xref: /openbmc/linux/drivers/media/cec/core/cec-adap.c (revision 869b6ca39c08c5b10eeb29d4b3c4bc433bf8ba5e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18 
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23 
24 #include "cec-priv.h"
25 
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 					 struct cec_msg *msg,
28 					 unsigned int la_idx);
29 
30 /*
31  * 400 ms is the time it takes for one 16 byte message to be
32  * transferred and 5 is the maximum number of retries. Add
33  * another 100 ms as a margin. So if the transmit doesn't
34  * finish before that time something is really wrong and we
35  * have to time out.
36  *
37  * This is a sign that something it really wrong and a warning
38  * will be issued.
39  */
40 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
41 
42 #define call_op(adap, op, arg...) \
43 	(adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
44 
45 #define call_void_op(adap, op, arg...)			\
46 	do {						\
47 		if (adap->ops->op)			\
48 			adap->ops->op(adap, ## arg);	\
49 	} while (0)
50 
51 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
52 {
53 	int i;
54 
55 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
56 		if (adap->log_addrs.log_addr[i] == log_addr)
57 			return i;
58 	return -1;
59 }
60 
61 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
62 {
63 	int i = cec_log_addr2idx(adap, log_addr);
64 
65 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
66 }
67 
68 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
69 			   unsigned int *offset)
70 {
71 	unsigned int loc = cec_get_edid_spa_location(edid, size);
72 
73 	if (offset)
74 		*offset = loc;
75 	if (loc == 0)
76 		return CEC_PHYS_ADDR_INVALID;
77 	return (edid[loc] << 8) | edid[loc + 1];
78 }
79 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
80 
81 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
82 				 const struct drm_connector *connector)
83 {
84 	memset(conn_info, 0, sizeof(*conn_info));
85 	conn_info->type = CEC_CONNECTOR_TYPE_DRM;
86 	conn_info->drm.card_no = connector->dev->primary->index;
87 	conn_info->drm.connector_id = connector->base.id;
88 }
89 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
90 
91 /*
92  * Queue a new event for this filehandle. If ts == 0, then set it
93  * to the current time.
94  *
95  * We keep a queue of at most max_event events where max_event differs
96  * per event. If the queue becomes full, then drop the oldest event and
97  * keep track of how many events we've dropped.
98  */
99 void cec_queue_event_fh(struct cec_fh *fh,
100 			const struct cec_event *new_ev, u64 ts)
101 {
102 	static const u16 max_events[CEC_NUM_EVENTS] = {
103 		1, 1, 800, 800, 8, 8, 8, 8
104 	};
105 	struct cec_event_entry *entry;
106 	unsigned int ev_idx = new_ev->event - 1;
107 
108 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
109 		return;
110 
111 	if (ts == 0)
112 		ts = ktime_get_ns();
113 
114 	mutex_lock(&fh->lock);
115 	if (ev_idx < CEC_NUM_CORE_EVENTS)
116 		entry = &fh->core_events[ev_idx];
117 	else
118 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
119 	if (entry) {
120 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
121 		    fh->queued_events[ev_idx]) {
122 			entry->ev.lost_msgs.lost_msgs +=
123 				new_ev->lost_msgs.lost_msgs;
124 			goto unlock;
125 		}
126 		entry->ev = *new_ev;
127 		entry->ev.ts = ts;
128 
129 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
130 			/* Add new msg at the end of the queue */
131 			list_add_tail(&entry->list, &fh->events[ev_idx]);
132 			fh->queued_events[ev_idx]++;
133 			fh->total_queued_events++;
134 			goto unlock;
135 		}
136 
137 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
138 			list_add_tail(&entry->list, &fh->events[ev_idx]);
139 			/* drop the oldest event */
140 			entry = list_first_entry(&fh->events[ev_idx],
141 						 struct cec_event_entry, list);
142 			list_del(&entry->list);
143 			kfree(entry);
144 		}
145 	}
146 	/* Mark that events were lost */
147 	entry = list_first_entry_or_null(&fh->events[ev_idx],
148 					 struct cec_event_entry, list);
149 	if (entry)
150 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
151 
152 unlock:
153 	mutex_unlock(&fh->lock);
154 	wake_up_interruptible(&fh->wait);
155 }
156 
157 /* Queue a new event for all open filehandles. */
158 static void cec_queue_event(struct cec_adapter *adap,
159 			    const struct cec_event *ev)
160 {
161 	u64 ts = ktime_get_ns();
162 	struct cec_fh *fh;
163 
164 	mutex_lock(&adap->devnode.lock);
165 	list_for_each_entry(fh, &adap->devnode.fhs, list)
166 		cec_queue_event_fh(fh, ev, ts);
167 	mutex_unlock(&adap->devnode.lock);
168 }
169 
170 /* Notify userspace that the CEC pin changed state at the given time. */
171 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
172 			     bool dropped_events, ktime_t ts)
173 {
174 	struct cec_event ev = {
175 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
176 				   CEC_EVENT_PIN_CEC_LOW,
177 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
178 	};
179 	struct cec_fh *fh;
180 
181 	mutex_lock(&adap->devnode.lock);
182 	list_for_each_entry(fh, &adap->devnode.fhs, list)
183 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
184 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
185 	mutex_unlock(&adap->devnode.lock);
186 }
187 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
188 
189 /* Notify userspace that the HPD pin changed state at the given time. */
190 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
191 {
192 	struct cec_event ev = {
193 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
194 				   CEC_EVENT_PIN_HPD_LOW,
195 	};
196 	struct cec_fh *fh;
197 
198 	mutex_lock(&adap->devnode.lock);
199 	list_for_each_entry(fh, &adap->devnode.fhs, list)
200 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
201 	mutex_unlock(&adap->devnode.lock);
202 }
203 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
204 
205 /* Notify userspace that the 5V pin changed state at the given time. */
206 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
207 {
208 	struct cec_event ev = {
209 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
210 				   CEC_EVENT_PIN_5V_LOW,
211 	};
212 	struct cec_fh *fh;
213 
214 	mutex_lock(&adap->devnode.lock);
215 	list_for_each_entry(fh, &adap->devnode.fhs, list)
216 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
217 	mutex_unlock(&adap->devnode.lock);
218 }
219 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
220 
221 /*
222  * Queue a new message for this filehandle.
223  *
224  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
225  * queue becomes full, then drop the oldest message and keep track
226  * of how many messages we've dropped.
227  */
228 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
229 {
230 	static const struct cec_event ev_lost_msgs = {
231 		.event = CEC_EVENT_LOST_MSGS,
232 		.flags = 0,
233 		{
234 			.lost_msgs = { 1 },
235 		},
236 	};
237 	struct cec_msg_entry *entry;
238 
239 	mutex_lock(&fh->lock);
240 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
241 	if (entry) {
242 		entry->msg = *msg;
243 		/* Add new msg at the end of the queue */
244 		list_add_tail(&entry->list, &fh->msgs);
245 
246 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
247 			/* All is fine if there is enough room */
248 			fh->queued_msgs++;
249 			mutex_unlock(&fh->lock);
250 			wake_up_interruptible(&fh->wait);
251 			return;
252 		}
253 
254 		/*
255 		 * if the message queue is full, then drop the oldest one and
256 		 * send a lost message event.
257 		 */
258 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
259 		list_del(&entry->list);
260 		kfree(entry);
261 	}
262 	mutex_unlock(&fh->lock);
263 
264 	/*
265 	 * We lost a message, either because kmalloc failed or the queue
266 	 * was full.
267 	 */
268 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
269 }
270 
271 /*
272  * Queue the message for those filehandles that are in monitor mode.
273  * If valid_la is true (this message is for us or was sent by us),
274  * then pass it on to any monitoring filehandle. If this message
275  * isn't for us or from us, then only give it to filehandles that
276  * are in MONITOR_ALL mode.
277  *
278  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
279  * set and the CEC adapter was placed in 'monitor all' mode.
280  */
281 static void cec_queue_msg_monitor(struct cec_adapter *adap,
282 				  const struct cec_msg *msg,
283 				  bool valid_la)
284 {
285 	struct cec_fh *fh;
286 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
287 				      CEC_MODE_MONITOR_ALL;
288 
289 	mutex_lock(&adap->devnode.lock);
290 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
291 		if (fh->mode_follower >= monitor_mode)
292 			cec_queue_msg_fh(fh, msg);
293 	}
294 	mutex_unlock(&adap->devnode.lock);
295 }
296 
297 /*
298  * Queue the message for follower filehandles.
