xref: /openbmc/linux/drivers/media/cec/core/cec-adap.c (revision abb84c46)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18 
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23 
24 #include "cec-priv.h"
25 
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 					 struct cec_msg *msg,
28 					 unsigned int la_idx);
29 
30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31 {
32 	int i;
33 
34 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35 		if (adap->log_addrs.log_addr[i] == log_addr)
36 			return i;
37 	return -1;
38 }
39 
40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41 {
42 	int i = cec_log_addr2idx(adap, log_addr);
43 
44 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45 }
46 
47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48 			   unsigned int *offset)
49 {
50 	unsigned int loc = cec_get_edid_spa_location(edid, size);
51 
52 	if (offset)
53 		*offset = loc;
54 	if (loc == 0)
55 		return CEC_PHYS_ADDR_INVALID;
56 	return (edid[loc] << 8) | edid[loc + 1];
57 }
58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59 
60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61 				 const struct drm_connector *connector)
62 {
63 	memset(conn_info, 0, sizeof(*conn_info));
64 	conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65 	conn_info->drm.card_no = connector->dev->primary->index;
66 	conn_info->drm.connector_id = connector->base.id;
67 }
68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69 
70 /*
71  * Queue a new event for this filehandle. If ts == 0, then set it
72  * to the current time.
73  *
74  * We keep a queue of at most max_event events where max_event differs
75  * per event. If the queue becomes full, then drop the oldest event and
76  * keep track of how many events we've dropped.
77  */
78 void cec_queue_event_fh(struct cec_fh *fh,
79 			const struct cec_event *new_ev, u64 ts)
80 {
81 	static const u16 max_events[CEC_NUM_EVENTS] = {
82 		1, 1, 800, 800, 8, 8, 8, 8
83 	};
84 	struct cec_event_entry *entry;
85 	unsigned int ev_idx = new_ev->event - 1;
86 
87 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88 		return;
89 
90 	if (ts == 0)
91 		ts = ktime_get_ns();
92 
93 	mutex_lock(&fh->lock);
94 	if (ev_idx < CEC_NUM_CORE_EVENTS)
95 		entry = &fh->core_events[ev_idx];
96 	else
97 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
98 	if (entry) {
99 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100 		    fh->queued_events[ev_idx]) {
101 			entry->ev.lost_msgs.lost_msgs +=
102 				new_ev->lost_msgs.lost_msgs;
103 			goto unlock;
104 		}
105 		entry->ev = *new_ev;
106 		entry->ev.ts = ts;
107 
108 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109 			/* Add new msg at the end of the queue */
110 			list_add_tail(&entry->list, &fh->events[ev_idx]);
111 			fh->queued_events[ev_idx]++;
112 			fh->total_queued_events++;
113 			goto unlock;
114 		}
115 
116 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117 			list_add_tail(&entry->list, &fh->events[ev_idx]);
118 			/* drop the oldest event */
119 			entry = list_first_entry(&fh->events[ev_idx],
120 						 struct cec_event_entry, list);
121 			list_del(&entry->list);
122 			kfree(entry);
123 		}
124 	}
125 	/* Mark that events were lost */
126 	entry = list_first_entry_or_null(&fh->events[ev_idx],
127 					 struct cec_event_entry, list);
128 	if (entry)
129 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130 
131 unlock:
132 	mutex_unlock(&fh->lock);
133 	wake_up_interruptible(&fh->wait);
134 }
135 
136 /* Queue a new event for all open filehandles. */
137 static void cec_queue_event(struct cec_adapter *adap,
138 			    const struct cec_event *ev)
139 {
140 	u64 ts = ktime_get_ns();
141 	struct cec_fh *fh;
142 
143 	mutex_lock(&adap->devnode.lock_fhs);
144 	list_for_each_entry(fh, &adap->devnode.fhs, list)
145 		cec_queue_event_fh(fh, ev, ts);
146 	mutex_unlock(&adap->devnode.lock_fhs);
147 }
148 
149 /* Notify userspace that the CEC pin changed state at the given time. */
150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151 			     bool dropped_events, ktime_t ts)
152 {
153 	struct cec_event ev = {
154 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155 				   CEC_EVENT_PIN_CEC_LOW,
156 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157 	};
158 	struct cec_fh *fh;
159 
160 	mutex_lock(&adap->devnode.lock_fhs);
161 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
162 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
164 	}
165 	mutex_unlock(&adap->devnode.lock_fhs);
166 }
167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168 
169 /* Notify userspace that the HPD pin changed state at the given time. */
170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171 {
172 	struct cec_event ev = {
173 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174 				   CEC_EVENT_PIN_HPD_LOW,
175 	};
176 	struct cec_fh *fh;
177 
178 	mutex_lock(&adap->devnode.lock_fhs);
179 	list_for_each_entry(fh, &adap->devnode.fhs, list)
180 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
181 	mutex_unlock(&adap->devnode.lock_fhs);
182 }
183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184 
185 /* Notify userspace that the 5V pin changed state at the given time. */
186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187 {
188 	struct cec_event ev = {
189 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190 				   CEC_EVENT_PIN_5V_LOW,
191 	};
192 	struct cec_fh *fh;
193 
194 	mutex_lock(&adap->devnode.lock_fhs);
195 	list_for_each_entry(fh, &adap->devnode.fhs, list)
196 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
197 	mutex_unlock(&adap->devnode.lock_fhs);
198 }
199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200 
201 /*
202  * Queue a new message for this filehandle.
203  *
204  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205  * queue becomes full, then drop the oldest message and keep track
206  * of how many messages we've dropped.
207  */
208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209 {
210 	static const struct cec_event ev_lost_msgs = {
211 		.event = CEC_EVENT_LOST_MSGS,
212 		.flags = 0,
213 		{
214 			.lost_msgs = { 1 },
215 		},
216 	};
217 	struct cec_msg_entry *entry;
218 
219 	mutex_lock(&fh->lock);
220 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
221 	if (entry) {
222 		entry->msg = *msg;
223 		/* Add new msg at the end of the queue */
224 		list_add_tail(&entry->list, &fh->msgs);
225 
226 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227 			/* All is fine if there is enough room */
228 			fh->queued_msgs++;
229 			mutex_unlock(&fh->lock);
230 			wake_up_interruptible(&fh->wait);
231 			return;
232 		}
233 
234 		/*
235 		 * if the message queue is full, then drop the oldest one and
236 		 * send a lost message event.
237 		 */
238 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239 		list_del(&entry->list);
240 		kfree(entry);
241 	}
242 	mutex_unlock(&fh->lock);
243 
244 	/*
245 	 * We lost a message, either because kmalloc failed or the queue
246 	 * was full.
247 	 */
248 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
249 }
250 
251 /*
252  * Queue the message for those filehandles that are in monitor mode.
253  * If valid_la is true (this message is for us or was sent by us),
254  * then pass it on to any monitoring filehandle. If this message
255  * isn't for us or from us, then only give it to filehandles that
256  * are in MONITOR_ALL mode.
257  *
258  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259  * set and the CEC adapter was placed in 'monitor all' mode.
260  */
261 static void cec_queue_msg_monitor(struct cec_adapter *adap,
262 				  const struct cec_msg *msg,
263 				  bool valid_la)
264 {
265 	struct cec_fh *fh;
266 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267 				      CEC_MODE_MONITOR_ALL;
268 
269 	mutex_lock(&adap->devnode.lock_fhs);
270 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
271 		if (fh->mode_follower >= monitor_mode)
272 			cec_queue_msg_fh(fh, msg);
273 	}
274 	mutex_unlock(&adap->devnode.lock_fhs);
275 }
276 
277 /*
278  * Queue the message for follower filehandles.
279  */
280 static void cec_queue_msg_followers(struct cec_adapter *adap,
281 				    const struct cec_msg *msg)
282 {
283 	struct cec_fh *fh;
284 
285 	mutex_lock(&adap->devnode.lock_fhs);
286 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
287 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
288 			cec_queue_msg_fh(fh, msg);
289 	}
290 	mutex_unlock(&adap->devnode.lock_fhs);
291 }
292 
293 /* Notify userspace of an adapter state change. */
294 static void cec_post_state_event(struct cec_adapter *adap)
295 {
296 	struct cec_event ev = {
297 		.event = CEC_EVENT_STATE_CHANGE,
298 	};
299 
300 	ev.state_change.phys_addr = adap->phys_addr;
301 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302 	ev.state_change.have_conn_info =
303 		adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304 	cec_queue_event(adap, &ev);
305 }
306 
307 /*
308  * A CEC transmit (and a possible wait for reply) completed.
309  * If this was in blocking mode, then complete it, otherwise
310  * queue the message for userspace to dequeue later.
311  *
312  * This function is called with adap->lock held.
