1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 31 { 32 int i; 33 34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 35 if (adap->log_addrs.log_addr[i] == log_addr) 36 return i; 37 return -1; 38 } 39 40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 41 { 42 int i = cec_log_addr2idx(adap, log_addr); 43 44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 45 } 46 47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 48 unsigned int *offset) 49 { 50 unsigned int loc = cec_get_edid_spa_location(edid, size); 51 52 if (offset) 53 *offset = loc; 54 if (loc == 0) 55 return CEC_PHYS_ADDR_INVALID; 56 return (edid[loc] << 8) | edid[loc + 1]; 57 } 58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 59 60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 61 const struct drm_connector *connector) 62 { 63 memset(conn_info, 0, sizeof(*conn_info)); 64 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 65 conn_info->drm.card_no = connector->dev->primary->index; 66 conn_info->drm.connector_id = connector->base.id; 67 } 68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 69 70 /* 71 * Queue a new event for this filehandle. If ts == 0, then set it 72 * to the current time. 73 * 74 * We keep a queue of at most max_event events where max_event differs 75 * per event. If the queue becomes full, then drop the oldest event and 76 * keep track of how many events we've dropped. 77 */ 78 void cec_queue_event_fh(struct cec_fh *fh, 79 const struct cec_event *new_ev, u64 ts) 80 { 81 static const u16 max_events[CEC_NUM_EVENTS] = { 82 1, 1, 800, 800, 8, 8, 8, 8 83 }; 84 struct cec_event_entry *entry; 85 unsigned int ev_idx = new_ev->event - 1; 86 87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 88 return; 89 90 if (ts == 0) 91 ts = ktime_get_ns(); 92 93 mutex_lock(&fh->lock); 94 if (ev_idx < CEC_NUM_CORE_EVENTS) 95 entry = &fh->core_events[ev_idx]; 96 else 97 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 98 if (entry) { 99 if (new_ev->event == CEC_EVENT_LOST_MSGS && 100 fh->queued_events[ev_idx]) { 101 entry->ev.lost_msgs.lost_msgs += 102 new_ev->lost_msgs.lost_msgs; 103 goto unlock; 104 } 105 entry->ev = *new_ev; 106 entry->ev.ts = ts; 107 108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 109 /* Add new msg at the end of the queue */ 110 list_add_tail(&entry->list, &fh->events[ev_idx]); 111 fh->queued_events[ev_idx]++; 112 fh->total_queued_events++; 113 goto unlock; 114 } 115 116 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 117 list_add_tail(&entry->list, &fh->events[ev_idx]); 118 /* drop the oldest event */ 119 entry = list_first_entry(&fh->events[ev_idx], 120 struct cec_event_entry, list); 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 } 125 /* Mark that events were lost */ 126 entry = list_first_entry_or_null(&fh->events[ev_idx], 127 struct cec_event_entry, list); 128 if (entry) 129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 130 131 unlock: 132 mutex_unlock(&fh->lock); 133 wake_up_interruptible(&fh->wait); 134 } 135 136 /* Queue a new event for all open filehandles. */ 137 static void cec_queue_event(struct cec_adapter *adap, 138 const struct cec_event *ev) 139 { 140 u64 ts = ktime_get_ns(); 141 struct cec_fh *fh; 142 143 mutex_lock(&adap->devnode.lock_fhs); 144 list_for_each_entry(fh, &adap->devnode.fhs, list) 145 cec_queue_event_fh(fh, ev, ts); 146 mutex_unlock(&adap->devnode.lock_fhs); 147 } 148 149 /* Notify userspace that the CEC pin changed state at the given time. */ 150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 151 bool dropped_events, ktime_t ts) 152 { 153 struct cec_event ev = { 154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 155 CEC_EVENT_PIN_CEC_LOW, 156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 157 }; 158 struct cec_fh *fh; 159 160 mutex_lock(&adap->devnode.lock_fhs); 161 list_for_each_entry(fh, &adap->devnode.fhs, list) { 162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 164 } 165 mutex_unlock(&adap->devnode.lock_fhs); 166 } 167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 168 169 /* Notify userspace that the HPD pin changed state at the given time. */ 170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 171 { 172 struct cec_event ev = { 173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 174 CEC_EVENT_PIN_HPD_LOW, 175 }; 176 struct cec_fh *fh; 177 178 mutex_lock(&adap->devnode.lock_fhs); 179 list_for_each_entry(fh, &adap->devnode.fhs, list) 180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 181 mutex_unlock(&adap->devnode.lock_fhs); 182 } 183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 184 185 /* Notify userspace that the 5V pin changed state at the given time. */ 186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 187 { 188 struct cec_event ev = { 189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 190 CEC_EVENT_PIN_5V_LOW, 191 }; 192 struct cec_fh *fh; 193 194 mutex_lock(&adap->devnode.lock_fhs); 195 list_for_each_entry(fh, &adap->devnode.fhs, list) 196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 197 mutex_unlock(&adap->devnode.lock_fhs); 198 } 199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 200 201 /* 202 * Queue a new message for this filehandle. 203 * 204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 205 * queue becomes full, then drop the oldest message and keep track 206 * of how many messages we've dropped. 207 */ 208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 209 { 210 static const struct cec_event ev_lost_msgs = { 211 .event = CEC_EVENT_LOST_MSGS, 212 .flags = 0, 213 { 214 .lost_msgs = { 1 }, 215 }, 216 }; 217 struct cec_msg_entry *entry; 218 219 mutex_lock(&fh->lock); 220 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 221 if (entry) { 222 entry->msg = *msg; 223 /* Add new msg at the end of the queue */ 224 list_add_tail(&entry->list, &fh->msgs); 225 226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 227 /* All is fine if there is enough room */ 228 fh->queued_msgs++; 229 mutex_unlock(&fh->lock); 230 wake_up_interruptible(&fh->wait); 231 return; 232 } 233 234 /* 235 * if the message queue is full, then drop the oldest one and 236 * send a lost message event. 237 */ 238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 239 list_del(&entry->list); 240 kfree(entry); 241 } 242 mutex_unlock(&fh->lock); 243 244 /* 245 * We lost a message, either because kmalloc failed or the queue 246 * was full. 247 */ 248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 249 } 250 251 /* 252 * Queue the message for those filehandles that are in monitor mode. 253 * If valid_la is true (this message is for us or was sent by us), 254 * then pass it on to any monitoring filehandle. If this message 255 * isn't for us or from us, then only give it to filehandles that 256 * are in MONITOR_ALL mode. 257 * 258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 259 * set and the CEC adapter was placed in 'monitor all' mode. 260 */ 261 static void cec_queue_msg_monitor(struct cec_adapter *adap, 262 const struct cec_msg *msg, 263 bool valid_la) 264 { 265 struct cec_fh *fh; 266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 267 CEC_MODE_MONITOR_ALL; 268 269 mutex_lock(&adap->devnode.lock_fhs); 270 list_for_each_entry(fh, &adap->devnode.fhs, list) { 271 if (fh->mode_follower >= monitor_mode) 272 cec_queue_msg_fh(fh, msg); 273 } 274 mutex_unlock(&adap->devnode.lock_fhs); 275 } 276 277 /* 278 * Queue the message for follower filehandles. 279 */ 280 static void cec_queue_msg_followers(struct cec_adapter *adap, 281 const struct cec_msg *msg) 282 { 283 struct cec_fh *fh; 284 285 mutex_lock(&adap->devnode.lock_fhs); 286 list_for_each_entry(fh, &adap->devnode.fhs, list) { 287 if (fh->mode_follower == CEC_MODE_FOLLOWER) 288 cec_queue_msg_fh(fh, msg); 289 } 290 mutex_unlock(&adap->devnode.lock_fhs); 291 } 292 293 /* Notify userspace of an adapter state change. */ 294 static void cec_post_state_event(struct cec_adapter *adap) 295 { 296 struct cec_event ev = { 297 .event = CEC_EVENT_STATE_CHANGE, 298 }; 299 300 ev.state_change.phys_addr = adap->phys_addr; 301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 302 ev.state_change.have_conn_info = 303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 304 cec_queue_event(adap, &ev); 305 } 306 307 /* 308 * A CEC transmit (and a possible wait for reply) completed. 309 * If this was in blocking mode, then complete it, otherwise 310 * queue the message for userspace to dequeue later. 311 * 312 * This function is called with adap->lock held. 313 */ 314 static void cec_data_completed(struct cec_data *data) 315 { 316 /* 317 * Delete this transmit from the filehandle's xfer_list since 318 * we're done with it. 319 * 320 * Note that if the filehandle is closed before this transmit 321 * finished, then the release() function will set data->fh to NULL. 322 * Without that we would be referring to a closed filehandle. 323 */ 324 if (data->fh) 325 list_del_init(&data->xfer_list); 326 327 if (data->blocking) { 328 /* 329 * Someone is blocking so mark the message as completed 330 * and call complete. 