1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 /* 31 * 400 ms is the time it takes for one 16 byte message to be 32 * transferred and 5 is the maximum number of retries. Add 33 * another 100 ms as a margin. So if the transmit doesn't 34 * finish before that time something is really wrong and we 35 * have to time out. 36 * 37 * This is a sign that something it really wrong and a warning 38 * will be issued. 39 */ 40 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100) 41 42 #define call_op(adap, op, arg...) \ 43 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0) 44 45 #define call_void_op(adap, op, arg...) \ 46 do { \ 47 if (adap->ops->op) \ 48 adap->ops->op(adap, ## arg); \ 49 } while (0) 50 51 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 52 { 53 int i; 54 55 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 56 if (adap->log_addrs.log_addr[i] == log_addr) 57 return i; 58 return -1; 59 } 60 61 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 62 { 63 int i = cec_log_addr2idx(adap, log_addr); 64 65 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 66 } 67 68 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 69 unsigned int *offset) 70 { 71 unsigned int loc = cec_get_edid_spa_location(edid, size); 72 73 if (offset) 74 *offset = loc; 75 if (loc == 0) 76 return CEC_PHYS_ADDR_INVALID; 77 return (edid[loc] << 8) | edid[loc + 1]; 78 } 79 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 80 81 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 82 const struct drm_connector *connector) 83 { 84 memset(conn_info, 0, sizeof(*conn_info)); 85 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 86 conn_info->drm.card_no = connector->dev->primary->index; 87 conn_info->drm.connector_id = connector->base.id; 88 } 89 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 90 91 /* 92 * Queue a new event for this filehandle. If ts == 0, then set it 93 * to the current time. 94 * 95 * We keep a queue of at most max_event events where max_event differs 96 * per event. If the queue becomes full, then drop the oldest event and 97 * keep track of how many events we've dropped. 98 */ 99 void cec_queue_event_fh(struct cec_fh *fh, 100 const struct cec_event *new_ev, u64 ts) 101 { 102 static const u16 max_events[CEC_NUM_EVENTS] = { 103 1, 1, 800, 800, 8, 8, 8, 8 104 }; 105 struct cec_event_entry *entry; 106 unsigned int ev_idx = new_ev->event - 1; 107 108 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 109 return; 110 111 if (ts == 0) 112 ts = ktime_get_ns(); 113 114 mutex_lock(&fh->lock); 115 if (ev_idx < CEC_NUM_CORE_EVENTS) 116 entry = &fh->core_events[ev_idx]; 117 else 118 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 119 if (entry) { 120 if (new_ev->event == CEC_EVENT_LOST_MSGS && 121 fh->queued_events[ev_idx]) { 122 entry->ev.lost_msgs.lost_msgs += 123 new_ev->lost_msgs.lost_msgs; 124 goto unlock; 125 } 126 entry->ev = *new_ev; 127 entry->ev.ts = ts; 128 129 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 130 /* Add new msg at the end of the queue */ 131 list_add_tail(&entry->list, &fh->events[ev_idx]); 132 fh->queued_events[ev_idx]++; 133 fh->total_queued_events++; 134 goto unlock; 135 } 136 137 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 138 list_add_tail(&entry->list, &fh->events[ev_idx]); 139 /* drop the oldest event */ 140 entry = list_first_entry(&fh->events[ev_idx], 141 struct cec_event_entry, list); 142 list_del(&entry->list); 143 kfree(entry); 144 } 145 } 146 /* Mark that events were lost */ 147 entry = list_first_entry_or_null(&fh->events[ev_idx], 148 struct cec_event_entry, list); 149 if (entry) 150 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 151 152 unlock: 153 mutex_unlock(&fh->lock); 154 wake_up_interruptible(&fh->wait); 155 } 156 157 /* Queue a new event for all open filehandles. */ 158 static void cec_queue_event(struct cec_adapter *adap, 159 const struct cec_event *ev) 160 { 161 u64 ts = ktime_get_ns(); 162 struct cec_fh *fh; 163 164 mutex_lock(&adap->devnode.lock); 165 list_for_each_entry(fh, &adap->devnode.fhs, list) 166 cec_queue_event_fh(fh, ev, ts); 167 mutex_unlock(&adap->devnode.lock); 168 } 169 170 /* Notify userspace that the CEC pin changed state at the given time. */ 171 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 172 bool dropped_events, ktime_t ts) 173 { 174 struct cec_event ev = { 175 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 176 CEC_EVENT_PIN_CEC_LOW, 177 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 178 }; 179 struct cec_fh *fh; 180 181 mutex_lock(&adap->devnode.lock); 182 list_for_each_entry(fh, &adap->devnode.fhs, list) 183 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 184 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 185 mutex_unlock(&adap->devnode.lock); 186 } 187 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 188 189 /* Notify userspace that the HPD pin changed state at the given time. */ 190 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 191 { 192 struct cec_event ev = { 193 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 194 CEC_EVENT_PIN_HPD_LOW, 195 }; 196 struct cec_fh *fh; 197 198 mutex_lock(&adap->devnode.lock); 199 list_for_each_entry(fh, &adap->devnode.fhs, list) 200 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 201 mutex_unlock(&adap->devnode.lock); 202 } 203 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 204 205 /* Notify userspace that the 5V pin changed state at the given time. */ 206 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 207 { 208 struct cec_event ev = { 209 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 210 CEC_EVENT_PIN_5V_LOW, 211 }; 212 struct cec_fh *fh; 213 214 mutex_lock(&adap->devnode.lock); 215 list_for_each_entry(fh, &adap->devnode.fhs, list) 216 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 217 mutex_unlock(&adap->devnode.lock); 218 } 219 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 220 221 /* 222 * Queue a new message for this filehandle. 223 * 224 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 225 * queue becomes full, then drop the oldest message and keep track 226 * of how many messages we've dropped. 227 */ 228 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 229 { 230 static const struct cec_event ev_lost_msgs = { 231 .event = CEC_EVENT_LOST_MSGS, 232 .flags = 0, 233 { 234 .lost_msgs = { 1 }, 235 }, 236 }; 237 struct cec_msg_entry *entry; 238 239 mutex_lock(&fh->lock); 240 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 241 if (entry) { 242 entry->msg = *msg; 243 /* Add new msg at the end of the queue */ 244 list_add_tail(&entry->list, &fh->msgs); 245 246 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 247 /* All is fine if there is enough room */ 248 fh->queued_msgs++; 249 mutex_unlock(&fh->lock); 250 wake_up_interruptible(&fh->wait); 251 return; 252 } 253 254 /* 255 * if the message queue is full, then drop the oldest one and 256 * send a lost message event. 257 */ 258 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 259 list_del(&entry->list); 260 kfree(entry); 261 } 262 mutex_unlock(&fh->lock); 263 264 /* 265 * We lost a message, either because kmalloc failed or the queue 266 * was full. 267 */ 268 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 269 } 270 271 /* 272 * Queue the message for those filehandles that are in monitor mode. 273 * If valid_la is true (this message is for us or was sent by us), 274 * then pass it on to any monitoring filehandle. If this message 275 * isn't for us or from us, then only give it to filehandles that 276 * are in MONITOR_ALL mode. 277 * 278 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 279 * set and the CEC adapter was placed in 'monitor all' mode. 280 */ 281 static void cec_queue_msg_monitor(struct cec_adapter *adap, 282 const struct cec_msg *msg, 283 bool valid_la) 284 { 285 struct cec_fh *fh; 286 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 287 CEC_MODE_MONITOR_ALL; 288 289 mutex_lock(&adap->devnode.lock); 290 list_for_each_entry(fh, &adap->devnode.fhs, list) { 291 if (fh->mode_follower >= monitor_mode) 292 cec_queue_msg_fh(fh, msg); 293 } 294 mutex_unlock(&adap->devnode.lock); 295 } 296 297 /* 298 * Queue the message for follower filehandles. 299 */ 300 static void cec_queue_msg_followers(struct cec_adapter *adap, 301 const struct cec_msg *msg) 302 { 303 struct cec_fh *fh; 304 305 mutex_lock(&adap->devnode.lock); 306 list_for_each_entry(fh, &adap->devnode.fhs, list) { 307 if (fh->mode_follower == CEC_MODE_FOLLOWER) 308 cec_queue_msg_fh(fh, msg); 309 } 310 mutex_unlock(&adap->devnode.lock); 311 } 312 313 /* Notify userspace of an adapter state change. */ 314 static void cec_post_state_event(struct cec_adapter *adap) 315 { 316 struct cec_event ev = { 317 .event = CEC_EVENT_STATE_CHANGE, 318 }; 319 320 ev.state_change.phys_addr = adap->phys_addr; 321 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 322 ev.state_change.have_conn_info = 323 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 324 cec_queue_event(adap, &ev); 325 } 326 327 /* 328 * A CEC transmit (and a possible wait for reply) completed. 