313  */
314 static void cec_data_completed(struct cec_data *data)
315 {
316 	/*
317 	 * Delete this transmit from the filehandle's xfer_list since
318 	 * we're done with it.
319 	 *
320 	 * Note that if the filehandle is closed before this transmit
321 	 * finished, then the release() function will set data->fh to NULL.
322 	 * Without that we would be referring to a closed filehandle.
323 	 */
324 	if (data->fh)
325 		list_del_init(&data->xfer_list);
326 
327 	if (data->blocking) {
328 		/*
329 		 * Someone is blocking so mark the message as completed
330 		 * and call complete.
331 		 */
332 		data->completed = true;
333 		complete(&data->c);
334 	} else {
335 		/*
336 		 * No blocking, so just queue the message if needed and
337 		 * free the memory.
338 		 */
339 		if (data->fh)
340 			cec_queue_msg_fh(data->fh, &data->msg);
341 		kfree(data);
342 	}
343 }
344 
345 /*
346  * A pending CEC transmit needs to be cancelled, either because the CEC
347  * adapter is disabled or the transmit takes an impossibly long time to
348  * finish, or the reply timed out.
349  *
350  * This function is called with adap->lock held.
351  */
352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353 {
354 	struct cec_adapter *adap = data->adap;
355 
356 	/*
357 	 * It's either the current transmit, or it is a pending
358 	 * transmit. Take the appropriate action to clear it.
359 	 */
360 	if (adap->transmitting == data) {
361 		adap->transmitting = NULL;
362 	} else {
363 		list_del_init(&data->list);
364 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365 			if (!WARN_ON(!adap->transmit_queue_sz))
366 				adap->transmit_queue_sz--;
367 	}
368 
369 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370 		data->msg.rx_ts = ktime_get_ns();
371 		data->msg.rx_status = rx_status;
372 		if (!data->blocking)
373 			data->msg.tx_status = 0;
374 	} else {
375 		data->msg.tx_ts = ktime_get_ns();
376 		data->msg.tx_status |= tx_status |
377 				       CEC_TX_STATUS_MAX_RETRIES;
378 		data->msg.tx_error_cnt++;
379 		data->attempts = 0;
380 		if (!data->blocking)
381 			data->msg.rx_status = 0;
382 	}
383 
384 	/* Queue transmitted message for monitoring purposes */
385 	cec_queue_msg_monitor(adap, &data->msg, 1);
386 
387 	if (!data->blocking && data->msg.sequence)
388 		/* Allow drivers to react to a canceled transmit */
389 		call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
390 
391 	cec_data_completed(data);
392 }
393 
394 /*
395  * Flush all pending transmits and cancel any pending timeout work.
396  *
397  * This function is called with adap->lock held.
398  */
399 static void cec_flush(struct cec_adapter *adap)
400 {
401 	struct cec_data *data, *n;
402 
403 	/*
404 	 * If the adapter is disabled, or we're asked to stop,
405 	 * then cancel any pending transmits.
406 	 */
407 	while (!list_empty(&adap->transmit_queue)) {
408 		data = list_first_entry(&adap->transmit_queue,
409 					struct cec_data, list);
410 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
411 	}
412 	if (adap->transmitting)
413 		adap->transmit_in_progress_aborted = true;
414 
415 	/* Cancel the pending timeout work. */
416 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417 		if (cancel_delayed_work(&data->work))
418 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419 		/*
420 		 * If cancel_delayed_work returned false, then
421 		 * the cec_wait_timeout function is running,
422 		 * which will call cec_data_completed. So no
423 		 * need to do anything special in that case.
424 		 */
425 	}
426 	/*
427 	 * If something went wrong and this counter isn't what it should
428 	 * be, then this will reset it back to 0. Warn if it is not 0,
429 	 * since it indicates a bug, either in this framework or in a
430 	 * CEC driver.
431 	 */
432 	if (WARN_ON(adap->transmit_queue_sz))
433 		adap->transmit_queue_sz = 0;
434 }
435 
436 /*
437  * Main CEC state machine
438  *
439  * Wait until the thread should be stopped, or we are not transmitting and
440  * a new transmit message is queued up, in which case we start transmitting
441  * that message. When the adapter finished transmitting the message it will
442  * call cec_transmit_done().
443  *
444  * If the adapter is disabled, then remove all queued messages instead.
445  *
446  * If the current transmit times out, then cancel that transmit.
447  */
448 int cec_thread_func(void *_adap)
449 {
450 	struct cec_adapter *adap = _adap;
451 
452 	for (;;) {
453 		unsigned int signal_free_time;
454 		struct cec_data *data;
455 		bool timeout = false;
456 		u8 attempts;
457 
458 		if (adap->transmit_in_progress) {
459 			int err;
460 
461 			/*
462 			 * We are transmitting a message, so add a timeout
463 			 * to prevent the state machine to get stuck waiting
464 			 * for this message to finalize and add a check to
465 			 * see if the adapter is disabled in which case the
466 			 * transmit should be canceled.
467 			 */
468 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
469 				(adap->needs_hpd &&
470 				 (!adap->is_configured && !adap->is_configuring)) ||
471 				kthread_should_stop() ||
472 				(!adap->transmit_in_progress &&
473 				 !list_empty(&adap->transmit_queue)),
474 				msecs_to_jiffies(adap->xfer_timeout_ms));
475 			timeout = err == 0;
476 		} else {
477 			/* Otherwise we just wait for something to happen. */
478 			wait_event_interruptible(adap->kthread_waitq,
479 				kthread_should_stop() ||
480 				(!adap->transmit_in_progress &&
481 				 !list_empty(&adap->transmit_queue)));
482 		}
483 
484 		mutex_lock(&adap->lock);
485 
486 		if ((adap->needs_hpd &&
487 		     (!adap->is_configured && !adap->is_configuring)) ||
488 		    kthread_should_stop()) {
489 			cec_flush(adap);
490 			goto unlock;
491 		}
492 
493 		if (adap->transmit_in_progress &&
494 		    adap->transmit_in_progress_aborted) {
495 			if (adap->transmitting)
496 				cec_data_cancel(adap->transmitting,
497 						CEC_TX_STATUS_ABORTED, 0);
498 			adap->transmit_in_progress = false;
499 			adap->transmit_in_progress_aborted = false;
500 			goto unlock;
501 		}
502 		if (adap->transmit_in_progress && timeout) {
503 			/*
504 			 * If we timeout, then log that. Normally this does
505 			 * not happen and it is an indication of a faulty CEC
506 			 * adapter driver, or the CEC bus is in some weird
507 			 * state. On rare occasions it can happen if there is
508 			 * so much traffic on the bus that the adapter was
509 			 * unable to transmit for xfer_timeout_ms (2.1s by
510 			 * default).
511 			 */
512 			if (adap->transmitting) {
513 				pr_warn("cec-%s: message %*ph timed out\n", adap->name,
514 					adap->transmitting->msg.len,
515 					adap->transmitting->msg.msg);
516 				/* Just give up on this. */
517 				cec_data_cancel(adap->transmitting,
518 						CEC_TX_STATUS_TIMEOUT, 0);
519 			} else {
520 				pr_warn("cec-%s: transmit timed out\n", adap->name);
521 			}
522 			adap->transmit_in_progress = false;
523 			adap->tx_timeouts++;
524 			goto unlock;
525 		}
526 
527 		/*
528 		 * If we are still transmitting, or there is nothing new to
529 		 * transmit, then just continue waiting.
530 		 */
531 		if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
532 			goto unlock;
533 
534 		/* Get a new message to transmit */
535 		data = list_first_entry(&adap->transmit_queue,
536 					struct cec_data, list);
537 		list_del_init(&data->list);
538 		if (!WARN_ON(!data->adap->transmit_queue_sz))
539 			adap->transmit_queue_sz--;
540 
541 		/* Make this the current transmitting message */
542 		adap->transmitting = data;
543 
544 		/*
545 		 * Suggested number of attempts as per the CEC 2.0 spec:
546 		 * 4 attempts is the default, except for 'secondary poll
547 		 * messages', i.e. poll messages not sent during the adapter
548 		 * configuration phase when it allocates logical addresses.
549 		 */
550 		if (data->msg.len == 1 && adap->is_configured)
551 			attempts = 2;
552 		else
553 			attempts = 4;
554 
555 		/* Set the suggested signal free time */
556 		if (data->attempts) {
557 			/* should be >= 3 data bit periods for a retry */
558 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
559 		} else if (adap->last_initiator !=
560 			   cec_msg_initiator(&data->msg)) {
561 			/* should be >= 5 data bit periods for new initiator */
562 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
563 			adap->last_initiator = cec_msg_initiator(&data->msg);
564 		} else {
565 			/*
566 			 * should be >= 7 data bit periods for sending another
567 			 * frame immediately after another.