331 */ 332 data->completed = true; 333 complete(&data->c); 334 } else { 335 /* 336 * No blocking, so just queue the message if needed and 337 * free the memory. 338 */ 339 if (data->fh) 340 cec_queue_msg_fh(data->fh, &data->msg); 341 kfree(data); 342 } 343 } 344 345 /* 346 * A pending CEC transmit needs to be cancelled, either because the CEC 347 * adapter is disabled or the transmit takes an impossibly long time to 348 * finish, or the reply timed out. 349 * 350 * This function is called with adap->lock held. 351 */ 352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status) 353 { 354 struct cec_adapter *adap = data->adap; 355 356 /* 357 * It's either the current transmit, or it is a pending 358 * transmit. Take the appropriate action to clear it. 359 */ 360 if (adap->transmitting == data) { 361 adap->transmitting = NULL; 362 } else { 363 list_del_init(&data->list); 364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 365 if (!WARN_ON(!adap->transmit_queue_sz)) 366 adap->transmit_queue_sz--; 367 } 368 369 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 370 data->msg.rx_ts = ktime_get_ns(); 371 data->msg.rx_status = rx_status; 372 if (!data->blocking) 373 data->msg.tx_status = 0; 374 } else { 375 data->msg.tx_ts = ktime_get_ns(); 376 data->msg.tx_status |= tx_status | 377 CEC_TX_STATUS_MAX_RETRIES; 378 data->msg.tx_error_cnt++; 379 data->attempts = 0; 380 if (!data->blocking) 381 data->msg.rx_status = 0; 382 } 383 384 /* Queue transmitted message for monitoring purposes */ 385 cec_queue_msg_monitor(adap, &data->msg, 1); 386 387 if (!data->blocking && data->msg.sequence) 388 /* Allow drivers to react to a canceled transmit */ 389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg); 390 391 cec_data_completed(data); 392 } 393 394 /* 395 * Flush all pending transmits and cancel any pending timeout work. 396 * 397 * This function is called with adap->lock held. 398 */ 399 static void cec_flush(struct cec_adapter *adap) 400 { 401 struct cec_data *data, *n; 402 403 /* 404 * If the adapter is disabled, or we're asked to stop, 405 * then cancel any pending transmits. 406 */ 407 while (!list_empty(&adap->transmit_queue)) { 408 data = list_first_entry(&adap->transmit_queue, 409 struct cec_data, list); 410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 411 } 412 if (adap->transmitting) 413 adap->transmit_in_progress_aborted = true; 414 415 /* Cancel the pending timeout work. */ 416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 417 if (cancel_delayed_work(&data->work)) 418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 419 /* 420 * If cancel_delayed_work returned false, then 421 * the cec_wait_timeout function is running, 422 * which will call cec_data_completed. So no 423 * need to do anything special in that case. 424 */ 425 } 426 /* 427 * If something went wrong and this counter isn't what it should 428 * be, then this will reset it back to 0. Warn if it is not 0, 429 * since it indicates a bug, either in this framework or in a 430 * CEC driver. 431 */ 432 if (WARN_ON(adap->transmit_queue_sz)) 433 adap->transmit_queue_sz = 0; 434 } 435 436 /* 437 * Main CEC state machine 438 * 439 * Wait until the thread should be stopped, or we are not transmitting and 440 * a new transmit message is queued up, in which case we start transmitting 441 * that message. When the adapter finished transmitting the message it will 442 * call cec_transmit_done(). 443 * 444 * If the adapter is disabled, then remove all queued messages instead. 445 * 446 * If the current transmit times out, then cancel that transmit. 447 */ 448 int cec_thread_func(void *_adap) 449 { 450 struct cec_adapter *adap = _adap; 451 452 for (;;) { 453 unsigned int signal_free_time; 454 struct cec_data *data; 455 bool timeout = false; 456 u8 attempts; 457 458 if (adap->transmit_in_progress) { 459 int err; 460 461 /* 462 * We are transmitting a message, so add a timeout 463 * to prevent the state machine to get stuck waiting 464 * for this message to finalize and add a check to 465 * see if the adapter is disabled in which case the 466 * transmit should be canceled. 467 */ 468 err = wait_event_interruptible_timeout(adap->kthread_waitq, 469 (adap->needs_hpd && 470 (!adap->is_configured && !adap->is_configuring)) || 471 kthread_should_stop() || 472 (!adap->transmit_in_progress && 473 !list_empty(&adap->transmit_queue)), 474 msecs_to_jiffies(adap->xfer_timeout_ms)); 475 timeout = err == 0; 476 } else { 477 /* Otherwise we just wait for something to happen. */ 478 wait_event_interruptible(adap->kthread_waitq, 479 kthread_should_stop() || 480 (!adap->transmit_in_progress && 481 !list_empty(&adap->transmit_queue))); 482 } 483 484 mutex_lock(&adap->lock); 485 486 if ((adap->needs_hpd && 487 (!adap->is_configured && !adap->is_configuring)) || 488 kthread_should_stop()) { 489 cec_flush(adap); 490 goto unlock; 491 } 492 493 if (adap->transmit_in_progress && 494 adap->transmit_in_progress_aborted) { 495 if (adap->transmitting) 496 cec_data_cancel(adap->transmitting, 497 CEC_TX_STATUS_ABORTED, 0); 498 adap->transmit_in_progress = false; 499 adap->transmit_in_progress_aborted = false; 500 goto unlock; 501 } 502 if (adap->transmit_in_progress && timeout) { 503 /* 504 * If we timeout, then log that. Normally this does 505 * not happen and it is an indication of a faulty CEC 506 * adapter driver, or the CEC bus is in some weird 507 * state. On rare occasions it can happen if there is 508 * so much traffic on the bus that the adapter was 509 * unable to transmit for xfer_timeout_ms (2.1s by 510 * default). 511 */ 512 if (adap->transmitting) { 513 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 514 adap->transmitting->msg.len, 515 adap->transmitting->msg.msg); 516 /* Just give up on this. */ 517 cec_data_cancel(adap->transmitting, 518 CEC_TX_STATUS_TIMEOUT, 0); 519 } else { 520 pr_warn("cec-%s: transmit timed out\n", adap->name); 521 } 522 adap->transmit_in_progress = false; 523 adap->tx_timeouts++; 524 goto unlock; 525 } 526 527 /* 528 * If we are still transmitting, or there is nothing new to 529 * transmit, then just continue waiting. 530 */ 531 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 532 goto unlock; 533 534 /* Get a new message to transmit */ 535 data = list_first_entry(&adap->transmit_queue, 536 struct cec_data, list); 537 list_del_init(&data->list); 538 if (!WARN_ON(!data->adap->transmit_queue_sz)) 539 adap->transmit_queue_sz--; 540 541 /* Make this the current transmitting message */ 542 adap->transmitting = data; 543 544 /* 545 * Suggested number of attempts as per the CEC 2.0 spec: 546 * 4 attempts is the default, except for 'secondary poll 547 * messages', i.e. poll messages not sent during the adapter 548 * configuration phase when it allocates logical addresses. 549 */ 550 if (data->msg.len == 1 && adap->is_configured) 551 attempts = 2; 552 else 553 attempts = 4; 554 555 /* Set the suggested signal free time */ 556 if (data->attempts) { 557 /* should be >= 3 data bit periods for a retry */ 558 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 559 } else if (adap->last_initiator != 560 cec_msg_initiator(&data->msg)) { 561 /* should be >= 5 data bit periods for new initiator */ 562 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 563 adap->last_initiator = cec_msg_initiator(&data->msg); 564 } else { 565 /* 566 * should be >= 7 data bit periods for sending another 567 * frame immediately after another. 568 */ 569 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 570 } 571 if (data->attempts == 0) 572 data->attempts = attempts; 573 574 adap->transmit_in_progress_aborted = false; 575 /* Tell the adapter to transmit, cancel on error */ 576 if (call_op(adap, adap_transmit, data->attempts, 577 signal_free_time, &data->msg)) 578 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 579 else 580 adap->transmit_in_progress = true; 581 582 unlock: 583 mutex_unlock(&adap->lock); 584 585 if (kthread_should_stop()) 586 break; 587 } 588 return 0; 589 } 590 591 /* 592 * Called by the CEC adapter if a transmit finished. 593 */ 594 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 595 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 596 u8 error_cnt, ktime_t ts) 597 { 598 struct cec_data *data; 599 struct cec_msg *msg; 600 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 601 low_drive_cnt + error_cnt; 602 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK); 603 bool aborted = adap->transmit_in_progress_aborted; 604 605 dprintk(2, "%s: status 0x%02x\n", __func__, status); 606 if (attempts_made < 1) 607 attempts_made = 1; 608 609 mutex_lock(&adap->lock); 610 data = adap->transmitting; 611 if (!data) { 612 /* 613 * This might happen if a transmit was issued and the cable is 614 * unplugged while the transmit is ongoing. Ignore this 615 * transmit in that case. 616 */ 617 if (!adap->transmit_in_progress) 618 dprintk(1, "%s was called without an ongoing transmit!