299  */
300 static void cec_queue_msg_followers(struct cec_adapter *adap,
301 				    const struct cec_msg *msg)
302 {
303 	struct cec_fh *fh;
304 
305 	mutex_lock(&adap->devnode.lock);
306 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
307 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
308 			cec_queue_msg_fh(fh, msg);
309 	}
310 	mutex_unlock(&adap->devnode.lock);
311 }
312 
313 /* Notify userspace of an adapter state change. */
314 static void cec_post_state_event(struct cec_adapter *adap)
315 {
316 	struct cec_event ev = {
317 		.event = CEC_EVENT_STATE_CHANGE,
318 	};
319 
320 	ev.state_change.phys_addr = adap->phys_addr;
321 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
322 	ev.state_change.have_conn_info =
323 		adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
324 	cec_queue_event(adap, &ev);
325 }
326 
327 /*
328  * A CEC transmit (and a possible wait for reply) completed.
329  * If this was in blocking mode, then complete it, otherwise
330  * queue the message for userspace to dequeue later.
331  *
332  * This function is called with adap->lock held.
333  */
334 static void cec_data_completed(struct cec_data *data)
335 {
336 	/*
337 	 * Delete this transmit from the filehandle's xfer_list since
338 	 * we're done with it.
339 	 *
340 	 * Note that if the filehandle is closed before this transmit
341 	 * finished, then the release() function will set data->fh to NULL.
342 	 * Without that we would be referring to a closed filehandle.
343 	 */
344 	if (data->fh)
345 		list_del(&data->xfer_list);
346 
347 	if (data->blocking) {
348 		/*
349 		 * Someone is blocking so mark the message as completed
350 		 * and call complete.
351 		 */
352 		data->completed = true;
353 		complete(&data->c);
354 	} else {
355 		/*
356 		 * No blocking, so just queue the message if needed and
357 		 * free the memory.
358 		 */
359 		if (data->fh)
360 			cec_queue_msg_fh(data->fh, &data->msg);
361 		kfree(data);
362 	}
363 }
364 
365 /*
366  * A pending CEC transmit needs to be cancelled, either because the CEC
367  * adapter is disabled or the transmit takes an impossibly long time to
368  * finish.
369  *
370  * This function is called with adap->lock held.
371  */
372 static void cec_data_cancel(struct cec_data *data, u8 tx_status)
373 {
374 	/*
375 	 * It's either the current transmit, or it is a pending
376 	 * transmit. Take the appropriate action to clear it.
377 	 */
378 	if (data->adap->transmitting == data) {
379 		data->adap->transmitting = NULL;
380 	} else {
381 		list_del_init(&data->list);
382 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
383 			if (!WARN_ON(!data->adap->transmit_queue_sz))
384 				data->adap->transmit_queue_sz--;
385 	}
386 
387 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
388 		data->msg.rx_ts = ktime_get_ns();
389 		data->msg.rx_status = CEC_RX_STATUS_ABORTED;
390 	} else {
391 		data->msg.tx_ts = ktime_get_ns();
392 		data->msg.tx_status |= tx_status |
393 				       CEC_TX_STATUS_MAX_RETRIES;
394 		data->msg.tx_error_cnt++;
395 		data->attempts = 0;
396 	}
397 
398 	/* Queue transmitted message for monitoring purposes */
399 	cec_queue_msg_monitor(data->adap, &data->msg, 1);
400 
401 	cec_data_completed(data);
402 }
403 
404 /*
405  * Flush all pending transmits and cancel any pending timeout work.
406  *
407  * This function is called with adap->lock held.
408  */
409 static void cec_flush(struct cec_adapter *adap)
410 {
411 	struct cec_data *data, *n;
412 
413 	/*
414 	 * If the adapter is disabled, or we're asked to stop,
415 	 * then cancel any pending transmits.
416 	 */
417 	while (!list_empty(&adap->transmit_queue)) {
418 		data = list_first_entry(&adap->transmit_queue,
419 					struct cec_data, list);
420 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
421 	}
422 	if (adap->transmitting)
423 		cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
424 
425 	/* Cancel the pending timeout work. */
426 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
427 		if (cancel_delayed_work(&data->work))
428 			cec_data_cancel(data, CEC_TX_STATUS_OK);
429 		/*
430 		 * If cancel_delayed_work returned false, then
431 		 * the cec_wait_timeout function is running,
432 		 * which will call cec_data_completed. So no
433 		 * need to do anything special in that case.
434 		 */
435 	}
436 	/*
437 	 * If something went wrong and this counter isn't what it should
438 	 * be, then this will reset it back to 0. Warn if it is not 0,
439 	 * since it indicates a bug, either in this framework or in a
440 	 * CEC driver.
441 	 */
442 	if (WARN_ON(adap->transmit_queue_sz))
443 		adap->transmit_queue_sz = 0;
444 }
445 
446 /*
447  * Main CEC state machine
448  *
449  * Wait until the thread should be stopped, or we are not transmitting and
450  * a new transmit message is queued up, in which case we start transmitting
451  * that message. When the adapter finished transmitting the message it will
452  * call cec_transmit_done().
453  *
454  * If the adapter is disabled, then remove all queued messages instead.
455  *
456  * If the current transmit times out, then cancel that transmit.
457  */
458 int cec_thread_func(void *_adap)
459 {
460 	struct cec_adapter *adap = _adap;
461 
462 	for (;;) {
463 		unsigned int signal_free_time;
464 		struct cec_data *data;
465 		bool timeout = false;
466 		u8 attempts;
467 
468 		if (adap->transmit_in_progress) {
469 			int err;
470 
471 			/*
472 			 * We are transmitting a message, so add a timeout
473 			 * to prevent the state machine to get stuck waiting
474 			 * for this message to finalize and add a check to
475 			 * see if the adapter is disabled in which case the
476 			 * transmit should be canceled.
477 			 */
478 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
479 				(adap->needs_hpd &&
480 				 (!adap->is_configured && !adap->is_configuring)) ||
481 				kthread_should_stop() ||
482 				(!adap->transmit_in_progress &&
483 				 !list_empty(&adap->transmit_queue)),
484 				msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
485 			timeout = err == 0;
486 		} else {
487 			/* Otherwise we just wait for something to happen. */
488 			wait_event_interruptible(adap->kthread_waitq,
489 				kthread_should_stop() ||
490 				(!adap->transmit_in_progress &&
491 				 !list_empty(&adap->transmit_queue)));
492 		}
493 
494 		mutex_lock(&adap->lock);
495 
496 		if ((adap->needs_hpd &&
497 		     (!adap->is_configured && !adap->is_configuring)) ||
498 		    kthread_should_stop()) {
499 			cec_flush(adap);
500 			goto unlock;
501 		}
502 
503 		if (adap->transmit_in_progress && timeout) {
504 			/*
505 			 * If we timeout, then log that. Normally this does
506 			 * not happen and it is an indication of a faulty CEC
507 			 * adapter driver, or the CEC bus is in some weird
508 			 * state. On rare occasions it can happen if there is
509 			 * so much traffic on the bus that the adapter was
510 			 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
511 			 */
512 			if (adap->transmitting) {
513 				pr_warn("cec-%s: message %*ph timed out\n", adap->name,
514 					adap->transmitting->msg.len,
515 					adap->transmitting->msg.msg);
516 				/* Just give up on this. */
517 				cec_data_cancel(adap->transmitting,
518 						CEC_TX_STATUS_TIMEOUT);
519 			} else {
520 				pr_warn("cec-%s: transmit timed out\n", adap->name);
521 			}
522 			adap->transmit_in_progress = false;
523 			adap->tx_timeouts++;
524 			goto unlock;
525 		}
526 
527 		/*
528 		 * If we are still transmitting, or there is nothing new to
529 		 * transmit, then just continue waiting.
530 		 */
531 		if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
532 			goto unlock;
533 
534 		/* Get a new message to transmit */
535 		data = list_first_entry(&adap->transmit_queue,
536 					struct cec_data, list);
537 		list_del_init(&data->list);
538 		if (!WARN_ON(!data->adap->transmit_queue_sz))
539 			adap->transmit_queue_sz--;
540 
541 		/* Make this the current transmitting message */
542 		adap->transmitting = data;
543 
544 		/*
545 		 * Suggested number of attempts as per the CEC 2.0 spec:
546 		 * 4 attempts is the default, except for 'secondary poll
547 		 * messages', i.e. poll messages not sent during the adapter
548 		 * configuration phase when it allocates logical addresses.
