1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 31 { 32 int i; 33 34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 35 if (adap->log_addrs.log_addr[i] == log_addr) 36 return i; 37 return -1; 38 } 39 40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 41 { 42 int i = cec_log_addr2idx(adap, log_addr); 43 44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 45 } 46 47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 48 unsigned int *offset) 49 { 50 unsigned int loc = cec_get_edid_spa_location(edid, size); 51 52 if (offset) 53 *offset = loc; 54 if (loc == 0) 55 return CEC_PHYS_ADDR_INVALID; 56 return (edid[loc] << 8) | edid[loc + 1]; 57 } 58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 59 60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 61 const struct drm_connector *connector) 62 { 63 memset(conn_info, 0, sizeof(*conn_info)); 64 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 65 conn_info->drm.card_no = connector->dev->primary->index; 66 conn_info->drm.connector_id = connector->base.id; 67 } 68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 69 70 /* 71 * Queue a new event for this filehandle. If ts == 0, then set it 72 * to the current time. 73 * 74 * We keep a queue of at most max_event events where max_event differs 75 * per event. If the queue becomes full, then drop the oldest event and 76 * keep track of how many events we've dropped. 77 */ 78 void cec_queue_event_fh(struct cec_fh *fh, 79 const struct cec_event *new_ev, u64 ts) 80 { 81 static const u16 max_events[CEC_NUM_EVENTS] = { 82 1, 1, 800, 800, 8, 8, 8, 8 83 }; 84 struct cec_event_entry *entry; 85 unsigned int ev_idx = new_ev->event - 1; 86 87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 88 return; 89 90 if (ts == 0) 91 ts = ktime_get_ns(); 92 93 mutex_lock(&fh->lock); 94 if (ev_idx < CEC_NUM_CORE_EVENTS) 95 entry = &fh->core_events[ev_idx]; 96 else 97 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 98 if (entry) { 99 if (new_ev->event == CEC_EVENT_LOST_MSGS && 100 fh->queued_events[ev_idx]) { 101 entry->ev.lost_msgs.lost_msgs += 102 new_ev->lost_msgs.lost_msgs; 103 goto unlock; 104 } 105 entry->ev = *new_ev; 106 entry->ev.ts = ts; 107 108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 109 /* Add new msg at the end of the queue */ 110 list_add_tail(&entry->list, &fh->events[ev_idx]); 111 fh->queued_events[ev_idx]++; 112 fh->total_queued_events++; 113 goto unlock; 114 } 115 116 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 117 list_add_tail(&entry->list, &fh->events[ev_idx]); 118 /* drop the oldest event */ 119 entry = list_first_entry(&fh->events[ev_idx], 120 struct cec_event_entry, list); 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 } 125 /* Mark that events were lost */ 126 entry = list_first_entry_or_null(&fh->events[ev_idx], 127 struct cec_event_entry, list); 128 if (entry) 129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 130 131 unlock: 132 mutex_unlock(&fh->lock); 133 wake_up_interruptible(&fh->wait); 134 } 135 136 /* Queue a new event for all open filehandles. */ 137 static void cec_queue_event(struct cec_adapter *adap, 138 const struct cec_event *ev) 139 { 140 u64 ts = ktime_get_ns(); 141 struct cec_fh *fh; 142 143 mutex_lock(&adap->devnode.lock_fhs); 144 list_for_each_entry(fh, &adap->devnode.fhs, list) 145 cec_queue_event_fh(fh, ev, ts); 146 mutex_unlock(&adap->devnode.lock_fhs); 147 } 148 149 /* Notify userspace that the CEC pin changed state at the given time. */ 150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 151 bool dropped_events, ktime_t ts) 152 { 153 struct cec_event ev = { 154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 155 CEC_EVENT_PIN_CEC_LOW, 156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 157 }; 158 struct cec_fh *fh; 159 160 mutex_lock(&adap->devnode.lock_fhs); 161 list_for_each_entry(fh, &adap->devnode.fhs, list) { 162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 164 } 165 mutex_unlock(&adap->devnode.lock_fhs); 166 } 167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 168 169 /* Notify userspace that the HPD pin changed state at the given time. */ 170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 171 { 172 struct cec_event ev = { 173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 174 CEC_EVENT_PIN_HPD_LOW, 175 }; 176 struct cec_fh *fh; 177 178 mutex_lock(&adap->devnode.lock_fhs); 179 list_for_each_entry(fh, &adap->devnode.fhs, list) 180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 181 mutex_unlock(&adap->devnode.lock_fhs); 182 } 183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 184 185 /* Notify userspace that the 5V pin changed state at the given time. */ 186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 187 { 188 struct cec_event ev = { 189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 190 CEC_EVENT_PIN_5V_LOW, 191 }; 192 struct cec_fh *fh; 193 194 mutex_lock(&adap->devnode.lock_fhs); 195 list_for_each_entry(fh, &adap->devnode.fhs, list) 196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 197 mutex_unlock(&adap->devnode.lock_fhs); 198 } 199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 200 201 /* 202 * Queue a new message for this filehandle. 203 * 204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 205 * queue becomes full, then drop the oldest message and keep track 206 * of how many messages we've dropped. 207 */ 208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 209 { 210 static const struct cec_event ev_lost_msgs = { 211 .event = CEC_EVENT_LOST_MSGS, 212 .flags = 0, 213 { 214 .lost_msgs = { 1 }, 215 }, 216 }; 217 struct cec_msg_entry *entry; 218 219 mutex_lock(&fh->lock); 220 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 221 if (entry) { 222 entry->msg = *msg; 223 /* Add new msg at the end of the queue */ 224 list_add_tail(&entry->list, &fh->msgs); 225 226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 227 /* All is fine if there is enough room */ 228 fh->queued_msgs++; 229 mutex_unlock(&fh->lock); 230 wake_up_interruptible(&fh->wait); 231 return; 232 } 233 234 /* 235 * if the message queue is full, then drop the oldest one and 236 * send a lost message event. 237 */ 238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 239 list_del(&entry->list); 240 kfree(entry); 241 } 242 mutex_unlock(&fh->lock); 243 244 /* 245 * We lost a message, either because kmalloc failed or the queue 246 * was full. 247 */ 248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 249 } 250 251 /* 252 * Queue the message for those filehandles that are in monitor mode. 253 * If valid_la is true (this message is for us or was sent by us), 254 * then pass it on to any monitoring filehandle. If this message 255 * isn't for us or from us, then only give it to filehandles that 256 * are in MONITOR_ALL mode. 257 * 258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 259 * set and the CEC adapter was placed in 'monitor all' mode. 260 */ 261 static void cec_queue_msg_monitor(struct cec_adapter *adap, 262 const struct cec_msg *msg, 263 bool valid_la) 264 { 265 struct cec_fh *fh; 266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 267 CEC_MODE_MONITOR_ALL; 268 269 mutex_lock(&adap->devnode.lock_fhs); 270 list_for_each_entry(fh, &adap->devnode.fhs, list) { 271 if (fh->mode_follower >= monitor_mode) 272 cec_queue_msg_fh(fh, msg); 273 } 274 mutex_unlock(&adap->devnode.lock_fhs); 275 } 276 277 /* 278 * Queue the message for follower filehandles. 279 */ 280 static void cec_queue_msg_followers(struct cec_adapter *adap, 281 const struct cec_msg *msg) 282 { 283 struct cec_fh *fh; 284 285 mutex_lock(&adap->devnode.lock_fhs); 286 list_for_each_entry(fh, &adap->devnode.fhs, list) { 287 if (fh->mode_follower == CEC_MODE_FOLLOWER) 288 cec_queue_msg_fh(fh, msg); 289 } 290 mutex_unlock(&adap->devnode.lock_fhs); 291 } 292 293 /* Notify userspace of an adapter state change. */ 294 static void cec_post_state_event(struct cec_adapter *adap) 295 { 296 struct cec_event ev = { 297 .event = CEC_EVENT_STATE_CHANGE, 298 }; 299 300 ev.state_change.phys_addr = adap->phys_addr; 301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 302 ev.state_change.have_conn_info = 303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 304 cec_queue_event(adap, &ev); 305 } 306 307 /* 308 * A CEC transmit (and a possible wait for reply) completed. 309 * If this was in blocking mode, then complete it, otherwise 310 * queue the message for userspace to dequeue later. 311 * 312 * This function is called with adap->lock held. 313 */ 314 static void cec_data_completed(struct cec_data *data) 315 { 316 /* 317 * Delete this transmit from the filehandle's xfer_list since 318 * we're done with it. 319 * 320 * Note that if the filehandle is closed before this transmit 321 * finished, then the release() function will set data->fh to NULL. 322 * Without that we would be referring to a closed filehandle. 323 */ 324 if (data->fh) 325 list_del_init(&data->xfer_list); 326 327 if (data->blocking) { 328 /* 329 * Someone is blocking so mark the message as completed 330 * and call complete. 