1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 #define RAID5_MAX_REQ_STRIPES 256 65 66 static bool devices_handle_discard_safely = false; 67 module_param(devices_handle_discard_safely, bool, 0644); 68 MODULE_PARM_DESC(devices_handle_discard_safely, 69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 70 static struct workqueue_struct *raid5_wq; 71 72 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 73 { 74 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 75 return &conf->stripe_hashtbl[hash]; 76 } 77 78 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 79 { 80 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 81 } 82 83 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 84 __acquires(&conf->device_lock) 85 { 86 spin_lock_irq(conf->hash_locks + hash); 87 spin_lock(&conf->device_lock); 88 } 89 90 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 91 __releases(&conf->device_lock) 92 { 93 spin_unlock(&conf->device_lock); 94 spin_unlock_irq(conf->hash_locks + hash); 95 } 96 97 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 98 __acquires(&conf->device_lock) 99 { 100 int i; 101 spin_lock_irq(conf->hash_locks); 102 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 103 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 104 spin_lock(&conf->device_lock); 105 } 106 107 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 108 __releases(&conf->device_lock) 109 { 110 int i; 111 spin_unlock(&conf->device_lock); 112 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 113 spin_unlock(conf->hash_locks + i); 114 spin_unlock_irq(conf->hash_locks); 115 } 116 117 /* Find first data disk in a raid6 stripe */ 118 static inline int raid6_d0(struct stripe_head *sh) 119 { 120 if (sh->ddf_layout) 121 /* ddf always start from first device */ 122 return 0; 123 /* md starts just after Q block */ 124 if (sh->qd_idx == sh->disks - 1) 125 return 0; 126 else 127 return sh->qd_idx + 1; 128 } 129 static inline int raid6_next_disk(int disk, int raid_disks) 130 { 131 disk++; 132 return (disk < raid_disks) ? disk : 0; 133 } 134 135 /* When walking through the disks in a raid5, starting at raid6_d0, 136 * We need to map each disk to a 'slot', where the data disks are slot 137 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 138 * is raid_disks-1. This help does that mapping. 139 */ 140 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 141 int *count, int syndrome_disks) 142 { 143 int slot = *count; 144 145 if (sh->ddf_layout) 146 (*count)++; 147 if (idx == sh->pd_idx) 148 return syndrome_disks; 149 if (idx == sh->qd_idx) 150 return syndrome_disks + 1; 151 if (!sh->ddf_layout) 152 (*count)++; 153 return slot; 154 } 155 156 static void print_raid5_conf (struct r5conf *conf); 157 158 static int stripe_operations_active(struct stripe_head *sh) 159 { 160 return sh->check_state || sh->reconstruct_state || 161 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 162 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 163 } 164 165 static bool stripe_is_lowprio(struct stripe_head *sh) 166 { 167 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 168 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 169 !test_bit(STRIPE_R5C_CACHING, &sh->state); 170 } 171 172 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 173 __must_hold(&sh->raid_conf->device_lock) 174 { 175 struct r5conf *conf = sh->raid_conf; 176 struct r5worker_group *group; 177 int thread_cnt; 178 int i, cpu = sh->cpu; 179 180 if (!cpu_online(cpu)) { 181 cpu = cpumask_any(cpu_online_mask); 182 sh->cpu = cpu; 183 } 184 185 if (list_empty(&sh->lru)) { 186 struct r5worker_group *group; 187 group = conf->worker_groups + cpu_to_group(cpu); 188 if (stripe_is_lowprio(sh)) 189 list_add_tail(&sh->lru, &group->loprio_list); 190 else 191 list_add_tail(&sh->lru, &group->handle_list); 192 group->stripes_cnt++; 193 sh->group = group; 194 } 195 196 if (conf->worker_cnt_per_group == 0) { 197 md_wakeup_thread(conf->mddev->thread); 198 return; 199 } 200 201 group = conf->worker_groups + cpu_to_group(sh->cpu); 202 203 group->workers[0].working = true; 204 /* at least one worker should run to avoid race */ 205 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 206 207 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 208 /* wakeup more workers */ 209 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 210 if (group->workers[i].working == false) { 211 group->workers[i].working = true; 212 queue_work_on(sh->cpu, raid5_wq, 213 &group->workers[i].work); 214 thread_cnt--; 215 } 216 } 217 } 218 219 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 220 struct list_head *temp_inactive_list) 221 __must_hold(&conf->device_lock) 222 { 223 int i; 224 int injournal = 0; /* number of date pages with R5_InJournal */ 225 226 BUG_ON(!list_empty(&sh->lru)); 227 BUG_ON(atomic_read(&conf->active_stripes)==0); 228 229 if (r5c_is_writeback(conf->log)) 230 for (i = sh->disks; i--; ) 231 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 232 injournal++; 233 /* 234 * In the following cases, the stripe cannot be released to cached 235 * lists. Therefore, we make the stripe write out and set 236 * STRIPE_HANDLE: 237 * 1. when quiesce in r5c write back; 238 * 2. when resync is requested fot the stripe. 239 */ 240 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 241 (conf->quiesce && r5c_is_writeback(conf->log) && 242 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 243 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 244 r5c_make_stripe_write_out(sh); 245 set_bit(STRIPE_HANDLE, &sh->state); 246 } 247 248 if (test_bit(STRIPE_HANDLE, &sh->state)) { 249 if (test_bit(STRIPE_DELAYED, &sh->state) && 250 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 251 list_add_tail(&sh->lru, &conf->delayed_list); 252 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 253 sh->bm_seq - conf->seq_write > 0) 254 list_add_tail(&sh->lru, &conf->bitmap_list); 255 else { 256 clear_bit(STRIPE_DELAYED, &sh->state); 257 clear_bit(STRIPE_BIT_DELAY, &sh->state); 258 if (conf->worker_cnt_per_group == 0) { 259 if (stripe_is_lowprio(sh)) 260 list_add_tail(&sh->lru, 261 &conf->loprio_list); 262 else 263 list_add_tail(&sh->lru, 264 &conf->handle_list); 265 } else { 266 raid5_wakeup_stripe_thread(sh); 267 return; 268 } 269 } 270 md_wakeup_thread(conf->mddev->thread); 271 } else { 272 BUG_ON(stripe_operations_active(sh)); 273 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 274 if (atomic_dec_return(&conf->preread_active_stripes) 275 < IO_THRESHOLD) 276 md_wakeup_thread(conf->mddev->thread); 277 atomic_dec(&conf->active_stripes); 278 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 279 if (!r5c_is_writeback(conf->log)) 280 list_add_tail(&sh->lru, temp_inactive_list); 281 else { 282 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 283 if (injournal == 0) 284 list_add_tail(&sh->lru, temp_inactive_list); 285 else if (injournal == conf->raid_disks - conf->max_degraded) { 286 /* full stripe */ 287 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 288 atomic_inc(&conf->r5c_cached_full_stripes); 289 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 290 atomic_dec(&conf->r5c_cached_partial_stripes); 291 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 292 r5c_check_cached_full_stripe(conf); 293 } else 294 /* 295 * STRIPE_R5C_PARTIAL_STRIPE is set in 296 * r5c_try_caching_write(). No need to 297 * set it again. 298 */ 299 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 300 } 301 } 302 } 303 } 304 305 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 306 struct list_head *temp_inactive_list) 307 __must_hold(&conf->device_lock) 308 { 309 if (atomic_dec_and_test(&sh->count)) 310 do_release_stripe(conf, sh, temp_inactive_list); 311 } 312 313 /* 314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 315 * 316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 317 * given time. Adding stripes only takes device lock, while deleting stripes 318 * only takes hash lock. 319 */ 320 static void release_inactive_stripe_list(struct r5conf *conf, 321 struct list_head *temp_inactive_list, 322 int hash) 323 { 324 int size; 325 bool do_wakeup = false; 326 unsigned long flags; 327 328 if (hash == NR_STRIPE_HASH_LOCKS) { 329 size = NR_STRIPE_HASH_LOCKS; 330 hash = NR_STRIPE_HASH_LOCKS - 1; 331 } else 332 size = 1; 333 while (size) { 334 struct list_head *list = &temp_inactive_list[size - 1]; 335 336 /* 337 * We don't hold any lock here yet, raid5_get_active_stripe() might 338 * remove stripes from the list 339 */ 340 if (!list_empty_careful(list)) { 341 spin_lock_irqsave(conf->hash_locks + hash, flags); 342 if (list_empty(conf->inactive_list + hash) && 343 !list_empty(list)) 344 atomic_dec(&conf->empty_inactive_list_nr); 345 list_splice_tail_init(list, conf->inactive_list + hash); 346 do_wakeup = true; 347 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 348 } 349 size--; 350 hash--; 351 } 352 353 if (do_wakeup) { 354 wake_up(&conf->wait_for_stripe); 355 if (atomic_read(&conf->active_stripes) == 0) 356 wake_up(&conf->wait_for_quiescent); 357 if (conf->retry_read_aligned) 358 md_wakeup_thread(conf->mddev->thread); 359 } 360 } 361 362 static int release_stripe_list(struct r5conf *conf, 363 struct list_head *temp_inactive_list) 364 __must_hold(&conf->device_lock) 365 { 366 struct stripe_head *sh, *t; 367 int count = 0; 368 struct llist_node *head; 369 370 head = llist_del_all(&conf->released_stripes); 371 head = llist_reverse_order(head); 372 llist_for_each_entry_safe(sh, t, head, release_list) { 373 int hash; 374 375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 376 smp_mb(); 377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 378 /* 379 * Don't worry the bit is set here, because if the bit is set 380 * again, the count is always > 1. This is true for 381 * STRIPE_ON_UNPLUG_LIST bit too. 382 */ 383 hash = sh->hash_lock_index; 384 __release_stripe(conf, sh, &temp_inactive_list[hash]); 385 count++; 386 } 387 388 return count; 389 } 390 391 void raid5_release_stripe(struct stripe_head *sh) 392 { 393 struct r5conf *conf = sh->raid_conf; 394 unsigned long flags; 395 struct list_head list; 396 int hash; 397 bool wakeup; 398 399 /* Avoid release_list until the last reference. 400 */ 401 if (atomic_add_unless(&sh->count, -1, 1)) 402 return; 403 404 if (unlikely(!conf->mddev->thread) || 405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 406 goto slow_path; 407 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 408 if (wakeup) 409 md_wakeup_thread(conf->mddev->thread); 410 return; 411 slow_path: 412 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 413 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 414 INIT_LIST_HEAD(&list); 415 hash = sh->hash_lock_index; 416 do_release_stripe(conf, sh, &list); 417 spin_unlock_irqrestore(&conf->device_lock, flags); 418 release_inactive_stripe_list(conf, &list, hash); 419 } 420 } 421 422 static inline void remove_hash(struct stripe_head *sh) 423 { 424 pr_debug("remove_hash(), stripe %llu\n", 425 (unsigned long long)sh->sector); 426 427 hlist_del_init(&sh->hash); 428 } 429 430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 431 { 432 struct hlist_head *hp = stripe_hash(conf, sh->sector); 433 434 pr_debug("insert_hash(), stripe %llu\n", 435 (unsigned long long)sh->sector); 436 437 hlist_add_head(&sh->hash, hp); 438 } 439 440 /* find an idle stripe, make sure it is unhashed, and return it. */ 441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 442 { 443 struct stripe_head *sh = NULL; 444 struct list_head *first; 445 446 if (list_empty(conf->inactive_list + hash)) 447 goto out; 448 first = (conf->inactive_list + hash)->next; 449 sh = list_entry(first, struct stripe_head, lru); 450 list_del_init(first); 451 remove_hash(sh); 452 atomic_inc(&conf->active_stripes); 453 BUG_ON(hash != sh->hash_lock_index); 454 if (list_empty(conf->inactive_list + hash)) 455 atomic_inc(&conf->empty_inactive_list_nr); 456 out: 457 return sh; 458 } 459 460 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 461 static void free_stripe_pages(struct stripe_head *sh) 462 { 463 int i; 464 struct page *p; 465 466 /* Have not allocate page pool */ 467 if (!sh->pages) 468 return; 469 470 for (i = 0; i < sh->nr_pages; i++) { 471 p = sh->pages[i]; 472 if (p) 473 put_page(p); 474 sh->pages[i] = NULL; 475 } 476 } 477 478 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 479 { 480 int i; 481 struct page *p; 482 483 for (i = 0; i < sh->nr_pages; i++) { 484 /* The page have allocated. */ 485 if (sh->pages[i]) 486 continue; 487 488 p = alloc_page(gfp); 489 if (!p) { 490 free_stripe_pages(sh); 491 return -ENOMEM; 492 } 493 sh->pages[i] = p; 494 } 495 return 0; 496 } 497 498 static int 499 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 500 { 501 int nr_pages, cnt; 502 503 if (sh->pages) 504 return 0; 505 506 /* Each of the sh->dev[i] need one conf->stripe_size */ 507 cnt = PAGE_SIZE / conf->stripe_size; 508 nr_pages = (disks + cnt - 1) / cnt; 509 510 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 511 if (!sh->pages) 512 return -ENOMEM; 513 sh->nr_pages = nr_pages; 514 sh->stripes_per_page = cnt; 515 return 0; 516 } 517 #endif 518 519 static void shrink_buffers(struct stripe_head *sh) 520 { 521 int i; 522 int num = sh->raid_conf->pool_size; 523 524 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 525 for (i = 0; i < num ; i++) { 526 struct page *p; 527 528 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 529 p = sh->dev[i].page; 530 if (!p) 531 continue; 532 sh->dev[i].page = NULL; 533 put_page(p); 534 } 535 #else 536 for (i = 0; i < num; i++) 537 sh->dev[i].page = NULL; 538 free_stripe_pages(sh); /* Free pages */ 539 #endif 540 } 541 542 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 543 { 544 int i; 545 int num = sh->raid_conf->pool_size; 546 547 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 548 for (i = 0; i < num; i++) { 549 struct page *page; 550 551 if (!(page = alloc_page(gfp))) { 552 return 1; 553 } 554 sh->dev[i].page = page; 555 sh->dev[i].orig_page = page; 556 sh->dev[i].offset = 0; 557 } 558 #else 559 if (alloc_stripe_pages(sh, gfp)) 560 return -ENOMEM; 561 562 for (i = 0; i < num; i++) { 563 sh->dev[i].page = raid5_get_dev_page(sh, i); 564 sh->dev[i].orig_page = sh->dev[i].page; 565 sh->dev[i].offset = raid5_get_page_offset(sh, i); 566 } 567 #endif 568 return 0; 569 } 570 571 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 572 struct stripe_head *sh); 573 574 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 575 { 576 struct r5conf *conf = sh->raid_conf; 577 int i, seq; 578 579 BUG_ON(atomic_read(&sh->count) != 0); 580 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 581 BUG_ON(stripe_operations_active(sh)); 582 BUG_ON(sh->batch_head); 583 584 pr_debug("init_stripe called, stripe %llu\n", 585 (unsigned long long)sector); 586 retry: 587 seq = read_seqcount_begin(&conf->gen_lock); 588 sh->generation = conf->generation - previous; 589 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 590 sh->sector = sector; 591 stripe_set_idx(sector, conf, previous, sh); 592 sh->state = 0; 593 594 for (i = sh->disks; i--; ) { 595 struct r5dev *dev = &sh->dev[i]; 596 597 if (dev->toread || dev->read || dev->towrite || dev->written || 598 test_bit(R5_LOCKED, &dev->flags)) { 599 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 600 (unsigned long long)sh->sector, i, dev->toread, 601 dev->read, dev->towrite, dev->written, 602 test_bit(R5_LOCKED, &dev->flags)); 603 WARN_ON(1); 604 } 605 dev->flags = 0; 606 dev->sector = raid5_compute_blocknr(sh, i, previous); 607 } 608 if (read_seqcount_retry(&conf->gen_lock, seq)) 609 goto retry; 610 sh->overwrite_disks = 0; 611 insert_hash(conf, sh); 612 sh->cpu = smp_processor_id(); 613 set_bit(STRIPE_BATCH_READY, &sh->state); 614 } 615 616 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 617 short generation) 618 { 619 struct stripe_head *sh; 620 621 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 622 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 623 if (sh->sector == sector && sh->generation == generation) 624 return sh; 625 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 626 return NULL; 627 } 628 629 static struct stripe_head *find_get_stripe(struct r5conf *conf, 630 sector_t sector, short generation, int hash) 631 { 632 int inc_empty_inactive_list_flag; 633 struct stripe_head *sh; 634 635 sh = __find_stripe(conf, sector, generation); 636 if (!sh) 637 return NULL; 638 639 if (atomic_inc_not_zero(&sh->count)) 640 return sh; 641 642 /* 643 * Slow path. The reference count is zero which means the stripe must 644 * be on a list (sh->lru). Must remove the stripe from the list that 645 * references it with the device_lock held. 646 */ 647 648 spin_lock(&conf->device_lock); 649 if (!atomic_read(&sh->count)) { 650 if (!test_bit(STRIPE_HANDLE, &sh->state)) 651 atomic_inc(&conf->active_stripes); 652 BUG_ON(list_empty(&sh->lru) && 653 !test_bit(STRIPE_EXPANDING, &sh->state)); 654 inc_empty_inactive_list_flag = 0; 655 if (!list_empty(conf->inactive_list + hash)) 656 inc_empty_inactive_list_flag = 1; 657 list_del_init(&sh->lru); 658 if (list_empty(conf->inactive_list + hash) && 659 inc_empty_inactive_list_flag) 660 atomic_inc(&conf->empty_inactive_list_nr); 661 if (sh->group) { 662 sh->group->stripes_cnt--; 663 sh->group = NULL; 664 } 665 } 666 atomic_inc(&sh->count); 667 spin_unlock(&conf->device_lock); 668 669 return sh; 670 } 671 672 /* 673 * Need to check if array has failed when deciding whether to: 674 * - start an array 675 * - remove non-faulty devices 676 * - add a spare 677 * - allow a reshape 678 * This determination is simple when no reshape is happening. 679 * However if there is a reshape, we need to carefully check 680 * both the before and after sections. 681 * This is because some failed devices may only affect one 682 * of the two sections, and some non-in_sync devices may 683 * be insync in the section most affected by failed devices. 684 * 685 * Most calls to this function hold &conf->device_lock. Calls 686 * in raid5_run() do not require the lock as no other threads 687 * have been started yet. 688 */ 689 int raid5_calc_degraded(struct r5conf *conf) 690 { 691 int degraded, degraded2; 692 int i; 693 694 rcu_read_lock(); 695 degraded = 0; 696 for (i = 0; i < conf->previous_raid_disks; i++) { 697 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 698 if (rdev && test_bit(Faulty, &rdev->flags)) 699 rdev = rcu_dereference(conf->disks[i].replacement); 700 if (!rdev || test_bit(Faulty, &rdev->flags)) 701 degraded++; 702 else if (test_bit(In_sync, &rdev->flags)) 703 ; 704 else 705 /* not in-sync or faulty. 706 * If the reshape increases the number of devices, 707 * this is being recovered by the reshape, so 708 * this 'previous' section is not in_sync. 709 * If the number of devices is being reduced however, 710 * the device can only be part of the array if 711 * we are reverting a reshape, so this section will 712 * be in-sync. 713 */ 714 if (conf->raid_disks >= conf->previous_raid_disks) 715 degraded++; 716 } 717 rcu_read_unlock(); 718 if (conf->raid_disks == conf->previous_raid_disks) 719 return degraded; 720 rcu_read_lock(); 721 degraded2 = 0; 722 for (i = 0; i < conf->raid_disks; i++) { 723 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 724 if (rdev && test_bit(Faulty, &rdev->flags)) 725 rdev = rcu_dereference(conf->disks[i].replacement); 726 if (!rdev || test_bit(Faulty, &rdev->flags)) 727 degraded2++; 728 else if (test_bit(In_sync, &rdev->flags)) 729 ; 730 else 731 /* not in-sync or faulty. 732 * If reshape increases the number of devices, this 733 * section has already been recovered, else it 734 * almost certainly hasn't. 735 */ 736 if (conf->raid_disks <= conf->previous_raid_disks) 737 degraded2++; 738 } 739 rcu_read_unlock(); 740 if (degraded2 > degraded) 741 return degraded2; 742 return degraded; 743 } 744 745 static bool has_failed(struct r5conf *conf) 746 { 747 int degraded = conf->mddev->degraded; 748 749 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 750 return true; 751 752 if (conf->mddev->reshape_position != MaxSector) 753 degraded = raid5_calc_degraded(conf); 754 755 return degraded > conf->max_degraded; 756 } 757 758 enum stripe_result { 759 STRIPE_SUCCESS = 0, 760 STRIPE_RETRY, 761 STRIPE_SCHEDULE_AND_RETRY, 762 STRIPE_FAIL, 763 }; 764 765 struct stripe_request_ctx { 766 /* a reference to the last stripe_head for batching */ 767 struct stripe_head *batch_last; 768 769 /* first sector in the request */ 770 sector_t first_sector; 771 772 /* last sector in the request */ 773 sector_t last_sector; 774 775 /* 776 * bitmap to track stripe sectors that have been added to stripes 777 * add one to account for unaligned requests 778 */ 779 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 780 781 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 782 bool do_flush; 783 }; 784 785 /* 786 * Block until another thread clears R5_INACTIVE_BLOCKED or 787 * there are fewer than 3/4 the maximum number of active stripes 788 * and there is an inactive stripe available. 789 */ 790 static bool is_inactive_blocked(struct r5conf *conf, int hash) 791 { 792 if (list_empty(conf->inactive_list + hash)) 793 return false; 794 795 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 796 return true; 797 798 return (atomic_read(&conf->active_stripes) < 799 (conf->max_nr_stripes * 3 / 4)); 800 } 801 802 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 803 struct stripe_request_ctx *ctx, sector_t sector, 804 unsigned int flags) 805 { 806 struct stripe_head *sh; 807 int hash = stripe_hash_locks_hash(conf, sector); 808 int previous = !!(flags & R5_GAS_PREVIOUS); 809 810 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 811 812 spin_lock_irq(conf->hash_locks + hash); 813 814 for (;;) { 815 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 816 /* 817 * Must release the reference to batch_last before 818 * waiting, on quiesce, otherwise the batch_last will 819 * hold a reference to a stripe and raid5_quiesce() 820 * will deadlock waiting for active_stripes to go to 821 * zero. 822 */ 823 if (ctx && ctx->batch_last) { 824 raid5_release_stripe(ctx->batch_last); 825 ctx->batch_last = NULL; 826 } 827 828 wait_event_lock_irq(conf->wait_for_quiescent, 829 !conf->quiesce, 830 *(conf->hash_locks + hash)); 831 } 832 833 sh = find_get_stripe(conf, sector, conf->generation - previous, 834 hash); 835 if (sh) 836 break; 837 838 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 839 sh = get_free_stripe(conf, hash); 840 if (sh) { 841 r5c_check_stripe_cache_usage(conf); 842 init_stripe(sh, sector, previous); 843 atomic_inc(&sh->count); 844 break; 845 } 846 847 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 848 set_bit(R5_ALLOC_MORE, &conf->cache_state); 849 } 850 851 if (flags & R5_GAS_NOBLOCK) 852 break; 853 854 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 855 r5l_wake_reclaim(conf->log, 0); 856 857 /* release batch_last before wait to avoid risk of deadlock */ 858 if (ctx && ctx->batch_last) { 859 raid5_release_stripe(ctx->batch_last); 860 ctx->batch_last = NULL; 861 } 862 863 wait_event_lock_irq(conf->wait_for_stripe, 864 is_inactive_blocked(conf, hash), 865 *(conf->hash_locks + hash)); 866 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 867 } 868 869 spin_unlock_irq(conf->hash_locks + hash); 870 return sh; 871 } 872 873 static bool is_full_stripe_write(struct stripe_head *sh) 874 { 875 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 876 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 877 } 878 879 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 880 __acquires(&sh1->stripe_lock) 881 __acquires(&sh2->stripe_lock) 882 { 883 if (sh1 > sh2) { 884 spin_lock_irq(&sh2->stripe_lock); 885 spin_lock_nested(&sh1->stripe_lock, 1); 886 } else { 887 spin_lock_irq(&sh1->stripe_lock); 888 spin_lock_nested(&sh2->stripe_lock, 1); 889 } 890 } 891 892 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 893 __releases(&sh1->stripe_lock) 894 __releases(&sh2->stripe_lock) 895 { 896 spin_unlock(&sh1->stripe_lock); 897 spin_unlock_irq(&sh2->stripe_lock); 898 } 899 900 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 901 static bool stripe_can_batch(struct stripe_head *sh) 902 { 903 struct r5conf *conf = sh->raid_conf; 904 905 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 906 return false; 907 return test_bit(STRIPE_BATCH_READY, &sh->state) && 908 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 909 is_full_stripe_write(sh); 910 } 911 912 /* we only do back search */ 913 static void stripe_add_to_batch_list(struct r5conf *conf, 914 struct stripe_head *sh, struct stripe_head *last_sh) 915 { 916 struct stripe_head *head; 917 sector_t head_sector, tmp_sec; 918 int hash; 919 int dd_idx; 920 921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 922 tmp_sec = sh->sector; 923 if (!sector_div(tmp_sec, conf->chunk_sectors)) 924 return; 925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 926 927 if (last_sh && head_sector == last_sh->sector) { 928 head = last_sh; 929 atomic_inc(&head->count); 930 } else { 931 hash = stripe_hash_locks_hash(conf, head_sector); 932 spin_lock_irq(conf->hash_locks + hash); 933 head = find_get_stripe(conf, head_sector, conf->generation, 934 hash); 935 spin_unlock_irq(conf->hash_locks + hash); 936 if (!head) 937 return; 938 if (!stripe_can_batch(head)) 939 goto out; 940 } 941 942 lock_two_stripes(head, sh); 943 /* clear_batch_ready clear the flag */ 944 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 945 goto unlock_out; 946 947 if (sh->batch_head) 948 goto unlock_out; 949 950 dd_idx = 0; 951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 952 dd_idx++; 953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 955 goto unlock_out; 956 957 if (head->batch_head) { 958 spin_lock(&head->batch_head->batch_lock); 959 /* This batch list is already running */ 960 if (!stripe_can_batch(head)) { 961 spin_unlock(&head->batch_head->batch_lock); 962 goto unlock_out; 963 } 964 /* 965 * We must assign batch_head of this stripe within the 966 * batch_lock, otherwise clear_batch_ready of batch head 967 * stripe could clear BATCH_READY bit of this stripe and 968 * this stripe->batch_head doesn't get assigned, which 969 * could confuse clear_batch_ready for this stripe 970 */ 971 sh->batch_head = head->batch_head; 972 973 /* 974 * at this point, head's BATCH_READY could be cleared, but we 975 * can still add the stripe to batch list 976 */ 977 list_add(&sh->batch_list, &head->batch_list); 978 spin_unlock(&head->batch_head->batch_lock); 979 } else { 980 head->batch_head = head; 981 sh->batch_head = head->batch_head; 982 spin_lock(&head->batch_lock); 983 list_add_tail(&sh->batch_list, &head->batch_list); 984 spin_unlock(&head->batch_lock); 985 } 986 987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 988 if (atomic_dec_return(&conf->preread_active_stripes) 989 < IO_THRESHOLD) 990 md_wakeup_thread(conf->mddev->thread); 991 992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 993 int seq = sh->bm_seq; 994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 995 sh->batch_head->bm_seq > seq) 996 seq = sh->batch_head->bm_seq; 997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 998 sh->batch_head->bm_seq = seq; 999 } 1000 1001 atomic_inc(&sh->count); 1002 unlock_out: 1003 unlock_two_stripes(head, sh); 1004 out: 1005 raid5_release_stripe(head); 1006 } 1007 1008 /* Determine if 'data_offset' or 'new_data_offset' should be used 1009 * in this stripe_head. 1010 */ 1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1012 { 1013 sector_t progress = conf->reshape_progress; 1014 /* Need a memory barrier to make sure we see the value 1015 * of conf->generation, or ->data_offset that was set before 1016 * reshape_progress was updated. 1017 */ 1018 smp_rmb(); 1019 if (progress == MaxSector) 1020 return 0; 1021 if (sh->generation == conf->generation - 1) 1022 return 0; 1023 /* We are in a reshape, and this is a new-generation stripe, 1024 * so use new_data_offset. 1025 */ 1026 return 1; 1027 } 1028 1029 static void dispatch_bio_list(struct bio_list *tmp) 1030 { 1031 struct bio *bio; 1032 1033 while ((bio = bio_list_pop(tmp))) 1034 submit_bio_noacct(bio); 1035 } 1036 1037 static int cmp_stripe(void *priv, const struct list_head *a, 1038 const struct list_head *b) 1039 { 1040 const struct r5pending_data *da = list_entry(a, 1041 struct r5pending_data, sibling); 1042 const struct r5pending_data *db = list_entry(b, 1043 struct r5pending_data, sibling); 1044 if (da->sector > db->sector) 1045 return 1; 1046 if (da->sector < db->sector) 1047 return -1; 1048 return 0; 1049 } 1050 1051 static void dispatch_defer_bios(struct r5conf *conf, int target, 1052 struct bio_list *list) 1053 { 1054 struct r5pending_data *data; 1055 struct list_head *first, *next = NULL; 1056 int cnt = 0; 1057 1058 if (conf->pending_data_cnt == 0) 1059 return; 1060 1061 list_sort(NULL, &conf->pending_list, cmp_stripe); 1062 1063 first = conf->pending_list.next; 1064 1065 /* temporarily move the head */ 1066 if (conf->next_pending_data) 1067 list_move_tail(&conf->pending_list, 1068 &conf->next_pending_data->sibling); 1069 1070 while (!list_empty(&conf->pending_list)) { 1071 data = list_first_entry(&conf->pending_list, 1072 struct r5pending_data, sibling); 1073 if (&data->sibling == first) 1074 first = data->sibling.next; 1075 next = data->sibling.next; 1076 1077 bio_list_merge(list, &data->bios); 1078 list_move(&data->sibling, &conf->free_list); 1079 cnt++; 1080 if (cnt >= target) 1081 break; 1082 } 1083 conf->pending_data_cnt -= cnt; 1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1085 1086 if (next != &conf->pending_list) 1087 conf->next_pending_data = list_entry(next, 1088 struct r5pending_data, sibling); 1089 else 1090 conf->next_pending_data = NULL; 1091 /* list isn't empty */ 1092 if (first != &conf->pending_list) 1093 list_move_tail(&conf->pending_list, first); 1094 } 1095 1096 static void flush_deferred_bios(struct r5conf *conf) 1097 { 1098 struct bio_list tmp = BIO_EMPTY_LIST; 1099 1100 if (conf->pending_data_cnt == 0) 1101 return; 1102 1103 spin_lock(&conf->pending_bios_lock); 1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1105 BUG_ON(conf->pending_data_cnt != 0); 1106 spin_unlock(&conf->pending_bios_lock); 1107 1108 dispatch_bio_list(&tmp); 1109 } 1110 1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1112 struct bio_list *bios) 1113 { 1114 struct bio_list tmp = BIO_EMPTY_LIST; 1115 struct r5pending_data *ent; 1116 1117 spin_lock(&conf->pending_bios_lock); 1118 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1119 sibling); 1120 list_move_tail(&ent->sibling, &conf->pending_list); 1121 ent->sector = sector; 1122 bio_list_init(&ent->bios); 1123 bio_list_merge(&ent->bios, bios); 1124 conf->pending_data_cnt++; 1125 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1127 1128 spin_unlock(&conf->pending_bios_lock); 1129 1130 dispatch_bio_list(&tmp); 1131 } 1132 1133 static void 1134 raid5_end_read_request(struct bio *bi); 1135 static void 1136 raid5_end_write_request(struct bio *bi); 1137 1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1139 { 1140 struct r5conf *conf = sh->raid_conf; 1141 int i, disks = sh->disks; 1142 struct stripe_head *head_sh = sh; 1143 struct bio_list pending_bios = BIO_EMPTY_LIST; 1144 struct r5dev *dev; 1145 bool should_defer; 1146 1147 might_sleep(); 1148 1149 if (log_stripe(sh, s) == 0) 1150 return; 1151 1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1153 1154 for (i = disks; i--; ) { 1155 enum req_op op; 1156 blk_opf_t op_flags = 0; 1157 int replace_only = 0; 1158 struct bio *bi, *rbi; 1159 struct md_rdev *rdev, *rrdev = NULL; 1160 1161 sh = head_sh; 1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1163 op = REQ_OP_WRITE; 1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1165 op_flags = REQ_FUA; 1166 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1167 op = REQ_OP_DISCARD; 1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1169 op = REQ_OP_READ; 1170 else if (test_and_clear_bit(R5_WantReplace, 1171 &sh->dev[i].flags)) { 1172 op = REQ_OP_WRITE; 1173 replace_only = 1; 1174 } else 1175 continue; 1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1177 op_flags |= REQ_SYNC; 1178 1179 again: 1180 dev = &sh->dev[i]; 1181 bi = &dev->req; 1182 rbi = &dev->rreq; /* For writing to replacement */ 1183 1184 rcu_read_lock(); 1185 rrdev = rcu_dereference(conf->disks[i].replacement); 1186 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1187 rdev = rcu_dereference(conf->disks[i].rdev); 1188 if (!rdev) { 1189 rdev = rrdev; 1190 rrdev = NULL; 1191 } 1192 if (op_is_write(op)) { 1193 if (replace_only) 1194 rdev = NULL; 1195 if (rdev == rrdev) 1196 /* We raced and saw duplicates */ 1197 rrdev = NULL; 1198 } else { 1199 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1200 rdev = rrdev; 1201 rrdev = NULL; 1202 } 1203 1204 if (rdev && test_bit(Faulty, &rdev->flags)) 1205 rdev = NULL; 1206 if (rdev) 1207 atomic_inc(&rdev->nr_pending); 1208 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1209 rrdev = NULL; 1210 if (rrdev) 1211 atomic_inc(&rrdev->nr_pending); 1212 rcu_read_unlock(); 1213 1214 /* We have already checked bad blocks for reads. Now 1215 * need to check for writes. We never accept write errors 1216 * on the replacement, so we don't to check rrdev. 1217 */ 1218 while (op_is_write(op) && rdev && 1219 test_bit(WriteErrorSeen, &rdev->flags)) { 1220 sector_t first_bad; 1221 int bad_sectors; 1222 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1223 &first_bad, &bad_sectors); 1224 if (!bad) 1225 break; 1226 1227 if (bad < 0) { 1228 set_bit(BlockedBadBlocks, &rdev->flags); 1229 if (!conf->mddev->external && 1230 conf->mddev->sb_flags) { 1231 /* It is very unlikely, but we might 1232 * still need to write out the 1233 * bad block log - better give it 1234 * a chance*/ 1235 md_check_recovery(conf->mddev); 1236 } 1237 /* 1238 * Because md_wait_for_blocked_rdev 1239 * will dec nr_pending, we must 1240 * increment it first. 