329 * If this was in blocking mode, then complete it, otherwise 330 * queue the message for userspace to dequeue later. 331 * 332 * This function is called with adap->lock held. 333 */ 334 static void cec_data_completed(struct cec_data *data) 335 { 336 /* 337 * Delete this transmit from the filehandle's xfer_list since 338 * we're done with it. 339 * 340 * Note that if the filehandle is closed before this transmit 341 * finished, then the release() function will set data->fh to NULL. 342 * Without that we would be referring to a closed filehandle. 343 */ 344 if (data->fh) 345 list_del(&data->xfer_list); 346 347 if (data->blocking) { 348 /* 349 * Someone is blocking so mark the message as completed 350 * and call complete. 351 */ 352 data->completed = true; 353 complete(&data->c); 354 } else { 355 /* 356 * No blocking, so just queue the message if needed and 357 * free the memory. 358 */ 359 if (data->fh) 360 cec_queue_msg_fh(data->fh, &data->msg); 361 kfree(data); 362 } 363 } 364 365 /* 366 * A pending CEC transmit needs to be cancelled, either because the CEC 367 * adapter is disabled or the transmit takes an impossibly long time to 368 * finish. 369 * 370 * This function is called with adap->lock held. 371 */ 372 static void cec_data_cancel(struct cec_data *data, u8 tx_status) 373 { 374 /* 375 * It's either the current transmit, or it is a pending 376 * transmit. Take the appropriate action to clear it. 377 */ 378 if (data->adap->transmitting == data) { 379 data->adap->transmitting = NULL; 380 } else { 381 list_del_init(&data->list); 382 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 383 if (!WARN_ON(!data->adap->transmit_queue_sz)) 384 data->adap->transmit_queue_sz--; 385 } 386 387 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 388 data->msg.rx_ts = ktime_get_ns(); 389 data->msg.rx_status = CEC_RX_STATUS_ABORTED; 390 } else { 391 data->msg.tx_ts = ktime_get_ns(); 392 data->msg.tx_status |= tx_status | 393 CEC_TX_STATUS_MAX_RETRIES; 394 data->msg.tx_error_cnt++; 395 data->attempts = 0; 396 } 397 398 /* Queue transmitted message for monitoring purposes */ 399 cec_queue_msg_monitor(data->adap, &data->msg, 1); 400 401 cec_data_completed(data); 402 } 403 404 /* 405 * Flush all pending transmits and cancel any pending timeout work. 406 * 407 * This function is called with adap->lock held. 408 */ 409 static void cec_flush(struct cec_adapter *adap) 410 { 411 struct cec_data *data, *n; 412 413 /* 414 * If the adapter is disabled, or we're asked to stop, 415 * then cancel any pending transmits. 416 */ 417 while (!list_empty(&adap->transmit_queue)) { 418 data = list_first_entry(&adap->transmit_queue, 419 struct cec_data, list); 420 cec_data_cancel(data, CEC_TX_STATUS_ABORTED); 421 } 422 if (adap->transmitting) 423 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED); 424 425 /* Cancel the pending timeout work. */ 426 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 427 if (cancel_delayed_work(&data->work)) 428 cec_data_cancel(data, CEC_TX_STATUS_OK); 429 /* 430 * If cancel_delayed_work returned false, then 431 * the cec_wait_timeout function is running, 432 * which will call cec_data_completed. So no 433 * need to do anything special in that case. 434 */ 435 } 436 /* 437 * If something went wrong and this counter isn't what it should 438 * be, then this will reset it back to 0. Warn if it is not 0, 439 * since it indicates a bug, either in this framework or in a 440 * CEC driver. 441 */ 442 if (WARN_ON(adap->transmit_queue_sz)) 443 adap->transmit_queue_sz = 0; 444 } 445 446 /* 447 * Main CEC state machine 448 * 449 * Wait until the thread should be stopped, or we are not transmitting and 450 * a new transmit message is queued up, in which case we start transmitting 451 * that message. When the adapter finished transmitting the message it will 452 * call cec_transmit_done(). 453 * 454 * If the adapter is disabled, then remove all queued messages instead. 455 * 456 * If the current transmit times out, then cancel that transmit. 457 */ 458 int cec_thread_func(void *_adap) 459 { 460 struct cec_adapter *adap = _adap; 461 462 for (;;) { 463 unsigned int signal_free_time; 464 struct cec_data *data; 465 bool timeout = false; 466 u8 attempts; 467 468 if (adap->transmit_in_progress) { 469 int err; 470 471 /* 472 * We are transmitting a message, so add a timeout 473 * to prevent the state machine to get stuck waiting 474 * for this message to finalize and add a check to 475 * see if the adapter is disabled in which case the 476 * transmit should be canceled. 477 */ 478 err = wait_event_interruptible_timeout(adap->kthread_waitq, 479 (adap->needs_hpd && 480 (!adap->is_configured && !adap->is_configuring)) || 481 kthread_should_stop() || 482 (!adap->transmit_in_progress && 483 !list_empty(&adap->transmit_queue)), 484 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS)); 485 timeout = err == 0; 486 } else { 487 /* Otherwise we just wait for something to happen. */ 488 wait_event_interruptible(adap->kthread_waitq, 489 kthread_should_stop() || 490 (!adap->transmit_in_progress && 491 !list_empty(&adap->transmit_queue))); 492 } 493 494 mutex_lock(&adap->lock); 495 496 if ((adap->needs_hpd && 497 (!adap->is_configured && !adap->is_configuring)) || 498 kthread_should_stop()) { 499 cec_flush(adap); 500 goto unlock; 501 } 502 503 if (adap->transmit_in_progress && timeout) { 504 /* 505 * If we timeout, then log that. Normally this does 506 * not happen and it is an indication of a faulty CEC 507 * adapter driver, or the CEC bus is in some weird 508 * state. On rare occasions it can happen if there is 509 * so much traffic on the bus that the adapter was 510 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s). 511 */ 512 if (adap->transmitting) { 513 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 514 adap->transmitting->msg.len, 515 adap->transmitting->msg.msg); 516 /* Just give up on this. */ 517 cec_data_cancel(adap->transmitting, 518 CEC_TX_STATUS_TIMEOUT); 519 } else { 520 pr_warn("cec-%s: transmit timed out\n", adap->name); 521 } 522 adap->transmit_in_progress = false; 523 adap->tx_timeouts++; 524 goto unlock; 525 } 526 527 /* 528 * If we are still transmitting, or there is nothing new to 529 * transmit, then just continue waiting. 530 */ 531 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 532 goto unlock; 533 534 /* Get a new message to transmit */ 535 data = list_first_entry(&adap->transmit_queue, 536 struct cec_data, list); 537 list_del_init(&data->list); 538 if (!WARN_ON(!data->adap->transmit_queue_sz)) 539 adap->transmit_queue_sz--; 540 541 /* Make this the current transmitting message */ 542 adap->transmitting = data; 543 544 /* 545 * Suggested number of attempts as per the CEC 2.0 spec: 546 * 4 attempts is the default, except for 'secondary poll 547 * messages', i.e. poll messages not sent during the adapter 548 * configuration phase when it allocates logical addresses. 549 */ 550 if (data->msg.len == 1 && adap->is_configured) 551 attempts = 2; 552 else 553 attempts = 4; 554 555 /* Set the suggested signal free time */ 556 if (data->attempts) { 557 /* should be >= 3 data bit periods for a retry */ 558 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 559 } else if (adap->last_initiator != 560 cec_msg_initiator(&data->msg)) { 561 /* should be >= 5 data bit periods for new initiator */ 562 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 563 adap->last_initiator = cec_msg_initiator(&data->msg); 564 } else { 565 /* 566 * should be >= 7 data bit periods for sending another 567 * frame immediately after another. 568 */ 569 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 570 } 571 if (data->attempts == 0) 572 data->attempts = attempts; 573 574 /* Tell the adapter to transmit, cancel on error */ 575 if (adap->ops->adap_transmit(adap, data->attempts, 576 signal_free_time, &data->msg)) 577 cec_data_cancel(data, CEC_TX_STATUS_ABORTED); 578 else 579 adap->transmit_in_progress = true; 580 581 unlock: 582 mutex_unlock(&adap->lock); 583 584 if (kthread_should_stop()) 585 break; 586 } 587 return 0; 588 } 589 590 /* 591 * Called by the CEC adapter if a transmit finished. 