568 			 */
569 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
570 		}
571 		if (data->attempts == 0)
572 			data->attempts = attempts;
573 
574 		adap->transmit_in_progress_aborted = false;
575 		/* Tell the adapter to transmit, cancel on error */
576 		if (call_op(adap, adap_transmit, data->attempts,
577 			    signal_free_time, &data->msg))
578 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
579 		else
580 			adap->transmit_in_progress = true;
581 
582 unlock:
583 		mutex_unlock(&adap->lock);
584 
585 		if (kthread_should_stop())
586 			break;
587 	}
588 	return 0;
589 }
590 
591 /*
592  * Called by the CEC adapter if a transmit finished.
593  */
594 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
595 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
596 			  u8 error_cnt, ktime_t ts)
597 {
598 	struct cec_data *data;
599 	struct cec_msg *msg;
600 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
601 				     low_drive_cnt + error_cnt;
602 	bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
603 	bool aborted = adap->transmit_in_progress_aborted;
604 
605 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
606 	if (attempts_made < 1)
607 		attempts_made = 1;
608 
609 	mutex_lock(&adap->lock);
610 	data = adap->transmitting;
611 	if (!data) {
612 		/*
613 		 * This might happen if a transmit was issued and the cable is
614 		 * unplugged while the transmit is ongoing. Ignore this
615 		 * transmit in that case.
616 		 */
617 		if (!adap->transmit_in_progress)
618 			dprintk(1, "%s was called without an ongoing transmit!\n",
619 				__func__);
620 		adap->transmit_in_progress = false;
621 		goto wake_thread;
622 	}
623 	adap->transmit_in_progress = false;
624 	adap->transmit_in_progress_aborted = false;
625 
626 	msg = &data->msg;
627 
628 	/* Drivers must fill in the status! */
629 	WARN_ON(status == 0);
630 	msg->tx_ts = ktime_to_ns(ts);
631 	msg->tx_status |= status;
632 	msg->tx_arb_lost_cnt += arb_lost_cnt;
633 	msg->tx_nack_cnt += nack_cnt;
634 	msg->tx_low_drive_cnt += low_drive_cnt;
635 	msg->tx_error_cnt += error_cnt;
636 
637 	/* Mark that we're done with this transmit */
638 	adap->transmitting = NULL;
639 
640 	/*
641 	 * If there are still retry attempts left and there was an error and
642 	 * the hardware didn't signal that it retried itself (by setting
643 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
644 	 */
645 	if (!aborted && data->attempts > attempts_made && !done) {
646 		/* Retry this message */
647 		data->attempts -= attempts_made;
648 		if (msg->timeout)
649 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
650 				msg->len, msg->msg, data->attempts, msg->reply);
651 		else
652 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
653 				msg->len, msg->msg, data->attempts);
654 		/* Add the message in front of the transmit queue */
655 		list_add(&data->list, &adap->transmit_queue);
656 		adap->transmit_queue_sz++;
657 		goto wake_thread;
658 	}
659 
660 	if (aborted && !done)
661 		status |= CEC_TX_STATUS_ABORTED;
662 	data->attempts = 0;
663 
664 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
665 	if (!(status & CEC_TX_STATUS_OK))
666 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
667 
668 	/* Queue transmitted message for monitoring purposes */
669 	cec_queue_msg_monitor(adap, msg, 1);
670 
671 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
672 	    msg->timeout) {
673 		/*
674 		 * Queue the message into the wait queue if we want to wait
675 		 * for a reply.
676 		 */
677 		list_add_tail(&data->list, &adap->wait_queue);
678 		schedule_delayed_work(&data->work,
679 				      msecs_to_jiffies(msg->timeout));
680 	} else {
681 		/* Otherwise we're done */
682 		cec_data_completed(data);
683 	}
684 
685 wake_thread:
686 	/*
687 	 * Wake up the main thread to see if another message is ready
688 	 * for transmitting or to retry the current message.
689 	 */
690 	wake_up_interruptible(&adap->kthread_waitq);
691 	mutex_unlock(&adap->lock);
692 }
693 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
694 
695 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
696 				  u8 status, ktime_t ts)
697 {
698 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
699 	case CEC_TX_STATUS_OK:
700 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
701 		return;
702 	case CEC_TX_STATUS_ARB_LOST:
703 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
704 		return;
705 	case CEC_TX_STATUS_NACK:
706 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
707 		return;
708 	case CEC_TX_STATUS_LOW_DRIVE:
709 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
710 		return;
711 	case CEC_TX_STATUS_ERROR:
712 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
713 		return;
714 	default:
715 		/* Should never happen */
716 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
717 		return;
718 	}
719 }
720 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
721 
722 /*
723  * Called when waiting for a reply times out.
724  */
725 static void cec_wait_timeout(struct work_struct *work)
726 {
727 	struct cec_data *data = container_of(work, struct cec_data, work.work);
728 	struct cec_adapter *adap = data->adap;
729 
730 	mutex_lock(&adap->lock);
731 	/*
732 	 * Sanity check in case the timeout and the arrival of the message
733 	 * happened at the same time.
734 	 */
735 	if (list_empty(&data->list))
736 		goto unlock;
737 
738 	/* Mark the message as timed out */
739 	list_del_init(&data->list);
740 	cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
741 unlock:
742 	mutex_unlock(&adap->lock);
743 }
744 
745 /*
746  * Transmit a message. The fh argument may be NULL if the transmit is not
747  * associated with a specific filehandle.
748  *
749  * This function is called with adap->lock held.
750  */
751 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
752 			struct cec_fh *fh, bool block)
753 {
754 	struct cec_data *data;
755 	bool is_raw = msg_is_raw(msg);
756 	int err;
757 
758 	if (adap->devnode.unregistered)
759 		return -ENODEV;
760 
761 	msg->rx_ts = 0;
762 	msg->tx_ts = 0;
763 	msg->rx_status = 0;
764 	msg->tx_status = 0;
765 	msg->tx_arb_lost_cnt = 0;
766 	msg->tx_nack_cnt = 0;
767 	msg->tx_low_drive_cnt = 0;
768 	msg->tx_error_cnt = 0;
769 	msg->sequence = 0;
770 
771 	if (msg->reply && msg->timeout == 0) {
772 		/* Make sure the timeout isn't 0. */
773 		msg->timeout = 1000;
774 	}
775 	msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
776 
777 	if (!msg->timeout)
778 		msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
779 
780 	/* Sanity checks */
781 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
782 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
783 		return -EINVAL;
784 	}
785 
786 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
787 
788 	if (msg->timeout)
789 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
790 			__func__, msg->len, msg->msg, msg->reply,
791 			!block ? ", nb" : "");
792 	else
793 		dprintk(2, "%s: %*ph%s\n",
794 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
795 
796 	if (msg->timeout && msg->len == 1) {
797 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
798 		return -EINVAL;
799 	}
800 
801 	if (is_raw) {
802 		if (!capable(CAP_SYS_RAWIO))
803 			return -EPERM;
804 	} else {
805 		/* A CDC-Only device can only send CDC messages */
806 		if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
807 		    (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
808 			dprintk(1, "%s: not a CDC message\n", __func__);
809 			return -EINVAL;
810 		}
811 
812 		if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
813 			msg->msg[2] = adap->phys_addr >> 8;
814 			msg->msg[3] = adap->phys_addr & 0xff;
815 		}
816 
817 		if (msg->len == 1) {
818 			if (cec_msg_destination(msg) == 0xf) {
819 				dprintk(1, "%s: invalid poll message\n",
820 					__func__);
821 				return -EINVAL;
822 			}
823 			if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
824 				/*
825 				 * If the destination is a logical address our
826 				 * adapter has already claimed, then just NACK
827 				 * this. It depends on the hardware what it will
828 				 * do with a POLL to itself (some OK this), so
829 				 * it is just as easy to handle it here so the
830 				 * behavior will be consistent.
831 				 */
832 				msg->tx_ts = ktime_get_ns();
833 				msg->tx_status = CEC_TX_STATUS_NACK |
834 					CEC_TX_STATUS_MAX_RETRIES;
835 				msg->tx_nack_cnt = 1;
836 				msg->sequence = ++adap->sequence;
837 				if (!msg->sequence)
838 					msg->sequence = ++adap->sequence;
839 				return 0;
840 			}
841 		}
842 		if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
843 		    cec_has_log_addr(adap, cec_msg_destination(msg))) {
844 			dprintk(1, "%s: destination is the adapter itself\n",
845 				__func__);
846 			return -EINVAL;
847 		}
848 		if (msg->len > 1 && adap->is_configured &&
849 		    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
850 			dprintk(1, "%s: initiator has unknown logical address %d\n",
851 				__func__, cec_msg_initiator(msg));
852 			return -EINVAL;
853 		}
854 		/*
855 		 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
856 		 * transmitted to a TV, even if the adapter is unconfigured.