1241 */ 1242 atomic_inc(&rdev->nr_pending); 1243 md_wait_for_blocked_rdev(rdev, conf->mddev); 1244 } else { 1245 /* Acknowledged bad block - skip the write */ 1246 rdev_dec_pending(rdev, conf->mddev); 1247 rdev = NULL; 1248 } 1249 } 1250 1251 if (rdev) { 1252 if (s->syncing || s->expanding || s->expanded 1253 || s->replacing) 1254 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1255 1256 set_bit(STRIPE_IO_STARTED, &sh->state); 1257 1258 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1259 bi->bi_end_io = op_is_write(op) 1260 ? raid5_end_write_request 1261 : raid5_end_read_request; 1262 bi->bi_private = sh; 1263 1264 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1265 __func__, (unsigned long long)sh->sector, 1266 bi->bi_opf, i); 1267 atomic_inc(&sh->count); 1268 if (sh != head_sh) 1269 atomic_inc(&head_sh->count); 1270 if (use_new_offset(conf, sh)) 1271 bi->bi_iter.bi_sector = (sh->sector 1272 + rdev->new_data_offset); 1273 else 1274 bi->bi_iter.bi_sector = (sh->sector 1275 + rdev->data_offset); 1276 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1277 bi->bi_opf |= REQ_NOMERGE; 1278 1279 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1280 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1281 1282 if (!op_is_write(op) && 1283 test_bit(R5_InJournal, &sh->dev[i].flags)) 1284 /* 1285 * issuing read for a page in journal, this 1286 * must be preparing for prexor in rmw; read 1287 * the data into orig_page 1288 */ 1289 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1290 else 1291 sh->dev[i].vec.bv_page = sh->dev[i].page; 1292 bi->bi_vcnt = 1; 1293 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1294 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1295 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1296 /* 1297 * If this is discard request, set bi_vcnt 0. We don't 1298 * want to confuse SCSI because SCSI will replace payload 1299 */ 1300 if (op == REQ_OP_DISCARD) 1301 bi->bi_vcnt = 0; 1302 if (rrdev) 1303 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1304 1305 if (conf->mddev->gendisk) 1306 trace_block_bio_remap(bi, 1307 disk_devt(conf->mddev->gendisk), 1308 sh->dev[i].sector); 1309 if (should_defer && op_is_write(op)) 1310 bio_list_add(&pending_bios, bi); 1311 else 1312 submit_bio_noacct(bi); 1313 } 1314 if (rrdev) { 1315 if (s->syncing || s->expanding || s->expanded 1316 || s->replacing) 1317 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1318 1319 set_bit(STRIPE_IO_STARTED, &sh->state); 1320 1321 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1322 BUG_ON(!op_is_write(op)); 1323 rbi->bi_end_io = raid5_end_write_request; 1324 rbi->bi_private = sh; 1325 1326 pr_debug("%s: for %llu schedule op %d on " 1327 "replacement disc %d\n", 1328 __func__, (unsigned long long)sh->sector, 1329 rbi->bi_opf, i); 1330 atomic_inc(&sh->count); 1331 if (sh != head_sh) 1332 atomic_inc(&head_sh->count); 1333 if (use_new_offset(conf, sh)) 1334 rbi->bi_iter.bi_sector = (sh->sector 1335 + rrdev->new_data_offset); 1336 else 1337 rbi->bi_iter.bi_sector = (sh->sector 1338 + rrdev->data_offset); 1339 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1340 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1341 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1342 rbi->bi_vcnt = 1; 1343 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1344 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1345 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1346 /* 1347 * If this is discard request, set bi_vcnt 0. We don't 1348 * want to confuse SCSI because SCSI will replace payload 1349 */ 1350 if (op == REQ_OP_DISCARD) 1351 rbi->bi_vcnt = 0; 1352 if (conf->mddev->gendisk) 1353 trace_block_bio_remap(rbi, 1354 disk_devt(conf->mddev->gendisk), 1355 sh->dev[i].sector); 1356 if (should_defer && op_is_write(op)) 1357 bio_list_add(&pending_bios, rbi); 1358 else 1359 submit_bio_noacct(rbi); 1360 } 1361 if (!rdev && !rrdev) { 1362 if (op_is_write(op)) 1363 set_bit(STRIPE_DEGRADED, &sh->state); 1364 pr_debug("skip op %d on disc %d for sector %llu\n", 1365 bi->bi_opf, i, (unsigned long long)sh->sector); 1366 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1367 set_bit(STRIPE_HANDLE, &sh->state); 1368 } 1369 1370 if (!head_sh->batch_head) 1371 continue; 1372 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1373 batch_list); 1374 if (sh != head_sh) 1375 goto again; 1376 } 1377 1378 if (should_defer && !bio_list_empty(&pending_bios)) 1379 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1380 } 1381 1382 static struct dma_async_tx_descriptor * 1383 async_copy_data(int frombio, struct bio *bio, struct page **page, 1384 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1385 struct stripe_head *sh, int no_skipcopy) 1386 { 1387 struct bio_vec bvl; 1388 struct bvec_iter iter; 1389 struct page *bio_page; 1390 int page_offset; 1391 struct async_submit_ctl submit; 1392 enum async_tx_flags flags = 0; 1393 struct r5conf *conf = sh->raid_conf; 1394 1395 if (bio->bi_iter.bi_sector >= sector) 1396 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1397 else 1398 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1399 1400 if (frombio) 1401 flags |= ASYNC_TX_FENCE; 1402 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1403 1404 bio_for_each_segment(bvl, bio, iter) { 1405 int len = bvl.bv_len; 1406 int clen; 1407 int b_offset = 0; 1408 1409 if (page_offset < 0) { 1410 b_offset = -page_offset; 1411 page_offset += b_offset; 1412 len -= b_offset; 1413 } 1414 1415 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1416 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1417 else 1418 clen = len; 1419 1420 if (clen > 0) { 1421 b_offset += bvl.bv_offset; 1422 bio_page = bvl.bv_page; 1423 if (frombio) { 1424 if (conf->skip_copy && 1425 b_offset == 0 && page_offset == 0 && 1426 clen == RAID5_STRIPE_SIZE(conf) && 1427 !no_skipcopy) 1428 *page = bio_page; 1429 else 1430 tx = async_memcpy(*page, bio_page, page_offset + poff, 1431 b_offset, clen, &submit); 1432 } else 1433 tx = async_memcpy(bio_page, *page, b_offset, 1434 page_offset + poff, clen, &submit); 1435 } 1436 /* chain the operations */ 1437 submit.depend_tx = tx; 1438 1439 if (clen < len) /* hit end of page */ 1440 break; 1441 page_offset += len; 1442 } 1443 1444 return tx; 1445 } 1446 1447 static void ops_complete_biofill(void *stripe_head_ref) 1448 { 1449 struct stripe_head *sh = stripe_head_ref; 1450 int i; 1451 struct r5conf *conf = sh->raid_conf; 1452 1453 pr_debug("%s: stripe %llu\n", __func__, 1454 (unsigned long long)sh->sector); 1455 1456 /* clear completed biofills */ 1457 for (i = sh->disks; i--; ) { 1458 struct r5dev *dev = &sh->dev[i]; 1459 1460 /* acknowledge completion of a biofill operation */ 1461 /* and check if we need to reply to a read request, 1462 * new R5_Wantfill requests are held off until 1463 * !STRIPE_BIOFILL_RUN 1464 */ 1465 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1466 struct bio *rbi, *rbi2; 1467 1468 BUG_ON(!dev->read); 1469 rbi = dev->read; 1470 dev->read = NULL; 1471 while (rbi && rbi->bi_iter.bi_sector < 1472 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1473 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1474 bio_endio(rbi); 1475 rbi = rbi2; 1476 } 1477 } 1478 } 1479 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1480 1481 set_bit(STRIPE_HANDLE, &sh->state); 1482 raid5_release_stripe(sh); 1483 } 1484 1485 static void ops_run_biofill(struct stripe_head *sh) 1486 { 1487 struct dma_async_tx_descriptor *tx = NULL; 1488 struct async_submit_ctl submit; 1489 int i; 1490 struct r5conf *conf = sh->raid_conf; 1491 1492 BUG_ON(sh->batch_head); 1493 pr_debug("%s: stripe %llu\n", __func__, 1494 (unsigned long long)sh->sector); 1495 1496 for (i = sh->disks; i--; ) { 1497 struct r5dev *dev = &sh->dev[i]; 1498 if (test_bit(R5_Wantfill, &dev->flags)) { 1499 struct bio *rbi; 1500 spin_lock_irq(&sh->stripe_lock); 1501 dev->read = rbi = dev->toread; 1502 dev->toread = NULL; 1503 spin_unlock_irq(&sh->stripe_lock); 1504 while (rbi && rbi->bi_iter.bi_sector < 1505 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1506 tx = async_copy_data(0, rbi, &dev->page, 1507 dev->offset, 1508 dev->sector, tx, sh, 0); 1509 rbi = r5_next_bio(conf, rbi, dev->sector); 1510 } 1511 } 1512 } 1513 1514 atomic_inc(&sh->count); 1515 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1516 async_trigger_callback(&submit); 1517 } 1518 1519 static void mark_target_uptodate(struct stripe_head *sh, int target) 1520 { 1521 struct r5dev *tgt; 1522 1523 if (target < 0) 1524 return; 1525 1526 tgt = &sh->dev[target]; 1527 set_bit(R5_UPTODATE, &tgt->flags); 1528 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1529 clear_bit(R5_Wantcompute, &tgt->flags); 1530 } 1531 1532 static void ops_complete_compute(void *stripe_head_ref) 1533 { 1534 struct stripe_head *sh = stripe_head_ref; 1535 1536 pr_debug("%s: stripe %llu\n", __func__, 1537 (unsigned long long)sh->sector); 1538 1539 /* mark the computed target(s) as uptodate */ 1540 mark_target_uptodate(sh, sh->ops.target); 1541 mark_target_uptodate(sh, sh->ops.target2); 1542 1543 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1544 if (sh->check_state == check_state_compute_run) 1545 sh->check_state = check_state_compute_result; 1546 set_bit(STRIPE_HANDLE, &sh->state); 1547 raid5_release_stripe(sh); 1548 } 1549 1550 /* return a pointer to the address conversion region of the scribble buffer */ 1551 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1552 { 1553 return percpu->scribble + i * percpu->scribble_obj_size; 1554 } 1555 1556 /* return a pointer to the address conversion region of the scribble buffer */ 1557 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1558 struct raid5_percpu *percpu, int i) 1559 { 1560 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1561 } 1562 1563 /* 1564 * Return a pointer to record offset address. 1565 */ 1566 static unsigned int * 1567 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1568 { 1569 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1570 } 1571 1572 static struct dma_async_tx_descriptor * 1573 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1574 { 1575 int disks = sh->disks; 1576 struct page **xor_srcs = to_addr_page(percpu, 0); 1577 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1578 int target = sh->ops.target; 1579 struct r5dev *tgt = &sh->dev[target]; 1580 struct page *xor_dest = tgt->page; 1581 unsigned int off_dest = tgt->offset; 1582 int count = 0; 1583 struct dma_async_tx_descriptor *tx; 1584 struct async_submit_ctl submit; 1585 int i; 1586 1587 BUG_ON(sh->batch_head); 1588 1589 pr_debug("%s: stripe %llu block: %d\n", 1590 __func__, (unsigned long long)sh->sector, target); 1591 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1592 1593 for (i = disks; i--; ) { 1594 if (i != target) { 1595 off_srcs[count] = sh->dev[i].offset; 1596 xor_srcs[count++] = sh->dev[i].page; 1597 } 1598 } 1599 1600 atomic_inc(&sh->count); 1601 1602 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1603 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1604 if (unlikely(count == 1)) 1605 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1606 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1607 else 1608 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1609 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1610 1611 return tx; 1612 } 1613 1614 /* set_syndrome_sources - populate source buffers for gen_syndrome 1615 * @srcs - (struct page *) array of size sh->disks 1616 * @offs - (unsigned int) array of offset for each page 1617 * @sh - stripe_head to parse 1618 * 1619 * Populates srcs in proper layout order for the stripe and returns the 1620 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1621 * destination buffer is recorded in srcs[count] and the Q destination 1622 * is recorded in srcs[count+1]]. 1623 */ 1624 static int set_syndrome_sources(struct page **srcs, 1625 unsigned int *offs, 1626 struct stripe_head *sh, 1627 int srctype) 1628 { 1629 int disks = sh->disks; 1630 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1631 int d0_idx = raid6_d0(sh); 1632 int count; 1633 int i; 1634 1635 for (i = 0; i < disks; i++) 1636 srcs[i] = NULL; 1637 1638 count = 0; 1639 i = d0_idx; 1640 do { 1641 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1642 struct r5dev *dev = &sh->dev[i]; 1643 1644 if (i == sh->qd_idx || i == sh->pd_idx || 1645 (srctype == SYNDROME_SRC_ALL) || 1646 (srctype == SYNDROME_SRC_WANT_DRAIN && 1647 (test_bit(R5_Wantdrain, &dev->flags) || 1648 test_bit(R5_InJournal, &dev->flags))) || 1649 (srctype == SYNDROME_SRC_WRITTEN && 1650 (dev->written || 1651 test_bit(R5_InJournal, &dev->flags)))) { 1652 if (test_bit(R5_InJournal, &dev->flags)) 1653 srcs[slot] = sh->dev[i].orig_page; 1654 else 1655 srcs[slot] = sh->dev[i].page; 1656 /* 1657 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1658 * not shared page. In that case, dev[i].offset 1659 * is 0. 1660 */ 1661 offs[slot] = sh->dev[i].offset; 1662 } 1663 i = raid6_next_disk(i, disks); 1664 } while (i != d0_idx); 1665 1666 return syndrome_disks; 1667 } 1668 1669 static struct dma_async_tx_descriptor * 1670 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1671 { 1672 int disks = sh->disks; 1673 struct page **blocks = to_addr_page(percpu, 0); 1674 unsigned int *offs = to_addr_offs(sh, percpu); 1675 int target; 1676 int qd_idx = sh->qd_idx; 1677 struct dma_async_tx_descriptor *tx; 1678 struct async_submit_ctl submit; 1679 struct r5dev *tgt; 1680 struct page *dest; 1681 unsigned int dest_off; 1682 int i; 1683 int count; 1684 1685 BUG_ON(sh->batch_head); 1686 if (sh->ops.target < 0) 1687 target = sh->ops.target2; 1688 else if (sh->ops.target2 < 0) 1689 target = sh->ops.target; 1690 else 1691 /* we should only have one valid target */ 1692 BUG(); 1693 BUG_ON(target < 0); 1694 pr_debug("%s: stripe %llu block: %d\n", 1695 __func__, (unsigned long long)sh->sector, target); 1696 1697 tgt = &sh->dev[target]; 1698 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1699 dest = tgt->page; 1700 dest_off = tgt->offset; 1701 1702 atomic_inc(&sh->count); 1703 1704 if (target == qd_idx) { 1705 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1706 blocks[count] = NULL; /* regenerating p is not necessary */ 1707 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1708 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1709 ops_complete_compute, sh, 1710 to_addr_conv(sh, percpu, 0)); 1711 tx = async_gen_syndrome(blocks, offs, count+2, 1712 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1713 } else { 1714 /* Compute any data- or p-drive using XOR */ 1715 count = 0; 1716 for (i = disks; i-- ; ) { 1717 if (i == target || i == qd_idx) 1718 continue; 1719 offs[count] = sh->dev[i].offset; 1720 blocks[count++] = sh->dev[i].page; 1721 } 1722 1723 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1724 NULL, ops_complete_compute, sh, 1725 to_addr_conv(sh, percpu, 0)); 1726 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1727 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1728 } 1729 1730 return tx; 1731 } 1732 1733 static struct dma_async_tx_descriptor * 1734 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1735 { 1736 int i, count, disks = sh->disks; 1737 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1738 int d0_idx = raid6_d0(sh); 1739 int faila = -1, failb = -1; 1740 int target = sh->ops.target; 1741 int target2 = sh->ops.target2; 1742 struct r5dev *tgt = &sh->dev[target]; 1743 struct r5dev *tgt2 = &sh->dev[target2]; 1744 struct dma_async_tx_descriptor *tx; 1745 struct page **blocks = to_addr_page(percpu, 0); 1746 unsigned int *offs = to_addr_offs(sh, percpu); 1747 struct async_submit_ctl submit; 1748 1749 BUG_ON(sh->batch_head); 1750 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1751 __func__, (unsigned long long)sh->sector, target, target2); 1752 BUG_ON(target < 0 || target2 < 0); 1753 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1754 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1755 1756 /* we need to open-code set_syndrome_sources to handle the 1757 * slot number conversion for 'faila' and 'failb' 1758 */ 1759 for (i = 0; i < disks ; i++) { 1760 offs[i] = 0; 1761 blocks[i] = NULL; 1762 } 1763 count = 0; 1764 i = d0_idx; 1765 do { 1766 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1767 1768 offs[slot] = sh->dev[i].offset; 1769 blocks[slot] = sh->dev[i].page; 1770 1771 if (i == target) 1772 faila = slot; 1773 if (i == target2) 1774 failb = slot; 1775 i = raid6_next_disk(i, disks); 1776 } while (i != d0_idx); 1777 1778 BUG_ON(faila == failb); 1779 if (failb < faila) 1780 swap(faila, failb); 1781 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1782 __func__, (unsigned long long)sh->sector, faila, failb); 1783 1784 atomic_inc(&sh->count); 1785 1786 if (failb == syndrome_disks+1) { 1787 /* Q disk is one of the missing disks */ 1788 if (faila == syndrome_disks) { 1789 /* Missing P+Q, just recompute */ 1790 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1791 ops_complete_compute, sh, 1792 to_addr_conv(sh, percpu, 0)); 1793 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1794 RAID5_STRIPE_SIZE(sh->raid_conf), 1795 &submit); 1796 } else { 1797 struct page *dest; 1798 unsigned int dest_off; 1799 int data_target; 1800 int qd_idx = sh->qd_idx; 1801 1802 /* Missing D+Q: recompute D from P, then recompute Q */ 1803 if (target == qd_idx) 1804 data_target = target2; 1805 else 1806 data_target = target; 1807 1808 count = 0; 1809 for (i = disks; i-- ; ) { 1810 if (i == data_target || i == qd_idx) 1811 continue; 1812 offs[count] = sh->dev[i].offset; 1813 blocks[count++] = sh->dev[i].page; 1814 } 1815 dest = sh->dev[data_target].page; 1816 dest_off = sh->dev[data_target].offset; 1817 init_async_submit(&submit, 1818 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1819 NULL, NULL, NULL, 1820 to_addr_conv(sh, percpu, 0)); 1821 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1822 RAID5_STRIPE_SIZE(sh->raid_conf), 1823 &submit); 1824 1825 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1826 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1827 ops_complete_compute, sh, 1828 to_addr_conv(sh, percpu, 0)); 1829 return async_gen_syndrome(blocks, offs, count+2, 1830 RAID5_STRIPE_SIZE(sh->raid_conf), 1831 &submit); 1832 } 1833 } else { 1834 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1835 ops_complete_compute, sh, 1836 to_addr_conv(sh, percpu, 0)); 1837 if (failb == syndrome_disks) { 1838 /* We're missing D+P. */ 1839 return async_raid6_datap_recov(syndrome_disks+2, 1840 RAID5_STRIPE_SIZE(sh->raid_conf), 1841 faila, 1842 blocks, offs, &submit); 1843 } else { 1844 /* We're missing D+D. */ 1845 return async_raid6_2data_recov(syndrome_disks+2, 1846 RAID5_STRIPE_SIZE(sh->raid_conf), 1847 faila, failb, 1848 blocks, offs, &submit); 1849 } 1850 } 1851 } 1852 1853 static void ops_complete_prexor(void *stripe_head_ref) 1854 { 1855 struct stripe_head *sh = stripe_head_ref; 1856 1857 pr_debug("%s: stripe %llu\n", __func__, 1858 (unsigned long long)sh->sector); 1859 1860 if (r5c_is_writeback(sh->raid_conf->log)) 1861 /* 1862 * raid5-cache write back uses orig_page during prexor. 1863 * After prexor, it is time to free orig_page 1864 */ 1865 r5c_release_extra_page(sh); 1866 } 1867 1868 static struct dma_async_tx_descriptor * 1869 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1870 struct dma_async_tx_descriptor *tx) 1871 { 1872 int disks = sh->disks; 1873 struct page **xor_srcs = to_addr_page(percpu, 0); 1874 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1875 int count = 0, pd_idx = sh->pd_idx, i; 1876 struct async_submit_ctl submit; 1877 1878 /* existing parity data subtracted */ 1879 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1880 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1881 1882 BUG_ON(sh->batch_head); 1883 pr_debug("%s: stripe %llu\n", __func__, 1884 (unsigned long long)sh->sector); 1885 1886 for (i = disks; i--; ) { 1887 struct r5dev *dev = &sh->dev[i]; 1888 /* Only process blocks that are known to be uptodate */ 1889 if (test_bit(R5_InJournal, &dev->flags)) { 1890 /* 1891 * For this case, PAGE_SIZE must be equal to 4KB and 1892 * page offset is zero. 1893 */ 1894 off_srcs[count] = dev->offset; 1895 xor_srcs[count++] = dev->orig_page; 1896 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1897 off_srcs[count] = dev->offset; 1898 xor_srcs[count++] = dev->page; 1899 } 1900 } 1901 1902 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1903 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1904 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1905 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1906 1907 return tx; 1908 } 1909 1910 static struct dma_async_tx_descriptor * 1911 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1912 struct dma_async_tx_descriptor *tx) 1913 { 1914 struct page **blocks = to_addr_page(percpu, 0); 1915 unsigned int *offs = to_addr_offs(sh, percpu); 1916 int count; 1917 struct async_submit_ctl submit; 1918 1919 pr_debug("%s: stripe %llu\n", __func__, 1920 (unsigned long long)sh->sector); 1921 1922 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1923 1924 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1925 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1926 tx = async_gen_syndrome(blocks, offs, count+2, 1927 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1928 1929 return tx; 1930 } 1931 1932 static struct dma_async_tx_descriptor * 1933 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1934 { 1935 struct r5conf *conf = sh->raid_conf; 1936 int disks = sh->disks; 1937 int i; 1938 struct stripe_head *head_sh = sh; 1939 1940 pr_debug("%s: stripe %llu\n", __func__, 1941 (unsigned long long)sh->sector); 1942 1943 for (i = disks; i--; ) { 1944 struct r5dev *dev; 1945 struct bio *chosen; 1946 1947 sh = head_sh; 1948 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1949 struct bio *wbi; 1950 1951 again: 1952 dev = &sh->dev[i]; 1953 /* 1954 * clear R5_InJournal, so when rewriting a page in 1955 * journal, it is not skipped by r5l_log_stripe() 1956 */ 1957 clear_bit(R5_InJournal, &dev->flags); 1958 spin_lock_irq(&sh->stripe_lock); 1959 chosen = dev->towrite; 1960 dev->towrite = NULL; 1961 sh->overwrite_disks = 0; 1962 BUG_ON(dev->written); 1963 wbi = dev->written = chosen; 1964 spin_unlock_irq(&sh->stripe_lock); 1965 WARN_ON(dev->page != dev->orig_page); 1966 1967 while (wbi && wbi->bi_iter.bi_sector < 1968 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1969 if (wbi->bi_opf & REQ_FUA) 1970 set_bit(R5_WantFUA, &dev->flags); 1971 if (wbi->bi_opf & REQ_SYNC) 1972 set_bit(R5_SyncIO, &dev->flags); 1973 if (bio_op(wbi) == REQ_OP_DISCARD) 1974 set_bit(R5_Discard, &dev->flags); 1975 else { 1976 tx = async_copy_data(1, wbi, &dev->page, 1977 dev->offset, 1978 dev->sector, tx, sh, 1979 r5c_is_writeback(conf->log)); 1980 if (dev->page != dev->orig_page && 1981 !r5c_is_writeback(conf->log)) { 1982 set_bit(R5_SkipCopy, &dev->flags); 1983 clear_bit(R5_UPTODATE, &dev->flags); 1984 clear_bit(R5_OVERWRITE, &dev->flags); 1985 } 1986 } 1987 wbi = r5_next_bio(conf, wbi, dev->sector); 1988 } 1989 1990 if (head_sh->batch_head) { 1991 sh = list_first_entry(&sh->batch_list, 1992 struct stripe_head, 1993 batch_list); 1994 if (sh == head_sh) 1995 continue; 1996 goto again; 1997 } 1998 } 1999 } 2000 2001 return tx; 2002 } 2003 2004 static void ops_complete_reconstruct(void *stripe_head_ref) 2005 { 2006 struct stripe_head *sh = stripe_head_ref; 2007 int disks = sh->disks; 2008 int pd_idx = sh->pd_idx; 2009 int qd_idx = sh->qd_idx; 2010 int i; 2011 bool fua = false, sync = false, discard = false; 2012 2013 pr_debug("%s: stripe %llu\n", __func__, 2014 (unsigned long long)sh->sector); 2015 2016 for (i = disks; i--; ) { 2017 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2018 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2019 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2020 } 2021 2022 for (i = disks; i--; ) { 2023 struct r5dev *dev = &sh->dev[i]; 2024 2025 if (dev->written || i == pd_idx || i == qd_idx) { 2026 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2027 set_bit(R5_UPTODATE, &dev->flags); 2028 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2029 set_bit(R5_Expanded, &dev->flags); 2030 } 2031 if (fua) 2032 set_bit(R5_WantFUA, &dev->flags); 2033 if (sync) 2034 set_bit(R5_SyncIO, &dev->flags); 2035 } 2036 } 2037 2038 if (sh->reconstruct_state == reconstruct_state_drain_run) 2039 sh->reconstruct_state = reconstruct_state_drain_result; 2040 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2041 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2042 else { 2043 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2044 sh->reconstruct_state = reconstruct_state_result; 2045 } 2046 2047 set_bit(STRIPE_HANDLE, &sh->state); 2048 raid5_release_stripe(sh); 2049 } 2050 2051 static void 2052 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2053 struct dma_async_tx_descriptor *tx) 2054 { 2055 int disks = sh->disks; 2056 struct page **xor_srcs; 2057 unsigned int *off_srcs; 2058 struct async_submit_ctl submit; 2059 int count, pd_idx = sh->pd_idx, i; 2060 struct page *xor_dest; 2061 unsigned int off_dest; 2062 int prexor = 0; 2063 unsigned long flags; 2064 int j = 0; 2065 struct stripe_head *head_sh = sh; 2066 int last_stripe; 2067 2068 pr_debug("%s: stripe %llu\n", __func__, 2069 (unsigned long long)sh->sector); 2070 2071 for (i = 0; i < sh->disks; i++) { 2072 if (pd_idx == i) 2073 continue; 2074 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2075 break; 2076 } 2077 if (i >= sh->disks) { 2078 atomic_inc(&sh->count); 2079 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2080 ops_complete_reconstruct(sh); 2081 return; 2082 } 2083 again: 2084 count = 0; 2085 xor_srcs = to_addr_page(percpu, j); 2086 off_srcs = to_addr_offs(sh, percpu); 2087 /* check if prexor is active which means only process blocks 2088 * that are part of a read-modify-write (written) 2089 */ 2090 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2091 prexor = 1; 2092 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2093 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2094 for (i = disks; i--; ) { 2095 struct r5dev *dev = &sh->dev[i]; 2096 if (head_sh->dev[i].written || 2097 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2098 off_srcs[count] = dev->offset; 2099 xor_srcs[count++] = dev->page; 2100 } 2101 } 2102 } else { 2103 xor_dest = sh->dev[pd_idx].page; 2104 off_dest = sh->dev[pd_idx].offset; 2105 for (i = disks; i--; ) { 2106 struct r5dev *dev = &sh->dev[i]; 2107 if (i != pd_idx) { 2108 off_srcs[count] = dev->offset; 2109 xor_srcs[count++] = dev->page; 2110 } 2111 } 2112 } 2113 2114 /* 1/ if we prexor'd then the dest is reused as a source 2115 * 2/ if we did not prexor then we are redoing the parity 2116 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2117 * for the synchronous xor case 2118 */ 2119 last_stripe = !head_sh->batch_head || 2120 list_first_entry(&sh->batch_list, 2121 struct stripe_head, batch_list) == head_sh; 2122 if (last_stripe) { 2123 flags = ASYNC_TX_ACK | 2124 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2125 2126 atomic_inc(&head_sh->count); 2127 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2128 to_addr_conv(sh, percpu, j)); 2129 } else { 2130 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2131 init_async_submit(&submit, flags, tx, NULL, NULL, 2132 to_addr_conv(sh, percpu, j)); 2133 } 2134 2135 if (unlikely(count == 1)) 2136 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2137 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2138 else 2139 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2140 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2141 if (!last_stripe) { 2142 j++; 2143 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2144 batch_list); 2145 goto again; 2146 } 2147 } 2148 2149 static void 2150 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2151 struct dma_async_tx_descriptor *tx) 2152 { 2153 struct async_submit_ctl submit; 2154 struct page **blocks; 2155 unsigned int *offs; 2156 int count, i, j = 0; 2157 struct stripe_head *head_sh = sh; 2158 int last_stripe; 2159 int synflags; 2160 unsigned long txflags; 2161 2162 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2163 2164 for (i = 0; i < sh->disks; i++) { 2165 if (sh->pd_idx == i || sh->qd_idx == i) 2166 continue; 2167 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2168 break; 2169 } 2170 if (i >= sh->disks) { 2171 atomic_inc(&sh->count); 2172 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2173 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2174 ops_complete_reconstruct(sh); 2175 return; 2176 } 2177 2178 again: 2179 blocks = to_addr_page(percpu, j); 2180 offs = to_addr_offs(sh, percpu); 2181 2182 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2183 synflags = SYNDROME_SRC_WRITTEN; 2184 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2185 } else { 2186 synflags = SYNDROME_SRC_ALL; 2187 txflags = ASYNC_TX_ACK; 2188 } 2189 2190 count = set_syndrome_sources(blocks, offs, sh, synflags); 2191 last_stripe = !head_sh->batch_head || 2192 list_first_entry(&sh->batch_list, 2193 struct stripe_head, batch_list) == head_sh; 2194 2195 if (last_stripe) { 2196 atomic_inc(&head_sh->count); 2197 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2198 head_sh, to_addr_conv(sh, percpu, j)); 2199 } else 2200 init_async_submit(&submit, 0, tx, NULL, NULL, 2201 to_addr_conv(sh, percpu, j)); 2202 tx = async_gen_syndrome(blocks, offs, count+2, 2203 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2204 if (!last_stripe) { 2205 j++; 2206 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2207 batch_list); 2208 goto again; 2209 } 2210 } 2211 2212 static void ops_complete_check(void *stripe_head_ref) 2213 { 2214 struct stripe_head *sh = stripe_head_ref; 2215 2216 pr_debug("%s: stripe %llu\n", __func__, 2217 (unsigned long long)sh->sector); 2218 2219 sh->check_state = check_state_check_result; 2220 set_bit(STRIPE_HANDLE, &sh->state); 2221 raid5_release_stripe(sh); 2222 } 2223 2224 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2225 { 2226 int disks = sh->disks; 2227 int pd_idx = sh->pd_idx; 2228 int qd_idx = sh->qd_idx; 2229 struct page *xor_dest; 2230 unsigned int off_dest; 2231 struct page **xor_srcs = to_addr_page(percpu, 0); 2232 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2233 struct dma_async_tx_descriptor *tx; 2234 struct async_submit_ctl submit; 2235 int count; 2236 int i; 2237 2238 pr_debug("%s: stripe %llu\n", __func__, 2239 (unsigned long long)sh->sector); 2240 2241 BUG_ON(sh->batch_head); 2242 count = 0; 2243 xor_dest = sh->dev[pd_idx].page; 2244 off_dest = sh->dev[pd_idx].offset; 2245 off_srcs[count] = off_dest; 2246 xor_srcs[count++] = xor_dest; 2247 for (i = disks; i--; ) { 2248 if (i == pd_idx || i == qd_idx) 2249 continue; 2250 off_srcs[count] = sh->dev[i].offset; 2251 xor_srcs[count++] = sh->dev[i].page; 2252 } 2253 2254 init_async_submit(&submit, 0, NULL, NULL, NULL, 2255 to_addr_conv(sh, percpu, 0)); 2256 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2257 RAID5_STRIPE_SIZE(sh->raid_conf), 2258 &sh->ops.zero_sum_result, &submit); 2259 2260 atomic_inc(&sh->count); 2261 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2262 tx = async_trigger_callback(&submit); 2263 } 2264 2265 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2266 { 2267 struct page **srcs = to_addr_page(percpu, 0); 2268 unsigned int *offs = to_addr_offs(sh, percpu); 2269 struct async_submit_ctl submit; 2270 int count; 2271 2272 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2273 (unsigned long long)sh->sector, checkp); 2274 2275 BUG_ON(sh->batch_head); 2276 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2277 if (!checkp) 2278 srcs[count] = NULL; 2279 2280 atomic_inc(&sh->count); 2281 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2282 sh, to_addr_conv(sh, percpu, 0)); 2283 async_syndrome_val(srcs, offs, count+2, 2284 RAID5_STRIPE_SIZE(sh->raid_conf), 2285 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2286 } 2287 2288 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2289 { 2290 int overlap_clear = 0, i, disks = sh->disks; 2291 struct dma_async_tx_descriptor *tx = NULL; 2292 struct r5conf *conf = sh->raid_conf; 2293 int level = conf->level; 2294 struct raid5_percpu *percpu; 2295 2296 local_lock(&conf->percpu->lock); 2297 percpu = this_cpu_ptr(conf->percpu); 2298 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2299 ops_run_biofill(sh); 2300 overlap_clear++; 2301 } 2302 2303 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2304 if (level < 6) 2305 tx = ops_run_compute5(sh, percpu); 2306 else { 2307 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2308 tx = ops_run_compute6_1(sh, percpu); 2309 else 2310 tx = ops_run_compute6_2(sh, percpu); 2311 } 2312 /* terminate the chain if reconstruct is not set to be run */ 2313 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2314 async_tx_ack(tx); 2315 } 2316 2317 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2318 if (level < 6) 2319 tx = ops_run_prexor5(sh, percpu, tx); 2320 else 2321 tx = ops_run_prexor6(sh, percpu, tx); 2322 } 2323 2324 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2325 tx = ops_run_partial_parity(sh, percpu, tx); 2326 2327 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2328 tx = ops_run_biodrain(sh, tx); 2329 overlap_clear++; 2330 } 2331 2332 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2333 if (level < 6) 2334 ops_run_reconstruct5(sh, percpu, tx); 2335 else 2336 ops_run_reconstruct6(sh, percpu, tx); 2337 } 2338 2339 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2340 if (sh->check_state == check_state_run) 2341 ops_run_check_p(sh, percpu); 2342 else if (sh->check_state == check_state_run_q) 2343 ops_run_check_pq(sh, percpu, 0); 2344 else if (sh->check_state == check_state_run_pq) 2345 ops_run_check_pq(sh, percpu, 1); 2346 else 2347 BUG(); 2348 } 2349 2350 if (overlap_clear && !sh->batch_head) { 2351 for (i = disks; i--; ) { 2352 struct r5dev *dev = &sh->dev[i]; 2353 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2354 wake_up(&sh->raid_conf->wait_for_overlap); 2355 } 2356 } 2357 local_unlock(&conf->percpu->lock); 2358 } 2359 2360 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2361 { 2362 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2363 kfree(sh->pages); 2364 #endif 2365 if (sh->ppl_page) 2366 __free_page(sh->ppl_page); 2367 kmem_cache_free(sc, sh); 2368 } 2369 2370 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2371 int disks, struct r5conf *conf) 2372 { 2373 struct stripe_head *sh; 2374 2375 sh = kmem_cache_zalloc(sc, gfp); 2376 if (sh) { 2377 spin_lock_init(&sh->stripe_lock); 2378 spin_lock_init(&sh->batch_lock); 2379 INIT_LIST_HEAD(&sh->batch_list); 2380 INIT_LIST_HEAD(&sh->lru); 2381 INIT_LIST_HEAD(&sh->r5c); 2382 INIT_LIST_HEAD(&sh->log_list); 2383 atomic_set(&sh->count, 1); 2384 sh->raid_conf = conf; 2385 sh->log_start = MaxSector; 2386 2387 if (raid5_has_ppl(conf)) { 2388 sh->ppl_page = alloc_page(gfp); 2389 if (!sh->ppl_page) { 2390 free_stripe(sc, sh); 2391 return NULL; 2392 } 2393 } 2394 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2395 if (init_stripe_shared_pages(sh, conf, disks)) { 2396 free_stripe(sc, sh); 2397 return NULL; 2398 } 2399 #endif 2400 } 2401 return sh; 2402 } 2403 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2404 { 2405 struct stripe_head *sh; 2406 2407 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2408 if (!sh) 2409 return 0; 2410 2411 if (grow_buffers(sh, gfp)) { 2412 shrink_buffers(sh); 2413 free_stripe(conf->slab_cache, sh); 2414 return 0; 2415 } 2416 sh->hash_lock_index = 2417 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2418 /* we just created an active stripe so... */ 2419 atomic_inc(&conf->active_stripes); 2420 2421 raid5_release_stripe(sh); 2422 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1); 2423 return 1; 2424 } 2425 2426 static int grow_stripes(struct r5conf *conf, int num) 2427 { 2428 struct kmem_cache *sc; 2429 size_t namelen = sizeof(conf->cache_name[0]); 2430 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2431 2432 if (conf->mddev->gendisk) 2433 snprintf(conf->cache_name[0], namelen, 2434 "raid%d-%s", conf->level, mdname(conf->mddev)); 2435 else 2436 snprintf(conf->cache_name[0], namelen, 2437 "raid%d-%p", conf->level, conf->mddev); 2438 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2439 2440 conf->active_name = 0; 2441 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2442 struct_size_t(struct stripe_head, dev, devs), 2443 0, 0, NULL); 2444 if (!sc) 2445 return 1; 2446 conf->slab_cache = sc; 2447 conf->pool_size = devs; 2448 while (num--) 2449 if (!grow_one_stripe(conf, GFP_KERNEL)) 2450 return 1; 2451 2452 return 0; 2453 } 2454 2455 /** 2456 * scribble_alloc - allocate percpu scribble buffer for required size 2457 * of the scribble region 2458 * @percpu: from for_each_present_cpu() of the caller 2459 * @num: total number of disks in the array 2460 * @cnt: scribble objs count for required size of the scribble region 2461 * 2462 * The scribble buffer size must be enough to contain: 2463 * 1/ a struct page pointer for each device in the array +2 2464 * 2/ room to convert each entry in (1) to its corresponding dma 2465 * (dma_map_page()) or page (page_address()) address. 