1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter 4 * 5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/errno.h> 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/kmod.h> 13 #include <linux/ktime.h> 14 #include <linux/slab.h> 15 #include <linux/mm.h> 16 #include <linux/string.h> 17 #include <linux/types.h> 18 19 #include <drm/drm_connector.h> 20 #include <drm/drm_device.h> 21 #include <drm/drm_edid.h> 22 #include <drm/drm_file.h> 23 24 #include "cec-priv.h" 25 26 static void cec_fill_msg_report_features(struct cec_adapter *adap, 27 struct cec_msg *msg, 28 unsigned int la_idx); 29 30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) 31 { 32 int i; 33 34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++) 35 if (adap->log_addrs.log_addr[i] == log_addr) 36 return i; 37 return -1; 38 } 39 40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) 41 { 42 int i = cec_log_addr2idx(adap, log_addr); 43 44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; 45 } 46 47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size, 48 unsigned int *offset) 49 { 50 unsigned int loc = cec_get_edid_spa_location(edid, size); 51 52 if (offset) 53 *offset = loc; 54 if (loc == 0) 55 return CEC_PHYS_ADDR_INVALID; 56 return (edid[loc] << 8) | edid[loc + 1]; 57 } 58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr); 59 60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info, 61 const struct drm_connector *connector) 62 { 63 memset(conn_info, 0, sizeof(*conn_info)); 64 conn_info->type = CEC_CONNECTOR_TYPE_DRM; 65 conn_info->drm.card_no = connector->dev->primary->index; 66 conn_info->drm.connector_id = connector->base.id; 67 } 68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm); 69 70 /* 71 * Queue a new event for this filehandle. If ts == 0, then set it 72 * to the current time. 73 * 74 * We keep a queue of at most max_event events where max_event differs 75 * per event. If the queue becomes full, then drop the oldest event and 76 * keep track of how many events we've dropped. 77 */ 78 void cec_queue_event_fh(struct cec_fh *fh, 79 const struct cec_event *new_ev, u64 ts) 80 { 81 static const u16 max_events[CEC_NUM_EVENTS] = { 82 1, 1, 800, 800, 8, 8, 8, 8 83 }; 84 struct cec_event_entry *entry; 85 unsigned int ev_idx = new_ev->event - 1; 86 87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) 88 return; 89 90 if (ts == 0) 91 ts = ktime_get_ns(); 92 93 mutex_lock(&fh->lock); 94 if (ev_idx < CEC_NUM_CORE_EVENTS) 95 entry = &fh->core_events[ev_idx]; 96 else 97 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 98 if (entry) { 99 if (new_ev->event == CEC_EVENT_LOST_MSGS && 100 fh->queued_events[ev_idx]) { 101 entry->ev.lost_msgs.lost_msgs += 102 new_ev->lost_msgs.lost_msgs; 103 goto unlock; 104 } 105 entry->ev = *new_ev; 106 entry->ev.ts = ts; 107 108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) { 109 /* Add new msg at the end of the queue */ 110 list_add_tail(&entry->list, &fh->events[ev_idx]); 111 fh->queued_events[ev_idx]++; 112 fh->total_queued_events++; 113 goto unlock; 114 } 115 116 if (ev_idx >= CEC_NUM_CORE_EVENTS) { 117 list_add_tail(&entry->list, &fh->events[ev_idx]); 118 /* drop the oldest event */ 119 entry = list_first_entry(&fh->events[ev_idx], 120 struct cec_event_entry, list); 121 list_del(&entry->list); 122 kfree(entry); 123 } 124 } 125 /* Mark that events were lost */ 126 entry = list_first_entry_or_null(&fh->events[ev_idx], 127 struct cec_event_entry, list); 128 if (entry) 129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; 130 131 unlock: 132 mutex_unlock(&fh->lock); 133 wake_up_interruptible(&fh->wait); 134 } 135 136 /* Queue a new event for all open filehandles. */ 137 static void cec_queue_event(struct cec_adapter *adap, 138 const struct cec_event *ev) 139 { 140 u64 ts = ktime_get_ns(); 141 struct cec_fh *fh; 142 143 mutex_lock(&adap->devnode.lock_fhs); 144 list_for_each_entry(fh, &adap->devnode.fhs, list) 145 cec_queue_event_fh(fh, ev, ts); 146 mutex_unlock(&adap->devnode.lock_fhs); 147 } 148 149 /* Notify userspace that the CEC pin changed state at the given time. */ 150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, 151 bool dropped_events, ktime_t ts) 152 { 153 struct cec_event ev = { 154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : 155 CEC_EVENT_PIN_CEC_LOW, 156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, 157 }; 158 struct cec_fh *fh; 159 160 mutex_lock(&adap->devnode.lock_fhs); 161 list_for_each_entry(fh, &adap->devnode.fhs, list) { 162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN) 163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 164 } 165 mutex_unlock(&adap->devnode.lock_fhs); 166 } 167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); 168 169 /* Notify userspace that the HPD pin changed state at the given time. */ 170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 171 { 172 struct cec_event ev = { 173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : 174 CEC_EVENT_PIN_HPD_LOW, 175 }; 176 struct cec_fh *fh; 177 178 mutex_lock(&adap->devnode.lock_fhs); 179 list_for_each_entry(fh, &adap->devnode.fhs, list) 180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 181 mutex_unlock(&adap->devnode.lock_fhs); 182 } 183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); 184 185 /* Notify userspace that the 5V pin changed state at the given time. */ 186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) 187 { 188 struct cec_event ev = { 189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH : 190 CEC_EVENT_PIN_5V_LOW, 191 }; 192 struct cec_fh *fh; 193 194 mutex_lock(&adap->devnode.lock_fhs); 195 list_for_each_entry(fh, &adap->devnode.fhs, list) 196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); 197 mutex_unlock(&adap->devnode.lock_fhs); 198 } 199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); 200 201 /* 202 * Queue a new message for this filehandle. 203 * 204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the 205 * queue becomes full, then drop the oldest message and keep track 206 * of how many messages we've dropped. 207 */ 208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) 209 { 210 static const struct cec_event ev_lost_msgs = { 211 .event = CEC_EVENT_LOST_MSGS, 212 .flags = 0, 213 { 214 .lost_msgs = { 1 }, 215 }, 216 }; 217 struct cec_msg_entry *entry; 218 219 mutex_lock(&fh->lock); 220 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 221 if (entry) { 222 entry->msg = *msg; 223 /* Add new msg at the end of the queue */ 224 list_add_tail(&entry->list, &fh->msgs); 225 226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { 227 /* All is fine if there is enough room */ 228 fh->queued_msgs++; 229 mutex_unlock(&fh->lock); 230 wake_up_interruptible(&fh->wait); 231 return; 232 } 233 234 /* 235 * if the message queue is full, then drop the oldest one and 236 * send a lost message event. 237 */ 238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); 239 list_del(&entry->list); 240 kfree(entry); 241 } 242 mutex_unlock(&fh->lock); 243 244 /* 245 * We lost a message, either because kmalloc failed or the queue 246 * was full. 247 */ 248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); 249 } 250 251 /* 252 * Queue the message for those filehandles that are in monitor mode. 253 * If valid_la is true (this message is for us or was sent by us), 254 * then pass it on to any monitoring filehandle. If this message 255 * isn't for us or from us, then only give it to filehandles that 256 * are in MONITOR_ALL mode. 257 * 258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is 259 * set and the CEC adapter was placed in 'monitor all' mode. 260 */ 261 static void cec_queue_msg_monitor(struct cec_adapter *adap, 262 const struct cec_msg *msg, 263 bool valid_la) 264 { 265 struct cec_fh *fh; 266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : 267 CEC_MODE_MONITOR_ALL; 268 269 mutex_lock(&adap->devnode.lock_fhs); 270 list_for_each_entry(fh, &adap->devnode.fhs, list) { 271 if (fh->mode_follower >= monitor_mode) 272 cec_queue_msg_fh(fh, msg); 273 } 274 mutex_unlock(&adap->devnode.lock_fhs); 275 } 276 277 /* 278 * Queue the message for follower filehandles. 279 */ 280 static void cec_queue_msg_followers(struct cec_adapter *adap, 281 const struct cec_msg *msg) 282 { 283 struct cec_fh *fh; 284 285 mutex_lock(&adap->devnode.lock_fhs); 286 list_for_each_entry(fh, &adap->devnode.fhs, list) { 287 if (fh->mode_follower == CEC_MODE_FOLLOWER) 288 cec_queue_msg_fh(fh, msg); 289 } 290 mutex_unlock(&adap->devnode.lock_fhs); 291 } 292 293 /* Notify userspace of an adapter state change. */ 294 static void cec_post_state_event(struct cec_adapter *adap) 295 { 296 struct cec_event ev = { 297 .event = CEC_EVENT_STATE_CHANGE, 298 }; 299 300 ev.state_change.phys_addr = adap->phys_addr; 301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; 302 ev.state_change.have_conn_info = 303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR; 304 cec_queue_event(adap, &ev); 305 } 306 307 /* 308 * A CEC transmit (and a possible wait for reply) completed. 309 * If this was in blocking mode, then complete it, otherwise 310 * queue the message for userspace to dequeue later. 