1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 4 */ 5 6 #include <linux/delay.h> 7 #include <linux/slab.h> 8 #include <linux/sched/types.h> 9 10 #include <media/cec-pin.h> 11 #include "cec-pin-priv.h" 12 13 /* All timings are in microseconds */ 14 15 /* start bit timings */ 16 #define CEC_TIM_START_BIT_LOW 3700 17 #define CEC_TIM_START_BIT_LOW_MIN 3500 18 #define CEC_TIM_START_BIT_LOW_MAX 3900 19 #define CEC_TIM_START_BIT_TOTAL 4500 20 #define CEC_TIM_START_BIT_TOTAL_MIN 4300 21 #define CEC_TIM_START_BIT_TOTAL_MAX 4700 22 23 /* data bit timings */ 24 #define CEC_TIM_DATA_BIT_0_LOW 1500 25 #define CEC_TIM_DATA_BIT_0_LOW_MIN 1300 26 #define CEC_TIM_DATA_BIT_0_LOW_MAX 1700 27 #define CEC_TIM_DATA_BIT_1_LOW 600 28 #define CEC_TIM_DATA_BIT_1_LOW_MIN 400 29 #define CEC_TIM_DATA_BIT_1_LOW_MAX 800 30 #define CEC_TIM_DATA_BIT_TOTAL 2400 31 #define CEC_TIM_DATA_BIT_TOTAL_MIN 2050 32 #define CEC_TIM_DATA_BIT_TOTAL_MAX 2750 33 /* earliest safe time to sample the bit state */ 34 #define CEC_TIM_DATA_BIT_SAMPLE 850 35 /* earliest time the bit is back to 1 (T7 + 50) */ 36 #define CEC_TIM_DATA_BIT_HIGH 1750 37 38 /* when idle, sample once per millisecond */ 39 #define CEC_TIM_IDLE_SAMPLE 1000 40 /* when processing the start bit, sample twice per millisecond */ 41 #define CEC_TIM_START_BIT_SAMPLE 500 42 /* when polling for a state change, sample once every 50 microseconds */ 43 #define CEC_TIM_SAMPLE 50 44 45 #define CEC_TIM_LOW_DRIVE_ERROR (1.5 * CEC_TIM_DATA_BIT_TOTAL) 46 47 /* 48 * Total data bit time that is too short/long for a valid bit, 49 * used for error injection. 50 */ 51 #define CEC_TIM_DATA_BIT_TOTAL_SHORT 1800 52 #define CEC_TIM_DATA_BIT_TOTAL_LONG 2900 53 54 /* 55 * Total start bit time that is too short/long for a valid bit, 56 * used for error injection. 57 */ 58 #define CEC_TIM_START_BIT_TOTAL_SHORT 4100 59 #define CEC_TIM_START_BIT_TOTAL_LONG 5000 60 61 /* Data bits are 0-7, EOM is bit 8 and ACK is bit 9 */ 62 #define EOM_BIT 8 63 #define ACK_BIT 9 64 65 struct cec_state { 66 const char * const name; 67 unsigned int usecs; 68 }; 69 70 static const struct cec_state states[CEC_PIN_STATES] = { 71 { "Off", 0 }, 72 { "Idle", CEC_TIM_IDLE_SAMPLE }, 73 { "Tx Wait", CEC_TIM_SAMPLE }, 74 { "Tx Wait for High", CEC_TIM_IDLE_SAMPLE }, 75 { "Tx Start Bit Low", CEC_TIM_START_BIT_LOW }, 76 { "Tx Start Bit High", CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW }, 77 { "Tx Start Bit High Short", CEC_TIM_START_BIT_TOTAL_SHORT - CEC_TIM_START_BIT_LOW }, 78 { "Tx Start Bit High Long", CEC_TIM_START_BIT_TOTAL_LONG - CEC_TIM_START_BIT_LOW }, 79 { "Tx Start Bit Low Custom", 0 }, 80 { "Tx Start Bit High Custom", 0 }, 81 { "Tx Data 0 Low", CEC_TIM_DATA_BIT_0_LOW }, 82 { "Tx Data 0 High", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW }, 83 { "Tx Data 0 High Short", CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_0_LOW }, 84 { "Tx Data 0 High Long", CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_0_LOW }, 85 { "Tx Data 1 Low", CEC_TIM_DATA_BIT_1_LOW }, 86 { "Tx Data 1 High", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW }, 87 { "Tx Data 1 High Short", CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_1_LOW }, 88 { "Tx Data 1 High Long", CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_1_LOW }, 89 { "Tx Data 1 High Pre Sample", CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW }, 90 { "Tx Data 1 High Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE }, 91 { "Tx Data 1 High Post Sample Short", CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_SAMPLE }, 92 { "Tx Data 1 High Post Sample Long", CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_SAMPLE }, 93 { "Tx Data Bit Low Custom", 0 }, 94 { "Tx Data Bit High Custom", 0 }, 95 { "Tx Pulse Low Custom", 0 }, 96 { "Tx Pulse High Custom", 0 }, 97 { "Tx Low Drive", CEC_TIM_LOW_DRIVE_ERROR }, 98 { "Rx Start Bit Low", CEC_TIM_SAMPLE }, 99 { "Rx Start Bit High", CEC_TIM_SAMPLE }, 100 { "Rx Data Sample", CEC_TIM_DATA_BIT_SAMPLE }, 101 { "Rx Data Post Sample", CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE }, 102 { "Rx Data Wait for Low", CEC_TIM_SAMPLE }, 103 { "Rx Ack Low", CEC_TIM_DATA_BIT_0_LOW }, 104 { "Rx Ack Low Post", CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW }, 105 { "Rx Ack High Post", CEC_TIM_DATA_BIT_HIGH }, 106 { "Rx Ack Finish", CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH }, 107 { "Rx Low Drive", CEC_TIM_LOW_DRIVE_ERROR }, 108 { "Rx Irq", 0 }, 109 }; 110 111 static void cec_pin_update(struct cec_pin *pin, bool v, bool force) 112 { 113 if (!force && v == pin->adap->cec_pin_is_high) 114 return; 115 116 pin->adap->cec_pin_is_high = v; 117 if (atomic_read(&pin->work_pin_num_events) < CEC_NUM_PIN_EVENTS) { 118 u8 ev = v; 119 120 if (pin->work_pin_events_dropped) { 121 pin->work_pin_events_dropped = false; 122 ev |= CEC_PIN_EVENT_FL_DROPPED; 123 } 124 pin->work_pin_events[pin->work_pin_events_wr] = ev; 125 pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get(); 126 pin->work_pin_events_wr = 127 (pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS; 128 atomic_inc(&pin->work_pin_num_events); 129 } else { 130 pin->work_pin_events_dropped = true; 131 pin->work_pin_events_dropped_cnt++; 132 } 133 wake_up_interruptible(&pin->kthread_waitq); 134 } 135 136 static bool cec_pin_read(struct cec_pin *pin) 137 { 138 bool v = call_pin_op(pin, read); 139 140 cec_pin_update(pin, v, false); 141 return v; 142 } 143 144 static void cec_pin_low(struct cec_pin *pin) 145 { 146 call_void_pin_op(pin, low); 147 cec_pin_update(pin, false, false); 148 } 149 150 static bool cec_pin_high(struct cec_pin *pin) 151 { 152 call_void_pin_op(pin, high); 153 return cec_pin_read(pin); 154 } 155 156 static bool rx_error_inj(struct cec_pin *pin, unsigned int mode_offset, 157 int arg_idx, u8 *arg) 158 { 159 #ifdef CONFIG_CEC_PIN_ERROR_INJ 160 u16 cmd = cec_pin_rx_error_inj(pin); 161 u64 e = pin->error_inj[cmd]; 162 unsigned int mode = (e >> mode_offset) & CEC_ERROR_INJ_MODE_MASK; 163 164 if (arg_idx >= 0) { 165 u8 pos = pin->error_inj_args[cmd][arg_idx]; 166 167 if (arg) 168 *arg = pos; 169 else if (pos != pin->rx_bit) 170 return false; 171 } 172 173 switch (mode) { 174 case CEC_ERROR_INJ_MODE_ONCE: 175 pin->error_inj[cmd] &= 176 ~(CEC_ERROR_INJ_MODE_MASK << mode_offset); 177 return true; 178 case CEC_ERROR_INJ_MODE_ALWAYS: 179 return true; 180 case CEC_ERROR_INJ_MODE_TOGGLE: 181 return pin->rx_toggle; 182 default: 183 return false; 184 } 185 #else 186 return false; 187 #endif 188 } 189 190 static bool rx_nack(struct cec_pin *pin) 191 { 192 return rx_error_inj(pin, CEC_ERROR_INJ_RX_NACK_OFFSET, -1, NULL); 193 } 194 195 static bool rx_low_drive(struct cec_pin *pin) 196 { 197 return rx_error_inj(pin, CEC_ERROR_INJ_RX_LOW_DRIVE_OFFSET, 198 CEC_ERROR_INJ_RX_LOW_DRIVE_ARG_IDX, NULL); 199 } 200 201 static bool rx_add_byte(struct cec_pin *pin) 202 { 203 return rx_error_inj(pin, CEC_ERROR_INJ_RX_ADD_BYTE_OFFSET, -1, NULL); 204 } 205 206 static bool rx_remove_byte(struct cec_pin *pin) 207 { 208 return rx_error_inj(pin, CEC_ERROR_INJ_RX_REMOVE_BYTE_OFFSET, -1, NULL); 209 } 210 211 static bool rx_arb_lost(struct cec_pin *pin, u8 *poll) 212 { 213 return pin->tx_msg.len == 0 && 214 rx_error_inj(pin, CEC_ERROR_INJ_RX_ARB_LOST_OFFSET, 215 CEC_ERROR_INJ_RX_ARB_LOST_ARG_IDX, poll); 216 } 217 218 static bool tx_error_inj(struct cec_pin *pin, unsigned int mode_offset, 219 int arg_idx, u8 *arg) 220 { 221 #ifdef CONFIG_CEC_PIN_ERROR_INJ 222 u16 cmd = cec_pin_tx_error_inj(pin); 223 u64 e = pin->error_inj[cmd]; 224 unsigned int mode = (e >> mode_offset) & CEC_ERROR_INJ_MODE_MASK; 225 226 if (arg_idx >= 0) { 227 u8 pos = pin->error_inj_args[cmd][arg_idx]; 228 229 if (arg) 230 *arg = pos; 231 else if (pos != pin->tx_bit) 232 return false; 233 } 234 235 switch (mode) { 236 case CEC_ERROR_INJ_MODE_ONCE: 237 pin->error_inj[cmd] &= 238 ~(CEC_ERROR_INJ_MODE_MASK << mode_offset); 239 return true; 240 case CEC_ERROR_INJ_MODE_ALWAYS: 241 return true; 242 case CEC_ERROR_INJ_MODE_TOGGLE: 243 return pin->tx_toggle; 244 default: 245 return false; 246 } 247 #else 248 return false; 249 #endif 250 } 251 252 static bool tx_no_eom(struct cec_pin *pin) 253 { 254 return tx_error_inj(pin, CEC_ERROR_INJ_TX_NO_EOM_OFFSET, -1, NULL); 255 } 256 257 static bool tx_early_eom(struct cec_pin *pin) 258 { 259 return tx_error_inj(pin, CEC_ERROR_INJ_TX_EARLY_EOM_OFFSET, -1, NULL); 260 } 261 262 static bool tx_short_bit(struct cec_pin *pin) 263 { 264 return tx_error_inj(pin, CEC_ERROR_INJ_TX_SHORT_BIT_OFFSET, 265 CEC_ERROR_INJ_TX_SHORT_BIT_ARG_IDX, NULL); 266 } 267 268 static bool tx_long_bit(struct cec_pin *pin) 269 { 270 return tx_error_inj(pin, CEC_ERROR_INJ_TX_LONG_BIT_OFFSET, 271 CEC_ERROR_INJ_TX_LONG_BIT_ARG_IDX, NULL); 272 } 273 274 static bool tx_custom_bit(struct cec_pin *pin) 275 { 276 return tx_error_inj(pin, CEC_ERROR_INJ_TX_CUSTOM_BIT_OFFSET, 277 CEC_ERROR_INJ_TX_CUSTOM_BIT_ARG_IDX, NULL); 278 } 279 280 static bool tx_short_start(struct cec_pin *pin) 281 { 282 return tx_error_inj(pin, CEC_ERROR_INJ_TX_SHORT_START_OFFSET, -1, NULL); 283 } 284 285 static bool tx_long_start(struct cec_pin *pin) 286 { 287 return tx_error_inj(pin, CEC_ERROR_INJ_TX_LONG_START_OFFSET, -1, NULL); 288 } 289 290 static bool tx_custom_start(struct cec_pin *pin) 291 { 292 return tx_error_inj(pin, CEC_ERROR_INJ_TX_CUSTOM_START_OFFSET, 293 -1, NULL); 294 } 295 296 static bool tx_last_bit(struct cec_pin *pin) 297 { 298 return tx_error_inj(pin, CEC_ERROR_INJ_TX_LAST_BIT_OFFSET, 299 CEC_ERROR_INJ_TX_LAST_BIT_ARG_IDX, NULL); 300 } 301 302 static u8 tx_add_bytes(struct cec_pin *pin) 303 { 304 u8 bytes; 305 306 if (tx_error_inj(pin, CEC_ERROR_INJ_TX_ADD_BYTES_OFFSET, 307 CEC_ERROR_INJ_TX_ADD_BYTES_ARG_IDX, &bytes)) 308 return bytes; 309 return 0; 310 } 311 312 static bool tx_remove_byte(struct cec_pin *pin) 313 { 314 return tx_error_inj(pin, CEC_ERROR_INJ_TX_REMOVE_BYTE_OFFSET, -1, NULL); 315 } 316 317 static bool tx_low_drive(struct cec_pin *pin) 318 { 319 return tx_error_inj(pin, CEC_ERROR_INJ_TX_LOW_DRIVE_OFFSET, 320 CEC_ERROR_INJ_TX_LOW_DRIVE_ARG_IDX, NULL); 321 } 322 323 static void cec_pin_to_idle(struct cec_pin *pin) 324 { 325 /* 326 * Reset all status fields, release the bus and 327 * go to idle state. 