2466 * 2467 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2468 * calculate over all devices (not just the data blocks), using zeros in place 2469 * of the P and Q blocks. 2470 */ 2471 static int scribble_alloc(struct raid5_percpu *percpu, 2472 int num, int cnt) 2473 { 2474 size_t obj_size = 2475 sizeof(struct page *) * (num + 2) + 2476 sizeof(addr_conv_t) * (num + 2) + 2477 sizeof(unsigned int) * (num + 2); 2478 void *scribble; 2479 2480 /* 2481 * If here is in raid array suspend context, it is in memalloc noio 2482 * context as well, there is no potential recursive memory reclaim 2483 * I/Os with the GFP_KERNEL flag. 2484 */ 2485 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2486 if (!scribble) 2487 return -ENOMEM; 2488 2489 kvfree(percpu->scribble); 2490 2491 percpu->scribble = scribble; 2492 percpu->scribble_obj_size = obj_size; 2493 return 0; 2494 } 2495 2496 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2497 { 2498 unsigned long cpu; 2499 int err = 0; 2500 2501 /* 2502 * Never shrink. And mddev_suspend() could deadlock if this is called 2503 * from raid5d. In that case, scribble_disks and scribble_sectors 2504 * should equal to new_disks and new_sectors 2505 */ 2506 if (conf->scribble_disks >= new_disks && 2507 conf->scribble_sectors >= new_sectors) 2508 return 0; 2509 mddev_suspend(conf->mddev); 2510 cpus_read_lock(); 2511 2512 for_each_present_cpu(cpu) { 2513 struct raid5_percpu *percpu; 2514 2515 percpu = per_cpu_ptr(conf->percpu, cpu); 2516 err = scribble_alloc(percpu, new_disks, 2517 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2518 if (err) 2519 break; 2520 } 2521 2522 cpus_read_unlock(); 2523 mddev_resume(conf->mddev); 2524 if (!err) { 2525 conf->scribble_disks = new_disks; 2526 conf->scribble_sectors = new_sectors; 2527 } 2528 return err; 2529 } 2530 2531 static int resize_stripes(struct r5conf *conf, int newsize) 2532 { 2533 /* Make all the stripes able to hold 'newsize' devices. 2534 * New slots in each stripe get 'page' set to a new page. 2535 * 2536 * This happens in stages: 2537 * 1/ create a new kmem_cache and allocate the required number of 2538 * stripe_heads. 2539 * 2/ gather all the old stripe_heads and transfer the pages across 2540 * to the new stripe_heads. This will have the side effect of 2541 * freezing the array as once all stripe_heads have been collected, 2542 * no IO will be possible. Old stripe heads are freed once their 2543 * pages have been transferred over, and the old kmem_cache is 2544 * freed when all stripes are done. 2545 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2546 * we simple return a failure status - no need to clean anything up. 2547 * 4/ allocate new pages for the new slots in the new stripe_heads. 2548 * If this fails, we don't bother trying the shrink the 2549 * stripe_heads down again, we just leave them as they are. 2550 * As each stripe_head is processed the new one is released into 2551 * active service. 2552 * 2553 * Once step2 is started, we cannot afford to wait for a write, 2554 * so we use GFP_NOIO allocations. 2555 */ 2556 struct stripe_head *osh, *nsh; 2557 LIST_HEAD(newstripes); 2558 struct disk_info *ndisks; 2559 int err = 0; 2560 struct kmem_cache *sc; 2561 int i; 2562 int hash, cnt; 2563 2564 md_allow_write(conf->mddev); 2565 2566 /* Step 1 */ 2567 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2568 struct_size_t(struct stripe_head, dev, newsize), 2569 0, 0, NULL); 2570 if (!sc) 2571 return -ENOMEM; 2572 2573 /* Need to ensure auto-resizing doesn't interfere */ 2574 mutex_lock(&conf->cache_size_mutex); 2575 2576 for (i = conf->max_nr_stripes; i; i--) { 2577 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2578 if (!nsh) 2579 break; 2580 2581 list_add(&nsh->lru, &newstripes); 2582 } 2583 if (i) { 2584 /* didn't get enough, give up */ 2585 while (!list_empty(&newstripes)) { 2586 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2587 list_del(&nsh->lru); 2588 free_stripe(sc, nsh); 2589 } 2590 kmem_cache_destroy(sc); 2591 mutex_unlock(&conf->cache_size_mutex); 2592 return -ENOMEM; 2593 } 2594 /* Step 2 - Must use GFP_NOIO now. 2595 * OK, we have enough stripes, start collecting inactive 2596 * stripes and copying them over 2597 */ 2598 hash = 0; 2599 cnt = 0; 2600 list_for_each_entry(nsh, &newstripes, lru) { 2601 lock_device_hash_lock(conf, hash); 2602 wait_event_cmd(conf->wait_for_stripe, 2603 !list_empty(conf->inactive_list + hash), 2604 unlock_device_hash_lock(conf, hash), 2605 lock_device_hash_lock(conf, hash)); 2606 osh = get_free_stripe(conf, hash); 2607 unlock_device_hash_lock(conf, hash); 2608 2609 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2610 for (i = 0; i < osh->nr_pages; i++) { 2611 nsh->pages[i] = osh->pages[i]; 2612 osh->pages[i] = NULL; 2613 } 2614 #endif 2615 for(i=0; i<conf->pool_size; i++) { 2616 nsh->dev[i].page = osh->dev[i].page; 2617 nsh->dev[i].orig_page = osh->dev[i].page; 2618 nsh->dev[i].offset = osh->dev[i].offset; 2619 } 2620 nsh->hash_lock_index = hash; 2621 free_stripe(conf->slab_cache, osh); 2622 cnt++; 2623 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2624 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2625 hash++; 2626 cnt = 0; 2627 } 2628 } 2629 kmem_cache_destroy(conf->slab_cache); 2630 2631 /* Step 3. 2632 * At this point, we are holding all the stripes so the array 2633 * is completely stalled, so now is a good time to resize 2634 * conf->disks and the scribble region 2635 */ 2636 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2637 if (ndisks) { 2638 for (i = 0; i < conf->pool_size; i++) 2639 ndisks[i] = conf->disks[i]; 2640 2641 for (i = conf->pool_size; i < newsize; i++) { 2642 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2643 if (!ndisks[i].extra_page) 2644 err = -ENOMEM; 2645 } 2646 2647 if (err) { 2648 for (i = conf->pool_size; i < newsize; i++) 2649 if (ndisks[i].extra_page) 2650 put_page(ndisks[i].extra_page); 2651 kfree(ndisks); 2652 } else { 2653 kfree(conf->disks); 2654 conf->disks = ndisks; 2655 } 2656 } else 2657 err = -ENOMEM; 2658 2659 conf->slab_cache = sc; 2660 conf->active_name = 1-conf->active_name; 2661 2662 /* Step 4, return new stripes to service */ 2663 while(!list_empty(&newstripes)) { 2664 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2665 list_del_init(&nsh->lru); 2666 2667 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2668 for (i = 0; i < nsh->nr_pages; i++) { 2669 if (nsh->pages[i]) 2670 continue; 2671 nsh->pages[i] = alloc_page(GFP_NOIO); 2672 if (!nsh->pages[i]) 2673 err = -ENOMEM; 2674 } 2675 2676 for (i = conf->raid_disks; i < newsize; i++) { 2677 if (nsh->dev[i].page) 2678 continue; 2679 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2680 nsh->dev[i].orig_page = nsh->dev[i].page; 2681 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2682 } 2683 #else 2684 for (i=conf->raid_disks; i < newsize; i++) 2685 if (nsh->dev[i].page == NULL) { 2686 struct page *p = alloc_page(GFP_NOIO); 2687 nsh->dev[i].page = p; 2688 nsh->dev[i].orig_page = p; 2689 nsh->dev[i].offset = 0; 2690 if (!p) 2691 err = -ENOMEM; 2692 } 2693 #endif 2694 raid5_release_stripe(nsh); 2695 } 2696 /* critical section pass, GFP_NOIO no longer needed */ 2697 2698 if (!err) 2699 conf->pool_size = newsize; 2700 mutex_unlock(&conf->cache_size_mutex); 2701 2702 return err; 2703 } 2704 2705 static int drop_one_stripe(struct r5conf *conf) 2706 { 2707 struct stripe_head *sh; 2708 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2709 2710 spin_lock_irq(conf->hash_locks + hash); 2711 sh = get_free_stripe(conf, hash); 2712 spin_unlock_irq(conf->hash_locks + hash); 2713 if (!sh) 2714 return 0; 2715 BUG_ON(atomic_read(&sh->count)); 2716 shrink_buffers(sh); 2717 free_stripe(conf->slab_cache, sh); 2718 atomic_dec(&conf->active_stripes); 2719 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1); 2720 return 1; 2721 } 2722 2723 static void shrink_stripes(struct r5conf *conf) 2724 { 2725 while (conf->max_nr_stripes && 2726 drop_one_stripe(conf)) 2727 ; 2728 2729 kmem_cache_destroy(conf->slab_cache); 2730 conf->slab_cache = NULL; 2731 } 2732 2733 /* 2734 * This helper wraps rcu_dereference_protected() and can be used when 2735 * it is known that the nr_pending of the rdev is elevated. 2736 */ 2737 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev) 2738 { 2739 return rcu_dereference_protected(rdev, 2740 atomic_read(&rcu_access_pointer(rdev)->nr_pending)); 2741 } 2742 2743 /* 2744 * This helper wraps rcu_dereference_protected() and should be used 2745 * when it is known that the mddev_lock() is held. This is safe 2746 * seeing raid5_remove_disk() has the same lock held. 2747 */ 2748 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev, 2749 struct md_rdev __rcu *rdev) 2750 { 2751 return rcu_dereference_protected(rdev, 2752 lockdep_is_held(&mddev->reconfig_mutex)); 2753 } 2754 2755 static void raid5_end_read_request(struct bio * bi) 2756 { 2757 struct stripe_head *sh = bi->bi_private; 2758 struct r5conf *conf = sh->raid_conf; 2759 int disks = sh->disks, i; 2760 struct md_rdev *rdev = NULL; 2761 sector_t s; 2762 2763 for (i=0 ; i<disks; i++) 2764 if (bi == &sh->dev[i].req) 2765 break; 2766 2767 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2768 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2769 bi->bi_status); 2770 if (i == disks) { 2771 BUG(); 2772 return; 2773 } 2774 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2775 /* If replacement finished while this request was outstanding, 2776 * 'replacement' might be NULL already. 2777 * In that case it moved down to 'rdev'. 2778 * rdev is not removed until all requests are finished. 2779 */ 2780 rdev = rdev_pend_deref(conf->disks[i].replacement); 2781 if (!rdev) 2782 rdev = rdev_pend_deref(conf->disks[i].rdev); 2783 2784 if (use_new_offset(conf, sh)) 2785 s = sh->sector + rdev->new_data_offset; 2786 else 2787 s = sh->sector + rdev->data_offset; 2788 if (!bi->bi_status) { 2789 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2790 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2791 /* Note that this cannot happen on a 2792 * replacement device. We just fail those on 2793 * any error 2794 */ 2795 pr_info_ratelimited( 2796 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2797 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2798 (unsigned long long)s, 2799 rdev->bdev); 2800 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2801 clear_bit(R5_ReadError, &sh->dev[i].flags); 2802 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2803 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2804 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2805 2806 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2807 /* 2808 * end read for a page in journal, this 2809 * must be preparing for prexor in rmw 2810 */ 2811 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2812 2813 if (atomic_read(&rdev->read_errors)) 2814 atomic_set(&rdev->read_errors, 0); 2815 } else { 2816 int retry = 0; 2817 int set_bad = 0; 2818 2819 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2820 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2821 atomic_inc(&rdev->read_errors); 2822 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2823 pr_warn_ratelimited( 2824 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2825 mdname(conf->mddev), 2826 (unsigned long long)s, 2827 rdev->bdev); 2828 else if (conf->mddev->degraded >= conf->max_degraded) { 2829 set_bad = 1; 2830 pr_warn_ratelimited( 2831 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2832 mdname(conf->mddev), 2833 (unsigned long long)s, 2834 rdev->bdev); 2835 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2836 /* Oh, no!!! */ 2837 set_bad = 1; 2838 pr_warn_ratelimited( 2839 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2840 mdname(conf->mddev), 2841 (unsigned long long)s, 2842 rdev->bdev); 2843 } else if (atomic_read(&rdev->read_errors) 2844 > conf->max_nr_stripes) { 2845 if (!test_bit(Faulty, &rdev->flags)) { 2846 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2847 mdname(conf->mddev), 2848 atomic_read(&rdev->read_errors), 2849 conf->max_nr_stripes); 2850 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2851 mdname(conf->mddev), rdev->bdev); 2852 } 2853 } else 2854 retry = 1; 2855 if (set_bad && test_bit(In_sync, &rdev->flags) 2856 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2857 retry = 1; 2858 if (retry) 2859 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2860 set_bit(R5_ReadError, &sh->dev[i].flags); 2861 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2862 set_bit(R5_ReadError, &sh->dev[i].flags); 2863 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2864 } else 2865 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2866 else { 2867 clear_bit(R5_ReadError, &sh->dev[i].flags); 2868 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2869 if (!(set_bad 2870 && test_bit(In_sync, &rdev->flags) 2871 && rdev_set_badblocks( 2872 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2873 md_error(conf->mddev, rdev); 2874 } 2875 } 2876 rdev_dec_pending(rdev, conf->mddev); 2877 bio_uninit(bi); 2878 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2879 set_bit(STRIPE_HANDLE, &sh->state); 2880 raid5_release_stripe(sh); 2881 } 2882 2883 static void raid5_end_write_request(struct bio *bi) 2884 { 2885 struct stripe_head *sh = bi->bi_private; 2886 struct r5conf *conf = sh->raid_conf; 2887 int disks = sh->disks, i; 2888 struct md_rdev *rdev; 2889 sector_t first_bad; 2890 int bad_sectors; 2891 int replacement = 0; 2892 2893 for (i = 0 ; i < disks; i++) { 2894 if (bi == &sh->dev[i].req) { 2895 rdev = rdev_pend_deref(conf->disks[i].rdev); 2896 break; 2897 } 2898 if (bi == &sh->dev[i].rreq) { 2899 rdev = rdev_pend_deref(conf->disks[i].replacement); 2900 if (rdev) 2901 replacement = 1; 2902 else 2903 /* rdev was removed and 'replacement' 2904 * replaced it. rdev is not removed 2905 * until all requests are finished. 2906 */ 2907 rdev = rdev_pend_deref(conf->disks[i].rdev); 2908 break; 2909 } 2910 } 2911 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2912 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2913 bi->bi_status); 2914 if (i == disks) { 2915 BUG(); 2916 return; 2917 } 2918 2919 if (replacement) { 2920 if (bi->bi_status) 2921 md_error(conf->mddev, rdev); 2922 else if (is_badblock(rdev, sh->sector, 2923 RAID5_STRIPE_SECTORS(conf), 2924 &first_bad, &bad_sectors)) 2925 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2926 } else { 2927 if (bi->bi_status) { 2928 set_bit(STRIPE_DEGRADED, &sh->state); 2929 set_bit(WriteErrorSeen, &rdev->flags); 2930 set_bit(R5_WriteError, &sh->dev[i].flags); 2931 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2932 set_bit(MD_RECOVERY_NEEDED, 2933 &rdev->mddev->recovery); 2934 } else if (is_badblock(rdev, sh->sector, 2935 RAID5_STRIPE_SECTORS(conf), 2936 &first_bad, &bad_sectors)) { 2937 set_bit(R5_MadeGood, &sh->dev[i].flags); 2938 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2939 /* That was a successful write so make 2940 * sure it looks like we already did 2941 * a re-write. 2942 */ 2943 set_bit(R5_ReWrite, &sh->dev[i].flags); 2944 } 2945 } 2946 rdev_dec_pending(rdev, conf->mddev); 2947 2948 if (sh->batch_head && bi->bi_status && !replacement) 2949 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2950 2951 bio_uninit(bi); 2952 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2953 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2954 set_bit(STRIPE_HANDLE, &sh->state); 2955 2956 if (sh->batch_head && sh != sh->batch_head) 2957 raid5_release_stripe(sh->batch_head); 2958 raid5_release_stripe(sh); 2959 } 2960 2961 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2962 { 2963 struct r5conf *conf = mddev->private; 2964 unsigned long flags; 2965 pr_debug("raid456: error called\n"); 2966 2967 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2968 mdname(mddev), rdev->bdev); 2969 2970 spin_lock_irqsave(&conf->device_lock, flags); 2971 set_bit(Faulty, &rdev->flags); 2972 clear_bit(In_sync, &rdev->flags); 2973 mddev->degraded = raid5_calc_degraded(conf); 2974 2975 if (has_failed(conf)) { 2976 set_bit(MD_BROKEN, &conf->mddev->flags); 2977 conf->recovery_disabled = mddev->recovery_disabled; 2978 2979 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2980 mdname(mddev), mddev->degraded, conf->raid_disks); 2981 } else { 2982 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2983 mdname(mddev), conf->raid_disks - mddev->degraded); 2984 } 2985 2986 spin_unlock_irqrestore(&conf->device_lock, flags); 2987 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2988 2989 set_bit(Blocked, &rdev->flags); 2990 set_mask_bits(&mddev->sb_flags, 0, 2991 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2992 r5c_update_on_rdev_error(mddev, rdev); 2993 } 2994 2995 /* 2996 * Input: a 'big' sector number, 2997 * Output: index of the data and parity disk, and the sector # in them. 2998 */ 2999 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 3000 int previous, int *dd_idx, 3001 struct stripe_head *sh) 3002 { 3003 sector_t stripe, stripe2; 3004 sector_t chunk_number; 3005 unsigned int chunk_offset; 3006 int pd_idx, qd_idx; 3007 int ddf_layout = 0; 3008 sector_t new_sector; 3009 int algorithm = previous ? conf->prev_algo 3010 : conf->algorithm; 3011 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3012 : conf->chunk_sectors; 3013 int raid_disks = previous ? conf->previous_raid_disks 3014 : conf->raid_disks; 3015 int data_disks = raid_disks - conf->max_degraded; 3016 3017 /* First compute the information on this sector */ 3018 3019 /* 3020 * Compute the chunk number and the sector offset inside the chunk 3021 */ 3022 chunk_offset = sector_div(r_sector, sectors_per_chunk); 3023 chunk_number = r_sector; 3024 3025 /* 3026 * Compute the stripe number 3027 */ 3028 stripe = chunk_number; 3029 *dd_idx = sector_div(stripe, data_disks); 3030 stripe2 = stripe; 3031 /* 3032 * Select the parity disk based on the user selected algorithm. 3033 */ 3034 pd_idx = qd_idx = -1; 3035 switch(conf->level) { 3036 case 4: 3037 pd_idx = data_disks; 3038 break; 3039 case 5: 3040 switch (algorithm) { 3041 case ALGORITHM_LEFT_ASYMMETRIC: 3042 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3043 if (*dd_idx >= pd_idx) 3044 (*dd_idx)++; 3045 break; 3046 case ALGORITHM_RIGHT_ASYMMETRIC: 3047 pd_idx = sector_div(stripe2, raid_disks); 3048 if (*dd_idx >= pd_idx) 3049 (*dd_idx)++; 3050 break; 3051 case ALGORITHM_LEFT_SYMMETRIC: 3052 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3053 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3054 break; 3055 case ALGORITHM_RIGHT_SYMMETRIC: 3056 pd_idx = sector_div(stripe2, raid_disks); 3057 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3058 break; 3059 case ALGORITHM_PARITY_0: 3060 pd_idx = 0; 3061 (*dd_idx)++; 3062 break; 3063 case ALGORITHM_PARITY_N: 3064 pd_idx = data_disks; 3065 break; 3066 default: 3067 BUG(); 3068 } 3069 break; 3070 case 6: 3071 3072 switch (algorithm) { 3073 case ALGORITHM_LEFT_ASYMMETRIC: 3074 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3075 qd_idx = pd_idx + 1; 3076 if (pd_idx == raid_disks-1) { 3077 (*dd_idx)++; /* Q D D D P */ 3078 qd_idx = 0; 3079 } else if (*dd_idx >= pd_idx) 3080 (*dd_idx) += 2; /* D D P Q D */ 3081 break; 3082 case ALGORITHM_RIGHT_ASYMMETRIC: 3083 pd_idx = sector_div(stripe2, raid_disks); 3084 qd_idx = pd_idx + 1; 3085 if (pd_idx == raid_disks-1) { 3086 (*dd_idx)++; /* Q D D D P */ 3087 qd_idx = 0; 3088 } else if (*dd_idx >= pd_idx) 3089 (*dd_idx) += 2; /* D D P Q D */ 3090 break; 3091 case ALGORITHM_LEFT_SYMMETRIC: 3092 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3093 qd_idx = (pd_idx + 1) % raid_disks; 3094 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3095 break; 3096 case ALGORITHM_RIGHT_SYMMETRIC: 3097 pd_idx = sector_div(stripe2, raid_disks); 3098 qd_idx = (pd_idx + 1) % raid_disks; 3099 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3100 break; 3101 3102 case ALGORITHM_PARITY_0: 3103 pd_idx = 0; 3104 qd_idx = 1; 3105 (*dd_idx) += 2; 3106 break; 3107 case ALGORITHM_PARITY_N: 3108 pd_idx = data_disks; 3109 qd_idx = data_disks + 1; 3110 break; 3111 3112 case ALGORITHM_ROTATING_ZERO_RESTART: 3113 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3114 * of blocks for computing Q is different. 3115 */ 3116 pd_idx = sector_div(stripe2, raid_disks); 3117 qd_idx = pd_idx + 1; 3118 if (pd_idx == raid_disks-1) { 3119 (*dd_idx)++; /* Q D D D P */ 3120 qd_idx = 0; 3121 } else if (*dd_idx >= pd_idx) 3122 (*dd_idx) += 2; /* D D P Q D */ 3123 ddf_layout = 1; 3124 break; 3125 3126 case ALGORITHM_ROTATING_N_RESTART: 3127 /* Same a left_asymmetric, by first stripe is 3128 * D D D P Q rather than 3129 * Q D D D P 3130 */ 3131 stripe2 += 1; 3132 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3133 qd_idx = pd_idx + 1; 3134 if (pd_idx == raid_disks-1) { 3135 (*dd_idx)++; /* Q D D D P */ 3136 qd_idx = 0; 3137 } else if (*dd_idx >= pd_idx) 3138 (*dd_idx) += 2; /* D D P Q D */ 3139 ddf_layout = 1; 3140 break; 3141 3142 case ALGORITHM_ROTATING_N_CONTINUE: 3143 /* Same as left_symmetric but Q is before P */ 3144 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3145 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3146 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3147 ddf_layout = 1; 3148 break; 3149 3150 case ALGORITHM_LEFT_ASYMMETRIC_6: 3151 /* RAID5 left_asymmetric, with Q on last device */ 3152 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3153 if (*dd_idx >= pd_idx) 3154 (*dd_idx)++; 3155 qd_idx = raid_disks - 1; 3156 break; 3157 3158 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3159 pd_idx = sector_div(stripe2, raid_disks-1); 3160 if (*dd_idx >= pd_idx) 3161 (*dd_idx)++; 3162 qd_idx = raid_disks - 1; 3163 break; 3164 3165 case ALGORITHM_LEFT_SYMMETRIC_6: 3166 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3167 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3168 qd_idx = raid_disks - 1; 3169 break; 3170 3171 case ALGORITHM_RIGHT_SYMMETRIC_6: 3172 pd_idx = sector_div(stripe2, raid_disks-1); 3173 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3174 qd_idx = raid_disks - 1; 3175 break; 3176 3177 case ALGORITHM_PARITY_0_6: 3178 pd_idx = 0; 3179 (*dd_idx)++; 3180 qd_idx = raid_disks - 1; 3181 break; 3182 3183 default: 3184 BUG(); 3185 } 3186 break; 3187 } 3188 3189 if (sh) { 3190 sh->pd_idx = pd_idx; 3191 sh->qd_idx = qd_idx; 3192 sh->ddf_layout = ddf_layout; 3193 } 3194 /* 3195 * Finally, compute the new sector number 3196 */ 3197 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3198 return new_sector; 3199 } 3200 3201 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3202 { 3203 struct r5conf *conf = sh->raid_conf; 3204 int raid_disks = sh->disks; 3205 int data_disks = raid_disks - conf->max_degraded; 3206 sector_t new_sector = sh->sector, check; 3207 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3208 : conf->chunk_sectors; 3209 int algorithm = previous ? conf->prev_algo 3210 : conf->algorithm; 3211 sector_t stripe; 3212 int chunk_offset; 3213 sector_t chunk_number; 3214 int dummy1, dd_idx = i; 3215 sector_t r_sector; 3216 struct stripe_head sh2; 3217 3218 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3219 stripe = new_sector; 3220 3221 if (i == sh->pd_idx) 3222 return 0; 3223 switch(conf->level) { 3224 case 4: break; 3225 case 5: 3226 switch (algorithm) { 3227 case ALGORITHM_LEFT_ASYMMETRIC: 3228 case ALGORITHM_RIGHT_ASYMMETRIC: 3229 if (i > sh->pd_idx) 3230 i--; 3231 break; 3232 case ALGORITHM_LEFT_SYMMETRIC: 3233 case ALGORITHM_RIGHT_SYMMETRIC: 3234 if (i < sh->pd_idx) 3235 i += raid_disks; 3236 i -= (sh->pd_idx + 1); 3237 break; 3238 case ALGORITHM_PARITY_0: 3239 i -= 1; 3240 break; 3241 case ALGORITHM_PARITY_N: 3242 break; 3243 default: 3244 BUG(); 3245 } 3246 break; 3247 case 6: 3248 if (i == sh->qd_idx) 3249 return 0; /* It is the Q disk */ 3250 switch (algorithm) { 3251 case ALGORITHM_LEFT_ASYMMETRIC: 3252 case ALGORITHM_RIGHT_ASYMMETRIC: 3253 case ALGORITHM_ROTATING_ZERO_RESTART: 3254 case ALGORITHM_ROTATING_N_RESTART: 3255 if (sh->pd_idx == raid_disks-1) 3256 i--; /* Q D D D P */ 3257 else if (i > sh->pd_idx) 3258 i -= 2; /* D D P Q D */ 3259 break; 3260 case ALGORITHM_LEFT_SYMMETRIC: 3261 case ALGORITHM_RIGHT_SYMMETRIC: 3262 if (sh->pd_idx == raid_disks-1) 3263 i--; /* Q D D D P */ 3264 else { 3265 /* D D P Q D */ 3266 if (i < sh->pd_idx) 3267 i += raid_disks; 3268 i -= (sh->pd_idx + 2); 3269 } 3270 break; 3271 case ALGORITHM_PARITY_0: 3272 i -= 2; 3273 break; 3274 case ALGORITHM_PARITY_N: 3275 break; 3276 case ALGORITHM_ROTATING_N_CONTINUE: 3277 /* Like left_symmetric, but P is before Q */ 3278 if (sh->pd_idx == 0) 3279 i--; /* P D D D Q */ 3280 else { 3281 /* D D Q P D */ 3282 if (i < sh->pd_idx) 3283 i += raid_disks; 3284 i -= (sh->pd_idx + 1); 3285 } 3286 break; 3287 case ALGORITHM_LEFT_ASYMMETRIC_6: 3288 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3289 if (i > sh->pd_idx) 3290 i--; 3291 break; 3292 case ALGORITHM_LEFT_SYMMETRIC_6: 3293 case ALGORITHM_RIGHT_SYMMETRIC_6: 3294 if (i < sh->pd_idx) 3295 i += data_disks + 1; 3296 i -= (sh->pd_idx + 1); 3297 break; 3298 case ALGORITHM_PARITY_0_6: 3299 i -= 1; 3300 break; 3301 default: 3302 BUG(); 3303 } 3304 break; 3305 } 3306 3307 chunk_number = stripe * data_disks + i; 3308 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3309 3310 check = raid5_compute_sector(conf, r_sector, 3311 previous, &dummy1, &sh2); 3312 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3313 || sh2.qd_idx != sh->qd_idx) { 3314 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3315 mdname(conf->mddev)); 3316 return 0; 3317 } 3318 return r_sector; 3319 } 3320 3321 /* 3322 * There are cases where we want handle_stripe_dirtying() and 3323 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3324 * 3325 * This function checks whether we want to delay the towrite. Specifically, 3326 * we delay the towrite when: 3327 * 3328 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3329 * stripe has data in journal (for other devices). 3330 * 3331 * In this case, when reading data for the non-overwrite dev, it is 3332 * necessary to handle complex rmw of write back cache (prexor with 3333 * orig_page, and xor with page). To keep read path simple, we would 3334 * like to flush data in journal to RAID disks first, so complex rmw 3335 * is handled in the write patch (handle_stripe_dirtying). 3336 * 3337 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3338 * 3339 * It is important to be able to flush all stripes in raid5-cache. 3340 * Therefore, we need reserve some space on the journal device for 3341 * these flushes. If flush operation includes pending writes to the 3342 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3343 * for the flush out. If we exclude these pending writes from flush 3344 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3345 * Therefore, excluding pending writes in these cases enables more 3346 * efficient use of the journal device. 3347 * 3348 * Note: To make sure the stripe makes progress, we only delay 3349 * towrite for stripes with data already in journal (injournal > 0). 3350 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3351 * no_space_stripes list. 3352 * 3353 * 3. during journal failure 3354 * In journal failure, we try to flush all cached data to raid disks 3355 * based on data in stripe cache. The array is read-only to upper 3356 * layers, so we would skip all pending writes. 3357 * 3358 */ 3359 static inline bool delay_towrite(struct r5conf *conf, 3360 struct r5dev *dev, 3361 struct stripe_head_state *s) 3362 { 3363 /* case 1 above */ 3364 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3365 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3366 return true; 3367 /* case 2 above */ 3368 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3369 s->injournal > 0) 3370 return true; 3371 /* case 3 above */ 3372 if (s->log_failed && s->injournal) 3373 return true; 3374 return false; 3375 } 3376 3377 static void 3378 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3379 int rcw, int expand) 3380 { 3381 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3382 struct r5conf *conf = sh->raid_conf; 3383 int level = conf->level; 3384 3385 if (rcw) { 3386 /* 3387 * In some cases, handle_stripe_dirtying initially decided to 3388 * run rmw and allocates extra page for prexor. However, rcw is 3389 * cheaper later on. We need to free the extra page now, 3390 * because we won't be able to do that in ops_complete_prexor(). 3391 */ 3392 r5c_release_extra_page(sh); 3393 3394 for (i = disks; i--; ) { 3395 struct r5dev *dev = &sh->dev[i]; 3396 3397 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3398 set_bit(R5_LOCKED, &dev->flags); 3399 set_bit(R5_Wantdrain, &dev->flags); 3400 if (!expand) 3401 clear_bit(R5_UPTODATE, &dev->flags); 3402 s->locked++; 3403 } else if (test_bit(R5_InJournal, &dev->flags)) { 3404 set_bit(R5_LOCKED, &dev->flags); 3405 s->locked++; 3406 } 3407 } 3408 /* if we are not expanding this is a proper write request, and 3409 * there will be bios with new data to be drained into the 3410 * stripe cache 3411 */ 3412 if (!expand) { 3413 if (!s->locked) 3414 /* False alarm, nothing to do */ 3415 return; 3416 sh->reconstruct_state = reconstruct_state_drain_run; 3417 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3418 } else 3419 sh->reconstruct_state = reconstruct_state_run; 3420 3421 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3422 3423 if (s->locked + conf->max_degraded == disks) 3424 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3425 atomic_inc(&conf->pending_full_writes); 3426 } else { 3427 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3428 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3429 BUG_ON(level == 6 && 3430 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3431 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3432 3433 for (i = disks; i--; ) { 3434 struct r5dev *dev = &sh->dev[i]; 3435 if (i == pd_idx || i == qd_idx) 3436 continue; 3437 3438 if (dev->towrite && 3439 (test_bit(R5_UPTODATE, &dev->flags) || 3440 test_bit(R5_Wantcompute, &dev->flags))) { 3441 set_bit(R5_Wantdrain, &dev->flags); 3442 set_bit(R5_LOCKED, &dev->flags); 3443 clear_bit(R5_UPTODATE, &dev->flags); 3444 s->locked++; 3445 } else if (test_bit(R5_InJournal, &dev->flags)) { 3446 set_bit(R5_LOCKED, &dev->flags); 3447 s->locked++; 3448 } 3449 } 3450 if (!s->locked) 3451 /* False alarm - nothing to do */ 3452 return; 3453 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3454 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3455 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3456 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3457 } 3458 3459 /* keep the parity disk(s) locked while asynchronous operations 3460 * are in flight 3461 */ 3462 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3463 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3464 s->locked++; 3465 3466 if (level == 6) { 3467 int qd_idx = sh->qd_idx; 3468 struct r5dev *dev = &sh->dev[qd_idx]; 3469 3470 set_bit(R5_LOCKED, &dev->flags); 3471 clear_bit(R5_UPTODATE, &dev->flags); 3472 s->locked++; 3473 } 3474 3475 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3476 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3477 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3478 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3479 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3480 3481 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3482 __func__, (unsigned long long)sh->sector, 3483 s->locked, s->ops_request); 3484 } 3485 3486 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3487 int dd_idx, int forwrite) 3488 { 3489 struct r5conf *conf = sh->raid_conf; 3490 struct bio **bip; 3491 3492 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3493 bi->bi_iter.bi_sector, sh->sector); 3494 3495 /* Don't allow new IO added to stripes in batch list */ 3496 if (sh->batch_head) 3497 return true; 3498 3499 if (forwrite) 3500 bip = &sh->dev[dd_idx].towrite; 3501 else 3502 bip = &sh->dev[dd_idx].toread; 3503 3504 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3505 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3506 return true; 3507 bip = &(*bip)->bi_next; 3508 } 3509 3510 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3511 return true; 3512 3513 if (forwrite && raid5_has_ppl(conf)) { 3514 /* 3515 * With PPL only writes to consecutive data chunks within a 3516 * stripe are allowed because for a single stripe_head we can 3517 * only have one PPL entry at a time, which describes one data 3518 * range. Not really an overlap, but wait_for_overlap can be 3519 * used to handle this. 3520 */ 3521 sector_t sector; 3522 sector_t first = 0; 3523 sector_t last = 0; 3524 int count = 0; 3525 int i; 3526 3527 for (i = 0; i < sh->disks; i++) { 3528 if (i != sh->pd_idx && 3529 (i == dd_idx || sh->dev[i].towrite)) { 3530 sector = sh->dev[i].sector; 3531 if (count == 0 || sector < first) 3532 first = sector; 3533 if (sector > last) 3534 last = sector; 3535 count++; 3536 } 3537 } 3538 3539 if (first + conf->chunk_sectors * (count - 1) != last) 3540 return true; 3541 } 3542 3543 return false; 3544 } 3545 3546 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3547 int dd_idx, int forwrite, int previous) 3548 { 3549 struct r5conf *conf = sh->raid_conf; 3550 struct bio **bip; 3551 int firstwrite = 0; 3552 3553 if (forwrite) { 3554 bip = &sh->dev[dd_idx].towrite; 3555 if (!*bip) 3556 firstwrite = 1; 3557 } else { 3558 bip = &sh->dev[dd_idx].toread; 3559 } 3560 3561 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3562 bip = &(*bip)->bi_next; 3563 3564 if (!forwrite || previous) 3565 clear_bit(STRIPE_BATCH_READY, &sh->state); 3566 3567 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3568 if (*bip) 3569 bi->bi_next = *bip; 3570 *bip = bi; 3571 bio_inc_remaining(bi); 3572 md_write_inc(conf->mddev, bi); 3573 3574 if (forwrite) { 3575 /* check if page is covered */ 3576 sector_t sector = sh->dev[dd_idx].sector; 3577 for (bi=sh->dev[dd_idx].towrite; 3578 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3579 bi && bi->bi_iter.bi_sector <= sector; 3580 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3581 if (bio_end_sector(bi) >= sector) 3582 sector = bio_end_sector(bi); 3583 } 3584 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3585 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3586 sh->overwrite_disks++; 3587 } 3588 3589 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3590 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3591 sh->dev[dd_idx].sector); 3592 3593 if (conf->mddev->bitmap && firstwrite) { 3594 /* Cannot hold spinlock over bitmap_startwrite, 3595 * but must ensure this isn't added to a batch until 3596 * we have added to the bitmap and set bm_seq. 3597 * So set STRIPE_BITMAP_PENDING to prevent 3598 * batching. 