xref: /openbmc/linux/drivers/md/raid5-ppl.c (revision e3d786a3)
1 /*
2  * Partial Parity Log for closing the RAID5 write hole
3  * Copyright (c) 2017, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/flex_array.h>
20 #include <linux/async_tx.h>
21 #include <linux/raid/md_p.h>
22 #include "md.h"
23 #include "raid5.h"
24 
25 /*
26  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27  * partial parity data. The header contains an array of entries
28  * (struct ppl_header_entry) which describe the logged write requests.
29  * Partial parity for the entries comes after the header, written in the same
30  * sequence as the entries:
31  *
32  * Header
33  *   entry0
34  *   ...
35  *   entryN
36  * PP data
37  *   PP for entry0
38  *   ...
39  *   PP for entryN
40  *
41  * An entry describes one or more consecutive stripe_heads, up to a full
42  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43  * number of stripe_heads in the entry and n is the number of modified data
44  * disks. Every stripe_head in the entry must write to the same data disks.
45  * An example of a valid case described by a single entry (writes to the first
46  * stripe of a 4 disk array, 16k chunk size):
47  *
48  * sh->sector   dd0   dd1   dd2    ppl
49  *            +-----+-----+-----+
50  * 0          | --- | --- | --- | +----+
51  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
52  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
53  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
54  *            +-----+-----+-----+ +----+
55  *
56  * data_sector is the first raid sector of the modified data, data_size is the
57  * total size of modified data and pp_size is the size of partial parity for
58  * this entry. Entries for full stripe writes contain no partial parity
59  * (pp_size = 0), they only mark the stripes for which parity should be
60  * recalculated after an unclean shutdown. Every entry holds a checksum of its
61  * partial parity, the header also has a checksum of the header itself.
62  *
63  * A write request is always logged to the PPL instance stored on the parity
64  * disk of the corresponding stripe. For each member disk there is one ppl_log
65  * used to handle logging for this disk, independently from others. They are
66  * grouped in child_logs array in struct ppl_conf, which is assigned to
67  * r5conf->log_private.
68  *
69  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71  * can be appended to the last entry if it meets the conditions for a valid
72  * entry described above, otherwise a new entry is added. Checksums of entries
73  * are calculated incrementally as stripes containing partial parity are being
74  * added. ppl_submit_iounit() calculates the checksum of the header and submits
75  * a bio containing the header page and partial parity pages (sh->ppl_page) for
76  * all stripes of the io_unit. When the PPL write completes, the stripes
77  * associated with the io_unit are released and raid5d starts writing their data
78  * and parity. When all stripes are written, the io_unit is freed and the next
79  * can be submitted.
80  *
81  * An io_unit is used to gather stripes until it is submitted or becomes full
82  * (if the maximum number of entries or size of PPL is reached). Another io_unit
83  * can't be submitted until the previous has completed (PPL and stripe
84  * data+parity is written). The log->io_list tracks all io_units of a log
85  * (for a single member disk). New io_units are added to the end of the list
86  * and the first io_unit is submitted, if it is not submitted already.
87  * The current io_unit accepting new stripes is always at the end of the list.
88  *
89  * If write-back cache is enabled for any of the disks in the array, its data
90  * must be flushed before next io_unit is submitted.