\n", 619 __func__); 620 adap->transmit_in_progress = false; 621 goto wake_thread; 622 } 623 adap->transmit_in_progress = false; 624 adap->transmit_in_progress_aborted = false; 625 626 msg = &data->msg; 627 628 /* Drivers must fill in the status! */ 629 WARN_ON(status == 0); 630 msg->tx_ts = ktime_to_ns(ts); 631 msg->tx_status |= status; 632 msg->tx_arb_lost_cnt += arb_lost_cnt; 633 msg->tx_nack_cnt += nack_cnt; 634 msg->tx_low_drive_cnt += low_drive_cnt; 635 msg->tx_error_cnt += error_cnt; 636 637 /* Mark that we're done with this transmit */ 638 adap->transmitting = NULL; 639 640 /* 641 * If there are still retry attempts left and there was an error and 642 * the hardware didn't signal that it retried itself (by setting 643 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 644 */ 645 if (!aborted && data->attempts > attempts_made && !done) { 646 /* Retry this message */ 647 data->attempts -= attempts_made; 648 if (msg->timeout) 649 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", 650 msg->len, msg->msg, data->attempts, msg->reply); 651 else 652 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 653 msg->len, msg->msg, data->attempts); 654 /* Add the message in front of the transmit queue */ 655 list_add(&data->list, &adap->transmit_queue); 656 adap->transmit_queue_sz++; 657 goto wake_thread; 658 } 659 660 if (aborted && !done) 661 status |= CEC_TX_STATUS_ABORTED; 662 data->attempts = 0; 663 664 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 665 if (!(status & CEC_TX_STATUS_OK)) 666 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 667 668 /* Queue transmitted message for monitoring purposes */ 669 cec_queue_msg_monitor(adap, msg, 1); 670 671 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 672 msg->timeout) { 673 /* 674 * Queue the message into the wait queue if we want to wait 675 * for a reply. 676 */ 677 list_add_tail(&data->list, &adap->wait_queue); 678 schedule_delayed_work(&data->work, 679 msecs_to_jiffies(msg->timeout)); 680 } else { 681 /* Otherwise we're done */ 682 cec_data_completed(data); 683 } 684 685 wake_thread: 686 /* 687 * Wake up the main thread to see if another message is ready 688 * for transmitting or to retry the current message. 689 */ 690 wake_up_interruptible(&adap->kthread_waitq); 691 mutex_unlock(&adap->lock); 692 } 693 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 694 695 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 696 u8 status, ktime_t ts) 697 { 698 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 699 case CEC_TX_STATUS_OK: 700 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 701 return; 702 case CEC_TX_STATUS_ARB_LOST: 703 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 704 return; 705 case CEC_TX_STATUS_NACK: 706 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 707 return; 708 case CEC_TX_STATUS_LOW_DRIVE: 709 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 710 return; 711 case CEC_TX_STATUS_ERROR: 712 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 713 return; 714 default: 715 /* Should never happen */ 716 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 717 return; 718 } 719 } 720 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 721 722 /* 723 * Called when waiting for a reply times out. 724 */ 725 static void cec_wait_timeout(struct work_struct *work) 726 { 727 struct cec_data *data = container_of(work, struct cec_data, work.work); 728 struct cec_adapter *adap = data->adap; 729 730 mutex_lock(&adap->lock); 731 /* 732 * Sanity check in case the timeout and the arrival of the message 733 * happened at the same time. 734 */ 735 if (list_empty(&data->list)) 736 goto unlock; 737 738 /* Mark the message as timed out */ 739 list_del_init(&data->list); 740 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT); 741 unlock: 742 mutex_unlock(&adap->lock); 743 } 744 745 /* 746 * Transmit a message. The fh argument may be NULL if the transmit is not 747 * associated with a specific filehandle. 748 * 749 * This function is called with adap->lock held. 750 */ 751 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 752 struct cec_fh *fh, bool block) 753 { 754 struct cec_data *data; 755 bool is_raw = msg_is_raw(msg); 756 int err; 757 758 if (adap->devnode.unregistered) 759 return -ENODEV; 760 761 msg->rx_ts = 0; 762 msg->tx_ts = 0; 763 msg->rx_status = 0; 764 msg->tx_status = 0; 765 msg->tx_arb_lost_cnt = 0; 766 msg->tx_nack_cnt = 0; 767 msg->tx_low_drive_cnt = 0; 768 msg->tx_error_cnt = 0; 769 msg->sequence = 0; 770 771 if (msg->reply && msg->timeout == 0) { 772 /* Make sure the timeout isn't 0. */ 773 msg->timeout = 1000; 774 } 775 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; 776 777 if (!msg->timeout) 778 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 779 780 /* Sanity checks */ 781 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 782 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 783 return -EINVAL; 784 } 785 786 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 787 788 if (msg->timeout) 789 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 790 __func__, msg->len, msg->msg, msg->reply, 791 !block ? ", nb" : ""); 792 else 793 dprintk(2, "%s: %*ph%s\n", 794 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 795 796 if (msg->timeout && msg->len == 1) { 797 dprintk(1, "%s: can't reply to poll msg\n", __func__); 798 return -EINVAL; 799 } 800 801 if (is_raw) { 802 if (!capable(CAP_SYS_RAWIO)) 803 return -EPERM; 804 } else { 805 /* A CDC-Only device can only send CDC messages */ 806 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 807 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 808 dprintk(1, "%s: not a CDC message\n", __func__); 809 return -EINVAL; 810 } 811 812 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 813 msg->msg[2] = adap->phys_addr >> 8; 814 msg->msg[3] = adap->phys_addr & 0xff; 815 } 816 817 if (msg->len == 1) { 818 if (cec_msg_destination(msg) == 0xf) { 819 dprintk(1, "%s: invalid poll message\n", 820 __func__); 821 return -EINVAL; 822 } 823 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 824 /* 825 * If the destination is a logical address our 826 * adapter has already claimed, then just NACK 827 * this. It depends on the hardware what it will 828 * do with a POLL to itself (some OK this), so 829 * it is just as easy to handle it here so the 830 * behavior will be consistent. 831 */ 832 msg->tx_ts = ktime_get_ns(); 833 msg->tx_status = CEC_TX_STATUS_NACK | 834 CEC_TX_STATUS_MAX_RETRIES; 835 msg->tx_nack_cnt = 1; 836 msg->sequence = ++adap->sequence; 837 if (!msg->sequence) 838 msg->sequence = ++adap->sequence; 839 return 0; 840 } 841 } 842 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 843 cec_has_log_addr(adap, cec_msg_destination(msg))) { 844 dprintk(1, "%s: destination is the adapter itself\n", 845 __func__); 846 return -EINVAL; 847 } 848 if (msg->len > 1 && adap->is_configured && 849 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 850 dprintk(1, "%s: initiator has unknown logical address %d\n", 851 __func__, cec_msg_initiator(msg)); 852 return -EINVAL; 853 } 854 /* 855 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 856 * transmitted to a TV, even if the adapter is unconfigured. 857 * This makes it possible to detect or wake up displays that 858 * pull down the HPD when in standby. 859 */ 860 if (!adap->is_configured && !adap->is_configuring && 861 (msg->len > 2 || 862 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 863 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 864 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 865 dprintk(1, "%s: adapter is unconfigured\n", __func__); 866 return -ENONET; 867 } 868 } 869 870 if (!adap->is_configured && !adap->is_configuring) { 871 if (adap->needs_hpd) { 872 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 873 __func__); 874 return -ENONET; 875 } 876 if (msg->reply) { 877 dprintk(1, "%s: invalid msg->reply\n", __func__); 878 return -EINVAL; 879 } 880 } 881 882 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 883 dprintk(2, "%s: transmit queue full\n", __func__); 884 return -EBUSY; 885 } 886 887 data = kzalloc(sizeof(*data), GFP_KERNEL); 888 if (!data) 889 return -ENOMEM; 890 891 msg->sequence = ++adap->sequence; 892 if (!msg->sequence) 893 msg->sequence = ++adap->sequence; 894 895 data->msg = *msg; 896 data->fh = fh; 897 data->adap = adap; 898 data->blocking = block; 899 900 init_completion(&data->c); 901 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 902 903 if (fh) 904 list_add_tail(&data->xfer_list, &fh->xfer_list); 905 else 906 INIT_LIST_HEAD(&data->xfer_list); 907 908 list_add_tail(&data->list, &adap->transmit_queue); 909 adap->transmit_queue_sz++; 910 if (!adap->transmitting) 911 wake_up_interruptible(&adap->kthread_waitq); 912 913 /* All done if we don't need to block waiting for completion */ 914 if (!block) 915 return 0; 916 917 /* 918 * Release the lock and wait, retake the lock afterwards. 