857 		 * This makes it possible to detect or wake up displays that
858 		 * pull down the HPD when in standby.
859 		 */
860 		if (!adap->is_configured && !adap->is_configuring &&
861 		    (msg->len > 2 ||
862 		     cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
863 		     (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
864 		      msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
865 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
866 			return -ENONET;
867 		}
868 	}
869 
870 	if (!adap->is_configured && !adap->is_configuring) {
871 		if (adap->needs_hpd) {
872 			dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
873 				__func__);
874 			return -ENONET;
875 		}
876 		if (msg->reply) {
877 			dprintk(1, "%s: invalid msg->reply\n", __func__);
878 			return -EINVAL;
879 		}
880 	}
881 
882 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
883 		dprintk(2, "%s: transmit queue full\n", __func__);
884 		return -EBUSY;
885 	}
886 
887 	data = kzalloc(sizeof(*data), GFP_KERNEL);
888 	if (!data)
889 		return -ENOMEM;
890 
891 	msg->sequence = ++adap->sequence;
892 	if (!msg->sequence)
893 		msg->sequence = ++adap->sequence;
894 
895 	data->msg = *msg;
896 	data->fh = fh;
897 	data->adap = adap;
898 	data->blocking = block;
899 
900 	init_completion(&data->c);
901 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
902 
903 	if (fh)
904 		list_add_tail(&data->xfer_list, &fh->xfer_list);
905 	else
906 		INIT_LIST_HEAD(&data->xfer_list);
907 
908 	list_add_tail(&data->list, &adap->transmit_queue);
909 	adap->transmit_queue_sz++;
910 	if (!adap->transmitting)
911 		wake_up_interruptible(&adap->kthread_waitq);
912 
913 	/* All done if we don't need to block waiting for completion */
914 	if (!block)
915 		return 0;
916 
917 	/*
918 	 * Release the lock and wait, retake the lock afterwards.
919 	 */
920 	mutex_unlock(&adap->lock);
921 	err = wait_for_completion_killable(&data->c);
922 	cancel_delayed_work_sync(&data->work);
923 	mutex_lock(&adap->lock);
924 
925 	if (err)
926 		adap->transmit_in_progress_aborted = true;
927 
928 	/* Cancel the transmit if it was interrupted */
929 	if (!data->completed) {
930 		if (data->msg.tx_status & CEC_TX_STATUS_OK)
931 			cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
932 		else
933 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
934 	}
935 
936 	/* The transmit completed (possibly with an error) */
937 	*msg = data->msg;
938 	if (WARN_ON(!list_empty(&data->list)))
939 		list_del(&data->list);
940 	if (WARN_ON(!list_empty(&data->xfer_list)))
941 		list_del(&data->xfer_list);
942 	kfree(data);
943 	return 0;
944 }
945 
946 /* Helper function to be used by drivers and this framework. */
947 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
948 		     bool block)
949 {
950 	int ret;
951 
952 	mutex_lock(&adap->lock);
953 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
954 	mutex_unlock(&adap->lock);
955 	return ret;
956 }
957 EXPORT_SYMBOL_GPL(cec_transmit_msg);
958 
959 /*
960  * I don't like forward references but without this the low-level
961  * cec_received_msg() function would come after a bunch of high-level
962  * CEC protocol handling functions. That was very confusing.
963  */
964 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
965 			      bool is_reply);
966 
967 #define DIRECTED	0x80
968 #define BCAST1_4	0x40
969 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
970 #define BCAST		(BCAST1_4 | BCAST2_0)
971 #define BOTH		(BCAST | DIRECTED)
972 
973 /*
974  * Specify minimum length and whether the message is directed, broadcast
975  * or both. Messages that do not match the criteria are ignored as per
976  * the CEC specification.
977  */
978 static const u8 cec_msg_size[256] = {
979 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
980 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
981 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
982 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
983 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
984 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
985 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
986 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
987 	[CEC_MSG_STANDBY] = 2 | BOTH,
988 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
989 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
990 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
991 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
992 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
993 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
994 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
995 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
996 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
997 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
998 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
999 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1000 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1001 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1002 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1003 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1004 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1005 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1006 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1007 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1008 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1009 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1010 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1011 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1012 	[CEC_MSG_PLAY] = 3 | DIRECTED,
1013 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1014 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1015 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1016 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1017 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1018 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1019 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1020 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1021 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1022 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1023 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1024 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1025 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1026 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1027 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1028 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1029 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1030 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1031 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1032 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1033 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1034 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1035 	[CEC_MSG_ABORT] = 2 | DIRECTED,
1036 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1037 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1038 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1039 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1040 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1041 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1042 	[CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1043 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1044 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1045 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1046 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1047 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1048 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1049 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1050 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1051 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1052 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1053 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1054 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1055 };
1056 
1057 /* Called by the CEC adapter if a message is received */
1058 void cec_received_msg_ts(struct cec_adapter *adap,
1059 			 struct cec_msg *msg, ktime_t ts)
1060 {
1061 	struct cec_data *data;
1062 	u8 msg_init = cec_msg_initiator(msg);
1063 	u8 msg_dest = cec_msg_destination(msg);
1064 	u8 cmd = msg->msg[1];
1065 	bool is_reply = false;
1066 	bool valid_la = true;
1067 	bool monitor_valid_la = true;
1068 	u8 min_len = 0;
1069 
1070 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1071 		return;
1072 
1073 	if (adap->devnode.unregistered)
1074 		return;
1075 
1076 	/*
1077 	 * Some CEC adapters will receive the messages that they transmitted.
1078 	 * This test filters out those messages by checking if we are the
1079 	 * initiator, and just returning in that case.
1080 	 *
1081 	 * Note that this won't work if this is an Unregistered device.
1082 	 *
1083 	 * It is bad practice if the hardware receives the message that it
1084 	 * transmitted and luckily most CEC adapters behave correctly in this
1085 	 * respect.
1086 	 */
1087 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1088 	    cec_has_log_addr(adap, msg_init))
1089 		return;
1090 
1091 	msg->rx_ts = ktime_to_ns(ts);
1092 	msg->rx_status = CEC_RX_STATUS_OK;
1093 	msg->sequence = msg->reply = msg->timeout = 0;
1094 	msg->tx_status = 0;
1095 	msg->tx_ts = 0;
1096 	msg->tx_arb_lost_cnt = 0;
1097 	msg->tx_nack_cnt = 0;
1098 	msg->tx_low_drive_cnt = 0;
1099 	msg->tx_error_cnt = 0;
1100 	msg->flags = 0;
1101 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1102 
1103 	mutex_lock(&adap->lock);
1104 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1105 
1106 	if (!adap->transmit_in_progress)
1107 		adap->last_initiator = 0xff;
1108 
1109 	/* Check if this message was for us (directed or broadcast). */
1110 	if (!cec_msg_is_broadcast(msg)) {
1111 		valid_la = cec_has_log_addr(adap, msg_dest);
1112 		monitor_valid_la = valid_la;
1113 	}
1114 
1115 	/*
1116 	 * Check if the length is not too short or if the message is a
1117 	 * broadcast message where a directed message was expected or
1118 	 * vice versa. If so, then the message has to be ignored (according
1119 	 * to section CEC 7.3 and CEC 12.2).
1120 	 */
1121 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1122 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1123 
1124 		min_len = cec_msg_size[cmd] & 0x1f;
1125 		if (msg->len < min_len)
1126 			valid_la = false;
1127 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1128 			valid_la = false;
1129 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1130 			valid_la = false;
1131 		else if (cec_msg_is_broadcast(msg) &&
1132 			 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1133 			 !(dir_fl & BCAST1_4))
1134 			valid_la = false;
1135 	}
1136 	if (valid_la && min_len) {
1137 		/* These messages have special length requirements */
1138 		switch (cmd) {
1139 		case CEC_MSG_RECORD_ON:
1140 			switch (msg->msg[2]) {
1141 			case CEC_OP_RECORD_SRC_OWN:
1142 				break;
1143 			case CEC_OP_RECORD_SRC_DIGITAL:
1144 				if (msg->len < 10)
1145 					valid_la = false;
1146 				break;
1147 			case CEC_OP_RECORD_SRC_ANALOG:
1148 				if (msg->len < 7)
1149 					valid_la = false;
1150 				break;
1151 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1152 				if (msg->len < 4)
1153 					valid_la = false;
1154 				break;
1155 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1156 				if (msg->len < 5)
1157 					valid_la = false;
1158 				break;
1159 			}
1160 			break;
1161 		}
1162 	}
1163 
1164 	/* It's a valid message and not a poll or CDC message */
1165 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1166 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1167 
1168 		/* The aborted command is in msg[2] */
1169 		if (abort)
1170 			cmd = msg->msg[2];
1171 
1172 		/*
1173 		 * Walk over all transmitted messages that are waiting for a
1174 		 * reply.