592 */ 593 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 594 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 595 u8 error_cnt, ktime_t ts) 596 { 597 struct cec_data *data; 598 struct cec_msg *msg; 599 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 600 low_drive_cnt + error_cnt; 601 602 dprintk(2, "%s: status 0x%02x\n", __func__, status); 603 if (attempts_made < 1) 604 attempts_made = 1; 605 606 mutex_lock(&adap->lock); 607 data = adap->transmitting; 608 if (!data) { 609 /* 610 * This might happen if a transmit was issued and the cable is 611 * unplugged while the transmit is ongoing. Ignore this 612 * transmit in that case. 613 */ 614 if (!adap->transmit_in_progress) 615 dprintk(1, "%s was called without an ongoing transmit!\n", 616 __func__); 617 adap->transmit_in_progress = false; 618 goto wake_thread; 619 } 620 adap->transmit_in_progress = false; 621 622 msg = &data->msg; 623 624 /* Drivers must fill in the status! */ 625 WARN_ON(status == 0); 626 msg->tx_ts = ktime_to_ns(ts); 627 msg->tx_status |= status; 628 msg->tx_arb_lost_cnt += arb_lost_cnt; 629 msg->tx_nack_cnt += nack_cnt; 630 msg->tx_low_drive_cnt += low_drive_cnt; 631 msg->tx_error_cnt += error_cnt; 632 633 /* Mark that we're done with this transmit */ 634 adap->transmitting = NULL; 635 636 /* 637 * If there are still retry attempts left and there was an error and 638 * the hardware didn't signal that it retried itself (by setting 639 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 640 */ 641 if (data->attempts > attempts_made && 642 !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) { 643 /* Retry this message */ 644 data->attempts -= attempts_made; 645 if (msg->timeout) 646 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", 647 msg->len, msg->msg, data->attempts, msg->reply); 648 else 649 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 650 msg->len, msg->msg, data->attempts); 651 /* Add the message in front of the transmit queue */ 652 list_add(&data->list, &adap->transmit_queue); 653 adap->transmit_queue_sz++; 654 goto wake_thread; 655 } 656 657 data->attempts = 0; 658 659 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 660 if (!(status & CEC_TX_STATUS_OK)) 661 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 662 663 /* Queue transmitted message for monitoring purposes */ 664 cec_queue_msg_monitor(adap, msg, 1); 665 666 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 667 msg->timeout) { 668 /* 669 * Queue the message into the wait queue if we want to wait 670 * for a reply. 671 */ 672 list_add_tail(&data->list, &adap->wait_queue); 673 schedule_delayed_work(&data->work, 674 msecs_to_jiffies(msg->timeout)); 675 } else { 676 /* Otherwise we're done */ 677 cec_data_completed(data); 678 } 679 680 wake_thread: 681 /* 682 * Wake up the main thread to see if another message is ready 683 * for transmitting or to retry the current message. 684 */ 685 wake_up_interruptible(&adap->kthread_waitq); 686 mutex_unlock(&adap->lock); 687 } 688 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 689 690 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 691 u8 status, ktime_t ts) 692 { 693 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 694 case CEC_TX_STATUS_OK: 695 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 696 return; 697 case CEC_TX_STATUS_ARB_LOST: 698 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 699 return; 700 case CEC_TX_STATUS_NACK: 701 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 702 return; 703 case CEC_TX_STATUS_LOW_DRIVE: 704 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 705 return; 706 case CEC_TX_STATUS_ERROR: 707 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 708 return; 709 default: 710 /* Should never happen */ 711 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 712 return; 713 } 714 } 715 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 716 717 /* 718 * Called when waiting for a reply times out. 719 */ 720 static void cec_wait_timeout(struct work_struct *work) 721 { 722 struct cec_data *data = container_of(work, struct cec_data, work.work); 723 struct cec_adapter *adap = data->adap; 724 725 mutex_lock(&adap->lock); 726 /* 727 * Sanity check in case the timeout and the arrival of the message 728 * happened at the same time. 729 */ 730 if (list_empty(&data->list)) 731 goto unlock; 732 733 /* Mark the message as timed out */ 734 list_del_init(&data->list); 735 data->msg.rx_ts = ktime_get_ns(); 736 data->msg.rx_status = CEC_RX_STATUS_TIMEOUT; 737 cec_data_completed(data); 738 unlock: 739 mutex_unlock(&adap->lock); 740 } 741 742 /* 743 * Transmit a message. The fh argument may be NULL if the transmit is not 744 * associated with a specific filehandle. 745 * 746 * This function is called with adap->lock held. 747 */ 748 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 749 struct cec_fh *fh, bool block) 750 { 751 struct cec_data *data; 752 bool is_raw = msg_is_raw(msg); 753 754 msg->rx_ts = 0; 755 msg->tx_ts = 0; 756 msg->rx_status = 0; 757 msg->tx_status = 0; 758 msg->tx_arb_lost_cnt = 0; 759 msg->tx_nack_cnt = 0; 760 msg->tx_low_drive_cnt = 0; 761 msg->tx_error_cnt = 0; 762 msg->sequence = 0; 763 764 if (msg->reply && msg->timeout == 0) { 765 /* Make sure the timeout isn't 0. */ 766 msg->timeout = 1000; 767 } 768 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; 769 770 if (!msg->timeout) 771 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 772 773 /* Sanity checks */ 774 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 775 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 776 return -EINVAL; 777 } 778 779 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 780 781 if (msg->timeout) 782 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 783 __func__, msg->len, msg->msg, msg->reply, 784 !block ? ", nb" : ""); 785 else 786 dprintk(2, "%s: %*ph%s\n", 787 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 788 789 if (msg->timeout && msg->len == 1) { 790 dprintk(1, "%s: can't reply to poll msg\n", __func__); 791 return -EINVAL; 792 } 793 794 if (is_raw) { 795 if (!capable(CAP_SYS_RAWIO)) 796 return -EPERM; 797 } else { 798 /* A CDC-Only device can only send CDC messages */ 799 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 800 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 801 dprintk(1, "%s: not a CDC message\n", __func__); 802 return -EINVAL; 803 } 804 805 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 806 msg->msg[2] = adap->phys_addr >> 8; 807 msg->msg[3] = adap->phys_addr & 0xff; 808 } 809 810 if (msg->len == 1) { 811 if (cec_msg_destination(msg) == 0xf) { 812 dprintk(1, "%s: invalid poll message\n", 813 __func__); 814 return -EINVAL; 815 } 816 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 817 /* 818 * If the destination is a logical address our 819 * adapter has already claimed, then just NACK 820 * this. It depends on the hardware what it will 821 * do with a POLL to itself (some OK this), so 822 * it is just as easy to handle it here so the 823 * behavior will be consistent. 824 */ 825 msg->tx_ts = ktime_get_ns(); 826 msg->tx_status = CEC_TX_STATUS_NACK | 827 CEC_TX_STATUS_MAX_RETRIES; 828 msg->tx_nack_cnt = 1; 829 msg->sequence = ++adap->sequence; 830 if (!msg->sequence) 831 msg->sequence = ++adap->sequence; 832 return 0; 833 } 834 } 835 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 836 cec_has_log_addr(adap, cec_msg_destination(msg))) { 837 dprintk(1, "%s: destination is the adapter itself\n", 838 __func__); 839 return -EINVAL; 840 } 841 if (msg->len > 1 && adap->is_configured && 842 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 843 dprintk(1, "%s: initiator has unknown logical address %d\n", 844 __func__, cec_msg_initiator(msg)); 845 return -EINVAL; 846 } 847 /* 848 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 849 * transmitted to a TV, even if the adapter is unconfigured. 850 * This makes it possible to detect or wake up displays that 851 * pull down the HPD when in standby. 852 */ 853 if (!adap->is_configured && !adap->is_configuring && 854 (msg->len > 2 || 855 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 856 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 857 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 858 dprintk(1, "%s: adapter is unconfigured\n", __func__); 859 return -ENONET; 860 } 861 } 862 863 if (!adap->is_configured && !adap->is_configuring) { 864 if (adap->needs_hpd) { 865 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 866 __func__); 867 return -ENONET; 868 } 869 if (msg->reply) { 870 dprintk(1, "%s: invalid msg->reply\n", __func__); 871 return -EINVAL; 872 } 873 } 874 875 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 876 dprintk(2, "%s: transmit queue full\n", __func__); 877 return -EBUSY; 878 } 879 880 data = kzalloc(sizeof(*data), GFP_KERNEL); 881 if (!data) 882 return -ENOMEM; 883 884 msg->sequence = ++adap->sequence; 885 if (!msg->sequence) 886 msg->sequence = ++adap->sequence; 887 888 data->msg = *msg; 889 data->fh = fh; 890 data->adap = adap; 891 data->blocking = block; 892 893 init_completion(&data->c); 894 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 895 896 if (fh) 897 list_add_tail(&data->xfer_list, &fh->xfer_list); 898 899 list_add_tail(&data->list, &adap->transmit_queue); 900 adap->transmit_queue_sz++; 901 if (!adap->transmitting) 902 wake_up_interruptible(&adap->kthread_waitq); 903 904 /* All done if we don't need to block waiting for completion */ 905 if (!block) 906 return 0; 907 908 /* 909 * Release the lock and wait, retake the lock afterwards. 