919 */ 920 mutex_unlock(&adap->lock); 921 err = wait_for_completion_killable(&data->c); 922 cancel_delayed_work_sync(&data->work); 923 mutex_lock(&adap->lock); 924 925 if (err) 926 adap->transmit_in_progress_aborted = true; 927 928 /* Cancel the transmit if it was interrupted */ 929 if (!data->completed) { 930 if (data->msg.tx_status & CEC_TX_STATUS_OK) 931 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 932 else 933 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 934 } 935 936 /* The transmit completed (possibly with an error) */ 937 *msg = data->msg; 938 if (WARN_ON(!list_empty(&data->list))) 939 list_del(&data->list); 940 if (WARN_ON(!list_empty(&data->xfer_list))) 941 list_del(&data->xfer_list); 942 kfree(data); 943 return 0; 944 } 945 946 /* Helper function to be used by drivers and this framework. */ 947 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 948 bool block) 949 { 950 int ret; 951 952 mutex_lock(&adap->lock); 953 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 954 mutex_unlock(&adap->lock); 955 return ret; 956 } 957 EXPORT_SYMBOL_GPL(cec_transmit_msg); 958 959 /* 960 * I don't like forward references but without this the low-level 961 * cec_received_msg() function would come after a bunch of high-level 962 * CEC protocol handling functions. That was very confusing. 963 */ 964 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 965 bool is_reply); 966 967 #define DIRECTED 0x80 968 #define BCAST1_4 0x40 969 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 970 #define BCAST (BCAST1_4 | BCAST2_0) 971 #define BOTH (BCAST | DIRECTED) 972 973 /* 974 * Specify minimum length and whether the message is directed, broadcast 975 * or both. Messages that do not match the criteria are ignored as per 976 * the CEC specification. 977 */ 978 static const u8 cec_msg_size[256] = { 979 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 980 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 981 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 982 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 983 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 984 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 985 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 986 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 987 [CEC_MSG_STANDBY] = 2 | BOTH, 988 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 989 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 990 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 991 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 992 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 993 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 994 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 995 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 996 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 997 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 998 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 999 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 1000 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 1001 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 1002 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 1003 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 1004 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 1005 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 1006 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 1007 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 1008 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 1009 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 1010 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 1011 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 1012 [CEC_MSG_PLAY] = 3 | DIRECTED, 1013 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 1014 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 1015 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 1016 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 1017 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 1018 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1019 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1020 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1021 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1022 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1023 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1024 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1025 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1026 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1027 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1028 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1029 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1030 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1031 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1032 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1033 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1034 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1035 [CEC_MSG_ABORT] = 2 | DIRECTED, 1036 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1037 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1038 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1039 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1040 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1041 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1042 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED, 1043 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1044 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1045 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1046 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1047 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1048 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1049 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1050 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1051 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1052 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1053 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1054 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1055 }; 1056 1057 /* Called by the CEC adapter if a message is received */ 1058 void cec_received_msg_ts(struct cec_adapter *adap, 1059 struct cec_msg *msg, ktime_t ts) 1060 { 1061 struct cec_data *data; 1062 u8 msg_init = cec_msg_initiator(msg); 1063 u8 msg_dest = cec_msg_destination(msg); 1064 u8 cmd = msg->msg[1]; 1065 bool is_reply = false; 1066 bool valid_la = true; 1067 bool monitor_valid_la = true; 1068 u8 min_len = 0; 1069 1070 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1071 return; 1072 1073 if (adap->devnode.unregistered) 1074 return; 1075 1076 /* 1077 * Some CEC adapters will receive the messages that they transmitted. 1078 * This test filters out those messages by checking if we are the 1079 * initiator, and just returning in that case. 1080 * 1081 * Note that this won't work if this is an Unregistered device. 1082 * 1083 * It is bad practice if the hardware receives the message that it 1084 * transmitted and luckily most CEC adapters behave correctly in this 1085 * respect. 1086 */ 1087 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1088 cec_has_log_addr(adap, msg_init)) 1089 return; 1090 1091 msg->rx_ts = ktime_to_ns(ts); 1092 msg->rx_status = CEC_RX_STATUS_OK; 1093 msg->sequence = msg->reply = msg->timeout = 0; 1094 msg->tx_status = 0; 1095 msg->tx_ts = 0; 1096 msg->tx_arb_lost_cnt = 0; 1097 msg->tx_nack_cnt = 0; 1098 msg->tx_low_drive_cnt = 0; 1099 msg->tx_error_cnt = 0; 1100 msg->flags = 0; 1101 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1102 1103 mutex_lock(&adap->lock); 1104 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1105 1106 if (!adap->transmit_in_progress) 1107 adap->last_initiator = 0xff; 1108 1109 /* Check if this message was for us (directed or broadcast). */ 1110 if (!cec_msg_is_broadcast(msg)) { 1111 valid_la = cec_has_log_addr(adap, msg_dest); 1112 monitor_valid_la = valid_la; 1113 } 1114 1115 /* 1116 * Check if the length is not too short or if the message is a 1117 * broadcast message where a directed message was expected or 1118 * vice versa. If so, then the message has to be ignored (according 1119 * to section CEC 7.3 and CEC 12.2). 1120 */ 1121 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1122 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1123 1124 min_len = cec_msg_size[cmd] & 0x1f; 1125 if (msg->len < min_len) 1126 valid_la = false; 1127 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1128 valid_la = false; 1129 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1130 valid_la = false; 1131 else if (cec_msg_is_broadcast(msg) && 1132 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1133 !(dir_fl & BCAST1_4)) 1134 valid_la = false; 1135 } 1136 if (valid_la && min_len) { 1137 /* These messages have special length requirements */ 1138 switch (cmd) { 1139 case CEC_MSG_RECORD_ON: 1140 switch (msg->msg[2]) { 1141 case CEC_OP_RECORD_SRC_OWN: 1142 break; 1143 case CEC_OP_RECORD_SRC_DIGITAL: 1144 if (msg->len < 10) 1145 valid_la = false; 1146 break; 1147 case CEC_OP_RECORD_SRC_ANALOG: 1148 if (msg->len < 7) 1149 valid_la = false; 1150 break; 1151 case CEC_OP_RECORD_SRC_EXT_PLUG: 1152 if (msg->len < 4) 1153 valid_la = false; 1154 break; 1155 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1156 if (msg->len < 5) 1157 valid_la = false; 1158 break; 1159 } 1160 break; 1161 } 1162 } 1163 1164 /* It's a valid message and not a poll or CDC message */ 1165 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1166 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1167 1168 /* The aborted command is in msg[2] */ 1169 if (abort) 1170 cmd = msg->msg[2]; 1171 1172 /* 1173 * Walk over all transmitted messages that are waiting for a 1174 * reply. 