549 		 */
550 		if (data->msg.len == 1 && adap->is_configured)
551 			attempts = 2;
552 		else
553 			attempts = 4;
554 
555 		/* Set the suggested signal free time */
556 		if (data->attempts) {
557 			/* should be >= 3 data bit periods for a retry */
558 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
559 		} else if (adap->last_initiator !=
560 			   cec_msg_initiator(&data->msg)) {
561 			/* should be >= 5 data bit periods for new initiator */
562 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
563 			adap->last_initiator = cec_msg_initiator(&data->msg);
564 		} else {
565 			/*
566 			 * should be >= 7 data bit periods for sending another
567 			 * frame immediately after another.
568 			 */
569 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
570 		}
571 		if (data->attempts == 0)
572 			data->attempts = attempts;
573 
574 		/* Tell the adapter to transmit, cancel on error */
575 		if (adap->ops->adap_transmit(adap, data->attempts,
576 					     signal_free_time, &data->msg))
577 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
578 		else
579 			adap->transmit_in_progress = true;
580 
581 unlock:
582 		mutex_unlock(&adap->lock);
583 
584 		if (kthread_should_stop())
585 			break;
586 	}
587 	return 0;
588 }
589 
590 /*
591  * Called by the CEC adapter if a transmit finished.
592  */
593 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
594 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
595 			  u8 error_cnt, ktime_t ts)
596 {
597 	struct cec_data *data;
598 	struct cec_msg *msg;
599 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
600 				     low_drive_cnt + error_cnt;
601 
602 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
603 	if (attempts_made < 1)
604 		attempts_made = 1;
605 
606 	mutex_lock(&adap->lock);
607 	data = adap->transmitting;
608 	if (!data) {
609 		/*
610 		 * This might happen if a transmit was issued and the cable is
611 		 * unplugged while the transmit is ongoing. Ignore this
612 		 * transmit in that case.
613 		 */
614 		if (!adap->transmit_in_progress)
615 			dprintk(1, "%s was called without an ongoing transmit!\n",
616 				__func__);
617 		adap->transmit_in_progress = false;
618 		goto wake_thread;
619 	}
620 	adap->transmit_in_progress = false;
621 
622 	msg = &data->msg;
623 
624 	/* Drivers must fill in the status! */
625 	WARN_ON(status == 0);
626 	msg->tx_ts = ktime_to_ns(ts);
627 	msg->tx_status |= status;
628 	msg->tx_arb_lost_cnt += arb_lost_cnt;
629 	msg->tx_nack_cnt += nack_cnt;
630 	msg->tx_low_drive_cnt += low_drive_cnt;
631 	msg->tx_error_cnt += error_cnt;
632 
633 	/* Mark that we're done with this transmit */
634 	adap->transmitting = NULL;
635 
636 	/*
637 	 * If there are still retry attempts left and there was an error and
638 	 * the hardware didn't signal that it retried itself (by setting
639 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
640 	 */
641 	if (data->attempts > attempts_made &&
642 	    !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
643 		/* Retry this message */
644 		data->attempts -= attempts_made;
645 		if (msg->timeout)
646 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
647 				msg->len, msg->msg, data->attempts, msg->reply);
648 		else
649 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
650 				msg->len, msg->msg, data->attempts);
651 		/* Add the message in front of the transmit queue */
652 		list_add(&data->list, &adap->transmit_queue);
653 		adap->transmit_queue_sz++;
654 		goto wake_thread;
655 	}
656 
657 	data->attempts = 0;
658 
659 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
660 	if (!(status & CEC_TX_STATUS_OK))
661 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
662 
663 	/* Queue transmitted message for monitoring purposes */
664 	cec_queue_msg_monitor(adap, msg, 1);
665 
666 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
667 	    msg->timeout) {
668 		/*
669 		 * Queue the message into the wait queue if we want to wait
670 		 * for a reply.
671 		 */
672 		list_add_tail(&data->list, &adap->wait_queue);
673 		schedule_delayed_work(&data->work,
674 				      msecs_to_jiffies(msg->timeout));
675 	} else {
676 		/* Otherwise we're done */
677 		cec_data_completed(data);
678 	}
679 
680 wake_thread:
681 	/*
682 	 * Wake up the main thread to see if another message is ready
683 	 * for transmitting or to retry the current message.
684 	 */
685 	wake_up_interruptible(&adap->kthread_waitq);
686 	mutex_unlock(&adap->lock);
687 }
688 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
689 
690 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
691 				  u8 status, ktime_t ts)
692 {
693 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
694 	case CEC_TX_STATUS_OK:
695 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
696 		return;
697 	case CEC_TX_STATUS_ARB_LOST:
698 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
699 		return;
700 	case CEC_TX_STATUS_NACK:
701 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
702 		return;
703 	case CEC_TX_STATUS_LOW_DRIVE:
704 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
705 		return;
706 	case CEC_TX_STATUS_ERROR:
707 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
708 		return;
709 	default:
710 		/* Should never happen */
711 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
712 		return;
713 	}
714 }
715 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
716 
717 /*
718  * Called when waiting for a reply times out.
719  */
720 static void cec_wait_timeout(struct work_struct *work)
721 {
722 	struct cec_data *data = container_of(work, struct cec_data, work.work);
723 	struct cec_adapter *adap = data->adap;
724 
725 	mutex_lock(&adap->lock);
726 	/*
727 	 * Sanity check in case the timeout and the arrival of the message
728 	 * happened at the same time.
729 	 */
730 	if (list_empty(&data->list))
731 		goto unlock;
732 
733 	/* Mark the message as timed out */
734 	list_del_init(&data->list);
735 	data->msg.rx_ts = ktime_get_ns();
736 	data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
737 	cec_data_completed(data);
738 unlock:
739 	mutex_unlock(&adap->lock);
740 }
741 
742 /*
743  * Transmit a message. The fh argument may be NULL if the transmit is not
744  * associated with a specific filehandle.
745  *
746  * This function is called with adap->lock held.
747  */
748 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
749 			struct cec_fh *fh, bool block)
750 {
751 	struct cec_data *data;
752 	bool is_raw = msg_is_raw(msg);
753 
754 	if (adap->devnode.unregistered)
755 		return -ENODEV;
756 
757 	msg->rx_ts = 0;
758 	msg->tx_ts = 0;
759 	msg->rx_status = 0;
760 	msg->tx_status = 0;
761 	msg->tx_arb_lost_cnt = 0;
762 	msg->tx_nack_cnt = 0;
763 	msg->tx_low_drive_cnt = 0;
764 	msg->tx_error_cnt = 0;
765 	msg->sequence = 0;
766 
767 	if (msg->reply && msg->timeout == 0) {
768 		/* Make sure the timeout isn't 0. */
769 		msg->timeout = 1000;
770 	}
771 	msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
772 
773 	if (!msg->timeout)
774 		msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
775 
776 	/* Sanity checks */
777 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
778 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
779 		return -EINVAL;
780 	}
781 
782 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
783 
784 	if (msg->timeout)
785 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
786 			__func__, msg->len, msg->msg, msg->reply,
787 			!block ? ", nb" : "");
788 	else
789 		dprintk(2, "%s: %*ph%s\n",
790 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
791 
792 	if (msg->timeout && msg->len == 1) {
793 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
794 		return -EINVAL;
795 	}
796 
797 	if (is_raw) {
798 		if (!capable(CAP_SYS_RAWIO))
799 			return -EPERM;
800 	} else {
801 		/* A CDC-Only device can only send CDC messages */
802 		if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
803 		    (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
804 			dprintk(1, "%s: not a CDC message\n", __func__);
805 			return -EINVAL;
806 		}
807 
808 		if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
809 			msg->msg[2] = adap->phys_addr >> 8;
810 			msg->msg[3] = adap->phys_addr & 0xff;
811 		}
812 
813 		if (msg->len == 1) {
814 			if (cec_msg_destination(msg) == 0xf) {
815 				dprintk(1, "%s: invalid poll message\n",
816 					__func__);
817 				return -EINVAL;
818 			}
819 			if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
820 				/*
821 				 * If the destination is a logical address our
822 				 * adapter has already claimed, then just NACK
823 				 * this. It depends on the hardware what it will
824 				 * do with a POLL to itself (some OK this), so
825 				 * it is just as easy to handle it here so the
826 				 * behavior will be consistent.