331 */ 332 data->completed = true; 333 complete(&data->c); 334 } else { 335 /* 336 * No blocking, so just queue the message if needed and 337 * free the memory. 338 */ 339 if (data->fh) 340 cec_queue_msg_fh(data->fh, &data->msg); 341 kfree(data); 342 } 343 } 344 345 /* 346 * A pending CEC transmit needs to be cancelled, either because the CEC 347 * adapter is disabled or the transmit takes an impossibly long time to 348 * finish, or the reply timed out. 349 * 350 * This function is called with adap->lock held. 351 */ 352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status) 353 { 354 struct cec_adapter *adap = data->adap; 355 356 /* 357 * It's either the current transmit, or it is a pending 358 * transmit. Take the appropriate action to clear it. 359 */ 360 if (adap->transmitting == data) { 361 adap->transmitting = NULL; 362 } else { 363 list_del_init(&data->list); 364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 365 if (!WARN_ON(!adap->transmit_queue_sz)) 366 adap->transmit_queue_sz--; 367 } 368 369 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 370 data->msg.rx_ts = ktime_get_ns(); 371 data->msg.rx_status = rx_status; 372 if (!data->blocking) 373 data->msg.tx_status = 0; 374 } else { 375 data->msg.tx_ts = ktime_get_ns(); 376 data->msg.tx_status |= tx_status | 377 CEC_TX_STATUS_MAX_RETRIES; 378 data->msg.tx_error_cnt++; 379 data->attempts = 0; 380 if (!data->blocking) 381 data->msg.rx_status = 0; 382 } 383 384 /* Queue transmitted message for monitoring purposes */ 385 cec_queue_msg_monitor(adap, &data->msg, 1); 386 387 if (!data->blocking && data->msg.sequence) 388 /* Allow drivers to process the message first */ 389 call_op(adap, received, &data->msg); 390 391 cec_data_completed(data); 392 } 393 394 /* 395 * Flush all pending transmits and cancel any pending timeout work. 396 * 397 * This function is called with adap->lock held. 398 */ 399 static void cec_flush(struct cec_adapter *adap) 400 { 401 struct cec_data *data, *n; 402 403 /* 404 * If the adapter is disabled, or we're asked to stop, 405 * then cancel any pending transmits. 406 */ 407 while (!list_empty(&adap->transmit_queue)) { 408 data = list_first_entry(&adap->transmit_queue, 409 struct cec_data, list); 410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 411 } 412 if (adap->transmitting) 413 adap->transmit_in_progress_aborted = true; 414 415 /* Cancel the pending timeout work. */ 416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 417 if (cancel_delayed_work(&data->work)) 418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 419 /* 420 * If cancel_delayed_work returned false, then 421 * the cec_wait_timeout function is running, 422 * which will call cec_data_completed. So no 423 * need to do anything special in that case. 424 */ 425 } 426 /* 427 * If something went wrong and this counter isn't what it should 428 * be, then this will reset it back to 0. Warn if it is not 0, 429 * since it indicates a bug, either in this framework or in a 430 * CEC driver. 431 */ 432 if (WARN_ON(adap->transmit_queue_sz)) 433 adap->transmit_queue_sz = 0; 434 } 435 436 /* 437 * Main CEC state machine 438 * 439 * Wait until the thread should be stopped, or we are not transmitting and 440 * a new transmit message is queued up, in which case we start transmitting 441 * that message. When the adapter finished transmitting the message it will 442 * call cec_transmit_done(). 443 * 444 * If the adapter is disabled, then remove all queued messages instead. 445 * 446 * If the current transmit times out, then cancel that transmit. 447 */ 448 int cec_thread_func(void *_adap) 449 { 450 struct cec_adapter *adap = _adap; 451 452 for (;;) { 453 unsigned int signal_free_time; 454 struct cec_data *data; 455 bool timeout = false; 456 u8 attempts; 457 458 if (adap->transmit_in_progress) { 459 int err; 460 461 /* 462 * We are transmitting a message, so add a timeout 463 * to prevent the state machine to get stuck waiting 464 * for this message to finalize and add a check to 465 * see if the adapter is disabled in which case the 466 * transmit should be canceled. 467 */ 468 err = wait_event_interruptible_timeout(adap->kthread_waitq, 469 (adap->needs_hpd && 470 (!adap->is_configured && !adap->is_configuring)) || 471 kthread_should_stop() || 472 (!adap->transmit_in_progress && 473 !list_empty(&adap->transmit_queue)), 474 msecs_to_jiffies(adap->xfer_timeout_ms)); 475 timeout = err == 0; 476 } else { 477 /* Otherwise we just wait for something to happen. */ 478 wait_event_interruptible(adap->kthread_waitq, 479 kthread_should_stop() || 480 (!adap->transmit_in_progress && 481 !list_empty(&adap->transmit_queue))); 482 } 483 484 mutex_lock(&adap->lock); 485 486 if ((adap->needs_hpd && 487 (!adap->is_configured && !adap->is_configuring)) || 488 kthread_should_stop()) { 489 cec_flush(adap); 490 goto unlock; 491 } 492 493 if (adap->transmit_in_progress && timeout) { 494 /* 495 * If we timeout, then log that. Normally this does 496 * not happen and it is an indication of a faulty CEC 497 * adapter driver, or the CEC bus is in some weird 498 * state. On rare occasions it can happen if there is 499 * so much traffic on the bus that the adapter was 500 * unable to transmit for xfer_timeout_ms (2.1s by 501 * default). 502 */ 503 if (adap->transmitting) { 504 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 505 adap->transmitting->msg.len, 506 adap->transmitting->msg.msg); 507 /* Just give up on this. */ 508 cec_data_cancel(adap->transmitting, 509 CEC_TX_STATUS_TIMEOUT, 0); 510 } else { 511 pr_warn("cec-%s: transmit timed out\n", adap->name); 512 } 513 adap->transmit_in_progress = false; 514 adap->tx_timeouts++; 515 goto unlock; 516 } 517 518 /* 519 * If we are still transmitting, or there is nothing new to 520 * transmit, then just continue waiting. 521 */ 522 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 523 goto unlock; 524 525 /* Get a new message to transmit */ 526 data = list_first_entry(&adap->transmit_queue, 527 struct cec_data, list); 528 list_del_init(&data->list); 529 if (!WARN_ON(!data->adap->transmit_queue_sz)) 530 adap->transmit_queue_sz--; 531 532 /* Make this the current transmitting message */ 533 adap->transmitting = data; 534 535 /* 536 * Suggested number of attempts as per the CEC 2.0 spec: 537 * 4 attempts is the default, except for 'secondary poll 538 * messages', i.e. poll messages not sent during the adapter 539 * configuration phase when it allocates logical addresses. 540 */ 541 if (data->msg.len == 1 && adap->is_configured) 542 attempts = 2; 543 else 544 attempts = 4; 545 546 /* Set the suggested signal free time */ 547 if (data->attempts) { 548 /* should be >= 3 data bit periods for a retry */ 549 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 550 } else if (adap->last_initiator != 551 cec_msg_initiator(&data->msg)) { 552 /* should be >= 5 data bit periods for new initiator */ 553 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 554 adap->last_initiator = cec_msg_initiator(&data->msg); 555 } else { 556 /* 557 * should be >= 7 data bit periods for sending another 558 * frame immediately after another. 559 */ 560 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 561 } 562 if (data->attempts == 0) 563 data->attempts = attempts; 564 565 adap->transmit_in_progress_aborted = false; 566 /* Tell the adapter to transmit, cancel on error */ 567 if (call_op(adap, adap_transmit, data->attempts, 568 signal_free_time, &data->msg)) 569 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 570 else 571 adap->transmit_in_progress = true; 572 573 unlock: 574 mutex_unlock(&adap->lock); 575 576 if (kthread_should_stop()) 577 break; 578 } 579 return 0; 580 } 581 582 /* 583 * Called by the CEC adapter if a transmit finished. 584 */ 585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 586 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 587 u8 error_cnt, ktime_t ts) 588 { 589 struct cec_data *data; 590 struct cec_msg *msg; 591 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 592 low_drive_cnt + error_cnt; 593 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK); 594 bool aborted = adap->transmit_in_progress_aborted; 595 596 dprintk(2, "%s: status 0x%02x\n", __func__, status); 597 if (attempts_made < 1) 598 attempts_made = 1; 599 600 mutex_lock(&adap->lock); 601 data = adap->transmitting; 602 if (!data) { 603 /* 604 * This might happen if a transmit was issued and the cable is 605 * unplugged while the transmit is ongoing. Ignore this 606 * transmit in that case. 607 */ 608 if (!adap->transmit_in_progress) 609 dprintk(1, "%s was called without an ongoing transmit!