1175 */ 1176 list_for_each_entry(data, &adap->wait_queue, list) { 1177 struct cec_msg *dst = &data->msg; 1178 1179 /* 1180 * The *only* CEC message that has two possible replies 1181 * is CEC_MSG_INITIATE_ARC. 1182 * In this case allow either of the two replies. 1183 */ 1184 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1185 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1186 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1187 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || 1188 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) 1189 dst->reply = cmd; 1190 1191 /* Does the command match? */ 1192 if ((abort && cmd != dst->msg[1]) || 1193 (!abort && cmd != dst->reply)) 1194 continue; 1195 1196 /* Does the addressing match? */ 1197 if (msg_init != cec_msg_destination(dst) && 1198 !cec_msg_is_broadcast(dst)) 1199 continue; 1200 1201 /* We got a reply */ 1202 memcpy(dst->msg, msg->msg, msg->len); 1203 dst->len = msg->len; 1204 dst->rx_ts = msg->rx_ts; 1205 dst->rx_status = msg->rx_status; 1206 if (abort) 1207 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1208 msg->flags = dst->flags; 1209 msg->sequence = dst->sequence; 1210 /* Remove it from the wait_queue */ 1211 list_del_init(&data->list); 1212 1213 /* Cancel the pending timeout work */ 1214 if (!cancel_delayed_work(&data->work)) { 1215 mutex_unlock(&adap->lock); 1216 cancel_delayed_work_sync(&data->work); 1217 mutex_lock(&adap->lock); 1218 } 1219 /* 1220 * Mark this as a reply, provided someone is still 1221 * waiting for the answer. 1222 */ 1223 if (data->fh) 1224 is_reply = true; 1225 cec_data_completed(data); 1226 break; 1227 } 1228 } 1229 mutex_unlock(&adap->lock); 1230 1231 /* Pass the message on to any monitoring filehandles */ 1232 cec_queue_msg_monitor(adap, msg, monitor_valid_la); 1233 1234 /* We're done if it is not for us or a poll message */ 1235 if (!valid_la || msg->len <= 1) 1236 return; 1237 1238 if (adap->log_addrs.log_addr_mask == 0) 1239 return; 1240 1241 /* 1242 * Process the message on the protocol level. If is_reply is true, 1243 * then cec_receive_notify() won't pass on the reply to the listener(s) 1244 * since that was already done by cec_data_completed() above. 1245 */ 1246 cec_receive_notify(adap, msg, is_reply); 1247 } 1248 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1249 1250 /* Logical Address Handling */ 1251 1252 /* 1253 * Attempt to claim a specific logical address. 1254 * 1255 * This function is called with adap->lock held. 1256 */ 1257 static int cec_config_log_addr(struct cec_adapter *adap, 1258 unsigned int idx, 1259 unsigned int log_addr) 1260 { 1261 struct cec_log_addrs *las = &adap->log_addrs; 1262 struct cec_msg msg = { }; 1263 const unsigned int max_retries = 2; 1264 unsigned int i; 1265 int err; 1266 1267 if (cec_has_log_addr(adap, log_addr)) 1268 return 0; 1269 1270 /* Send poll message */ 1271 msg.len = 1; 1272 msg.msg[0] = (log_addr << 4) | log_addr; 1273 1274 for (i = 0; i < max_retries; i++) { 1275 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1276 1277 /* 1278 * While trying to poll the physical address was reset 1279 * and the adapter was unconfigured, so bail out. 1280 */ 1281 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID) 1282 return -EINTR; 1283 1284 /* Also bail out if the PA changed while configuring. */ 1285 if (adap->must_reconfigure) 1286 return -EINTR; 1287 1288 if (err) 1289 return err; 1290 1291 /* 1292 * The message was aborted or timed out due to a disconnect or 1293 * unconfigure, just bail out. 1294 */ 1295 if (msg.tx_status & 1296 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT)) 1297 return -EINTR; 1298 if (msg.tx_status & CEC_TX_STATUS_OK) 1299 return 0; 1300 if (msg.tx_status & CEC_TX_STATUS_NACK) 1301 break; 1302 /* 1303 * Retry up to max_retries times if the message was neither 1304 * OKed or NACKed. This can happen due to e.g. a Lost 1305 * Arbitration condition. 1306 */ 1307 } 1308 1309 /* 1310 * If we are unable to get an OK or a NACK after max_retries attempts 1311 * (and note that each attempt already consists of four polls), then 1312 * we assume that something is really weird and that it is not a 1313 * good idea to try and claim this logical address. 1314 */ 1315 if (i == max_retries) { 1316 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n", 1317 log_addr, msg.tx_status); 1318 return 0; 1319 } 1320 1321 /* 1322 * Message not acknowledged, so this logical 1323 * address is free to use. 1324 */ 1325 err = call_op(adap, adap_log_addr, log_addr); 1326 if (err) 1327 return err; 1328 1329 las->log_addr[idx] = log_addr; 1330 las->log_addr_mask |= 1 << log_addr; 1331 return 1; 1332 } 1333 1334 /* 1335 * Unconfigure the adapter: clear all logical addresses and send 1336 * the state changed event. 1337 * 1338 * This function is called with adap->lock held. 1339 */ 1340 static void cec_adap_unconfigure(struct cec_adapter *adap) 1341 { 1342 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1343 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID)); 1344 adap->log_addrs.log_addr_mask = 0; 1345 adap->is_configured = false; 1346 cec_flush(adap); 1347 wake_up_interruptible(&adap->kthread_waitq); 1348 cec_post_state_event(adap); 1349 call_void_op(adap, adap_unconfigured); 1350 } 1351 1352 /* 1353 * Attempt to claim the required logical addresses. 1354 */ 1355 static int cec_config_thread_func(void *arg) 1356 { 1357 /* The various LAs for each type of device */ 1358 static const u8 tv_log_addrs[] = { 1359 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1360 CEC_LOG_ADDR_INVALID 1361 }; 1362 static const u8 record_log_addrs[] = { 1363 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1364 CEC_LOG_ADDR_RECORD_3, 1365 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1366 CEC_LOG_ADDR_INVALID 1367 }; 1368 static const u8 tuner_log_addrs[] = { 1369 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1370 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1371 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1372 CEC_LOG_ADDR_INVALID 1373 }; 1374 static const u8 playback_log_addrs[] = { 1375 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1376 CEC_LOG_ADDR_PLAYBACK_3, 1377 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1378 CEC_LOG_ADDR_INVALID 1379 }; 1380 static const u8 audiosystem_log_addrs[] = { 1381 CEC_LOG_ADDR_AUDIOSYSTEM, 1382 CEC_LOG_ADDR_INVALID 1383 }; 1384 static const u8 specific_use_log_addrs[] = { 1385 CEC_LOG_ADDR_SPECIFIC, 1386 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1387 CEC_LOG_ADDR_INVALID 1388 }; 1389 static const u8 *type2addrs[6] = { 1390 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1391 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1392 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1393 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1394 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1395 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1396 }; 1397 static const u16 type2mask[] = { 1398 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1399 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1400 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1401 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1402 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1403 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1404 }; 1405 struct cec_adapter *adap = arg; 1406 struct cec_log_addrs *las = &adap->log_addrs; 1407 int err; 1408 int i, j; 1409 1410 mutex_lock(&adap->lock); 1411 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1412 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1413 las->log_addr_mask = 0; 1414 1415 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1416 goto configured; 1417 1418 reconfigure: 1419 for (i = 0; i < las->num_log_addrs; i++) { 1420 unsigned int type = las->log_addr_type[i]; 1421 const u8 *la_list; 1422 u8 last_la; 1423 1424 /* 1425 * The TV functionality can only map to physical address 0. 1426 * For any other address, try the Specific functionality 1427 * instead as per the spec. 1428 */ 1429 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1430 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1431 1432 la_list = type2addrs[type]; 1433 last_la = las->log_addr[i]; 1434 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1435 if (last_la == CEC_LOG_ADDR_INVALID || 1436 last_la == CEC_LOG_ADDR_UNREGISTERED || 1437 !