910 */ 911 mutex_unlock(&adap->lock); 912 wait_for_completion_killable(&data->c); 913 if (!data->completed) 914 cancel_delayed_work_sync(&data->work); 915 mutex_lock(&adap->lock); 916 917 /* Cancel the transmit if it was interrupted */ 918 if (!data->completed) 919 cec_data_cancel(data, CEC_TX_STATUS_ABORTED); 920 921 /* The transmit completed (possibly with an error) */ 922 *msg = data->msg; 923 kfree(data); 924 return 0; 925 } 926 927 /* Helper function to be used by drivers and this framework. */ 928 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 929 bool block) 930 { 931 int ret; 932 933 mutex_lock(&adap->lock); 934 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 935 mutex_unlock(&adap->lock); 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(cec_transmit_msg); 939 940 /* 941 * I don't like forward references but without this the low-level 942 * cec_received_msg() function would come after a bunch of high-level 943 * CEC protocol handling functions. That was very confusing. 944 */ 945 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 946 bool is_reply); 947 948 #define DIRECTED 0x80 949 #define BCAST1_4 0x40 950 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 951 #define BCAST (BCAST1_4 | BCAST2_0) 952 #define BOTH (BCAST | DIRECTED) 953 954 /* 955 * Specify minimum length and whether the message is directed, broadcast 956 * or both. Messages that do not match the criteria are ignored as per 957 * the CEC specification. 958 */ 959 static const u8 cec_msg_size[256] = { 960 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 961 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 962 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 963 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 964 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 965 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 966 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 967 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 968 [CEC_MSG_STANDBY] = 2 | BOTH, 969 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 970 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 971 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 972 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 973 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 974 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 975 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 976 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 977 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 978 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 979 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 980 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 981 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 982 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 983 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 984 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 985 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 986 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 987 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 988 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 989 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 990 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 991 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 992 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 993 [CEC_MSG_PLAY] = 3 | DIRECTED, 994 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 995 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 996 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 997 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 998 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 999 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1000 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1001 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1002 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1003 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1004 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1005 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1006 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1007 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1008 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1009 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1010 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1011 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1012 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1013 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1014 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1015 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1016 [CEC_MSG_ABORT] = 2 | DIRECTED, 1017 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1018 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1019 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1020 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1021 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1022 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1023 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1024 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1025 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1026 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1027 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1028 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1029 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1030 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1031 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1032 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1033 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1034 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1035 }; 1036 1037 /* Called by the CEC adapter if a message is received */ 1038 void cec_received_msg_ts(struct cec_adapter *adap, 1039 struct cec_msg *msg, ktime_t ts) 1040 { 1041 struct cec_data *data; 1042 u8 msg_init = cec_msg_initiator(msg); 1043 u8 msg_dest = cec_msg_destination(msg); 1044 u8 cmd = msg->msg[1]; 1045 bool is_reply = false; 1046 bool valid_la = true; 1047 u8 min_len = 0; 1048 1049 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1050 return; 1051 1052 /* 1053 * Some CEC adapters will receive the messages that they transmitted. 1054 * This test filters out those messages by checking if we are the 1055 * initiator, and just returning in that case. 1056 * 1057 * Note that this won't work if this is an Unregistered device. 1058 * 1059 * It is bad practice if the hardware receives the message that it 1060 * transmitted and luckily most CEC adapters behave correctly in this 1061 * respect. 1062 */ 1063 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1064 cec_has_log_addr(adap, msg_init)) 1065 return; 1066 1067 msg->rx_ts = ktime_to_ns(ts); 1068 msg->rx_status = CEC_RX_STATUS_OK; 1069 msg->sequence = msg->reply = msg->timeout = 0; 1070 msg->tx_status = 0; 1071 msg->tx_ts = 0; 1072 msg->tx_arb_lost_cnt = 0; 1073 msg->tx_nack_cnt = 0; 1074 msg->tx_low_drive_cnt = 0; 1075 msg->tx_error_cnt = 0; 1076 msg->flags = 0; 1077 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1078 1079 mutex_lock(&adap->lock); 1080 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1081 1082 adap->last_initiator = 0xff; 1083 1084 /* Check if this message was for us (directed or broadcast). */ 1085 if (!cec_msg_is_broadcast(msg)) 1086 valid_la = cec_has_log_addr(adap, msg_dest); 1087 1088 /* 1089 * Check if the length is not too short or if the message is a 1090 * broadcast message where a directed message was expected or 1091 * vice versa. If so, then the message has to be ignored (according 1092 * to section CEC 7.3 and CEC 12.2). 1093 */ 1094 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1095 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1096 1097 min_len = cec_msg_size[cmd] & 0x1f; 1098 if (msg->len < min_len) 1099 valid_la = false; 1100 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1101 valid_la = false; 1102 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1103 valid_la = false; 1104 else if (cec_msg_is_broadcast(msg) && 1105 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1106 !