311 * 312 * This function is called with adap->lock held. 313 */ 314 static void cec_data_completed(struct cec_data *data) 315 { 316 /* 317 * Delete this transmit from the filehandle's xfer_list since 318 * we're done with it. 319 * 320 * Note that if the filehandle is closed before this transmit 321 * finished, then the release() function will set data->fh to NULL. 322 * Without that we would be referring to a closed filehandle. 323 */ 324 if (data->fh) 325 list_del_init(&data->xfer_list); 326 327 if (data->blocking) { 328 /* 329 * Someone is blocking so mark the message as completed 330 * and call complete. 331 */ 332 data->completed = true; 333 complete(&data->c); 334 } else { 335 /* 336 * No blocking, so just queue the message if needed and 337 * free the memory. 338 */ 339 if (data->fh) 340 cec_queue_msg_fh(data->fh, &data->msg); 341 kfree(data); 342 } 343 } 344 345 /* 346 * A pending CEC transmit needs to be cancelled, either because the CEC 347 * adapter is disabled or the transmit takes an impossibly long time to 348 * finish, or the reply timed out. 349 * 350 * This function is called with adap->lock held. 351 */ 352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status) 353 { 354 struct cec_adapter *adap = data->adap; 355 356 /* 357 * It's either the current transmit, or it is a pending 358 * transmit. Take the appropriate action to clear it. 359 */ 360 if (adap->transmitting == data) { 361 adap->transmitting = NULL; 362 } else { 363 list_del_init(&data->list); 364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) 365 if (!WARN_ON(!adap->transmit_queue_sz)) 366 adap->transmit_queue_sz--; 367 } 368 369 if (data->msg.tx_status & CEC_TX_STATUS_OK) { 370 data->msg.rx_ts = ktime_get_ns(); 371 data->msg.rx_status = rx_status; 372 if (!data->blocking) 373 data->msg.tx_status = 0; 374 } else { 375 data->msg.tx_ts = ktime_get_ns(); 376 data->msg.tx_status |= tx_status | 377 CEC_TX_STATUS_MAX_RETRIES; 378 data->msg.tx_error_cnt++; 379 data->attempts = 0; 380 if (!data->blocking) 381 data->msg.rx_status = 0; 382 } 383 384 /* Queue transmitted message for monitoring purposes */ 385 cec_queue_msg_monitor(adap, &data->msg, 1); 386 387 if (!data->blocking && data->msg.sequence) 388 /* Allow drivers to react to a canceled transmit */ 389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg); 390 391 cec_data_completed(data); 392 } 393 394 /* 395 * Flush all pending transmits and cancel any pending timeout work. 396 * 397 * This function is called with adap->lock held. 398 */ 399 static void cec_flush(struct cec_adapter *adap) 400 { 401 struct cec_data *data, *n; 402 403 /* 404 * If the adapter is disabled, or we're asked to stop, 405 * then cancel any pending transmits. 406 */ 407 while (!list_empty(&adap->transmit_queue)) { 408 data = list_first_entry(&adap->transmit_queue, 409 struct cec_data, list); 410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 411 } 412 if (adap->transmitting) 413 adap->transmit_in_progress_aborted = true; 414 415 /* Cancel the pending timeout work. */ 416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) { 417 if (cancel_delayed_work(&data->work)) 418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 419 /* 420 * If cancel_delayed_work returned false, then 421 * the cec_wait_timeout function is running, 422 * which will call cec_data_completed. So no 423 * need to do anything special in that case. 424 */ 425 } 426 /* 427 * If something went wrong and this counter isn't what it should 428 * be, then this will reset it back to 0. Warn if it is not 0, 429 * since it indicates a bug, either in this framework or in a 430 * CEC driver. 431 */ 432 if (WARN_ON(adap->transmit_queue_sz)) 433 adap->transmit_queue_sz = 0; 434 } 435 436 /* 437 * Main CEC state machine 438 * 439 * Wait until the thread should be stopped, or we are not transmitting and 440 * a new transmit message is queued up, in which case we start transmitting 441 * that message. When the adapter finished transmitting the message it will 442 * call cec_transmit_done(). 443 * 444 * If the adapter is disabled, then remove all queued messages instead. 445 * 446 * If the current transmit times out, then cancel that transmit. 447 */ 448 int cec_thread_func(void *_adap) 449 { 450 struct cec_adapter *adap = _adap; 451 452 for (;;) { 453 unsigned int signal_free_time; 454 struct cec_data *data; 455 bool timeout = false; 456 u8 attempts; 457 458 if (adap->transmit_in_progress) { 459 int err; 460 461 /* 462 * We are transmitting a message, so add a timeout 463 * to prevent the state machine to get stuck waiting 464 * for this message to finalize and add a check to 465 * see if the adapter is disabled in which case the 466 * transmit should be canceled. 467 */ 468 err = wait_event_interruptible_timeout(adap->kthread_waitq, 469 (adap->needs_hpd && 470 (!adap->is_configured && !adap->is_configuring)) || 471 kthread_should_stop() || 472 (!adap->transmit_in_progress && 473 !list_empty(&adap->transmit_queue)), 474 msecs_to_jiffies(adap->xfer_timeout_ms)); 475 timeout = err == 0; 476 } else { 477 /* Otherwise we just wait for something to happen. */ 478 wait_event_interruptible(adap->kthread_waitq, 479 kthread_should_stop() || 480 (!adap->transmit_in_progress && 481 !list_empty(&adap->transmit_queue))); 482 } 483 484 mutex_lock(&adap->lock); 485 486 if ((adap->needs_hpd && 487 (!adap->is_configured && !adap->is_configuring)) || 488 kthread_should_stop()) { 489 cec_flush(adap); 490 goto unlock; 491 } 492 493 if (adap->transmit_in_progress && timeout) { 494 /* 495 * If we timeout, then log that. Normally this does 496 * not happen and it is an indication of a faulty CEC 497 * adapter driver, or the CEC bus is in some weird 498 * state. On rare occasions it can happen if there is 499 * so much traffic on the bus that the adapter was 500 * unable to transmit for xfer_timeout_ms (2.1s by 501 * default). 502 */ 503 if (adap->transmitting) { 504 pr_warn("cec-%s: message %*ph timed out\n", adap->name, 505 adap->transmitting->msg.len, 506 adap->transmitting->msg.msg); 507 /* Just give up on this. */ 508 cec_data_cancel(adap->transmitting, 509 CEC_TX_STATUS_TIMEOUT, 0); 510 } else { 511 pr_warn("cec-%s: transmit timed out\n", adap->name); 512 } 513 adap->transmit_in_progress = false; 514 adap->tx_timeouts++; 515 goto unlock; 516 } 517 518 /* 519 * If we are still transmitting, or there is nothing new to 520 * transmit, then just continue waiting. 521 */ 522 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue)) 523 goto unlock; 524 525 /* Get a new message to transmit */ 526 data = list_first_entry(&adap->transmit_queue, 527 struct cec_data, list); 528 list_del_init(&data->list); 529 if (!WARN_ON(!data->adap->transmit_queue_sz)) 530 adap->transmit_queue_sz--; 531 532 /* Make this the current transmitting message */ 533 adap->transmitting = data; 534 535 /* 536 * Suggested number of attempts as per the CEC 2.0 spec: 537 * 4 attempts is the default, except for 'secondary poll 538 * messages', i.e. poll messages not sent during the adapter 539 * configuration phase when it allocates logical addresses. 540 */ 541 if (data->msg.len == 1 && adap->is_configured) 542 attempts = 2; 543 else 544 attempts = 4; 545 546 /* Set the suggested signal free time */ 547 if (data->attempts) { 548 /* should be >= 3 data bit periods for a retry */ 549 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; 550 } else if (adap->last_initiator != 551 cec_msg_initiator(&data->msg)) { 552 /* should be >= 5 data bit periods for new initiator */ 553 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; 554 adap->last_initiator = cec_msg_initiator(&data->msg); 555 } else { 556 /* 557 * should be >= 7 data bit periods for sending another 558 * frame immediately after another. 559 */ 560 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; 561 } 562 if (data->attempts == 0) 563 data->attempts = attempts; 564 565 adap->transmit_in_progress_aborted = false; 566 /* Tell the adapter to transmit, cancel on error */ 567 if (call_op(adap, adap_transmit, data->attempts, 568 signal_free_time, &data->msg)) 569 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 570 else 571 adap->transmit_in_progress = true; 572 573 unlock: 574 mutex_unlock(&adap->lock); 575 576 if (kthread_should_stop()) 577 break; 578 } 579 return 0; 580 } 581 582 /* 583 * Called by the CEC adapter if a transmit finished. 584 */ 585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, 586 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, 587 u8 error_cnt, ktime_t ts) 588 { 589 struct cec_data *data; 590 struct cec_msg *msg; 591 unsigned int attempts_made = arb_lost_cnt + nack_cnt + 592 low_drive_cnt + error_cnt; 593 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK); 594 bool aborted = adap->transmit_in_progress_aborted; 595 596 dprintk(2, "%s: status 0x%02x\n", __func__, status); 597 if (attempts_made < 1) 598 attempts_made = 1; 599 600 mutex_lock(&adap->lock); 601 data = adap->transmitting; 602 if (!data) { 603 /* 604 * This might happen if a transmit was issued and the cable is 605 * unplugged while the transmit is ongoing. Ignore this 606 * transmit in that case. 607 */ 608 if (!adap->transmit_in_progress) 609 dprintk(1, "%s was called without an ongoing transmit!