\n", 610 __func__); 611 adap->transmit_in_progress = false; 612 goto wake_thread; 613 } 614 adap->transmit_in_progress = false; 615 adap->transmit_in_progress_aborted = false; 616 617 msg = &data->msg; 618 619 /* Drivers must fill in the status! */ 620 WARN_ON(status == 0); 621 msg->tx_ts = ktime_to_ns(ts); 622 msg->tx_status |= status; 623 msg->tx_arb_lost_cnt += arb_lost_cnt; 624 msg->tx_nack_cnt += nack_cnt; 625 msg->tx_low_drive_cnt += low_drive_cnt; 626 msg->tx_error_cnt += error_cnt; 627 628 /* Mark that we're done with this transmit */ 629 adap->transmitting = NULL; 630 631 /* 632 * If there are still retry attempts left and there was an error and 633 * the hardware didn't signal that it retried itself (by setting 634 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 635 */ 636 if (!aborted && data->attempts > attempts_made && !done) { 637 /* Retry this message */ 638 data->attempts -= attempts_made; 639 if (msg->timeout) 640 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", 641 msg->len, msg->msg, data->attempts, msg->reply); 642 else 643 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 644 msg->len, msg->msg, data->attempts); 645 /* Add the message in front of the transmit queue */ 646 list_add(&data->list, &adap->transmit_queue); 647 adap->transmit_queue_sz++; 648 goto wake_thread; 649 } 650 651 if (aborted && !done) 652 status |= CEC_TX_STATUS_ABORTED; 653 data->attempts = 0; 654 655 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 656 if (!(status & CEC_TX_STATUS_OK)) 657 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 658 659 /* Queue transmitted message for monitoring purposes */ 660 cec_queue_msg_monitor(adap, msg, 1); 661 662 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 663 msg->timeout) { 664 /* 665 * Queue the message into the wait queue if we want to wait 666 * for a reply. 667 */ 668 list_add_tail(&data->list, &adap->wait_queue); 669 schedule_delayed_work(&data->work, 670 msecs_to_jiffies(msg->timeout)); 671 } else { 672 /* Otherwise we're done */ 673 cec_data_completed(data); 674 } 675 676 wake_thread: 677 /* 678 * Wake up the main thread to see if another message is ready 679 * for transmitting or to retry the current message. 680 */ 681 wake_up_interruptible(&adap->kthread_waitq); 682 mutex_unlock(&adap->lock); 683 } 684 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 685 686 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 687 u8 status, ktime_t ts) 688 { 689 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 690 case CEC_TX_STATUS_OK: 691 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 692 return; 693 case CEC_TX_STATUS_ARB_LOST: 694 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 695 return; 696 case CEC_TX_STATUS_NACK: 697 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 698 return; 699 case CEC_TX_STATUS_LOW_DRIVE: 700 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 701 return; 702 case CEC_TX_STATUS_ERROR: 703 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 704 return; 705 default: 706 /* Should never happen */ 707 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 708 return; 709 } 710 } 711 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 712 713 /* 714 * Called when waiting for a reply times out. 715 */ 716 static void cec_wait_timeout(struct work_struct *work) 717 { 718 struct cec_data *data = container_of(work, struct cec_data, work.work); 719 struct cec_adapter *adap = data->adap; 720 721 mutex_lock(&adap->lock); 722 /* 723 * Sanity check in case the timeout and the arrival of the message 724 * happened at the same time. 725 */ 726 if (list_empty(&data->list)) 727 goto unlock; 728 729 /* Mark the message as timed out */ 730 list_del_init(&data->list); 731 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT); 732 unlock: 733 mutex_unlock(&adap->lock); 734 } 735 736 /* 737 * Transmit a message. The fh argument may be NULL if the transmit is not 738 * associated with a specific filehandle. 739 * 740 * This function is called with adap->lock held. 741 */ 742 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 743 struct cec_fh *fh, bool block) 744 { 745 struct cec_data *data; 746 bool is_raw = msg_is_raw(msg); 747 748 if (adap->devnode.unregistered) 749 return -ENODEV; 750 751 msg->rx_ts = 0; 752 msg->tx_ts = 0; 753 msg->rx_status = 0; 754 msg->tx_status = 0; 755 msg->tx_arb_lost_cnt = 0; 756 msg->tx_nack_cnt = 0; 757 msg->tx_low_drive_cnt = 0; 758 msg->tx_error_cnt = 0; 759 msg->sequence = 0; 760 761 if (msg->reply && msg->timeout == 0) { 762 /* Make sure the timeout isn't 0. */ 763 msg->timeout = 1000; 764 } 765 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; 766 767 if (!msg->timeout) 768 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 769 770 /* Sanity checks */ 771 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 772 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 773 return -EINVAL; 774 } 775 776 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 777 778 if (msg->timeout) 779 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 780 __func__, msg->len, msg->msg, msg->reply, 781 !block ? ", nb" : ""); 782 else 783 dprintk(2, "%s: %*ph%s\n", 784 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 785 786 if (msg->timeout && msg->len == 1) { 787 dprintk(1, "%s: can't reply to poll msg\n", __func__); 788 return -EINVAL; 789 } 790 791 if (is_raw) { 792 if (!capable(CAP_SYS_RAWIO)) 793 return -EPERM; 794 } else { 795 /* A CDC-Only device can only send CDC messages */ 796 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 797 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 798 dprintk(1, "%s: not a CDC message\n", __func__); 799 return -EINVAL; 800 } 801 802 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 803 msg->msg[2] = adap->phys_addr >> 8; 804 msg->msg[3] = adap->phys_addr & 0xff; 805 } 806 807 if (msg->len == 1) { 808 if (cec_msg_destination(msg) == 0xf) { 809 dprintk(1, "%s: invalid poll message\n", 810 __func__); 811 return -EINVAL; 812 } 813 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 814 /* 815 * If the destination is a logical address our 816 * adapter has already claimed, then just NACK 817 * this. It depends on the hardware what it will 818 * do with a POLL to itself (some OK this), so 819 * it is just as easy to handle it here so the 820 * behavior will be consistent. 821 */ 822 msg->tx_ts = ktime_get_ns(); 823 msg->tx_status = CEC_TX_STATUS_NACK | 824 CEC_TX_STATUS_MAX_RETRIES; 825 msg->tx_nack_cnt = 1; 826 msg->sequence = ++adap->sequence; 827 if (!msg->sequence) 828 msg->sequence = ++adap->sequence; 829 return 0; 830 } 831 } 832 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 833 cec_has_log_addr(adap, cec_msg_destination(msg))) { 834 dprintk(1, "%s: destination is the adapter itself\n", 835 __func__); 836 return -EINVAL; 837 } 838 if (msg->len > 1 && adap->is_configured && 839 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 840 dprintk(1, "%s: initiator has unknown logical address %d\n", 841 __func__, cec_msg_initiator(msg)); 842 return -EINVAL; 843 } 844 /* 845 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 846 * transmitted to a TV, even if the adapter is unconfigured. 847 * This makes it possible to detect or wake up displays that 848 * pull down the HPD when in standby. 849 */ 850 if (!adap->is_configured && !adap->is_configuring && 851 (msg->len > 2 || 852 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 853 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 854 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 855 dprintk(1, "%s: adapter is unconfigured\n", __func__); 856 return -ENONET; 857 } 858 } 859 860 if (!adap->is_configured && !adap->is_configuring) { 861 if (adap->needs_hpd) { 862 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 863 __func__); 864 return -ENONET; 865 } 866 if (msg->reply) { 867 dprintk(1, "%s: invalid msg->reply\n", __func__); 868 return -EINVAL; 869 } 870 } 871 872 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 873 dprintk(2, "%s: transmit queue full\n", __func__); 874 return -EBUSY; 875 } 876 877 data = kzalloc(sizeof(*data), GFP_KERNEL); 878 if (!data) 879 return -ENOMEM; 880 881 msg->sequence = ++adap->sequence; 882 if (!msg->sequence) 883 msg->sequence = ++adap->sequence; 884 885 data->msg = *msg; 886 data->fh = fh; 887 data->adap = adap; 888 data->blocking = block; 889 890 init_completion(&data->c); 891 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 892 893 if (fh) 894 list_add_tail(&data->xfer_list, &fh->xfer_list); 895 else 896 INIT_LIST_HEAD(&data->xfer_list); 897 898 list_add_tail(&data->list, &adap->transmit_queue); 899 adap->transmit_queue_sz++; 900 if (!adap->transmitting) 901 wake_up_interruptible(&adap->kthread_waitq); 902 903 /* All done if we don't need to block waiting for completion */ 904 if (!block) 905 return 0; 906 907 /* 908 * Release the lock and wait, retake the lock afterwards. 