(dir_fl & BCAST1_4)) 1107 valid_la = false; 1108 } 1109 if (valid_la && min_len) { 1110 /* These messages have special length requirements */ 1111 switch (cmd) { 1112 case CEC_MSG_TIMER_STATUS: 1113 if (msg->msg[2] & 0x10) { 1114 switch (msg->msg[2] & 0xf) { 1115 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE: 1116 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE: 1117 if (msg->len < 5) 1118 valid_la = false; 1119 break; 1120 } 1121 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) { 1122 if (msg->len < 5) 1123 valid_la = false; 1124 } 1125 break; 1126 case CEC_MSG_RECORD_ON: 1127 switch (msg->msg[2]) { 1128 case CEC_OP_RECORD_SRC_OWN: 1129 break; 1130 case CEC_OP_RECORD_SRC_DIGITAL: 1131 if (msg->len < 10) 1132 valid_la = false; 1133 break; 1134 case CEC_OP_RECORD_SRC_ANALOG: 1135 if (msg->len < 7) 1136 valid_la = false; 1137 break; 1138 case CEC_OP_RECORD_SRC_EXT_PLUG: 1139 if (msg->len < 4) 1140 valid_la = false; 1141 break; 1142 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1143 if (msg->len < 5) 1144 valid_la = false; 1145 break; 1146 } 1147 break; 1148 } 1149 } 1150 1151 /* It's a valid message and not a poll or CDC message */ 1152 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1153 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1154 1155 /* The aborted command is in msg[2] */ 1156 if (abort) 1157 cmd = msg->msg[2]; 1158 1159 /* 1160 * Walk over all transmitted messages that are waiting for a 1161 * reply. 1162 */ 1163 list_for_each_entry(data, &adap->wait_queue, list) { 1164 struct cec_msg *dst = &data->msg; 1165 1166 /* 1167 * The *only* CEC message that has two possible replies 1168 * is CEC_MSG_INITIATE_ARC. 1169 * In this case allow either of the two replies. 1170 */ 1171 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1172 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1173 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1174 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || 1175 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) 1176 dst->reply = cmd; 1177 1178 /* Does the command match? */ 1179 if ((abort && cmd != dst->msg[1]) || 1180 (!abort && cmd != dst->reply)) 1181 continue; 1182 1183 /* Does the addressing match? */ 1184 if (msg_init != cec_msg_destination(dst) && 1185 !cec_msg_is_broadcast(dst)) 1186 continue; 1187 1188 /* We got a reply */ 1189 memcpy(dst->msg, msg->msg, msg->len); 1190 dst->len = msg->len; 1191 dst->rx_ts = msg->rx_ts; 1192 dst->rx_status = msg->rx_status; 1193 if (abort) 1194 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1195 msg->flags = dst->flags; 1196 /* Remove it from the wait_queue */ 1197 list_del_init(&data->list); 1198 1199 /* Cancel the pending timeout work */ 1200 if (!cancel_delayed_work(&data->work)) { 1201 mutex_unlock(&adap->lock); 1202 flush_scheduled_work(); 1203 mutex_lock(&adap->lock); 1204 } 1205 /* 1206 * Mark this as a reply, provided someone is still 1207 * waiting for the answer. 1208 */ 1209 if (data->fh) 1210 is_reply = true; 1211 cec_data_completed(data); 1212 break; 1213 } 1214 } 1215 mutex_unlock(&adap->lock); 1216 1217 /* Pass the message on to any monitoring filehandles */ 1218 cec_queue_msg_monitor(adap, msg, valid_la); 1219 1220 /* We're done if it is not for us or a poll message */ 1221 if (!valid_la || msg->len <= 1) 1222 return; 1223 1224 if (adap->log_addrs.log_addr_mask == 0) 1225 return; 1226 1227 /* 1228 * Process the message on the protocol level. If is_reply is true, 1229 * then cec_receive_notify() won't pass on the reply to the listener(s) 1230 * since that was already done by cec_data_completed() above. 1231 */ 1232 cec_receive_notify(adap, msg, is_reply); 1233 } 1234 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1235 1236 /* Logical Address Handling */ 1237 1238 /* 1239 * Attempt to claim a specific logical address. 1240 * 1241 * This function is called with adap->lock held. 1242 */ 1243 static int cec_config_log_addr(struct cec_adapter *adap, 1244 unsigned int idx, 1245 unsigned int log_addr) 1246 { 1247 struct cec_log_addrs *las = &adap->log_addrs; 1248 struct cec_msg msg = { }; 1249 const unsigned int max_retries = 2; 1250 unsigned int i; 1251 int err; 1252 1253 if (cec_has_log_addr(adap, log_addr)) 1254 return 0; 1255 1256 /* Send poll message */ 1257 msg.len = 1; 1258 msg.msg[0] = (log_addr << 4) | log_addr; 1259 1260 for (i = 0; i < max_retries; i++) { 1261 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1262 1263 /* 1264 * While trying to poll the physical address was reset 1265 * and the adapter was unconfigured, so bail out. 1266 */ 1267 if (!adap->is_configuring) 1268 return -EINTR; 1269 1270 if (err) 1271 return err; 1272 1273 /* 1274 * The message was aborted due to a disconnect or 1275 * unconfigure, just bail out. 1276 */ 1277 if (msg.tx_status & CEC_TX_STATUS_ABORTED) 1278 return -EINTR; 1279 if (msg.tx_status & CEC_TX_STATUS_OK) 1280 return 0; 1281 if (msg.tx_status & CEC_TX_STATUS_NACK) 1282 break; 1283 /* 1284 * Retry up to max_retries times if the message was neither 1285 * OKed or NACKed. This can happen due to e.g. a Lost 1286 * Arbitration condition. 1287 */ 1288 } 1289 1290 /* 1291 * If we are unable to get an OK or a NACK after max_retries attempts 1292 * (and note that each attempt already consists of four polls), then 1293 * then we assume that something is really weird and that it is not a 1294 * good idea to try and claim this logical address. 1295 */ 1296 if (i == max_retries) 1297 return 0; 1298 1299 /* 1300 * Message not acknowledged, so this logical 1301 * address is free to use. 1302 */ 1303 err = adap->ops->adap_log_addr(adap, log_addr); 1304 if (err) 1305 return err; 1306 1307 las->log_addr[idx] = log_addr; 1308 las->log_addr_mask |= 1 << log_addr; 1309 adap->phys_addrs[log_addr] = adap->phys_addr; 1310 return 1; 1311 } 1312 1313 /* 1314 * Unconfigure the adapter: clear all logical addresses and send 1315 * the state changed event. 1316 * 1317 * This function is called with adap->lock held. 1318 */ 1319 static void cec_adap_unconfigure(struct cec_adapter *adap) 1320 { 1321 if (!adap->needs_hpd || 1322 adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1323 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID)); 1324 adap->log_addrs.log_addr_mask = 0; 1325 adap->is_configuring = false; 1326 adap->is_configured = false; 1327 memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs)); 1328 cec_flush(adap); 1329 wake_up_interruptible(&adap->kthread_waitq); 1330 cec_post_state_event(adap); 1331 } 1332 1333 /* 1334 * Attempt to claim the required logical addresses. 1335 */ 1336 static int cec_config_thread_func(void *arg) 1337 { 1338 /* The various LAs for each type of device */ 1339 static const u8 tv_log_addrs[] = { 1340 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1341 CEC_LOG_ADDR_INVALID 1342 }; 1343 static const u8 record_log_addrs[] = { 1344 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1345 CEC_LOG_ADDR_RECORD_3, 1346 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1347 CEC_LOG_ADDR_INVALID 1348 }; 1349 static const u8 tuner_log_addrs[] = { 1350 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1351 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1352 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1353 CEC_LOG_ADDR_INVALID 1354 }; 1355 static const u8 playback_log_addrs[] = { 1356 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1357 CEC_LOG_ADDR_PLAYBACK_3, 1358 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1359 CEC_LOG_ADDR_INVALID 1360 }; 1361 static const u8 audiosystem_log_addrs[] = { 1362 CEC_LOG_ADDR_AUDIOSYSTEM, 1363 CEC_LOG_ADDR_INVALID 1364 }; 1365 static const u8 specific_use_log_addrs[] = { 1366 CEC_LOG_ADDR_SPECIFIC, 1367 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1368 CEC_LOG_ADDR_INVALID 1369 }; 1370 static const u8 *type2addrs[6] = { 1371 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1372 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1373 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1374 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1375 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1376 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1377 }; 1378 static const u16 type2mask[] = { 1379 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1380 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1381 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1382 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1383 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1384 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1385 }; 1386 struct cec_adapter *adap = arg; 1387 struct cec_log_addrs *las = &adap->log_addrs; 1388 int err; 1389 int i, j; 1390 1391 mutex_lock(&adap->lock); 1392 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1393 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1394 las->log_addr_mask = 0; 1395 1396 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1397 goto configured; 1398 1399 for (i = 0; i < las->num_log_addrs; i++) { 1400 unsigned int type = las->log_addr_type[i]; 1401 const u8 *la_list; 1402 u8 last_la; 1403 1404 /* 1405 * The TV functionality can only map to physical address 0. 