\n", 610 __func__); 611 adap->transmit_in_progress = false; 612 goto wake_thread; 613 } 614 adap->transmit_in_progress = false; 615 adap->transmit_in_progress_aborted = false; 616 617 msg = &data->msg; 618 619 /* Drivers must fill in the status! */ 620 WARN_ON(status == 0); 621 msg->tx_ts = ktime_to_ns(ts); 622 msg->tx_status |= status; 623 msg->tx_arb_lost_cnt += arb_lost_cnt; 624 msg->tx_nack_cnt += nack_cnt; 625 msg->tx_low_drive_cnt += low_drive_cnt; 626 msg->tx_error_cnt += error_cnt; 627 628 /* Mark that we're done with this transmit */ 629 adap->transmitting = NULL; 630 631 /* 632 * If there are still retry attempts left and there was an error and 633 * the hardware didn't signal that it retried itself (by setting 634 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. 635 */ 636 if (!aborted && data->attempts > attempts_made && !done) { 637 /* Retry this message */ 638 data->attempts -= attempts_made; 639 if (msg->timeout) 640 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", 641 msg->len, msg->msg, data->attempts, msg->reply); 642 else 643 dprintk(2, "retransmit: %*ph (attempts: %d)\n", 644 msg->len, msg->msg, data->attempts); 645 /* Add the message in front of the transmit queue */ 646 list_add(&data->list, &adap->transmit_queue); 647 adap->transmit_queue_sz++; 648 goto wake_thread; 649 } 650 651 if (aborted && !done) 652 status |= CEC_TX_STATUS_ABORTED; 653 data->attempts = 0; 654 655 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ 656 if (!(status & CEC_TX_STATUS_OK)) 657 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; 658 659 /* Queue transmitted message for monitoring purposes */ 660 cec_queue_msg_monitor(adap, msg, 1); 661 662 if ((status & CEC_TX_STATUS_OK) && adap->is_configured && 663 msg->timeout) { 664 /* 665 * Queue the message into the wait queue if we want to wait 666 * for a reply. 667 */ 668 list_add_tail(&data->list, &adap->wait_queue); 669 schedule_delayed_work(&data->work, 670 msecs_to_jiffies(msg->timeout)); 671 } else { 672 /* Otherwise we're done */ 673 cec_data_completed(data); 674 } 675 676 wake_thread: 677 /* 678 * Wake up the main thread to see if another message is ready 679 * for transmitting or to retry the current message. 680 */ 681 wake_up_interruptible(&adap->kthread_waitq); 682 mutex_unlock(&adap->lock); 683 } 684 EXPORT_SYMBOL_GPL(cec_transmit_done_ts); 685 686 void cec_transmit_attempt_done_ts(struct cec_adapter *adap, 687 u8 status, ktime_t ts) 688 { 689 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { 690 case CEC_TX_STATUS_OK: 691 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); 692 return; 693 case CEC_TX_STATUS_ARB_LOST: 694 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); 695 return; 696 case CEC_TX_STATUS_NACK: 697 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); 698 return; 699 case CEC_TX_STATUS_LOW_DRIVE: 700 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); 701 return; 702 case CEC_TX_STATUS_ERROR: 703 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); 704 return; 705 default: 706 /* Should never happen */ 707 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); 708 return; 709 } 710 } 711 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); 712 713 /* 714 * Called when waiting for a reply times out. 715 */ 716 static void cec_wait_timeout(struct work_struct *work) 717 { 718 struct cec_data *data = container_of(work, struct cec_data, work.work); 719 struct cec_adapter *adap = data->adap; 720 721 mutex_lock(&adap->lock); 722 /* 723 * Sanity check in case the timeout and the arrival of the message 724 * happened at the same time. 725 */ 726 if (list_empty(&data->list)) 727 goto unlock; 728 729 /* Mark the message as timed out */ 730 list_del_init(&data->list); 731 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT); 732 unlock: 733 mutex_unlock(&adap->lock); 734 } 735 736 /* 737 * Transmit a message. The fh argument may be NULL if the transmit is not 738 * associated with a specific filehandle. 739 * 740 * This function is called with adap->lock held. 741 */ 742 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, 743 struct cec_fh *fh, bool block) 744 { 745 struct cec_data *data; 746 bool is_raw = msg_is_raw(msg); 747 748 if (adap->devnode.unregistered) 749 return -ENODEV; 750 751 msg->rx_ts = 0; 752 msg->tx_ts = 0; 753 msg->rx_status = 0; 754 msg->tx_status = 0; 755 msg->tx_arb_lost_cnt = 0; 756 msg->tx_nack_cnt = 0; 757 msg->tx_low_drive_cnt = 0; 758 msg->tx_error_cnt = 0; 759 msg->sequence = 0; 760 761 if (msg->reply && msg->timeout == 0) { 762 /* Make sure the timeout isn't 0. */ 763 msg->timeout = 1000; 764 } 765 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW; 766 767 if (!msg->timeout) 768 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS; 769 770 /* Sanity checks */ 771 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { 772 dprintk(1, "%s: invalid length %d\n", __func__, msg->len); 773 return -EINVAL; 774 } 775 776 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 777 778 if (msg->timeout) 779 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", 780 __func__, msg->len, msg->msg, msg->reply, 781 !block ? ", nb" : ""); 782 else 783 dprintk(2, "%s: %*ph%s\n", 784 __func__, msg->len, msg->msg, !block ? " (nb)" : ""); 785 786 if (msg->timeout && msg->len == 1) { 787 dprintk(1, "%s: can't reply to poll msg\n", __func__); 788 return -EINVAL; 789 } 790 791 if (is_raw) { 792 if (!capable(CAP_SYS_RAWIO)) 793 return -EPERM; 794 } else { 795 /* A CDC-Only device can only send CDC messages */ 796 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) && 797 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) { 798 dprintk(1, "%s: not a CDC message\n", __func__); 799 return -EINVAL; 800 } 801 802 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { 803 msg->msg[2] = adap->phys_addr >> 8; 804 msg->msg[3] = adap->phys_addr & 0xff; 805 } 806 807 if (msg->len == 1) { 808 if (cec_msg_destination(msg) == 0xf) { 809 dprintk(1, "%s: invalid poll message\n", 810 __func__); 811 return -EINVAL; 812 } 813 if (cec_has_log_addr(adap, cec_msg_destination(msg))) { 814 /* 815 * If the destination is a logical address our 816 * adapter has already claimed, then just NACK 817 * this. It depends on the hardware what it will 818 * do with a POLL to itself (some OK this), so 819 * it is just as easy to handle it here so the 820 * behavior will be consistent. 821 */ 822 msg->tx_ts = ktime_get_ns(); 823 msg->tx_status = CEC_TX_STATUS_NACK | 824 CEC_TX_STATUS_MAX_RETRIES; 825 msg->tx_nack_cnt = 1; 826 msg->sequence = ++adap->sequence; 827 if (!msg->sequence) 828 msg->sequence = ++adap->sequence; 829 return 0; 830 } 831 } 832 if (msg->len > 1 && !cec_msg_is_broadcast(msg) && 833 cec_has_log_addr(adap, cec_msg_destination(msg))) { 834 dprintk(1, "%s: destination is the adapter itself\n", 835 __func__); 836 return -EINVAL; 837 } 838 if (msg->len > 1 && adap->is_configured && 839 !cec_has_log_addr(adap, cec_msg_initiator(msg))) { 840 dprintk(1, "%s: initiator has unknown logical address %d\n", 841 __func__, cec_msg_initiator(msg)); 842 return -EINVAL; 843 } 844 /* 845 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be 846 * transmitted to a TV, even if the adapter is unconfigured. 847 * This makes it possible to detect or wake up displays that 848 * pull down the HPD when in standby. 849 */ 850 if (!adap->is_configured && !adap->is_configuring && 851 (msg->len > 2 || 852 cec_msg_destination(msg) != CEC_LOG_ADDR_TV || 853 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON && 854 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) { 855 dprintk(1, "%s: adapter is unconfigured\n", __func__); 856 return -ENONET; 857 } 858 } 859 860 if (!adap->is_configured && !adap->is_configuring) { 861 if (adap->needs_hpd) { 862 dprintk(1, "%s: adapter is unconfigured and needs HPD\n", 863 __func__); 864 return -ENONET; 865 } 866 if (msg->reply) { 867 dprintk(1, "%s: invalid msg->reply\n", __func__); 868 return -EINVAL; 869 } 870 } 871 872 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { 873 dprintk(2, "%s: transmit queue full\n", __func__); 874 return -EBUSY; 875 } 876 877 data = kzalloc(sizeof(*data), GFP_KERNEL); 878 if (!data) 879 return -ENOMEM; 880 881 msg->sequence = ++adap->sequence; 882 if (!msg->sequence) 883 msg->sequence = ++adap->sequence; 884 885 data->msg = *msg; 886 data->fh = fh; 887 data->adap = adap; 888 data->blocking = block; 889 890 init_completion(&data->c); 891 INIT_DELAYED_WORK(&data->work, cec_wait_timeout); 892 893 if (fh) 894 list_add_tail(&data->xfer_list, &fh->xfer_list); 895 else 896 INIT_LIST_HEAD(&data->xfer_list); 897 898 list_add_tail(&data->list, &adap->transmit_queue); 899 adap->transmit_queue_sz++; 900 if (!adap->transmitting) 901 wake_up_interruptible(&adap->kthread_waitq); 902 903 /* All done if we don't need to block waiting for completion */ 904 if (!block) 905 return 0; 906 907 /* 908 * Release the lock and wait, retake the lock afterwards. 