1175 		 */
1176 		list_for_each_entry(data, &adap->wait_queue, list) {
1177 			struct cec_msg *dst = &data->msg;
1178 
1179 			/*
1180 			 * The *only* CEC message that has two possible replies
1181 			 * is CEC_MSG_INITIATE_ARC.
1182 			 * In this case allow either of the two replies.
1183 			 */
1184 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1185 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1186 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1187 			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1188 			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1189 				dst->reply = cmd;
1190 
1191 			/* Does the command match? */
1192 			if ((abort && cmd != dst->msg[1]) ||
1193 			    (!abort && cmd != dst->reply))
1194 				continue;
1195 
1196 			/* Does the addressing match? */
1197 			if (msg_init != cec_msg_destination(dst) &&
1198 			    !cec_msg_is_broadcast(dst))
1199 				continue;
1200 
1201 			/* We got a reply */
1202 			memcpy(dst->msg, msg->msg, msg->len);
1203 			dst->len = msg->len;
1204 			dst->rx_ts = msg->rx_ts;
1205 			dst->rx_status = msg->rx_status;
1206 			if (abort)
1207 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1208 			msg->flags = dst->flags;
1209 			msg->sequence = dst->sequence;
1210 			/* Remove it from the wait_queue */
1211 			list_del_init(&data->list);
1212 
1213 			/* Cancel the pending timeout work */
1214 			if (!cancel_delayed_work(&data->work)) {
1215 				mutex_unlock(&adap->lock);
1216 				cancel_delayed_work_sync(&data->work);
1217 				mutex_lock(&adap->lock);
1218 			}
1219 			/*
1220 			 * Mark this as a reply, provided someone is still
1221 			 * waiting for the answer.
1222 			 */
1223 			if (data->fh)
1224 				is_reply = true;
1225 			cec_data_completed(data);
1226 			break;
1227 		}
1228 	}
1229 	mutex_unlock(&adap->lock);
1230 
1231 	/* Pass the message on to any monitoring filehandles */
1232 	cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1233 
1234 	/* We're done if it is not for us or a poll message */
1235 	if (!valid_la || msg->len <= 1)
1236 		return;
1237 
1238 	if (adap->log_addrs.log_addr_mask == 0)
1239 		return;
1240 
1241 	/*
1242 	 * Process the message on the protocol level. If is_reply is true,
1243 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1244 	 * since that was already done by cec_data_completed() above.
1245 	 */
1246 	cec_receive_notify(adap, msg, is_reply);
1247 }
1248 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1249 
1250 /* Logical Address Handling */
1251 
1252 /*
1253  * Attempt to claim a specific logical address.
1254  *
1255  * This function is called with adap->lock held.
1256  */
1257 static int cec_config_log_addr(struct cec_adapter *adap,
1258 			       unsigned int idx,
1259 			       unsigned int log_addr)
1260 {
1261 	struct cec_log_addrs *las = &adap->log_addrs;
1262 	struct cec_msg msg = { };
1263 	const unsigned int max_retries = 2;
1264 	unsigned int i;
1265 	int err;
1266 
1267 	if (cec_has_log_addr(adap, log_addr))
1268 		return 0;
1269 
1270 	/* Send poll message */
1271 	msg.len = 1;
1272 	msg.msg[0] = (log_addr << 4) | log_addr;
1273 
1274 	for (i = 0; i < max_retries; i++) {
1275 		err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1276 
1277 		/*
1278 		 * While trying to poll the physical address was reset
1279 		 * and the adapter was unconfigured, so bail out.
1280 		 */
1281 		if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1282 			return -EINTR;
1283 
1284 		/* Also bail out if the PA changed while configuring. */
1285 		if (adap->must_reconfigure)
1286 			return -EINTR;
1287 
1288 		if (err)
1289 			return err;
1290 
1291 		/*
1292 		 * The message was aborted or timed out due to a disconnect or
1293 		 * unconfigure, just bail out.
1294 		 */
1295 		if (msg.tx_status &
1296 		    (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1297 			return -EINTR;
1298 		if (msg.tx_status & CEC_TX_STATUS_OK)
1299 			return 0;
1300 		if (msg.tx_status & CEC_TX_STATUS_NACK)
1301 			break;
1302 		/*
1303 		 * Retry up to max_retries times if the message was neither
1304 		 * OKed or NACKed. This can happen due to e.g. a Lost
1305 		 * Arbitration condition.
1306 		 */
1307 	}
1308 
1309 	/*
1310 	 * If we are unable to get an OK or a NACK after max_retries attempts
1311 	 * (and note that each attempt already consists of four polls), then
1312 	 * we assume that something is really weird and that it is not a
1313 	 * good idea to try and claim this logical address.
1314 	 */
1315 	if (i == max_retries) {
1316 		dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1317 			log_addr, msg.tx_status);
1318 		return 0;
1319 	}
1320 
1321 	/*
1322 	 * Message not acknowledged, so this logical
1323 	 * address is free to use.
1324 	 */
1325 	err = call_op(adap, adap_log_addr, log_addr);
1326 	if (err)
1327 		return err;
1328 
1329 	las->log_addr[idx] = log_addr;
1330 	las->log_addr_mask |= 1 << log_addr;
1331 	return 1;
1332 }
1333 
1334 /*
1335  * Unconfigure the adapter: clear all logical addresses and send
1336  * the state changed event.
1337  *
1338  * This function is called with adap->lock held.
1339  */
1340 static void cec_adap_unconfigure(struct cec_adapter *adap)
1341 {
1342 	if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1343 		WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1344 	adap->log_addrs.log_addr_mask = 0;
1345 	adap->is_configured = false;
1346 	cec_flush(adap);
1347 	wake_up_interruptible(&adap->kthread_waitq);
1348 	cec_post_state_event(adap);
1349 	call_void_op(adap, adap_unconfigured);
1350 }
1351 
1352 /*
1353  * Attempt to claim the required logical addresses.
1354  */
1355 static int cec_config_thread_func(void *arg)
1356 {
1357 	/* The various LAs for each type of device */
1358 	static const u8 tv_log_addrs[] = {
1359 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1360 		CEC_LOG_ADDR_INVALID
1361 	};
1362 	static const u8 record_log_addrs[] = {
1363 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1364 		CEC_LOG_ADDR_RECORD_3,
1365 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1366 		CEC_LOG_ADDR_INVALID
1367 	};
1368 	static const u8 tuner_log_addrs[] = {
1369 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1370 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1371 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1372 		CEC_LOG_ADDR_INVALID
1373 	};
1374 	static const u8 playback_log_addrs[] = {
1375 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1376 		CEC_LOG_ADDR_PLAYBACK_3,
1377 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1378 		CEC_LOG_ADDR_INVALID
1379 	};
1380 	static const u8 audiosystem_log_addrs[] = {
1381 		CEC_LOG_ADDR_AUDIOSYSTEM,
1382 		CEC_LOG_ADDR_INVALID
1383 	};
1384 	static const u8 specific_use_log_addrs[] = {
1385 		CEC_LOG_ADDR_SPECIFIC,
1386 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1387 		CEC_LOG_ADDR_INVALID
1388 	};
1389 	static const u8 *type2addrs[6] = {
1390 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1391 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1392 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1393 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1394 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1395 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1396 	};
1397 	static const u16 type2mask[] = {
1398 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1399 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1400 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1401 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1402 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1403 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1404 	};
1405 	struct cec_adapter *adap = arg;
1406 	struct cec_log_addrs *las = &adap->log_addrs;
1407 	int err;
1408 	int i, j;
1409 
1410 	mutex_lock(&adap->lock);
1411 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1412 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1413 	las->log_addr_mask = 0;
1414 
1415 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1416 		goto configured;
1417 
1418 reconfigure:
1419 	for (i = 0; i < las->num_log_addrs; i++) {
1420 		unsigned int type = las->log_addr_type[i];
1421 		const u8 *la_list;
1422 		u8 last_la;
1423 
1424 		/*
1425 		 * The TV functionality can only map to physical address 0.
1426 		 * For any other address, try the Specific functionality
1427 		 * instead as per the spec.