328 */ 329 pin->rx_bit = pin->tx_bit = 0; 330 pin->rx_msg.len = 0; 331 memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg)); 332 pin->ts = ns_to_ktime(0); 333 pin->tx_generated_poll = false; 334 pin->tx_post_eom = false; 335 if (pin->state >= CEC_ST_TX_WAIT && 336 pin->state <= CEC_ST_TX_LOW_DRIVE) 337 pin->tx_toggle ^= 1; 338 if (pin->state >= CEC_ST_RX_START_BIT_LOW && 339 pin->state <= CEC_ST_RX_LOW_DRIVE) 340 pin->rx_toggle ^= 1; 341 pin->state = CEC_ST_IDLE; 342 } 343 344 /* 345 * Handle Transmit-related states 346 * 347 * Basic state changes when transmitting: 348 * 349 * Idle -> Tx Wait (waiting for the end of signal free time) -> 350 * Tx Start Bit Low -> Tx Start Bit High -> 351 * 352 * Regular data bits + EOM: 353 * Tx Data 0 Low -> Tx Data 0 High -> 354 * or: 355 * Tx Data 1 Low -> Tx Data 1 High -> 356 * 357 * First 4 data bits or Ack bit: 358 * Tx Data 0 Low -> Tx Data 0 High -> 359 * or: 360 * Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample -> 361 * Tx Data 1 Post Sample -> 362 * 363 * After the last Ack go to Idle. 364 * 365 * If it detects a Low Drive condition then: 366 * Tx Wait For High -> Idle 367 * 368 * If it loses arbitration, then it switches to state Rx Data Post Sample. 369 */ 370 static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts) 371 { 372 bool v; 373 bool is_ack_bit, ack; 374 375 switch (pin->state) { 376 case CEC_ST_TX_WAIT_FOR_HIGH: 377 if (cec_pin_read(pin)) 378 cec_pin_to_idle(pin); 379 break; 380 381 case CEC_ST_TX_START_BIT_LOW: 382 if (tx_short_start(pin)) { 383 /* 384 * Error Injection: send an invalid (too short) 385 * start pulse. 386 */ 387 pin->state = CEC_ST_TX_START_BIT_HIGH_SHORT; 388 } else if (tx_long_start(pin)) { 389 /* 390 * Error Injection: send an invalid (too long) 391 * start pulse. 392 */ 393 pin->state = CEC_ST_TX_START_BIT_HIGH_LONG; 394 } else { 395 pin->state = CEC_ST_TX_START_BIT_HIGH; 396 } 397 /* Generate start bit */ 398 cec_pin_high(pin); 399 break; 400 401 case CEC_ST_TX_START_BIT_LOW_CUSTOM: 402 pin->state = CEC_ST_TX_START_BIT_HIGH_CUSTOM; 403 /* Generate start bit */ 404 cec_pin_high(pin); 405 break; 406 407 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE: 408 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT: 409 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG: 410 if (pin->tx_nacked) { 411 cec_pin_to_idle(pin); 412 pin->tx_msg.len = 0; 413 if (pin->tx_generated_poll) 414 break; 415 pin->work_tx_ts = ts; 416 pin->work_tx_status = CEC_TX_STATUS_NACK; 417 wake_up_interruptible(&pin->kthread_waitq); 418 break; 419 } 420 fallthrough; 421 case CEC_ST_TX_DATA_BIT_0_HIGH: 422 case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT: 423 case CEC_ST_TX_DATA_BIT_0_HIGH_LONG: 424 case CEC_ST_TX_DATA_BIT_1_HIGH: 425 case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT: 426 case CEC_ST_TX_DATA_BIT_1_HIGH_LONG: 427 /* 428 * If the read value is 1, then all is OK, otherwise we have a 429 * low drive condition. 430 * 431 * Special case: when we generate a poll message due to an 432 * Arbitration Lost error injection, then ignore this since 433 * the pin can actually be low in that case. 434 */ 435 if (!cec_pin_read(pin) && !pin->tx_generated_poll) { 436 /* 437 * It's 0, so someone detected an error and pulled the 438 * line low for 1.5 times the nominal bit period. 439 */ 440 pin->tx_msg.len = 0; 441 pin->state = CEC_ST_TX_WAIT_FOR_HIGH; 442 pin->work_tx_ts = ts; 443 pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE; 444 pin->tx_low_drive_cnt++; 445 wake_up_interruptible(&pin->kthread_waitq); 446 break; 447 } 448 fallthrough; 449 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM: 450 if (tx_last_bit(pin)) { 451 /* Error Injection: just stop sending after this bit */ 452 cec_pin_to_idle(pin); 453 pin->tx_msg.len = 0; 454 if (pin->tx_generated_poll) 455 break; 456 pin->work_tx_ts = ts; 457 pin->work_tx_status = CEC_TX_STATUS_OK; 458 wake_up_interruptible(&pin->kthread_waitq); 459 break; 460 } 461 pin->tx_bit++; 462 fallthrough; 463 case CEC_ST_TX_START_BIT_HIGH: 464 case CEC_ST_TX_START_BIT_HIGH_SHORT: 465 case CEC_ST_TX_START_BIT_HIGH_LONG: 466 case CEC_ST_TX_START_BIT_HIGH_CUSTOM: 467 if (tx_low_drive(pin)) { 468 /* Error injection: go to low drive */ 469 cec_pin_low(pin); 470 pin->state = CEC_ST_TX_LOW_DRIVE; 471 pin->tx_msg.len = 0; 472 if (pin->tx_generated_poll) 473 break; 474 pin->work_tx_ts = ts; 475 pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE; 476 pin->tx_low_drive_cnt++; 477 wake_up_interruptible(&pin->kthread_waitq); 478 break; 479 } 480 if (pin->tx_bit / 10 >= pin->tx_msg.len + pin->tx_extra_bytes) { 481 cec_pin_to_idle(pin); 482 pin->tx_msg.len = 0; 483 if (pin->tx_generated_poll) 484 break; 485 pin->work_tx_ts = ts; 486 pin->work_tx_status = CEC_TX_STATUS_OK; 487 wake_up_interruptible(&pin->kthread_waitq); 488 break; 489 } 490 491 switch (pin->tx_bit % 10) { 492 default: { 493 /* 494 * In the CEC_ERROR_INJ_TX_ADD_BYTES case we transmit 495 * extra bytes, so pin->tx_bit / 10 can become >= 16. 496 * Generate bit values for those extra bytes instead 497 * of reading them from the transmit buffer. 