909 */ 910 mutex_unlock(&adap->lock); 911 wait_for_completion_killable(&data->c); 912 if (!data->completed) 913 cancel_delayed_work_sync(&data->work); 914 mutex_lock(&adap->lock); 915 916 /* Cancel the transmit if it was interrupted */ 917 if (!data->completed) { 918 if (data->msg.tx_status & CEC_TX_STATUS_OK) 919 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED); 920 else 921 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0); 922 } 923 924 /* The transmit completed (possibly with an error) */ 925 *msg = data->msg; 926 if (WARN_ON(!list_empty(&data->list))) 927 list_del(&data->list); 928 if (WARN_ON(!list_empty(&data->xfer_list))) 929 list_del(&data->xfer_list); 930 kfree(data); 931 return 0; 932 } 933 934 /* Helper function to be used by drivers and this framework. */ 935 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, 936 bool block) 937 { 938 int ret; 939 940 mutex_lock(&adap->lock); 941 ret = cec_transmit_msg_fh(adap, msg, NULL, block); 942 mutex_unlock(&adap->lock); 943 return ret; 944 } 945 EXPORT_SYMBOL_GPL(cec_transmit_msg); 946 947 /* 948 * I don't like forward references but without this the low-level 949 * cec_received_msg() function would come after a bunch of high-level 950 * CEC protocol handling functions. That was very confusing. 951 */ 952 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 953 bool is_reply); 954 955 #define DIRECTED 0x80 956 #define BCAST1_4 0x40 957 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ 958 #define BCAST (BCAST1_4 | BCAST2_0) 959 #define BOTH (BCAST | DIRECTED) 960 961 /* 962 * Specify minimum length and whether the message is directed, broadcast 963 * or both. Messages that do not match the criteria are ignored as per 964 * the CEC specification. 965 */ 966 static const u8 cec_msg_size[256] = { 967 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, 968 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, 969 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, 970 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, 971 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, 972 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, 973 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, 974 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, 975 [CEC_MSG_STANDBY] = 2 | BOTH, 976 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, 977 [CEC_MSG_RECORD_ON] = 3 | DIRECTED, 978 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, 979 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, 980 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, 981 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, 982 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, 983 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, 984 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, 985 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, 986 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, 987 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, 988 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, 989 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, 990 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, 991 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, 992 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, 993 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, 994 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, 995 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, 996 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, 997 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, 998 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, 999 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, 1000 [CEC_MSG_PLAY] = 3 | DIRECTED, 1001 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, 1002 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, 1003 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, 1004 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, 1005 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, 1006 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, 1007 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, 1008 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, 1009 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, 1010 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, 1011 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, 1012 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, 1013 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, 1014 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, 1015 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, 1016 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, 1017 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, 1018 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, 1019 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, 1020 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, 1021 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, 1022 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, 1023 [CEC_MSG_ABORT] = 2 | DIRECTED, 1024 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, 1025 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, 1026 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, 1027 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1028 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, 1029 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, 1030 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED, 1031 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, 1032 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, 1033 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, 1034 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, 1035 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, 1036 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, 1037 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, 1038 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, 1039 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, 1040 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, 1041 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, 1042 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, 1043 }; 1044 1045 /* Called by the CEC adapter if a message is received */ 1046 void cec_received_msg_ts(struct cec_adapter *adap, 1047 struct cec_msg *msg, ktime_t ts) 1048 { 1049 struct cec_data *data; 1050 u8 msg_init = cec_msg_initiator(msg); 1051 u8 msg_dest = cec_msg_destination(msg); 1052 u8 cmd = msg->msg[1]; 1053 bool is_reply = false; 1054 bool valid_la = true; 1055 bool monitor_valid_la = true; 1056 u8 min_len = 0; 1057 1058 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) 1059 return; 1060 1061 if (adap->devnode.unregistered) 1062 return; 1063 1064 /* 1065 * Some CEC adapters will receive the messages that they transmitted. 1066 * This test filters out those messages by checking if we are the 1067 * initiator, and just returning in that case. 1068 * 1069 * Note that this won't work if this is an Unregistered device. 1070 * 1071 * It is bad practice if the hardware receives the message that it 1072 * transmitted and luckily most CEC adapters behave correctly in this 1073 * respect. 1074 */ 1075 if (msg_init != CEC_LOG_ADDR_UNREGISTERED && 1076 cec_has_log_addr(adap, msg_init)) 1077 return; 1078 1079 msg->rx_ts = ktime_to_ns(ts); 1080 msg->rx_status = CEC_RX_STATUS_OK; 1081 msg->sequence = msg->reply = msg->timeout = 0; 1082 msg->tx_status = 0; 1083 msg->tx_ts = 0; 1084 msg->tx_arb_lost_cnt = 0; 1085 msg->tx_nack_cnt = 0; 1086 msg->tx_low_drive_cnt = 0; 1087 msg->tx_error_cnt = 0; 1088 msg->flags = 0; 1089 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); 1090 1091 mutex_lock(&adap->lock); 1092 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1093 1094 if (!adap->transmit_in_progress) 1095 adap->last_initiator = 0xff; 1096 1097 /* Check if this message was for us (directed or broadcast). */ 1098 if (!cec_msg_is_broadcast(msg)) { 1099 valid_la = cec_has_log_addr(adap, msg_dest); 1100 monitor_valid_la = valid_la; 1101 } 1102 1103 /* 1104 * Check if the length is not too short or if the message is a 1105 * broadcast message where a directed message was expected or 1106 * vice versa. If so, then the message has to be ignored (according 1107 * to section CEC 7.3 and CEC 12.2). 1108 */ 1109 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { 1110 u8 dir_fl = cec_msg_size[cmd] & BOTH; 1111 1112 min_len = cec_msg_size[cmd] & 0x1f; 1113 if (msg->len < min_len) 1114 valid_la = false; 1115 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) 1116 valid_la = false; 1117 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST)) 1118 valid_la = false; 1119 else if (cec_msg_is_broadcast(msg) && 1120 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 && 1121 !