3599 * If multiple __add_stripe_bio() calls race here they 3600 * much all set STRIPE_BITMAP_PENDING. So only the first one 3601 * to complete "bitmap_startwrite" gets to set 3602 * STRIPE_BIT_DELAY. This is important as once a stripe 3603 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3604 * any more. 3605 */ 3606 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3607 spin_unlock_irq(&sh->stripe_lock); 3608 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3609 RAID5_STRIPE_SECTORS(conf), 0); 3610 spin_lock_irq(&sh->stripe_lock); 3611 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3612 if (!sh->batch_head) { 3613 sh->bm_seq = conf->seq_flush+1; 3614 set_bit(STRIPE_BIT_DELAY, &sh->state); 3615 } 3616 } 3617 } 3618 3619 /* 3620 * Each stripe/dev can have one or more bios attached. 3621 * toread/towrite point to the first in a chain. 3622 * The bi_next chain must be in order. 3623 */ 3624 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3625 int dd_idx, int forwrite, int previous) 3626 { 3627 spin_lock_irq(&sh->stripe_lock); 3628 3629 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3630 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3631 spin_unlock_irq(&sh->stripe_lock); 3632 return false; 3633 } 3634 3635 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3636 spin_unlock_irq(&sh->stripe_lock); 3637 return true; 3638 } 3639 3640 static void end_reshape(struct r5conf *conf); 3641 3642 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3643 struct stripe_head *sh) 3644 { 3645 int sectors_per_chunk = 3646 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3647 int dd_idx; 3648 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3649 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3650 3651 raid5_compute_sector(conf, 3652 stripe * (disks - conf->max_degraded) 3653 *sectors_per_chunk + chunk_offset, 3654 previous, 3655 &dd_idx, sh); 3656 } 3657 3658 static void 3659 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3660 struct stripe_head_state *s, int disks) 3661 { 3662 int i; 3663 BUG_ON(sh->batch_head); 3664 for (i = disks; i--; ) { 3665 struct bio *bi; 3666 int bitmap_end = 0; 3667 3668 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3669 struct md_rdev *rdev; 3670 rcu_read_lock(); 3671 rdev = rcu_dereference(conf->disks[i].rdev); 3672 if (rdev && test_bit(In_sync, &rdev->flags) && 3673 !test_bit(Faulty, &rdev->flags)) 3674 atomic_inc(&rdev->nr_pending); 3675 else 3676 rdev = NULL; 3677 rcu_read_unlock(); 3678 if (rdev) { 3679 if (!rdev_set_badblocks( 3680 rdev, 3681 sh->sector, 3682 RAID5_STRIPE_SECTORS(conf), 0)) 3683 md_error(conf->mddev, rdev); 3684 rdev_dec_pending(rdev, conf->mddev); 3685 } 3686 } 3687 spin_lock_irq(&sh->stripe_lock); 3688 /* fail all writes first */ 3689 bi = sh->dev[i].towrite; 3690 sh->dev[i].towrite = NULL; 3691 sh->overwrite_disks = 0; 3692 spin_unlock_irq(&sh->stripe_lock); 3693 if (bi) 3694 bitmap_end = 1; 3695 3696 log_stripe_write_finished(sh); 3697 3698 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3699 wake_up(&conf->wait_for_overlap); 3700 3701 while (bi && bi->bi_iter.bi_sector < 3702 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3703 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3704 3705 md_write_end(conf->mddev); 3706 bio_io_error(bi); 3707 bi = nextbi; 3708 } 3709 if (bitmap_end) 3710 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3711 RAID5_STRIPE_SECTORS(conf), 0, 0); 3712 bitmap_end = 0; 3713 /* and fail all 'written' */ 3714 bi = sh->dev[i].written; 3715 sh->dev[i].written = NULL; 3716 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3717 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3718 sh->dev[i].page = sh->dev[i].orig_page; 3719 } 3720 3721 if (bi) bitmap_end = 1; 3722 while (bi && bi->bi_iter.bi_sector < 3723 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3724 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3725 3726 md_write_end(conf->mddev); 3727 bio_io_error(bi); 3728 bi = bi2; 3729 } 3730 3731 /* fail any reads if this device is non-operational and 3732 * the data has not reached the cache yet. 3733 */ 3734 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3735 s->failed > conf->max_degraded && 3736 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3737 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3738 spin_lock_irq(&sh->stripe_lock); 3739 bi = sh->dev[i].toread; 3740 sh->dev[i].toread = NULL; 3741 spin_unlock_irq(&sh->stripe_lock); 3742 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3743 wake_up(&conf->wait_for_overlap); 3744 if (bi) 3745 s->to_read--; 3746 while (bi && bi->bi_iter.bi_sector < 3747 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3748 struct bio *nextbi = 3749 r5_next_bio(conf, bi, sh->dev[i].sector); 3750 3751 bio_io_error(bi); 3752 bi = nextbi; 3753 } 3754 } 3755 if (bitmap_end) 3756 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3757 RAID5_STRIPE_SECTORS(conf), 0, 0); 3758 /* If we were in the middle of a write the parity block might 3759 * still be locked - so just clear all R5_LOCKED flags 3760 */ 3761 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3762 } 3763 s->to_write = 0; 3764 s->written = 0; 3765 3766 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3767 if (atomic_dec_and_test(&conf->pending_full_writes)) 3768 md_wakeup_thread(conf->mddev->thread); 3769 } 3770 3771 static void 3772 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3773 struct stripe_head_state *s) 3774 { 3775 int abort = 0; 3776 int i; 3777 3778 BUG_ON(sh->batch_head); 3779 clear_bit(STRIPE_SYNCING, &sh->state); 3780 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3781 wake_up(&conf->wait_for_overlap); 3782 s->syncing = 0; 3783 s->replacing = 0; 3784 /* There is nothing more to do for sync/check/repair. 3785 * Don't even need to abort as that is handled elsewhere 3786 * if needed, and not always wanted e.g. if there is a known 3787 * bad block here. 3788 * For recover/replace we need to record a bad block on all 3789 * non-sync devices, or abort the recovery 3790 */ 3791 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3792 /* During recovery devices cannot be removed, so 3793 * locking and refcounting of rdevs is not needed 3794 */ 3795 rcu_read_lock(); 3796 for (i = 0; i < conf->raid_disks; i++) { 3797 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3798 if (rdev 3799 && !test_bit(Faulty, &rdev->flags) 3800 && !test_bit(In_sync, &rdev->flags) 3801 && !rdev_set_badblocks(rdev, sh->sector, 3802 RAID5_STRIPE_SECTORS(conf), 0)) 3803 abort = 1; 3804 rdev = rcu_dereference(conf->disks[i].replacement); 3805 if (rdev 3806 && !test_bit(Faulty, &rdev->flags) 3807 && !test_bit(In_sync, &rdev->flags) 3808 && !rdev_set_badblocks(rdev, sh->sector, 3809 RAID5_STRIPE_SECTORS(conf), 0)) 3810 abort = 1; 3811 } 3812 rcu_read_unlock(); 3813 if (abort) 3814 conf->recovery_disabled = 3815 conf->mddev->recovery_disabled; 3816 } 3817 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3818 } 3819 3820 static int want_replace(struct stripe_head *sh, int disk_idx) 3821 { 3822 struct md_rdev *rdev; 3823 int rv = 0; 3824 3825 rcu_read_lock(); 3826 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3827 if (rdev 3828 && !test_bit(Faulty, &rdev->flags) 3829 && !test_bit(In_sync, &rdev->flags) 3830 && (rdev->recovery_offset <= sh->sector 3831 || rdev->mddev->recovery_cp <= sh->sector)) 3832 rv = 1; 3833 rcu_read_unlock(); 3834 return rv; 3835 } 3836 3837 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3838 int disk_idx, int disks) 3839 { 3840 struct r5dev *dev = &sh->dev[disk_idx]; 3841 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3842 &sh->dev[s->failed_num[1]] }; 3843 int i; 3844 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3845 3846 3847 if (test_bit(R5_LOCKED, &dev->flags) || 3848 test_bit(R5_UPTODATE, &dev->flags)) 3849 /* No point reading this as we already have it or have 3850 * decided to get it. 3851 */ 3852 return 0; 3853 3854 if (dev->toread || 3855 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3856 /* We need this block to directly satisfy a request */ 3857 return 1; 3858 3859 if (s->syncing || s->expanding || 3860 (s->replacing && want_replace(sh, disk_idx))) 3861 /* When syncing, or expanding we read everything. 3862 * When replacing, we need the replaced block. 3863 */ 3864 return 1; 3865 3866 if ((s->failed >= 1 && fdev[0]->toread) || 3867 (s->failed >= 2 && fdev[1]->toread)) 3868 /* If we want to read from a failed device, then 3869 * we need to actually read every other device. 3870 */ 3871 return 1; 3872 3873 /* Sometimes neither read-modify-write nor reconstruct-write 3874 * cycles can work. In those cases we read every block we 3875 * can. Then the parity-update is certain to have enough to 3876 * work with. 3877 * This can only be a problem when we need to write something, 3878 * and some device has failed. If either of those tests 3879 * fail we need look no further. 3880 */ 3881 if (!s->failed || !s->to_write) 3882 return 0; 3883 3884 if (test_bit(R5_Insync, &dev->flags) && 3885 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3886 /* Pre-reads at not permitted until after short delay 3887 * to gather multiple requests. However if this 3888 * device is no Insync, the block could only be computed 3889 * and there is no need to delay that. 3890 */ 3891 return 0; 3892 3893 for (i = 0; i < s->failed && i < 2; i++) { 3894 if (fdev[i]->towrite && 3895 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3896 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3897 /* If we have a partial write to a failed 3898 * device, then we will need to reconstruct 3899 * the content of that device, so all other 3900 * devices must be read. 3901 */ 3902 return 1; 3903 3904 if (s->failed >= 2 && 3905 (fdev[i]->towrite || 3906 s->failed_num[i] == sh->pd_idx || 3907 s->failed_num[i] == sh->qd_idx) && 3908 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3909 /* In max degraded raid6, If the failed disk is P, Q, 3910 * or we want to read the failed disk, we need to do 3911 * reconstruct-write. 3912 */ 3913 force_rcw = true; 3914 } 3915 3916 /* If we are forced to do a reconstruct-write, because parity 3917 * cannot be trusted and we are currently recovering it, there 3918 * is extra need to be careful. 3919 * If one of the devices that we would need to read, because 3920 * it is not being overwritten (and maybe not written at all) 3921 * is missing/faulty, then we need to read everything we can. 3922 */ 3923 if (!force_rcw && 3924 sh->sector < sh->raid_conf->mddev->recovery_cp) 3925 /* reconstruct-write isn't being forced */ 3926 return 0; 3927 for (i = 0; i < s->failed && i < 2; i++) { 3928 if (s->failed_num[i] != sh->pd_idx && 3929 s->failed_num[i] != sh->qd_idx && 3930 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3931 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3932 return 1; 3933 } 3934 3935 return 0; 3936 } 3937 3938 /* fetch_block - checks the given member device to see if its data needs 3939 * to be read or computed to satisfy a request. 3940 * 3941 * Returns 1 when no more member devices need to be checked, otherwise returns 3942 * 0 to tell the loop in handle_stripe_fill to continue 3943 */ 3944 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3945 int disk_idx, int disks) 3946 { 3947 struct r5dev *dev = &sh->dev[disk_idx]; 3948 3949 /* is the data in this block needed, and can we get it? */ 3950 if (need_this_block(sh, s, disk_idx, disks)) { 3951 /* we would like to get this block, possibly by computing it, 3952 * otherwise read it if the backing disk is insync 3953 */ 3954 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3955 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3956 BUG_ON(sh->batch_head); 3957 3958 /* 3959 * In the raid6 case if the only non-uptodate disk is P 3960 * then we already trusted P to compute the other failed 3961 * drives. It is safe to compute rather than re-read P. 3962 * In other cases we only compute blocks from failed 3963 * devices, otherwise check/repair might fail to detect 3964 * a real inconsistency. 3965 */ 3966 3967 if ((s->uptodate == disks - 1) && 3968 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3969 (s->failed && (disk_idx == s->failed_num[0] || 3970 disk_idx == s->failed_num[1])))) { 3971 /* have disk failed, and we're requested to fetch it; 3972 * do compute it 3973 */ 3974 pr_debug("Computing stripe %llu block %d\n", 3975 (unsigned long long)sh->sector, disk_idx); 3976 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3977 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3978 set_bit(R5_Wantcompute, &dev->flags); 3979 sh->ops.target = disk_idx; 3980 sh->ops.target2 = -1; /* no 2nd target */ 3981 s->req_compute = 1; 3982 /* Careful: from this point on 'uptodate' is in the eye 3983 * of raid_run_ops which services 'compute' operations 3984 * before writes. R5_Wantcompute flags a block that will 3985 * be R5_UPTODATE by the time it is needed for a 3986 * subsequent operation. 3987 */ 3988 s->uptodate++; 3989 return 1; 3990 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3991 /* Computing 2-failure is *very* expensive; only 3992 * do it if failed >= 2 3993 */ 3994 int other; 3995 for (other = disks; other--; ) { 3996 if (other == disk_idx) 3997 continue; 3998 if (!test_bit(R5_UPTODATE, 3999 &sh->dev[other].flags)) 4000 break; 4001 } 4002 BUG_ON(other < 0); 4003 pr_debug("Computing stripe %llu blocks %d,%d\n", 4004 (unsigned long long)sh->sector, 4005 disk_idx, other); 4006 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4007 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4008 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 4009 set_bit(R5_Wantcompute, &sh->dev[other].flags); 4010 sh->ops.target = disk_idx; 4011 sh->ops.target2 = other; 4012 s->uptodate += 2; 4013 s->req_compute = 1; 4014 return 1; 4015 } else if (test_bit(R5_Insync, &dev->flags)) { 4016 set_bit(R5_LOCKED, &dev->flags); 4017 set_bit(R5_Wantread, &dev->flags); 4018 s->locked++; 4019 pr_debug("Reading block %d (sync=%d)\n", 4020 disk_idx, s->syncing); 4021 } 4022 } 4023 4024 return 0; 4025 } 4026 4027 /* 4028 * handle_stripe_fill - read or compute data to satisfy pending requests. 4029 */ 4030 static void handle_stripe_fill(struct stripe_head *sh, 4031 struct stripe_head_state *s, 4032 int disks) 4033 { 4034 int i; 4035 4036 /* look for blocks to read/compute, skip this if a compute 4037 * is already in flight, or if the stripe contents are in the 4038 * midst of changing due to a write 4039 */ 4040 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 4041 !sh->reconstruct_state) { 4042 4043 /* 4044 * For degraded stripe with data in journal, do not handle 4045 * read requests yet, instead, flush the stripe to raid 4046 * disks first, this avoids handling complex rmw of write 4047 * back cache (prexor with orig_page, and then xor with 4048 * page) in the read path 4049 */ 4050 if (s->to_read && s->injournal && s->failed) { 4051 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 4052 r5c_make_stripe_write_out(sh); 4053 goto out; 4054 } 4055 4056 for (i = disks; i--; ) 4057 if (fetch_block(sh, s, i, disks)) 4058 break; 4059 } 4060 out: 4061 set_bit(STRIPE_HANDLE, &sh->state); 4062 } 4063 4064 static void break_stripe_batch_list(struct stripe_head *head_sh, 4065 unsigned long handle_flags); 4066 /* handle_stripe_clean_event 4067 * any written block on an uptodate or failed drive can be returned. 4068 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 4069 * never LOCKED, so we don't need to test 'failed' directly. 4070 */ 4071 static void handle_stripe_clean_event(struct r5conf *conf, 4072 struct stripe_head *sh, int disks) 4073 { 4074 int i; 4075 struct r5dev *dev; 4076 int discard_pending = 0; 4077 struct stripe_head *head_sh = sh; 4078 bool do_endio = false; 4079 4080 for (i = disks; i--; ) 4081 if (sh->dev[i].written) { 4082 dev = &sh->dev[i]; 4083 if (!test_bit(R5_LOCKED, &dev->flags) && 4084 (test_bit(R5_UPTODATE, &dev->flags) || 4085 test_bit(R5_Discard, &dev->flags) || 4086 test_bit(R5_SkipCopy, &dev->flags))) { 4087 /* We can return any write requests */ 4088 struct bio *wbi, *wbi2; 4089 pr_debug("Return write for disc %d\n", i); 4090 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4091 clear_bit(R5_UPTODATE, &dev->flags); 4092 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4093 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4094 } 4095 do_endio = true; 4096 4097 returnbi: 4098 dev->page = dev->orig_page; 4099 wbi = dev->written; 4100 dev->written = NULL; 4101 while (wbi && wbi->bi_iter.bi_sector < 4102 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4103 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4104 md_write_end(conf->mddev); 4105 bio_endio(wbi); 4106 wbi = wbi2; 4107 } 4108 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4109 RAID5_STRIPE_SECTORS(conf), 4110 !test_bit(STRIPE_DEGRADED, &sh->state), 4111 0); 4112 if (head_sh->batch_head) { 4113 sh = list_first_entry(&sh->batch_list, 4114 struct stripe_head, 4115 batch_list); 4116 if (sh != head_sh) { 4117 dev = &sh->dev[i]; 4118 goto returnbi; 4119 } 4120 } 4121 sh = head_sh; 4122 dev = &sh->dev[i]; 4123 } else if (test_bit(R5_Discard, &dev->flags)) 4124 discard_pending = 1; 4125 } 4126 4127 log_stripe_write_finished(sh); 4128 4129 if (!discard_pending && 4130 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4131 int hash; 4132 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4133 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4134 if (sh->qd_idx >= 0) { 4135 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4136 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4137 } 4138 /* now that discard is done we can proceed with any sync */ 4139 clear_bit(STRIPE_DISCARD, &sh->state); 4140 /* 4141 * SCSI discard will change some bio fields and the stripe has 4142 * no updated data, so remove it from hash list and the stripe 4143 * will be reinitialized 4144 */ 4145 unhash: 4146 hash = sh->hash_lock_index; 4147 spin_lock_irq(conf->hash_locks + hash); 4148 remove_hash(sh); 4149 spin_unlock_irq(conf->hash_locks + hash); 4150 if (head_sh->batch_head) { 4151 sh = list_first_entry(&sh->batch_list, 4152 struct stripe_head, batch_list); 4153 if (sh != head_sh) 4154 goto unhash; 4155 } 4156 sh = head_sh; 4157 4158 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4159 set_bit(STRIPE_HANDLE, &sh->state); 4160 4161 } 4162 4163 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4164 if (atomic_dec_and_test(&conf->pending_full_writes)) 4165 md_wakeup_thread(conf->mddev->thread); 4166 4167 if (head_sh->batch_head && do_endio) 4168 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4169 } 4170 4171 /* 4172 * For RMW in write back cache, we need extra page in prexor to store the 4173 * old data. This page is stored in dev->orig_page. 4174 * 4175 * This function checks whether we have data for prexor. The exact logic 4176 * is: 4177 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4178 */ 4179 static inline bool uptodate_for_rmw(struct r5dev *dev) 4180 { 4181 return (test_bit(R5_UPTODATE, &dev->flags)) && 4182 (!test_bit(R5_InJournal, &dev->flags) || 4183 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4184 } 4185 4186 static int handle_stripe_dirtying(struct r5conf *conf, 4187 struct stripe_head *sh, 4188 struct stripe_head_state *s, 4189 int disks) 4190 { 4191 int rmw = 0, rcw = 0, i; 4192 sector_t recovery_cp = conf->mddev->recovery_cp; 4193 4194 /* Check whether resync is now happening or should start. 4195 * If yes, then the array is dirty (after unclean shutdown or 4196 * initial creation), so parity in some stripes might be inconsistent. 4197 * In this case, we need to always do reconstruct-write, to ensure 4198 * that in case of drive failure or read-error correction, we 4199 * generate correct data from the parity. 4200 */ 4201 if (conf->rmw_level == PARITY_DISABLE_RMW || 4202 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4203 s->failed == 0)) { 4204 /* Calculate the real rcw later - for now make it 4205 * look like rcw is cheaper 4206 */ 4207 rcw = 1; rmw = 2; 4208 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4209 conf->rmw_level, (unsigned long long)recovery_cp, 4210 (unsigned long long)sh->sector); 4211 } else for (i = disks; i--; ) { 4212 /* would I have to read this buffer for read_modify_write */ 4213 struct r5dev *dev = &sh->dev[i]; 4214 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4215 i == sh->pd_idx || i == sh->qd_idx || 4216 test_bit(R5_InJournal, &dev->flags)) && 4217 !test_bit(R5_LOCKED, &dev->flags) && 4218 !(uptodate_for_rmw(dev) || 4219 test_bit(R5_Wantcompute, &dev->flags))) { 4220 if (test_bit(R5_Insync, &dev->flags)) 4221 rmw++; 4222 else 4223 rmw += 2*disks; /* cannot read it */ 4224 } 4225 /* Would I have to read this buffer for reconstruct_write */ 4226 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4227 i != sh->pd_idx && i != sh->qd_idx && 4228 !test_bit(R5_LOCKED, &dev->flags) && 4229 !(test_bit(R5_UPTODATE, &dev->flags) || 4230 test_bit(R5_Wantcompute, &dev->flags))) { 4231 if (test_bit(R5_Insync, &dev->flags)) 4232 rcw++; 4233 else 4234 rcw += 2*disks; 4235 } 4236 } 4237 4238 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4239 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4240 set_bit(STRIPE_HANDLE, &sh->state); 4241 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4242 /* prefer read-modify-write, but need to get some data */ 4243 if (conf->mddev->queue) 4244 blk_add_trace_msg(conf->mddev->queue, 4245 "raid5 rmw %llu %d", 4246 (unsigned long long)sh->sector, rmw); 4247 for (i = disks; i--; ) { 4248 struct r5dev *dev = &sh->dev[i]; 4249 if (test_bit(R5_InJournal, &dev->flags) && 4250 dev->page == dev->orig_page && 4251 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4252 /* alloc page for prexor */ 4253 struct page *p = alloc_page(GFP_NOIO); 4254 4255 if (p) { 4256 dev->orig_page = p; 4257 continue; 4258 } 4259 4260 /* 4261 * alloc_page() failed, try use 4262 * disk_info->extra_page 4263 */ 4264 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4265 &conf->cache_state)) { 4266 r5c_use_extra_page(sh); 4267 break; 4268 } 4269 4270 /* extra_page in use, add to delayed_list */ 4271 set_bit(STRIPE_DELAYED, &sh->state); 4272 s->waiting_extra_page = 1; 4273 return -EAGAIN; 4274 } 4275 } 4276 4277 for (i = disks; i--; ) { 4278 struct r5dev *dev = &sh->dev[i]; 4279 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4280 i == sh->pd_idx || i == sh->qd_idx || 4281 test_bit(R5_InJournal, &dev->flags)) && 4282 !test_bit(R5_LOCKED, &dev->flags) && 4283 !(uptodate_for_rmw(dev) || 4284 test_bit(R5_Wantcompute, &dev->flags)) && 4285 test_bit(R5_Insync, &dev->flags)) { 4286 if (test_bit(STRIPE_PREREAD_ACTIVE, 4287 &sh->state)) { 4288 pr_debug("Read_old block %d for r-m-w\n", 4289 i); 4290 set_bit(R5_LOCKED, &dev->flags); 4291 set_bit(R5_Wantread, &dev->flags); 4292 s->locked++; 4293 } else 4294 set_bit(STRIPE_DELAYED, &sh->state); 4295 } 4296 } 4297 } 4298 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4299 /* want reconstruct write, but need to get some data */ 4300 int qread =0; 4301 rcw = 0; 4302 for (i = disks; i--; ) { 4303 struct r5dev *dev = &sh->dev[i]; 4304 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4305 i != sh->pd_idx && i != sh->qd_idx && 4306 !test_bit(R5_LOCKED, &dev->flags) && 4307 !(test_bit(R5_UPTODATE, &dev->flags) || 4308 test_bit(R5_Wantcompute, &dev->flags))) { 4309 rcw++; 4310 if (test_bit(R5_Insync, &dev->flags) && 4311 test_bit(STRIPE_PREREAD_ACTIVE, 4312 &sh->state)) { 4313 pr_debug("Read_old block " 4314 "%d for Reconstruct\n", i); 4315 set_bit(R5_LOCKED, &dev->flags); 4316 set_bit(R5_Wantread, &dev->flags); 4317 s->locked++; 4318 qread++; 4319 } else 4320 set_bit(STRIPE_DELAYED, &sh->state); 4321 } 4322 } 4323 if (rcw && conf->mddev->queue) 4324 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4325 (unsigned long long)sh->sector, 4326 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4327 } 4328 4329 if (rcw > disks && rmw > disks && 4330 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4331 set_bit(STRIPE_DELAYED, &sh->state); 4332 4333 /* now if nothing is locked, and if we have enough data, 4334 * we can start a write request 4335 */ 4336 /* since handle_stripe can be called at any time we need to handle the 4337 * case where a compute block operation has been submitted and then a 4338 * subsequent call wants to start a write request. raid_run_ops only 4339 * handles the case where compute block and reconstruct are requested 4340 * simultaneously. If this is not the case then new writes need to be 4341 * held off until the compute completes. 4342 */ 4343 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4344 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4345 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4346 schedule_reconstruction(sh, s, rcw == 0, 0); 4347 return 0; 4348 } 4349 4350 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4351 struct stripe_head_state *s, int disks) 4352 { 4353 struct r5dev *dev = NULL; 4354 4355 BUG_ON(sh->batch_head); 4356 set_bit(STRIPE_HANDLE, &sh->state); 4357 4358 switch (sh->check_state) { 4359 case check_state_idle: 4360 /* start a new check operation if there are no failures */ 4361 if (s->failed == 0) { 4362 BUG_ON(s->uptodate != disks); 4363 sh->check_state = check_state_run; 4364 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4365 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4366 s->uptodate--; 4367 break; 4368 } 4369 dev = &sh->dev[s->failed_num[0]]; 4370 fallthrough; 4371 case check_state_compute_result: 4372 sh->check_state = check_state_idle; 4373 if (!dev) 4374 dev = &sh->dev[sh->pd_idx]; 4375 4376 /* check that a write has not made the stripe insync */ 4377 if (test_bit(STRIPE_INSYNC, &sh->state)) 4378 break; 4379 4380 /* either failed parity check, or recovery is happening */ 4381 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4382 BUG_ON(s->uptodate != disks); 4383 4384 set_bit(R5_LOCKED, &dev->flags); 4385 s->locked++; 4386 set_bit(R5_Wantwrite, &dev->flags); 4387 4388 clear_bit(STRIPE_DEGRADED, &sh->state); 4389 set_bit(STRIPE_INSYNC, &sh->state); 4390 break; 4391 case check_state_run: 4392 break; /* we will be called again upon completion */ 4393 case check_state_check_result: 4394 sh->check_state = check_state_idle; 4395 4396 /* if a failure occurred during the check operation, leave 4397 * STRIPE_INSYNC not set and let the stripe be handled again 4398 */ 4399 if (s->failed) 4400 break; 4401 4402 /* handle a successful check operation, if parity is correct 4403 * we are done. Otherwise update the mismatch count and repair 4404 * parity if !MD_RECOVERY_CHECK 4405 */ 4406 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4407 /* parity is correct (on disc, 4408 * not in buffer any more) 4409 */ 4410 set_bit(STRIPE_INSYNC, &sh->state); 4411 else { 4412 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4413 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4414 /* don't try to repair!! */ 4415 set_bit(STRIPE_INSYNC, &sh->state); 4416 pr_warn_ratelimited("%s: mismatch sector in range " 4417 "%llu-%llu\n", mdname(conf->mddev), 4418 (unsigned long long) sh->sector, 4419 (unsigned long long) sh->sector + 4420 RAID5_STRIPE_SECTORS(conf)); 4421 } else { 4422 sh->check_state = check_state_compute_run; 4423 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4424 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4425 set_bit(R5_Wantcompute, 4426 &sh->dev[sh->pd_idx].flags); 4427 sh->ops.target = sh->pd_idx; 4428 sh->ops.target2 = -1; 4429 s->uptodate++; 4430 } 4431 } 4432 break; 4433 case check_state_compute_run: 4434 break; 4435 default: 4436 pr_err("%s: unknown check_state: %d sector: %llu\n", 4437 __func__, sh->check_state, 4438 (unsigned long long) sh->sector); 4439 BUG(); 4440 } 4441 } 4442 4443 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4444 struct stripe_head_state *s, 4445 int disks) 4446 { 4447 int pd_idx = sh->pd_idx; 4448 int qd_idx = sh->qd_idx; 4449 struct r5dev *dev; 4450 4451 BUG_ON(sh->batch_head); 4452 set_bit(STRIPE_HANDLE, &sh->state); 4453 4454 BUG_ON(s->failed > 2); 4455 4456 /* Want to check and possibly repair P and Q. 4457 * However there could be one 'failed' device, in which 4458 * case we can only check one of them, possibly using the 4459 * other to generate missing data 4460 */ 4461 4462 switch (sh->check_state) { 4463 case check_state_idle: 4464 /* start a new check operation if there are < 2 failures */ 4465 if (s->failed == s->q_failed) { 4466 /* The only possible failed device holds Q, so it 4467 * makes sense to check P (If anything else were failed, 4468 * we would have used P to recreate it). 4469 */ 4470 sh->check_state = check_state_run; 4471 } 4472 if (!s->q_failed && s->failed < 2) { 4473 /* Q is not failed, and we didn't use it to generate 4474 * anything, so it makes sense to check it 4475 */ 4476 if (sh->check_state == check_state_run) 4477 sh->check_state = check_state_run_pq; 4478 else 4479 sh->check_state = check_state_run_q; 4480 } 4481 4482 /* discard potentially stale zero_sum_result */ 4483 sh->ops.zero_sum_result = 0; 4484 4485 if (sh->check_state == check_state_run) { 4486 /* async_xor_zero_sum destroys the contents of P */ 4487 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4488 s->uptodate--; 4489 } 4490 if (sh->check_state >= check_state_run && 4491 sh->check_state <= check_state_run_pq) { 4492 /* async_syndrome_zero_sum preserves P and Q, so 4493 * no need to mark them !uptodate here 4494 */ 4495 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4496 break; 4497 } 4498 4499 /* we have 2-disk failure */ 4500 BUG_ON(s->failed != 2); 4501 fallthrough; 4502 case check_state_compute_result: 4503 sh->check_state = check_state_idle; 4504 4505 /* check that a write has not made the stripe insync */ 4506 if (test_bit(STRIPE_INSYNC, &sh->state)) 4507 break; 4508 4509 /* now write out any block on a failed drive, 4510 * or P or Q if they were recomputed 4511 */ 4512 dev = NULL; 4513 if (s->failed == 2) { 4514 dev = &sh->dev[s->failed_num[1]]; 4515 s->locked++; 4516 set_bit(R5_LOCKED, &dev->flags); 4517 set_bit(R5_Wantwrite, &dev->flags); 4518 } 4519 if (s->failed >= 1) { 4520 dev = &sh->dev[s->failed_num[0]]; 4521 s->locked++; 4522 set_bit(R5_LOCKED, &dev->flags); 4523 set_bit(R5_Wantwrite, &dev->flags); 4524 } 4525 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4526 dev = &sh->dev[pd_idx]; 4527 s->locked++; 4528 set_bit(R5_LOCKED, &dev->flags); 4529 set_bit(R5_Wantwrite, &dev->flags); 4530 } 4531 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4532 dev = &sh->dev[qd_idx]; 4533 s->locked++; 4534 set_bit(R5_LOCKED, &dev->flags); 4535 set_bit(R5_Wantwrite, &dev->flags); 4536 } 4537 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4538 "%s: disk%td not up to date\n", 4539 mdname(conf->mddev), 4540 dev - (struct r5dev *) &sh->dev)) { 4541 clear_bit(R5_LOCKED, &dev->flags); 4542 clear_bit(R5_Wantwrite, &dev->flags); 4543 s->locked--; 4544 } 4545 clear_bit(STRIPE_DEGRADED, &sh->state); 4546 4547 set_bit(STRIPE_INSYNC, &sh->state); 4548 break; 4549 case check_state_run: 4550 case check_state_run_q: 4551 case check_state_run_pq: 4552 break; /* we will be called again upon completion */ 4553 case check_state_check_result: 4554 sh->check_state = check_state_idle; 4555 4556 /* handle a successful check operation, if parity is correct 4557 * we are done. Otherwise update the mismatch count and repair 4558 * parity if !MD_RECOVERY_CHECK 4559 */ 4560 if (sh->ops.zero_sum_result == 0) { 4561 /* both parities are correct */ 4562 if (!s->failed) 4563 set_bit(STRIPE_INSYNC, &sh->state); 4564 else { 4565 /* in contrast to the raid5 case we can validate 4566 * parity, but still have a failure to write 4567 * back 4568 */ 4569 sh->check_state = check_state_compute_result; 4570 /* Returning at this point means that we may go 4571 * off and bring p and/or q uptodate again so 4572 * we make sure to check zero_sum_result again 4573 * to verify if p or q need writeback 4574 */ 4575 } 4576 } else { 4577 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4578 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4579 /* don't try to repair!! */ 4580 set_bit(STRIPE_INSYNC, &sh->state); 4581 pr_warn_ratelimited("%s: mismatch sector in range " 4582 "%llu-%llu\n", mdname(conf->mddev), 4583 (unsigned long long) sh->sector, 4584 (unsigned long long) sh->sector + 4585 RAID5_STRIPE_SECTORS(conf)); 4586 } else { 4587 int *target = &sh->ops.target; 4588 4589 sh->ops.target = -1; 4590 sh->ops.target2 = -1; 4591 sh->check_state = check_state_compute_run; 4592 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4593 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4594 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4595 set_bit(R5_Wantcompute, 4596 &sh->dev[pd_idx].flags); 4597 *target = pd_idx; 4598 target = &sh->ops.target2; 4599 s->uptodate++; 4600 } 4601 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4602 set_bit(R5_Wantcompute, 4603 &sh->dev[qd_idx].flags); 4604 *target = qd_idx; 4605 s->uptodate++; 4606 } 4607 } 4608 } 4609 break; 4610 case check_state_compute_run: 4611 break; 4612 default: 4613 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4614 __func__, sh->check_state, 4615 (unsigned long long) sh->sector); 4616 BUG(); 4617 } 4618 } 4619 4620 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4621 { 4622 int i; 4623 4624 /* We have read all the blocks in this stripe and now we need to 4625 * copy some of them into a target stripe for expand. 4626 */ 4627 struct dma_async_tx_descriptor *tx = NULL; 4628 BUG_ON(sh->batch_head); 4629 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4630 for (i = 0; i < sh->disks; i++) 4631 if (i != sh->pd_idx && i != sh->qd_idx) { 4632 int dd_idx, j; 4633 struct stripe_head *sh2; 4634 struct async_submit_ctl submit; 4635 4636 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4637 sector_t s = raid5_compute_sector(conf, bn, 0, 4638 &dd_idx, NULL); 4639 sh2 = raid5_get_active_stripe(conf, NULL, s, 4640 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4641 if (sh2 == NULL) 4642 /* so far only the early blocks of this stripe 4643 * have been requested. When later blocks 4644 * get requested, we will try again 4645 */ 4646 continue; 4647 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4648 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4649 /* must have already done this block */ 4650 raid5_release_stripe(sh2); 4651 continue; 4652 } 4653 4654 /* place all the copies on one channel */ 4655 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4656 tx = async_memcpy(sh2->dev[dd_idx].page, 4657 sh->dev[i].page, sh2->dev[dd_idx].offset, 4658 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4659 &submit); 4660 4661 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4662 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4663 for (j = 0; j < conf->raid_disks; j++) 4664 if (j != sh2->pd_idx && 4665 j != sh2->qd_idx && 4666 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4667 break; 4668 if (j == conf->raid_disks) { 4669 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4670 set_bit(STRIPE_HANDLE, &sh2->state); 4671 } 4672 raid5_release_stripe(sh2); 4673 4674 } 4675 /* done submitting copies, wait for them to complete */ 4676 async_tx_quiesce(&tx); 4677 } 4678 4679 /* 4680 * handle_stripe - do things to a stripe. 