1428 		 */
1429 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1430 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1431 
1432 		la_list = type2addrs[type];
1433 		last_la = las->log_addr[i];
1434 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1435 		if (last_la == CEC_LOG_ADDR_INVALID ||
1436 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1437 		    !((1 << last_la) & type2mask[type]))
1438 			last_la = la_list[0];
1439 
1440 		err = cec_config_log_addr(adap, i, last_la);
1441 
1442 		if (adap->must_reconfigure) {
1443 			adap->must_reconfigure = false;
1444 			las->log_addr_mask = 0;
1445 			goto reconfigure;
1446 		}
1447 
1448 		if (err > 0) /* Reused last LA */
1449 			continue;
1450 
1451 		if (err < 0)
1452 			goto unconfigure;
1453 
1454 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1455 			/* Tried this one already, skip it */
1456 			if (la_list[j] == last_la)
1457 				continue;
1458 			/* The backup addresses are CEC 2.0 specific */
1459 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1460 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1461 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1462 				continue;
1463 
1464 			err = cec_config_log_addr(adap, i, la_list[j]);
1465 			if (err == 0) /* LA is in use */
1466 				continue;
1467 			if (err < 0)
1468 				goto unconfigure;
1469 			/* Done, claimed an LA */
1470 			break;
1471 		}
1472 
1473 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1474 			dprintk(1, "could not claim LA %d\n", i);
1475 	}
1476 
1477 	if (adap->log_addrs.log_addr_mask == 0 &&
1478 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1479 		goto unconfigure;
1480 
1481 configured:
1482 	if (adap->log_addrs.log_addr_mask == 0) {
1483 		/* Fall back to unregistered */
1484 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1485 		las->log_addr_mask = 1 << las->log_addr[0];
1486 		for (i = 1; i < las->num_log_addrs; i++)
1487 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1488 	}
1489 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1490 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1491 	adap->is_configured = true;
1492 	adap->is_configuring = false;
1493 	adap->must_reconfigure = false;
1494 	cec_post_state_event(adap);
1495 
1496 	/*
1497 	 * Now post the Report Features and Report Physical Address broadcast
1498 	 * messages. Note that these are non-blocking transmits, meaning that
1499 	 * they are just queued up and once adap->lock is unlocked the main
1500 	 * thread will kick in and start transmitting these.
1501 	 *
1502 	 * If after this function is done (but before one or more of these
1503 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1504 	 * then any remaining messages will be dropped by the main thread.
1505 	 */
1506 	for (i = 0; i < las->num_log_addrs; i++) {
1507 		struct cec_msg msg = {};
1508 
1509 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1510 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1511 			continue;
1512 
1513 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1514 
1515 		/* Report Features must come first according to CEC 2.0 */
1516 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1517 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1518 			cec_fill_msg_report_features(adap, &msg, i);
1519 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1520 		}
1521 
1522 		/* Report Physical Address */
1523 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1524 					     las->primary_device_type[i]);
1525 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1526 			las->log_addr[i],
1527 			cec_phys_addr_exp(adap->phys_addr));
1528 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1529 
1530 		/* Report Vendor ID */
1531 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1532 			cec_msg_device_vendor_id(&msg,
1533 						 adap->log_addrs.vendor_id);
1534 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1535 		}
1536 	}
1537 	adap->kthread_config = NULL;
1538 	complete(&adap->config_completion);
1539 	mutex_unlock(&adap->lock);
1540 	call_void_op(adap, configured);
1541 	return 0;
1542 
1543 unconfigure:
1544 	for (i = 0; i < las->num_log_addrs; i++)
1545 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1546 	cec_adap_unconfigure(adap);
1547 	adap->is_configuring = false;
1548 	adap->must_reconfigure = false;
1549 	adap->kthread_config = NULL;
1550 	complete(&adap->config_completion);
1551 	mutex_unlock(&adap->lock);
1552 	return 0;
1553 }
1554 
1555 /*
1556  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1557  * logical addresses.
1558  *
1559  * This function is called with adap->lock held.
1560  */
1561 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1562 {
1563 	if (WARN_ON(adap->is_claiming_log_addrs ||
1564 		    adap->is_configuring || adap->is_configured))
1565 		return;
1566 
1567 	adap->is_claiming_log_addrs = true;
1568 
1569 	init_completion(&adap->config_completion);
1570 
1571 	/* Ready to kick off the thread */
1572 	adap->is_configuring = true;
1573 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1574 					   "ceccfg-%s", adap->name);
1575 	if (IS_ERR(adap->kthread_config)) {
1576 		adap->kthread_config = NULL;
1577 		adap->is_configuring = false;
1578 	} else if (block) {
1579 		mutex_unlock(&adap->lock);
1580 		wait_for_completion(&adap->config_completion);
1581 		mutex_lock(&adap->lock);
1582 	}
1583 	adap->is_claiming_log_addrs = false;
1584 }
1585 
1586 /*
1587  * Helper function to enable/disable the CEC adapter.
1588  *
1589  * This function is called with adap->lock held.
1590  */
1591 int cec_adap_enable(struct cec_adapter *adap)
1592 {
1593 	bool enable;
1594 	int ret = 0;
1595 
1596 	enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1597 		 adap->log_addrs.num_log_addrs;
1598 	if (adap->needs_hpd)
1599 		enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1600 
1601 	if (adap->devnode.unregistered)
1602 		enable = false;
1603 
1604 	if (enable == adap->is_enabled)
1605 		return 0;
1606 
1607 	/* serialize adap_enable */
1608 	mutex_lock(&adap->devnode.lock);
1609 	if (enable) {
1610 		adap->last_initiator = 0xff;
1611 		adap->transmit_in_progress = false;
1612 		ret = adap->ops->adap_enable(adap, true);
1613 		if (!ret) {
1614 			/*
1615 			 * Enable monitor-all/pin modes if needed. We warn, but
1616 			 * continue if this fails as this is not a critical error.
1617 			 */
1618 			if (adap->monitor_all_cnt)
1619 				WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1620 			if (adap->monitor_pin_cnt)
1621 				WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1622 		}
1623 	} else {
1624 		/* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1625 		if (adap->monitor_all_cnt)
1626 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1627 		if (adap->monitor_pin_cnt)
1628 			WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1629 		WARN_ON(adap->ops->adap_enable(adap, false));
1630 		adap->last_initiator = 0xff;
1631 		adap->transmit_in_progress = false;
1632 		adap->transmit_in_progress_aborted = false;
1633 		if (adap->transmitting)
1634 			cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1635 	}
1636 	if (!ret)
1637 		adap->is_enabled = enable;
1638 	wake_up_interruptible(&adap->kthread_waitq);
1639 	mutex_unlock(&adap->devnode.lock);
1640 	return ret;
1641 }
1642 
1643 /* Set a new physical address and send an event notifying userspace of this.
1644  *
1645  * This function is called with adap->lock held.
1646  */
1647 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1648 {
1649 	bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1650 	bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1651 
1652 	if (phys_addr == adap->phys_addr)
1653 		return;
1654 	if (!becomes_invalid && adap->devnode.unregistered)
1655 		return;
1656 
1657 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1658 		cec_phys_addr_exp(phys_addr));
1659 	if (becomes_invalid || !is_invalid) {
1660 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1661 		cec_post_state_event(adap);
1662 		cec_adap_unconfigure(adap);
1663 		if (becomes_invalid) {
1664 			cec_adap_enable(adap);
1665 			return;
1666 		}
1667 	}
1668 
1669 	adap->phys_addr = phys_addr;
1670 	if (is_invalid)
1671 		cec_adap_enable(adap);
1672 
1673 	cec_post_state_event(adap);
1674 	if (!adap->log_addrs.num_log_addrs)
1675 		return;
1676 	if (adap->is_configuring)
1677 		adap->must_reconfigure = true;
1678 	else
1679 		cec_claim_log_addrs(adap, block);
1680 }
1681 
1682 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1683 {
1684 	if (IS_ERR_OR_NULL(adap))
1685 		return;
1686 
1687 	mutex_lock(&adap->lock);
1688 	__cec_s_phys_addr(adap, phys_addr, block);
1689 	mutex_unlock(&adap->lock);
1690 }
1691 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1692 
1693 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1694 			       const struct edid *edid)
1695 {
1696 	u16 pa = CEC_PHYS_ADDR_INVALID;
1697 
1698 	if (edid && edid->extensions)
1699 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1700 				EDID_LENGTH * (edid->extensions + 1), NULL);
1701 	cec_s_phys_addr(adap, pa, false);
1702 }
1703 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1704 
1705 void cec_s_conn_info(struct cec_adapter *adap,
1706 		     const struct cec_connector_info *conn_info)
1707 {
1708 	if (IS_ERR_OR_NULL(adap))
1709 		return;
1710 
1711 	if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1712 		return;
1713 
1714 	mutex_lock(&adap->lock);
1715 	if (conn_info)
1716 		adap->conn_info = *conn_info;
1717 	else
1718 		memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1719 	cec_post_state_event(adap);
1720 	mutex_unlock(&adap->lock);
1721 }
1722 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1723 
1724 /*
1725  * Called from either the ioctl or a driver to set the logical addresses.