(dir_fl & BCAST1_4)) 1122 valid_la = false; 1123 } 1124 if (valid_la && min_len) { 1125 /* These messages have special length requirements */ 1126 switch (cmd) { 1127 case CEC_MSG_RECORD_ON: 1128 switch (msg->msg[2]) { 1129 case CEC_OP_RECORD_SRC_OWN: 1130 break; 1131 case CEC_OP_RECORD_SRC_DIGITAL: 1132 if (msg->len < 10) 1133 valid_la = false; 1134 break; 1135 case CEC_OP_RECORD_SRC_ANALOG: 1136 if (msg->len < 7) 1137 valid_la = false; 1138 break; 1139 case CEC_OP_RECORD_SRC_EXT_PLUG: 1140 if (msg->len < 4) 1141 valid_la = false; 1142 break; 1143 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: 1144 if (msg->len < 5) 1145 valid_la = false; 1146 break; 1147 } 1148 break; 1149 } 1150 } 1151 1152 /* It's a valid message and not a poll or CDC message */ 1153 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { 1154 bool abort = cmd == CEC_MSG_FEATURE_ABORT; 1155 1156 /* The aborted command is in msg[2] */ 1157 if (abort) 1158 cmd = msg->msg[2]; 1159 1160 /* 1161 * Walk over all transmitted messages that are waiting for a 1162 * reply. 1163 */ 1164 list_for_each_entry(data, &adap->wait_queue, list) { 1165 struct cec_msg *dst = &data->msg; 1166 1167 /* 1168 * The *only* CEC message that has two possible replies 1169 * is CEC_MSG_INITIATE_ARC. 1170 * In this case allow either of the two replies. 1171 */ 1172 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && 1173 (cmd == CEC_MSG_REPORT_ARC_INITIATED || 1174 cmd == CEC_MSG_REPORT_ARC_TERMINATED) && 1175 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || 1176 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) 1177 dst->reply = cmd; 1178 1179 /* Does the command match? */ 1180 if ((abort && cmd != dst->msg[1]) || 1181 (!abort && cmd != dst->reply)) 1182 continue; 1183 1184 /* Does the addressing match? */ 1185 if (msg_init != cec_msg_destination(dst) && 1186 !cec_msg_is_broadcast(dst)) 1187 continue; 1188 1189 /* We got a reply */ 1190 memcpy(dst->msg, msg->msg, msg->len); 1191 dst->len = msg->len; 1192 dst->rx_ts = msg->rx_ts; 1193 dst->rx_status = msg->rx_status; 1194 if (abort) 1195 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; 1196 msg->flags = dst->flags; 1197 msg->sequence = dst->sequence; 1198 /* Remove it from the wait_queue */ 1199 list_del_init(&data->list); 1200 1201 /* Cancel the pending timeout work */ 1202 if (!cancel_delayed_work(&data->work)) { 1203 mutex_unlock(&adap->lock); 1204 cancel_delayed_work_sync(&data->work); 1205 mutex_lock(&adap->lock); 1206 } 1207 /* 1208 * Mark this as a reply, provided someone is still 1209 * waiting for the answer. 1210 */ 1211 if (data->fh) 1212 is_reply = true; 1213 cec_data_completed(data); 1214 break; 1215 } 1216 } 1217 mutex_unlock(&adap->lock); 1218 1219 /* Pass the message on to any monitoring filehandles */ 1220 cec_queue_msg_monitor(adap, msg, monitor_valid_la); 1221 1222 /* We're done if it is not for us or a poll message */ 1223 if (!valid_la || msg->len <= 1) 1224 return; 1225 1226 if (adap->log_addrs.log_addr_mask == 0) 1227 return; 1228 1229 /* 1230 * Process the message on the protocol level. If is_reply is true, 1231 * then cec_receive_notify() won't pass on the reply to the listener(s) 1232 * since that was already done by cec_data_completed() above. 1233 */ 1234 cec_receive_notify(adap, msg, is_reply); 1235 } 1236 EXPORT_SYMBOL_GPL(cec_received_msg_ts); 1237 1238 /* Logical Address Handling */ 1239 1240 /* 1241 * Attempt to claim a specific logical address. 1242 * 1243 * This function is called with adap->lock held. 1244 */ 1245 static int cec_config_log_addr(struct cec_adapter *adap, 1246 unsigned int idx, 1247 unsigned int log_addr) 1248 { 1249 struct cec_log_addrs *las = &adap->log_addrs; 1250 struct cec_msg msg = { }; 1251 const unsigned int max_retries = 2; 1252 unsigned int i; 1253 int err; 1254 1255 if (cec_has_log_addr(adap, log_addr)) 1256 return 0; 1257 1258 /* Send poll message */ 1259 msg.len = 1; 1260 msg.msg[0] = (log_addr << 4) | log_addr; 1261 1262 for (i = 0; i < max_retries; i++) { 1263 err = cec_transmit_msg_fh(adap, &msg, NULL, true); 1264 1265 /* 1266 * While trying to poll the physical address was reset 1267 * and the adapter was unconfigured, so bail out. 1268 */ 1269 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID) 1270 return -EINTR; 1271 1272 /* Also bail out if the PA changed while configuring. */ 1273 if (adap->must_reconfigure) 1274 return -EINTR; 1275 1276 if (err) 1277 return err; 1278 1279 /* 1280 * The message was aborted or timed out due to a disconnect or 1281 * unconfigure, just bail out. 1282 */ 1283 if (msg.tx_status & 1284 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT)) 1285 return -EINTR; 1286 if (msg.tx_status & CEC_TX_STATUS_OK) 1287 return 0; 1288 if (msg.tx_status & CEC_TX_STATUS_NACK) 1289 break; 1290 /* 1291 * Retry up to max_retries times if the message was neither 1292 * OKed or NACKed. This can happen due to e.g. a Lost 1293 * Arbitration condition. 1294 */ 1295 } 1296 1297 /* 1298 * If we are unable to get an OK or a NACK after max_retries attempts 1299 * (and note that each attempt already consists of four polls), then 1300 * we assume that something is really weird and that it is not a 1301 * good idea to try and claim this logical address. 1302 */ 1303 if (i == max_retries) { 1304 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n", 1305 log_addr, msg.tx_status); 1306 return 0; 1307 } 1308 1309 /* 1310 * Message not acknowledged, so this logical 1311 * address is free to use. 1312 */ 1313 err = call_op(adap, adap_log_addr, log_addr); 1314 if (err) 1315 return err; 1316 1317 las->log_addr[idx] = log_addr; 1318 las->log_addr_mask |= 1 << log_addr; 1319 return 1; 1320 } 1321 1322 /* 1323 * Unconfigure the adapter: clear all logical addresses and send 1324 * the state changed event. 1325 * 1326 * This function is called with adap->lock held. 1327 */ 1328 static void cec_adap_unconfigure(struct cec_adapter *adap) 1329 { 1330 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1331 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID)); 1332 adap->log_addrs.log_addr_mask = 0; 1333 adap->is_configured = false; 1334 cec_flush(adap); 1335 wake_up_interruptible(&adap->kthread_waitq); 1336 cec_post_state_event(adap); 1337 call_void_op(adap, adap_unconfigured); 1338 } 1339 1340 /* 1341 * Attempt to claim the required logical addresses. 1342 */ 1343 static int cec_config_thread_func(void *arg) 1344 { 1345 /* The various LAs for each type of device */ 1346 static const u8 tv_log_addrs[] = { 1347 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, 1348 CEC_LOG_ADDR_INVALID 1349 }; 1350 static const u8 record_log_addrs[] = { 1351 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, 1352 CEC_LOG_ADDR_RECORD_3, 1353 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1354 CEC_LOG_ADDR_INVALID 1355 }; 1356 static const u8 tuner_log_addrs[] = { 1357 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, 1358 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, 1359 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1360 CEC_LOG_ADDR_INVALID 1361 }; 1362 static const u8 playback_log_addrs[] = { 1363 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, 1364 CEC_LOG_ADDR_PLAYBACK_3, 1365 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1366 CEC_LOG_ADDR_INVALID 1367 }; 1368 static const u8 audiosystem_log_addrs[] = { 1369 CEC_LOG_ADDR_AUDIOSYSTEM, 1370 CEC_LOG_ADDR_INVALID 1371 }; 1372 static const u8 specific_use_log_addrs[] = { 1373 CEC_LOG_ADDR_SPECIFIC, 1374 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, 1375 CEC_LOG_ADDR_INVALID 1376 }; 1377 static const u8 *type2addrs[6] = { 1378 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, 1379 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, 1380 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, 1381 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, 1382 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, 1383 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, 1384 }; 1385 static const u16 type2mask[] = { 1386 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, 1387 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, 1388 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, 1389 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, 1390 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, 1391 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, 1392 }; 1393 struct cec_adapter *adap = arg; 1394 struct cec_log_addrs *las = &adap->log_addrs; 1395 int err; 1396 int i, j; 1397 1398 mutex_lock(&adap->lock); 1399 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", 1400 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); 1401 las->log_addr_mask = 0; 1402 1403 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) 1404 goto configured; 1405 1406 reconfigure: 1407 for (i = 0; i < las->num_log_addrs; i++) { 1408 unsigned int type = las->log_addr_type[i]; 1409 const u8 *la_list; 1410 u8 last_la; 1411 1412 /* 1413 * The TV functionality can only map to physical address 0. 1414 * For any other address, try the Specific functionality 1415 * instead as per the spec. 1416 */ 1417 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) 1418 type = CEC_LOG_ADDR_TYPE_SPECIFIC; 1419 1420 la_list = type2addrs[type]; 1421 last_la = las->log_addr[i]; 1422 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1423 if (last_la == CEC_LOG_ADDR_INVALID || 1424 last_la == CEC_LOG_ADDR_UNREGISTERED || 1425 !