1406 * For any other address, try the Specific functionality 1407 * instead as per the spec. 1408 */ 1409 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1410 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1411 1412 la_list = type2addrs[type]; 1413 last_la = las->log_addr[i]; 1414 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1415 if (last_la == CEC_LOG_ADDR_INVALID || 1416 last_la == CEC_LOG_ADDR_UNREGISTERED || 1417 !((1 << last_la) & type2mask[type])) 1418 last_la = la_list[0]; 1419 1420 err = cec_config_log_addr(adap, i, last_la); 1421 if (err > 0) /* Reused last LA */ 1422 continue; 1423 1424 if (err < 0) 1425 goto unconfigure; 1426 1427 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1428 /* Tried this one already, skip it */ 1429 if (la_list[j] == last_la) 1430 continue; 1431 /* The backup addresses are CEC 2.0 specific */ 1432 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1433 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1434 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1435 continue; 1436 1437 err = cec_config_log_addr(adap, i, la_list[j]); 1438 if (err == 0) /* LA is in use */ 1439 continue; 1440 if (err < 0) 1441 goto unconfigure; 1442 /* Done, claimed an LA */ 1443 break; 1444 } 1445 1446 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1447 dprintk(1, "could not claim LA %d\n", i); 1448 } 1449 1450 if (adap->log_addrs.log_addr_mask == 0 && 1451 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1452 goto unconfigure; 1453 1454 configured: 1455 if (adap->log_addrs.log_addr_mask == 0) { 1456 /* Fall back to unregistered */ 1457 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1458 las->log_addr_mask = 1 << las->log_addr[0]; 1459 for (i = 1; i < las->num_log_addrs; i++) 1460 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1461 } 1462 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1463 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1464 adap->is_configured = true; 1465 adap->is_configuring = false; 1466 cec_post_state_event(adap); 1467 1468 /* 1469 * Now post the Report Features and Report Physical Address broadcast 1470 * messages. Note that these are non-blocking transmits, meaning that 1471 * they are just queued up and once adap->lock is unlocked the main 1472 * thread will kick in and start transmitting these. 1473 * 1474 * If after this function is done (but before one or more of these 1475 * messages are actually transmitted) the CEC adapter is unconfigured, 1476 * then any remaining messages will be dropped by the main thread. 1477 */ 1478 for (i = 0; i < las->num_log_addrs; i++) { 1479 struct cec_msg msg = {}; 1480 1481 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1482 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1483 continue; 1484 1485 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1486 1487 /* Report Features must come first according to CEC 2.0 */ 1488 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1489 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1490 cec_fill_msg_report_features(adap, &msg, i); 1491 cec_transmit_msg_fh(adap, &msg, NULL, false); 1492 } 1493 1494 /* Report Physical Address */ 1495 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1496 las->primary_device_type[i]); 1497 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1498 las->log_addr[i], 1499 cec_phys_addr_exp(adap->phys_addr)); 1500 cec_transmit_msg_fh(adap, &msg, NULL, false); 1501 1502 /* Report Vendor ID */ 1503 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1504 cec_msg_device_vendor_id(&msg, 1505 adap->log_addrs.vendor_id); 1506 cec_transmit_msg_fh(adap, &msg, NULL, false); 1507 } 1508 } 1509 adap->kthread_config = NULL; 1510 complete(&adap->config_completion); 1511 mutex_unlock(&adap->lock); 1512 return 0; 1513 1514 unconfigure: 1515 for (i = 0; i < las->num_log_addrs; i++) 1516 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1517 cec_adap_unconfigure(adap); 1518 adap->kthread_config = NULL; 1519 mutex_unlock(&adap->lock); 1520 complete(&adap->config_completion); 1521 return 0; 1522 } 1523 1524 /* 1525 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1526 * logical addresses. 1527 * 1528 * This function is called with adap->lock held. 1529 */ 1530 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1531 { 1532 if (WARN_ON(adap->is_configuring || adap->is_configured)) 1533 return; 1534 1535 init_completion(&adap->config_completion); 1536 1537 /* Ready to kick off the thread */ 1538 adap->is_configuring = true; 1539 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1540 "ceccfg-%s", adap->name); 1541 if (IS_ERR(adap->kthread_config)) { 1542 adap->kthread_config = NULL; 1543 } else if (block) { 1544 mutex_unlock(&adap->lock); 1545 wait_for_completion(&adap->config_completion); 1546 mutex_lock(&adap->lock); 1547 } 1548 } 1549 1550 /* Set a new physical address and send an event notifying userspace of this. 1551 * 1552 * This function is called with adap->lock held. 1553 */ 1554 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1555 { 1556 if (phys_addr == adap->phys_addr) 1557 return; 1558 if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered) 1559 return; 1560 1561 dprintk(1, "new physical address %x.%x.%x.%x\n", 1562 cec_phys_addr_exp(phys_addr)); 1563 if (phys_addr == CEC_PHYS_ADDR_INVALID || 1564 adap->phys_addr != CEC_PHYS_ADDR_INVALID) { 1565 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1566 cec_post_state_event(adap); 1567 cec_adap_unconfigure(adap); 1568 /* Disabling monitor all mode should always succeed */ 1569 if (adap->monitor_all_cnt) 1570 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1571 mutex_lock(&adap->devnode.lock); 1572 if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) { 1573 WARN_ON(adap->ops->adap_enable(adap, false)); 1574 adap->transmit_in_progress = false; 1575 wake_up_interruptible(&adap->kthread_waitq); 1576 } 1577 mutex_unlock(&adap->devnode.lock); 1578 if (phys_addr == CEC_PHYS_ADDR_INVALID) 1579 return; 1580 } 1581 1582 mutex_lock(&adap->devnode.lock); 1583 adap->last_initiator = 0xff; 1584 adap->transmit_in_progress = false; 1585 1586 if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) && 1587 adap->ops->adap_enable(adap, true)) { 1588 mutex_unlock(&adap->devnode.lock); 1589 return; 1590 } 1591 1592 if (adap->monitor_all_cnt && 1593 call_op(adap, adap_monitor_all_enable, true)) { 1594 if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) 1595 WARN_ON(adap->ops->adap_enable(adap, false)); 1596 mutex_unlock(&adap->devnode.lock); 1597 return; 1598 } 1599 mutex_unlock(&adap->devnode.lock); 1600 1601 adap->phys_addr = phys_addr; 1602 cec_post_state_event(adap); 1603 if (adap->log_addrs.num_log_addrs) 1604 cec_claim_log_addrs(adap, block); 1605 } 1606 1607 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1608 { 1609 if (IS_ERR_OR_NULL(adap)) 1610 return; 1611 1612 mutex_lock(&adap->lock); 1613 __cec_s_phys_addr(adap, phys_addr, block); 1614 mutex_unlock(&adap->lock); 1615 } 1616 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1617 1618 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1619 const struct edid *edid) 1620 { 1621 u16 pa = CEC_PHYS_ADDR_INVALID; 1622 1623 if (edid && edid->extensions) 1624 pa = cec_get_edid_phys_addr((const u8 *)edid, 1625 EDID_LENGTH * (edid->extensions + 1), NULL); 1626 cec_s_phys_addr(adap, pa, false); 1627 } 1628 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1629 1630 void cec_s_conn_info(struct cec_adapter *adap, 1631 const struct cec_connector_info *conn_info) 1632 { 1633 if (IS_ERR_OR_NULL(adap)) 1634 return; 1635 1636 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1637 return; 1638 1639 mutex_lock(&adap->lock); 1640 if (conn_info) 1641 adap->conn_info = *conn_info; 1642 else 1643 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1644 cec_post_state_event(adap); 1645 mutex_unlock(&adap->lock); 1646 } 1647 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1648 1649 /* 1650 * Called from either the ioctl or a driver to set the logical addresses. 