909 */ 910 mutex_unlock(&adap->lock); 911 wait_for_completion_killable(&data->c); 912 if (!data->completed) 913 cancel_delayed_work_sync(&data->work); 914 mutex_lock(&adap->lock); 915 916 /* Cancel the transmit if it was interrupted */ 917 if (!data->completed) { 918 if (data->msg.tx_status & CEC_TX_STATUS_OK) 919 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 920 else 921 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 922 } 923 924 /* The transmit completed (possibly with an error) */ 925 *msg = data->msg; 926 if (WARN_ON(!list_empty(&data->list))) 927 list_del(&data->list); 928 if (WARN_ON(!list_empty(&data->xfer_list))) 929 list_del(&data->xfer_list); 930 kfree(data); 931 return 0; 932 } 933 934 /* Helper function to be used by drivers and this framework. */ 935 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 936 bool block) 937 { 938 int ret; 939 940 mutex_lock(&adap->lock); 941 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 942 mutex_unlock(&adap->lock); 943 return ret; 944 } 945 EXPORT_SYMBOL_GPL(cec_transmit_msg); 946 947 /* 948 * I don't like forward references but without this the low-level 949 * cec_received_msg() function would come after a bunch of high-level 950 * CEC protocol handling functions. That was very confusing. 951 */ 952 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 953 bool is_reply); 954 955 #define DIRECTED 0x80 956 #define BCAST1_4 0x40 957 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 958 #define BCAST (BCAST1_4 | BCAST2_0) 959 #define BOTH (BCAST | DIRECTED) 960 961 /* 962 * Specify minimum length and whether the message is directed, broadcast 963 * or both. Messages that do not match the criteria are ignored as per 964 * the CEC specification. 965 */ 966 static const u8 cec_msg_size[256] = { 967 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 968 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 969 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 970 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 971 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 972 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 973 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 974 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 975 [CEC_MSG_STANDBY] = 2 | BOTH, 976 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 977 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 978 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 979 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 980 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 981 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 982 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 983 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 984 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 985 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 986 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 987 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 988 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 989 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 990 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 991 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 992 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 993 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 994 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 995 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 996 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 997 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 998 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 999 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 1000 [CEC_MSG_PLAY] = 3 | DIRECTED, 1001 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 1002 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 1003 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 1004 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 1005 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 1006 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1007 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1008 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1009 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1010 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1011 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1012 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1013 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1014 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1015 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1016 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1017 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1018 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1019 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1020 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1021 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1022 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1023 [CEC_MSG_ABORT] = 2 | DIRECTED, 1024 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1025 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1026 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1027 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1028 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1029 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1030 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1031 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1032 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1033 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1034 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1035 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1036 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1037 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1038 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1039 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1040 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1041 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1042 }; 1043 1044 /* Called by the CEC adapter if a message is received */ 1045 void cec_received_msg_ts(struct cec_adapter *adap, 1046 struct cec_msg *msg, ktime_t ts) 1047 { 1048 struct cec_data *data; 1049 u8 msg_init = cec_msg_initiator(msg); 1050 u8 msg_dest = cec_msg_destination(msg); 1051 u8 cmd = msg->msg[1]; 1052 bool is_reply = false; 1053 bool valid_la = true; 1054 u8 min_len = 0; 1055 1056 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1057 return; 1058 1059 if (adap->devnode.unregistered) 1060 return; 1061 1062 /* 1063 * Some CEC adapters will receive the messages that they transmitted. 1064 * This test filters out those messages by checking if we are the 1065 * initiator, and just returning in that case. 1066 * 1067 * Note that this won't work if this is an Unregistered device. 1068 * 1069 * It is bad practice if the hardware receives the message that it 1070 * transmitted and luckily most CEC adapters behave correctly in this 1071 * respect. 1072 */ 1073 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1074 cec_has_log_addr(adap, msg_init)) 1075 return; 1076 1077 msg->rx_ts = ktime_to_ns(ts); 1078 msg->rx_status = CEC_RX_STATUS_OK; 1079 msg->sequence = msg->reply = msg->timeout = 0; 1080 msg->tx_status = 0; 1081 msg->tx_ts = 0; 1082 msg->tx_arb_lost_cnt = 0; 1083 msg->tx_nack_cnt = 0; 1084 msg->tx_low_drive_cnt = 0; 1085 msg->tx_error_cnt = 0; 1086 msg->flags = 0; 1087 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1088 1089 mutex_lock(&adap->lock); 1090 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1091 1092 adap->last_initiator = 0xff; 1093 1094 /* Check if this message was for us (directed or broadcast). */ 1095 if (!cec_msg_is_broadcast(msg)) 1096 valid_la = cec_has_log_addr(adap, msg_dest); 1097 1098 /* 1099 * Check if the length is not too short or if the message is a 1100 * broadcast message where a directed message was expected or 1101 * vice versa. If so, then the message has to be ignored (according 1102 * to section CEC 7.3 and CEC 12.2). 1103 */ 1104 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1105 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1106 1107 min_len = cec_msg_size[cmd] & 0x1f; 1108 if (msg->len < min_len) 1109 valid_la = false; 1110 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1111 valid_la = false; 1112 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1113 valid_la = false; 1114 else if (cec_msg_is_broadcast(msg) && 1115 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1116 !(dir_fl & BCAST1_4)) 1117 valid_la = false; 1118 } 1119 if (valid_la && min_len) { 1120 /* These messages have special length requirements */ 1121 switch (cmd) { 1122 case CEC_MSG_TIMER_STATUS: 1123 if (msg->msg[2] & 0x10) { 1124 switch (msg->msg[2] & 0xf) { 1125 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE: 1126 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE: 1127 if (msg->len < 5) 1128 valid_la = false; 1129 break; 1130 } 1131 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) { 1132 if (msg->len < 5) 1133 valid_la = false; 1134 } 1135 break; 1136 case CEC_MSG_RECORD_ON: 1137 switch (msg->msg[2]) { 1138 case CEC_OP_RECORD_SRC_OWN: 1139 break; 1140 case CEC_OP_RECORD_SRC_DIGITAL: 1141 if (msg->len < 10) 1142 valid_la = false; 1143 break; 1144 case CEC_OP_RECORD_SRC_ANALOG: 1145 if (msg->len < 7) 1146 valid_la = false; 1147 break; 1148 case CEC_OP_RECORD_SRC_EXT_PLUG: 1149 if (msg->len < 4) 1150 valid_la = false; 1151 break; 1152 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1153 if (msg->len < 5) 1154 valid_la = false; 1155 break; 1156 } 1157 break; 1158 } 1159 } 1160 1161 /* It's a valid message and not a poll or CDC message */ 1162 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1163 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1164 1165 /* The aborted command is in msg[2] */ 1166 if (abort) 1167 cmd = msg->msg[2]; 1168 1169 /* 1170 * Walk over all transmitted messages that are waiting for a 1171 * reply. 