((1 << last_la) & type2mask[type])) 1426 last_la = la_list[0]; 1427 1428 err = cec_config_log_addr(adap, i, last_la); 1429 1430 if (adap->must_reconfigure) { 1431 adap->must_reconfigure = false; 1432 las->log_addr_mask = 0; 1433 goto reconfigure; 1434 } 1435 1436 if (err > 0) /* Reused last LA */ 1437 continue; 1438 1439 if (err < 0) 1440 goto unconfigure; 1441 1442 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { 1443 /* Tried this one already, skip it */ 1444 if (la_list[j] == last_la) 1445 continue; 1446 /* The backup addresses are CEC 2.0 specific */ 1447 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || 1448 la_list[j] == CEC_LOG_ADDR_BACKUP_2) && 1449 las->cec_version < CEC_OP_CEC_VERSION_2_0) 1450 continue; 1451 1452 err = cec_config_log_addr(adap, i, la_list[j]); 1453 if (err == 0) /* LA is in use */ 1454 continue; 1455 if (err < 0) 1456 goto unconfigure; 1457 /* Done, claimed an LA */ 1458 break; 1459 } 1460 1461 if (la_list[j] == CEC_LOG_ADDR_INVALID) 1462 dprintk(1, "could not claim LA %d\n", i); 1463 } 1464 1465 if (adap->log_addrs.log_addr_mask == 0 && 1466 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) 1467 goto unconfigure; 1468 1469 configured: 1470 if (adap->log_addrs.log_addr_mask == 0) { 1471 /* Fall back to unregistered */ 1472 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; 1473 las->log_addr_mask = 1 << las->log_addr[0]; 1474 for (i = 1; i < las->num_log_addrs; i++) 1475 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1476 } 1477 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) 1478 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1479 adap->is_configured = true; 1480 adap->is_configuring = false; 1481 adap->must_reconfigure = false; 1482 cec_post_state_event(adap); 1483 1484 /* 1485 * Now post the Report Features and Report Physical Address broadcast 1486 * messages. Note that these are non-blocking transmits, meaning that 1487 * they are just queued up and once adap->lock is unlocked the main 1488 * thread will kick in and start transmitting these. 1489 * 1490 * If after this function is done (but before one or more of these 1491 * messages are actually transmitted) the CEC adapter is unconfigured, 1492 * then any remaining messages will be dropped by the main thread. 1493 */ 1494 for (i = 0; i < las->num_log_addrs; i++) { 1495 struct cec_msg msg = {}; 1496 1497 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || 1498 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) 1499 continue; 1500 1501 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; 1502 1503 /* Report Features must come first according to CEC 2.0 */ 1504 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && 1505 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { 1506 cec_fill_msg_report_features(adap, &msg, i); 1507 cec_transmit_msg_fh(adap, &msg, NULL, false); 1508 } 1509 1510 /* Report Physical Address */ 1511 cec_msg_report_physical_addr(&msg, adap->phys_addr, 1512 las->primary_device_type[i]); 1513 dprintk(1, "config: la %d pa %x.%x.%x.%x\n", 1514 las->log_addr[i], 1515 cec_phys_addr_exp(adap->phys_addr)); 1516 cec_transmit_msg_fh(adap, &msg, NULL, false); 1517 1518 /* Report Vendor ID */ 1519 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) { 1520 cec_msg_device_vendor_id(&msg, 1521 adap->log_addrs.vendor_id); 1522 cec_transmit_msg_fh(adap, &msg, NULL, false); 1523 } 1524 } 1525 adap->kthread_config = NULL; 1526 complete(&adap->config_completion); 1527 mutex_unlock(&adap->lock); 1528 call_void_op(adap, configured); 1529 return 0; 1530 1531 unconfigure: 1532 for (i = 0; i < las->num_log_addrs; i++) 1533 las->log_addr[i] = CEC_LOG_ADDR_INVALID; 1534 cec_adap_unconfigure(adap); 1535 adap->is_configuring = false; 1536 adap->must_reconfigure = false; 1537 adap->kthread_config = NULL; 1538 complete(&adap->config_completion); 1539 mutex_unlock(&adap->lock); 1540 return 0; 1541 } 1542 1543 /* 1544 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the 1545 * logical addresses. 1546 * 1547 * This function is called with adap->lock held. 1548 */ 1549 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) 1550 { 1551 if (WARN_ON(adap->is_configuring || adap->is_configured)) 1552 return; 1553 1554 init_completion(&adap->config_completion); 1555 1556 /* Ready to kick off the thread */ 1557 adap->is_configuring = true; 1558 adap->kthread_config = kthread_run(cec_config_thread_func, adap, 1559 "ceccfg-%s", adap->name); 1560 if (IS_ERR(adap->kthread_config)) { 1561 adap->kthread_config = NULL; 1562 adap->is_configuring = false; 1563 } else if (block) { 1564 mutex_unlock(&adap->lock); 1565 wait_for_completion(&adap->config_completion); 1566 mutex_lock(&adap->lock); 1567 } 1568 } 1569 1570 /* 1571 * Helper function to enable/disable the CEC adapter. 1572 * 1573 * This function is called with adap->lock held. 1574 */ 1575 int cec_adap_enable(struct cec_adapter *adap) 1576 { 1577 bool enable; 1578 int ret = 0; 1579 1580 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt || 1581 adap->log_addrs.num_log_addrs; 1582 if (adap->needs_hpd) 1583 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID; 1584 1585 if (adap->devnode.unregistered) 1586 enable = false; 1587 1588 if (enable == adap->is_enabled) 1589 return 0; 1590 1591 /* serialize adap_enable */ 1592 mutex_lock(&adap->devnode.lock); 1593 if (enable) { 1594 adap->last_initiator = 0xff; 1595 adap->transmit_in_progress = false; 1596 ret = adap->ops->adap_enable(adap, true); 1597 if (!ret) { 1598 /* 1599 * Enable monitor-all/pin modes if needed. We warn, but 1600 * continue if this fails as this is not a critical error. 1601 */ 1602 if (adap->monitor_all_cnt) 1603 WARN_ON(call_op(adap, adap_monitor_all_enable, true)); 1604 if (adap->monitor_pin_cnt) 1605 WARN_ON(call_op(adap, adap_monitor_pin_enable, true)); 1606 } 1607 } else { 1608 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */ 1609 if (adap->monitor_all_cnt) 1610 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 1611 if (adap->monitor_pin_cnt) 1612 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 1613 WARN_ON(adap->ops->adap_enable(adap, false)); 1614 adap->last_initiator = 0xff; 1615 adap->transmit_in_progress = false; 1616 adap->transmit_in_progress_aborted = false; 1617 if (adap->transmitting) 1618 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0); 1619 } 1620 if (!ret) 1621 adap->is_enabled = enable; 1622 wake_up_interruptible(&adap->kthread_waitq); 1623 mutex_unlock(&adap->devnode.lock); 1624 return ret; 1625 } 1626 1627 /* Set a new physical address and send an event notifying userspace of this. 1628 * 1629 * This function is called with adap->lock held. 1630 */ 1631 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1632 { 1633 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID; 1634 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID; 1635 1636 if (phys_addr == adap->phys_addr) 1637 return; 1638 if (!becomes_invalid && adap->devnode.unregistered) 1639 return; 1640 1641 dprintk(1, "new physical address %x.%x.%x.%x\n", 1642 cec_phys_addr_exp(phys_addr)); 1643 if (becomes_invalid || !is_invalid) { 1644 adap->phys_addr = CEC_PHYS_ADDR_INVALID; 1645 cec_post_state_event(adap); 1646 cec_adap_unconfigure(adap); 1647 if (becomes_invalid) { 1648 cec_adap_enable(adap); 1649 return; 1650 } 1651 } 1652 1653 adap->phys_addr = phys_addr; 1654 if (is_invalid) 1655 cec_adap_enable(adap); 1656 1657 cec_post_state_event(adap); 1658 if (!adap->log_addrs.num_log_addrs) 1659 return; 1660 if (adap->is_configuring) 1661 adap->must_reconfigure = true; 1662 else 1663 cec_claim_log_addrs(adap, block); 1664 } 1665 1666 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) 1667 { 1668 if (IS_ERR_OR_NULL(adap)) 1669 return; 1670 1671 mutex_lock(&adap->lock); 1672 __cec_s_phys_addr(adap, phys_addr, block); 1673 mutex_unlock(&adap->lock); 1674 } 1675 EXPORT_SYMBOL_GPL(cec_s_phys_addr); 1676 1677 void cec_s_phys_addr_from_edid(struct cec_adapter *adap, 1678 const struct edid *edid) 1679 { 1680 u16 pa = CEC_PHYS_ADDR_INVALID; 1681 1682 if (edid && edid->extensions) 1683 pa = cec_get_edid_phys_addr((const u8 *)edid, 1684 EDID_LENGTH * (edid->extensions + 1), NULL); 1685 cec_s_phys_addr(adap, pa, false); 1686 } 1687 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); 1688 1689 void cec_s_conn_info(struct cec_adapter *adap, 1690 const struct cec_connector_info *conn_info) 1691 { 1692 if (IS_ERR_OR_NULL(adap)) 1693 return; 1694 1695 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO)) 1696 return; 1697 1698 mutex_lock(&adap->lock); 1699 if (conn_info) 1700 adap->conn_info = *conn_info; 1701 else 1702 memset(&adap->conn_info, 0, sizeof(adap->conn_info)); 1703 cec_post_state_event(adap); 1704 mutex_unlock(&adap->lock); 1705 } 1706 EXPORT_SYMBOL_GPL(cec_s_conn_info); 1707 1708 /* 1709 * Called from either the ioctl or a driver to set the logical addresses. 