4681 * 4682 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4683 * state of various bits to see what needs to be done. 4684 * Possible results: 4685 * return some read requests which now have data 4686 * return some write requests which are safely on storage 4687 * schedule a read on some buffers 4688 * schedule a write of some buffers 4689 * return confirmation of parity correctness 4690 * 4691 */ 4692 4693 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4694 { 4695 struct r5conf *conf = sh->raid_conf; 4696 int disks = sh->disks; 4697 struct r5dev *dev; 4698 int i; 4699 int do_recovery = 0; 4700 4701 memset(s, 0, sizeof(*s)); 4702 4703 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4704 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4705 s->failed_num[0] = -1; 4706 s->failed_num[1] = -1; 4707 s->log_failed = r5l_log_disk_error(conf); 4708 4709 /* Now to look around and see what can be done */ 4710 rcu_read_lock(); 4711 for (i=disks; i--; ) { 4712 struct md_rdev *rdev; 4713 sector_t first_bad; 4714 int bad_sectors; 4715 int is_bad = 0; 4716 4717 dev = &sh->dev[i]; 4718 4719 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4720 i, dev->flags, 4721 dev->toread, dev->towrite, dev->written); 4722 /* maybe we can reply to a read 4723 * 4724 * new wantfill requests are only permitted while 4725 * ops_complete_biofill is guaranteed to be inactive 4726 */ 4727 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4728 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4729 set_bit(R5_Wantfill, &dev->flags); 4730 4731 /* now count some things */ 4732 if (test_bit(R5_LOCKED, &dev->flags)) 4733 s->locked++; 4734 if (test_bit(R5_UPTODATE, &dev->flags)) 4735 s->uptodate++; 4736 if (test_bit(R5_Wantcompute, &dev->flags)) { 4737 s->compute++; 4738 BUG_ON(s->compute > 2); 4739 } 4740 4741 if (test_bit(R5_Wantfill, &dev->flags)) 4742 s->to_fill++; 4743 else if (dev->toread) 4744 s->to_read++; 4745 if (dev->towrite) { 4746 s->to_write++; 4747 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4748 s->non_overwrite++; 4749 } 4750 if (dev->written) 4751 s->written++; 4752 /* Prefer to use the replacement for reads, but only 4753 * if it is recovered enough and has no bad blocks. 4754 */ 4755 rdev = rcu_dereference(conf->disks[i].replacement); 4756 if (rdev && !test_bit(Faulty, &rdev->flags) && 4757 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4758 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4759 &first_bad, &bad_sectors)) 4760 set_bit(R5_ReadRepl, &dev->flags); 4761 else { 4762 if (rdev && !test_bit(Faulty, &rdev->flags)) 4763 set_bit(R5_NeedReplace, &dev->flags); 4764 else 4765 clear_bit(R5_NeedReplace, &dev->flags); 4766 rdev = rcu_dereference(conf->disks[i].rdev); 4767 clear_bit(R5_ReadRepl, &dev->flags); 4768 } 4769 if (rdev && test_bit(Faulty, &rdev->flags)) 4770 rdev = NULL; 4771 if (rdev) { 4772 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4773 &first_bad, &bad_sectors); 4774 if (s->blocked_rdev == NULL 4775 && (test_bit(Blocked, &rdev->flags) 4776 || is_bad < 0)) { 4777 if (is_bad < 0) 4778 set_bit(BlockedBadBlocks, 4779 &rdev->flags); 4780 s->blocked_rdev = rdev; 4781 atomic_inc(&rdev->nr_pending); 4782 } 4783 } 4784 clear_bit(R5_Insync, &dev->flags); 4785 if (!rdev) 4786 /* Not in-sync */; 4787 else if (is_bad) { 4788 /* also not in-sync */ 4789 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4790 test_bit(R5_UPTODATE, &dev->flags)) { 4791 /* treat as in-sync, but with a read error 4792 * which we can now try to correct 4793 */ 4794 set_bit(R5_Insync, &dev->flags); 4795 set_bit(R5_ReadError, &dev->flags); 4796 } 4797 } else if (test_bit(In_sync, &rdev->flags)) 4798 set_bit(R5_Insync, &dev->flags); 4799 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4800 /* in sync if before recovery_offset */ 4801 set_bit(R5_Insync, &dev->flags); 4802 else if (test_bit(R5_UPTODATE, &dev->flags) && 4803 test_bit(R5_Expanded, &dev->flags)) 4804 /* If we've reshaped into here, we assume it is Insync. 4805 * We will shortly update recovery_offset to make 4806 * it official. 4807 */ 4808 set_bit(R5_Insync, &dev->flags); 4809 4810 if (test_bit(R5_WriteError, &dev->flags)) { 4811 /* This flag does not apply to '.replacement' 4812 * only to .rdev, so make sure to check that*/ 4813 struct md_rdev *rdev2 = rcu_dereference( 4814 conf->disks[i].rdev); 4815 if (rdev2 == rdev) 4816 clear_bit(R5_Insync, &dev->flags); 4817 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4818 s->handle_bad_blocks = 1; 4819 atomic_inc(&rdev2->nr_pending); 4820 } else 4821 clear_bit(R5_WriteError, &dev->flags); 4822 } 4823 if (test_bit(R5_MadeGood, &dev->flags)) { 4824 /* This flag does not apply to '.replacement' 4825 * only to .rdev, so make sure to check that*/ 4826 struct md_rdev *rdev2 = rcu_dereference( 4827 conf->disks[i].rdev); 4828 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4829 s->handle_bad_blocks = 1; 4830 atomic_inc(&rdev2->nr_pending); 4831 } else 4832 clear_bit(R5_MadeGood, &dev->flags); 4833 } 4834 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4835 struct md_rdev *rdev2 = rcu_dereference( 4836 conf->disks[i].replacement); 4837 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4838 s->handle_bad_blocks = 1; 4839 atomic_inc(&rdev2->nr_pending); 4840 } else 4841 clear_bit(R5_MadeGoodRepl, &dev->flags); 4842 } 4843 if (!test_bit(R5_Insync, &dev->flags)) { 4844 /* The ReadError flag will just be confusing now */ 4845 clear_bit(R5_ReadError, &dev->flags); 4846 clear_bit(R5_ReWrite, &dev->flags); 4847 } 4848 if (test_bit(R5_ReadError, &dev->flags)) 4849 clear_bit(R5_Insync, &dev->flags); 4850 if (!test_bit(R5_Insync, &dev->flags)) { 4851 if (s->failed < 2) 4852 s->failed_num[s->failed] = i; 4853 s->failed++; 4854 if (rdev && !test_bit(Faulty, &rdev->flags)) 4855 do_recovery = 1; 4856 else if (!rdev) { 4857 rdev = rcu_dereference( 4858 conf->disks[i].replacement); 4859 if (rdev && !test_bit(Faulty, &rdev->flags)) 4860 do_recovery = 1; 4861 } 4862 } 4863 4864 if (test_bit(R5_InJournal, &dev->flags)) 4865 s->injournal++; 4866 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4867 s->just_cached++; 4868 } 4869 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4870 /* If there is a failed device being replaced, 4871 * we must be recovering. 4872 * else if we are after recovery_cp, we must be syncing 4873 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4874 * else we can only be replacing 4875 * sync and recovery both need to read all devices, and so 4876 * use the same flag. 4877 */ 4878 if (do_recovery || 4879 sh->sector >= conf->mddev->recovery_cp || 4880 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4881 s->syncing = 1; 4882 else 4883 s->replacing = 1; 4884 } 4885 rcu_read_unlock(); 4886 } 4887 4888 /* 4889 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4890 * a head which can now be handled. 4891 */ 4892 static int clear_batch_ready(struct stripe_head *sh) 4893 { 4894 struct stripe_head *tmp; 4895 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4896 return (sh->batch_head && sh->batch_head != sh); 4897 spin_lock(&sh->stripe_lock); 4898 if (!sh->batch_head) { 4899 spin_unlock(&sh->stripe_lock); 4900 return 0; 4901 } 4902 4903 /* 4904 * this stripe could be added to a batch list before we check 4905 * BATCH_READY, skips it 4906 */ 4907 if (sh->batch_head != sh) { 4908 spin_unlock(&sh->stripe_lock); 4909 return 1; 4910 } 4911 spin_lock(&sh->batch_lock); 4912 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4913 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4914 spin_unlock(&sh->batch_lock); 4915 spin_unlock(&sh->stripe_lock); 4916 4917 /* 4918 * BATCH_READY is cleared, no new stripes can be added. 4919 * batch_list can be accessed without lock 4920 */ 4921 return 0; 4922 } 4923 4924 static void break_stripe_batch_list(struct stripe_head *head_sh, 4925 unsigned long handle_flags) 4926 { 4927 struct stripe_head *sh, *next; 4928 int i; 4929 int do_wakeup = 0; 4930 4931 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4932 4933 list_del_init(&sh->batch_list); 4934 4935 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4936 (1 << STRIPE_SYNCING) | 4937 (1 << STRIPE_REPLACED) | 4938 (1 << STRIPE_DELAYED) | 4939 (1 << STRIPE_BIT_DELAY) | 4940 (1 << STRIPE_FULL_WRITE) | 4941 (1 << STRIPE_BIOFILL_RUN) | 4942 (1 << STRIPE_COMPUTE_RUN) | 4943 (1 << STRIPE_DISCARD) | 4944 (1 << STRIPE_BATCH_READY) | 4945 (1 << STRIPE_BATCH_ERR) | 4946 (1 << STRIPE_BITMAP_PENDING)), 4947 "stripe state: %lx\n", sh->state); 4948 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4949 (1 << STRIPE_REPLACED)), 4950 "head stripe state: %lx\n", head_sh->state); 4951 4952 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4953 (1 << STRIPE_PREREAD_ACTIVE) | 4954 (1 << STRIPE_DEGRADED) | 4955 (1 << STRIPE_ON_UNPLUG_LIST)), 4956 head_sh->state & (1 << STRIPE_INSYNC)); 4957 4958 sh->check_state = head_sh->check_state; 4959 sh->reconstruct_state = head_sh->reconstruct_state; 4960 spin_lock_irq(&sh->stripe_lock); 4961 sh->batch_head = NULL; 4962 spin_unlock_irq(&sh->stripe_lock); 4963 for (i = 0; i < sh->disks; i++) { 4964 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4965 do_wakeup = 1; 4966 sh->dev[i].flags = head_sh->dev[i].flags & 4967 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4968 } 4969 if (handle_flags == 0 || 4970 sh->state & handle_flags) 4971 set_bit(STRIPE_HANDLE, &sh->state); 4972 raid5_release_stripe(sh); 4973 } 4974 spin_lock_irq(&head_sh->stripe_lock); 4975 head_sh->batch_head = NULL; 4976 spin_unlock_irq(&head_sh->stripe_lock); 4977 for (i = 0; i < head_sh->disks; i++) 4978 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4979 do_wakeup = 1; 4980 if (head_sh->state & handle_flags) 4981 set_bit(STRIPE_HANDLE, &head_sh->state); 4982 4983 if (do_wakeup) 4984 wake_up(&head_sh->raid_conf->wait_for_overlap); 4985 } 4986 4987 static void handle_stripe(struct stripe_head *sh) 4988 { 4989 struct stripe_head_state s; 4990 struct r5conf *conf = sh->raid_conf; 4991 int i; 4992 int prexor; 4993 int disks = sh->disks; 4994 struct r5dev *pdev, *qdev; 4995 4996 clear_bit(STRIPE_HANDLE, &sh->state); 4997 4998 /* 4999 * handle_stripe should not continue handle the batched stripe, only 5000 * the head of batch list or lone stripe can continue. Otherwise we 5001 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 5002 * is set for the batched stripe. 5003 */ 5004 if (clear_batch_ready(sh)) 5005 return; 5006 5007 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 5008 /* already being handled, ensure it gets handled 5009 * again when current action finishes */ 5010 set_bit(STRIPE_HANDLE, &sh->state); 5011 return; 5012 } 5013 5014 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 5015 break_stripe_batch_list(sh, 0); 5016 5017 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 5018 spin_lock(&sh->stripe_lock); 5019 /* 5020 * Cannot process 'sync' concurrently with 'discard'. 5021 * Flush data in r5cache before 'sync'. 5022 */ 5023 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 5024 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 5025 !test_bit(STRIPE_DISCARD, &sh->state) && 5026 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 5027 set_bit(STRIPE_SYNCING, &sh->state); 5028 clear_bit(STRIPE_INSYNC, &sh->state); 5029 clear_bit(STRIPE_REPLACED, &sh->state); 5030 } 5031 spin_unlock(&sh->stripe_lock); 5032 } 5033 clear_bit(STRIPE_DELAYED, &sh->state); 5034 5035 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 5036 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 5037 (unsigned long long)sh->sector, sh->state, 5038 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 5039 sh->check_state, sh->reconstruct_state); 5040 5041 analyse_stripe(sh, &s); 5042 5043 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 5044 goto finish; 5045 5046 if (s.handle_bad_blocks || 5047 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 5048 set_bit(STRIPE_HANDLE, &sh->state); 5049 goto finish; 5050 } 5051 5052 if (unlikely(s.blocked_rdev)) { 5053 if (s.syncing || s.expanding || s.expanded || 5054 s.replacing || s.to_write || s.written) { 5055 set_bit(STRIPE_HANDLE, &sh->state); 5056 goto finish; 5057 } 5058 /* There is nothing for the blocked_rdev to block */ 5059 rdev_dec_pending(s.blocked_rdev, conf->mddev); 5060 s.blocked_rdev = NULL; 5061 } 5062 5063 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 5064 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 5065 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 5066 } 5067 5068 pr_debug("locked=%d uptodate=%d to_read=%d" 5069 " to_write=%d failed=%d failed_num=%d,%d\n", 5070 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 5071 s.failed_num[0], s.failed_num[1]); 5072 /* 5073 * check if the array has lost more than max_degraded devices and, 5074 * if so, some requests might need to be failed. 5075 * 5076 * When journal device failed (log_failed), we will only process 5077 * the stripe if there is data need write to raid disks 5078 */ 5079 if (s.failed > conf->max_degraded || 5080 (s.log_failed && s.injournal == 0)) { 5081 sh->check_state = 0; 5082 sh->reconstruct_state = 0; 5083 break_stripe_batch_list(sh, 0); 5084 if (s.to_read+s.to_write+s.written) 5085 handle_failed_stripe(conf, sh, &s, disks); 5086 if (s.syncing + s.replacing) 5087 handle_failed_sync(conf, sh, &s); 5088 } 5089 5090 /* Now we check to see if any write operations have recently 5091 * completed 5092 */ 5093 prexor = 0; 5094 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 5095 prexor = 1; 5096 if (sh->reconstruct_state == reconstruct_state_drain_result || 5097 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5098 sh->reconstruct_state = reconstruct_state_idle; 5099 5100 /* All the 'written' buffers and the parity block are ready to 5101 * be written back to disk 5102 */ 5103 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5104 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5105 BUG_ON(sh->qd_idx >= 0 && 5106 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5107 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5108 for (i = disks; i--; ) { 5109 struct r5dev *dev = &sh->dev[i]; 5110 if (test_bit(R5_LOCKED, &dev->flags) && 5111 (i == sh->pd_idx || i == sh->qd_idx || 5112 dev->written || test_bit(R5_InJournal, 5113 &dev->flags))) { 5114 pr_debug("Writing block %d\n", i); 5115 set_bit(R5_Wantwrite, &dev->flags); 5116 if (prexor) 5117 continue; 5118 if (s.failed > 1) 5119 continue; 5120 if (!test_bit(R5_Insync, &dev->flags) || 5121 ((i == sh->pd_idx || i == sh->qd_idx) && 5122 s.failed == 0)) 5123 set_bit(STRIPE_INSYNC, &sh->state); 5124 } 5125 } 5126 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5127 s.dec_preread_active = 1; 5128 } 5129 5130 /* 5131 * might be able to return some write requests if the parity blocks 5132 * are safe, or on a failed drive 5133 */ 5134 pdev = &sh->dev[sh->pd_idx]; 5135 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5136 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5137 qdev = &sh->dev[sh->qd_idx]; 5138 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5139 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5140 || conf->level < 6; 5141 5142 if (s.written && 5143 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5144 && !test_bit(R5_LOCKED, &pdev->flags) 5145 && (test_bit(R5_UPTODATE, &pdev->flags) || 5146 test_bit(R5_Discard, &pdev->flags))))) && 5147 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5148 && !test_bit(R5_LOCKED, &qdev->flags) 5149 && (test_bit(R5_UPTODATE, &qdev->flags) || 5150 test_bit(R5_Discard, &qdev->flags)))))) 5151 handle_stripe_clean_event(conf, sh, disks); 5152 5153 if (s.just_cached) 5154 r5c_handle_cached_data_endio(conf, sh, disks); 5155 log_stripe_write_finished(sh); 5156 5157 /* Now we might consider reading some blocks, either to check/generate 5158 * parity, or to satisfy requests 5159 * or to load a block that is being partially written. 5160 */ 5161 if (s.to_read || s.non_overwrite 5162 || (s.to_write && s.failed) 5163 || (s.syncing && (s.uptodate + s.compute < disks)) 5164 || s.replacing 5165 || s.expanding) 5166 handle_stripe_fill(sh, &s, disks); 5167 5168 /* 5169 * When the stripe finishes full journal write cycle (write to journal 5170 * and raid disk), this is the clean up procedure so it is ready for 5171 * next operation. 5172 */ 5173 r5c_finish_stripe_write_out(conf, sh, &s); 5174 5175 /* 5176 * Now to consider new write requests, cache write back and what else, 5177 * if anything should be read. We do not handle new writes when: 5178 * 1/ A 'write' operation (copy+xor) is already in flight. 5179 * 2/ A 'check' operation is in flight, as it may clobber the parity 5180 * block. 5181 * 3/ A r5c cache log write is in flight. 5182 */ 5183 5184 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5185 if (!r5c_is_writeback(conf->log)) { 5186 if (s.to_write) 5187 handle_stripe_dirtying(conf, sh, &s, disks); 5188 } else { /* write back cache */ 5189 int ret = 0; 5190 5191 /* First, try handle writes in caching phase */ 5192 if (s.to_write) 5193 ret = r5c_try_caching_write(conf, sh, &s, 5194 disks); 5195 /* 5196 * If caching phase failed: ret == -EAGAIN 5197 * OR 5198 * stripe under reclaim: !caching && injournal 5199 * 5200 * fall back to handle_stripe_dirtying() 5201 */ 5202 if (ret == -EAGAIN || 5203 /* stripe under reclaim: !caching && injournal */ 5204 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5205 s.injournal > 0)) { 5206 ret = handle_stripe_dirtying(conf, sh, &s, 5207 disks); 5208 if (ret == -EAGAIN) 5209 goto finish; 5210 } 5211 } 5212 } 5213 5214 /* maybe we need to check and possibly fix the parity for this stripe 5215 * Any reads will already have been scheduled, so we just see if enough 5216 * data is available. The parity check is held off while parity 5217 * dependent operations are in flight. 5218 */ 5219 if (sh->check_state || 5220 (s.syncing && s.locked == 0 && 5221 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5222 !test_bit(STRIPE_INSYNC, &sh->state))) { 5223 if (conf->level == 6) 5224 handle_parity_checks6(conf, sh, &s, disks); 5225 else 5226 handle_parity_checks5(conf, sh, &s, disks); 5227 } 5228 5229 if ((s.replacing || s.syncing) && s.locked == 0 5230 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5231 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5232 /* Write out to replacement devices where possible */ 5233 for (i = 0; i < conf->raid_disks; i++) 5234 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5235 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5236 set_bit(R5_WantReplace, &sh->dev[i].flags); 5237 set_bit(R5_LOCKED, &sh->dev[i].flags); 5238 s.locked++; 5239 } 5240 if (s.replacing) 5241 set_bit(STRIPE_INSYNC, &sh->state); 5242 set_bit(STRIPE_REPLACED, &sh->state); 5243 } 5244 if ((s.syncing || s.replacing) && s.locked == 0 && 5245 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5246 test_bit(STRIPE_INSYNC, &sh->state)) { 5247 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5248 clear_bit(STRIPE_SYNCING, &sh->state); 5249 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5250 wake_up(&conf->wait_for_overlap); 5251 } 5252 5253 /* If the failed drives are just a ReadError, then we might need 5254 * to progress the repair/check process 5255 */ 5256 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5257 for (i = 0; i < s.failed; i++) { 5258 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5259 if (test_bit(R5_ReadError, &dev->flags) 5260 && !test_bit(R5_LOCKED, &dev->flags) 5261 && test_bit(R5_UPTODATE, &dev->flags) 5262 ) { 5263 if (!test_bit(R5_ReWrite, &dev->flags)) { 5264 set_bit(R5_Wantwrite, &dev->flags); 5265 set_bit(R5_ReWrite, &dev->flags); 5266 } else 5267 /* let's read it back */ 5268 set_bit(R5_Wantread, &dev->flags); 5269 set_bit(R5_LOCKED, &dev->flags); 5270 s.locked++; 5271 } 5272 } 5273 5274 /* Finish reconstruct operations initiated by the expansion process */ 5275 if (sh->reconstruct_state == reconstruct_state_result) { 5276 struct stripe_head *sh_src 5277 = raid5_get_active_stripe(conf, NULL, sh->sector, 5278 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5279 R5_GAS_NOQUIESCE); 5280 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5281 /* sh cannot be written until sh_src has been read. 5282 * so arrange for sh to be delayed a little 5283 */ 5284 set_bit(STRIPE_DELAYED, &sh->state); 5285 set_bit(STRIPE_HANDLE, &sh->state); 5286 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5287 &sh_src->state)) 5288 atomic_inc(&conf->preread_active_stripes); 5289 raid5_release_stripe(sh_src); 5290 goto finish; 5291 } 5292 if (sh_src) 5293 raid5_release_stripe(sh_src); 5294 5295 sh->reconstruct_state = reconstruct_state_idle; 5296 clear_bit(STRIPE_EXPANDING, &sh->state); 5297 for (i = conf->raid_disks; i--; ) { 5298 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5299 set_bit(R5_LOCKED, &sh->dev[i].flags); 5300 s.locked++; 5301 } 5302 } 5303 5304 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5305 !sh->reconstruct_state) { 5306 /* Need to write out all blocks after computing parity */ 5307 sh->disks = conf->raid_disks; 5308 stripe_set_idx(sh->sector, conf, 0, sh); 5309 schedule_reconstruction(sh, &s, 1, 1); 5310 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5311 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5312 atomic_dec(&conf->reshape_stripes); 5313 wake_up(&conf->wait_for_overlap); 5314 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5315 } 5316 5317 if (s.expanding && s.locked == 0 && 5318 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5319 handle_stripe_expansion(conf, sh); 5320 5321 finish: 5322 /* wait for this device to become unblocked */ 5323 if (unlikely(s.blocked_rdev)) { 5324 if (conf->mddev->external) 5325 md_wait_for_blocked_rdev(s.blocked_rdev, 5326 conf->mddev); 5327 else 5328 /* Internal metadata will immediately 5329 * be written by raid5d, so we don't 5330 * need to wait here. 5331 */ 5332 rdev_dec_pending(s.blocked_rdev, 5333 conf->mddev); 5334 } 5335 5336 if (s.handle_bad_blocks) 5337 for (i = disks; i--; ) { 5338 struct md_rdev *rdev; 5339 struct r5dev *dev = &sh->dev[i]; 5340 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5341 /* We own a safe reference to the rdev */ 5342 rdev = rdev_pend_deref(conf->disks[i].rdev); 5343 if (!rdev_set_badblocks(rdev, sh->sector, 5344 RAID5_STRIPE_SECTORS(conf), 0)) 5345 md_error(conf->mddev, rdev); 5346 rdev_dec_pending(rdev, conf->mddev); 5347 } 5348 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5349 rdev = rdev_pend_deref(conf->disks[i].rdev); 5350 rdev_clear_badblocks(rdev, sh->sector, 5351 RAID5_STRIPE_SECTORS(conf), 0); 5352 rdev_dec_pending(rdev, conf->mddev); 5353 } 5354 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5355 rdev = rdev_pend_deref(conf->disks[i].replacement); 5356 if (!rdev) 5357 /* rdev have been moved down */ 5358 rdev = rdev_pend_deref(conf->disks[i].rdev); 5359 rdev_clear_badblocks(rdev, sh->sector, 5360 RAID5_STRIPE_SECTORS(conf), 0); 5361 rdev_dec_pending(rdev, conf->mddev); 5362 } 5363 } 5364 5365 if (s.ops_request) 5366 raid_run_ops(sh, s.ops_request); 5367 5368 ops_run_io(sh, &s); 5369 5370 if (s.dec_preread_active) { 5371 /* We delay this until after ops_run_io so that if make_request 5372 * is waiting on a flush, it won't continue until the writes 5373 * have actually been submitted. 5374 */ 5375 atomic_dec(&conf->preread_active_stripes); 5376 if (atomic_read(&conf->preread_active_stripes) < 5377 IO_THRESHOLD) 5378 md_wakeup_thread(conf->mddev->thread); 5379 } 5380 5381 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5382 } 5383 5384 static void raid5_activate_delayed(struct r5conf *conf) 5385 __must_hold(&conf->device_lock) 5386 { 5387 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5388 while (!list_empty(&conf->delayed_list)) { 5389 struct list_head *l = conf->delayed_list.next; 5390 struct stripe_head *sh; 5391 sh = list_entry(l, struct stripe_head, lru); 5392 list_del_init(l); 5393 clear_bit(STRIPE_DELAYED, &sh->state); 5394 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5395 atomic_inc(&conf->preread_active_stripes); 5396 list_add_tail(&sh->lru, &conf->hold_list); 5397 raid5_wakeup_stripe_thread(sh); 5398 } 5399 } 5400 } 5401 5402 static void activate_bit_delay(struct r5conf *conf, 5403 struct list_head *temp_inactive_list) 5404 __must_hold(&conf->device_lock) 5405 { 5406 struct list_head head; 5407 list_add(&head, &conf->bitmap_list); 5408 list_del_init(&conf->bitmap_list); 5409 while (!list_empty(&head)) { 5410 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5411 int hash; 5412 list_del_init(&sh->lru); 5413 atomic_inc(&sh->count); 5414 hash = sh->hash_lock_index; 5415 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5416 } 5417 } 5418 5419 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5420 { 5421 struct r5conf *conf = mddev->private; 5422 sector_t sector = bio->bi_iter.bi_sector; 5423 unsigned int chunk_sectors; 5424 unsigned int bio_sectors = bio_sectors(bio); 5425 5426 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5427 return chunk_sectors >= 5428 ((sector & (chunk_sectors - 1)) + bio_sectors); 5429 } 5430 5431 /* 5432 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5433 * later sampled by raid5d. 5434 */ 5435 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5436 { 5437 unsigned long flags; 5438 5439 spin_lock_irqsave(&conf->device_lock, flags); 5440 5441 bi->bi_next = conf->retry_read_aligned_list; 5442 conf->retry_read_aligned_list = bi; 5443 5444 spin_unlock_irqrestore(&conf->device_lock, flags); 5445 md_wakeup_thread(conf->mddev->thread); 5446 } 5447 5448 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5449 unsigned int *offset) 5450 { 5451 struct bio *bi; 5452 5453 bi = conf->retry_read_aligned; 5454 if (bi) { 5455 *offset = conf->retry_read_offset; 5456 conf->retry_read_aligned = NULL; 5457 return bi; 5458 } 5459 bi = conf->retry_read_aligned_list; 5460 if(bi) { 5461 conf->retry_read_aligned_list = bi->bi_next; 5462 bi->bi_next = NULL; 5463 *offset = 0; 5464 } 5465 5466 return bi; 5467 } 5468 5469 /* 5470 * The "raid5_align_endio" should check if the read succeeded and if it 5471 * did, call bio_endio on the original bio (having bio_put the new bio 5472 * first). 5473 * If the read failed.. 5474 */ 5475 static void raid5_align_endio(struct bio *bi) 5476 { 5477 struct bio *raid_bi = bi->bi_private; 5478 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5479 struct mddev *mddev = rdev->mddev; 5480 struct r5conf *conf = mddev->private; 5481 blk_status_t error = bi->bi_status; 5482 5483 bio_put(bi); 5484 raid_bi->bi_next = NULL; 5485 rdev_dec_pending(rdev, conf->mddev); 5486 5487 if (!error) { 5488 bio_endio(raid_bi); 5489 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5490 wake_up(&conf->wait_for_quiescent); 5491 return; 5492 } 5493 5494 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5495 5496 add_bio_to_retry(raid_bi, conf); 5497 } 5498 5499 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5500 { 5501 struct r5conf *conf = mddev->private; 5502 struct bio *align_bio; 5503 struct md_rdev *rdev; 5504 sector_t sector, end_sector, first_bad; 5505 int bad_sectors, dd_idx; 5506 bool did_inc; 5507 5508 if (!in_chunk_boundary(mddev, raid_bio)) { 5509 pr_debug("%s: non aligned\n", __func__); 5510 return 0; 5511 } 5512 5513 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5514 &dd_idx, NULL); 5515 end_sector = sector + bio_sectors(raid_bio); 5516 5517 rcu_read_lock(); 5518 if (r5c_big_stripe_cached(conf, sector)) 5519 goto out_rcu_unlock; 5520 5521 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5522 if (!rdev || test_bit(Faulty, &rdev->flags) || 5523 rdev->recovery_offset < end_sector) { 5524 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5525 if (!rdev) 5526 goto out_rcu_unlock; 5527 if (test_bit(Faulty, &rdev->flags) || 5528 !(test_bit(In_sync, &rdev->flags) || 5529 rdev->recovery_offset >= end_sector)) 5530 goto out_rcu_unlock; 5531 } 5532 5533 atomic_inc(&rdev->nr_pending); 5534 rcu_read_unlock(); 5535 5536 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad, 5537 &bad_sectors)) { 5538 rdev_dec_pending(rdev, mddev); 5539 return 0; 5540 } 5541 5542 md_account_bio(mddev, &raid_bio); 5543 raid_bio->bi_next = (void *)rdev; 5544 5545 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5546 &mddev->bio_set); 5547 align_bio->bi_end_io = raid5_align_endio; 5548 align_bio->bi_private = raid_bio; 5549 align_bio->bi_iter.bi_sector = sector; 5550 5551 /* No reshape active, so we can trust rdev->data_offset */ 5552 align_bio->bi_iter.bi_sector += rdev->data_offset; 5553 5554 did_inc = false; 5555 if (conf->quiesce == 0) { 5556 atomic_inc(&conf->active_aligned_reads); 5557 did_inc = true; 5558 } 5559 /* need a memory barrier to detect the race with raid5_quiesce() */ 5560 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5561 /* quiesce is in progress, so we need to undo io activation and wait 5562 * for it to finish 5563 */ 5564 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5565 wake_up(&conf->wait_for_quiescent); 5566 spin_lock_irq(&conf->device_lock); 5567 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5568 conf->device_lock); 5569 atomic_inc(&conf->active_aligned_reads); 5570 spin_unlock_irq(&conf->device_lock); 5571 } 5572 5573 if (mddev->gendisk) 5574 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk), 5575 raid_bio->bi_iter.bi_sector); 5576 submit_bio_noacct(align_bio); 5577 return 1; 5578 5579 out_rcu_unlock: 5580 rcu_read_unlock(); 5581 return 0; 5582 } 5583 5584 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5585 { 5586 struct bio *split; 5587 sector_t sector = raid_bio->bi_iter.bi_sector; 5588 unsigned chunk_sects = mddev->chunk_sectors; 5589 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5590 5591 if (sectors < bio_sectors(raid_bio)) { 5592 struct r5conf *conf = mddev->private; 5593 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5594 bio_chain(split, raid_bio); 5595 submit_bio_noacct(raid_bio); 5596 raid_bio = split; 5597 } 5598 5599 if (!raid5_read_one_chunk(mddev, raid_bio)) 5600 return raid_bio; 5601 5602 return NULL; 5603 } 5604 5605 /* __get_priority_stripe - get the next stripe to process 5606 * 5607 * Full stripe writes are allowed to pass preread active stripes up until 5608 * the bypass_threshold is exceeded. In general the bypass_count 5609 * increments when the handle_list is handled before the hold_list; however, it 5610 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5611 * stripe with in flight i/o. The bypass_count will be reset when the 5612 * head of the hold_list has changed, i.e. the head was promoted to the 5613 * handle_list. 5614 */ 5615 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5616 __must_hold(&conf->device_lock) 5617 { 5618 struct stripe_head *sh, *tmp; 5619 struct list_head *handle_list = NULL; 5620 struct r5worker_group *wg; 5621 bool second_try = !r5c_is_writeback(conf->log) && 5622 !r5l_log_disk_error(conf); 5623 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5624 r5l_log_disk_error(conf); 5625 5626 again: 5627 wg = NULL; 5628 sh = NULL; 5629 if (conf->worker_cnt_per_group == 0) { 5630 handle_list = try_loprio ? &conf->loprio_list : 5631 &conf->handle_list; 5632 } else if (group != ANY_GROUP) { 5633 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5634 &conf->worker_groups[group].handle_list; 5635 wg = &conf->worker_groups[group]; 5636 } else { 5637 int i; 5638 for (i = 0; i < conf->group_cnt; i++) { 5639 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5640 &conf->worker_groups[i].handle_list; 5641 wg = &conf->worker_groups[i]; 5642 if (!list_empty(handle_list)) 5643 break; 5644 } 5645 } 5646 5647 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5648 __func__, 5649 list_empty(handle_list) ? "empty" : "busy", 5650 list_empty(&conf->hold_list) ? "empty" : "busy", 5651 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5652 5653 if (!list_empty(handle_list)) { 5654 sh = list_entry(handle_list->next, typeof(*sh), lru); 5655 5656 if (list_empty(&conf->hold_list)) 5657 conf->bypass_count = 0; 5658 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5659 if (conf->hold_list.next == conf->last_hold) 5660 conf->bypass_count++; 5661 else { 5662 conf->last_hold = conf->hold_list.next; 5663 conf->bypass_count -= conf->bypass_threshold; 5664 if (conf->bypass_count < 0) 5665 conf->bypass_count = 0; 5666 } 5667 } 5668 } else if (!list_empty(&conf->hold_list) && 5669 ((conf->bypass_threshold && 5670 conf->bypass_count > conf->bypass_threshold) || 5671 atomic_read(&conf->pending_full_writes) == 0)) { 5672 5673 list_for_each_entry(tmp, &conf->hold_list, lru) { 5674 if (conf->worker_cnt_per_group == 0 || 5675 group == ANY_GROUP || 5676 !cpu_online(tmp->cpu) || 5677 cpu_to_group(tmp->cpu) == group) { 5678 sh = tmp; 5679 break; 5680 } 5681 } 5682 5683 if (sh) { 5684 conf->bypass_count -= conf->bypass_threshold; 5685 if (conf->bypass_count < 0) 5686 conf->bypass_count = 0; 5687 } 5688 wg = NULL; 5689 } 5690 5691 if (!sh) { 5692 if (second_try) 5693 return NULL; 5694 second_try = true; 5695 try_loprio = !try_loprio; 5696 goto again; 5697 } 5698 5699 if (wg) { 5700 wg->stripes_cnt--; 5701 sh->group = NULL; 5702 } 5703 list_del_init(&sh->lru); 5704 BUG_ON(atomic_inc_return(&sh->count) != 1); 5705 return sh; 5706 } 5707 5708 struct raid5_plug_cb { 5709 struct blk_plug_cb cb; 5710 struct list_head list; 5711 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5712 }; 5713 5714 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5715 { 5716 struct raid5_plug_cb *cb = container_of( 5717 blk_cb, struct raid5_plug_cb, cb); 5718 struct stripe_head *sh; 5719 struct mddev *mddev = cb->cb.data; 5720 struct r5conf *conf = mddev->private; 5721 int cnt = 0; 5722 int hash; 5723 5724 if (cb->list.next && !list_empty(&cb->list)) { 5725 spin_lock_irq(&conf->device_lock); 5726 while (!list_empty(&cb->list)) { 5727 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5728 list_del_init(&sh->lru); 5729 /* 5730 * avoid race release_stripe_plug() sees 5731 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5732 * is still in our list 5733 */ 5734 smp_mb__before_atomic(); 5735 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5736 /* 5737 * STRIPE_ON_RELEASE_LIST could be set here. In that 5738 * case, the count is always > 1 here 5739 */ 5740 hash = sh->hash_lock_index; 5741 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5742 cnt++; 5743 } 5744 spin_unlock_irq(&conf->device_lock); 5745 } 5746 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5747 