((1 << last_la) & type2mask[type])) 1438 last_la = la_list[0]; 1439 1440 err = cec_config_log_addr(adap, i, last_la); 1441 1442 if (adap->must_reconfigure) { 1443 adap->must_reconfigure = false; 1444 las->log_addr_mask = 0; 1445 goto reconfigure; 1446 } 1447 1448 if (err > 0) /* Reused last LA */ 1449 continue; 1450 1451 if (err < 0) 1452 goto unconfigure; 1453 1454 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1455 /* Tried this one already, skip it */ 1456 if (la_list[j] == last_la) 1457 continue; 1458 /* The backup addresses are CEC 2.0 specific */ 1459 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1460 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1461 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1462 continue; 1463 1464 err = cec_config_log_addr(adap, i, la_list[j]); 1465 if (err == 0) /* LA is in use */ 1466 continue; 1467 if (err < 0) 1468 goto unconfigure; 1469 /* Done, claimed an LA */ 1470 break; 1471 } 1472 1473 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1474 dprintk(1, "could not claim LA %d\n", i); 1475 } 1476 1477 if (adap->log_addrs.log_addr_mask == 0 && 1478 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1479 goto unconfigure; 1480 1481 configured: 1482 if (adap->log_addrs.log_addr_mask == 0) { 1483 /* Fall back to unregistered */ 1484 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1485 las->log_addr_mask = 1 << las->log_addr[0]; 1486 for (i = 1; i < las->num_log_addrs; i++) 1487 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1488 } 1489 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1490 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1491 adap->is_configured = true; 1492 adap->is_configuring = false; 1493 adap->must_reconfigure = false; 1494 cec_post_state_event(adap); 1495 1496 /* 1497 * Now post the Report Features and Report Physical Address broadcast 1498 * messages. Note that these are non-blocking transmits, meaning that 1499 * they are just queued up and once adap->lock is unlocked the main 1500 * thread will kick in and start transmitting these. 1501 * 1502 * If after this function is done (but before one or more of these 1503 * messages are actually transmitted) the CEC adapter is unconfigured, 1504 * then any remaining messages will be dropped by the main thread. 1505 */ 1506 for (i = 0; i < las->num_log_addrs; i++) { 1507 struct cec_msg msg = {}; 1508 1509 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1510 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1511 continue; 1512 1513 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1514 1515 /* Report Features must come first according to CEC 2.0 */ 1516 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1517 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1518 cec_fill_msg_report_features(adap, &msg, i); 1519 cec_transmit_msg_fh(adap, &msg, NULL, false); 1520 } 1521 1522 /* Report Physical Address */ 1523 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1524 las->primary_device_type[i]); 1525 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1526 las->log_addr[i], 1527 cec_phys_addr_exp(adap->phys_addr)); 1528 cec_transmit_msg_fh(adap, &msg, NULL, false); 1529 1530 /* Report Vendor ID */ 1531 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1532 cec_msg_device_vendor_id(&msg, 1533 adap->log_addrs.vendor_id); 1534 cec_transmit_msg_fh(adap, &msg, NULL, false); 1535 } 1536 } 1537 adap->kthread_config = NULL; 1538 complete(&adap->config_completion); 1539 mutex_unlock(&adap->lock); 1540 call_void_op(adap, configured); 1541 return 0; 1542 1543 unconfigure: 1544 for (i = 0; i < las->num_log_addrs; i++) 1545 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1546 cec_adap_unconfigure(adap); 1547 adap->is_configuring = false; 1548 adap->must_reconfigure = false; 1549 adap->kthread_config = NULL; 1550 complete(&adap->config_completion); 1551 mutex_unlock(&adap->lock); 1552 return 0; 1553 } 1554 1555 /* 1556 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1557 * logical addresses. 1558 * 1559 * This function is called with adap->lock held. 1560 */ 1561 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1562 { 1563 if (WARN_ON(adap->is_claiming_log_addrs || 1564 adap->is_configuring || adap->is_configured)) 1565 return; 1566 1567 adap->is_claiming_log_addrs = true; 1568 1569 init_completion(&adap->config_completion); 1570 1571 /* Ready to kick off the thread */ 1572 adap->is_configuring = true; 1573 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1574 "ceccfg-%s", adap->name); 1575 if (IS_ERR(adap->kthread_config)) { 1576 adap->kthread_config = NULL; 1577 adap->is_configuring = false; 1578 } else if (block) { 1579 mutex_unlock(&adap->lock); 1580 wait_for_completion(&adap->config_completion); 1581 mutex_lock(&adap->lock); 1582 } 1583 adap->is_claiming_log_addrs = false; 1584 } 1585 1586 /* 1587 * Helper function to enable/disable the CEC adapter. 1588 * 1589 * This function is called with adap->lock held. 1590 */ 1591 int cec_adap_enable(struct cec_adapter *adap) 1592 { 1593 bool enable; 1594 int ret = 0; 1595 1596 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt || 1597 adap->log_addrs.num_log_addrs; 1598 if (adap->needs_hpd) 1599 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID; 1600 1601 if (adap->devnode.unregistered) 1602 enable = false; 1603 1604 if (enable == adap->is_enabled) 1605 return 0; 1606 1607 /* serialize adap_enable */ 1608 mutex_lock(&adap->devnode.lock); 1609 if (enable) { 1610 adap->last_initiator = 0xff; 1611 adap->transmit_in_progress = false; 1612 ret = adap->ops->adap_enable(adap, true); 1613 if (!ret) { 1614 /* 1615 * Enable monitor-all/pin modes if needed. We warn, but 1616 * continue if this fails as this is not a critical error. 1617 */ 1618 if (adap->monitor_all_cnt) 1619 WARN_ON(call_op(adap, adap_monitor_all_enable, true)); 1620 if (adap->monitor_pin_cnt) 1621 WARN_ON(call_op(adap, adap_monitor_pin_enable, true)); 1622 } 1623 } else { 1624 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */ 1625 if (adap->monitor_all_cnt) 1626 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1627 if (adap->monitor_pin_cnt) 1628 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 1629 WARN_ON(adap->ops->adap_enable(adap, false)); 1630 adap->last_initiator = 0xff; 1631 adap->transmit_in_progress = false; 1632 adap->transmit_in_progress_aborted = false; 1633 if (adap->transmitting) 1634 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0); 1635 } 1636 if (!ret) 1637 adap->is_enabled = enable; 1638 wake_up_interruptible(&adap->kthread_waitq); 1639 mutex_unlock(&adap->devnode.lock); 1640 return ret; 1641 } 1642 1643 /* Set a new physical address and send an event notifying userspace of this. 1644 * 1645 * This function is called with adap->lock held. 1646 */ 1647 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1648 { 1649 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID; 1650 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID; 1651 1652 if (phys_addr == adap->phys_addr) 1653 return; 1654 if (!becomes_invalid && adap->devnode.unregistered) 1655 return; 1656 1657 dprintk(1, "new physical address %x.%x.%x.%x\n", 1658 cec_phys_addr_exp(phys_addr)); 1659 if (becomes_invalid || !is_invalid) { 1660 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1661 cec_post_state_event(adap); 1662 cec_adap_unconfigure(adap); 1663 if (becomes_invalid) { 1664 cec_adap_enable(adap); 1665 return; 1666 } 1667 } 1668 1669 adap->phys_addr = phys_addr; 1670 if (is_invalid) 1671 cec_adap_enable(adap); 1672 1673 cec_post_state_event(adap); 1674 if (!adap->log_addrs.num_log_addrs) 1675 return; 1676 if (adap->is_configuring) 1677 adap->must_reconfigure = true; 1678 else 1679 cec_claim_log_addrs(adap, block); 1680 } 1681 1682 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1683 { 1684 if (IS_ERR_OR_NULL(adap)) 1685 return; 1686 1687 mutex_lock(&adap->lock); 1688 __cec_s_phys_addr(adap, phys_addr, block); 1689 mutex_unlock(&adap->lock); 1690 } 1691 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1692 1693 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1694 const struct edid *edid) 1695 { 1696 u16 pa = CEC_PHYS_ADDR_INVALID; 1697 1698 if (edid && edid->extensions) 1699 pa = cec_get_edid_phys_addr((const u8 *)edid, 1700 EDID_LENGTH * (edid->extensions + 1), NULL); 1701 cec_s_phys_addr(adap, pa, false); 1702 } 1703 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1704 1705 void cec_s_conn_info(struct cec_adapter *adap, 1706 const struct cec_connector_info *conn_info) 1707 { 1708 if (IS_ERR_OR_NULL(adap)) 1709 return; 1710 1711 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1712 return; 1713 1714 mutex_lock(&adap->lock); 1715 if (conn_info) 1716 adap->conn_info = *conn_info; 1717 else 1718 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1719 cec_post_state_event(adap); 1720 mutex_unlock(&adap->lock); 1721 } 1722 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1723 1724 /* 1725 * Called from either the ioctl or a driver to set the logical addresses. 