1710 * 1711 * This function is called with adap->lock held. 1712 */ 1713 int __cec_s_log_addrs(struct cec_adapter *adap, 1714 struct cec_log_addrs *log_addrs, bool block) 1715 { 1716 u16 type_mask = 0; 1717 int err; 1718 int i; 1719 1720 if (adap->devnode.unregistered) 1721 return -ENODEV; 1722 1723 if (!log_addrs || log_addrs->num_log_addrs == 0) { 1724 if (!adap->log_addrs.num_log_addrs) 1725 return 0; 1726 if (adap->is_configuring || adap->is_configured) 1727 cec_adap_unconfigure(adap); 1728 adap->log_addrs.num_log_addrs = 0; 1729 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) 1730 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; 1731 adap->log_addrs.osd_name[0] = '\0'; 1732 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; 1733 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; 1734 cec_adap_enable(adap); 1735 return 0; 1736 } 1737 1738 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { 1739 /* 1740 * Sanitize log_addrs fields if a CDC-Only device is 1741 * requested. 1742 */ 1743 log_addrs->num_log_addrs = 1; 1744 log_addrs->osd_name[0] = '\0'; 1745 log_addrs->vendor_id = CEC_VENDOR_ID_NONE; 1746 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; 1747 /* 1748 * This is just an internal convention since a CDC-Only device 1749 * doesn't have to be a switch. But switches already use 1750 * unregistered, so it makes some kind of sense to pick this 1751 * as the primary device. Since a CDC-Only device never sends 1752 * any 'normal' CEC messages this primary device type is never 1753 * sent over the CEC bus. 1754 */ 1755 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; 1756 log_addrs->all_device_types[0] = 0; 1757 log_addrs->features[0][0] = 0; 1758 log_addrs->features[0][1] = 0; 1759 } 1760 1761 /* Ensure the osd name is 0-terminated */ 1762 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; 1763 1764 /* Sanity checks */ 1765 if (log_addrs->num_log_addrs > adap->available_log_addrs) { 1766 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); 1767 return -EINVAL; 1768 } 1769 1770 /* 1771 * Vendor ID is a 24 bit number, so check if the value is 1772 * within the correct range. 1773 */ 1774 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && 1775 (log_addrs->vendor_id & 0xff000000) != 0) { 1776 dprintk(1, "invalid vendor ID\n"); 1777 return -EINVAL; 1778 } 1779 1780 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && 1781 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { 1782 dprintk(1, "invalid CEC version\n"); 1783 return -EINVAL; 1784 } 1785 1786 if (log_addrs->num_log_addrs > 1) 1787 for (i = 0; i < log_addrs->num_log_addrs; i++) 1788 if (log_addrs->log_addr_type[i] == 1789 CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1790 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); 1791 return -EINVAL; 1792 } 1793 1794 for (i = 0; i < log_addrs->num_log_addrs; i++) { 1795 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); 1796 u8 *features = log_addrs->features[i]; 1797 bool op_is_dev_features = false; 1798 unsigned int j; 1799 1800 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; 1801 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { 1802 dprintk(1, "unknown logical address type\n"); 1803 return -EINVAL; 1804 } 1805 if (type_mask & (1 << log_addrs->log_addr_type[i])) { 1806 dprintk(1, "duplicate logical address type\n"); 1807 return -EINVAL; 1808 } 1809 type_mask |= 1 << log_addrs->log_addr_type[i]; 1810 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && 1811 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { 1812 /* Record already contains the playback functionality */ 1813 dprintk(1, "invalid record + playback combination\n"); 1814 return -EINVAL; 1815 } 1816 if (log_addrs->primary_device_type[i] > 1817 CEC_OP_PRIM_DEVTYPE_PROCESSOR) { 1818 dprintk(1, "unknown primary device type\n"); 1819 return -EINVAL; 1820 } 1821 if (log_addrs->primary_device_type[i] == 2) { 1822 dprintk(1, "invalid primary device type\n"); 1823 return -EINVAL; 1824 } 1825 for (j = 0; j < feature_sz; j++) { 1826 if ((features[j] & 0x80) == 0) { 1827 if (op_is_dev_features) 1828 break; 1829 op_is_dev_features = true; 1830 } 1831 } 1832 if (!op_is_dev_features || j == feature_sz) { 1833 dprintk(1, "malformed features\n"); 1834 return -EINVAL; 1835 } 1836 /* Zero unused part of the feature array */ 1837 memset(features + j + 1, 0, feature_sz - j - 1); 1838 } 1839 1840 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { 1841 if (log_addrs->num_log_addrs > 2) { 1842 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); 1843 return -EINVAL; 1844 } 1845 if (log_addrs->num_log_addrs == 2) { 1846 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | 1847 (1 << CEC_LOG_ADDR_TYPE_TV)))) { 1848 dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); 1849 return -EINVAL; 1850 } 1851 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | 1852 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { 1853 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); 1854 return -EINVAL; 1855 } 1856 } 1857 } 1858 1859 /* Zero unused LAs */ 1860 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { 1861 log_addrs->primary_device_type[i] = 0; 1862 log_addrs->log_addr_type[i] = 0; 1863 log_addrs->all_device_types[i] = 0; 1864 memset(log_addrs->features[i], 0, 1865 sizeof(log_addrs->features[i])); 1866 } 1867 1868 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; 1869 adap->log_addrs = *log_addrs; 1870 err = cec_adap_enable(adap); 1871 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID) 1872 cec_claim_log_addrs(adap, block); 1873 return err; 1874 } 1875 1876 int cec_s_log_addrs(struct cec_adapter *adap, 1877 struct cec_log_addrs *log_addrs, bool block) 1878 { 1879 int err; 1880 1881 mutex_lock(&adap->lock); 1882 err = __cec_s_log_addrs(adap, log_addrs, block); 1883 mutex_unlock(&adap->lock); 1884 return err; 1885 } 1886 EXPORT_SYMBOL_GPL(cec_s_log_addrs); 1887 1888 /* High-level core CEC message handling */ 1889 1890 /* Fill in the Report Features message */ 1891 static void cec_fill_msg_report_features(struct cec_adapter *adap, 1892 struct cec_msg *msg, 1893 unsigned int la_idx) 1894 { 1895 const struct cec_log_addrs *las = &adap->log_addrs; 1896 const u8 *features = las->features[la_idx]; 1897 bool op_is_dev_features = false; 1898 unsigned int idx; 1899 1900 /* Report Features */ 1901 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; 1902 msg->len = 4; 1903 msg->msg[1] = CEC_MSG_REPORT_FEATURES; 1904 msg->msg[2] = adap->log_addrs.cec_version; 1905 msg->msg[3] = las->all_device_types[la_idx]; 1906 1907 /* Write RC Profiles first, then Device Features */ 1908 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { 1909 msg->msg[msg->len++] = features[idx]; 1910 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { 1911 if (op_is_dev_features) 1912 break; 1913 op_is_dev_features = true; 1914 } 1915 } 1916 } 1917 1918 /* Transmit the Feature Abort message */ 1919 static int cec_feature_abort_reason(struct cec_adapter *adap, 1920 struct cec_msg *msg, u8 reason) 1921 { 1922 struct cec_msg tx_msg = { }; 1923 1924 /* 1925 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT 1926 * message! 1927 */ 1928 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) 1929 return 0; 1930 /* Don't Feature Abort messages from 'Unregistered' */ 1931 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) 1932 return 0; 1933 cec_msg_set_reply_to(&tx_msg, msg); 1934 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); 1935 return cec_transmit_msg(adap, &tx_msg, false); 1936 } 1937 1938 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) 1939 { 1940 return cec_feature_abort_reason(adap, msg, 1941 CEC_OP_ABORT_UNRECOGNIZED_OP); 1942 } 1943 1944 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) 1945 { 1946 return cec_feature_abort_reason(adap, msg, 1947 CEC_OP_ABORT_REFUSED); 1948 } 1949 1950 /* 1951 * Called when a CEC message is received. This function will do any 1952 * necessary core processing. The is_reply bool is true if this message 1953 * is a reply to an earlier transmit. 1954 * 1955 * The message is either a broadcast message or a valid directed message. 1956 */ 1957 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, 1958 bool is_reply) 1959 { 1960 bool is_broadcast = cec_msg_is_broadcast(msg); 1961 u8 dest_laddr = cec_msg_destination(msg); 1962 u8 init_laddr = cec_msg_initiator(msg); 1963 u8 devtype = cec_log_addr2dev(adap, dest_laddr); 1964 int la_idx = cec_log_addr2idx(adap, dest_laddr); 1965 bool from_unregistered = init_laddr == 0xf; 1966 struct cec_msg tx_cec_msg = { }; 1967 1968 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); 1969 1970 /* If this is a CDC-Only device, then ignore any non-CDC messages */ 1971 if (cec_is_cdc_only(&adap->log_addrs) && 1972 msg->msg[1] != CEC_MSG_CDC_MESSAGE) 1973 return 0; 1974 1975 /* Allow drivers to process the message first */ 1976 if (adap->ops->received && !adap->devnode.unregistered && 1977 adap->ops->received(adap, msg) != -ENOMSG) 1978 return 0; 1979 1980 /* 1981 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and 1982 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be 1983 * handled by the CEC core, even if the passthrough mode is on. 1984 * The others are just ignored if passthrough mode is on. 1985 */ 1986 switch (msg->msg[1]) { 1987 case CEC_MSG_GET_CEC_VERSION: 1988 case CEC_MSG_ABORT: 1989 case CEC_MSG_GIVE_DEVICE_POWER_STATUS: 1990 case CEC_MSG_GIVE_OSD_NAME: 1991 /* 1992 * These messages reply with a directed message, so ignore if 1993 * the initiator is Unregistered. 