NR_STRIPE_HASH_LOCKS); 5748 if (mddev->queue) 5749 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5750 kfree(cb); 5751 } 5752 5753 static void release_stripe_plug(struct mddev *mddev, 5754 struct stripe_head *sh) 5755 { 5756 struct blk_plug_cb *blk_cb = blk_check_plugged( 5757 raid5_unplug, mddev, 5758 sizeof(struct raid5_plug_cb)); 5759 struct raid5_plug_cb *cb; 5760 5761 if (!blk_cb) { 5762 raid5_release_stripe(sh); 5763 return; 5764 } 5765 5766 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5767 5768 if (cb->list.next == NULL) { 5769 int i; 5770 INIT_LIST_HEAD(&cb->list); 5771 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5772 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5773 } 5774 5775 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5776 list_add_tail(&sh->lru, &cb->list); 5777 else 5778 raid5_release_stripe(sh); 5779 } 5780 5781 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5782 { 5783 struct r5conf *conf = mddev->private; 5784 sector_t logical_sector, last_sector; 5785 struct stripe_head *sh; 5786 int stripe_sectors; 5787 5788 /* We need to handle this when io_uring supports discard/trim */ 5789 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5790 return; 5791 5792 if (mddev->reshape_position != MaxSector) 5793 /* Skip discard while reshape is happening */ 5794 return; 5795 5796 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5797 last_sector = bio_end_sector(bi); 5798 5799 bi->bi_next = NULL; 5800 5801 stripe_sectors = conf->chunk_sectors * 5802 (conf->raid_disks - conf->max_degraded); 5803 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5804 stripe_sectors); 5805 sector_div(last_sector, stripe_sectors); 5806 5807 logical_sector *= conf->chunk_sectors; 5808 last_sector *= conf->chunk_sectors; 5809 5810 for (; logical_sector < last_sector; 5811 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5812 DEFINE_WAIT(w); 5813 int d; 5814 again: 5815 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5816 prepare_to_wait(&conf->wait_for_overlap, &w, 5817 TASK_UNINTERRUPTIBLE); 5818 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5819 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5820 raid5_release_stripe(sh); 5821 schedule(); 5822 goto again; 5823 } 5824 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5825 spin_lock_irq(&sh->stripe_lock); 5826 for (d = 0; d < conf->raid_disks; d++) { 5827 if (d == sh->pd_idx || d == sh->qd_idx) 5828 continue; 5829 if (sh->dev[d].towrite || sh->dev[d].toread) { 5830 set_bit(R5_Overlap, &sh->dev[d].flags); 5831 spin_unlock_irq(&sh->stripe_lock); 5832 raid5_release_stripe(sh); 5833 schedule(); 5834 goto again; 5835 } 5836 } 5837 set_bit(STRIPE_DISCARD, &sh->state); 5838 finish_wait(&conf->wait_for_overlap, &w); 5839 sh->overwrite_disks = 0; 5840 for (d = 0; d < conf->raid_disks; d++) { 5841 if (d == sh->pd_idx || d == sh->qd_idx) 5842 continue; 5843 sh->dev[d].towrite = bi; 5844 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5845 bio_inc_remaining(bi); 5846 md_write_inc(mddev, bi); 5847 sh->overwrite_disks++; 5848 } 5849 spin_unlock_irq(&sh->stripe_lock); 5850 if (conf->mddev->bitmap) { 5851 for (d = 0; 5852 d < conf->raid_disks - conf->max_degraded; 5853 d++) 5854 md_bitmap_startwrite(mddev->bitmap, 5855 sh->sector, 5856 RAID5_STRIPE_SECTORS(conf), 5857 0); 5858 sh->bm_seq = conf->seq_flush + 1; 5859 set_bit(STRIPE_BIT_DELAY, &sh->state); 5860 } 5861 5862 set_bit(STRIPE_HANDLE, &sh->state); 5863 clear_bit(STRIPE_DELAYED, &sh->state); 5864 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5865 atomic_inc(&conf->preread_active_stripes); 5866 release_stripe_plug(mddev, sh); 5867 } 5868 5869 bio_endio(bi); 5870 } 5871 5872 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5873 sector_t reshape_sector) 5874 { 5875 return mddev->reshape_backwards ? sector < reshape_sector : 5876 sector >= reshape_sector; 5877 } 5878 5879 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5880 sector_t max, sector_t reshape_sector) 5881 { 5882 return mddev->reshape_backwards ? max < reshape_sector : 5883 min >= reshape_sector; 5884 } 5885 5886 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5887 struct stripe_head *sh) 5888 { 5889 sector_t max_sector = 0, min_sector = MaxSector; 5890 bool ret = false; 5891 int dd_idx; 5892 5893 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5894 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5895 continue; 5896 5897 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5898 max_sector = max(max_sector, sh->dev[dd_idx].sector); 5899 } 5900 5901 spin_lock_irq(&conf->device_lock); 5902 5903 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5904 conf->reshape_progress)) 5905 /* mismatch, need to try again */ 5906 ret = true; 5907 5908 spin_unlock_irq(&conf->device_lock); 5909 5910 return ret; 5911 } 5912 5913 static int add_all_stripe_bios(struct r5conf *conf, 5914 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5915 struct bio *bi, int forwrite, int previous) 5916 { 5917 int dd_idx; 5918 int ret = 1; 5919 5920 spin_lock_irq(&sh->stripe_lock); 5921 5922 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5923 struct r5dev *dev = &sh->dev[dd_idx]; 5924 5925 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5926 continue; 5927 5928 if (dev->sector < ctx->first_sector || 5929 dev->sector >= ctx->last_sector) 5930 continue; 5931 5932 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5933 set_bit(R5_Overlap, &dev->flags); 5934 ret = 0; 5935 continue; 5936 } 5937 } 5938 5939 if (!ret) 5940 goto out; 5941 5942 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5943 struct r5dev *dev = &sh->dev[dd_idx]; 5944 5945 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5946 continue; 5947 5948 if (dev->sector < ctx->first_sector || 5949 dev->sector >= ctx->last_sector) 5950 continue; 5951 5952 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5953 clear_bit((dev->sector - ctx->first_sector) >> 5954 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5955 } 5956 5957 out: 5958 spin_unlock_irq(&sh->stripe_lock); 5959 return ret; 5960 } 5961 5962 static bool reshape_inprogress(struct mddev *mddev) 5963 { 5964 return test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 5965 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5966 !test_bit(MD_RECOVERY_DONE, &mddev->recovery) && 5967 !test_bit(MD_RECOVERY_INTR, &mddev->recovery); 5968 } 5969 5970 static bool reshape_disabled(struct mddev *mddev) 5971 { 5972 return is_md_suspended(mddev) || !md_is_rdwr(mddev); 5973 } 5974 5975 static enum stripe_result make_stripe_request(struct mddev *mddev, 5976 struct r5conf *conf, struct stripe_request_ctx *ctx, 5977 sector_t logical_sector, struct bio *bi) 5978 { 5979 const int rw = bio_data_dir(bi); 5980 enum stripe_result ret; 5981 struct stripe_head *sh; 5982 sector_t new_sector; 5983 int previous = 0, flags = 0; 5984 int seq, dd_idx; 5985 5986 seq = read_seqcount_begin(&conf->gen_lock); 5987 5988 if (unlikely(conf->reshape_progress != MaxSector)) { 5989 /* 5990 * Spinlock is needed as reshape_progress may be 5991 * 64bit on a 32bit platform, and so it might be 5992 * possible to see a half-updated value 5993 * Of course reshape_progress could change after 5994 * the lock is dropped, so once we get a reference 5995 * to the stripe that we think it is, we will have 5996 * to check again. 5997 */ 5998 spin_lock_irq(&conf->device_lock); 5999 if (ahead_of_reshape(mddev, logical_sector, 6000 conf->reshape_progress)) { 6001 previous = 1; 6002 } else { 6003 if (ahead_of_reshape(mddev, logical_sector, 6004 conf->reshape_safe)) { 6005 spin_unlock_irq(&conf->device_lock); 6006 ret = STRIPE_SCHEDULE_AND_RETRY; 6007 goto out; 6008 } 6009 } 6010 spin_unlock_irq(&conf->device_lock); 6011 } 6012 6013 new_sector = raid5_compute_sector(conf, logical_sector, previous, 6014 &dd_idx, NULL); 6015 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 6016 new_sector, logical_sector); 6017 6018 if (previous) 6019 flags |= R5_GAS_PREVIOUS; 6020 if (bi->bi_opf & REQ_RAHEAD) 6021 flags |= R5_GAS_NOBLOCK; 6022 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 6023 if (unlikely(!sh)) { 6024 /* cannot get stripe, just give-up */ 6025 bi->bi_status = BLK_STS_IOERR; 6026 return STRIPE_FAIL; 6027 } 6028 6029 if (unlikely(previous) && 6030 stripe_ahead_of_reshape(mddev, conf, sh)) { 6031 /* 6032 * Expansion moved on while waiting for a stripe. 6033 * Expansion could still move past after this 6034 * test, but as we are holding a reference to 6035 * 'sh', we know that if that happens, 6036 * STRIPE_EXPANDING will get set and the expansion 6037 * won't proceed until we finish with the stripe. 6038 */ 6039 ret = STRIPE_SCHEDULE_AND_RETRY; 6040 goto out_release; 6041 } 6042 6043 if (read_seqcount_retry(&conf->gen_lock, seq)) { 6044 /* Might have got the wrong stripe_head by accident */ 6045 ret = STRIPE_RETRY; 6046 goto out_release; 6047 } 6048 6049 if (test_bit(STRIPE_EXPANDING, &sh->state) || 6050 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 6051 /* 6052 * Stripe is busy expanding or add failed due to 6053 * overlap. Flush everything and wait a while. 6054 */ 6055 md_wakeup_thread(mddev->thread); 6056 ret = STRIPE_SCHEDULE_AND_RETRY; 6057 goto out_release; 6058 } 6059 6060 if (stripe_can_batch(sh)) { 6061 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 6062 if (ctx->batch_last) 6063 raid5_release_stripe(ctx->batch_last); 6064 atomic_inc(&sh->count); 6065 ctx->batch_last = sh; 6066 } 6067 6068 if (ctx->do_flush) { 6069 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 6070 /* we only need flush for one stripe */ 6071 ctx->do_flush = false; 6072 } 6073 6074 set_bit(STRIPE_HANDLE, &sh->state); 6075 clear_bit(STRIPE_DELAYED, &sh->state); 6076 if ((!sh->batch_head || sh == sh->batch_head) && 6077 (bi->bi_opf & REQ_SYNC) && 6078 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6079 atomic_inc(&conf->preread_active_stripes); 6080 6081 release_stripe_plug(mddev, sh); 6082 return STRIPE_SUCCESS; 6083 6084 out_release: 6085 raid5_release_stripe(sh); 6086 out: 6087 if (ret == STRIPE_SCHEDULE_AND_RETRY && !reshape_inprogress(mddev) && 6088 reshape_disabled(mddev)) { 6089 bi->bi_status = BLK_STS_IOERR; 6090 ret = STRIPE_FAIL; 6091 pr_err("md/raid456:%s: io failed across reshape position while reshape can't make progress.\n", 6092 mdname(mddev)); 6093 } 6094 6095 return ret; 6096 } 6097 6098 /* 6099 * If the bio covers multiple data disks, find sector within the bio that has 6100 * the lowest chunk offset in the first chunk. 6101 */ 6102 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6103 struct bio *bi) 6104 { 6105 int sectors_per_chunk = conf->chunk_sectors; 6106 int raid_disks = conf->raid_disks; 6107 int dd_idx; 6108 struct stripe_head sh; 6109 unsigned int chunk_offset; 6110 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6111 sector_t sector; 6112 6113 /* We pass in fake stripe_head to get back parity disk numbers */ 6114 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6115 chunk_offset = sector_div(sector, sectors_per_chunk); 6116 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6117 return r_sector; 6118 /* 6119 * Bio crosses to the next data disk. Check whether it's in the same 6120 * chunk. 6121 */ 6122 dd_idx++; 6123 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6124 dd_idx++; 6125 if (dd_idx >= raid_disks) 6126 return r_sector; 6127 return r_sector + sectors_per_chunk - chunk_offset; 6128 } 6129 6130 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6131 { 6132 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6133 struct r5conf *conf = mddev->private; 6134 sector_t logical_sector; 6135 struct stripe_request_ctx ctx = {}; 6136 const int rw = bio_data_dir(bi); 6137 enum stripe_result res; 6138 int s, stripe_cnt; 6139 6140 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6141 int ret = log_handle_flush_request(conf, bi); 6142 6143 if (ret == 0) 6144 return true; 6145 if (ret == -ENODEV) { 6146 if (md_flush_request(mddev, bi)) 6147 return true; 6148 } 6149 /* ret == -EAGAIN, fallback */ 6150 /* 6151 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6152 * we need to flush journal device 6153 */ 6154 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6155 } 6156 6157 if (!md_write_start(mddev, bi)) 6158 return false; 6159 /* 6160 * If array is degraded, better not do chunk aligned read because 6161 * later we might have to read it again in order to reconstruct 6162 * data on failed drives. 6163 */ 6164 if (rw == READ && mddev->degraded == 0 && 6165 mddev->reshape_position == MaxSector) { 6166 bi = chunk_aligned_read(mddev, bi); 6167 if (!bi) 6168 return true; 6169 } 6170 6171 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6172 make_discard_request(mddev, bi); 6173 md_write_end(mddev); 6174 return true; 6175 } 6176 6177 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6178 ctx.first_sector = logical_sector; 6179 ctx.last_sector = bio_end_sector(bi); 6180 bi->bi_next = NULL; 6181 6182 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6183 RAID5_STRIPE_SECTORS(conf)); 6184 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6185 6186 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6187 bi->bi_iter.bi_sector, ctx.last_sector); 6188 6189 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6190 if ((bi->bi_opf & REQ_NOWAIT) && 6191 (conf->reshape_progress != MaxSector) && 6192 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) && 6193 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) { 6194 bio_wouldblock_error(bi); 6195 if (rw == WRITE) 6196 md_write_end(mddev); 6197 return true; 6198 } 6199 md_account_bio(mddev, &bi); 6200 6201 /* 6202 * Lets start with the stripe with the lowest chunk offset in the first 6203 * chunk. That has the best chances of creating IOs adjacent to 6204 * previous IOs in case of sequential IO and thus creates the most 6205 * sequential IO pattern. We don't bother with the optimization when 6206 * reshaping as the performance benefit is not worth the complexity. 6207 */ 6208 if (likely(conf->reshape_progress == MaxSector)) 6209 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6210 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6211 6212 add_wait_queue(&conf->wait_for_overlap, &wait); 6213 while (1) { 6214 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6215 bi); 6216 if (res == STRIPE_FAIL) 6217 break; 6218 6219 if (res == STRIPE_RETRY) 6220 continue; 6221 6222 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6223 /* 6224 * Must release the reference to batch_last before 6225 * scheduling and waiting for work to be done, 6226 * otherwise the batch_last stripe head could prevent 6227 * raid5_activate_delayed() from making progress 6228 * and thus deadlocking. 6229 */ 6230 if (ctx.batch_last) { 6231 raid5_release_stripe(ctx.batch_last); 6232 ctx.batch_last = NULL; 6233 } 6234 6235 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6236 MAX_SCHEDULE_TIMEOUT); 6237 continue; 6238 } 6239 6240 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6241 if (s == stripe_cnt) 6242 break; 6243 6244 logical_sector = ctx.first_sector + 6245 (s << RAID5_STRIPE_SHIFT(conf)); 6246 } 6247 remove_wait_queue(&conf->wait_for_overlap, &wait); 6248 6249 if (ctx.batch_last) 6250 raid5_release_stripe(ctx.batch_last); 6251 6252 if (rw == WRITE) 6253 md_write_end(mddev); 6254 bio_endio(bi); 6255 return true; 6256 } 6257 6258 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6259 6260 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6261 { 6262 /* reshaping is quite different to recovery/resync so it is 6263 * handled quite separately ... here. 6264 * 6265 * On each call to sync_request, we gather one chunk worth of 6266 * destination stripes and flag them as expanding. 6267 * Then we find all the source stripes and request reads. 6268 * As the reads complete, handle_stripe will copy the data 6269 * into the destination stripe and release that stripe. 6270 */ 6271 struct r5conf *conf = mddev->private; 6272 struct stripe_head *sh; 6273 struct md_rdev *rdev; 6274 sector_t first_sector, last_sector; 6275 int raid_disks = conf->previous_raid_disks; 6276 int data_disks = raid_disks - conf->max_degraded; 6277 int new_data_disks = conf->raid_disks - conf->max_degraded; 6278 int i; 6279 int dd_idx; 6280 sector_t writepos, readpos, safepos; 6281 sector_t stripe_addr; 6282 int reshape_sectors; 6283 struct list_head stripes; 6284 sector_t retn; 6285 6286 if (sector_nr == 0) { 6287 /* If restarting in the middle, skip the initial sectors */ 6288 if (mddev->reshape_backwards && 6289 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6290 sector_nr = raid5_size(mddev, 0, 0) 6291 - conf->reshape_progress; 6292 } else if (mddev->reshape_backwards && 6293 conf->reshape_progress == MaxSector) { 6294 /* shouldn't happen, but just in case, finish up.*/ 6295 sector_nr = MaxSector; 6296 } else if (!mddev->reshape_backwards && 6297 conf->reshape_progress > 0) 6298 sector_nr = conf->reshape_progress; 6299 sector_div(sector_nr, new_data_disks); 6300 if (sector_nr) { 6301 mddev->curr_resync_completed = sector_nr; 6302 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6303 *skipped = 1; 6304 retn = sector_nr; 6305 goto finish; 6306 } 6307 } 6308 6309 /* We need to process a full chunk at a time. 6310 * If old and new chunk sizes differ, we need to process the 6311 * largest of these 6312 */ 6313 6314 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6315 6316 /* We update the metadata at least every 10 seconds, or when 6317 * the data about to be copied would over-write the source of 6318 * the data at the front of the range. i.e. one new_stripe 6319 * along from reshape_progress new_maps to after where 6320 * reshape_safe old_maps to 6321 */ 6322 writepos = conf->reshape_progress; 6323 sector_div(writepos, new_data_disks); 6324 readpos = conf->reshape_progress; 6325 sector_div(readpos, data_disks); 6326 safepos = conf->reshape_safe; 6327 sector_div(safepos, data_disks); 6328 if (mddev->reshape_backwards) { 6329 BUG_ON(writepos < reshape_sectors); 6330 writepos -= reshape_sectors; 6331 readpos += reshape_sectors; 6332 safepos += reshape_sectors; 6333 } else { 6334 writepos += reshape_sectors; 6335 /* readpos and safepos are worst-case calculations. 6336 * A negative number is overly pessimistic, and causes 6337 * obvious problems for unsigned storage. So clip to 0. 6338 */ 6339 readpos -= min_t(sector_t, reshape_sectors, readpos); 6340 safepos -= min_t(sector_t, reshape_sectors, safepos); 6341 } 6342 6343 /* Having calculated the 'writepos' possibly use it 6344 * to set 'stripe_addr' which is where we will write to. 6345 */ 6346 if (mddev->reshape_backwards) { 6347 BUG_ON(conf->reshape_progress == 0); 6348 stripe_addr = writepos; 6349 BUG_ON((mddev->dev_sectors & 6350 ~((sector_t)reshape_sectors - 1)) 6351 - reshape_sectors - stripe_addr 6352 != sector_nr); 6353 } else { 6354 BUG_ON(writepos != sector_nr + reshape_sectors); 6355 stripe_addr = sector_nr; 6356 } 6357 6358 /* 'writepos' is the most advanced device address we might write. 6359 * 'readpos' is the least advanced device address we might read. 6360 * 'safepos' is the least address recorded in the metadata as having 6361 * been reshaped. 6362 * If there is a min_offset_diff, these are adjusted either by 6363 * increasing the safepos/readpos if diff is negative, or 6364 * increasing writepos if diff is positive. 6365 * If 'readpos' is then behind 'writepos', there is no way that we can 6366 * ensure safety in the face of a crash - that must be done by userspace 6367 * making a backup of the data. So in that case there is no particular 6368 * rush to update metadata. 6369 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6370 * update the metadata to advance 'safepos' to match 'readpos' so that 6371 * we can be safe in the event of a crash. 6372 * So we insist on updating metadata if safepos is behind writepos and 6373 * readpos is beyond writepos. 6374 * In any case, update the metadata every 10 seconds. 6375 * Maybe that number should be configurable, but I'm not sure it is 6376 * worth it.... maybe it could be a multiple of safemode_delay??? 6377 */ 6378 if (conf->min_offset_diff < 0) { 6379 safepos += -conf->min_offset_diff; 6380 readpos += -conf->min_offset_diff; 6381 } else 6382 writepos += conf->min_offset_diff; 6383 6384 if ((mddev->reshape_backwards 6385 ? (safepos > writepos && readpos < writepos) 6386 : (safepos < writepos && readpos > writepos)) || 6387 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6388 /* Cannot proceed until we've updated the superblock... */ 6389 wait_event(conf->wait_for_overlap, 6390 atomic_read(&conf->reshape_stripes)==0 6391 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6392 if (atomic_read(&conf->reshape_stripes) != 0) 6393 return 0; 6394 mddev->reshape_position = conf->reshape_progress; 6395 mddev->curr_resync_completed = sector_nr; 6396 if (!mddev->reshape_backwards) 6397 /* Can update recovery_offset */ 6398 rdev_for_each(rdev, mddev) 6399 if (rdev->raid_disk >= 0 && 6400 !test_bit(Journal, &rdev->flags) && 6401 !test_bit(In_sync, &rdev->flags) && 6402 rdev->recovery_offset < sector_nr) 6403 rdev->recovery_offset = sector_nr; 6404 6405 conf->reshape_checkpoint = jiffies; 6406 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6407 md_wakeup_thread(mddev->thread); 6408 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6409 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6410 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6411 return 0; 6412 spin_lock_irq(&conf->device_lock); 6413 conf->reshape_safe = mddev->reshape_position; 6414 spin_unlock_irq(&conf->device_lock); 6415 wake_up(&conf->wait_for_overlap); 6416 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6417 } 6418 6419 INIT_LIST_HEAD(&stripes); 6420 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6421 int j; 6422 int skipped_disk = 0; 6423 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6424 R5_GAS_NOQUIESCE); 6425 set_bit(STRIPE_EXPANDING, &sh->state); 6426 atomic_inc(&conf->reshape_stripes); 6427 /* If any of this stripe is beyond the end of the old 6428 * array, then we need to zero those blocks 6429 */ 6430 for (j=sh->disks; j--;) { 6431 sector_t s; 6432 if (j == sh->pd_idx) 6433 continue; 6434 if (conf->level == 6 && 6435 j == sh->qd_idx) 6436 continue; 6437 s = raid5_compute_blocknr(sh, j, 0); 6438 if (s < raid5_size(mddev, 0, 0)) { 6439 skipped_disk = 1; 6440 continue; 6441 } 6442 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6443 set_bit(R5_Expanded, &sh->dev[j].flags); 6444 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6445 } 6446 if (!skipped_disk) { 6447 set_bit(STRIPE_EXPAND_READY, &sh->state); 6448 set_bit(STRIPE_HANDLE, &sh->state); 6449 } 6450 list_add(&sh->lru, &stripes); 6451 } 6452 spin_lock_irq(&conf->device_lock); 6453 if (mddev->reshape_backwards) 6454 conf->reshape_progress -= reshape_sectors * new_data_disks; 6455 else 6456 conf->reshape_progress += reshape_sectors * new_data_disks; 6457 spin_unlock_irq(&conf->device_lock); 6458 /* Ok, those stripe are ready. We can start scheduling 6459 * reads on the source stripes. 6460 * The source stripes are determined by mapping the first and last 6461 * block on the destination stripes. 6462 */ 6463 first_sector = 6464 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6465 1, &dd_idx, NULL); 6466 last_sector = 6467 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6468 * new_data_disks - 1), 6469 1, &dd_idx, NULL); 6470 if (last_sector >= mddev->dev_sectors) 6471 last_sector = mddev->dev_sectors - 1; 6472 while (first_sector <= last_sector) { 6473 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6474 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6475 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6476 set_bit(STRIPE_HANDLE, &sh->state); 6477 raid5_release_stripe(sh); 6478 first_sector += RAID5_STRIPE_SECTORS(conf); 6479 } 6480 /* Now that the sources are clearly marked, we can release 6481 * the destination stripes 6482 */ 6483 while (!list_empty(&stripes)) { 6484 sh = list_entry(stripes.next, struct stripe_head, lru); 6485 list_del_init(&sh->lru); 6486 raid5_release_stripe(sh); 6487 } 6488 /* If this takes us to the resync_max point where we have to pause, 6489 * then we need to write out the superblock. 6490 */ 6491 sector_nr += reshape_sectors; 6492 retn = reshape_sectors; 6493 finish: 6494 if (mddev->curr_resync_completed > mddev->resync_max || 6495 (sector_nr - mddev->curr_resync_completed) * 2 6496 >= mddev->resync_max - mddev->curr_resync_completed) { 6497 /* Cannot proceed until we've updated the superblock... */ 6498 wait_event(conf->wait_for_overlap, 6499 atomic_read(&conf->reshape_stripes) == 0 6500 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6501 if (atomic_read(&conf->reshape_stripes) != 0) 6502 goto ret; 6503 mddev->reshape_position = conf->reshape_progress; 6504 mddev->curr_resync_completed = sector_nr; 6505 if (!mddev->reshape_backwards) 6506 /* Can update recovery_offset */ 6507 rdev_for_each(rdev, mddev) 6508 if (rdev->raid_disk >= 0 && 6509 !test_bit(Journal, &rdev->flags) && 6510 !test_bit(In_sync, &rdev->flags) && 6511 rdev->recovery_offset < sector_nr) 6512 rdev->recovery_offset = sector_nr; 6513 conf->reshape_checkpoint = jiffies; 6514 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6515 md_wakeup_thread(mddev->thread); 6516 wait_event(mddev->sb_wait, 6517 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6518 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6519 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6520 goto ret; 6521 spin_lock_irq(&conf->device_lock); 6522 conf->reshape_safe = mddev->reshape_position; 6523 spin_unlock_irq(&conf->device_lock); 6524 wake_up(&conf->wait_for_overlap); 6525 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6526 } 6527 ret: 6528 return retn; 6529 } 6530 6531 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6532 int *skipped) 6533 { 6534 struct r5conf *conf = mddev->private; 6535 struct stripe_head *sh; 6536 sector_t max_sector = mddev->dev_sectors; 6537 sector_t sync_blocks; 6538 int still_degraded = 0; 6539 int i; 6540 6541 if (sector_nr >= max_sector) { 6542 /* just being told to finish up .. nothing much to do */ 6543 6544 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6545 end_reshape(conf); 6546 return 0; 6547 } 6548 6549 if (mddev->curr_resync < max_sector) /* aborted */ 6550 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6551 &sync_blocks, 1); 6552 else /* completed sync */ 6553 conf->fullsync = 0; 6554 md_bitmap_close_sync(mddev->bitmap); 6555 6556 return 0; 6557 } 6558 6559 /* Allow raid5_quiesce to complete */ 6560 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6561 6562 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6563 return reshape_request(mddev, sector_nr, skipped); 6564 6565 /* No need to check resync_max as we never do more than one 6566 * stripe, and as resync_max will always be on a chunk boundary, 6567 * if the check in md_do_sync didn't fire, there is no chance 6568 * of overstepping resync_max here 6569 */ 6570 6571 /* if there is too many failed drives and we are trying 6572 * to resync, then assert that we are finished, because there is 6573 * nothing we can do. 6574 */ 6575 if (mddev->degraded >= conf->max_degraded && 6576 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6577 sector_t rv = mddev->dev_sectors - sector_nr; 6578 *skipped = 1; 6579 return rv; 6580 } 6581 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6582 !conf->fullsync && 6583 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6584 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6585 /* we can skip this block, and probably more */ 6586 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6587 *skipped = 1; 6588 /* keep things rounded to whole stripes */ 6589 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6590 } 6591 6592 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6593 6594 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6595 R5_GAS_NOBLOCK); 6596 if (sh == NULL) { 6597 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6598 /* make sure we don't swamp the stripe cache if someone else 6599 * is trying to get access 6600 */ 6601 schedule_timeout_uninterruptible(1); 6602 } 6603 /* Need to check if array will still be degraded after recovery/resync 6604 * Note in case of > 1 drive failures it's possible we're rebuilding 6605 * one drive while leaving another faulty drive in array. 6606 */ 6607 rcu_read_lock(); 6608 for (i = 0; i < conf->raid_disks; i++) { 6609 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 6610 6611 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6612 still_degraded = 1; 6613 } 6614 rcu_read_unlock(); 6615 6616 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6617 6618 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6619 set_bit(STRIPE_HANDLE, &sh->state); 6620 6621 raid5_release_stripe(sh); 6622 6623 return RAID5_STRIPE_SECTORS(conf); 6624 } 6625 6626 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6627 unsigned int offset) 6628 { 6629 /* We may not be able to submit a whole bio at once as there 6630 * may not be enough stripe_heads available. 6631 * We cannot pre-allocate enough stripe_heads as we may need 6632 * more than exist in the cache (if we allow ever large chunks). 6633 * So we do one stripe head at a time and record in 6634 * ->bi_hw_segments how many have been done. 6635 * 6636 * We *know* that this entire raid_bio is in one chunk, so 6637 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6638 */ 6639 struct stripe_head *sh; 6640 int dd_idx; 6641 sector_t sector, logical_sector, last_sector; 6642 int scnt = 0; 6643 int handled = 0; 6644 6645 logical_sector = raid_bio->bi_iter.bi_sector & 6646 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6647 sector = raid5_compute_sector(conf, logical_sector, 6648 0, &dd_idx, NULL); 6649 last_sector = bio_end_sector(raid_bio); 6650 6651 for (; logical_sector < last_sector; 6652 logical_sector += RAID5_STRIPE_SECTORS(conf), 6653 sector += RAID5_STRIPE_SECTORS(conf), 6654 scnt++) { 6655 6656 if (scnt < offset) 6657 /* already done this stripe */ 6658 continue; 6659 6660 sh = raid5_get_active_stripe(conf, NULL, sector, 6661 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6662 if (!sh) { 6663 /* failed to get a stripe - must wait */ 6664 conf->retry_read_aligned = raid_bio; 6665 conf->retry_read_offset = scnt; 6666 return handled; 6667 } 6668 6669 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6670 raid5_release_stripe(sh); 6671 conf->retry_read_aligned = raid_bio; 6672 conf->retry_read_offset = scnt; 6673 return handled; 6674 } 6675 6676 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6677 handle_stripe(sh); 6678 raid5_release_stripe(sh); 6679 handled++; 6680 } 6681 6682 bio_endio(raid_bio); 6683 6684 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6685 wake_up(&conf->wait_for_quiescent); 6686 return handled; 6687 } 6688 6689 static int handle_active_stripes(struct r5conf *conf, int group, 6690 struct r5worker *worker, 6691 struct list_head *temp_inactive_list) 6692 __must_hold(&conf->device_lock) 6693 { 6694 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6695 int i, batch_size = 0, hash; 6696 bool release_inactive = false; 6697 6698 while (batch_size < MAX_STRIPE_BATCH && 6699 (sh = __get_priority_stripe(conf, group)) != NULL) 6700 batch[batch_size++] = sh; 6701 6702 if (batch_size == 0) { 6703 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6704 if (!list_empty(temp_inactive_list + i)) 6705 break; 6706 if (i == NR_STRIPE_HASH_LOCKS) { 6707 spin_unlock_irq(&conf->device_lock); 6708 log_flush_stripe_to_raid(conf); 6709 spin_lock_irq(&conf->device_lock); 6710 return batch_size; 6711 } 6712 release_inactive = true; 6713 } 6714 spin_unlock_irq(&conf->device_lock); 6715 6716 release_inactive_stripe_list(conf, temp_inactive_list, 6717 NR_STRIPE_HASH_LOCKS); 6718 6719 r5l_flush_stripe_to_raid(conf->log); 6720 if (release_inactive) { 6721 spin_lock_irq(&conf->device_lock); 6722 return 0; 6723 } 6724 6725 for (i = 0; i < batch_size; i++) 6726 handle_stripe(batch[i]); 6727 log_write_stripe_run(conf); 6728 6729 cond_resched(); 6730 6731 spin_lock_irq(&conf->device_lock); 6732 for (i = 0; i < batch_size; i++) { 6733 hash = batch[i]->hash_lock_index; 6734 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6735 } 6736 return batch_size; 6737 } 6738 6739 static void raid5_do_work(struct work_struct *work) 6740 { 6741 struct r5worker *worker = container_of(work, struct r5worker, work); 6742 struct r5worker_group *group = worker->group; 6743 struct r5conf *conf = group->conf; 6744 struct mddev *mddev = conf->mddev; 6745 int group_id = group - conf->worker_groups; 6746 int handled; 6747 struct blk_plug plug; 6748 6749 pr_debug("+++ raid5worker active\n"); 6750 6751 blk_start_plug(&plug); 6752 handled = 0; 6753 spin_lock_irq(&conf->device_lock); 6754 while (1) { 6755 int batch_size, released; 6756 6757 released = release_stripe_list(conf, worker->temp_inactive_list); 6758 6759 batch_size = handle_active_stripes(conf, group_id, worker, 6760 worker->temp_inactive_list); 6761 worker->working = false; 6762 if (!batch_size && !released) 6763 break; 6764 handled += batch_size; 6765 wait_event_lock_irq(mddev->sb_wait, 6766 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6767 conf->device_lock); 6768 } 6769 pr_debug("%d stripes handled\n", handled); 6770 6771 spin_unlock_irq(&conf->device_lock); 6772 6773 flush_deferred_bios(conf); 6774 6775 r5l_flush_stripe_to_raid(conf->log); 6776 6777 async_tx_issue_pending_all(); 6778 blk_finish_plug(&plug); 6779 6780 pr_debug("--- raid5worker inactive\n"); 6781 } 6782 6783 /* 6784 * This is our raid5 kernel thread. 6785 * 6786 * We scan the hash table for stripes which can be handled now. 6787 * During the scan, completed stripes are saved for us by the interrupt 6788 * handler, so that they will not have to wait for our next wakeup. 