1651 * 1652 * This function is called with adap->lock held. 1653 */ 1654 int __cec_s_log_addrs(struct cec_adapter *adap, 1655 struct cec_log_addrs *log_addrs, bool block) 1656 { 1657 u16 type_mask = 0; 1658 int i; 1659 1660 if (adap->devnode.unregistered) 1661 return -ENODEV; 1662 1663 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1664 cec_adap_unconfigure(adap); 1665 adap->log_addrs.num_log_addrs = 0; 1666 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1667 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1668 adap->log_addrs.osd_name[0] = '\0'; 1669 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1670 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1671 return 0; 1672 } 1673 1674 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1675 /* 1676 * Sanitize log_addrs fields if a CDC-Only device is 1677 * requested. 1678 */ 1679 log_addrs->num_log_addrs = 1; 1680 log_addrs->osd_name[0] = '\0'; 1681 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1682 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1683 /* 1684 * This is just an internal convention since a CDC-Only device 1685 * doesn't have to be a switch. But switches already use 1686 * unregistered, so it makes some kind of sense to pick this 1687 * as the primary device. Since a CDC-Only device never sends 1688 * any 'normal' CEC messages this primary device type is never 1689 * sent over the CEC bus. 1690 */ 1691 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1692 log_addrs->all_device_types[0] = 0; 1693 log_addrs->features[0][0] = 0; 1694 log_addrs->features[0][1] = 0; 1695 } 1696 1697 /* Ensure the osd name is 0-terminated */ 1698 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1699 1700 /* Sanity checks */ 1701 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1702 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1703 return -EINVAL; 1704 } 1705 1706 /* 1707 * Vendor ID is a 24 bit number, so check if the value is 1708 * within the correct range. 1709 */ 1710 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1711 (log_addrs->vendor_id & 0xff000000) != 0) { 1712 dprintk(1, "invalid vendor ID\n"); 1713 return -EINVAL; 1714 } 1715 1716 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1717 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1718 dprintk(1, "invalid CEC version\n"); 1719 return -EINVAL; 1720 } 1721 1722 if (log_addrs->num_log_addrs > 1) 1723 for (i = 0; i < log_addrs->num_log_addrs; i++) 1724 if (log_addrs->log_addr_type[i] == 1725 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1726 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1727 return -EINVAL; 1728 } 1729 1730 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1731 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1732 u8 *features = log_addrs->features[i]; 1733 bool op_is_dev_features = false; 1734 unsigned j; 1735 1736 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1737 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1738 dprintk(1, "unknown logical address type\n"); 1739 return -EINVAL; 1740 } 1741 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1742 dprintk(1, "duplicate logical address type\n"); 1743 return -EINVAL; 1744 } 1745 type_mask |= 1 << log_addrs->log_addr_type[i]; 1746 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1747 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1748 /* Record already contains the playback functionality */ 1749 dprintk(1, "invalid record + playback combination\n"); 1750 return -EINVAL; 1751 } 1752 if (log_addrs->primary_device_type[i] > 1753 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1754 dprintk(1, "unknown primary device type\n"); 1755 return -EINVAL; 1756 } 1757 if (log_addrs->primary_device_type[i] == 2) { 1758 dprintk(1, "invalid primary device type\n"); 1759 return -EINVAL; 1760 } 1761 for (j = 0; j < feature_sz; j++) { 1762 if ((features[j] & 0x80) == 0) { 1763 if (op_is_dev_features) 1764 break; 1765 op_is_dev_features = true; 1766 } 1767 } 1768 if (!op_is_dev_features || j == feature_sz) { 1769 dprintk(1, "malformed features\n"); 1770 return -EINVAL; 1771 } 1772 /* Zero unused part of the feature array */ 1773 memset(features + j + 1, 0, feature_sz - j - 1); 1774 } 1775 1776 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1777 if (log_addrs->num_log_addrs > 2) { 1778 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1779 return -EINVAL; 1780 } 1781 if (log_addrs->num_log_addrs == 2) { 1782 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1783 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1784 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1785 return -EINVAL; 1786 } 1787 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1788 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1789 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1790 return -EINVAL; 1791 } 1792 } 1793 } 1794 1795 /* Zero unused LAs */ 1796 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1797 log_addrs->primary_device_type[i] = 0; 1798 log_addrs->log_addr_type[i] = 0; 1799 log_addrs->all_device_types[i] = 0; 1800 memset(log_addrs->features[i], 0, 1801 sizeof(log_addrs->features[i])); 1802 } 1803 1804 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1805 adap->log_addrs = *log_addrs; 1806 if (adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1807 cec_claim_log_addrs(adap, block); 1808 return 0; 1809 } 1810 1811 int cec_s_log_addrs(struct cec_adapter *adap, 1812 struct cec_log_addrs *log_addrs, bool block) 1813 { 1814 int err; 1815 1816 mutex_lock(&adap->lock); 1817 err = __cec_s_log_addrs(adap, log_addrs, block); 1818 mutex_unlock(&adap->lock); 1819 return err; 1820 } 1821 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1822 1823 /* High-level core CEC message handling */ 1824 1825 /* Fill in the Report Features message */ 1826 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1827 struct cec_msg *msg, 1828 unsigned int la_idx) 1829 { 1830 const struct cec_log_addrs *las = &adap->log_addrs; 1831 const u8 *features = las->features[la_idx]; 1832 bool op_is_dev_features = false; 1833 unsigned int idx; 1834 1835 /* Report Features */ 1836 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1837 msg->len = 4; 1838 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1839 msg->msg[2] = adap->log_addrs.cec_version; 1840 msg->msg[3] = las->all_device_types[la_idx]; 1841 1842 /* Write RC Profiles first, then Device Features */ 1843 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1844 msg->msg[msg->len++] = features[idx]; 1845 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1846 if (op_is_dev_features) 1847 break; 1848 op_is_dev_features = true; 1849 } 1850 } 1851 } 1852 1853 /* Transmit the Feature Abort message */ 1854 static int cec_feature_abort_reason(struct cec_adapter *adap, 1855 struct cec_msg *msg, u8 reason) 1856 { 1857 struct cec_msg tx_msg = { }; 1858 1859 /* 1860 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1861 * message! 1862 */ 1863 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1864 return 0; 1865 /* Don't Feature Abort messages from 'Unregistered' */ 1866 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 1867 return 0; 1868 cec_msg_set_reply_to(&tx_msg, msg); 1869 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 1870 return cec_transmit_msg(adap, &tx_msg, false); 1871 } 1872 1873 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 1874 { 1875 return cec_feature_abort_reason(adap, msg, 1876 CEC_OP_ABORT_UNRECOGNIZED_OP); 1877 } 1878 1879 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 1880 { 1881 return cec_feature_abort_reason(adap, msg, 1882 CEC_OP_ABORT_REFUSED); 1883 } 1884 1885 /* 1886 * Called when a CEC message is received. This function will do any 1887 * necessary core processing. The is_reply bool is true if this message 1888 * is a reply to an earlier transmit. 1889 * 1890 * The message is either a broadcast message or a valid directed message. 1891 */ 1892 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 1893 bool is_reply) 1894 { 1895 bool is_broadcast = cec_msg_is_broadcast(msg); 1896 u8 dest_laddr = cec_msg_destination(msg); 1897 u8 init_laddr = cec_msg_initiator(msg); 1898 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 1899 int la_idx = cec_log_addr2idx(adap, dest_laddr); 1900 bool from_unregistered = init_laddr == 0xf; 1901 struct cec_msg tx_cec_msg = { }; 1902 1903 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1904 1905 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 1906 if (cec_is_cdc_only(&adap->log_addrs) && 1907 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 1908 return 0; 1909 1910 if (adap->ops->received) { 1911 /* Allow drivers to process the message first */ 1912 if (adap->ops->received(adap, msg) != -ENOMSG) 1913 return 0; 1914 } 1915 1916 /* 1917 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 1918 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 1919 * handled by the CEC core, even if the passthrough mode is on. 1920 * The others are just ignored if passthrough mode is on. 1921 */ 1922 switch (msg->msg[1]) { 1923 case CEC_MSG_GET_CEC_VERSION: 1924 case CEC_MSG_ABORT: 1925 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 1926 case CEC_MSG_GIVE_OSD_NAME: 1927 /* 1928 * These messages reply with a directed message, so ignore if 1929 * the initiator is Unregistered. 