1726  *
1727  * This function is called with adap->lock held.
1728  */
1729 int __cec_s_log_addrs(struct cec_adapter *adap,
1730 		      struct cec_log_addrs *log_addrs, bool block)
1731 {
1732 	u16 type_mask = 0;
1733 	int err;
1734 	int i;
1735 
1736 	if (adap->devnode.unregistered)
1737 		return -ENODEV;
1738 
1739 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1740 		if (!adap->log_addrs.num_log_addrs)
1741 			return 0;
1742 		if (adap->is_configuring || adap->is_configured)
1743 			cec_adap_unconfigure(adap);
1744 		adap->log_addrs.num_log_addrs = 0;
1745 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1746 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1747 		adap->log_addrs.osd_name[0] = '\0';
1748 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1749 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1750 		cec_adap_enable(adap);
1751 		return 0;
1752 	}
1753 
1754 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1755 		/*
1756 		 * Sanitize log_addrs fields if a CDC-Only device is
1757 		 * requested.
1758 		 */
1759 		log_addrs->num_log_addrs = 1;
1760 		log_addrs->osd_name[0] = '\0';
1761 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1762 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1763 		/*
1764 		 * This is just an internal convention since a CDC-Only device
1765 		 * doesn't have to be a switch. But switches already use
1766 		 * unregistered, so it makes some kind of sense to pick this
1767 		 * as the primary device. Since a CDC-Only device never sends
1768 		 * any 'normal' CEC messages this primary device type is never
1769 		 * sent over the CEC bus.
1770 		 */
1771 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1772 		log_addrs->all_device_types[0] = 0;
1773 		log_addrs->features[0][0] = 0;
1774 		log_addrs->features[0][1] = 0;
1775 	}
1776 
1777 	/* Ensure the osd name is 0-terminated */
1778 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1779 
1780 	/* Sanity checks */
1781 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1782 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1783 		return -EINVAL;
1784 	}
1785 
1786 	/*
1787 	 * Vendor ID is a 24 bit number, so check if the value is
1788 	 * within the correct range.
1789 	 */
1790 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1791 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1792 		dprintk(1, "invalid vendor ID\n");
1793 		return -EINVAL;
1794 	}
1795 
1796 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1797 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1798 		dprintk(1, "invalid CEC version\n");
1799 		return -EINVAL;
1800 	}
1801 
1802 	if (log_addrs->num_log_addrs > 1)
1803 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1804 			if (log_addrs->log_addr_type[i] ==
1805 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1806 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1807 				return -EINVAL;
1808 			}
1809 
1810 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1811 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1812 		u8 *features = log_addrs->features[i];
1813 		bool op_is_dev_features = false;
1814 		unsigned int j;
1815 
1816 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1817 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1818 			dprintk(1, "unknown logical address type\n");
1819 			return -EINVAL;
1820 		}
1821 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1822 			dprintk(1, "duplicate logical address type\n");
1823 			return -EINVAL;
1824 		}
1825 		type_mask |= 1 << log_addrs->log_addr_type[i];
1826 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1827 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1828 			/* Record already contains the playback functionality */
1829 			dprintk(1, "invalid record + playback combination\n");
1830 			return -EINVAL;
1831 		}
1832 		if (log_addrs->primary_device_type[i] >
1833 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1834 			dprintk(1, "unknown primary device type\n");
1835 			return -EINVAL;
1836 		}
1837 		if (log_addrs->primary_device_type[i] == 2) {
1838 			dprintk(1, "invalid primary device type\n");
1839 			return -EINVAL;
1840 		}
1841 		for (j = 0; j < feature_sz; j++) {
1842 			if ((features[j] & 0x80) == 0) {
1843 				if (op_is_dev_features)
1844 					break;
1845 				op_is_dev_features = true;
1846 			}
1847 		}
1848 		if (!op_is_dev_features || j == feature_sz) {
1849 			dprintk(1, "malformed features\n");
1850 			return -EINVAL;
1851 		}
1852 		/* Zero unused part of the feature array */
1853 		memset(features + j + 1, 0, feature_sz - j - 1);
1854 	}
1855 
1856 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1857 		if (log_addrs->num_log_addrs > 2) {
1858 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1859 			return -EINVAL;
1860 		}
1861 		if (log_addrs->num_log_addrs == 2) {
1862 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1863 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1864 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1865 				return -EINVAL;
1866 			}
1867 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1868 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1869 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1870 				return -EINVAL;
1871 			}
1872 		}
1873 	}
1874 
1875 	/* Zero unused LAs */
1876 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1877 		log_addrs->primary_device_type[i] = 0;
1878 		log_addrs->log_addr_type[i] = 0;
1879 		log_addrs->all_device_types[i] = 0;
1880 		memset(log_addrs->features[i], 0,
1881 		       sizeof(log_addrs->features[i]));
1882 	}
1883 
1884 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1885 	adap->log_addrs = *log_addrs;
1886 	err = cec_adap_enable(adap);
1887 	if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1888 		cec_claim_log_addrs(adap, block);
1889 	return err;
1890 }
1891 
1892 int cec_s_log_addrs(struct cec_adapter *adap,
1893 		    struct cec_log_addrs *log_addrs, bool block)
1894 {
1895 	int err;
1896 
1897 	mutex_lock(&adap->lock);
1898 	err = __cec_s_log_addrs(adap, log_addrs, block);
1899 	mutex_unlock(&adap->lock);
1900 	return err;
1901 }
1902 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1903 
1904 /* High-level core CEC message handling */
1905 
1906 /* Fill in the Report Features message */
1907 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1908 					 struct cec_msg *msg,
1909 					 unsigned int la_idx)
1910 {
1911 	const struct cec_log_addrs *las = &adap->log_addrs;
1912 	const u8 *features = las->features[la_idx];
1913 	bool op_is_dev_features = false;
1914 	unsigned int idx;
1915 
1916 	/* Report Features */
1917 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1918 	msg->len = 4;
1919 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1920 	msg->msg[2] = adap->log_addrs.cec_version;
1921 	msg->msg[3] = las->all_device_types[la_idx];
1922 
1923 	/* Write RC Profiles first, then Device Features */
1924 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1925 		msg->msg[msg->len++] = features[idx];
1926 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1927 			if (op_is_dev_features)
1928 				break;
1929 			op_is_dev_features = true;
1930 		}
1931 	}
1932 }
1933 
1934 /* Transmit the Feature Abort message */
1935 static int cec_feature_abort_reason(struct cec_adapter *adap,
1936 				    struct cec_msg *msg, u8 reason)
1937 {
1938 	struct cec_msg tx_msg = { };
1939 
1940 	/*
1941 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1942 	 * message!
1943 	 */
1944 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1945 		return 0;
1946 	/* Don't Feature Abort messages from 'Unregistered' */
1947 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1948 		return 0;
1949 	cec_msg_set_reply_to(&tx_msg, msg);
1950 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1951 	return cec_transmit_msg(adap, &tx_msg, false);
1952 }
1953 
1954 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1955 {
1956 	return cec_feature_abort_reason(adap, msg,
1957 					CEC_OP_ABORT_UNRECOGNIZED_OP);
1958 }
1959 
1960 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1961 {
1962 	return cec_feature_abort_reason(adap, msg,
1963 					CEC_OP_ABORT_REFUSED);
1964 }
1965 
1966 /*
1967  * Called when a CEC message is received. This function will do any
1968  * necessary core processing. The is_reply bool is true if this message
1969  * is a reply to an earlier transmit.
1970  *
1971  * The message is either a broadcast message or a valid directed message.
1972  */
1973 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1974 			      bool is_reply)
1975 {
1976 	bool is_broadcast = cec_msg_is_broadcast(msg);
1977 	u8 dest_laddr = cec_msg_destination(msg);
1978 	u8 init_laddr = cec_msg_initiator(msg);
1979 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1980 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
1981 	bool from_unregistered = init_laddr == 0xf;
1982 	struct cec_msg tx_cec_msg = { };
1983 
1984 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1985 
1986 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
1987 	if (cec_is_cdc_only(&adap->log_addrs) &&
1988 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1989 		return 0;
1990 
1991 	/* Allow drivers to process the message first */
1992 	if (adap->ops->received && !adap->devnode.unregistered &&
1993 	    adap->ops->received(adap, msg) != -ENOMSG)
1994 		return 0;
1995 
1996 	/*
1997 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1998 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1999 	 * handled by the CEC core, even if the passthrough mode is on.
2000 	 * The others are just ignored if passthrough mode is on.
2001 	 */
2002 	switch (msg->msg[1]) {
2003 	case CEC_MSG_GET_CEC_VERSION:
2004 	case CEC_MSG_ABORT:
2005 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2006 	case CEC_MSG_GIVE_OSD_NAME:
2007 		/*
2008 		 * These messages reply with a directed message, so ignore if
2009 		 * the initiator is Unregistered.