498 */ 499 unsigned int idx = (pin->tx_bit / 10); 500 u8 val = idx; 501 502 if (idx < pin->tx_msg.len) 503 val = pin->tx_msg.msg[idx]; 504 v = val & (1 << (7 - (pin->tx_bit % 10))); 505 506 pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW : 507 CEC_ST_TX_DATA_BIT_0_LOW; 508 break; 509 } 510 case EOM_BIT: { 511 unsigned int tot_len = pin->tx_msg.len + 512 pin->tx_extra_bytes; 513 unsigned int tx_byte_idx = pin->tx_bit / 10; 514 515 v = !pin->tx_post_eom && tx_byte_idx == tot_len - 1; 516 if (tot_len > 1 && tx_byte_idx == tot_len - 2 && 517 tx_early_eom(pin)) { 518 /* Error injection: set EOM one byte early */ 519 v = true; 520 pin->tx_post_eom = true; 521 } else if (v && tx_no_eom(pin)) { 522 /* Error injection: no EOM */ 523 v = false; 524 } 525 pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW : 526 CEC_ST_TX_DATA_BIT_0_LOW; 527 break; 528 } 529 case ACK_BIT: 530 pin->state = CEC_ST_TX_DATA_BIT_1_LOW; 531 break; 532 } 533 if (tx_custom_bit(pin)) 534 pin->state = CEC_ST_TX_DATA_BIT_LOW_CUSTOM; 535 cec_pin_low(pin); 536 break; 537 538 case CEC_ST_TX_DATA_BIT_0_LOW: 539 case CEC_ST_TX_DATA_BIT_1_LOW: 540 v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW; 541 is_ack_bit = pin->tx_bit % 10 == ACK_BIT; 542 if (v && (pin->tx_bit < 4 || is_ack_bit)) { 543 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE; 544 } else if (!is_ack_bit && tx_short_bit(pin)) { 545 /* Error Injection: send an invalid (too short) bit */ 546 pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH_SHORT : 547 CEC_ST_TX_DATA_BIT_0_HIGH_SHORT; 548 } else if (!is_ack_bit && tx_long_bit(pin)) { 549 /* Error Injection: send an invalid (too long) bit */ 550 pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH_LONG : 551 CEC_ST_TX_DATA_BIT_0_HIGH_LONG; 552 } else { 553 pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH : 554 CEC_ST_TX_DATA_BIT_0_HIGH; 555 } 556 cec_pin_high(pin); 557 break; 558 559 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM: 560 pin->state = CEC_ST_TX_DATA_BIT_HIGH_CUSTOM; 561 cec_pin_high(pin); 562 break; 563 564 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE: 565 /* Read the CEC value at the sample time */ 566 v = cec_pin_read(pin); 567 is_ack_bit = pin->tx_bit % 10 == ACK_BIT; 568 /* 569 * If v == 0 and we're within the first 4 bits 570 * of the initiator, then someone else started 571 * transmitting and we lost the arbitration 572 * (i.e. the logical address of the other 573 * transmitter has more leading 0 bits in the 574 * initiator). 575 */ 576 if (!v && !is_ack_bit && !pin->tx_generated_poll) { 577 pin->tx_msg.len = 0; 578 pin->work_tx_ts = ts; 579 pin->work_tx_status = CEC_TX_STATUS_ARB_LOST; 580 wake_up_interruptible(&pin->kthread_waitq); 581 pin->rx_bit = pin->tx_bit; 582 pin->tx_bit = 0; 583 memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg)); 584 pin->rx_msg.msg[0] = pin->tx_msg.msg[0]; 585 pin->rx_msg.msg[0] &= (0xff << (8 - pin->rx_bit)); 586 pin->rx_msg.len = 0; 587 pin->ts = ktime_sub_us(ts, CEC_TIM_DATA_BIT_SAMPLE); 588 pin->state = CEC_ST_RX_DATA_POST_SAMPLE; 589 pin->rx_bit++; 590 break; 591 } 592 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE; 593 if (!is_ack_bit && tx_short_bit(pin)) { 594 /* Error Injection: send an invalid (too short) bit */ 595 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT; 596 } else if (!is_ack_bit && tx_long_bit(pin)) { 597 /* Error Injection: send an invalid (too long) bit */ 598 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG; 599 } 600 if (!is_ack_bit) 601 break; 602 /* Was the message ACKed? */ 603 ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v; 604 if (!ack && (!pin->tx_ignore_nack_until_eom || 605 pin->tx_bit / 10 == pin->tx_msg.len - 1) && 606 !pin->tx_post_eom) { 607 /* 608 * Note: the CEC spec is ambiguous regarding 609 * what action to take when a NACK appears 610 * before the last byte of the payload was 611 * transmitted: either stop transmitting 612 * immediately, or wait until the last byte 613 * was transmitted. 614 * 615 * Most CEC implementations appear to stop 616 * immediately, and that's what we do here 617 * as well. 618 */ 619 pin->tx_nacked = true; 620 } 621 break; 622 623 case CEC_ST_TX_PULSE_LOW_CUSTOM: 624 cec_pin_high(pin); 625 pin->state = CEC_ST_TX_PULSE_HIGH_CUSTOM; 626 break; 627 628 case CEC_ST_TX_PULSE_HIGH_CUSTOM: 629 cec_pin_to_idle(pin); 630 break; 631 632 default: 633 break; 634 } 635 } 636 637 /* 638 * Handle Receive-related states 639 * 640 * Basic state changes when receiving: 641 * 642 * Rx Start Bit Low -> Rx Start Bit High -> 643 * Regular data bits + EOM: 644 * Rx Data Sample -> Rx Data Post Sample -> Rx Data High -> 645 * Ack bit 0: 646 * Rx Ack Low -> Rx Ack Low Post -> Rx Data High -> 647 * Ack bit 1: 648 * Rx Ack High Post -> Rx Data High -> 649 * Ack bit 0 && EOM: 650 * Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle 651 */ 652 static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts) 653 { 654 s32 delta; 655 bool v; 656 bool ack; 657 bool bcast, for_us; 658 u8 dest; 659 u8 poll; 660 661 switch (pin->state) { 662 /* Receive states */ 663 case CEC_ST_RX_START_BIT_LOW: 664 v = cec_pin_read(pin); 665 if (!v) 666 break; 667 pin->state = CEC_ST_RX_START_BIT_HIGH; 668 delta = ktime_us_delta(ts, pin->ts); 669 /* Start