827 				 */
828 				msg->tx_ts = ktime_get_ns();
829 				msg->tx_status = CEC_TX_STATUS_NACK |
830 					CEC_TX_STATUS_MAX_RETRIES;
831 				msg->tx_nack_cnt = 1;
832 				msg->sequence = ++adap->sequence;
833 				if (!msg->sequence)
834 					msg->sequence = ++adap->sequence;
835 				return 0;
836 			}
837 		}
838 		if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
839 		    cec_has_log_addr(adap, cec_msg_destination(msg))) {
840 			dprintk(1, "%s: destination is the adapter itself\n",
841 				__func__);
842 			return -EINVAL;
843 		}
844 		if (msg->len > 1 && adap->is_configured &&
845 		    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
846 			dprintk(1, "%s: initiator has unknown logical address %d\n",
847 				__func__, cec_msg_initiator(msg));
848 			return -EINVAL;
849 		}
850 		/*
851 		 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
852 		 * transmitted to a TV, even if the adapter is unconfigured.
853 		 * This makes it possible to detect or wake up displays that
854 		 * pull down the HPD when in standby.
855 		 */
856 		if (!adap->is_configured && !adap->is_configuring &&
857 		    (msg->len > 2 ||
858 		     cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
859 		     (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
860 		      msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
861 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
862 			return -ENONET;
863 		}
864 	}
865 
866 	if (!adap->is_configured && !adap->is_configuring) {
867 		if (adap->needs_hpd) {
868 			dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
869 				__func__);
870 			return -ENONET;
871 		}
872 		if (msg->reply) {
873 			dprintk(1, "%s: invalid msg->reply\n", __func__);
874 			return -EINVAL;
875 		}
876 	}
877 
878 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
879 		dprintk(2, "%s: transmit queue full\n", __func__);
880 		return -EBUSY;
881 	}
882 
883 	data = kzalloc(sizeof(*data), GFP_KERNEL);
884 	if (!data)
885 		return -ENOMEM;
886 
887 	msg->sequence = ++adap->sequence;
888 	if (!msg->sequence)
889 		msg->sequence = ++adap->sequence;
890 
891 	data->msg = *msg;
892 	data->fh = fh;
893 	data->adap = adap;
894 	data->blocking = block;
895 
896 	init_completion(&data->c);
897 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
898 
899 	if (fh)
900 		list_add_tail(&data->xfer_list, &fh->xfer_list);
901 
902 	list_add_tail(&data->list, &adap->transmit_queue);
903 	adap->transmit_queue_sz++;
904 	if (!adap->transmitting)
905 		wake_up_interruptible(&adap->kthread_waitq);
906 
907 	/* All done if we don't need to block waiting for completion */
908 	if (!block)
909 		return 0;
910 
911 	/*
912 	 * Release the lock and wait, retake the lock afterwards.
913 	 */
914 	mutex_unlock(&adap->lock);
915 	wait_for_completion_killable(&data->c);
916 	if (!data->completed)
917 		cancel_delayed_work_sync(&data->work);
918 	mutex_lock(&adap->lock);
919 
920 	/* Cancel the transmit if it was interrupted */
921 	if (!data->completed)
922 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
923 
924 	/* The transmit completed (possibly with an error) */
925 	*msg = data->msg;
926 	kfree(data);
927 	return 0;
928 }
929 
930 /* Helper function to be used by drivers and this framework. */
931 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
932 		     bool block)
933 {
934 	int ret;
935 
936 	mutex_lock(&adap->lock);
937 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
938 	mutex_unlock(&adap->lock);
939 	return ret;
940 }
941 EXPORT_SYMBOL_GPL(cec_transmit_msg);
942 
943 /*
944  * I don't like forward references but without this the low-level
945  * cec_received_msg() function would come after a bunch of high-level
946  * CEC protocol handling functions. That was very confusing.
947  */
948 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
949 			      bool is_reply);
950 
951 #define DIRECTED	0x80
952 #define BCAST1_4	0x40
953 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
954 #define BCAST		(BCAST1_4 | BCAST2_0)
955 #define BOTH		(BCAST | DIRECTED)
956 
957 /*
958  * Specify minimum length and whether the message is directed, broadcast
959  * or both. Messages that do not match the criteria are ignored as per
960  * the CEC specification.
961  */
962 static const u8 cec_msg_size[256] = {
963 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
964 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
965 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
966 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
967 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
968 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
969 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
970 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
971 	[CEC_MSG_STANDBY] = 2 | BOTH,
972 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
973 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
974 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
975 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
976 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
977 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
978 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
979 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
980 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
981 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
982 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
983 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
984 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
985 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
986 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
987 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
988 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
989 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
990 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
991 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
992 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
993 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
994 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
995 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
996 	[CEC_MSG_PLAY] = 3 | DIRECTED,
997 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
998 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
999 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1000 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1001 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1002 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1003 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1004 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1005 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1006 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1007 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1008 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1009 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1010 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1011 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1012 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1013 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1014 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1015 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1016 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1017 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1018 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1019 	[CEC_MSG_ABORT] = 2 | DIRECTED,
1020 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1021 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1022 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1023 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1024 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1025 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1026 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1027 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1028 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1029 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1030 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1031 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1032 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1033 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1034 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1035 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1036 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1037 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1038 };
1039 
1040 /* Called by the CEC adapter if a message is received */
1041 void cec_received_msg_ts(struct cec_adapter *adap,
1042 			 struct cec_msg *msg, ktime_t ts)
1043 {
1044 	struct cec_data *data;
1045 	u8 msg_init = cec_msg_initiator(msg);
1046 	u8 msg_dest = cec_msg_destination(msg);
1047 	u8 cmd = msg->msg[1];
1048 	bool is_reply = false;
1049 	bool valid_la = true;
1050 	u8 min_len = 0;
1051 
1052 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1053 		return;
1054 
1055 	if (adap->devnode.unregistered)
1056 		return;
1057 
1058 	/*
1059 	 * Some CEC adapters will receive the messages that they transmitted.
1060 	 * This test filters out those messages by checking if we are the
1061 	 * initiator, and just returning in that case.
1062 	 *
1063 	 * Note that this won't work if this is an Unregistered device.
1064 	 *
1065 	 * It is bad practice if the hardware receives the message that it
1066 	 * transmitted and luckily most CEC adapters behave correctly in this
1067 	 * respect.
1068 	 */
1069 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1070 	    cec_has_log_addr(adap, msg_init))
1071 		return;
1072 
1073 	msg->rx_ts = ktime_to_ns(ts);
1074 	msg->rx_status = CEC_RX_STATUS_OK;
1075 	msg->sequence = msg->reply = msg->timeout = 0;
1076 	msg->tx_status = 0;
1077 	msg->tx_ts = 0;
1078 	msg->tx_arb_lost_cnt = 0;
1079 	msg->tx_nack_cnt = 0;
1080 	msg->tx_low_drive_cnt = 0;
1081 	msg->tx_error_cnt = 0;
1082 	msg->flags = 0;
1083 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1084 
1085 	mutex_lock(&adap->lock);
1086 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1087 
1088 	adap->last_initiator = 0xff;
1089 
1090 	/* Check if this message was for us (directed or broadcast). */
1091 	if (!cec_msg_is_broadcast(msg))
1092 		valid_la = cec_has_log_addr(adap, msg_dest);
1093 
1094 	/*
1095 	 * Check if the length is not too short or if the message is a
1096 	 * broadcast message where a directed message was expected or
1097 	 * vice versa. If so, then the message has to be ignored (according
1098 	 * to section CEC 7.3 and CEC 12.2).