1172 */ 1173 list_for_each_entry(data, &adap->wait_queue, list) { 1174 struct cec_msg *dst = &data->msg; 1175 1176 /* 1177 * The *only* CEC message that has two possible replies 1178 * is CEC_MSG_INITIATE_ARC. 1179 * In this case allow either of the two replies. 1180 */ 1181 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1182 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1183 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1184 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || 1185 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) 1186 dst->reply = cmd; 1187 1188 /* Does the command match? */ 1189 if ((abort && cmd != dst->msg[1]) || 1190 (!abort && cmd != dst->reply)) 1191 continue; 1192 1193 /* Does the addressing match? */ 1194 if (msg_init != cec_msg_destination(dst) && 1195 !cec_msg_is_broadcast(dst)) 1196 continue; 1197 1198 /* We got a reply */ 1199 memcpy(dst->msg, msg->msg, msg->len); 1200 dst->len = msg->len; 1201 dst->rx_ts = msg->rx_ts; 1202 dst->rx_status = msg->rx_status; 1203 if (abort) 1204 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1205 msg->flags = dst->flags; 1206 msg->sequence = dst->sequence; 1207 /* Remove it from the wait_queue */ 1208 list_del_init(&data->list); 1209 1210 /* Cancel the pending timeout work */ 1211 if (!cancel_delayed_work(&data->work)) { 1212 mutex_unlock(&adap->lock); 1213 cancel_delayed_work_sync(&data->work); 1214 mutex_lock(&adap->lock); 1215 } 1216 /* 1217 * Mark this as a reply, provided someone is still 1218 * waiting for the answer. 1219 */ 1220 if (data->fh) 1221 is_reply = true; 1222 cec_data_completed(data); 1223 break; 1224 } 1225 } 1226 mutex_unlock(&adap->lock); 1227 1228 /* Pass the message on to any monitoring filehandles */ 1229 cec_queue_msg_monitor(adap, msg, valid_la); 1230 1231 /* We're done if it is not for us or a poll message */ 1232 if (!valid_la || msg->len <= 1) 1233 return; 1234 1235 if (adap->log_addrs.log_addr_mask == 0) 1236 return; 1237 1238 /* 1239 * Process the message on the protocol level. If is_reply is true, 1240 * then cec_receive_notify() won't pass on the reply to the listener(s) 1241 * since that was already done by cec_data_completed() above. 1242 */ 1243 cec_receive_notify(adap, msg, is_reply); 1244 } 1245 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1246 1247 /* Logical Address Handling */ 1248 1249 /* 1250 * Attempt to claim a specific logical address. 1251 * 1252 * This function is called with adap->lock held. 1253 */ 1254 static int cec_config_log_addr(struct cec_adapter *adap, 1255 unsigned int idx, 1256 unsigned int log_addr) 1257 { 1258 struct cec_log_addrs *las = &adap->log_addrs; 1259 struct cec_msg msg = { }; 1260 const unsigned int max_retries = 2; 1261 unsigned int i; 1262 int err; 1263 1264 if (cec_has_log_addr(adap, log_addr)) 1265 return 0; 1266 1267 /* Send poll message */ 1268 msg.len = 1; 1269 msg.msg[0] = (log_addr << 4) | log_addr; 1270 1271 for (i = 0; i < max_retries; i++) { 1272 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1273 1274 /* 1275 * While trying to poll the physical address was reset 1276 * and the adapter was unconfigured, so bail out. 1277 */ 1278 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID) 1279 return -EINTR; 1280 1281 /* Also bail out if the PA changed while configuring. */ 1282 if (adap->must_reconfigure) 1283 return -EINTR; 1284 1285 if (err) 1286 return err; 1287 1288 /* 1289 * The message was aborted or timed out due to a disconnect or 1290 * unconfigure, just bail out. 1291 */ 1292 if (msg.tx_status & 1293 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT)) 1294 return -EINTR; 1295 if (msg.tx_status & CEC_TX_STATUS_OK) 1296 return 0; 1297 if (msg.tx_status & CEC_TX_STATUS_NACK) 1298 break; 1299 /* 1300 * Retry up to max_retries times if the message was neither 1301 * OKed or NACKed. This can happen due to e.g. a Lost 1302 * Arbitration condition. 1303 */ 1304 } 1305 1306 /* 1307 * If we are unable to get an OK or a NACK after max_retries attempts 1308 * (and note that each attempt already consists of four polls), then 1309 * we assume that something is really weird and that it is not a 1310 * good idea to try and claim this logical address. 1311 */ 1312 if (i == max_retries) { 1313 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n", 1314 log_addr, msg.tx_status); 1315 return 0; 1316 } 1317 1318 /* 1319 * Message not acknowledged, so this logical 1320 * address is free to use. 1321 */ 1322 err = call_op(adap, adap_log_addr, log_addr); 1323 if (err) 1324 return err; 1325 1326 las->log_addr[idx] = log_addr; 1327 las->log_addr_mask |= 1 << log_addr; 1328 return 1; 1329 } 1330 1331 /* 1332 * Unconfigure the adapter: clear all logical addresses and send 1333 * the state changed event. 1334 * 1335 * This function is called with adap->lock held. 1336 */ 1337 static void cec_adap_unconfigure(struct cec_adapter *adap) 1338 { 1339 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1340 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID)); 1341 adap->log_addrs.log_addr_mask = 0; 1342 adap->is_configured = false; 1343 cec_flush(adap); 1344 wake_up_interruptible(&adap->kthread_waitq); 1345 cec_post_state_event(adap); 1346 call_void_op(adap, adap_configured, false); 1347 } 1348 1349 /* 1350 * Attempt to claim the required logical addresses. 1351 */ 1352 static int cec_config_thread_func(void *arg) 1353 { 1354 /* The various LAs for each type of device */ 1355 static const u8 tv_log_addrs[] = { 1356 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1357 CEC_LOG_ADDR_INVALID 1358 }; 1359 static const u8 record_log_addrs[] = { 1360 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1361 CEC_LOG_ADDR_RECORD_3, 1362 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1363 CEC_LOG_ADDR_INVALID 1364 }; 1365 static const u8 tuner_log_addrs[] = { 1366 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1367 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1368 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1369 CEC_LOG_ADDR_INVALID 1370 }; 1371 static const u8 playback_log_addrs[] = { 1372 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1373 CEC_LOG_ADDR_PLAYBACK_3, 1374 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1375 CEC_LOG_ADDR_INVALID 1376 }; 1377 static const u8 audiosystem_log_addrs[] = { 1378 CEC_LOG_ADDR_AUDIOSYSTEM, 1379 CEC_LOG_ADDR_INVALID 1380 }; 1381 static const u8 specific_use_log_addrs[] = { 1382 CEC_LOG_ADDR_SPECIFIC, 1383 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1384 CEC_LOG_ADDR_INVALID 1385 }; 1386 static const u8 *type2addrs[6] = { 1387 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1388 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1389 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1390 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1391 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1392 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1393 }; 1394 static const u16 type2mask[] = { 1395 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1396 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1397 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1398 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1399 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1400 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1401 }; 1402 struct cec_adapter *adap = arg; 1403 struct cec_log_addrs *las = &adap->log_addrs; 1404 int err; 1405 int i, j; 1406 1407 mutex_lock(&adap->lock); 1408 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1409 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1410 las->log_addr_mask = 0; 1411 1412 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1413 goto configured; 1414 1415 reconfigure: 1416 for (i = 0; i < las->num_log_addrs; i++) { 1417 unsigned int type = las->log_addr_type[i]; 1418 const u8 *la_list; 1419 u8 last_la; 1420 1421 /* 1422 * The TV functionality can only map to physical address 0. 1423 * For any other address, try the Specific functionality 1424 * instead as per the spec. 1425 */ 1426 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1427 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1428 1429 la_list = type2addrs[type]; 1430 last_la = las->log_addr[i]; 1431 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1432 if (last_la == CEC_LOG_ADDR_INVALID || 1433 last_la == CEC_LOG_ADDR_UNREGISTERED || 1434 !