bit low is too short, go back to idle */ 670 if (delta < CEC_TIM_START_BIT_LOW_MIN - CEC_TIM_IDLE_SAMPLE) { 671 if (!pin->rx_start_bit_low_too_short_cnt++) { 672 pin->rx_start_bit_low_too_short_ts = ktime_to_ns(pin->ts); 673 pin->rx_start_bit_low_too_short_delta = delta; 674 } 675 cec_pin_to_idle(pin); 676 break; 677 } 678 if (rx_arb_lost(pin, &poll)) { 679 cec_msg_init(&pin->tx_msg, poll >> 4, poll & 0xf); 680 pin->tx_generated_poll = true; 681 pin->tx_extra_bytes = 0; 682 pin->state = CEC_ST_TX_START_BIT_HIGH; 683 pin->ts = ts; 684 } 685 break; 686 687 case CEC_ST_RX_START_BIT_HIGH: 688 v = cec_pin_read(pin); 689 delta = ktime_us_delta(ts, pin->ts); 690 /* 691 * Unfortunately the spec does not specify when to give up 692 * and go to idle. We just pick TOTAL_LONG. 693 */ 694 if (v && delta > CEC_TIM_START_BIT_TOTAL_LONG) { 695 pin->rx_start_bit_too_long_cnt++; 696 cec_pin_to_idle(pin); 697 break; 698 } 699 if (v) 700 break; 701 /* Start bit is too short, go back to idle */ 702 if (delta < CEC_TIM_START_BIT_TOTAL_MIN - CEC_TIM_IDLE_SAMPLE) { 703 if (!pin->rx_start_bit_too_short_cnt++) { 704 pin->rx_start_bit_too_short_ts = ktime_to_ns(pin->ts); 705 pin->rx_start_bit_too_short_delta = delta; 706 } 707 cec_pin_to_idle(pin); 708 break; 709 } 710 if (rx_low_drive(pin)) { 711 /* Error injection: go to low drive */ 712 cec_pin_low(pin); 713 pin->state = CEC_ST_RX_LOW_DRIVE; 714 pin->rx_low_drive_cnt++; 715 break; 716 } 717 pin->state = CEC_ST_RX_DATA_SAMPLE; 718 pin->ts = ts; 719 pin->rx_eom = false; 720 break; 721 722 case CEC_ST_RX_DATA_SAMPLE: 723 v = cec_pin_read(pin); 724 pin->state = CEC_ST_RX_DATA_POST_SAMPLE; 725 switch (pin->rx_bit % 10) { 726 default: 727 if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE) 728 pin->rx_msg.msg[pin->rx_bit / 10] |= 729 v << (7 - (pin->rx_bit % 10)); 730 break; 731 case EOM_BIT: 732 pin->rx_eom = v; 733 pin->rx_msg.len = pin->rx_bit / 10 + 1; 734 break; 735 case ACK_BIT: 736 break; 737 } 738 pin->rx_bit++; 739 break; 740 741 case CEC_ST_RX_DATA_POST_SAMPLE: 742 pin->state = CEC_ST_RX_DATA_WAIT_FOR_LOW; 743 break; 744 745 case CEC_ST_RX_DATA_WAIT_FOR_LOW: 746 v = cec_pin_read(pin); 747 delta = ktime_us_delta(ts, pin->ts); 748 /* 749 * Unfortunately the spec does not specify when to give up 750 * and go to idle. We just pick TOTAL_LONG. 751 */ 752 if (v && delta > CEC_TIM_DATA_BIT_TOTAL_LONG) { 753 pin->rx_data_bit_too_long_cnt++; 754 cec_pin_to_idle(pin); 755 break; 756 } 757 if (v) 758 break; 759 760 if (rx_low_drive(pin)) { 761 /* Error injection: go to low drive */ 762 cec_pin_low(pin); 763 pin->state = CEC_ST_RX_LOW_DRIVE; 764 pin->rx_low_drive_cnt++; 765 break; 766 } 767 768 /* 769 * Go to low drive state when the total bit time is 770 * too short. 771 */ 772 if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN) { 773 if (!pin->rx_data_bit_too_short_cnt++) { 774 pin->rx_data_bit_too_short_ts = ktime_to_ns(pin->ts); 775 pin->rx_data_bit_too_short_delta = delta; 776 } 777 cec_pin_low(pin); 778 pin->state = CEC_ST_RX_LOW_DRIVE; 779 pin->rx_low_drive_cnt++; 780 break; 781 } 782 pin->ts = ts; 783 if (pin->rx_bit % 10 != 9) { 784 pin->state = CEC_ST_RX_DATA_SAMPLE; 785 break; 786 } 787 788 dest = cec_msg_destination(&pin->rx_msg); 789 bcast = dest == CEC_LOG_ADDR_BROADCAST; 790 /* for_us == broadcast or directed to us */ 791 for_us = bcast || (pin->la_mask & (1 << dest)); 792 /* ACK bit value */ 793 ack = bcast ? 1 : !for_us; 794 795 if (for_us && rx_nack(pin)) { 796 /* Error injection: toggle the ACK bit */ 797 ack = !ack; 798 } 799 800 if (ack) { 801 /* No need to write to the bus, just wait */ 802 pin->state = CEC_ST_RX_ACK_HIGH_POST; 803 break; 804 } 805 cec_pin_low(pin); 806 pin->state = CEC_ST_RX_ACK_LOW; 807 break; 808 809 case CEC_ST_RX_ACK_LOW: 810 cec_pin_high(pin); 811 pin->state = CEC_ST_RX_ACK_LOW_POST; 812 break; 813 814 case CEC_ST_RX_ACK_LOW_POST: 815 case CEC_ST_RX_ACK_HIGH_POST: 816 v = cec_pin_read(pin); 817 if (v && pin->rx_eom) { 818 pin->work_rx_msg = pin->rx_msg; 819 pin->work_rx_msg.rx_ts = ktime_to_ns(ts); 820 wake_up_interruptible(&pin->kthread_waitq); 821 pin->ts = ts; 822 pin->state = CEC_ST_RX_ACK_FINISH; 823 break; 824 } 825 pin->rx_bit++; 826 pin->state = CEC_ST_RX_DATA_WAIT_FOR_LOW; 827 break; 828 829 case CEC_ST_RX_ACK_FINISH: 830 cec_pin_to_idle(pin); 831 break; 832 833 default: 834 break; 835 } 836 } 837 838 /* 839 * Main timer function 840 * 841 */ 842 static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer) 843 { 844 struct cec_pin *pin = container_of(timer, struct cec_pin, timer); 845 struct cec_adapter *adap = pin->adap; 846 ktime_t ts; 847 s32 delta; 848 u32 usecs; 849 850 ts = ktime_get(); 851 if (ktime_to_ns(pin->timer_ts)) { 852 delta = ktime_us_delta(ts, pin->timer_ts); 853 pin->timer_cnt++; 854 if (delta > 100 && pin->state != CEC_ST_IDLE) { 855 /* Keep track of timer overruns */ 856 pin->timer_sum_overrun += delta; 857 pin->timer_100us_overruns++; 858 if (delta > 300) 859 pin->timer_300us_overruns++; 860 if (delta > pin->timer_max_overrun) 861 pin->timer_max_overrun = delta; 862 } 863 } 864 if (adap->monitor_pin_cnt) 865 cec_pin_read(pin); 866 867 if (pin->wait_usecs) { 868 /* 869 * If we are monitoring the pin, then we have to 870 * sample at regular intervals. 