1099 	 */
1100 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1101 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1102 
1103 		min_len = cec_msg_size[cmd] & 0x1f;
1104 		if (msg->len < min_len)
1105 			valid_la = false;
1106 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1107 			valid_la = false;
1108 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1109 			valid_la = false;
1110 		else if (cec_msg_is_broadcast(msg) &&
1111 			 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1112 			 !(dir_fl & BCAST1_4))
1113 			valid_la = false;
1114 	}
1115 	if (valid_la && min_len) {
1116 		/* These messages have special length requirements */
1117 		switch (cmd) {
1118 		case CEC_MSG_TIMER_STATUS:
1119 			if (msg->msg[2] & 0x10) {
1120 				switch (msg->msg[2] & 0xf) {
1121 				case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1122 				case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1123 					if (msg->len < 5)
1124 						valid_la = false;
1125 					break;
1126 				}
1127 			} else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1128 				if (msg->len < 5)
1129 					valid_la = false;
1130 			}
1131 			break;
1132 		case CEC_MSG_RECORD_ON:
1133 			switch (msg->msg[2]) {
1134 			case CEC_OP_RECORD_SRC_OWN:
1135 				break;
1136 			case CEC_OP_RECORD_SRC_DIGITAL:
1137 				if (msg->len < 10)
1138 					valid_la = false;
1139 				break;
1140 			case CEC_OP_RECORD_SRC_ANALOG:
1141 				if (msg->len < 7)
1142 					valid_la = false;
1143 				break;
1144 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1145 				if (msg->len < 4)
1146 					valid_la = false;
1147 				break;
1148 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1149 				if (msg->len < 5)
1150 					valid_la = false;
1151 				break;
1152 			}
1153 			break;
1154 		}
1155 	}
1156 
1157 	/* It's a valid message and not a poll or CDC message */
1158 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1159 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1160 
1161 		/* The aborted command is in msg[2] */
1162 		if (abort)
1163 			cmd = msg->msg[2];
1164 
1165 		/*
1166 		 * Walk over all transmitted messages that are waiting for a
1167 		 * reply.
1168 		 */
1169 		list_for_each_entry(data, &adap->wait_queue, list) {
1170 			struct cec_msg *dst = &data->msg;
1171 
1172 			/*
1173 			 * The *only* CEC message that has two possible replies
1174 			 * is CEC_MSG_INITIATE_ARC.
1175 			 * In this case allow either of the two replies.
1176 			 */
1177 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1178 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1179 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1180 			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1181 			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1182 				dst->reply = cmd;
1183 
1184 			/* Does the command match? */
1185 			if ((abort && cmd != dst->msg[1]) ||
1186 			    (!abort && cmd != dst->reply))
1187 				continue;
1188 
1189 			/* Does the addressing match? */
1190 			if (msg_init != cec_msg_destination(dst) &&
1191 			    !cec_msg_is_broadcast(dst))
1192 				continue;
1193 
1194 			/* We got a reply */
1195 			memcpy(dst->msg, msg->msg, msg->len);
1196 			dst->len = msg->len;
1197 			dst->rx_ts = msg->rx_ts;
1198 			dst->rx_status = msg->rx_status;
1199 			if (abort)
1200 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1201 			msg->flags = dst->flags;
1202 			msg->sequence = dst->sequence;
1203 			/* Remove it from the wait_queue */
1204 			list_del_init(&data->list);
1205 
1206 			/* Cancel the pending timeout work */
1207 			if (!cancel_delayed_work(&data->work)) {
1208 				mutex_unlock(&adap->lock);
1209 				cancel_delayed_work_sync(&data->work);
1210 				mutex_lock(&adap->lock);
1211 			}
1212 			/*
1213 			 * Mark this as a reply, provided someone is still
1214 			 * waiting for the answer.
1215 			 */
1216 			if (data->fh)
1217 				is_reply = true;
1218 			cec_data_completed(data);
1219 			break;
1220 		}
1221 	}
1222 	mutex_unlock(&adap->lock);
1223 
1224 	/* Pass the message on to any monitoring filehandles */
1225 	cec_queue_msg_monitor(adap, msg, valid_la);
1226 
1227 	/* We're done if it is not for us or a poll message */
1228 	if (!valid_la || msg->len <= 1)
1229 		return;
1230 
1231 	if (adap->log_addrs.log_addr_mask == 0)
1232 		return;
1233 
1234 	/*
1235 	 * Process the message on the protocol level. If is_reply is true,
1236 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1237 	 * since that was already done by cec_data_completed() above.
1238 	 */
1239 	cec_receive_notify(adap, msg, is_reply);
1240 }
1241 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1242 
1243 /* Logical Address Handling */
1244 
1245 /*
1246  * Attempt to claim a specific logical address.
1247  *
1248  * This function is called with adap->lock held.
1249  */
1250 static int cec_config_log_addr(struct cec_adapter *adap,
1251 			       unsigned int idx,
1252 			       unsigned int log_addr)
1253 {
1254 	struct cec_log_addrs *las = &adap->log_addrs;
1255 	struct cec_msg msg = { };
1256 	const unsigned int max_retries = 2;
1257 	unsigned int i;
1258 	int err;
1259 
1260 	if (cec_has_log_addr(adap, log_addr))
1261 		return 0;
1262 
1263 	/* Send poll message */
1264 	msg.len = 1;
1265 	msg.msg[0] = (log_addr << 4) | log_addr;
1266 
1267 	for (i = 0; i < max_retries; i++) {
1268 		err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1269 
1270 		/*
1271 		 * While trying to poll the physical address was reset
1272 		 * and the adapter was unconfigured, so bail out.
1273 		 */
1274 		if (!adap->is_configuring)
1275 			return -EINTR;
1276 
1277 		if (err)
1278 			return err;
1279 
1280 		/*
1281 		 * The message was aborted due to a disconnect or
1282 		 * unconfigure, just bail out.
1283 		 */
1284 		if (msg.tx_status & CEC_TX_STATUS_ABORTED)
1285 			return -EINTR;
1286 		if (msg.tx_status & CEC_TX_STATUS_OK)
1287 			return 0;
1288 		if (msg.tx_status & CEC_TX_STATUS_NACK)
1289 			break;
1290 		/*
1291 		 * Retry up to max_retries times if the message was neither
1292 		 * OKed or NACKed. This can happen due to e.g. a Lost
1293 		 * Arbitration condition.
1294 		 */
1295 	}
1296 
1297 	/*
1298 	 * If we are unable to get an OK or a NACK after max_retries attempts
1299 	 * (and note that each attempt already consists of four polls), then
1300 	 * we assume that something is really weird and that it is not a
1301 	 * good idea to try and claim this logical address.
1302 	 */
1303 	if (i == max_retries)
1304 		return 0;
1305 
1306 	/*
1307 	 * Message not acknowledged, so this logical
1308 	 * address is free to use.
1309 	 */
1310 	err = adap->ops->adap_log_addr(adap, log_addr);
1311 	if (err)
1312 		return err;
1313 
1314 	las->log_addr[idx] = log_addr;
1315 	las->log_addr_mask |= 1 << log_addr;
1316 	return 1;
1317 }
1318 
1319 /*
1320  * Unconfigure the adapter: clear all logical addresses and send
1321  * the state changed event.
1322  *
1323  * This function is called with adap->lock held.
1324  */
1325 static void cec_adap_unconfigure(struct cec_adapter *adap)
1326 {
1327 	if (!adap->needs_hpd ||
1328 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1329 		WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1330 	adap->log_addrs.log_addr_mask = 0;
1331 	adap->is_configuring = false;
1332 	adap->is_configured = false;
1333 	cec_flush(adap);
1334 	wake_up_interruptible(&adap->kthread_waitq);
1335 	cec_post_state_event(adap);
1336 }
1337 
1338 /*
1339  * Attempt to claim the required logical addresses.
1340  */
1341 static int cec_config_thread_func(void *arg)
1342 {
1343 	/* The various LAs for each type of device */
1344 	static const u8 tv_log_addrs[] = {
1345 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1346 		CEC_LOG_ADDR_INVALID
1347 	};
1348 	static const u8 record_log_addrs[] = {
1349 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1350 		CEC_LOG_ADDR_RECORD_3,
1351 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1352 		CEC_LOG_ADDR_INVALID
1353 	};
1354 	static const u8 tuner_log_addrs[] = {
1355 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1356 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1357 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1358 		CEC_LOG_ADDR_INVALID
1359 	};
1360 	static const u8 playback_log_addrs[] = {
1361 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1362 		CEC_LOG_ADDR_PLAYBACK_3,
1363 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1364 		CEC_LOG_ADDR_INVALID
1365 	};
1366 	static const u8 audiosystem_log_addrs[] = {
1367 		CEC_LOG_ADDR_AUDIOSYSTEM,
1368 		CEC_LOG_ADDR_INVALID
1369 	};
1370 	static const u8 specific_use_log_addrs[] = {
1371 		CEC_LOG_ADDR_SPECIFIC,
1372 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1373 		CEC_LOG_ADDR_INVALID
1374 	};
1375 	static const u8 *type2addrs[6] = {
1376 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1377 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1378 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1379 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1380 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1381 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1382 	};
1383 	static const u16 type2mask[] = {
1384 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1385 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1386 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1387 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1388 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1389 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1390 	};
1391 	struct cec_adapter *adap = arg;
1392 	struct cec_log_addrs *las = &adap->log_addrs;
1393 	int err;
1394 	int i, j;
1395 
1396 	mutex_lock(&adap->lock);
1397 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1398 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1399 	las->log_addr_mask = 0;
1400 
1401 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1402 		goto configured;
1403 
1404 	for (i = 0; i < las->num_log_addrs; i++) {
1405 		unsigned int type = las->log_addr_type[i];
1406 		const u8 *la_list;
1407 		u8 last_la;
1408 
1409 		/*
1410 		 * The TV functionality can only map to physical address 0.