6789 */ 6790 static void raid5d(struct md_thread *thread) 6791 { 6792 struct mddev *mddev = thread->mddev; 6793 struct r5conf *conf = mddev->private; 6794 int handled; 6795 struct blk_plug plug; 6796 6797 pr_debug("+++ raid5d active\n"); 6798 6799 md_check_recovery(mddev); 6800 6801 blk_start_plug(&plug); 6802 handled = 0; 6803 spin_lock_irq(&conf->device_lock); 6804 while (1) { 6805 struct bio *bio; 6806 int batch_size, released; 6807 unsigned int offset; 6808 6809 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6810 break; 6811 6812 released = release_stripe_list(conf, conf->temp_inactive_list); 6813 if (released) 6814 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6815 6816 if ( 6817 !list_empty(&conf->bitmap_list)) { 6818 /* Now is a good time to flush some bitmap updates */ 6819 conf->seq_flush++; 6820 spin_unlock_irq(&conf->device_lock); 6821 md_bitmap_unplug(mddev->bitmap); 6822 spin_lock_irq(&conf->device_lock); 6823 conf->seq_write = conf->seq_flush; 6824 activate_bit_delay(conf, conf->temp_inactive_list); 6825 } 6826 raid5_activate_delayed(conf); 6827 6828 while ((bio = remove_bio_from_retry(conf, &offset))) { 6829 int ok; 6830 spin_unlock_irq(&conf->device_lock); 6831 ok = retry_aligned_read(conf, bio, offset); 6832 spin_lock_irq(&conf->device_lock); 6833 if (!ok) 6834 break; 6835 handled++; 6836 } 6837 6838 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6839 conf->temp_inactive_list); 6840 if (!batch_size && !released) 6841 break; 6842 handled += batch_size; 6843 6844 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6845 spin_unlock_irq(&conf->device_lock); 6846 md_check_recovery(mddev); 6847 spin_lock_irq(&conf->device_lock); 6848 } 6849 } 6850 pr_debug("%d stripes handled\n", handled); 6851 6852 spin_unlock_irq(&conf->device_lock); 6853 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6854 mutex_trylock(&conf->cache_size_mutex)) { 6855 grow_one_stripe(conf, __GFP_NOWARN); 6856 /* Set flag even if allocation failed. This helps 6857 * slow down allocation requests when mem is short 6858 */ 6859 set_bit(R5_DID_ALLOC, &conf->cache_state); 6860 mutex_unlock(&conf->cache_size_mutex); 6861 } 6862 6863 flush_deferred_bios(conf); 6864 6865 r5l_flush_stripe_to_raid(conf->log); 6866 6867 async_tx_issue_pending_all(); 6868 blk_finish_plug(&plug); 6869 6870 pr_debug("--- raid5d inactive\n"); 6871 } 6872 6873 static ssize_t 6874 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6875 { 6876 struct r5conf *conf; 6877 int ret = 0; 6878 spin_lock(&mddev->lock); 6879 conf = mddev->private; 6880 if (conf) 6881 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6882 spin_unlock(&mddev->lock); 6883 return ret; 6884 } 6885 6886 int 6887 raid5_set_cache_size(struct mddev *mddev, int size) 6888 { 6889 int result = 0; 6890 struct r5conf *conf = mddev->private; 6891 6892 if (size <= 16 || size > 32768) 6893 return -EINVAL; 6894 6895 WRITE_ONCE(conf->min_nr_stripes, size); 6896 mutex_lock(&conf->cache_size_mutex); 6897 while (size < conf->max_nr_stripes && 6898 drop_one_stripe(conf)) 6899 ; 6900 mutex_unlock(&conf->cache_size_mutex); 6901 6902 md_allow_write(mddev); 6903 6904 mutex_lock(&conf->cache_size_mutex); 6905 while (size > conf->max_nr_stripes) 6906 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6907 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes); 6908 result = -ENOMEM; 6909 break; 6910 } 6911 mutex_unlock(&conf->cache_size_mutex); 6912 6913 return result; 6914 } 6915 EXPORT_SYMBOL(raid5_set_cache_size); 6916 6917 static ssize_t 6918 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6919 { 6920 struct r5conf *conf; 6921 unsigned long new; 6922 int err; 6923 6924 if (len >= PAGE_SIZE) 6925 return -EINVAL; 6926 if (kstrtoul(page, 10, &new)) 6927 return -EINVAL; 6928 err = mddev_lock(mddev); 6929 if (err) 6930 return err; 6931 conf = mddev->private; 6932 if (!conf) 6933 err = -ENODEV; 6934 else 6935 err = raid5_set_cache_size(mddev, new); 6936 mddev_unlock(mddev); 6937 6938 return err ?: len; 6939 } 6940 6941 static struct md_sysfs_entry 6942 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6943 raid5_show_stripe_cache_size, 6944 raid5_store_stripe_cache_size); 6945 6946 static ssize_t 6947 raid5_show_rmw_level(struct mddev *mddev, char *page) 6948 { 6949 struct r5conf *conf = mddev->private; 6950 if (conf) 6951 return sprintf(page, "%d\n", conf->rmw_level); 6952 else 6953 return 0; 6954 } 6955 6956 static ssize_t 6957 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6958 { 6959 struct r5conf *conf = mddev->private; 6960 unsigned long new; 6961 6962 if (!conf) 6963 return -ENODEV; 6964 6965 if (len >= PAGE_SIZE) 6966 return -EINVAL; 6967 6968 if (kstrtoul(page, 10, &new)) 6969 return -EINVAL; 6970 6971 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6972 return -EINVAL; 6973 6974 if (new != PARITY_DISABLE_RMW && 6975 new != PARITY_ENABLE_RMW && 6976 new != PARITY_PREFER_RMW) 6977 return -EINVAL; 6978 6979 conf->rmw_level = new; 6980 return len; 6981 } 6982 6983 static struct md_sysfs_entry 6984 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6985 raid5_show_rmw_level, 6986 raid5_store_rmw_level); 6987 6988 static ssize_t 6989 raid5_show_stripe_size(struct mddev *mddev, char *page) 6990 { 6991 struct r5conf *conf; 6992 int ret = 0; 6993 6994 spin_lock(&mddev->lock); 6995 conf = mddev->private; 6996 if (conf) 6997 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6998 spin_unlock(&mddev->lock); 6999 return ret; 7000 } 7001 7002 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7003 static ssize_t 7004 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 7005 { 7006 struct r5conf *conf; 7007 unsigned long new; 7008 int err; 7009 int size; 7010 7011 if (len >= PAGE_SIZE) 7012 return -EINVAL; 7013 if (kstrtoul(page, 10, &new)) 7014 return -EINVAL; 7015 7016 /* 7017 * The value should not be bigger than PAGE_SIZE. It requires to 7018 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 7019 * of two. 7020 */ 7021 if (new % DEFAULT_STRIPE_SIZE != 0 || 7022 new > PAGE_SIZE || new == 0 || 7023 new != roundup_pow_of_two(new)) 7024 return -EINVAL; 7025 7026 err = mddev_lock(mddev); 7027 if (err) 7028 return err; 7029 7030 conf = mddev->private; 7031 if (!conf) { 7032 err = -ENODEV; 7033 goto out_unlock; 7034 } 7035 7036 if (new == conf->stripe_size) 7037 goto out_unlock; 7038 7039 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 7040 conf->stripe_size, new); 7041 7042 if (mddev->sync_thread || 7043 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7044 mddev->reshape_position != MaxSector || 7045 mddev->sysfs_active) { 7046 err = -EBUSY; 7047 goto out_unlock; 7048 } 7049 7050 mddev_suspend(mddev); 7051 mutex_lock(&conf->cache_size_mutex); 7052 size = conf->max_nr_stripes; 7053 7054 shrink_stripes(conf); 7055 7056 conf->stripe_size = new; 7057 conf->stripe_shift = ilog2(new) - 9; 7058 conf->stripe_sectors = new >> 9; 7059 if (grow_stripes(conf, size)) { 7060 pr_warn("md/raid:%s: couldn't allocate buffers\n", 7061 mdname(mddev)); 7062 err = -ENOMEM; 7063 } 7064 mutex_unlock(&conf->cache_size_mutex); 7065 mddev_resume(mddev); 7066 7067 out_unlock: 7068 mddev_unlock(mddev); 7069 return err ?: len; 7070 } 7071 7072 static struct md_sysfs_entry 7073 raid5_stripe_size = __ATTR(stripe_size, 0644, 7074 raid5_show_stripe_size, 7075 raid5_store_stripe_size); 7076 #else 7077 static struct md_sysfs_entry 7078 raid5_stripe_size = __ATTR(stripe_size, 0444, 7079 raid5_show_stripe_size, 7080 NULL); 7081 #endif 7082 7083 static ssize_t 7084 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7085 { 7086 struct r5conf *conf; 7087 int ret = 0; 7088 spin_lock(&mddev->lock); 7089 conf = mddev->private; 7090 if (conf) 7091 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7092 spin_unlock(&mddev->lock); 7093 return ret; 7094 } 7095 7096 static ssize_t 7097 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7098 { 7099 struct r5conf *conf; 7100 unsigned long new; 7101 int err; 7102 7103 if (len >= PAGE_SIZE) 7104 return -EINVAL; 7105 if (kstrtoul(page, 10, &new)) 7106 return -EINVAL; 7107 7108 err = mddev_lock(mddev); 7109 if (err) 7110 return err; 7111 conf = mddev->private; 7112 if (!conf) 7113 err = -ENODEV; 7114 else if (new > conf->min_nr_stripes) 7115 err = -EINVAL; 7116 else 7117 conf->bypass_threshold = new; 7118 mddev_unlock(mddev); 7119 return err ?: len; 7120 } 7121 7122 static struct md_sysfs_entry 7123 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7124 S_IRUGO | S_IWUSR, 7125 raid5_show_preread_threshold, 7126 raid5_store_preread_threshold); 7127 7128 static ssize_t 7129 raid5_show_skip_copy(struct mddev *mddev, char *page) 7130 { 7131 struct r5conf *conf; 7132 int ret = 0; 7133 spin_lock(&mddev->lock); 7134 conf = mddev->private; 7135 if (conf) 7136 ret = sprintf(page, "%d\n", conf->skip_copy); 7137 spin_unlock(&mddev->lock); 7138 return ret; 7139 } 7140 7141 static ssize_t 7142 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7143 { 7144 struct r5conf *conf; 7145 unsigned long new; 7146 int err; 7147 7148 if (len >= PAGE_SIZE) 7149 return -EINVAL; 7150 if (kstrtoul(page, 10, &new)) 7151 return -EINVAL; 7152 new = !!new; 7153 7154 err = mddev_lock(mddev); 7155 if (err) 7156 return err; 7157 conf = mddev->private; 7158 if (!conf) 7159 err = -ENODEV; 7160 else if (new != conf->skip_copy) { 7161 struct request_queue *q = mddev->queue; 7162 7163 mddev_suspend(mddev); 7164 conf->skip_copy = new; 7165 if (new) 7166 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 7167 else 7168 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 7169 mddev_resume(mddev); 7170 } 7171 mddev_unlock(mddev); 7172 return err ?: len; 7173 } 7174 7175 static struct md_sysfs_entry 7176 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7177 raid5_show_skip_copy, 7178 raid5_store_skip_copy); 7179 7180 static ssize_t 7181 stripe_cache_active_show(struct mddev *mddev, char *page) 7182 { 7183 struct r5conf *conf = mddev->private; 7184 if (conf) 7185 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7186 else 7187 return 0; 7188 } 7189 7190 static struct md_sysfs_entry 7191 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7192 7193 static ssize_t 7194 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7195 { 7196 struct r5conf *conf; 7197 int ret = 0; 7198 spin_lock(&mddev->lock); 7199 conf = mddev->private; 7200 if (conf) 7201 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7202 spin_unlock(&mddev->lock); 7203 return ret; 7204 } 7205 7206 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7207 int *group_cnt, 7208 struct r5worker_group **worker_groups); 7209 static ssize_t 7210 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7211 { 7212 struct r5conf *conf; 7213 unsigned int new; 7214 int err; 7215 struct r5worker_group *new_groups, *old_groups; 7216 int group_cnt; 7217 7218 if (len >= PAGE_SIZE) 7219 return -EINVAL; 7220 if (kstrtouint(page, 10, &new)) 7221 return -EINVAL; 7222 /* 8192 should be big enough */ 7223 if (new > 8192) 7224 return -EINVAL; 7225 7226 err = mddev_lock(mddev); 7227 if (err) 7228 return err; 7229 conf = mddev->private; 7230 if (!conf) 7231 err = -ENODEV; 7232 else if (new != conf->worker_cnt_per_group) { 7233 mddev_suspend(mddev); 7234 7235 old_groups = conf->worker_groups; 7236 if (old_groups) 7237 flush_workqueue(raid5_wq); 7238 7239 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7240 if (!err) { 7241 spin_lock_irq(&conf->device_lock); 7242 conf->group_cnt = group_cnt; 7243 conf->worker_cnt_per_group = new; 7244 conf->worker_groups = new_groups; 7245 spin_unlock_irq(&conf->device_lock); 7246 7247 if (old_groups) 7248 kfree(old_groups[0].workers); 7249 kfree(old_groups); 7250 } 7251 mddev_resume(mddev); 7252 } 7253 mddev_unlock(mddev); 7254 7255 return err ?: len; 7256 } 7257 7258 static struct md_sysfs_entry 7259 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7260 raid5_show_group_thread_cnt, 7261 raid5_store_group_thread_cnt); 7262 7263 static struct attribute *raid5_attrs[] = { 7264 &raid5_stripecache_size.attr, 7265 &raid5_stripecache_active.attr, 7266 &raid5_preread_bypass_threshold.attr, 7267 &raid5_group_thread_cnt.attr, 7268 &raid5_skip_copy.attr, 7269 &raid5_rmw_level.attr, 7270 &raid5_stripe_size.attr, 7271 &r5c_journal_mode.attr, 7272 &ppl_write_hint.attr, 7273 NULL, 7274 }; 7275 static const struct attribute_group raid5_attrs_group = { 7276 .name = NULL, 7277 .attrs = raid5_attrs, 7278 }; 7279 7280 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7281 struct r5worker_group **worker_groups) 7282 { 7283 int i, j, k; 7284 ssize_t size; 7285 struct r5worker *workers; 7286 7287 if (cnt == 0) { 7288 *group_cnt = 0; 7289 *worker_groups = NULL; 7290 return 0; 7291 } 7292 *group_cnt = num_possible_nodes(); 7293 size = sizeof(struct r5worker) * cnt; 7294 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7295 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7296 GFP_NOIO); 7297 if (!*worker_groups || !workers) { 7298 kfree(workers); 7299 kfree(*worker_groups); 7300 return -ENOMEM; 7301 } 7302 7303 for (i = 0; i < *group_cnt; i++) { 7304 struct r5worker_group *group; 7305 7306 group = &(*worker_groups)[i]; 7307 INIT_LIST_HEAD(&group->handle_list); 7308 INIT_LIST_HEAD(&group->loprio_list); 7309 group->conf = conf; 7310 group->workers = workers + i * cnt; 7311 7312 for (j = 0; j < cnt; j++) { 7313 struct r5worker *worker = group->workers + j; 7314 worker->group = group; 7315 INIT_WORK(&worker->work, raid5_do_work); 7316 7317 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7318 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7319 } 7320 } 7321 7322 return 0; 7323 } 7324 7325 static void free_thread_groups(struct r5conf *conf) 7326 { 7327 if (conf->worker_groups) 7328 kfree(conf->worker_groups[0].workers); 7329 kfree(conf->worker_groups); 7330 conf->worker_groups = NULL; 7331 } 7332 7333 static sector_t 7334 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7335 { 7336 struct r5conf *conf = mddev->private; 7337 7338 if (!sectors) 7339 sectors = mddev->dev_sectors; 7340 if (!raid_disks) 7341 /* size is defined by the smallest of previous and new size */ 7342 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7343 7344 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7345 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7346 return sectors * (raid_disks - conf->max_degraded); 7347 } 7348 7349 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7350 { 7351 safe_put_page(percpu->spare_page); 7352 percpu->spare_page = NULL; 7353 kvfree(percpu->scribble); 7354 percpu->scribble = NULL; 7355 } 7356 7357 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7358 { 7359 if (conf->level == 6 && !percpu->spare_page) { 7360 percpu->spare_page = alloc_page(GFP_KERNEL); 7361 if (!percpu->spare_page) 7362 return -ENOMEM; 7363 } 7364 7365 if (scribble_alloc(percpu, 7366 max(conf->raid_disks, 7367 conf->previous_raid_disks), 7368 max(conf->chunk_sectors, 7369 conf->prev_chunk_sectors) 7370 / RAID5_STRIPE_SECTORS(conf))) { 7371 free_scratch_buffer(conf, percpu); 7372 return -ENOMEM; 7373 } 7374 7375 local_lock_init(&percpu->lock); 7376 return 0; 7377 } 7378 7379 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7380 { 7381 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7382 7383 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7384 return 0; 7385 } 7386 7387 static void raid5_free_percpu(struct r5conf *conf) 7388 { 7389 if (!conf->percpu) 7390 return; 7391 7392 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7393 free_percpu(conf->percpu); 7394 } 7395 7396 static void free_conf(struct r5conf *conf) 7397 { 7398 int i; 7399 7400 log_exit(conf); 7401 7402 unregister_shrinker(&conf->shrinker); 7403 free_thread_groups(conf); 7404 shrink_stripes(conf); 7405 raid5_free_percpu(conf); 7406 for (i = 0; i < conf->pool_size; i++) 7407 if (conf->disks[i].extra_page) 7408 put_page(conf->disks[i].extra_page); 7409 kfree(conf->disks); 7410 bioset_exit(&conf->bio_split); 7411 kfree(conf->stripe_hashtbl); 7412 kfree(conf->pending_data); 7413 kfree(conf); 7414 } 7415 7416 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7417 { 7418 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7419 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7420 7421 if (alloc_scratch_buffer(conf, percpu)) { 7422 pr_warn("%s: failed memory allocation for cpu%u\n", 7423 __func__, cpu); 7424 return -ENOMEM; 7425 } 7426 return 0; 7427 } 7428 7429 static int raid5_alloc_percpu(struct r5conf *conf) 7430 { 7431 int err = 0; 7432 7433 conf->percpu = alloc_percpu(struct raid5_percpu); 7434 if (!conf->percpu) 7435 return -ENOMEM; 7436 7437 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7438 if (!err) { 7439 conf->scribble_disks = max(conf->raid_disks, 7440 conf->previous_raid_disks); 7441 conf->scribble_sectors = max(conf->chunk_sectors, 7442 conf->prev_chunk_sectors); 7443 } 7444 return err; 7445 } 7446 7447 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7448 struct shrink_control *sc) 7449 { 7450 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7451 unsigned long ret = SHRINK_STOP; 7452 7453 if (mutex_trylock(&conf->cache_size_mutex)) { 7454 ret= 0; 7455 while (ret < sc->nr_to_scan && 7456 conf->max_nr_stripes > conf->min_nr_stripes) { 7457 if (drop_one_stripe(conf) == 0) { 7458 ret = SHRINK_STOP; 7459 break; 7460 } 7461 ret++; 7462 } 7463 mutex_unlock(&conf->cache_size_mutex); 7464 } 7465 return ret; 7466 } 7467 7468 static unsigned long raid5_cache_count(struct shrinker *shrink, 7469 struct shrink_control *sc) 7470 { 7471 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7472 int max_stripes = READ_ONCE(conf->max_nr_stripes); 7473 int min_stripes = READ_ONCE(conf->min_nr_stripes); 7474 7475 if (max_stripes < min_stripes) 7476 /* unlikely, but not impossible */ 7477 return 0; 7478 return max_stripes - min_stripes; 7479 } 7480 7481 static struct r5conf *setup_conf(struct mddev *mddev) 7482 { 7483 struct r5conf *conf; 7484 int raid_disk, memory, max_disks; 7485 struct md_rdev *rdev; 7486 struct disk_info *disk; 7487 char pers_name[6]; 7488 int i; 7489 int group_cnt; 7490 struct r5worker_group *new_group; 7491 int ret = -ENOMEM; 7492 7493 if (mddev->new_level != 5 7494 && mddev->new_level != 4 7495 && mddev->new_level != 6) { 7496 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7497 mdname(mddev), mddev->new_level); 7498 return ERR_PTR(-EIO); 7499 } 7500 if ((mddev->new_level == 5 7501 && !algorithm_valid_raid5(mddev->new_layout)) || 7502 (mddev->new_level == 6 7503 && !algorithm_valid_raid6(mddev->new_layout))) { 7504 pr_warn("md/raid:%s: layout %d not supported\n", 7505 mdname(mddev), mddev->new_layout); 7506 return ERR_PTR(-EIO); 7507 } 7508 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7509 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7510 mdname(mddev), mddev->raid_disks); 7511 return ERR_PTR(-EINVAL); 7512 } 7513 7514 if (!mddev->new_chunk_sectors || 7515 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7516 !is_power_of_2(mddev->new_chunk_sectors)) { 7517 pr_warn("md/raid:%s: invalid chunk size %d\n", 7518 mdname(mddev), mddev->new_chunk_sectors << 9); 7519 return ERR_PTR(-EINVAL); 7520 } 7521 7522 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7523 if (conf == NULL) 7524 goto abort; 7525 7526 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7527 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7528 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7529 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7530 #endif 7531 INIT_LIST_HEAD(&conf->free_list); 7532 INIT_LIST_HEAD(&conf->pending_list); 7533 conf->pending_data = kcalloc(PENDING_IO_MAX, 7534 sizeof(struct r5pending_data), 7535 GFP_KERNEL); 7536 if (!conf->pending_data) 7537 goto abort; 7538 for (i = 0; i < PENDING_IO_MAX; i++) 7539 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7540 /* Don't enable multi-threading by default*/ 7541 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7542 conf->group_cnt = group_cnt; 7543 conf->worker_cnt_per_group = 0; 7544 conf->worker_groups = new_group; 7545 } else 7546 goto abort; 7547 spin_lock_init(&conf->device_lock); 7548 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7549 mutex_init(&conf->cache_size_mutex); 7550 7551 init_waitqueue_head(&conf->wait_for_quiescent); 7552 init_waitqueue_head(&conf->wait_for_stripe); 7553 init_waitqueue_head(&conf->wait_for_overlap); 7554 INIT_LIST_HEAD(&conf->handle_list); 7555 INIT_LIST_HEAD(&conf->loprio_list); 7556 INIT_LIST_HEAD(&conf->hold_list); 7557 INIT_LIST_HEAD(&conf->delayed_list); 7558 INIT_LIST_HEAD(&conf->bitmap_list); 7559 init_llist_head(&conf->released_stripes); 7560 atomic_set(&conf->active_stripes, 0); 7561 atomic_set(&conf->preread_active_stripes, 0); 7562 atomic_set(&conf->active_aligned_reads, 0); 7563 spin_lock_init(&conf->pending_bios_lock); 7564 conf->batch_bio_dispatch = true; 7565 rdev_for_each(rdev, mddev) { 7566 if (test_bit(Journal, &rdev->flags)) 7567 continue; 7568 if (bdev_nonrot(rdev->bdev)) { 7569 conf->batch_bio_dispatch = false; 7570 break; 7571 } 7572 } 7573 7574 conf->bypass_threshold = BYPASS_THRESHOLD; 7575 conf->recovery_disabled = mddev->recovery_disabled - 1; 7576 7577 conf->raid_disks = mddev->raid_disks; 7578 if (mddev->reshape_position == MaxSector) 7579 conf->previous_raid_disks = mddev->raid_disks; 7580 else 7581 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7582 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7583 7584 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7585 GFP_KERNEL); 7586 7587 if (!conf->disks) 7588 goto abort; 7589 7590 for (i = 0; i < max_disks; i++) { 7591 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7592 if (!conf->disks[i].extra_page) 7593 goto abort; 7594 } 7595 7596 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7597 if (ret) 7598 goto abort; 7599 conf->mddev = mddev; 7600 7601 ret = -ENOMEM; 7602 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7603 if (!conf->stripe_hashtbl) 7604 goto abort; 7605 7606 /* We init hash_locks[0] separately to that it can be used 7607 * as the reference lock in the spin_lock_nest_lock() call 7608 * in lock_all_device_hash_locks_irq in order to convince 7609 * lockdep that we know what we are doing. 7610 */ 7611 spin_lock_init(conf->hash_locks); 7612 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7613 spin_lock_init(conf->hash_locks + i); 7614 7615 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7616 INIT_LIST_HEAD(conf->inactive_list + i); 7617 7618 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7619 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7620 7621 atomic_set(&conf->r5c_cached_full_stripes, 0); 7622 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7623 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7624 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7625 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7626 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7627 7628 conf->level = mddev->new_level; 7629 conf->chunk_sectors = mddev->new_chunk_sectors; 7630 ret = raid5_alloc_percpu(conf); 7631 if (ret) 7632 goto abort; 7633 7634 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7635 7636 ret = -EIO; 7637 rdev_for_each(rdev, mddev) { 7638 raid_disk = rdev->raid_disk; 7639 if (raid_disk >= max_disks 7640 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7641 continue; 7642 disk = conf->disks + raid_disk; 7643 7644 if (test_bit(Replacement, &rdev->flags)) { 7645 if (disk->replacement) 7646 goto abort; 7647 RCU_INIT_POINTER(disk->replacement, rdev); 7648 } else { 7649 if (disk->rdev) 7650 goto abort; 7651 RCU_INIT_POINTER(disk->rdev, rdev); 7652 } 7653 7654 if (test_bit(In_sync, &rdev->flags)) { 7655 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7656 mdname(mddev), rdev->bdev, raid_disk); 7657 } else if (rdev->saved_raid_disk != raid_disk) 7658 /* Cannot rely on bitmap to complete recovery */ 7659 conf->fullsync = 1; 7660 } 7661 7662 conf->level = mddev->new_level; 7663 if (conf->level == 6) { 7664 conf->max_degraded = 2; 7665 if (raid6_call.xor_syndrome) 7666 conf->rmw_level = PARITY_ENABLE_RMW; 7667 else 7668 conf->rmw_level = PARITY_DISABLE_RMW; 7669 } else { 7670 conf->max_degraded = 1; 7671 conf->rmw_level = PARITY_ENABLE_RMW; 7672 } 7673 conf->algorithm = mddev->new_layout; 7674 conf->reshape_progress = mddev->reshape_position; 7675 if (conf->reshape_progress != MaxSector) { 7676 conf->prev_chunk_sectors = mddev->chunk_sectors; 7677 conf->prev_algo = mddev->layout; 7678 } else { 7679 conf->prev_chunk_sectors = conf->chunk_sectors; 7680 conf->prev_algo = conf->algorithm; 7681 } 7682 7683 conf->min_nr_stripes = NR_STRIPES; 7684 if (mddev->reshape_position != MaxSector) { 7685 int stripes = max_t(int, 7686 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7687 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7688 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7689 if (conf->min_nr_stripes != NR_STRIPES) 7690 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7691 mdname(mddev), conf->min_nr_stripes); 7692 } 7693 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7694 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7695 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7696 if (grow_stripes(conf, conf->min_nr_stripes)) { 7697 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7698 mdname(mddev), memory); 7699 ret = -ENOMEM; 7700 goto abort; 7701 } else 7702 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7703 /* 7704 * Losing a stripe head costs more than the time to refill it, 7705 * it reduces the queue depth and so can hurt throughput. 7706 * So set it rather large, scaled by number of devices. 7707 */ 7708 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7709 conf->shrinker.scan_objects = raid5_cache_scan; 7710 conf->shrinker.count_objects = raid5_cache_count; 7711 conf->shrinker.batch = 128; 7712 conf->shrinker.flags = 0; 7713 ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev)); 7714 if (ret) { 7715 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7716 mdname(mddev)); 7717 goto abort; 7718 } 7719 7720 sprintf(pers_name, "raid%d", mddev->new_level); 7721 rcu_assign_pointer(conf->thread, 7722 md_register_thread(raid5d, mddev, pers_name)); 7723 if (!conf->thread) { 7724 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7725 mdname(mddev)); 7726 ret = -ENOMEM; 7727 goto abort; 7728 } 7729 7730 return conf; 7731 7732 abort: 7733 if (conf) 7734 free_conf(conf); 7735 return ERR_PTR(ret); 7736 } 7737 7738 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7739 { 7740 switch (algo) { 7741 case ALGORITHM_PARITY_0: 7742 if (raid_disk < max_degraded) 7743 return 1; 7744 break; 7745 case ALGORITHM_PARITY_N: 7746 if (raid_disk >= raid_disks - max_degraded) 7747 return 1; 7748 break; 7749 case ALGORITHM_PARITY_0_6: 7750 if (raid_disk == 0 || 7751 raid_disk == raid_disks - 1) 7752 return 1; 7753 break; 7754 case ALGORITHM_LEFT_ASYMMETRIC_6: 7755 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7756 case ALGORITHM_LEFT_SYMMETRIC_6: 7757 case ALGORITHM_RIGHT_SYMMETRIC_6: 7758 if (raid_disk == raid_disks - 1) 7759 return 1; 7760 } 7761 return 0; 7762 } 7763 7764 static void raid5_set_io_opt(struct r5conf *conf) 7765 { 7766 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7767 (conf->raid_disks - conf->max_degraded)); 7768 } 7769 7770 static int raid5_run(struct mddev *mddev) 7771 { 7772 struct r5conf *conf; 7773 int dirty_parity_disks = 0; 7774 struct md_rdev *rdev; 7775 struct md_rdev *journal_dev = NULL; 7776 sector_t reshape_offset = 0; 7777 int i; 7778 long long min_offset_diff = 0; 7779 int first = 1; 7780 7781 if (mddev_init_writes_pending(mddev) < 0) 7782 return -ENOMEM; 7783 7784 if (mddev->recovery_cp != MaxSector) 7785 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7786 mdname(mddev)); 7787 7788 rdev_for_each(rdev, mddev) { 7789 long long diff; 7790 7791 if (test_bit(Journal, &rdev->flags)) { 7792 journal_dev = rdev; 7793 continue; 7794 } 7795 if (rdev->raid_disk < 0) 7796 continue; 7797 diff = (rdev->new_data_offset - rdev->data_offset); 7798 if (first) { 7799 min_offset_diff = diff; 7800 first = 0; 7801 } else if (mddev->reshape_backwards && 7802 diff < min_offset_diff) 7803 min_offset_diff = diff; 7804 else if (!mddev->reshape_backwards && 7805 diff > min_offset_diff) 7806 min_offset_diff = diff; 7807 } 7808 7809 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7810 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7811 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7812 mdname(mddev)); 7813 return -EINVAL; 7814 } 7815 7816 if (mddev->reshape_position != MaxSector) { 7817 /* Check that we can continue the reshape. 7818 * Difficulties arise if the stripe we would write to 7819 * next is at or after the stripe we would read from next. 7820 * For a reshape that changes the number of devices, this 7821 * is only possible for a very short time, and mdadm makes 7822 * sure that time appears to have past before assembling 7823 * the array. So we fail if that time hasn't passed. 7824 * For a reshape that keeps the number of devices the same 7825 * mdadm must be monitoring the reshape can keeping the 7826 * critical areas read-only and backed up. It will start 7827 * the array in read-only mode, so we check for that. 7828 */ 7829 sector_t here_new, here_old; 7830 int old_disks; 7831 int max_degraded = (mddev->level == 6 ? 2 : 1); 7832 int chunk_sectors; 7833 int new_data_disks; 7834 7835 if (journal_dev) { 7836 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7837 mdname(mddev)); 7838 return -EINVAL; 7839 } 7840 7841 if (mddev->new_level != mddev->level) { 7842 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7843 mdname(mddev)); 7844 return -EINVAL; 7845 } 7846 old_disks = mddev->raid_disks - mddev->delta_disks; 7847 /* reshape_position must be on a new-stripe boundary, and one 7848 * further up in new geometry must map after here in old 7849 * geometry. 7850 * If the chunk sizes are different, then as we perform reshape 7851 * in units of the largest of the two, reshape_position needs 7852 * be a multiple of the largest chunk size times new data disks. 7853 */ 7854 here_new = mddev->reshape_position; 7855 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7856 new_data_disks = mddev->raid_disks - max_degraded; 7857 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7858 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7859 mdname(mddev)); 7860 return -EINVAL; 7861 } 7862 reshape_offset = here_new * chunk_sectors; 7863 /* here_new is the stripe we will write to */ 7864 here_old = mddev->reshape_position; 7865 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7866 /* here_old is the first stripe that we might need to read 7867 * from */ 7868 if (mddev->delta_disks == 0) { 7869 /* We cannot be sure it is safe to start an in-place 7870 * reshape. It is only safe if user-space is monitoring 7871 * and taking constant backups. 7872 * mdadm always starts a situation like this in 7873 * readonly mode so it can take control before 7874 * allowing any writes. So just check for that. 7875 */ 7876 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7877 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7878 /* not really in-place - so OK */; 7879 else if (mddev->ro == 0) { 7880 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7881 mdname(mddev)); 7882 return -EINVAL; 7883 } 7884 } else if (mddev->reshape_backwards 7885 ? (here_new * chunk_sectors + min_offset_diff <= 7886 here_old * chunk_sectors) 7887 : (here_new * chunk_sectors >= 7888 here_old * chunk_sectors + (-min_offset_diff))) { 7889 /* Reading from the same stripe as writing to - bad */ 7890 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7891 mdname(mddev)); 7892 return -EINVAL; 7893 } 7894 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7895 /* OK, we should be able to continue; */ 7896 } else { 7897 BUG_ON(mddev->level != mddev->new_level); 7898 BUG_ON(mddev->layout != mddev->new_layout); 7899 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7900 BUG_ON(mddev->delta_disks != 0); 7901 } 7902 7903 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7904 test_bit(MD_HAS_PPL, &mddev->flags)) { 7905 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7906 mdname(mddev)); 7907 clear_bit(MD_HAS_PPL, &mddev->flags); 7908 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7909 } 7910 7911 if (mddev->private == NULL) 7912 conf = setup_conf(mddev); 7913 else 7914 conf = mddev->private; 7915 7916 if (IS_ERR(conf)) 7917 return PTR_ERR(conf); 7918 7919 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7920 if (!journal_dev) { 7921 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7922 mdname(mddev)); 7923 mddev->ro = 1; 7924 set_disk_ro(mddev->gendisk, 1); 7925 } else if (mddev->recovery_cp == MaxSector) 7926 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7927 } 7928 7929 conf->min_offset_diff = min_offset_diff; 7930 rcu_assign_pointer(mddev->thread, conf->thread); 7931 rcu_assign_pointer(conf->thread, NULL); 7932 mddev->private = conf; 7933 7934 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7935 i++) { 7936 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 7937 if (!rdev && conf->disks[i].replacement) { 7938 /* The replacement is all we have yet */ 7939 rdev = rdev_mdlock_deref(mddev, 7940 conf->disks[i].replacement); 7941 conf->disks[i].replacement = NULL; 7942 clear_bit(Replacement, &rdev->flags); 7943 rcu_assign_pointer(conf->disks[i].rdev, rdev); 7944 } 7945 if (!rdev) 7946 continue; 7947 if (rcu_access_pointer(conf->disks[i].replacement) && 7948 conf->reshape_progress != MaxSector) { 7949 /* replacements and reshape simply do not mix. */ 7950 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7951 goto abort; 7952 } 7953 if (test_bit(In_sync, &rdev->flags)) 7954 continue; 7955 /* This disc is not fully in-sync. However if it 7956 * just stored parity (beyond the recovery_offset), 7957 * when we don't need to be concerned about the 7958 * array being dirty. 7959 * When reshape goes 'backwards', we never have 7960 * partially completed devices, so we only need 7961 * to worry about reshape going forwards. 7962 */ 7963 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7964 if (mddev->major_version == 0 && 7965 mddev->minor_version > 90) 7966 rdev->recovery_offset = reshape_offset; 7967 7968 if (rdev->recovery_offset < reshape_offset) { 7969 /* We need to check old and new layout */ 7970 if (!only_parity(rdev->raid_disk, 7971 conf->algorithm, 7972 conf->raid_disks, 7973 conf->max_degraded)) 7974 continue; 7975 } 7976 if (!only_parity(rdev->raid_disk, 7977 conf->prev_algo, 7978 conf->previous_raid_disks, 7979 conf->max_degraded)) 7980 continue; 7981 dirty_parity_disks++; 7982 } 7983 7984 /* 7985 * 0 for a fully functional array, 1 or 2 for a degraded array. 