((1 << last_la) & type2mask[type])) 1435 last_la = la_list[0]; 1436 1437 err = cec_config_log_addr(adap, i, last_la); 1438 1439 if (adap->must_reconfigure) { 1440 adap->must_reconfigure = false; 1441 las->log_addr_mask = 0; 1442 goto reconfigure; 1443 } 1444 1445 if (err > 0) /* Reused last LA */ 1446 continue; 1447 1448 if (err < 0) 1449 goto unconfigure; 1450 1451 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1452 /* Tried this one already, skip it */ 1453 if (la_list[j] == last_la) 1454 continue; 1455 /* The backup addresses are CEC 2.0 specific */ 1456 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1457 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1458 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1459 continue; 1460 1461 err = cec_config_log_addr(adap, i, la_list[j]); 1462 if (err == 0) /* LA is in use */ 1463 continue; 1464 if (err < 0) 1465 goto unconfigure; 1466 /* Done, claimed an LA */ 1467 break; 1468 } 1469 1470 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1471 dprintk(1, "could not claim LA %d\n", i); 1472 } 1473 1474 if (adap->log_addrs.log_addr_mask == 0 && 1475 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1476 goto unconfigure; 1477 1478 configured: 1479 if (adap->log_addrs.log_addr_mask == 0) { 1480 /* Fall back to unregistered */ 1481 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1482 las->log_addr_mask = 1 << las->log_addr[0]; 1483 for (i = 1; i < las->num_log_addrs; i++) 1484 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1485 } 1486 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1487 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1488 adap->is_configured = true; 1489 adap->is_configuring = false; 1490 adap->must_reconfigure = false; 1491 cec_post_state_event(adap); 1492 1493 /* 1494 * Now post the Report Features and Report Physical Address broadcast 1495 * messages. Note that these are non-blocking transmits, meaning that 1496 * they are just queued up and once adap->lock is unlocked the main 1497 * thread will kick in and start transmitting these. 1498 * 1499 * If after this function is done (but before one or more of these 1500 * messages are actually transmitted) the CEC adapter is unconfigured, 1501 * then any remaining messages will be dropped by the main thread. 1502 */ 1503 for (i = 0; i < las->num_log_addrs; i++) { 1504 struct cec_msg msg = {}; 1505 1506 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1507 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1508 continue; 1509 1510 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1511 1512 /* Report Features must come first according to CEC 2.0 */ 1513 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1514 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1515 cec_fill_msg_report_features(adap, &msg, i); 1516 cec_transmit_msg_fh(adap, &msg, NULL, false); 1517 } 1518 1519 /* Report Physical Address */ 1520 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1521 las->primary_device_type[i]); 1522 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1523 las->log_addr[i], 1524 cec_phys_addr_exp(adap->phys_addr)); 1525 cec_transmit_msg_fh(adap, &msg, NULL, false); 1526 1527 /* Report Vendor ID */ 1528 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1529 cec_msg_device_vendor_id(&msg, 1530 adap->log_addrs.vendor_id); 1531 cec_transmit_msg_fh(adap, &msg, NULL, false); 1532 } 1533 } 1534 adap->kthread_config = NULL; 1535 complete(&adap->config_completion); 1536 mutex_unlock(&adap->lock); 1537 call_void_op(adap, adap_configured, true); 1538 return 0; 1539 1540 unconfigure: 1541 for (i = 0; i < las->num_log_addrs; i++) 1542 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1543 cec_adap_unconfigure(adap); 1544 adap->is_configuring = false; 1545 adap->must_reconfigure = false; 1546 adap->kthread_config = NULL; 1547 complete(&adap->config_completion); 1548 mutex_unlock(&adap->lock); 1549 return 0; 1550 } 1551 1552 /* 1553 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1554 * logical addresses. 1555 * 1556 * This function is called with adap->lock held. 1557 */ 1558 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1559 { 1560 if (WARN_ON(adap->is_configuring || adap->is_configured)) 1561 return; 1562 1563 init_completion(&adap->config_completion); 1564 1565 /* Ready to kick off the thread */ 1566 adap->is_configuring = true; 1567 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1568 "ceccfg-%s", adap->name); 1569 if (IS_ERR(adap->kthread_config)) { 1570 adap->kthread_config = NULL; 1571 adap->is_configuring = false; 1572 } else if (block) { 1573 mutex_unlock(&adap->lock); 1574 wait_for_completion(&adap->config_completion); 1575 mutex_lock(&adap->lock); 1576 } 1577 } 1578 1579 /* 1580 * Helper function to enable/disable the CEC adapter. 1581 * 1582 * This function is called with adap->lock held. 1583 */ 1584 static int cec_adap_enable(struct cec_adapter *adap) 1585 { 1586 bool enable; 1587 int ret = 0; 1588 1589 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt || 1590 adap->log_addrs.num_log_addrs; 1591 if (adap->needs_hpd) 1592 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID; 1593 1594 if (enable == adap->is_enabled) 1595 return 0; 1596 1597 /* serialize adap_enable */ 1598 mutex_lock(&adap->devnode.lock); 1599 if (enable) { 1600 adap->last_initiator = 0xff; 1601 adap->transmit_in_progress = false; 1602 ret = adap->ops->adap_enable(adap, true); 1603 if (!ret) { 1604 /* 1605 * Enable monitor-all/pin modes if needed. We warn, but 1606 * continue if this fails as this is not a critical error. 1607 */ 1608 if (adap->monitor_all_cnt) 1609 WARN_ON(call_op(adap, adap_monitor_all_enable, true)); 1610 if (adap->monitor_pin_cnt) 1611 WARN_ON(call_op(adap, adap_monitor_pin_enable, true)); 1612 } 1613 } else { 1614 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */ 1615 if (adap->monitor_all_cnt) 1616 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1617 if (adap->monitor_pin_cnt) 1618 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 1619 WARN_ON(adap->ops->adap_enable(adap, false)); 1620 adap->last_initiator = 0xff; 1621 adap->transmit_in_progress = false; 1622 adap->transmit_in_progress_aborted = false; 1623 if (adap->transmitting) 1624 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0); 1625 } 1626 if (!ret) 1627 adap->is_enabled = enable; 1628 wake_up_interruptible(&adap->kthread_waitq); 1629 mutex_unlock(&adap->devnode.lock); 1630 return ret; 1631 } 1632 1633 /* Set a new physical address and send an event notifying userspace of this. 1634 * 1635 * This function is called with adap->lock held. 1636 */ 1637 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1638 { 1639 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID; 1640 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID; 1641 1642 if (phys_addr == adap->phys_addr) 1643 return; 1644 if (!becomes_invalid && adap->devnode.unregistered) 1645 return; 1646 1647 dprintk(1, "new physical address %x.%x.%x.%x\n", 1648 cec_phys_addr_exp(phys_addr)); 1649 if (becomes_invalid || !is_invalid) { 1650 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1651 cec_post_state_event(adap); 1652 cec_adap_unconfigure(adap); 1653 if (becomes_invalid) { 1654 cec_adap_enable(adap); 1655 return; 1656 } 1657 } 1658 1659 adap->phys_addr = phys_addr; 1660 if (is_invalid) 1661 cec_adap_enable(adap); 1662 1663 cec_post_state_event(adap); 1664 if (!adap->log_addrs.num_log_addrs) 1665 return; 1666 if (adap->is_configuring) 1667 adap->must_reconfigure = true; 1668 else 1669 cec_claim_log_addrs(adap, block); 1670 } 1671 1672 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1673 { 1674 if (IS_ERR_OR_NULL(adap)) 1675 return; 1676 1677 mutex_lock(&adap->lock); 1678 __cec_s_phys_addr(adap, phys_addr, block); 1679 mutex_unlock(&adap->lock); 1680 } 1681 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1682 1683 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1684 const struct edid *edid) 1685 { 1686 u16 pa = CEC_PHYS_ADDR_INVALID; 1687 1688 if (edid && edid->extensions) 1689 pa = cec_get_edid_phys_addr((const u8 *)edid, 1690 EDID_LENGTH * (edid->extensions + 1), NULL); 1691 cec_s_phys_addr(adap, pa, false); 1692 } 1693 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1694 1695 void cec_s_conn_info(struct cec_adapter *adap, 1696 const struct cec_connector_info *conn_info) 1697 { 1698 if (IS_ERR_OR_NULL(adap)) 1699 return; 1700 1701 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1702 return; 1703 1704 mutex_lock(&adap->lock); 1705 if (conn_info) 1706 adap->conn_info = *conn_info; 1707 else 1708 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1709 cec_post_state_event(adap); 1710 mutex_unlock(&adap->lock); 1711 } 1712 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1713 1714 /* 1715 * Called from either the ioctl or a driver to set the logical addresses. 