1411 		 * For any other address, try the Specific functionality
1412 		 * instead as per the spec.
1413 		 */
1414 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1415 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1416 
1417 		la_list = type2addrs[type];
1418 		last_la = las->log_addr[i];
1419 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1420 		if (last_la == CEC_LOG_ADDR_INVALID ||
1421 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1422 		    !((1 << last_la) & type2mask[type]))
1423 			last_la = la_list[0];
1424 
1425 		err = cec_config_log_addr(adap, i, last_la);
1426 		if (err > 0) /* Reused last LA */
1427 			continue;
1428 
1429 		if (err < 0)
1430 			goto unconfigure;
1431 
1432 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1433 			/* Tried this one already, skip it */
1434 			if (la_list[j] == last_la)
1435 				continue;
1436 			/* The backup addresses are CEC 2.0 specific */
1437 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1438 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1439 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1440 				continue;
1441 
1442 			err = cec_config_log_addr(adap, i, la_list[j]);
1443 			if (err == 0) /* LA is in use */
1444 				continue;
1445 			if (err < 0)
1446 				goto unconfigure;
1447 			/* Done, claimed an LA */
1448 			break;
1449 		}
1450 
1451 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1452 			dprintk(1, "could not claim LA %d\n", i);
1453 	}
1454 
1455 	if (adap->log_addrs.log_addr_mask == 0 &&
1456 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1457 		goto unconfigure;
1458 
1459 configured:
1460 	if (adap->log_addrs.log_addr_mask == 0) {
1461 		/* Fall back to unregistered */
1462 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1463 		las->log_addr_mask = 1 << las->log_addr[0];
1464 		for (i = 1; i < las->num_log_addrs; i++)
1465 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1466 	}
1467 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1468 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1469 	adap->is_configured = true;
1470 	adap->is_configuring = false;
1471 	cec_post_state_event(adap);
1472 
1473 	/*
1474 	 * Now post the Report Features and Report Physical Address broadcast
1475 	 * messages. Note that these are non-blocking transmits, meaning that
1476 	 * they are just queued up and once adap->lock is unlocked the main
1477 	 * thread will kick in and start transmitting these.
1478 	 *
1479 	 * If after this function is done (but before one or more of these
1480 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1481 	 * then any remaining messages will be dropped by the main thread.
1482 	 */
1483 	for (i = 0; i < las->num_log_addrs; i++) {
1484 		struct cec_msg msg = {};
1485 
1486 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1487 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1488 			continue;
1489 
1490 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1491 
1492 		/* Report Features must come first according to CEC 2.0 */
1493 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1494 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1495 			cec_fill_msg_report_features(adap, &msg, i);
1496 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1497 		}
1498 
1499 		/* Report Physical Address */
1500 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1501 					     las->primary_device_type[i]);
1502 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1503 			las->log_addr[i],
1504 			cec_phys_addr_exp(adap->phys_addr));
1505 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1506 
1507 		/* Report Vendor ID */
1508 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1509 			cec_msg_device_vendor_id(&msg,
1510 						 adap->log_addrs.vendor_id);
1511 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1512 		}
1513 	}
1514 	adap->kthread_config = NULL;
1515 	complete(&adap->config_completion);
1516 	mutex_unlock(&adap->lock);
1517 	return 0;
1518 
1519 unconfigure:
1520 	for (i = 0; i < las->num_log_addrs; i++)
1521 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1522 	cec_adap_unconfigure(adap);
1523 	adap->kthread_config = NULL;
1524 	mutex_unlock(&adap->lock);
1525 	complete(&adap->config_completion);
1526 	return 0;
1527 }
1528 
1529 /*
1530  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1531  * logical addresses.
1532  *
1533  * This function is called with adap->lock held.
1534  */
1535 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1536 {
1537 	if (WARN_ON(adap->is_configuring || adap->is_configured))
1538 		return;
1539 
1540 	init_completion(&adap->config_completion);
1541 
1542 	/* Ready to kick off the thread */
1543 	adap->is_configuring = true;
1544 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1545 					   "ceccfg-%s", adap->name);
1546 	if (IS_ERR(adap->kthread_config)) {
1547 		adap->kthread_config = NULL;
1548 	} else if (block) {
1549 		mutex_unlock(&adap->lock);
1550 		wait_for_completion(&adap->config_completion);
1551 		mutex_lock(&adap->lock);
1552 	}
1553 }
1554 
1555 /* Set a new physical address and send an event notifying userspace of this.
1556  *
1557  * This function is called with adap->lock held.
1558  */
1559 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1560 {
1561 	if (phys_addr == adap->phys_addr)
1562 		return;
1563 	if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1564 		return;
1565 
1566 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1567 		cec_phys_addr_exp(phys_addr));
1568 	if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1569 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1570 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1571 		cec_post_state_event(adap);
1572 		cec_adap_unconfigure(adap);
1573 		/* Disabling monitor all mode should always succeed */
1574 		if (adap->monitor_all_cnt)
1575 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1576 		mutex_lock(&adap->devnode.lock);
1577 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1578 			WARN_ON(adap->ops->adap_enable(adap, false));
1579 			adap->transmit_in_progress = false;
1580 			wake_up_interruptible(&adap->kthread_waitq);
1581 		}
1582 		mutex_unlock(&adap->devnode.lock);
1583 		if (phys_addr == CEC_PHYS_ADDR_INVALID)
1584 			return;
1585 	}
1586 
1587 	mutex_lock(&adap->devnode.lock);
1588 	adap->last_initiator = 0xff;
1589 	adap->transmit_in_progress = false;
1590 
1591 	if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1592 	    adap->ops->adap_enable(adap, true)) {
1593 		mutex_unlock(&adap->devnode.lock);
1594 		return;
1595 	}
1596 
1597 	if (adap->monitor_all_cnt &&
1598 	    call_op(adap, adap_monitor_all_enable, true)) {
1599 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1600 			WARN_ON(adap->ops->adap_enable(adap, false));
1601 		mutex_unlock(&adap->devnode.lock);
1602 		return;
1603 	}
1604 	mutex_unlock(&adap->devnode.lock);
1605 
1606 	adap->phys_addr = phys_addr;
1607 	cec_post_state_event(adap);
1608 	if (adap->log_addrs.num_log_addrs)
1609 		cec_claim_log_addrs(adap, block);
1610 }
1611 
1612 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1613 {
1614 	if (IS_ERR_OR_NULL(adap))
1615 		return;
1616 
1617 	mutex_lock(&adap->lock);
1618 	__cec_s_phys_addr(adap, phys_addr, block);
1619 	mutex_unlock(&adap->lock);
1620 }
1621 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1622 
1623 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1624 			       const struct edid *edid)
1625 {
1626 	u16 pa = CEC_PHYS_ADDR_INVALID;
1627 
1628 	if (edid && edid->extensions)
1629 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1630 				EDID_LENGTH * (edid->extensions + 1), NULL);
1631 	cec_s_phys_addr(adap, pa, false);
1632 }
1633 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1634 
1635 void cec_s_conn_info(struct cec_adapter *adap,
1636 		     const struct cec_connector_info *conn_info)
1637 {
1638 	if (IS_ERR_OR_NULL(adap))
1639 		return;
1640 
1641 	if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1642 		return;
1643 
1644 	mutex_lock(&adap->lock);
1645 	if (conn_info)
1646 		adap->conn_info = *conn_info;
1647 	else
1648 		memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1649 	cec_post_state_event(adap);
1650 	mutex_unlock(&adap->lock);
1651 }
1652 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1653 
1654 /*
1655  * Called from either the ioctl or a driver to set the logical addresses.
1656  *
1657  * This function is called with adap->lock held.