7986 */ 7987 mddev->degraded = raid5_calc_degraded(conf); 7988 7989 if (has_failed(conf)) { 7990 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7991 mdname(mddev), mddev->degraded, conf->raid_disks); 7992 goto abort; 7993 } 7994 7995 /* device size must be a multiple of chunk size */ 7996 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7997 mddev->resync_max_sectors = mddev->dev_sectors; 7998 7999 if (mddev->degraded > dirty_parity_disks && 8000 mddev->recovery_cp != MaxSector) { 8001 if (test_bit(MD_HAS_PPL, &mddev->flags)) 8002 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 8003 mdname(mddev)); 8004 else if (mddev->ok_start_degraded) 8005 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 8006 mdname(mddev)); 8007 else { 8008 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 8009 mdname(mddev)); 8010 goto abort; 8011 } 8012 } 8013 8014 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 8015 mdname(mddev), conf->level, 8016 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 8017 mddev->new_layout); 8018 8019 print_raid5_conf(conf); 8020 8021 if (conf->reshape_progress != MaxSector) { 8022 conf->reshape_safe = conf->reshape_progress; 8023 atomic_set(&conf->reshape_stripes, 0); 8024 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8025 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8026 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8027 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8028 rcu_assign_pointer(mddev->sync_thread, 8029 md_register_thread(md_do_sync, mddev, "reshape")); 8030 if (!mddev->sync_thread) 8031 goto abort; 8032 } 8033 8034 /* Ok, everything is just fine now */ 8035 if (mddev->to_remove == &raid5_attrs_group) 8036 mddev->to_remove = NULL; 8037 else if (mddev->kobj.sd && 8038 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8039 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8040 mdname(mddev)); 8041 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8042 8043 if (mddev->queue) { 8044 int chunk_size; 8045 /* read-ahead size must cover two whole stripes, which 8046 * is 2 * (datadisks) * chunksize where 'n' is the 8047 * number of raid devices 8048 */ 8049 int data_disks = conf->previous_raid_disks - conf->max_degraded; 8050 int stripe = data_disks * 8051 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 8052 8053 chunk_size = mddev->chunk_sectors << 9; 8054 blk_queue_io_min(mddev->queue, chunk_size); 8055 raid5_set_io_opt(conf); 8056 mddev->queue->limits.raid_partial_stripes_expensive = 1; 8057 /* 8058 * We can only discard a whole stripe. It doesn't make sense to 8059 * discard data disk but write parity disk 8060 */ 8061 stripe = stripe * PAGE_SIZE; 8062 stripe = roundup_pow_of_two(stripe); 8063 mddev->queue->limits.discard_granularity = stripe; 8064 8065 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 8066 8067 rdev_for_each(rdev, mddev) { 8068 disk_stack_limits(mddev->gendisk, rdev->bdev, 8069 rdev->data_offset << 9); 8070 disk_stack_limits(mddev->gendisk, rdev->bdev, 8071 rdev->new_data_offset << 9); 8072 } 8073 8074 /* 8075 * zeroing is required, otherwise data 8076 * could be lost. Consider a scenario: discard a stripe 8077 * (the stripe could be inconsistent if 8078 * discard_zeroes_data is 0); write one disk of the 8079 * stripe (the stripe could be inconsistent again 8080 * depending on which disks are used to calculate 8081 * parity); the disk is broken; The stripe data of this 8082 * disk is lost. 8083 * 8084 * We only allow DISCARD if the sysadmin has confirmed that 8085 * only safe devices are in use by setting a module parameter. 8086 * A better idea might be to turn DISCARD into WRITE_ZEROES 8087 * requests, as that is required to be safe. 8088 */ 8089 if (!devices_handle_discard_safely || 8090 mddev->queue->limits.max_discard_sectors < (stripe >> 9) || 8091 mddev->queue->limits.discard_granularity < stripe) 8092 blk_queue_max_discard_sectors(mddev->queue, 0); 8093 8094 /* 8095 * Requests require having a bitmap for each stripe. 8096 * Limit the max sectors based on this. 8097 */ 8098 blk_queue_max_hw_sectors(mddev->queue, 8099 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf)); 8100 8101 /* No restrictions on the number of segments in the request */ 8102 blk_queue_max_segments(mddev->queue, USHRT_MAX); 8103 } 8104 8105 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8106 goto abort; 8107 8108 return 0; 8109 abort: 8110 md_unregister_thread(mddev, &mddev->thread); 8111 print_raid5_conf(conf); 8112 free_conf(conf); 8113 mddev->private = NULL; 8114 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8115 return -EIO; 8116 } 8117 8118 static void raid5_free(struct mddev *mddev, void *priv) 8119 { 8120 struct r5conf *conf = priv; 8121 8122 free_conf(conf); 8123 mddev->to_remove = &raid5_attrs_group; 8124 } 8125 8126 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8127 { 8128 struct r5conf *conf = mddev->private; 8129 int i; 8130 8131 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8132 conf->chunk_sectors / 2, mddev->layout); 8133 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8134 rcu_read_lock(); 8135 for (i = 0; i < conf->raid_disks; i++) { 8136 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 8137 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8138 } 8139 rcu_read_unlock(); 8140 seq_printf (seq, "]"); 8141 } 8142 8143 static void print_raid5_conf (struct r5conf *conf) 8144 { 8145 struct md_rdev *rdev; 8146 int i; 8147 8148 pr_debug("RAID conf printout:\n"); 8149 if (!conf) { 8150 pr_debug("(conf==NULL)\n"); 8151 return; 8152 } 8153 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8154 conf->raid_disks, 8155 conf->raid_disks - conf->mddev->degraded); 8156 8157 rcu_read_lock(); 8158 for (i = 0; i < conf->raid_disks; i++) { 8159 rdev = rcu_dereference(conf->disks[i].rdev); 8160 if (rdev) 8161 pr_debug(" disk %d, o:%d, dev:%pg\n", 8162 i, !test_bit(Faulty, &rdev->flags), 8163 rdev->bdev); 8164 } 8165 rcu_read_unlock(); 8166 } 8167 8168 static int raid5_spare_active(struct mddev *mddev) 8169 { 8170 int i; 8171 struct r5conf *conf = mddev->private; 8172 struct md_rdev *rdev, *replacement; 8173 int count = 0; 8174 unsigned long flags; 8175 8176 for (i = 0; i < conf->raid_disks; i++) { 8177 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 8178 replacement = rdev_mdlock_deref(mddev, 8179 conf->disks[i].replacement); 8180 if (replacement 8181 && replacement->recovery_offset == MaxSector 8182 && !test_bit(Faulty, &replacement->flags) 8183 && !test_and_set_bit(In_sync, &replacement->flags)) { 8184 /* Replacement has just become active. */ 8185 if (!rdev 8186 || !test_and_clear_bit(In_sync, &rdev->flags)) 8187 count++; 8188 if (rdev) { 8189 /* Replaced device not technically faulty, 8190 * but we need to be sure it gets removed 8191 * and never re-added. 8192 */ 8193 set_bit(Faulty, &rdev->flags); 8194 sysfs_notify_dirent_safe( 8195 rdev->sysfs_state); 8196 } 8197 sysfs_notify_dirent_safe(replacement->sysfs_state); 8198 } else if (rdev 8199 && rdev->recovery_offset == MaxSector 8200 && !test_bit(Faulty, &rdev->flags) 8201 && !test_and_set_bit(In_sync, &rdev->flags)) { 8202 count++; 8203 sysfs_notify_dirent_safe(rdev->sysfs_state); 8204 } 8205 } 8206 spin_lock_irqsave(&conf->device_lock, flags); 8207 mddev->degraded = raid5_calc_degraded(conf); 8208 spin_unlock_irqrestore(&conf->device_lock, flags); 8209 print_raid5_conf(conf); 8210 return count; 8211 } 8212 8213 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8214 { 8215 struct r5conf *conf = mddev->private; 8216 int err = 0; 8217 int number = rdev->raid_disk; 8218 struct md_rdev __rcu **rdevp; 8219 struct disk_info *p; 8220 struct md_rdev *tmp; 8221 8222 print_raid5_conf(conf); 8223 if (test_bit(Journal, &rdev->flags) && conf->log) { 8224 /* 8225 * we can't wait pending write here, as this is called in 8226 * raid5d, wait will deadlock. 8227 * neilb: there is no locking about new writes here, 8228 * so this cannot be safe. 8229 */ 8230 if (atomic_read(&conf->active_stripes) || 8231 atomic_read(&conf->r5c_cached_full_stripes) || 8232 atomic_read(&conf->r5c_cached_partial_stripes)) { 8233 return -EBUSY; 8234 } 8235 log_exit(conf); 8236 return 0; 8237 } 8238 if (unlikely(number >= conf->pool_size)) 8239 return 0; 8240 p = conf->disks + number; 8241 if (rdev == rcu_access_pointer(p->rdev)) 8242 rdevp = &p->rdev; 8243 else if (rdev == rcu_access_pointer(p->replacement)) 8244 rdevp = &p->replacement; 8245 else 8246 return 0; 8247 8248 if (number >= conf->raid_disks && 8249 conf->reshape_progress == MaxSector) 8250 clear_bit(In_sync, &rdev->flags); 8251 8252 if (test_bit(In_sync, &rdev->flags) || 8253 atomic_read(&rdev->nr_pending)) { 8254 err = -EBUSY; 8255 goto abort; 8256 } 8257 /* Only remove non-faulty devices if recovery 8258 * isn't possible. 8259 */ 8260 if (!test_bit(Faulty, &rdev->flags) && 8261 mddev->recovery_disabled != conf->recovery_disabled && 8262 !has_failed(conf) && 8263 (!rcu_access_pointer(p->replacement) || 8264 rcu_access_pointer(p->replacement) == rdev) && 8265 number < conf->raid_disks) { 8266 err = -EBUSY; 8267 goto abort; 8268 } 8269 *rdevp = NULL; 8270 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 8271 lockdep_assert_held(&mddev->reconfig_mutex); 8272 synchronize_rcu(); 8273 if (atomic_read(&rdev->nr_pending)) { 8274 /* lost the race, try later */ 8275 err = -EBUSY; 8276 rcu_assign_pointer(*rdevp, rdev); 8277 } 8278 } 8279 if (!err) { 8280 err = log_modify(conf, rdev, false); 8281 if (err) 8282 goto abort; 8283 } 8284 8285 tmp = rcu_access_pointer(p->replacement); 8286 if (tmp) { 8287 /* We must have just cleared 'rdev' */ 8288 rcu_assign_pointer(p->rdev, tmp); 8289 clear_bit(Replacement, &tmp->flags); 8290 smp_mb(); /* Make sure other CPUs may see both as identical 8291 * but will never see neither - if they are careful 8292 */ 8293 rcu_assign_pointer(p->replacement, NULL); 8294 8295 if (!err) 8296 err = log_modify(conf, tmp, true); 8297 } 8298 8299 clear_bit(WantReplacement, &rdev->flags); 8300 abort: 8301 8302 print_raid5_conf(conf); 8303 return err; 8304 } 8305 8306 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8307 { 8308 struct r5conf *conf = mddev->private; 8309 int ret, err = -EEXIST; 8310 int disk; 8311 struct disk_info *p; 8312 struct md_rdev *tmp; 8313 int first = 0; 8314 int last = conf->raid_disks - 1; 8315 8316 if (test_bit(Journal, &rdev->flags)) { 8317 if (conf->log) 8318 return -EBUSY; 8319 8320 rdev->raid_disk = 0; 8321 /* 8322 * The array is in readonly mode if journal is missing, so no 8323 * write requests running. We should be safe 8324 */ 8325 ret = log_init(conf, rdev, false); 8326 if (ret) 8327 return ret; 8328 8329 ret = r5l_start(conf->log); 8330 if (ret) 8331 return ret; 8332 8333 return 0; 8334 } 8335 if (mddev->recovery_disabled == conf->recovery_disabled) 8336 return -EBUSY; 8337 8338 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8339 /* no point adding a device */ 8340 return -EINVAL; 8341 8342 if (rdev->raid_disk >= 0) 8343 first = last = rdev->raid_disk; 8344 8345 /* 8346 * find the disk ... but prefer rdev->saved_raid_disk 8347 * if possible. 8348 */ 8349 if (rdev->saved_raid_disk >= first && 8350 rdev->saved_raid_disk <= last && 8351 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8352 first = rdev->saved_raid_disk; 8353 8354 for (disk = first; disk <= last; disk++) { 8355 p = conf->disks + disk; 8356 if (p->rdev == NULL) { 8357 clear_bit(In_sync, &rdev->flags); 8358 rdev->raid_disk = disk; 8359 if (rdev->saved_raid_disk != disk) 8360 conf->fullsync = 1; 8361 rcu_assign_pointer(p->rdev, rdev); 8362 8363 err = log_modify(conf, rdev, true); 8364 8365 goto out; 8366 } 8367 } 8368 for (disk = first; disk <= last; disk++) { 8369 p = conf->disks + disk; 8370 tmp = rdev_mdlock_deref(mddev, p->rdev); 8371 if (test_bit(WantReplacement, &tmp->flags) && 8372 mddev->reshape_position == MaxSector && 8373 p->replacement == NULL) { 8374 clear_bit(In_sync, &rdev->flags); 8375 set_bit(Replacement, &rdev->flags); 8376 rdev->raid_disk = disk; 8377 err = 0; 8378 conf->fullsync = 1; 8379 rcu_assign_pointer(p->replacement, rdev); 8380 break; 8381 } 8382 } 8383 out: 8384 print_raid5_conf(conf); 8385 return err; 8386 } 8387 8388 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8389 { 8390 /* no resync is happening, and there is enough space 8391 * on all devices, so we can resize. 8392 * We need to make sure resync covers any new space. 8393 * If the array is shrinking we should possibly wait until 8394 * any io in the removed space completes, but it hardly seems 8395 * worth it. 8396 */ 8397 sector_t newsize; 8398 struct r5conf *conf = mddev->private; 8399 8400 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8401 return -EINVAL; 8402 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8403 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8404 if (mddev->external_size && 8405 mddev->array_sectors > newsize) 8406 return -EINVAL; 8407 if (mddev->bitmap) { 8408 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8409 if (ret) 8410 return ret; 8411 } 8412 md_set_array_sectors(mddev, newsize); 8413 if (sectors > mddev->dev_sectors && 8414 mddev->recovery_cp > mddev->dev_sectors) { 8415 mddev->recovery_cp = mddev->dev_sectors; 8416 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8417 } 8418 mddev->dev_sectors = sectors; 8419 mddev->resync_max_sectors = sectors; 8420 return 0; 8421 } 8422 8423 static int check_stripe_cache(struct mddev *mddev) 8424 { 8425 /* Can only proceed if there are plenty of stripe_heads. 8426 * We need a minimum of one full stripe,, and for sensible progress 8427 * it is best to have about 4 times that. 8428 * If we require 4 times, then the default 256 4K stripe_heads will 8429 * allow for chunk sizes up to 256K, which is probably OK. 8430 * If the chunk size is greater, user-space should request more 8431 * stripe_heads first. 8432 */ 8433 struct r5conf *conf = mddev->private; 8434 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8435 > conf->min_nr_stripes || 8436 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8437 > conf->min_nr_stripes) { 8438 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8439 mdname(mddev), 8440 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8441 / RAID5_STRIPE_SIZE(conf))*4); 8442 return 0; 8443 } 8444 return 1; 8445 } 8446 8447 static int check_reshape(struct mddev *mddev) 8448 { 8449 struct r5conf *conf = mddev->private; 8450 8451 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8452 return -EINVAL; 8453 if (mddev->delta_disks == 0 && 8454 mddev->new_layout == mddev->layout && 8455 mddev->new_chunk_sectors == mddev->chunk_sectors) 8456 return 0; /* nothing to do */ 8457 if (has_failed(conf)) 8458 return -EINVAL; 8459 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8460 /* We might be able to shrink, but the devices must 8461 * be made bigger first. 8462 * For raid6, 4 is the minimum size. 8463 * Otherwise 2 is the minimum 8464 */ 8465 int min = 2; 8466 if (mddev->level == 6) 8467 min = 4; 8468 if (mddev->raid_disks + mddev->delta_disks < min) 8469 return -EINVAL; 8470 } 8471 8472 if (!check_stripe_cache(mddev)) 8473 return -ENOSPC; 8474 8475 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8476 mddev->delta_disks > 0) 8477 if (resize_chunks(conf, 8478 conf->previous_raid_disks 8479 + max(0, mddev->delta_disks), 8480 max(mddev->new_chunk_sectors, 8481 mddev->chunk_sectors) 8482 ) < 0) 8483 return -ENOMEM; 8484 8485 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8486 return 0; /* never bother to shrink */ 8487 return resize_stripes(conf, (conf->previous_raid_disks 8488 + mddev->delta_disks)); 8489 } 8490 8491 static int raid5_start_reshape(struct mddev *mddev) 8492 { 8493 struct r5conf *conf = mddev->private; 8494 struct md_rdev *rdev; 8495 int spares = 0; 8496 int i; 8497 unsigned long flags; 8498 8499 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8500 return -EBUSY; 8501 8502 if (!check_stripe_cache(mddev)) 8503 return -ENOSPC; 8504 8505 if (has_failed(conf)) 8506 return -EINVAL; 8507 8508 /* raid5 can't handle concurrent reshape and recovery */ 8509 if (mddev->recovery_cp < MaxSector) 8510 return -EBUSY; 8511 for (i = 0; i < conf->raid_disks; i++) 8512 if (rdev_mdlock_deref(mddev, conf->disks[i].replacement)) 8513 return -EBUSY; 8514 8515 rdev_for_each(rdev, mddev) { 8516 if (!test_bit(In_sync, &rdev->flags) 8517 && !test_bit(Faulty, &rdev->flags)) 8518 spares++; 8519 } 8520 8521 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8522 /* Not enough devices even to make a degraded array 8523 * of that size 8524 */ 8525 return -EINVAL; 8526 8527 /* Refuse to reduce size of the array. Any reductions in 8528 * array size must be through explicit setting of array_size 8529 * attribute. 8530 */ 8531 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8532 < mddev->array_sectors) { 8533 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8534 mdname(mddev)); 8535 return -EINVAL; 8536 } 8537 8538 atomic_set(&conf->reshape_stripes, 0); 8539 spin_lock_irq(&conf->device_lock); 8540 write_seqcount_begin(&conf->gen_lock); 8541 conf->previous_raid_disks = conf->raid_disks; 8542 conf->raid_disks += mddev->delta_disks; 8543 conf->prev_chunk_sectors = conf->chunk_sectors; 8544 conf->chunk_sectors = mddev->new_chunk_sectors; 8545 conf->prev_algo = conf->algorithm; 8546 conf->algorithm = mddev->new_layout; 8547 conf->generation++; 8548 /* Code that selects data_offset needs to see the generation update 8549 * if reshape_progress has been set - so a memory barrier needed. 8550 */ 8551 smp_mb(); 8552 if (mddev->reshape_backwards) 8553 conf->reshape_progress = raid5_size(mddev, 0, 0); 8554 else 8555 conf->reshape_progress = 0; 8556 conf->reshape_safe = conf->reshape_progress; 8557 write_seqcount_end(&conf->gen_lock); 8558 spin_unlock_irq(&conf->device_lock); 8559 8560 /* Now make sure any requests that proceeded on the assumption 8561 * the reshape wasn't running - like Discard or Read - have 8562 * completed. 8563 */ 8564 mddev_suspend(mddev); 8565 mddev_resume(mddev); 8566 8567 /* Add some new drives, as many as will fit. 8568 * We know there are enough to make the newly sized array work. 8569 * Don't add devices if we are reducing the number of 8570 * devices in the array. This is because it is not possible 8571 * to correctly record the "partially reconstructed" state of 8572 * such devices during the reshape and confusion could result. 8573 */ 8574 if (mddev->delta_disks >= 0) { 8575 rdev_for_each(rdev, mddev) 8576 if (rdev->raid_disk < 0 && 8577 !test_bit(Faulty, &rdev->flags)) { 8578 if (raid5_add_disk(mddev, rdev) == 0) { 8579 if (rdev->raid_disk 8580 >= conf->previous_raid_disks) 8581 set_bit(In_sync, &rdev->flags); 8582 else 8583 rdev->recovery_offset = 0; 8584 8585 /* Failure here is OK */ 8586 sysfs_link_rdev(mddev, rdev); 8587 } 8588 } else if (rdev->raid_disk >= conf->previous_raid_disks 8589 && !test_bit(Faulty, &rdev->flags)) { 8590 /* This is a spare that was manually added */ 8591 set_bit(In_sync, &rdev->flags); 8592 } 8593 8594 /* When a reshape changes the number of devices, 8595 * ->degraded is measured against the larger of the 8596 * pre and post number of devices. 8597 */ 8598 spin_lock_irqsave(&conf->device_lock, flags); 8599 mddev->degraded = raid5_calc_degraded(conf); 8600 spin_unlock_irqrestore(&conf->device_lock, flags); 8601 } 8602 mddev->raid_disks = conf->raid_disks; 8603 mddev->reshape_position = conf->reshape_progress; 8604 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8605 8606 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8607 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8608 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8609 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8610 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8611 rcu_assign_pointer(mddev->sync_thread, 8612 md_register_thread(md_do_sync, mddev, "reshape")); 8613 if (!mddev->sync_thread) { 8614 mddev->recovery = 0; 8615 spin_lock_irq(&conf->device_lock); 8616 write_seqcount_begin(&conf->gen_lock); 8617 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8618 mddev->new_chunk_sectors = 8619 conf->chunk_sectors = conf->prev_chunk_sectors; 8620 mddev->new_layout = conf->algorithm = conf->prev_algo; 8621 rdev_for_each(rdev, mddev) 8622 rdev->new_data_offset = rdev->data_offset; 8623 smp_wmb(); 8624 conf->generation --; 8625 conf->reshape_progress = MaxSector; 8626 mddev->reshape_position = MaxSector; 8627 write_seqcount_end(&conf->gen_lock); 8628 spin_unlock_irq(&conf->device_lock); 8629 return -EAGAIN; 8630 } 8631 conf->reshape_checkpoint = jiffies; 8632 md_wakeup_thread(mddev->sync_thread); 8633 md_new_event(); 8634 return 0; 8635 } 8636 8637 /* This is called from the reshape thread and should make any 8638 * changes needed in 'conf' 8639 */ 8640 static void end_reshape(struct r5conf *conf) 8641 { 8642 8643 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8644 struct md_rdev *rdev; 8645 8646 spin_lock_irq(&conf->device_lock); 8647 conf->previous_raid_disks = conf->raid_disks; 8648 md_finish_reshape(conf->mddev); 8649 smp_wmb(); 8650 conf->reshape_progress = MaxSector; 8651 conf->mddev->reshape_position = MaxSector; 8652 rdev_for_each(rdev, conf->mddev) 8653 if (rdev->raid_disk >= 0 && 8654 !test_bit(Journal, &rdev->flags) && 8655 !test_bit(In_sync, &rdev->flags)) 8656 rdev->recovery_offset = MaxSector; 8657 spin_unlock_irq(&conf->device_lock); 8658 wake_up(&conf->wait_for_overlap); 8659 8660 if (conf->mddev->queue) 8661 raid5_set_io_opt(conf); 8662 } 8663 } 8664 8665 /* This is called from the raid5d thread with mddev_lock held. 8666 * It makes config changes to the device. 8667 */ 8668 static void raid5_finish_reshape(struct mddev *mddev) 8669 { 8670 struct r5conf *conf = mddev->private; 8671 struct md_rdev *rdev; 8672 8673 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8674 8675 if (mddev->delta_disks <= 0) { 8676 int d; 8677 spin_lock_irq(&conf->device_lock); 8678 mddev->degraded = raid5_calc_degraded(conf); 8679 spin_unlock_irq(&conf->device_lock); 8680 for (d = conf->raid_disks ; 8681 d < conf->raid_disks - mddev->delta_disks; 8682 d++) { 8683 rdev = rdev_mdlock_deref(mddev, 8684 conf->disks[d].rdev); 8685 if (rdev) 8686 clear_bit(In_sync, &rdev->flags); 8687 rdev = rdev_mdlock_deref(mddev, 8688 conf->disks[d].replacement); 8689 if (rdev) 8690 clear_bit(In_sync, &rdev->flags); 8691 } 8692 } 8693 mddev->layout = conf->algorithm; 8694 mddev->chunk_sectors = conf->chunk_sectors; 8695 mddev->reshape_position = MaxSector; 8696 mddev->delta_disks = 0; 8697 mddev->reshape_backwards = 0; 8698 } 8699 } 8700 8701 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8702 { 8703 struct r5conf *conf = mddev->private; 8704 8705 if (quiesce) { 8706 /* stop all writes */ 8707 lock_all_device_hash_locks_irq(conf); 8708 /* '2' tells resync/reshape to pause so that all 8709 * active stripes can drain 8710 */ 8711 r5c_flush_cache(conf, INT_MAX); 8712 /* need a memory barrier to make sure read_one_chunk() sees 8713 * quiesce started and reverts to slow (locked) path. 8714 */ 8715 smp_store_release(&conf->quiesce, 2); 8716 wait_event_cmd(conf->wait_for_quiescent, 8717 atomic_read(&conf->active_stripes) == 0 && 8718 atomic_read(&conf->active_aligned_reads) == 0, 8719 unlock_all_device_hash_locks_irq(conf), 8720 lock_all_device_hash_locks_irq(conf)); 8721 conf->quiesce = 1; 8722 unlock_all_device_hash_locks_irq(conf); 8723 /* allow reshape to continue */ 8724 wake_up(&conf->wait_for_overlap); 8725 } else { 8726 /* re-enable writes */ 8727 lock_all_device_hash_locks_irq(conf); 8728 conf->quiesce = 0; 8729 wake_up(&conf->wait_for_quiescent); 8730 wake_up(&conf->wait_for_overlap); 8731 unlock_all_device_hash_locks_irq(conf); 8732 } 8733 log_quiesce(conf, quiesce); 8734 } 8735 8736 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8737 { 8738 struct r0conf *raid0_conf = mddev->private; 8739 sector_t sectors; 8740 8741 /* for raid0 takeover only one zone is supported */ 8742 if (raid0_conf->nr_strip_zones > 1) { 8743 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8744 mdname(mddev)); 8745 return ERR_PTR(-EINVAL); 8746 } 8747 8748 sectors = raid0_conf->strip_zone[0].zone_end; 8749 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8750 mddev->dev_sectors = sectors; 8751 mddev->new_level = level; 8752 mddev->new_layout = ALGORITHM_PARITY_N; 8753 mddev->new_chunk_sectors = mddev->chunk_sectors; 8754 mddev->raid_disks += 1; 8755 mddev->delta_disks = 1; 8756 /* make sure it will be not marked as dirty */ 8757 mddev->recovery_cp = MaxSector; 8758 8759 return setup_conf(mddev); 8760 } 8761 8762 static void *raid5_takeover_raid1(struct mddev *mddev) 8763 { 8764 int chunksect; 8765 void *ret; 8766 8767 if (mddev->raid_disks != 2 || 8768 mddev->degraded > 1) 8769 return ERR_PTR(-EINVAL); 8770 8771 /* Should check if there are write-behind devices? */ 8772 8773 chunksect = 64*2; /* 64K by default */ 8774 8775 /* The array must be an exact multiple of chunksize */ 8776 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8777 chunksect >>= 1; 8778 8779 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8780 /* array size does not allow a suitable chunk size */ 8781 return ERR_PTR(-EINVAL); 8782 8783 mddev->new_level = 5; 8784 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8785 mddev->new_chunk_sectors = chunksect; 8786 8787 ret = setup_conf(mddev); 8788 if (!IS_ERR(ret)) 8789 mddev_clear_unsupported_flags(mddev, 8790 UNSUPPORTED_MDDEV_FLAGS); 8791 return ret; 8792 } 8793 8794 static void *raid5_takeover_raid6(struct mddev *mddev) 8795 { 8796 int new_layout; 8797 8798 switch (mddev->layout) { 8799 case ALGORITHM_LEFT_ASYMMETRIC_6: 8800 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8801 break; 8802 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8803 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8804 break; 8805 case ALGORITHM_LEFT_SYMMETRIC_6: 8806 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8807 break; 8808 case ALGORITHM_RIGHT_SYMMETRIC_6: 8809 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8810 break; 8811 case ALGORITHM_PARITY_0_6: 8812 new_layout = ALGORITHM_PARITY_0; 8813 break; 8814 case ALGORITHM_PARITY_N: 8815 new_layout = ALGORITHM_PARITY_N; 8816 break; 8817 default: 8818 return ERR_PTR(-EINVAL); 8819 } 8820 mddev->new_level = 5; 8821 mddev->new_layout = new_layout; 8822 mddev->delta_disks = -1; 8823 mddev->raid_disks -= 1; 8824 return setup_conf(mddev); 8825 } 8826 8827 static int raid5_check_reshape(struct mddev *mddev) 8828 { 8829 /* For a 2-drive array, the layout and chunk size can be changed 8830 * immediately as not restriping is needed. 8831 * For larger arrays we record the new value - after validation 8832 * to be used by a reshape pass. 8833 */ 8834 struct r5conf *conf = mddev->private; 8835 int new_chunk = mddev->new_chunk_sectors; 8836 8837 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8838 return -EINVAL; 8839 if (new_chunk > 0) { 8840 if (!is_power_of_2(new_chunk)) 8841 return -EINVAL; 8842 if (new_chunk < (PAGE_SIZE>>9)) 8843 return -EINVAL; 8844 if (mddev->array_sectors & (new_chunk-1)) 8845 /* not factor of array size */ 8846 return -EINVAL; 8847 } 8848 8849 /* They look valid */ 8850 8851 if (mddev->raid_disks == 2) { 8852 /* can make the change immediately */ 8853 if (mddev->new_layout >= 0) { 8854 conf->algorithm = mddev->new_layout; 8855 mddev->layout = mddev->new_layout; 8856 } 8857 if (new_chunk > 0) { 8858 conf->chunk_sectors = new_chunk ; 8859 mddev->chunk_sectors = new_chunk; 8860 } 8861 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8862 md_wakeup_thread(mddev->thread); 8863 } 8864 return check_reshape(mddev); 8865 } 8866 8867 static int raid6_check_reshape(struct mddev *mddev) 8868 { 8869 int new_chunk = mddev->new_chunk_sectors; 8870 8871 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8872 return -EINVAL; 8873 if (new_chunk > 0) { 8874 if (!is_power_of_2(new_chunk)) 8875 return -EINVAL; 8876 if (new_chunk < (PAGE_SIZE >> 9)) 8877 return -EINVAL; 8878 if (mddev->array_sectors & (new_chunk-1)) 8879 /* not factor of array size */ 8880 return -EINVAL; 8881 } 8882 8883 /* They look valid */ 8884 return check_reshape(mddev); 8885 } 8886 8887 static void *raid5_takeover(struct mddev *mddev) 8888 { 8889 /* raid5 can take over: 8890 * raid0 - if there is only one strip zone - make it a raid4 layout 8891 * raid1 - if there are two drives. We need to know the chunk size 8892 * raid4 - trivial - just use a raid4 layout. 8893 * raid6 - Providing it is a *_6 layout 8894 */ 8895 if (mddev->level == 0) 8896 return raid45_takeover_raid0(mddev, 5); 8897 if (mddev->level == 1) 8898 return raid5_takeover_raid1(mddev); 8899 if (mddev->level == 4) { 8900 mddev->new_layout = ALGORITHM_PARITY_N; 8901 mddev->new_level = 5; 8902 return setup_conf(mddev); 8903 } 8904 if (mddev->level == 6) 8905 return raid5_takeover_raid6(mddev); 8906 8907 return ERR_PTR(-EINVAL); 8908 } 8909 8910 static void *raid4_takeover(struct mddev *mddev) 8911 { 8912 /* raid4 can take over: 8913 * raid0 - if there is only one strip zone 8914 * raid5 - if layout is right 8915 */ 8916 if (mddev->level == 0) 8917 return raid45_takeover_raid0(mddev, 4); 8918 if (mddev->level == 5 && 8919 mddev->layout == ALGORITHM_PARITY_N) { 8920 mddev->new_layout = 0; 8921 mddev->new_level = 4; 8922 return setup_conf(mddev); 8923 } 8924 return ERR_PTR(-EINVAL); 8925 } 8926 8927 static struct md_personality raid5_personality; 8928 8929 static void *raid6_takeover(struct mddev *mddev) 8930 { 8931 /* Currently can only take over a raid5. We map the 8932 * personality to an equivalent raid6 personality 8933 * with the Q block at the end. 8934 */ 8935 int new_layout; 8936 8937 if (mddev->pers != &raid5_personality) 8938 return ERR_PTR(-EINVAL); 8939 if (mddev->degraded > 1) 8940 return ERR_PTR(-EINVAL); 8941 if (mddev->raid_disks > 253) 8942 return ERR_PTR(-EINVAL); 8943 if (mddev->raid_disks < 3) 8944 return ERR_PTR(-EINVAL); 8945 8946 switch (mddev->layout) { 8947 case ALGORITHM_LEFT_ASYMMETRIC: 8948 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8949 break; 8950 case ALGORITHM_RIGHT_ASYMMETRIC: 8951 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8952 break; 8953 case ALGORITHM_LEFT_SYMMETRIC: 8954 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8955 break; 8956 case ALGORITHM_RIGHT_SYMMETRIC: 8957 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8958 break; 8959 case ALGORITHM_PARITY_0: 8960 new_layout = ALGORITHM_PARITY_0_6; 8961 break; 8962 case ALGORITHM_PARITY_N: 8963 new_layout = ALGORITHM_PARITY_N; 8964 break; 8965 default: 8966 return ERR_PTR(-EINVAL); 8967 } 8968 mddev->new_level = 6; 8969 mddev->new_layout = new_layout; 8970 mddev->delta_disks = 1; 8971 mddev->raid_disks += 1; 8972 return setup_conf(mddev); 8973 } 8974 8975 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8976 { 8977 struct r5conf *conf; 8978 int err; 8979 8980 err = mddev_lock(mddev); 8981 if (err) 8982 return err; 8983 conf = mddev->private; 8984 if (!conf) { 8985 mddev_unlock(mddev); 8986 return -ENODEV; 8987 } 8988 8989 if (strncmp(buf, "ppl", 3) == 0) { 8990 /* ppl only works with RAID 5 */ 8991 if (!raid5_has_ppl(conf) && conf->level == 5) { 8992 err = log_init(conf, NULL, true); 8993 if (!err) { 8994 err = resize_stripes(conf, conf->pool_size); 8995 if (err) { 8996 mddev_suspend(mddev); 8997 log_exit(conf); 8998 mddev_resume(mddev); 8999 } 9000 } 9001 } else 9002 err = -EINVAL; 9003 } else if (strncmp(buf, "resync", 6) == 0) { 9004 if (raid5_has_ppl(conf)) { 9005 mddev_suspend(mddev); 9006 log_exit(conf); 9007 mddev_resume(mddev); 9008 err = resize_stripes(conf, conf->pool_size); 9009 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 9010 r5l_log_disk_error(conf)) { 9011 bool journal_dev_exists = false; 9012 struct md_rdev *rdev; 9013 9014 rdev_for_each(rdev, mddev) 9015 if (test_bit(Journal, &rdev->flags)) { 9016 journal_dev_exists = true; 9017 break; 9018 } 9019 9020 if (!journal_dev_exists) { 9021 mddev_suspend(mddev); 9022 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 9023 mddev_resume(mddev); 9024 } else /* need remove journal device first */ 9025 err = -EBUSY; 9026 } else 9027 err = -EINVAL; 9028 } else { 9029 err = -EINVAL; 9030 } 9031 9032 if (!err) 9033 md_update_sb(mddev, 1); 9034 9035 mddev_unlock(mddev); 9036 9037 return err; 9038 } 9039 9040 static int raid5_start(struct mddev *mddev) 9041 { 9042 struct r5conf *conf = mddev->private; 9043 9044 return r5l_start(conf->log); 9045 } 9046 9047 static void raid5_prepare_suspend(struct mddev *mddev) 9048 { 9049 struct r5conf *conf = mddev->private; 9050 9051 wait_event(mddev->sb_wait, !reshape_inprogress(mddev) || 9052 percpu_ref_is_zero(&mddev->active_io)); 9053 if (percpu_ref_is_zero(&mddev->active_io)) 9054 return; 9055 9056 /* 9057 * Reshape is not in progress, and array is suspended, io that is 9058 * waiting for reshpape can never be done. 9059 */ 9060 wake_up(&conf->wait_for_overlap); 9061 } 9062 9063 static struct md_personality raid6_personality = 9064 { 9065 .name = "raid6", 9066 .level = 6, 9067 .owner = THIS_MODULE, 9068 .make_request = raid5_make_request, 9069 .run = raid5_run, 9070 .start = raid5_start, 9071 .free = raid5_free, 9072 .status = raid5_status, 9073 .error_handler = raid5_error, 9074 .hot_add_disk = raid5_add_disk, 9075 .hot_remove_disk= raid5_remove_disk, 9076 .spare_active = raid5_spare_active, 9077 .sync_request = raid5_sync_request, 9078 .resize = raid5_resize, 9079 .size = raid5_size, 9080 .check_reshape = raid6_check_reshape, 9081 .start_reshape = raid5_start_reshape, 9082 .finish_reshape = raid5_finish_reshape, 9083 .prepare_suspend = raid5_prepare_suspend, 9084 .quiesce = raid5_quiesce, 9085 .takeover = raid6_takeover, 9086 .change_consistency_policy = raid5_change_consistency_policy, 9087 }; 9088 static struct md_personality raid5_personality = 9089 { 9090 .name = "raid5", 9091 .level = 5, 9092 .owner = THIS_MODULE, 9093 .make_request = raid5_make_request, 9094 .run = raid5_run, 9095 .start = raid5_start, 9096 .free = raid5_free, 9097 .status = raid5_status, 9098 .error_handler = raid5_error, 9099 .hot_add_disk = raid5_add_disk, 9100 .hot_remove_disk= raid5_remove_disk, 9101 .spare_active = raid5_spare_active, 9102 .sync_request = raid5_sync_request, 9103 .resize = raid5_resize, 9104 .size = raid5_size, 9105 .check_reshape = raid5_check_reshape, 9106 .start_reshape = raid5_start_reshape, 9107 .finish_reshape = raid5_finish_reshape, 9108 .prepare_suspend = raid5_prepare_suspend, 9109 .quiesce = raid5_quiesce, 9110 .takeover = raid5_takeover, 9111 .change_consistency_policy = raid5_change_consistency_policy, 9112 }; 9113 9114 static struct md_personality raid4_personality = 9115 { 9116 .name = "raid4", 9117 .level = 4, 9118 .owner = THIS_MODULE, 9119 .make_request = raid5_make_request, 9120 .run = raid5_run, 9121 .start = raid5_start, 9122 .free = raid5_free, 9123 .status = raid5_status, 9124 .error_handler = raid5_error, 9125 .hot_add_disk = raid5_add_disk, 9126 .hot_remove_disk= raid5_remove_disk, 9127 .spare_active = raid5_spare_active, 9128 .sync_request = raid5_sync_request, 9129 .resize = raid5_resize, 9130 .size = raid5_size, 9131 .check_reshape = raid5_check_reshape, 9132 .start_reshape = raid5_start_reshape, 9133 .finish_reshape = raid5_finish_reshape, 9134 .prepare_suspend = raid5_prepare_suspend, 9135 .quiesce = raid5_quiesce, 9136 .takeover = raid4_takeover, 9137 .change_consistency_policy = raid5_change_consistency_policy, 9138 }; 9139 9140 static int __init raid5_init(void) 9141 { 9142 int ret; 9143 9144 raid5_wq = alloc_workqueue("raid5wq", 9145 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9146 if (!raid5_wq) 9147 return -ENOMEM; 9148 9149 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9150 "md/raid5:prepare", 9151 raid456_cpu_up_prepare, 9152 raid456_cpu_dead); 9153 if (ret) { 9154 destroy_workqueue(raid5_wq); 9155 return ret; 9156 } 9157 register_md_personality(&raid6_personality); 9158 register_md_personality(&raid5_personality); 9159 register_md_personality(&raid4_personality); 9160 return 0; 9161 } 9162 9163 static void raid5_exit(void) 9164 { 9165 unregister_md_personality(&raid6_personality); 9166 unregister_md_personality(&raid5_personality); 9167 unregister_md_personality(&raid4_personality); 9168 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9169 destroy_workqueue(raid5_wq); 9170 } 9171 9172 module_init(raid5_init); 9173 module_exit(raid5_exit); 9174 MODULE_LICENSE("GPL"); 9175 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9176 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9177 MODULE_ALIAS("md-raid5"); 9178 MODULE_ALIAS("md-raid4"); 9179 MODULE_ALIAS("md-level-5"); 9180 MODULE_ALIAS("md-level-4"); 9181 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9182 MODULE_ALIAS("md-raid6"); 9183 MODULE_ALIAS("md-level-6"); 9184 9185 /* This used to be two separate modules, they were: */ 9186 MODULE_ALIAS("raid5"); 9187 MODULE_ALIAS("raid6"); 9188