871 */ 872 if (pin->wait_usecs > 150) { 873 pin->wait_usecs -= 100; 874 pin->timer_ts = ktime_add_us(ts, 100); 875 hrtimer_forward_now(timer, ns_to_ktime(100000)); 876 return HRTIMER_RESTART; 877 } 878 if (pin->wait_usecs > 100) { 879 pin->wait_usecs /= 2; 880 pin->timer_ts = ktime_add_us(ts, pin->wait_usecs); 881 hrtimer_forward_now(timer, 882 ns_to_ktime(pin->wait_usecs * 1000)); 883 return HRTIMER_RESTART; 884 } 885 pin->timer_ts = ktime_add_us(ts, pin->wait_usecs); 886 hrtimer_forward_now(timer, 887 ns_to_ktime(pin->wait_usecs * 1000)); 888 pin->wait_usecs = 0; 889 return HRTIMER_RESTART; 890 } 891 892 switch (pin->state) { 893 /* Transmit states */ 894 case CEC_ST_TX_WAIT_FOR_HIGH: 895 case CEC_ST_TX_START_BIT_LOW: 896 case CEC_ST_TX_START_BIT_HIGH: 897 case CEC_ST_TX_START_BIT_HIGH_SHORT: 898 case CEC_ST_TX_START_BIT_HIGH_LONG: 899 case CEC_ST_TX_START_BIT_LOW_CUSTOM: 900 case CEC_ST_TX_START_BIT_HIGH_CUSTOM: 901 case CEC_ST_TX_DATA_BIT_0_LOW: 902 case CEC_ST_TX_DATA_BIT_0_HIGH: 903 case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT: 904 case CEC_ST_TX_DATA_BIT_0_HIGH_LONG: 905 case CEC_ST_TX_DATA_BIT_1_LOW: 906 case CEC_ST_TX_DATA_BIT_1_HIGH: 907 case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT: 908 case CEC_ST_TX_DATA_BIT_1_HIGH_LONG: 909 case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE: 910 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE: 911 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT: 912 case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG: 913 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM: 914 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM: 915 case CEC_ST_TX_PULSE_LOW_CUSTOM: 916 case CEC_ST_TX_PULSE_HIGH_CUSTOM: 917 cec_pin_tx_states(pin, ts); 918 break; 919 920 /* Receive states */ 921 case CEC_ST_RX_START_BIT_LOW: 922 case CEC_ST_RX_START_BIT_HIGH: 923 case CEC_ST_RX_DATA_SAMPLE: 924 case CEC_ST_RX_DATA_POST_SAMPLE: 925 case CEC_ST_RX_DATA_WAIT_FOR_LOW: 926 case CEC_ST_RX_ACK_LOW: 927 case CEC_ST_RX_ACK_LOW_POST: 928 case CEC_ST_RX_ACK_HIGH_POST: 929 case CEC_ST_RX_ACK_FINISH: 930 cec_pin_rx_states(pin, ts); 931 break; 932 933 case CEC_ST_IDLE: 934 case CEC_ST_TX_WAIT: 935 if (!cec_pin_high(pin)) { 936 /* Start bit, switch to receive state */ 937 pin->ts = ts; 938 pin->state = CEC_ST_RX_START_BIT_LOW; 939 /* 940 * If a transmit is pending, then that transmit should 941 * use a signal free time of no more than 942 * CEC_SIGNAL_FREE_TIME_NEW_INITIATOR since it will 943 * have a new initiator due to the receive that is now 944 * starting. 945 */ 946 if (pin->tx_msg.len && pin->tx_signal_free_time > 947 CEC_SIGNAL_FREE_TIME_NEW_INITIATOR) 948 pin->tx_signal_free_time = 949 CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 950 break; 951 } 952 if (ktime_to_ns(pin->ts) == 0) 953 pin->ts = ts; 954 if (pin->tx_msg.len) { 955 /* 956 * Check if the bus has been free for long enough 957 * so we can kick off the pending transmit. 958 */ 959 delta = ktime_us_delta(ts, pin->ts); 960 if (delta / CEC_TIM_DATA_BIT_TOTAL >= 961 pin->tx_signal_free_time) { 962 pin->tx_nacked = false; 963 if (tx_custom_start(pin)) 964 pin->state = CEC_ST_TX_START_BIT_LOW_CUSTOM; 965 else 966 pin->state = CEC_ST_TX_START_BIT_LOW; 967 /* Generate start bit */ 968 cec_pin_low(pin); 969 break; 970 } 971 if (delta / CEC_TIM_DATA_BIT_TOTAL >= 972 pin->tx_signal_free_time - 1) 973 pin->state = CEC_ST_TX_WAIT; 974 break; 975 } 976 if (pin->tx_custom_pulse && pin->state == CEC_ST_IDLE) { 977 pin->tx_custom_pulse = false; 978 /* Generate custom pulse */ 979 cec_pin_low(pin); 980 pin->state = CEC_ST_TX_PULSE_LOW_CUSTOM; 981 break; 982 } 983 if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL || 984 pin->enable_irq_failed || adap->is_configuring || 985 adap->is_configured || adap->monitor_all_cnt) 986 break; 987 /* Switch to interrupt mode */ 988 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE); 989 pin->state = CEC_ST_RX_IRQ; 990 wake_up_interruptible(&pin->kthread_waitq); 991 return HRTIMER_NORESTART; 992 993 case CEC_ST_TX_LOW_DRIVE: 994 case CEC_ST_RX_LOW_DRIVE: 995 cec_pin_high(pin); 996 cec_pin_to_idle(pin); 997 break; 998 999 default: 1000 break; 1001 } 1002 1003 switch (pin->state) { 1004 case CEC_ST_TX_START_BIT_LOW_CUSTOM: 1005 case CEC_ST_TX_DATA_BIT_LOW_CUSTOM: 1006 case CEC_ST_TX_PULSE_LOW_CUSTOM: 1007 usecs = pin->tx_custom_low_usecs; 1008 break; 1009 case CEC_ST_TX_START_BIT_HIGH_CUSTOM: 1010 case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM: 1011 case CEC_ST_TX_PULSE_HIGH_CUSTOM: 1012 usecs = pin->tx_custom_high_usecs; 1013 break; 1014 default: 1015 usecs = states[pin->state].usecs; 1016 break; 1017 } 1018 1019 if (!adap->monitor_pin_cnt || usecs <= 150) { 1020 pin->wait_usecs = 0; 1021 pin->timer_ts = ktime_add_us(ts, usecs); 1022 hrtimer_forward_now(timer, 1023 ns_to_ktime(usecs * 1000)); 1024 return HRTIMER_RESTART; 1025 } 1026 pin->wait_usecs = usecs - 100; 1027 pin->timer_ts = ktime_add_us(ts, 100); 1028 hrtimer_forward_now(timer, ns_to_ktime(100000)); 1029 return HRTIMER_RESTART; 