1726 * 1727 * This function is called with adap->lock held. 1728 */ 1729 int __cec_s_log_addrs(struct cec_adapter *adap, 1730 struct cec_log_addrs *log_addrs, bool block) 1731 { 1732 u16 type_mask = 0; 1733 int err; 1734 int i; 1735 1736 if (adap->devnode.unregistered) 1737 return -ENODEV; 1738 1739 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1740 if (!adap->log_addrs.num_log_addrs) 1741 return 0; 1742 if (adap->is_configuring || adap->is_configured) 1743 cec_adap_unconfigure(adap); 1744 adap->log_addrs.num_log_addrs = 0; 1745 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1746 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1747 adap->log_addrs.osd_name[0] = '\0'; 1748 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1749 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1750 cec_adap_enable(adap); 1751 return 0; 1752 } 1753 1754 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1755 /* 1756 * Sanitize log_addrs fields if a CDC-Only device is 1757 * requested. 1758 */ 1759 log_addrs->num_log_addrs = 1; 1760 log_addrs->osd_name[0] = '\0'; 1761 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1762 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1763 /* 1764 * This is just an internal convention since a CDC-Only device 1765 * doesn't have to be a switch. But switches already use 1766 * unregistered, so it makes some kind of sense to pick this 1767 * as the primary device. Since a CDC-Only device never sends 1768 * any 'normal' CEC messages this primary device type is never 1769 * sent over the CEC bus. 1770 */ 1771 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1772 log_addrs->all_device_types[0] = 0; 1773 log_addrs->features[0][0] = 0; 1774 log_addrs->features[0][1] = 0; 1775 } 1776 1777 /* Ensure the osd name is 0-terminated */ 1778 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1779 1780 /* Sanity checks */ 1781 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1782 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1783 return -EINVAL; 1784 } 1785 1786 /* 1787 * Vendor ID is a 24 bit number, so check if the value is 1788 * within the correct range. 1789 */ 1790 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1791 (log_addrs->vendor_id & 0xff000000) != 0) { 1792 dprintk(1, "invalid vendor ID\n"); 1793 return -EINVAL; 1794 } 1795 1796 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1797 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1798 dprintk(1, "invalid CEC version\n"); 1799 return -EINVAL; 1800 } 1801 1802 if (log_addrs->num_log_addrs > 1) 1803 for (i = 0; i < log_addrs->num_log_addrs; i++) 1804 if (log_addrs->log_addr_type[i] == 1805 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1806 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1807 return -EINVAL; 1808 } 1809 1810 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1811 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1812 u8 *features = log_addrs->features[i]; 1813 bool op_is_dev_features = false; 1814 unsigned int j; 1815 1816 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1817 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1818 dprintk(1, "unknown logical address type\n"); 1819 return -EINVAL; 1820 } 1821 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1822 dprintk(1, "duplicate logical address type\n"); 1823 return -EINVAL; 1824 } 1825 type_mask |= 1 << log_addrs->log_addr_type[i]; 1826 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1827 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1828 /* Record already contains the playback functionality */ 1829 dprintk(1, "invalid record + playback combination\n"); 1830 return -EINVAL; 1831 } 1832 if (log_addrs->primary_device_type[i] > 1833 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1834 dprintk(1, "unknown primary device type\n"); 1835 return -EINVAL; 1836 } 1837 if (log_addrs->primary_device_type[i] == 2) { 1838 dprintk(1, "invalid primary device type\n"); 1839 return -EINVAL; 1840 } 1841 for (j = 0; j < feature_sz; j++) { 1842 if ((features[j] & 0x80) == 0) { 1843 if (op_is_dev_features) 1844 break; 1845 op_is_dev_features = true; 1846 } 1847 } 1848 if (!op_is_dev_features || j == feature_sz) { 1849 dprintk(1, "malformed features\n"); 1850 return -EINVAL; 1851 } 1852 /* Zero unused part of the feature array */ 1853 memset(features + j + 1, 0, feature_sz - j - 1); 1854 } 1855 1856 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1857 if (log_addrs->num_log_addrs > 2) { 1858 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1859 return -EINVAL; 1860 } 1861 if (log_addrs->num_log_addrs == 2) { 1862 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1863 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1864 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1865 return -EINVAL; 1866 } 1867 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1868 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1869 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1870 return -EINVAL; 1871 } 1872 } 1873 } 1874 1875 /* Zero unused LAs */ 1876 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1877 log_addrs->primary_device_type[i] = 0; 1878 log_addrs->log_addr_type[i] = 0; 1879 log_addrs->all_device_types[i] = 0; 1880 memset(log_addrs->features[i], 0, 1881 sizeof(log_addrs->features[i])); 1882 } 1883 1884 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1885 adap->log_addrs = *log_addrs; 1886 err = cec_adap_enable(adap); 1887 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1888 cec_claim_log_addrs(adap, block); 1889 return err; 1890 } 1891 1892 int cec_s_log_addrs(struct cec_adapter *adap, 1893 struct cec_log_addrs *log_addrs, bool block) 1894 { 1895 int err; 1896 1897 mutex_lock(&adap->lock); 1898 err = __cec_s_log_addrs(adap, log_addrs, block); 1899 mutex_unlock(&adap->lock); 1900 return err; 1901 } 1902 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1903 1904 /* High-level core CEC message handling */ 1905 1906 /* Fill in the Report Features message */ 1907 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1908 struct cec_msg *msg, 1909 unsigned int la_idx) 1910 { 1911 const struct cec_log_addrs *las = &adap->log_addrs; 1912 const u8 *features = las->features[la_idx]; 1913 bool op_is_dev_features = false; 1914 unsigned int idx; 1915 1916 /* Report Features */ 1917 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1918 msg->len = 4; 1919 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1920 msg->msg[2] = adap->log_addrs.cec_version; 1921 msg->msg[3] = las->all_device_types[la_idx]; 1922 1923 /* Write RC Profiles first, then Device Features */ 1924 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1925 msg->msg[msg->len++] = features[idx]; 1926 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1927 if (op_is_dev_features) 1928 break; 1929 op_is_dev_features = true; 1930 } 1931 } 1932 } 1933 1934 /* Transmit the Feature Abort message */ 1935 static int cec_feature_abort_reason(struct cec_adapter *adap, 1936 struct cec_msg *msg, u8 reason) 1937 { 1938 struct cec_msg tx_msg = { }; 1939 1940 /* 1941 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1942 * message! 1943 */ 1944 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1945 return 0; 1946 /* Don't Feature Abort messages from 'Unregistered' */ 1947 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 1948 return 0; 1949 cec_msg_set_reply_to(&tx_msg, msg); 1950 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 1951 return cec_transmit_msg(adap, &tx_msg, false); 1952 } 1953 1954 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 1955 { 1956 return cec_feature_abort_reason(adap, msg, 1957 CEC_OP_ABORT_UNRECOGNIZED_OP); 1958 } 1959 1960 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 1961 { 1962 return cec_feature_abort_reason(adap, msg, 1963 CEC_OP_ABORT_REFUSED); 1964 } 1965 1966 /* 1967 * Called when a CEC message is received. This function will do any 1968 * necessary core processing. The is_reply bool is true if this message 1969 * is a reply to an earlier transmit. 1970 * 1971 * The message is either a broadcast message or a valid directed message. 1972 */ 1973 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 1974 bool is_reply) 1975 { 1976 bool is_broadcast = cec_msg_is_broadcast(msg); 1977 u8 dest_laddr = cec_msg_destination(msg); 1978 u8 init_laddr = cec_msg_initiator(msg); 1979 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 1980 int la_idx = cec_log_addr2idx(adap, dest_laddr); 1981 bool from_unregistered = init_laddr == 0xf; 1982 struct cec_msg tx_cec_msg = { }; 1983 1984 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1985 1986 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 1987 if (cec_is_cdc_only(&adap->log_addrs) && 1988 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 1989 return 0; 1990 1991 /* Allow drivers to process the message first */ 1992 if (adap->ops->received && !adap->devnode.unregistered && 1993 adap->ops->received(adap, msg) != -ENOMSG) 1994 return 0; 1995 1996 /* 1997 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 1998 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 1999 * handled by the CEC core, even if the passthrough mode is on. 2000 * The others are just ignored if passthrough mode is on. 2001 */ 2002 switch (msg->msg[1]) { 2003 case CEC_MSG_GET_CEC_VERSION: 2004 case CEC_MSG_ABORT: 2005 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 2006 case CEC_MSG_GIVE_OSD_NAME: 2007 /* 2008 * These messages reply with a directed message, so ignore if 2009 * the initiator is Unregistered. 