91  */
92 
93 #define PPL_SPACE_SIZE (128 * 1024)
94 
95 struct ppl_conf {
96 	struct mddev *mddev;
97 
98 	/* array of child logs, one for each raid disk */
99 	struct ppl_log *child_logs;
100 	int count;
101 
102 	int block_size;		/* the logical block size used for data_sector
103 				 * in ppl_header_entry */
104 	u32 signature;		/* raid array identifier */
105 	atomic64_t seq;		/* current log write sequence number */
106 
107 	struct kmem_cache *io_kc;
108 	mempool_t io_pool;
109 	struct bio_set bs;
110 	struct bio_set flush_bs;
111 
112 	/* used only for recovery */
113 	int recovered_entries;
114 	int mismatch_count;
115 
116 	/* stripes to retry if failed to allocate io_unit */
117 	struct list_head no_mem_stripes;
118 	spinlock_t no_mem_stripes_lock;
119 };
120 
121 struct ppl_log {
122 	struct ppl_conf *ppl_conf;	/* shared between all log instances */
123 
124 	struct md_rdev *rdev;		/* array member disk associated with
125 					 * this log instance */
126 	struct mutex io_mutex;
127 	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
128 					 * always at the end of io_list */
129 	spinlock_t io_list_lock;
130 	struct list_head io_list;	/* all io_units of this log */
131 
132 	sector_t next_io_sector;
133 	unsigned int entry_space;
134 	bool use_multippl;
135 	bool wb_cache_on;
136 	unsigned long disk_flush_bitmap;
137 };
138 
139 #define PPL_IO_INLINE_BVECS 32
140 
141 struct ppl_io_unit {
142 	struct ppl_log *log;
143 
144 	struct page *header_page;	/* for ppl_header */
145 
146 	unsigned int entries_count;	/* number of entries in ppl_header */
147 	unsigned int pp_size;		/* total size current of partial parity */
148 
149 	u64 seq;			/* sequence number of this log write */
150 	struct list_head log_sibling;	/* log->io_list */
151 
152 	struct list_head stripe_list;	/* stripes added to the io_unit */
153 	atomic_t pending_stripes;	/* how many stripes not written to raid */
154 	atomic_t pending_flushes;	/* how many disk flushes are in progress */
155 
156 	bool submitted;			/* true if write to log started */
157 
158 	/* inline bio and its biovec for submitting the iounit */
159 	struct bio bio;
160 	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
161 };
162 
163 struct dma_async_tx_descriptor *
164 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
165 		       struct dma_async_tx_descriptor *tx)
166 {
167 	int disks = sh->disks;
168 	struct page **srcs = flex_array_get(percpu->scribble, 0);
169 	int count = 0, pd_idx = sh->pd_idx, i;
170 	struct async_submit_ctl submit;
171 
172 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
173 
174 	/*
175 	 * Partial parity is the XOR of stripe data chunks that are not changed
176 	 * during the write request. Depending on available data
177 	 * (read-modify-write vs. reconstruct-write case) we calculate it
178 	 * differently.
179 	 */
180 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
181 		/*
182 		 * rmw: xor old data and parity from updated disks
183 		 * This is calculated earlier by ops_run_prexor5() so just copy
184 		 * the parity dev page.
185 		 */
186 		srcs[count++] = sh->dev[pd_idx].page;
187 	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
188 		/* rcw: xor data from all not updated disks */
189 		for (i = disks; i--;) {
190 			struct r5dev *dev = &sh->dev[i];
191 			if (test_bit(R5_UPTODATE, &dev->flags))
192 				srcs[count++] = dev->page;
193 		}
194 	} else {
195 		return tx;
196 	}
197 
198 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
199 			  NULL, sh, flex_array_get(percpu->scribble, 0)
200 			  + sizeof(struct page *) * (sh->disks + 2));
201 
202 	if (count == 1)
203 		tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
204 				  &submit);
205 	else
206 		tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
207 			       &submit);
208 
209 	return tx;
210 }
211 
212 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
213 {
214 	struct kmem_cache *kc = pool_data;
215 	struct ppl_io_unit *io;
216 
217 	io = kmem_cache_alloc(kc, gfp_mask);
218 	if (!io)
219 		return NULL;
220 
221 	io->header_page = alloc_page(gfp_mask);
222 	if (!io->header_page) {
223 		kmem_cache_free(kc, io);
224 		return NULL;
225 	}
226 
227 	return io;
228 }
229 
230 static void ppl_io_pool_free(void *element, void *pool_data)
231 {
232 	struct kmem_cache *kc = pool_data;
233 	struct ppl_io_unit *io = element;
234 
235 	__free_page(io->header_page);
236 	kmem_cache_free(kc, io);
237 }
238 
239 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