1030 } 1031 1032 static int cec_pin_thread_func(void *_adap) 1033 { 1034 struct cec_adapter *adap = _adap; 1035 struct cec_pin *pin = adap->pin; 1036 bool irq_enabled = false; 1037 1038 for (;;) { 1039 wait_event_interruptible(pin->kthread_waitq, 1040 kthread_should_stop() || 1041 pin->work_rx_msg.len || 1042 pin->work_tx_status || 1043 atomic_read(&pin->work_irq_change) || 1044 atomic_read(&pin->work_pin_num_events)); 1045 1046 if (kthread_should_stop()) 1047 break; 1048 1049 if (pin->work_rx_msg.len) { 1050 struct cec_msg *msg = &pin->work_rx_msg; 1051 1052 if (msg->len > 1 && msg->len < CEC_MAX_MSG_SIZE && 1053 rx_add_byte(pin)) { 1054 /* Error injection: add byte to the message */ 1055 msg->msg[msg->len++] = 0x55; 1056 } 1057 if (msg->len > 2 && rx_remove_byte(pin)) { 1058 /* Error injection: remove byte from message */ 1059 msg->len--; 1060 } 1061 if (msg->len > CEC_MAX_MSG_SIZE) 1062 msg->len = CEC_MAX_MSG_SIZE; 1063 cec_received_msg_ts(adap, msg, 1064 ns_to_ktime(pin->work_rx_msg.rx_ts)); 1065 msg->len = 0; 1066 } 1067 1068 if (pin->work_tx_status) { 1069 unsigned int tx_status = pin->work_tx_status; 1070 1071 pin->work_tx_status = 0; 1072 cec_transmit_attempt_done_ts(adap, tx_status, 1073 pin->work_tx_ts); 1074 } 1075 1076 while (atomic_read(&pin->work_pin_num_events)) { 1077 unsigned int idx = pin->work_pin_events_rd; 1078 u8 v = pin->work_pin_events[idx]; 1079 1080 cec_queue_pin_cec_event(adap, 1081 v & CEC_PIN_EVENT_FL_IS_HIGH, 1082 v & CEC_PIN_EVENT_FL_DROPPED, 1083 pin->work_pin_ts[idx]); 1084 pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS; 1085 atomic_dec(&pin->work_pin_num_events); 1086 } 1087 1088 switch (atomic_xchg(&pin->work_irq_change, 1089 CEC_PIN_IRQ_UNCHANGED)) { 1090 case CEC_PIN_IRQ_DISABLE: 1091 if (irq_enabled) { 1092 call_void_pin_op(pin, disable_irq); 1093 irq_enabled = false; 1094 } 1095 cec_pin_high(pin); 1096 if (pin->state == CEC_ST_OFF) 1097 break; 1098 cec_pin_to_idle(pin); 1099 hrtimer_start(&pin->timer, ns_to_ktime(0), 1100 HRTIMER_MODE_REL); 1101 break; 1102 case CEC_PIN_IRQ_ENABLE: 1103 if (irq_enabled) 1104 break; 1105 pin->enable_irq_failed = !call_pin_op(pin, enable_irq); 1106 if (pin->enable_irq_failed) { 1107 cec_pin_to_idle(pin); 1108 hrtimer_start(&pin->timer, ns_to_ktime(0), 1109 HRTIMER_MODE_REL); 1110 } else { 1111 irq_enabled = true; 1112 } 1113 break; 1114 default: 1115 break; 1116 } 1117 } 1118 return 0; 1119 } 1120 1121 static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable) 1122 { 1123 struct cec_pin *pin = adap->pin; 1124 1125 if (enable) { 1126 cec_pin_read(pin); 1127 cec_pin_to_idle(pin); 1128 pin->tx_msg.len = 0; 1129 pin->timer_ts = ns_to_ktime(0); 1130 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED); 1131 if (!pin->kthread) { 1132 pin->kthread = kthread_run(cec_pin_thread_func, adap, 1133 "cec-pin"); 1134 if (IS_ERR(pin->kthread)) { 1135 int err = PTR_ERR(pin->kthread); 1136 1137 pr_err("cec-pin: kernel_thread() failed\n"); 1138 pin->kthread = NULL; 1139 return err; 1140 } 1141 } 1142 hrtimer_start(&pin->timer, ns_to_ktime(0), 1143 HRTIMER_MODE_REL); 1144 } else if (pin->kthread) { 1145 hrtimer_cancel(&pin->timer); 1146 cec_pin_high(pin); 1147 cec_pin_to_idle(pin); 1148 pin->state = CEC_ST_OFF; 1149 pin->work_tx_status = 0; 1150 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE); 1151 wake_up_interruptible(&pin->kthread_waitq); 1152 } 1153 return 0; 1154 } 1155 1156 static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr) 1157 { 1158 struct cec_pin *pin = adap->pin; 1159 1160 if (log_addr == CEC_LOG_ADDR_INVALID) 1161 pin->la_mask = 0; 1162 else 1163 pin->la_mask |= (1 << log_addr); 1164 return 0; 1165 } 1166 1167 void cec_pin_start_timer(struct cec_pin *pin) 1168 { 1169 if (pin->state != CEC_ST_RX_IRQ) 1170 return; 1171 1172 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE); 1173 wake_up_interruptible(&pin->kthread_waitq); 1174 } 1175 1176 static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts, 1177 u32 signal_free_time, struct cec_msg *msg) 1178 { 1179 struct cec_pin *pin = adap->pin; 1180 1181 /* 1182 * If a receive is in progress, then this transmit should use 1183 * a signal free time of max CEC_SIGNAL_FREE_TIME_NEW_INITIATOR 1184 * since when it starts transmitting it will have a new initiator. 1185 */ 1186 if (pin->state != CEC_ST_IDLE && 1187 signal_free_time > CEC_SIGNAL_FREE_TIME_NEW_INITIATOR) 1188 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 1189 1190 pin->tx_signal_free_time = signal_free_time; 1191 pin->tx_extra_bytes = 0; 1192 pin->tx_msg = *msg; 1193 if (msg->len > 1) { 1194 /* Error injection: add byte to the message */ 1195 pin->tx_extra_bytes = tx_add_bytes(pin); 1196 } 1197 if (msg->len > 2 && tx_remove_byte(pin)) { 1198 /* Error injection: remove byte from the message */ 1199 pin->tx_msg.len--; 1200 } 1201 pin->work_tx_status = 0; 1202 pin->tx_bit = 0; 1203 cec_pin_start_timer(pin); 1204 return 0; 1205 } 1206 1207 static void cec_pin_adap_status(struct cec_adapter *adap, 1208 struct seq_file *file) 1209 { 1210 struct cec_pin *pin = adap->pin; 1211 1212 seq_printf(file, "state: %s\n", states[pin->state].name); 1213 