1658  */
1659 int __cec_s_log_addrs(struct cec_adapter *adap,
1660 		      struct cec_log_addrs *log_addrs, bool block)
1661 {
1662 	u16 type_mask = 0;
1663 	int i;
1664 
1665 	if (adap->devnode.unregistered)
1666 		return -ENODEV;
1667 
1668 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1669 		cec_adap_unconfigure(adap);
1670 		adap->log_addrs.num_log_addrs = 0;
1671 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1672 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1673 		adap->log_addrs.osd_name[0] = '\0';
1674 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1675 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1676 		return 0;
1677 	}
1678 
1679 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1680 		/*
1681 		 * Sanitize log_addrs fields if a CDC-Only device is
1682 		 * requested.
1683 		 */
1684 		log_addrs->num_log_addrs = 1;
1685 		log_addrs->osd_name[0] = '\0';
1686 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1687 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1688 		/*
1689 		 * This is just an internal convention since a CDC-Only device
1690 		 * doesn't have to be a switch. But switches already use
1691 		 * unregistered, so it makes some kind of sense to pick this
1692 		 * as the primary device. Since a CDC-Only device never sends
1693 		 * any 'normal' CEC messages this primary device type is never
1694 		 * sent over the CEC bus.
1695 		 */
1696 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1697 		log_addrs->all_device_types[0] = 0;
1698 		log_addrs->features[0][0] = 0;
1699 		log_addrs->features[0][1] = 0;
1700 	}
1701 
1702 	/* Ensure the osd name is 0-terminated */
1703 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1704 
1705 	/* Sanity checks */
1706 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1707 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1708 		return -EINVAL;
1709 	}
1710 
1711 	/*
1712 	 * Vendor ID is a 24 bit number, so check if the value is
1713 	 * within the correct range.
1714 	 */
1715 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1716 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1717 		dprintk(1, "invalid vendor ID\n");
1718 		return -EINVAL;
1719 	}
1720 
1721 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1722 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1723 		dprintk(1, "invalid CEC version\n");
1724 		return -EINVAL;
1725 	}
1726 
1727 	if (log_addrs->num_log_addrs > 1)
1728 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1729 			if (log_addrs->log_addr_type[i] ==
1730 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1731 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1732 				return -EINVAL;
1733 			}
1734 
1735 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1736 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1737 		u8 *features = log_addrs->features[i];
1738 		bool op_is_dev_features = false;
1739 		unsigned int j;
1740 
1741 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1742 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1743 			dprintk(1, "unknown logical address type\n");
1744 			return -EINVAL;
1745 		}
1746 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1747 			dprintk(1, "duplicate logical address type\n");
1748 			return -EINVAL;
1749 		}
1750 		type_mask |= 1 << log_addrs->log_addr_type[i];
1751 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1752 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1753 			/* Record already contains the playback functionality */
1754 			dprintk(1, "invalid record + playback combination\n");
1755 			return -EINVAL;
1756 		}
1757 		if (log_addrs->primary_device_type[i] >
1758 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1759 			dprintk(1, "unknown primary device type\n");
1760 			return -EINVAL;
1761 		}
1762 		if (log_addrs->primary_device_type[i] == 2) {
1763 			dprintk(1, "invalid primary device type\n");
1764 			return -EINVAL;
1765 		}
1766 		for (j = 0; j < feature_sz; j++) {
1767 			if ((features[j] & 0x80) == 0) {
1768 				if (op_is_dev_features)
1769 					break;
1770 				op_is_dev_features = true;
1771 			}
1772 		}
1773 		if (!op_is_dev_features || j == feature_sz) {
1774 			dprintk(1, "malformed features\n");
1775 			return -EINVAL;
1776 		}
1777 		/* Zero unused part of the feature array */
1778 		memset(features + j + 1, 0, feature_sz - j - 1);
1779 	}
1780 
1781 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1782 		if (log_addrs->num_log_addrs > 2) {
1783 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1784 			return -EINVAL;
1785 		}
1786 		if (log_addrs->num_log_addrs == 2) {
1787 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1788 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1789 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1790 				return -EINVAL;
1791 			}
1792 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1793 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1794 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1795 				return -EINVAL;
1796 			}
1797 		}
1798 	}
1799 
1800 	/* Zero unused LAs */
1801 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1802 		log_addrs->primary_device_type[i] = 0;
1803 		log_addrs->log_addr_type[i] = 0;
1804 		log_addrs->all_device_types[i] = 0;
1805 		memset(log_addrs->features[i], 0,
1806 		       sizeof(log_addrs->features[i]));
1807 	}
1808 
1809 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1810 	adap->log_addrs = *log_addrs;
1811 	if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1812 		cec_claim_log_addrs(adap, block);
1813 	return 0;
1814 }
1815 
1816 int cec_s_log_addrs(struct cec_adapter *adap,
1817 		    struct cec_log_addrs *log_addrs, bool block)
1818 {
1819 	int err;
1820 
1821 	mutex_lock(&adap->lock);
1822 	err = __cec_s_log_addrs(adap, log_addrs, block);
1823 	mutex_unlock(&adap->lock);
1824 	return err;
1825 }
1826 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1827 
1828 /* High-level core CEC message handling */
1829 
1830 /* Fill in the Report Features message */
1831 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1832 					 struct cec_msg *msg,
1833 					 unsigned int la_idx)
1834 {
1835 	const struct cec_log_addrs *las = &adap->log_addrs;
1836 	const u8 *features = las->features[la_idx];
1837 	bool op_is_dev_features = false;
1838 	unsigned int idx;
1839 
1840 	/* Report Features */
1841 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1842 	msg->len = 4;
1843 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1844 	msg->msg[2] = adap->log_addrs.cec_version;
1845 	msg->msg[3] = las->all_device_types[la_idx];
1846 
1847 	/* Write RC Profiles first, then Device Features */
1848 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1849 		msg->msg[msg->len++] = features[idx];
1850 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1851 			if (op_is_dev_features)
1852 				break;
1853 			op_is_dev_features = true;
1854 		}
1855 	}
1856 }
1857 
1858 /* Transmit the Feature Abort message */
1859 static int cec_feature_abort_reason(struct cec_adapter *adap,
1860 				    struct cec_msg *msg, u8 reason)
1861 {
1862 	struct cec_msg tx_msg = { };
1863 
1864 	/*
1865 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1866 	 * message!
1867 	 */
1868 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1869 		return 0;
1870 	/* Don't Feature Abort messages from 'Unregistered' */
1871 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1872 		return 0;
1873 	cec_msg_set_reply_to(&tx_msg, msg);
1874 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1875 	return cec_transmit_msg(adap, &tx_msg, false);
1876 }
1877 
1878 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1879 {
1880 	return cec_feature_abort_reason(adap, msg,
1881 					CEC_OP_ABORT_UNRECOGNIZED_OP);
1882 }
1883 
1884 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1885 {
1886 	return cec_feature_abort_reason(adap, msg,
1887 					CEC_OP_ABORT_REFUSED);
1888 }
1889 
1890 /*
1891  * Called when a CEC message is received. This function will do any
1892  * necessary core processing. The is_reply bool is true if this message
1893  * is a reply to an earlier transmit.
1894  *
1895  * The message is either a broadcast message or a valid directed message.
1896  */
1897 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1898 			      bool is_reply)
1899 {
1900 	bool is_broadcast = cec_msg_is_broadcast(msg);
1901 	u8 dest_laddr = cec_msg_destination(msg);
1902 	u8 init_laddr = cec_msg_initiator(msg);
1903 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1904 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
1905 	bool from_unregistered = init_laddr == 0xf;
1906 	struct cec_msg tx_cec_msg = { };
1907 
1908 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1909 
1910 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
1911 	if (cec_is_cdc_only(&adap->log_addrs) &&
1912 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1913 		return 0;
1914 
1915 	if (adap->ops->received) {
1916 		/* Allow drivers to process the message first */
1917 		if (adap->ops->received(adap, msg) != -ENOMSG)
1918 			return 0;
1919 	}
1920 
1921 	/*
1922 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1923 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1924 	 * handled by the CEC core, even if the passthrough mode is on.
1925 	 * The others are just ignored if passthrough mode is on.
1926 	 */
1927 	switch (msg->msg[1]) {
1928 	case CEC_MSG_GET_CEC_VERSION:
1929 	case CEC_MSG_ABORT:
1930 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1931 	case CEC_MSG_GIVE_OSD_NAME:
1932 		/*
1933 		 * These messages reply with a directed message, so ignore if
1934 		 * the initiator is Unregistered.