240 					  struct stripe_head *sh)
241 {
242 	struct ppl_conf *ppl_conf = log->ppl_conf;
243 	struct ppl_io_unit *io;
244 	struct ppl_header *pplhdr;
245 	struct page *header_page;
246 
247 	io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
248 	if (!io)
249 		return NULL;
250 
251 	header_page = io->header_page;
252 	memset(io, 0, sizeof(*io));
253 	io->header_page = header_page;
254 
255 	io->log = log;
256 	INIT_LIST_HEAD(&io->log_sibling);
257 	INIT_LIST_HEAD(&io->stripe_list);
258 	atomic_set(&io->pending_stripes, 0);
259 	atomic_set(&io->pending_flushes, 0);
260 	bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
261 
262 	pplhdr = page_address(io->header_page);
263 	clear_page(pplhdr);
264 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
265 	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
266 
267 	io->seq = atomic64_add_return(1, &ppl_conf->seq);
268 	pplhdr->generation = cpu_to_le64(io->seq);
269 
270 	return io;
271 }
272 
273 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
274 {
275 	struct ppl_io_unit *io = log->current_io;
276 	struct ppl_header_entry *e = NULL;
277 	struct ppl_header *pplhdr;
278 	int i;
279 	sector_t data_sector = 0;
280 	int data_disks = 0;
281 	struct r5conf *conf = sh->raid_conf;
282 
283 	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
284 
285 	/* check if current io_unit is full */
286 	if (io && (io->pp_size == log->entry_space ||
287 		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
288 		pr_debug("%s: add io_unit blocked by seq: %llu\n",
289 			 __func__, io->seq);
290 		io = NULL;
291 	}
292 
293 	/* add a new unit if there is none or the current is full */
294 	if (!io) {
295 		io = ppl_new_iounit(log, sh);
296 		if (!io)
297 			return -ENOMEM;
298 		spin_lock_irq(&log->io_list_lock);
299 		list_add_tail(&io->log_sibling, &log->io_list);
300 		spin_unlock_irq(&log->io_list_lock);
301 
302 		log->current_io = io;
303 	}
304 
305 	for (i = 0; i < sh->disks; i++) {
306 		struct r5dev *dev = &sh->dev[i];
307 
308 		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
309 			if (!data_disks || dev->sector < data_sector)
310 				data_sector = dev->sector;
311 			data_disks++;
312 		}
313 	}
314 	BUG_ON(!data_disks);
315 
316 	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
317 		 io->seq, (unsigned long long)data_sector, data_disks);
318 
319 	pplhdr = page_address(io->header_page);
320 
321 	if (io->entries_count > 0) {
322 		struct ppl_header_entry *last =
323 				&pplhdr->entries[io->entries_count - 1];
324 		struct stripe_head *sh_last = list_last_entry(
325 				&io->stripe_list, struct stripe_head, log_list);
326 		u64 data_sector_last = le64_to_cpu(last->data_sector);
327 		u32 data_size_last = le32_to_cpu(last->data_size);
328 
329 		/*
330 		 * Check if we can append the stripe to the last entry. It must
331 		 * be just after the last logged stripe and write to the same
332 		 * disks. Use bit shift and logarithm to avoid 64-bit division.
333 		 */
334 		if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
335 		    (data_sector >> ilog2(conf->chunk_sectors) ==
336 		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
337 		    ((data_sector - data_sector_last) * data_disks ==
338 		     data_size_last >> 9))
339 			e = last;
340 	}
341 
342 	if (!e) {
343 		e = &pplhdr->entries[io->entries_count++];
344 		e->data_sector = cpu_to_le64(data_sector);
345 		e->parity_disk = cpu_to_le32(sh->pd_idx);
346 		e->checksum = cpu_to_le32(~0);
347 	}
348 
349 	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
350 
351 	/* don't write any PP if full stripe write */
352 	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
353 		le32_add_cpu(&e->pp_size, PAGE_SIZE);
354 		io->pp_size += PAGE_SIZE;
355 		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
356 						    page_address(sh->ppl_page),
357 						    PAGE_SIZE));
358 	}
359 
360 	list_add_tail(&sh->log_list, &io->stripe_list);
361 	atomic_inc(&io->pending_stripes);
362 	sh->ppl_io = io;
363 
364 	return 0;
365 }
366 
367 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
368 {
369 	struct ppl_conf *ppl_conf = conf->log_private;
370 	struct ppl_io_unit *io = sh->ppl_io;
371 	struct ppl_log *log;
372 
373 	if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
374 	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
375 	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
376 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