1716 * 1717 * This function is called with adap->lock held. 1718 */ 1719 int __cec_s_log_addrs(struct cec_adapter *adap, 1720 struct cec_log_addrs *log_addrs, bool block) 1721 { 1722 u16 type_mask = 0; 1723 int err; 1724 int i; 1725 1726 if (adap->devnode.unregistered) 1727 return -ENODEV; 1728 1729 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1730 if (!adap->log_addrs.num_log_addrs) 1731 return 0; 1732 if (adap->is_configuring || adap->is_configured) 1733 cec_adap_unconfigure(adap); 1734 adap->log_addrs.num_log_addrs = 0; 1735 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1736 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1737 adap->log_addrs.osd_name[0] = '\0'; 1738 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1739 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1740 cec_adap_enable(adap); 1741 return 0; 1742 } 1743 1744 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1745 /* 1746 * Sanitize log_addrs fields if a CDC-Only device is 1747 * requested. 1748 */ 1749 log_addrs->num_log_addrs = 1; 1750 log_addrs->osd_name[0] = '\0'; 1751 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1752 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1753 /* 1754 * This is just an internal convention since a CDC-Only device 1755 * doesn't have to be a switch. But switches already use 1756 * unregistered, so it makes some kind of sense to pick this 1757 * as the primary device. Since a CDC-Only device never sends 1758 * any 'normal' CEC messages this primary device type is never 1759 * sent over the CEC bus. 1760 */ 1761 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1762 log_addrs->all_device_types[0] = 0; 1763 log_addrs->features[0][0] = 0; 1764 log_addrs->features[0][1] = 0; 1765 } 1766 1767 /* Ensure the osd name is 0-terminated */ 1768 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1769 1770 /* Sanity checks */ 1771 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1772 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1773 return -EINVAL; 1774 } 1775 1776 /* 1777 * Vendor ID is a 24 bit number, so check if the value is 1778 * within the correct range. 1779 */ 1780 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1781 (log_addrs->vendor_id & 0xff000000) != 0) { 1782 dprintk(1, "invalid vendor ID\n"); 1783 return -EINVAL; 1784 } 1785 1786 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1787 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1788 dprintk(1, "invalid CEC version\n"); 1789 return -EINVAL; 1790 } 1791 1792 if (log_addrs->num_log_addrs > 1) 1793 for (i = 0; i < log_addrs->num_log_addrs; i++) 1794 if (log_addrs->log_addr_type[i] == 1795 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1796 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1797 return -EINVAL; 1798 } 1799 1800 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1801 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1802 u8 *features = log_addrs->features[i]; 1803 bool op_is_dev_features = false; 1804 unsigned int j; 1805 1806 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1807 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1808 dprintk(1, "unknown logical address type\n"); 1809 return -EINVAL; 1810 } 1811 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1812 dprintk(1, "duplicate logical address type\n"); 1813 return -EINVAL; 1814 } 1815 type_mask |= 1 << log_addrs->log_addr_type[i]; 1816 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1817 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1818 /* Record already contains the playback functionality */ 1819 dprintk(1, "invalid record + playback combination\n"); 1820 return -EINVAL; 1821 } 1822 if (log_addrs->primary_device_type[i] > 1823 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1824 dprintk(1, "unknown primary device type\n"); 1825 return -EINVAL; 1826 } 1827 if (log_addrs->primary_device_type[i] == 2) { 1828 dprintk(1, "invalid primary device type\n"); 1829 return -EINVAL; 1830 } 1831 for (j = 0; j < feature_sz; j++) { 1832 if ((features[j] & 0x80) == 0) { 1833 if (op_is_dev_features) 1834 break; 1835 op_is_dev_features = true; 1836 } 1837 } 1838 if (!op_is_dev_features || j == feature_sz) { 1839 dprintk(1, "malformed features\n"); 1840 return -EINVAL; 1841 } 1842 /* Zero unused part of the feature array */ 1843 memset(features + j + 1, 0, feature_sz - j - 1); 1844 } 1845 1846 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1847 if (log_addrs->num_log_addrs > 2) { 1848 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1849 return -EINVAL; 1850 } 1851 if (log_addrs->num_log_addrs == 2) { 1852 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1853 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1854 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1855 return -EINVAL; 1856 } 1857 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1858 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1859 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1860 return -EINVAL; 1861 } 1862 } 1863 } 1864 1865 /* Zero unused LAs */ 1866 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1867 log_addrs->primary_device_type[i] = 0; 1868 log_addrs->log_addr_type[i] = 0; 1869 log_addrs->all_device_types[i] = 0; 1870 memset(log_addrs->features[i], 0, 1871 sizeof(log_addrs->features[i])); 1872 } 1873 1874 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1875 adap->log_addrs = *log_addrs; 1876 err = cec_adap_enable(adap); 1877 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1878 cec_claim_log_addrs(adap, block); 1879 return err; 1880 } 1881 1882 int cec_s_log_addrs(struct cec_adapter *adap, 1883 struct cec_log_addrs *log_addrs, bool block) 1884 { 1885 int err; 1886 1887 mutex_lock(&adap->lock); 1888 err = __cec_s_log_addrs(adap, log_addrs, block); 1889 mutex_unlock(&adap->lock); 1890 return err; 1891 } 1892 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1893 1894 /* High-level core CEC message handling */ 1895 1896 /* Fill in the Report Features message */ 1897 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1898 struct cec_msg *msg, 1899 unsigned int la_idx) 1900 { 1901 const struct cec_log_addrs *las = &adap->log_addrs; 1902 const u8 *features = las->features[la_idx]; 1903 bool op_is_dev_features = false; 1904 unsigned int idx; 1905 1906 /* Report Features */ 1907 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1908 msg->len = 4; 1909 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1910 msg->msg[2] = adap->log_addrs.cec_version; 1911 msg->msg[3] = las->all_device_types[la_idx]; 1912 1913 /* Write RC Profiles first, then Device Features */ 1914 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1915 msg->msg[msg->len++] = features[idx]; 1916 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1917 if (op_is_dev_features) 1918 break; 1919 op_is_dev_features = true; 1920 } 1921 } 1922 } 1923 1924 /* Transmit the Feature Abort message */ 1925 static int cec_feature_abort_reason(struct cec_adapter *adap, 1926 struct cec_msg *msg, u8 reason) 1927 { 1928 struct cec_msg tx_msg = { }; 1929 1930 /* 1931 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1932 * message! 1933 */ 1934 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1935 return 0; 1936 /* Don't Feature Abort messages from 'Unregistered' */ 1937 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 1938 return 0; 1939 cec_msg_set_reply_to(&tx_msg, msg); 1940 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 1941 return cec_transmit_msg(adap, &tx_msg, false); 1942 } 1943 1944 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 1945 { 1946 return cec_feature_abort_reason(adap, msg, 1947 CEC_OP_ABORT_UNRECOGNIZED_OP); 1948 } 1949 1950 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 1951 { 1952 return cec_feature_abort_reason(adap, msg, 1953 CEC_OP_ABORT_REFUSED); 1954 } 1955 1956 /* 1957 * Called when a CEC message is received. This function will do any 1958 * necessary core processing. The is_reply bool is true if this message 1959 * is a reply to an earlier transmit. 1960 * 1961 * The message is either a broadcast message or a valid directed message. 1962 */ 1963 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 1964 bool is_reply) 1965 { 1966 bool is_broadcast = cec_msg_is_broadcast(msg); 1967 u8 dest_laddr = cec_msg_destination(msg); 1968 u8 init_laddr = cec_msg_initiator(msg); 1969 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 1970 int la_idx = cec_log_addr2idx(adap, dest_laddr); 1971 bool from_unregistered = init_laddr == 0xf; 1972 struct cec_msg tx_cec_msg = { }; 1973 1974 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1975 1976 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 1977 if (cec_is_cdc_only(&adap->log_addrs) && 1978 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 1979 return 0; 1980 1981 /* Allow drivers to process the message first */ 1982 if (adap->ops->received && !adap->devnode.unregistered && 1983 adap->ops->received(adap, msg) != -ENOMSG) 1984 return 0; 1985 1986 /* 1987 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 1988 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 1989 * handled by the CEC core, even if the passthrough mode is on. 1990 * The others are just ignored if passthrough mode is on. 1991 */ 1992 switch (msg->msg[1]) { 1993 case CEC_MSG_GET_CEC_VERSION: 1994 case CEC_MSG_ABORT: 1995 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 1996 case CEC_MSG_GIVE_OSD_NAME: 1997 /* 1998 * These messages reply with a directed message, so ignore if 1999 * the initiator is Unregistered. 