1935 		 */
1936 		if (!adap->passthrough && from_unregistered)
1937 			return 0;
1938 		fallthrough;
1939 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1940 	case CEC_MSG_GIVE_FEATURES:
1941 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
1942 		/*
1943 		 * Skip processing these messages if the passthrough mode
1944 		 * is on.
1945 		 */
1946 		if (adap->passthrough)
1947 			goto skip_processing;
1948 		/* Ignore if addressing is wrong */
1949 		if (is_broadcast)
1950 			return 0;
1951 		break;
1952 
1953 	case CEC_MSG_USER_CONTROL_PRESSED:
1954 	case CEC_MSG_USER_CONTROL_RELEASED:
1955 		/* Wrong addressing mode: don't process */
1956 		if (is_broadcast || from_unregistered)
1957 			goto skip_processing;
1958 		break;
1959 
1960 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
1961 		/*
1962 		 * This message is always processed, regardless of the
1963 		 * passthrough setting.
1964 		 *
1965 		 * Exception: don't process if wrong addressing mode.
1966 		 */
1967 		if (!is_broadcast)
1968 			goto skip_processing;
1969 		break;
1970 
1971 	default:
1972 		break;
1973 	}
1974 
1975 	cec_msg_set_reply_to(&tx_cec_msg, msg);
1976 
1977 	switch (msg->msg[1]) {
1978 	/* The following messages are processed but still passed through */
1979 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1980 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1981 
1982 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1983 			cec_phys_addr_exp(pa), init_laddr);
1984 		break;
1985 	}
1986 
1987 	case CEC_MSG_USER_CONTROL_PRESSED:
1988 		if (!(adap->capabilities & CEC_CAP_RC) ||
1989 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1990 			break;
1991 
1992 #ifdef CONFIG_MEDIA_CEC_RC
1993 		switch (msg->msg[2]) {
1994 		/*
1995 		 * Play function, this message can have variable length
1996 		 * depending on the specific play function that is used.
1997 		 */
1998 		case CEC_OP_UI_CMD_PLAY_FUNCTION:
1999 			if (msg->len == 2)
2000 				rc_keydown(adap->rc, RC_PROTO_CEC,
2001 					   msg->msg[2], 0);
2002 			else
2003 				rc_keydown(adap->rc, RC_PROTO_CEC,
2004 					   msg->msg[2] << 8 | msg->msg[3], 0);
2005 			break;
2006 		/*
2007 		 * Other function messages that are not handled.
2008 		 * Currently the RC framework does not allow to supply an
2009 		 * additional parameter to a keypress. These "keys" contain
2010 		 * other information such as channel number, an input number
2011 		 * etc.
2012 		 * For the time being these messages are not processed by the
2013 		 * framework and are simply forwarded to the user space.
2014 		 */
2015 		case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2016 		case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2017 		case CEC_OP_UI_CMD_TUNE_FUNCTION:
2018 		case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2019 		case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2020 		case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2021 			break;
2022 		default:
2023 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2024 			break;
2025 		}
2026 #endif
2027 		break;
2028 
2029 	case CEC_MSG_USER_CONTROL_RELEASED:
2030 		if (!(adap->capabilities & CEC_CAP_RC) ||
2031 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2032 			break;
2033 #ifdef CONFIG_MEDIA_CEC_RC
2034 		rc_keyup(adap->rc);
2035 #endif
2036 		break;
2037 
2038 	/*
2039 	 * The remaining messages are only processed if the passthrough mode
2040 	 * is off.
2041 	 */
2042 	case CEC_MSG_GET_CEC_VERSION:
2043 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2044 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2045 
2046 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2047 		/* Do nothing for CEC switches using addr 15 */
2048 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2049 			return 0;
2050 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2051 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2052 
2053 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2054 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2055 			return cec_feature_abort(adap, msg);
2056 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2057 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2058 
2059 	case CEC_MSG_ABORT:
2060 		/* Do nothing for CEC switches */
2061 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2062 			return 0;
2063 		return cec_feature_refused(adap, msg);
2064 
2065 	case CEC_MSG_GIVE_OSD_NAME: {
2066 		if (adap->log_addrs.osd_name[0] == 0)
2067 			return cec_feature_abort(adap, msg);
2068 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2069 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2070 	}
2071 
2072 	case CEC_MSG_GIVE_FEATURES:
2073 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2074 			return cec_feature_abort(adap, msg);
2075 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2076 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2077 
2078 	default:
2079 		/*
2080 		 * Unprocessed messages are aborted if userspace isn't doing
2081 		 * any processing either.
2082 		 */
2083 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2084 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2085 			return cec_feature_abort(adap, msg);
2086 		break;
2087 	}
2088 
2089 skip_processing:
2090 	/* If this was a reply, then we're done, unless otherwise specified */
2091 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2092 		return 0;
2093 
2094 	/*
2095 	 * Send to the exclusive follower if there is one, otherwise send
2096 	 * to all followers.
2097 	 */
2098 	if (adap->cec_follower)
2099 		cec_queue_msg_fh(adap->cec_follower, msg);
2100 	else
2101 		cec_queue_msg_followers(adap, msg);
2102 	return 0;
2103 }
2104 
2105 /*
2106  * Helper functions to keep track of the 'monitor all' use count.
2107  *
2108  * These functions are called with adap->lock held.
2109  */
2110 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2111 {
2112 	int ret = 0;
2113 
2114 	if (adap->monitor_all_cnt == 0)
2115 		ret = call_op(adap, adap_monitor_all_enable, 1);
2116 	if (ret == 0)
2117 		adap->monitor_all_cnt++;
2118 	return ret;
2119 }
2120 
2121 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2122 {
2123 	adap->monitor_all_cnt--;
2124 	if (adap->monitor_all_cnt == 0)
2125 		WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2126 }
2127 
2128 /*
2129  * Helper functions to keep track of the 'monitor pin' use count.
2130  *
2131  * These functions are called with adap->lock held.
2132  */
2133 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2134 {
2135 	int ret = 0;
2136 
2137 	if (adap->monitor_pin_cnt == 0)
2138 		ret = call_op(adap, adap_monitor_pin_enable, 1);
2139 	if (ret == 0)
2140 		adap->monitor_pin_cnt++;
2141 	return ret;
2142 }
2143 
2144 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2145 {
2146 	adap->monitor_pin_cnt--;
2147 	if (adap->monitor_pin_cnt == 0)
2148 		WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2149 }
2150 
2151 #ifdef CONFIG_DEBUG_FS
2152 /*
2153  * Log the current state of the CEC adapter.
2154  * Very useful for debugging.
2155  */
2156 int cec_adap_status(struct seq_file *file, void *priv)
2157 {
2158 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2159 	struct cec_data *data;
2160 
2161 	mutex_lock(&adap->lock);
2162 	seq_printf(file, "configured: %d\n", adap->is_configured);
2163 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2164 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2165 		   cec_phys_addr_exp(adap->phys_addr));
2166 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2167 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2168 	if (adap->cec_follower)
2169 		seq_printf(file, "has CEC follower%s\n",
2170 			   adap->passthrough ? " (in passthrough mode)" : "");
2171 	if (adap->cec_initiator)
2172 		seq_puts(file, "has CEC initiator\n");
2173 	if (adap->monitor_all_cnt)
2174 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2175 			   adap->monitor_all_cnt);
2176 	if (adap->tx_timeouts) {
2177 		seq_printf(file, "transmit timeouts: %u\n",
2178 			   adap->tx_timeouts);
2179 		adap->tx_timeouts = 0;
2180 	}
2181 	data = adap->transmitting;
2182 	if (data)
2183 		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2184 			   data->msg.len, data->msg.msg, data->msg.reply,
2185 			   data->msg.timeout);
2186 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2187 	list_for_each_entry(data, &adap->transmit_queue, list) {
2188 		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2189 			   data->msg.len, data->msg.msg, data->msg.reply,
2190 			   data->msg.timeout);
2191 	}
2192 	list_for_each_entry(data, &adap->wait_queue, list) {
2193 		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2194 			   data->msg.len, data->msg.msg, data->msg.reply,
2195 			   data->msg.timeout);
2196 	}
2197 
2198 	call_void_op(adap, adap_status, file);
2199 	mutex_unlock(&adap->lock);
2200 	return 0;
2201 }
2202 #endif
2203