1994 */ 1995 if (!adap->passthrough && from_unregistered) 1996 return 0; 1997 fallthrough; 1998 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 1999 case CEC_MSG_GIVE_FEATURES: 2000 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2001 /* 2002 * Skip processing these messages if the passthrough mode 2003 * is on. 2004 */ 2005 if (adap->passthrough) 2006 goto skip_processing; 2007 /* Ignore if addressing is wrong */ 2008 if (is_broadcast) 2009 return 0; 2010 break; 2011 2012 case CEC_MSG_USER_CONTROL_PRESSED: 2013 case CEC_MSG_USER_CONTROL_RELEASED: 2014 /* Wrong addressing mode: don't process */ 2015 if (is_broadcast || from_unregistered) 2016 goto skip_processing; 2017 break; 2018 2019 case CEC_MSG_REPORT_PHYSICAL_ADDR: 2020 /* 2021 * This message is always processed, regardless of the 2022 * passthrough setting. 2023 * 2024 * Exception: don't process if wrong addressing mode. 2025 */ 2026 if (!is_broadcast) 2027 goto skip_processing; 2028 break; 2029 2030 default: 2031 break; 2032 } 2033 2034 cec_msg_set_reply_to(&tx_cec_msg, msg); 2035 2036 switch (msg->msg[1]) { 2037 /* The following messages are processed but still passed through */ 2038 case CEC_MSG_REPORT_PHYSICAL_ADDR: { 2039 u16 pa = (msg->msg[2] << 8) | msg->msg[3]; 2040 2041 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", 2042 cec_phys_addr_exp(pa), init_laddr); 2043 break; 2044 } 2045 2046 case CEC_MSG_USER_CONTROL_PRESSED: 2047 if (!(adap->capabilities & CEC_CAP_RC) || 2048 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2049 break; 2050 2051 #ifdef CONFIG_MEDIA_CEC_RC 2052 switch (msg->msg[2]) { 2053 /* 2054 * Play function, this message can have variable length 2055 * depending on the specific play function that is used. 2056 */ 2057 case CEC_OP_UI_CMD_PLAY_FUNCTION: 2058 if (msg->len == 2) 2059 rc_keydown(adap->rc, RC_PROTO_CEC, 2060 msg->msg[2], 0); 2061 else 2062 rc_keydown(adap->rc, RC_PROTO_CEC, 2063 msg->msg[2] << 8 | msg->msg[3], 0); 2064 break; 2065 /* 2066 * Other function messages that are not handled. 2067 * Currently the RC framework does not allow to supply an 2068 * additional parameter to a keypress. These "keys" contain 2069 * other information such as channel number, an input number 2070 * etc. 2071 * For the time being these messages are not processed by the 2072 * framework and are simply forwarded to the user space. 2073 */ 2074 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE: 2075 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION: 2076 case CEC_OP_UI_CMD_TUNE_FUNCTION: 2077 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION: 2078 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION: 2079 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION: 2080 break; 2081 default: 2082 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); 2083 break; 2084 } 2085 #endif 2086 break; 2087 2088 case CEC_MSG_USER_CONTROL_RELEASED: 2089 if (!(adap->capabilities & CEC_CAP_RC) || 2090 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) 2091 break; 2092 #ifdef CONFIG_MEDIA_CEC_RC 2093 rc_keyup(adap->rc); 2094 #endif 2095 break; 2096 2097 /* 2098 * The remaining messages are only processed if the passthrough mode 2099 * is off. 2100 */ 2101 case CEC_MSG_GET_CEC_VERSION: 2102 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); 2103 return cec_transmit_msg(adap, &tx_cec_msg, false); 2104 2105 case CEC_MSG_GIVE_PHYSICAL_ADDR: 2106 /* Do nothing for CEC switches using addr 15 */ 2107 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) 2108 return 0; 2109 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); 2110 return cec_transmit_msg(adap, &tx_cec_msg, false); 2111 2112 case CEC_MSG_GIVE_DEVICE_VENDOR_ID: 2113 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) 2114 return cec_feature_abort(adap, msg); 2115 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); 2116 return cec_transmit_msg(adap, &tx_cec_msg, false); 2117 2118 case CEC_MSG_ABORT: 2119 /* Do nothing for CEC switches */ 2120 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) 2121 return 0; 2122 return cec_feature_refused(adap, msg); 2123 2124 case CEC_MSG_GIVE_OSD_NAME: { 2125 if (adap->log_addrs.osd_name[0] == 0) 2126 return cec_feature_abort(adap, msg); 2127 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); 2128 return cec_transmit_msg(adap, &tx_cec_msg, false); 2129 } 2130 2131 case CEC_MSG_GIVE_FEATURES: 2132 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) 2133 return cec_feature_abort(adap, msg); 2134 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); 2135 return cec_transmit_msg(adap, &tx_cec_msg, false); 2136 2137 default: 2138 /* 2139 * Unprocessed messages are aborted if userspace isn't doing 2140 * any processing either. 2141 */ 2142 if (!is_broadcast && !is_reply && !adap->follower_cnt && 2143 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) 2144 return cec_feature_abort(adap, msg); 2145 break; 2146 } 2147 2148 skip_processing: 2149 /* If this was a reply, then we're done, unless otherwise specified */ 2150 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) 2151 return 0; 2152 2153 /* 2154 * Send to the exclusive follower if there is one, otherwise send 2155 * to all followers. 2156 */ 2157 if (adap->cec_follower) 2158 cec_queue_msg_fh(adap->cec_follower, msg); 2159 else 2160 cec_queue_msg_followers(adap, msg); 2161 return 0; 2162 } 2163 2164 /* 2165 * Helper functions to keep track of the 'monitor all' use count. 2166 * 2167 * These functions are called with adap->lock held. 2168 */ 2169 int cec_monitor_all_cnt_inc(struct cec_adapter *adap) 2170 { 2171 int ret; 2172 2173 if (adap->monitor_all_cnt++) 2174 return 0; 2175 2176 ret = cec_adap_enable(adap); 2177 if (ret) 2178 adap->monitor_all_cnt--; 2179 return ret; 2180 } 2181 2182 void cec_monitor_all_cnt_dec(struct cec_adapter *adap) 2183 { 2184 if (WARN_ON(!adap->monitor_all_cnt)) 2185 return; 2186 if (--adap->monitor_all_cnt) 2187 return; 2188 WARN_ON(call_op(adap, adap_monitor_all_enable, false)); 2189 cec_adap_enable(adap); 2190 } 2191 2192 /* 2193 * Helper functions to keep track of the 'monitor pin' use count. 2194 * 2195 * These functions are called with adap->lock held. 2196 */ 2197 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) 2198 { 2199 int ret; 2200 2201 if (adap->monitor_pin_cnt++) 2202 return 0; 2203 2204 ret = cec_adap_enable(adap); 2205 if (ret) 2206 adap->monitor_pin_cnt--; 2207 return ret; 2208 } 2209 2210 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) 2211 { 2212 if (WARN_ON(!adap->monitor_pin_cnt)) 2213 return; 2214 if (--adap->monitor_pin_cnt) 2215 return; 2216 WARN_ON(call_op(adap, adap_monitor_pin_enable, false)); 2217 cec_adap_enable(adap); 2218 } 2219 2220 #ifdef CONFIG_DEBUG_FS 2221 /* 2222 * Log the current state of the CEC adapter. 2223 * Very useful for debugging. 2224 */ 2225 int cec_adap_status(struct seq_file *file, void *priv) 2226 { 2227 struct cec_adapter *adap = dev_get_drvdata(file->private); 2228 struct cec_data *data; 2229 2230 mutex_lock(&adap->lock); 2231 seq_printf(file, "enabled: %d\n", adap->is_enabled); 2232 seq_printf(file, "configured: %d\n", adap->is_configured); 2233 seq_printf(file, "configuring: %d\n", adap->is_configuring); 2234 seq_printf(file, "phys_addr: %x.%x.%x.%x\n", 2235 cec_phys_addr_exp(adap->phys_addr)); 2236 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); 2237 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); 2238 if (adap->cec_follower) 2239 seq_printf(file, "has CEC follower%s\n", 2240 adap->passthrough ? " (in passthrough mode)" : ""); 2241 if (adap->cec_initiator) 2242 seq_puts(file, "has CEC initiator\n"); 2243 if (adap->monitor_all_cnt) 2244 seq_printf(file, "file handles in Monitor All mode: %u\n", 2245 adap->monitor_all_cnt); 2246 if (adap->monitor_pin_cnt) 2247 seq_printf(file, "file handles in Monitor Pin mode: %u\n", 2248 adap->monitor_pin_cnt); 2249 if (adap->tx_timeouts) { 2250 seq_printf(file, "transmit timeouts: %u\n", 2251 adap->tx_timeouts); 2252 adap->tx_timeouts = 0; 2253 } 2254 data = adap->transmitting; 2255 if (data) 2256 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", 2257 data->msg.len, data->msg.msg, data->msg.reply, 2258 data->msg.timeout); 2259 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); 2260 list_for_each_entry(data, &adap->transmit_queue, list) { 2261 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", 2262 data->msg.len, data->msg.msg, data->msg.reply, 2263 data->msg.timeout); 2264 } 2265 list_for_each_entry(data, &adap->wait_queue, list) { 2266 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", 2267 data->msg.len, data->msg.msg, data->msg.reply, 2268 data->msg.timeout); 2269 } 2270 2271 call_void_op(adap, adap_status, file); 2272 mutex_unlock(&adap->lock); 2273 return 0; 2274 } 2275 #endif 2276