2000 */ 2001 if (!adap->passthrough && from_unregistered) 2002 return 0; 2003 fallthrough; 2004 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2005 case CEC_MSG_GIVE_FEATURES: 2006 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2007 /* 2008 * Skip processing these messages if the passthrough mode 2009 * is on. 2010 */ 2011 if (adap->passthrough) 2012 goto skip_processing; 2013 /* Ignore if addressing is wrong */ 2014 if (is_broadcast) 2015 return 0; 2016 break; 2017 2018 case CEC_MSG_USER_CONTROL_PRESSED: 2019 case CEC_MSG_USER_CONTROL_RELEASED: 2020 /* Wrong addressing mode: don't process */ 2021 if (is_broadcast || from_unregistered) 2022 goto skip_processing; 2023 break; 2024 2025 case CEC_MSG_REPORT_PHYSICAL_ADDR: 2026 /* 2027 * This message is always processed, regardless of the 2028 * passthrough setting. 2029 * 2030 * Exception: don't process if wrong addressing mode. 2031 */ 2032 if (!is_broadcast) 2033 goto skip_processing; 2034 break; 2035 2036 default: 2037 break; 2038 } 2039 2040 cec_msg_set_reply_to(&tx_cec_msg, msg); 2041 2042 switch (msg->msg[1]) { 2043 /* The following messages are processed but still passed through */ 2044 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 2045 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 2046 2047 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 2048 cec_phys_addr_exp(pa), init_laddr); 2049 break; 2050 } 2051 2052 case CEC_MSG_USER_CONTROL_PRESSED: 2053 if (!(adap->capabilities & CEC_CAP_RC) || 2054 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2055 break; 2056 2057 #ifdef CONFIG_MEDIA_CEC_RC 2058 switch (msg->msg[2]) { 2059 /* 2060 * Play function, this message can have variable length 2061 * depending on the specific play function that is used. 2062 */ 2063 case CEC_OP_UI_CMD_PLAY_FUNCTION: 2064 if (msg->len == 2) 2065 rc_keydown(adap->rc, RC_PROTO_CEC, 2066 msg->msg[2], 0); 2067 else 2068 rc_keydown(adap->rc, RC_PROTO_CEC, 2069 msg->msg[2] << 8 | msg->msg[3], 0); 2070 break; 2071 /* 2072 * Other function messages that are not handled. 2073 * Currently the RC framework does not allow to supply an 2074 * additional parameter to a keypress. These "keys" contain 2075 * other information such as channel number, an input number 2076 * etc. 2077 * For the time being these messages are not processed by the 2078 * framework and are simply forwarded to the user space. 2079 */ 2080 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2081 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2082 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2083 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2084 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2085 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2086 break; 2087 default: 2088 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2089 break; 2090 } 2091 #endif 2092 break; 2093 2094 case CEC_MSG_USER_CONTROL_RELEASED: 2095 if (!(adap->capabilities & CEC_CAP_RC) || 2096 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2097 break; 2098 #ifdef CONFIG_MEDIA_CEC_RC 2099 rc_keyup(adap->rc); 2100 #endif 2101 break; 2102 2103 /* 2104 * The remaining messages are only processed if the passthrough mode 2105 * is off. 2106 */ 2107 case CEC_MSG_GET_CEC_VERSION: 2108 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2109 return cec_transmit_msg(adap, &tx_cec_msg, false); 2110 2111 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2112 /* Do nothing for CEC switches using addr 15 */ 2113 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2114 return 0; 2115 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2116 return cec_transmit_msg(adap, &tx_cec_msg, false); 2117 2118 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2119 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2120 return cec_feature_abort(adap, msg); 2121 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2122 return cec_transmit_msg(adap, &tx_cec_msg, false); 2123 2124 case CEC_MSG_ABORT: 2125 /* Do nothing for CEC switches */ 2126 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2127 return 0; 2128 return cec_feature_refused(adap, msg); 2129 2130 case CEC_MSG_GIVE_OSD_NAME: { 2131 if (adap->log_addrs.osd_name[0] == 0) 2132 return cec_feature_abort(adap, msg); 2133 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2134 return cec_transmit_msg(adap, &tx_cec_msg, false); 2135 } 2136 2137 case CEC_MSG_GIVE_FEATURES: 2138 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2139 return cec_feature_abort(adap, msg); 2140 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2141 return cec_transmit_msg(adap, &tx_cec_msg, false); 2142 2143 default: 2144 /* 2145 * Unprocessed messages are aborted if userspace isn't doing 2146 * any processing either. 2147 */ 2148 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2149 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2150 return cec_feature_abort(adap, msg); 2151 break; 2152 } 2153 2154 skip_processing: 2155 /* If this was a reply, then we're done, unless otherwise specified */ 2156 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2157 return 0; 2158 2159 /* 2160 * Send to the exclusive follower if there is one, otherwise send 2161 * to all followers. 2162 */ 2163 if (adap->cec_follower) 2164 cec_queue_msg_fh(adap->cec_follower, msg); 2165 else 2166 cec_queue_msg_followers(adap, msg); 2167 return 0; 2168 } 2169 2170 /* 2171 * Helper functions to keep track of the 'monitor all' use count. 2172 * 2173 * These functions are called with adap->lock held. 2174 */ 2175 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2176 { 2177 int ret; 2178 2179 if (adap->monitor_all_cnt++) 2180 return 0; 2181 2182 ret = cec_adap_enable(adap); 2183 if (ret) 2184 adap->monitor_all_cnt--; 2185 return ret; 2186 } 2187 2188 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2189 { 2190 if (WARN_ON(!adap->monitor_all_cnt)) 2191 return; 2192 if (--adap->monitor_all_cnt) 2193 return; 2194 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 2195 cec_adap_enable(adap); 2196 } 2197 2198 /* 2199 * Helper functions to keep track of the 'monitor pin' use count. 2200 * 2201 * These functions are called with adap->lock held. 2202 */ 2203 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2204 { 2205 int ret; 2206 2207 if (adap->monitor_pin_cnt++) 2208 return 0; 2209 2210 ret = cec_adap_enable(adap); 2211 if (ret) 2212 adap->monitor_pin_cnt--; 2213 return ret; 2214 } 2215 2216 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2217 { 2218 if (WARN_ON(!adap->monitor_pin_cnt)) 2219 return; 2220 if (--adap->monitor_pin_cnt) 2221 return; 2222 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 2223 cec_adap_enable(adap); 2224 } 2225 2226 #ifdef CONFIG_DEBUG_FS 2227 /* 2228 * Log the current state of the CEC adapter. 2229 * Very useful for debugging. 2230 */ 2231 int cec_adap_status(struct seq_file *file, void *priv) 2232 { 2233 struct cec_adapter *adap = dev_get_drvdata(file->private); 2234 struct cec_data *data; 2235 2236 mutex_lock(&adap->lock); 2237 seq_printf(file, "enabled: %d\n", adap->is_enabled); 2238 seq_printf(file, "configured: %d\n", adap->is_configured); 2239 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2240 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2241 cec_phys_addr_exp(adap->phys_addr)); 2242 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2243 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2244 if (adap->cec_follower) 2245 seq_printf(file, "has CEC follower%s\n", 2246 adap->passthrough ? " (in passthrough mode)" : ""); 2247 if (adap->cec_initiator) 2248 seq_puts(file, "has CEC initiator\n"); 2249 if (adap->monitor_all_cnt) 2250 seq_printf(file, "file handles in Monitor All mode: %u\n", 2251 adap->monitor_all_cnt); 2252 if (adap->monitor_pin_cnt) 2253 seq_printf(file, "file handles in Monitor Pin mode: %u\n", 2254 adap->monitor_pin_cnt); 2255 if (adap->tx_timeouts) { 2256 seq_printf(file, "transmit timeouts: %u\n", 2257 adap->tx_timeouts); 2258 adap->tx_timeouts = 0; 2259 } 2260 data = adap->transmitting; 2261 if (data) 2262 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", 2263 data->msg.len, data->msg.msg, data->msg.reply, 2264 data->msg.timeout); 2265 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2266 list_for_each_entry(data, &adap->transmit_queue, list) { 2267 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", 2268 data->msg.len, data->msg.msg, data->msg.reply, 2269 data->msg.timeout); 2270 } 2271 list_for_each_entry(data, &adap->wait_queue, list) { 2272 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", 2273 data->msg.len, data->msg.msg, data->msg.reply, 2274 data->msg.timeout); 2275 } 2276 2277 call_void_op(adap, adap_status, file); 2278 mutex_unlock(&adap->lock); 2279 return 0; 2280 } 2281 #endif 2282