seq_printf(file, "tx_bit: %d\n", pin->tx_bit); 1214 seq_printf(file, "rx_bit: %d\n", pin->rx_bit); 1215 seq_printf(file, "cec pin: %d\n", call_pin_op(pin, read)); 1216 seq_printf(file, "cec pin events dropped: %u\n", 1217 pin->work_pin_events_dropped_cnt); 1218 seq_printf(file, "irq failed: %d\n", pin->enable_irq_failed); 1219 if (pin->timer_100us_overruns) { 1220 seq_printf(file, "timer overruns > 100us: %u of %u\n", 1221 pin->timer_100us_overruns, pin->timer_cnt); 1222 seq_printf(file, "timer overruns > 300us: %u of %u\n", 1223 pin->timer_300us_overruns, pin->timer_cnt); 1224 seq_printf(file, "max timer overrun: %u usecs\n", 1225 pin->timer_max_overrun); 1226 seq_printf(file, "avg timer overrun: %u usecs\n", 1227 pin->timer_sum_overrun / pin->timer_100us_overruns); 1228 } 1229 if (pin->rx_start_bit_low_too_short_cnt) 1230 seq_printf(file, 1231 "rx start bit low too short: %u (delta %u, ts %llu)\n", 1232 pin->rx_start_bit_low_too_short_cnt, 1233 pin->rx_start_bit_low_too_short_delta, 1234 pin->rx_start_bit_low_too_short_ts); 1235 if (pin->rx_start_bit_too_short_cnt) 1236 seq_printf(file, 1237 "rx start bit too short: %u (delta %u, ts %llu)\n", 1238 pin->rx_start_bit_too_short_cnt, 1239 pin->rx_start_bit_too_short_delta, 1240 pin->rx_start_bit_too_short_ts); 1241 if (pin->rx_start_bit_too_long_cnt) 1242 seq_printf(file, "rx start bit too long: %u\n", 1243 pin->rx_start_bit_too_long_cnt); 1244 if (pin->rx_data_bit_too_short_cnt) 1245 seq_printf(file, 1246 "rx data bit too short: %u (delta %u, ts %llu)\n", 1247 pin->rx_data_bit_too_short_cnt, 1248 pin->rx_data_bit_too_short_delta, 1249 pin->rx_data_bit_too_short_ts); 1250 if (pin->rx_data_bit_too_long_cnt) 1251 seq_printf(file, "rx data bit too long: %u\n", 1252 pin->rx_data_bit_too_long_cnt); 1253 seq_printf(file, "rx initiated low drive: %u\n", pin->rx_low_drive_cnt); 1254 seq_printf(file, "tx detected low drive: %u\n", pin->tx_low_drive_cnt); 1255 pin->work_pin_events_dropped_cnt = 0; 1256 pin->timer_cnt = 0; 1257 pin->timer_100us_overruns = 0; 1258 pin->timer_300us_overruns = 0; 1259 pin->timer_max_overrun = 0; 1260 pin->timer_sum_overrun = 0; 1261 pin->rx_start_bit_low_too_short_cnt = 0; 1262 pin->rx_start_bit_too_short_cnt = 0; 1263 pin->rx_start_bit_too_long_cnt = 0; 1264 pin->rx_data_bit_too_short_cnt = 0; 1265 pin->rx_data_bit_too_long_cnt = 0; 1266 pin->rx_low_drive_cnt = 0; 1267 pin->tx_low_drive_cnt = 0; 1268 call_void_pin_op(pin, status, file); 1269 } 1270 1271 static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap, 1272 bool enable) 1273 { 1274 struct cec_pin *pin = adap->pin; 1275 1276 pin->monitor_all = enable; 1277 return 0; 1278 } 1279 1280 static void cec_pin_adap_free(struct cec_adapter *adap) 1281 { 1282 struct cec_pin *pin = adap->pin; 1283 1284 if (pin->kthread) 1285 kthread_stop(pin->kthread); 1286 pin->kthread = NULL; 1287 if (pin->ops->free) 1288 pin->ops->free(adap); 1289 adap->pin = NULL; 1290 kfree(pin); 1291 } 1292 1293 static int cec_pin_received(struct cec_adapter *adap, struct cec_msg *msg) 1294 { 1295 struct cec_pin *pin = adap->pin; 1296 1297 if (pin->ops->received && !adap->devnode.unregistered) 1298 return pin->ops->received(adap, msg); 1299 return -ENOMSG; 1300 } 1301 1302 void cec_pin_changed(struct cec_adapter *adap, bool value) 1303 { 1304 struct cec_pin *pin = adap->pin; 1305 1306 cec_pin_update(pin, value, false); 1307 if (!value && (adap->is_configuring || adap->is_configured || 1308 adap->monitor_all_cnt)) 1309 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE); 1310 } 1311 EXPORT_SYMBOL_GPL(cec_pin_changed); 1312 1313 static const struct cec_adap_ops cec_pin_adap_ops = { 1314 .adap_enable = cec_pin_adap_enable, 1315 .adap_monitor_all_enable = cec_pin_adap_monitor_all_enable, 1316 .adap_log_addr = cec_pin_adap_log_addr, 1317 .adap_transmit = cec_pin_adap_transmit, 1318 .adap_status = cec_pin_adap_status, 1319 .adap_free = cec_pin_adap_free, 1320 #ifdef CONFIG_CEC_PIN_ERROR_INJ 1321 .error_inj_parse_line = cec_pin_error_inj_parse_line, 1322 .error_inj_show = cec_pin_error_inj_show, 1323 #endif 1324 .received = cec_pin_received, 1325 }; 1326 1327 struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops, 1328 void *priv, const char *name, u32 caps) 1329 { 1330 struct cec_adapter *adap; 1331 struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL); 1332 1333 if (pin == NULL) 1334 return ERR_PTR(-ENOMEM); 1335 pin->ops = pin_ops; 1336 hrtimer_init(&pin->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1337 atomic_set(&pin->work_pin_num_events, 0); 1338 pin->timer.function = cec_pin_timer; 1339 init_waitqueue_head(&pin->kthread_waitq); 1340 pin->tx_custom_low_usecs = CEC_TIM_CUSTOM_DEFAULT; 1341 pin->tx_custom_high_usecs = CEC_TIM_CUSTOM_DEFAULT; 1342 1343 adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name, 1344 caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN, 1345 CEC_MAX_LOG_ADDRS); 1346 1347 if (IS_ERR(adap)) { 1348 kfree(pin); 1349 return adap; 1350 } 1351 1352 adap->pin = pin; 1353 pin->adap = adap; 1354 cec_pin_update(pin, cec_pin_high(pin), true); 1355 return adap; 1356 } 1357 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter); 1358