 2723 2724 /* 2725 * Buffer has been queued, update the status 2726 */ 2727 buf->pos = 0; 2728 buf->queued = 1; 2729 buf->size = vb2_plane_size(q->bufs[index], 0); 2730 fileio->q_count += 1; 2731 /* 2732 * If we are queuing up buffers for the first time, then 2733 * increase initial_index by one. 2734 */ 2735 if (fileio->initial_index < q->num_buffers) 2736 fileio->initial_index++; 2737 /* 2738 * The next buffer to use is either a buffer that's going to be 2739 * queued for the first time (initial_index < q->num_buffers) 2740 * or it is equal to q->num_buffers, meaning that the next 2741 * time we need to dequeue a buffer since we've now queued up 2742 * all the 'first time' buffers. 2743 */ 2744 fileio->cur_index = fileio->initial_index; 2745 } 2746 2747 /* 2748 * Return proper number of bytes processed. 2749 */ 2750 if (ret == 0) 2751 ret = count; 2752 return ret; 2753 } 2754 2755 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count, 2756 loff_t *ppos, int nonblocking) 2757 { 2758 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1); 2759 } 2760 EXPORT_SYMBOL_GPL(vb2_read); 2761 2762 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count, 2763 loff_t *ppos, int nonblocking) 2764 { 2765 return __vb2_perform_fileio(q, (char __user *) data, count, 2766 ppos, nonblocking, 0); 2767 } 2768 EXPORT_SYMBOL_GPL(vb2_write); 2769 2770 struct vb2_threadio_data { 2771 struct task_struct *thread; 2772 vb2_thread_fnc fnc; 2773 void *priv; 2774 bool stop; 2775 }; 2776 2777 static int vb2_thread(void *data) 2778 { 2779 struct vb2_queue *q = data; 2780 struct vb2_threadio_data *threadio = q->threadio; 2781 bool copy_timestamp = false; 2782 unsigned prequeue = 0; 2783 unsigned index = 0; 2784 int ret = 0; 2785 2786 if (q->is_output) { 2787 prequeue = q->num_buffers; 2788 copy_timestamp = q->copy_timestamp; 2789 } 2790 2791 set_freezable(); 2792 2793 for (;;) { 2794 struct vb2_buffer *vb; 2795 2796 /* 2797 * Call vb2_dqbuf to get buffer back. 2798 */ 2799 if (prequeue) { 2800 vb = q->bufs[index++]; 2801 prequeue--; 2802 } else { 2803 call_void_qop(q, wait_finish, q); 2804 if (!threadio->stop) 2805 ret = vb2_core_dqbuf(q, &index, NULL, 0); 2806 call_void_qop(q, wait_prepare, q); 2807 dprintk(5, "file io: vb2_dqbuf result: %d\n", ret); 2808 if (!ret) 2809 vb = q->bufs[index]; 2810 } 2811 if (ret || threadio->stop) 2812 break; 2813 try_to_freeze(); 2814 2815 if (vb->state != VB2_BUF_STATE_ERROR) 2816 if (threadio->fnc(vb, threadio->priv)) 2817 break; 2818 call_void_qop(q, wait_finish, q); 2819 if (copy_timestamp) 2820 vb->timestamp = ktime_get_ns(); 2821 if (!threadio->stop) 2822 ret = vb2_core_qbuf(q, vb->index, NULL, NULL); 2823 call_void_qop(q, wait_prepare, q); 2824 if (ret || threadio->stop) 2825 break; 2826 } 2827 2828 /* Hmm, linux becomes *very* unhappy without this ... */ 2829 while (!kthread_should_stop()) { 2830 set_current_state(TASK_INTERRUPTIBLE); 2831 schedule(); 2832 } 2833 return 0; 2834 } 2835 2836 /* 2837 * This function should not be used for anything else but the videobuf2-dvb 2838 * support. If you think you have another good use-case for this, then please 2839 * contact the linux-media mailinglist first. 2840 */ 2841 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv, 2842 const char *thread_name) 2843 { 2844 struct vb2_threadio_data *threadio; 2845 int ret = 0; 2846 2847 if (q->threadio) 2848 return -EBUSY; 2849 if (vb2_is_busy(q)) 2850 return -EBUSY; 2851 if (WARN_ON(q->fileio)) 2852 return -EBUSY; 2853 2854 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL); 2855 if (threadio == NULL) 2856 return -ENOMEM; 2857 threadio->fnc = fnc; 2858 threadio->priv = priv; 2859 2860 ret = __vb2_init_fileio(q, !q->is_output); 2861 dprintk(3, "file io: vb2_init_fileio result: %d\n", ret); 2862 if (ret) 2863 goto nomem; 2864 q->threadio = threadio; 2865 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name); 2866 if (IS_ERR(threadio->thread)) { 2867 ret = PTR_ERR(threadio->thread); 2868 threadio->thread = NULL; 2869 goto nothread; 2870 } 2871 return 0; 2872 2873 nothread: 2874 __vb2_cleanup_fileio(q); 2875 nomem: 2876 kfree(threadio); 2877 return ret; 2878 } 2879 EXPORT_SYMBOL_GPL(vb2_thread_start); 2880 2881 int vb2_thread_stop(struct vb2_queue *q) 2882 { 2883 struct vb2_threadio_data *threadio = q->threadio; 2884 int err; 2885 2886 if (threadio == NULL) 2887 return 0; 2888 threadio->stop = true; 2889 /* Wake up all pending sleeps in the thread */ 2890 vb2_queue_error(q); 2891 err = kthread_stop(threadio->thread); 2892 __vb2_cleanup_fileio(q); 2893 threadio->thread = NULL; 2894 kfree(threadio); 2895 q->threadio = NULL; 2896 return err; 2897 } 2898 EXPORT_SYMBOL_GPL(vb2_thread_stop); 2899 2900 MODULE_DESCRIPTION("Media buffer core framework"); 2901 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski"); 2902 MODULE_LICENSE("GPL"); 2903