2010 		 */
2011 		if (!adap->passthrough && from_unregistered)
2012 			return 0;
2013 		fallthrough;
2014 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2015 	case CEC_MSG_GIVE_FEATURES:
2016 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2017 		/*
2018 		 * Skip processing these messages if the passthrough mode
2019 		 * is on.
2020 		 */
2021 		if (adap->passthrough)
2022 			goto skip_processing;
2023 		/* Ignore if addressing is wrong */
2024 		if (is_broadcast)
2025 			return 0;
2026 		break;
2027 
2028 	case CEC_MSG_USER_CONTROL_PRESSED:
2029 	case CEC_MSG_USER_CONTROL_RELEASED:
2030 		/* Wrong addressing mode: don't process */
2031 		if (is_broadcast || from_unregistered)
2032 			goto skip_processing;
2033 		break;
2034 
2035 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
2036 		/*
2037 		 * This message is always processed, regardless of the
2038 		 * passthrough setting.
2039 		 *
2040 		 * Exception: don't process if wrong addressing mode.
2041 		 */
2042 		if (!is_broadcast)
2043 			goto skip_processing;
2044 		break;
2045 
2046 	default:
2047 		break;
2048 	}
2049 
2050 	cec_msg_set_reply_to(&tx_cec_msg, msg);
2051 
2052 	switch (msg->msg[1]) {
2053 	/* The following messages are processed but still passed through */
2054 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2055 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2056 
2057 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2058 			cec_phys_addr_exp(pa), init_laddr);
2059 		break;
2060 	}
2061 
2062 	case CEC_MSG_USER_CONTROL_PRESSED:
2063 		if (!(adap->capabilities & CEC_CAP_RC) ||
2064 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2065 			break;
2066 
2067 #ifdef CONFIG_MEDIA_CEC_RC
2068 		switch (msg->msg[2]) {
2069 		/*
2070 		 * Play function, this message can have variable length
2071 		 * depending on the specific play function that is used.
2072 		 */
2073 		case CEC_OP_UI_CMD_PLAY_FUNCTION:
2074 			if (msg->len == 2)
2075 				rc_keydown(adap->rc, RC_PROTO_CEC,
2076 					   msg->msg[2], 0);
2077 			else
2078 				rc_keydown(adap->rc, RC_PROTO_CEC,
2079 					   msg->msg[2] << 8 | msg->msg[3], 0);
2080 			break;
2081 		/*
2082 		 * Other function messages that are not handled.
2083 		 * Currently the RC framework does not allow to supply an
2084 		 * additional parameter to a keypress. These "keys" contain
2085 		 * other information such as channel number, an input number
2086 		 * etc.
2087 		 * For the time being these messages are not processed by the
2088 		 * framework and are simply forwarded to the user space.
2089 		 */
2090 		case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2091 		case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2092 		case CEC_OP_UI_CMD_TUNE_FUNCTION:
2093 		case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2094 		case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2095 		case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2096 			break;
2097 		default:
2098 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2099 			break;
2100 		}
2101 #endif
2102 		break;
2103 
2104 	case CEC_MSG_USER_CONTROL_RELEASED:
2105 		if (!(adap->capabilities & CEC_CAP_RC) ||
2106 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2107 			break;
2108 #ifdef CONFIG_MEDIA_CEC_RC
2109 		rc_keyup(adap->rc);
2110 #endif
2111 		break;
2112 
2113 	/*
2114 	 * The remaining messages are only processed if the passthrough mode
2115 	 * is off.
2116 	 */
2117 	case CEC_MSG_GET_CEC_VERSION:
2118 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2119 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2120 
2121 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2122 		/* Do nothing for CEC switches using addr 15 */
2123 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2124 			return 0;
2125 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2126 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2127 
2128 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2129 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2130 			return cec_feature_abort(adap, msg);
2131 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2132 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2133 
2134 	case CEC_MSG_ABORT:
2135 		/* Do nothing for CEC switches */
2136 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2137 			return 0;
2138 		return cec_feature_refused(adap, msg);
2139 
2140 	case CEC_MSG_GIVE_OSD_NAME: {
2141 		if (adap->log_addrs.osd_name[0] == 0)
2142 			return cec_feature_abort(adap, msg);
2143 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2144 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2145 	}
2146 
2147 	case CEC_MSG_GIVE_FEATURES:
2148 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2149 			return cec_feature_abort(adap, msg);
2150 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2151 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2152 
2153 	default:
2154 		/*
2155 		 * Unprocessed messages are aborted if userspace isn't doing
2156 		 * any processing either.
2157 		 */
2158 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2159 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2160 			return cec_feature_abort(adap, msg);
2161 		break;
2162 	}
2163 
2164 skip_processing:
2165 	/* If this was a reply, then we're done, unless otherwise specified */
2166 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2167 		return 0;
2168 
2169 	/*
2170 	 * Send to the exclusive follower if there is one, otherwise send
2171 	 * to all followers.
2172 	 */
2173 	if (adap->cec_follower)
2174 		cec_queue_msg_fh(adap->cec_follower, msg);
2175 	else
2176 		cec_queue_msg_followers(adap, msg);
2177 	return 0;
2178 }
2179 
2180 /*
2181  * Helper functions to keep track of the 'monitor all' use count.
2182  *
2183  * These functions are called with adap->lock held.
2184  */
2185 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2186 {
2187 	int ret;
2188 
2189 	if (adap->monitor_all_cnt++)
2190 		return 0;
2191 
2192 	ret = cec_adap_enable(adap);
2193 	if (ret)
2194 		adap->monitor_all_cnt--;
2195 	return ret;
2196 }
2197 
2198 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2199 {
2200 	if (WARN_ON(!adap->monitor_all_cnt))
2201 		return;
2202 	if (--adap->monitor_all_cnt)
2203 		return;
2204 	WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2205 	cec_adap_enable(adap);
2206 }
2207 
2208 /*
2209  * Helper functions to keep track of the 'monitor pin' use count.
2210  *
2211  * These functions are called with adap->lock held.
2212  */
2213 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2214 {
2215 	int ret;
2216 
2217 	if (adap->monitor_pin_cnt++)
2218 		return 0;
2219 
2220 	ret = cec_adap_enable(adap);
2221 	if (ret)
2222 		adap->monitor_pin_cnt--;
2223 	return ret;
2224 }
2225 
2226 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2227 {
2228 	if (WARN_ON(!adap->monitor_pin_cnt))
2229 		return;
2230 	if (--adap->monitor_pin_cnt)
2231 		return;
2232 	WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2233 	cec_adap_enable(adap);
2234 }
2235 
2236 #ifdef CONFIG_DEBUG_FS
2237 /*
2238  * Log the current state of the CEC adapter.
2239  * Very useful for debugging.
2240  */
2241 int cec_adap_status(struct seq_file *file, void *priv)
2242 {
2243 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2244 	struct cec_data *data;
2245 
2246 	mutex_lock(&adap->lock);
2247 	seq_printf(file, "enabled: %d\n", adap->is_enabled);
2248 	seq_printf(file, "configured: %d\n", adap->is_configured);
2249 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2250 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2251 		   cec_phys_addr_exp(adap->phys_addr));
2252 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2253 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2254 	if (adap->cec_follower)
2255 		seq_printf(file, "has CEC follower%s\n",
2256 			   adap->passthrough ? " (in passthrough mode)" : "");
2257 	if (adap->cec_initiator)
2258 		seq_puts(file, "has CEC initiator\n");
2259 	if (adap->monitor_all_cnt)
2260 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2261 			   adap->monitor_all_cnt);
2262 	if (adap->monitor_pin_cnt)
2263 		seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2264 			   adap->monitor_pin_cnt);
2265 	if (adap->tx_timeouts) {
2266 		seq_printf(file, "transmit timeouts: %u\n",
2267 			   adap->tx_timeouts);
2268 		adap->tx_timeouts = 0;
2269 	}
2270 	data = adap->transmitting;
2271 	if (data)
2272 		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2273 			   data->msg.len, data->msg.msg, data->msg.reply,
2274 			   data->msg.timeout);
2275 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2276 	list_for_each_entry(data, &adap->transmit_queue, list) {
2277 		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2278 			   data->msg.len, data->msg.msg, data->msg.reply,
2279 			   data->msg.timeout);
2280 	}
2281 	list_for_each_entry(data, &adap->wait_queue, list) {
2282 		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2283 			   data->msg.len, data->msg.msg, data->msg.reply,
2284 			   data->msg.timeout);
2285 	}
2286 
2287 	call_void_op(adap, adap_status, file);
2288 	mutex_unlock(&adap->lock);
2289 	return 0;
2290 }
2291 #endif
2292