1930 */ 1931 if (!adap->passthrough && from_unregistered) 1932 return 0; 1933 /* Fall through */ 1934 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 1935 case CEC_MSG_GIVE_FEATURES: 1936 case CEC_MSG_GIVE_PHYSICAL_ADDR: 1937 /* 1938 * Skip processing these messages if the passthrough mode 1939 * is on. 1940 */ 1941 if (adap->passthrough) 1942 goto skip_processing; 1943 /* Ignore if addressing is wrong */ 1944 if (is_broadcast) 1945 return 0; 1946 break; 1947 1948 case CEC_MSG_USER_CONTROL_PRESSED: 1949 case CEC_MSG_USER_CONTROL_RELEASED: 1950 /* Wrong addressing mode: don't process */ 1951 if (is_broadcast || from_unregistered) 1952 goto skip_processing; 1953 break; 1954 1955 case CEC_MSG_REPORT_PHYSICAL_ADDR: 1956 /* 1957 * This message is always processed, regardless of the 1958 * passthrough setting. 1959 * 1960 * Exception: don't process if wrong addressing mode. 1961 */ 1962 if (!is_broadcast) 1963 goto skip_processing; 1964 break; 1965 1966 default: 1967 break; 1968 } 1969 1970 cec_msg_set_reply_to(&tx_cec_msg, msg); 1971 1972 switch (msg->msg[1]) { 1973 /* The following messages are processed but still passed through */ 1974 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 1975 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 1976 1977 if (!from_unregistered) 1978 adap->phys_addrs[init_laddr] = pa; 1979 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 1980 cec_phys_addr_exp(pa), init_laddr); 1981 break; 1982 } 1983 1984 case CEC_MSG_USER_CONTROL_PRESSED: 1985 if (!(adap->capabilities & CEC_CAP_RC) || 1986 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 1987 break; 1988 1989 #ifdef CONFIG_MEDIA_CEC_RC 1990 switch (msg->msg[2]) { 1991 /* 1992 * Play function, this message can have variable length 1993 * depending on the specific play function that is used. 1994 */ 1995 case CEC_OP_UI_CMD_PLAY_FUNCTION: 1996 if (msg->len == 2) 1997 rc_keydown(adap->rc, RC_PROTO_CEC, 1998 msg->msg[2], 0); 1999 else 2000 rc_keydown(adap->rc, RC_PROTO_CEC, 2001 msg->msg[2] << 8 | msg->msg[3], 0); 2002 break; 2003 /* 2004 * Other function messages that are not handled. 2005 * Currently the RC framework does not allow to supply an 2006 * additional parameter to a keypress. These "keys" contain 2007 * other information such as channel number, an input number 2008 * etc. 2009 * For the time being these messages are not processed by the 2010 * framework and are simply forwarded to the user space. 2011 */ 2012 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2013 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2014 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2015 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2016 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2017 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2018 break; 2019 default: 2020 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2021 break; 2022 } 2023 #endif 2024 break; 2025 2026 case CEC_MSG_USER_CONTROL_RELEASED: 2027 if (!(adap->capabilities & CEC_CAP_RC) || 2028 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2029 break; 2030 #ifdef CONFIG_MEDIA_CEC_RC 2031 rc_keyup(adap->rc); 2032 #endif 2033 break; 2034 2035 /* 2036 * The remaining messages are only processed if the passthrough mode 2037 * is off. 2038 */ 2039 case CEC_MSG_GET_CEC_VERSION: 2040 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2041 return cec_transmit_msg(adap, &tx_cec_msg, false); 2042 2043 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2044 /* Do nothing for CEC switches using addr 15 */ 2045 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2046 return 0; 2047 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2048 return cec_transmit_msg(adap, &tx_cec_msg, false); 2049 2050 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2051 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2052 return cec_feature_abort(adap, msg); 2053 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2054 return cec_transmit_msg(adap, &tx_cec_msg, false); 2055 2056 case CEC_MSG_ABORT: 2057 /* Do nothing for CEC switches */ 2058 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2059 return 0; 2060 return cec_feature_refused(adap, msg); 2061 2062 case CEC_MSG_GIVE_OSD_NAME: { 2063 if (adap->log_addrs.osd_name[0] == 0) 2064 return cec_feature_abort(adap, msg); 2065 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2066 return cec_transmit_msg(adap, &tx_cec_msg, false); 2067 } 2068 2069 case CEC_MSG_GIVE_FEATURES: 2070 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2071 return cec_feature_abort(adap, msg); 2072 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2073 return cec_transmit_msg(adap, &tx_cec_msg, false); 2074 2075 default: 2076 /* 2077 * Unprocessed messages are aborted if userspace isn't doing 2078 * any processing either. 2079 */ 2080 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2081 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2082 return cec_feature_abort(adap, msg); 2083 break; 2084 } 2085 2086 skip_processing: 2087 /* If this was a reply, then we're done, unless otherwise specified */ 2088 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2089 return 0; 2090 2091 /* 2092 * Send to the exclusive follower if there is one, otherwise send 2093 * to all followers. 2094 */ 2095 if (adap->cec_follower) 2096 cec_queue_msg_fh(adap->cec_follower, msg); 2097 else 2098 cec_queue_msg_followers(adap, msg); 2099 return 0; 2100 } 2101 2102 /* 2103 * Helper functions to keep track of the 'monitor all' use count. 2104 * 2105 * These functions are called with adap->lock held. 2106 */ 2107 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2108 { 2109 int ret = 0; 2110 2111 if (adap->monitor_all_cnt == 0) 2112 ret = call_op(adap, adap_monitor_all_enable, 1); 2113 if (ret == 0) 2114 adap->monitor_all_cnt++; 2115 return ret; 2116 } 2117 2118 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2119 { 2120 adap->monitor_all_cnt--; 2121 if (adap->monitor_all_cnt == 0) 2122 WARN_ON(call_op(adap, adap_monitor_all_enable, 0)); 2123 } 2124 2125 /* 2126 * Helper functions to keep track of the 'monitor pin' use count. 2127 * 2128 * These functions are called with adap->lock held. 2129 */ 2130 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2131 { 2132 int ret = 0; 2133 2134 if (adap->monitor_pin_cnt == 0) 2135 ret = call_op(adap, adap_monitor_pin_enable, 1); 2136 if (ret == 0) 2137 adap->monitor_pin_cnt++; 2138 return ret; 2139 } 2140 2141 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2142 { 2143 adap->monitor_pin_cnt--; 2144 if (adap->monitor_pin_cnt == 0) 2145 WARN_ON(call_op(adap, adap_monitor_pin_enable, 0)); 2146 } 2147 2148 #ifdef CONFIG_DEBUG_FS 2149 /* 2150 * Log the current state of the CEC adapter. 2151 * Very useful for debugging. 2152 */ 2153 int cec_adap_status(struct seq_file *file, void *priv) 2154 { 2155 struct cec_adapter *adap = dev_get_drvdata(file->private); 2156 struct cec_data *data; 2157 2158 mutex_lock(&adap->lock); 2159 seq_printf(file, "configured: %d\n", adap->is_configured); 2160 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2161 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2162 cec_phys_addr_exp(adap->phys_addr)); 2163 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2164 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2165 if (adap->cec_follower) 2166 seq_printf(file, "has CEC follower%s\n", 2167 adap->passthrough ? " (in passthrough mode)" : ""); 2168 if (adap->cec_initiator) 2169 seq_puts(file, "has CEC initiator\n"); 2170 if (adap->monitor_all_cnt) 2171 seq_printf(file, "file handles in Monitor All mode: %u\n", 2172 adap->monitor_all_cnt); 2173 if (adap->tx_timeouts) { 2174 seq_printf(file, "transmit timeouts: %u\n", 2175 adap->tx_timeouts); 2176 adap->tx_timeouts = 0; 2177 } 2178 data = adap->transmitting; 2179 if (data) 2180 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", 2181 data->msg.len, data->msg.msg, data->msg.reply, 2182 data->msg.timeout); 2183 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2184 list_for_each_entry(data, &adap->transmit_queue, list) { 2185 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", 2186 data->msg.len, data->msg.msg, data->msg.reply, 2187 data->msg.timeout); 2188 } 2189 list_for_each_entry(data, &adap->wait_queue, list) { 2190 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", 2191 data->msg.len, data->msg.msg, data->msg.reply, 2192 data->msg.timeout); 2193 } 2194 2195 call_void_op(adap, adap_status, file); 2196 mutex_unlock(&adap->lock); 2197 return 0; 2198 } 2199 #endif 2200