2010 */ 2011 if (!adap->passthrough && from_unregistered) 2012 return 0; 2013 fallthrough; 2014 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2015 case CEC_MSG_GIVE_FEATURES: 2016 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2017 /* 2018 * Skip processing these messages if the passthrough mode 2019 * is on. 2020 */ 2021 if (adap->passthrough) 2022 goto skip_processing; 2023 /* Ignore if addressing is wrong */ 2024 if (is_broadcast) 2025 return 0; 2026 break; 2027 2028 case CEC_MSG_USER_CONTROL_PRESSED: 2029 case CEC_MSG_USER_CONTROL_RELEASED: 2030 /* Wrong addressing mode: don't process */ 2031 if (is_broadcast || from_unregistered) 2032 goto skip_processing; 2033 break; 2034 2035 case CEC_MSG_REPORT_PHYSICAL_ADDR: 2036 /* 2037 * This message is always processed, regardless of the 2038 * passthrough setting. 2039 * 2040 * Exception: don't process if wrong addressing mode. 2041 */ 2042 if (!is_broadcast) 2043 goto skip_processing; 2044 break; 2045 2046 default: 2047 break; 2048 } 2049 2050 cec_msg_set_reply_to(&tx_cec_msg, msg); 2051 2052 switch (msg->msg[1]) { 2053 /* The following messages are processed but still passed through */ 2054 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 2055 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 2056 2057 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 2058 cec_phys_addr_exp(pa), init_laddr); 2059 break; 2060 } 2061 2062 case CEC_MSG_USER_CONTROL_PRESSED: 2063 if (!(adap->capabilities & CEC_CAP_RC) || 2064 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2065 break; 2066 2067 #ifdef CONFIG_MEDIA_CEC_RC 2068 switch (msg->msg[2]) { 2069 /* 2070 * Play function, this message can have variable length 2071 * depending on the specific play function that is used. 2072 */ 2073 case CEC_OP_UI_CMD_PLAY_FUNCTION: 2074 if (msg->len == 2) 2075 rc_keydown(adap->rc, RC_PROTO_CEC, 2076 msg->msg[2], 0); 2077 else 2078 rc_keydown(adap->rc, RC_PROTO_CEC, 2079 msg->msg[2] << 8 | msg->msg[3], 0); 2080 break; 2081 /* 2082 * Other function messages that are not handled. 2083 * Currently the RC framework does not allow to supply an 2084 * additional parameter to a keypress. These "keys" contain 2085 * other information such as channel number, an input number 2086 * etc. 2087 * For the time being these messages are not processed by the 2088 * framework and are simply forwarded to the user space. 2089 */ 2090 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2091 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2092 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2093 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2094 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2095 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2096 break; 2097 default: 2098 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2099 break; 2100 } 2101 #endif 2102 break; 2103 2104 case CEC_MSG_USER_CONTROL_RELEASED: 2105 if (!(adap->capabilities & CEC_CAP_RC) || 2106 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2107 break; 2108 #ifdef CONFIG_MEDIA_CEC_RC 2109 rc_keyup(adap->rc); 2110 #endif 2111 break; 2112 2113 /* 2114 * The remaining messages are only processed if the passthrough mode 2115 * is off. 2116 */ 2117 case CEC_MSG_GET_CEC_VERSION: 2118 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2119 return cec_transmit_msg(adap, &tx_cec_msg, false); 2120 2121 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2122 /* Do nothing for CEC switches using addr 15 */ 2123 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2124 return 0; 2125 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2126 return cec_transmit_msg(adap, &tx_cec_msg, false); 2127 2128 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2129 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2130 return cec_feature_abort(adap, msg); 2131 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2132 return cec_transmit_msg(adap, &tx_cec_msg, false); 2133 2134 case CEC_MSG_ABORT: 2135 /* Do nothing for CEC switches */ 2136 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2137 return 0; 2138 return cec_feature_refused(adap, msg); 2139 2140 case CEC_MSG_GIVE_OSD_NAME: { 2141 if (adap->log_addrs.osd_name[0] == 0) 2142 return cec_feature_abort(adap, msg); 2143 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2144 return cec_transmit_msg(adap, &tx_cec_msg, false); 2145 } 2146 2147 case CEC_MSG_GIVE_FEATURES: 2148 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2149 return cec_feature_abort(adap, msg); 2150 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2151 return cec_transmit_msg(adap, &tx_cec_msg, false); 2152 2153 default: 2154 /* 2155 * Unprocessed messages are aborted if userspace isn't doing 2156 * any processing either. 2157 */ 2158 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2159 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2160 return cec_feature_abort(adap, msg); 2161 break; 2162 } 2163 2164 skip_processing: 2165 /* If this was a reply, then we're done, unless otherwise specified */ 2166 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2167 return 0; 2168 2169 /* 2170 * Send to the exclusive follower if there is one, otherwise send 2171 * to all followers. 2172 */ 2173 if (adap->cec_follower) 2174 cec_queue_msg_fh(adap->cec_follower, msg); 2175 else 2176 cec_queue_msg_followers(adap, msg); 2177 return 0; 2178 } 2179 2180 /* 2181 * Helper functions to keep track of the 'monitor all' use count. 2182 * 2183 * These functions are called with adap->lock held. 2184 */ 2185 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2186 { 2187 int ret; 2188 2189 if (adap->monitor_all_cnt++) 2190 return 0; 2191 2192 ret = cec_adap_enable(adap); 2193 if (ret) 2194 adap->monitor_all_cnt--; 2195 return ret; 2196 } 2197 2198 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2199 { 2200 if (WARN_ON(!adap->monitor_all_cnt)) 2201 return; 2202 if (--adap->monitor_all_cnt) 2203 return; 2204 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 2205 cec_adap_enable(adap); 2206 } 2207 2208 /* 2209 * Helper functions to keep track of the 'monitor pin' use count. 2210 * 2211 * These functions are called with adap->lock held. 2212 */ 2213 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2214 { 2215 int ret; 2216 2217 if (adap->monitor_pin_cnt++) 2218 return 0; 2219 2220 ret = cec_adap_enable(adap); 2221 if (ret) 2222 adap->monitor_pin_cnt--; 2223 return ret; 2224 } 2225 2226 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2227 { 2228 if (WARN_ON(!adap->monitor_pin_cnt)) 2229 return; 2230 if (--adap->monitor_pin_cnt) 2231 return; 2232 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 2233 cec_adap_enable(adap); 2234 } 2235 2236 #ifdef CONFIG_DEBUG_FS 2237 /* 2238 * Log the current state of the CEC adapter. 2239 * Very useful for debugging. 2240 */ 2241 int cec_adap_status(struct seq_file *file, void *priv) 2242 { 2243 struct cec_adapter *adap = dev_get_drvdata(file->private); 2244 struct cec_data *data; 2245 2246 mutex_lock(&adap->lock); 2247 seq_printf(file, "enabled: %d\n", adap->is_enabled); 2248 seq_printf(file, "configured: %d\n", adap->is_configured); 2249 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2250 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2251 cec_phys_addr_exp(adap->phys_addr)); 2252 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2253 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2254 if (adap->cec_follower) 2255 seq_printf(file, "has CEC follower%s\n", 2256 adap->passthrough ? " (in passthrough mode)" : ""); 2257 if (adap->cec_initiator) 2258 seq_puts(file, "has CEC initiator\n"); 2259 if (adap->monitor_all_cnt) 2260 seq_printf(file, "file handles in Monitor All mode: %u\n", 2261 adap->monitor_all_cnt); 2262 if (adap->monitor_pin_cnt) 2263 seq_printf(file, "file handles in Monitor Pin mode: %u\n", 2264 adap->monitor_pin_cnt); 2265 if (adap->tx_timeouts) { 2266 seq_printf(file, "transmit timeouts: %u\n", 2267 adap->tx_timeouts); 2268 adap->tx_timeouts = 0; 2269 } 2270 data = adap->transmitting; 2271 if (data) 2272 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", 2273 data->msg.len, data->msg.msg, data->msg.reply, 2274 data->msg.timeout); 2275 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2276 list_for_each_entry(data, &adap->transmit_queue, list) { 2277 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", 2278 data->msg.len, data->msg.msg, data->msg.reply, 2279 data->msg.timeout); 2280 } 2281 list_for_each_entry(data, &adap->wait_queue, list) { 2282 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", 2283 data->msg.len, data->msg.msg, data->msg.reply, 2284 data->msg.timeout); 2285 } 2286 2287 call_void_op(adap, adap_status, file); 2288 mutex_unlock(&adap->lock); 2289 return 0; 2290 } 2291 #endif 2292