377 		return -EAGAIN;
378 	}
379 
380 	log = &ppl_conf->child_logs[sh->pd_idx];
381 
382 	mutex_lock(&log->io_mutex);
383 
384 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
385 		mutex_unlock(&log->io_mutex);
386 		return -EAGAIN;
387 	}
388 
389 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
390 	clear_bit(STRIPE_DELAYED, &sh->state);
391 	atomic_inc(&sh->count);
392 
393 	if (ppl_log_stripe(log, sh)) {
394 		spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
395 		list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
396 		spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
397 	}
398 
399 	mutex_unlock(&log->io_mutex);
400 
401 	return 0;
402 }
403 
404 static void ppl_log_endio(struct bio *bio)
405 {
406 	struct ppl_io_unit *io = bio->bi_private;
407 	struct ppl_log *log = io->log;
408 	struct ppl_conf *ppl_conf = log->ppl_conf;
409 	struct stripe_head *sh, *next;
410 
411 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
412 
413 	if (bio->bi_status)
414 		md_error(ppl_conf->mddev, log->rdev);
415 
416 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
417 		list_del_init(&sh->log_list);
418 
419 		set_bit(STRIPE_HANDLE, &sh->state);
420 		raid5_release_stripe(sh);
421 	}
422 }
423 
424 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
425 {
426 	char b[BDEVNAME_SIZE];
427 
428 	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
429 		 __func__, io->seq, bio->bi_iter.bi_size,
430 		 (unsigned long long)bio->bi_iter.bi_sector,
431 		 bio_devname(bio, b));
432 
433 	submit_bio(bio);
434 }
435 
436 static void ppl_submit_iounit(struct ppl_io_unit *io)
437 {
438 	struct ppl_log *log = io->log;
439 	struct ppl_conf *ppl_conf = log->ppl_conf;
440 	struct ppl_header *pplhdr = page_address(io->header_page);
441 	struct bio *bio = &io->bio;
442 	struct stripe_head *sh;
443 	int i;
444 
445 	bio->bi_private = io;
446 
447 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
448 		ppl_log_endio(bio);
449 		return;
450 	}
451 
452 	for (i = 0; i < io->entries_count; i++) {
453 		struct ppl_header_entry *e = &pplhdr->entries[i];
454 
455 		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
456 			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
457 			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
458 
459 		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
460 					     ilog2(ppl_conf->block_size >> 9));
461 		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
462 	}
463 
464 	pplhdr->entries_count = cpu_to_le32(io->entries_count);
465 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
466 
467 	/* Rewind the buffer if current PPL is larger then remaining space */
468 	if (log->use_multippl &&
469 	    log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
470 	    (PPL_HEADER_SIZE + io->pp_size) >> 9)
471 		log->next_io_sector = log->rdev->ppl.sector;
472 
473 
474 	bio->bi_end_io = ppl_log_endio;
475 	bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
476 	bio_set_dev(bio, log->rdev->bdev);
477 	bio->bi_iter.bi_sector = log->next_io_sector;
478 	bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
479 
480 	pr_debug("%s: log->current_io_sector: %llu\n", __func__,
481 	    (unsigned long long)log->next_io_sector);
482 
483 	if (log->use_multippl)
484 		log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
485 
486 	WARN_ON(log->disk_flush_bitmap != 0);
487 
488 	list_for_each_entry(sh, &io->stripe_list, log_list) {
489 		for (i = 0; i < sh->disks; i++) {
490 			struct r5dev *dev = &sh->dev[i];
491 
492 			if ((ppl_conf->child_logs[i].wb_cache_on) &&
493 			    (test_bit(R5_Wantwrite, &dev->flags))) {
494 				set_bit(i, &log->disk_flush_bitmap);
495 			}
496 		}
497 
498 		/* entries for full stripe writes have no partial parity */
499 		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
500 			continue;
501 
502 		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
503 			struct bio *prev = bio;
504 
505 			bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
506 					       &ppl_conf->bs);
507 			bio->bi_opf = prev->bi_opf;
508 			bio_copy_dev(bio, prev);
509 			bio->bi_iter.bi_sector = bio_end_sector(prev);
510 			bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
511 
512 			bio_chain(bio, prev);
513 			ppl_submit_iounit_bio(io, prev);
514 		}
515 	}
516 
517 	ppl_submit_iounit_bio(io, bio);
518 }
519 
520 static void ppl_submit_current_io(struct ppl_log *log)
521 {
522 	struct ppl_io_unit *io;
523 
524 	spin_lock_irq(&log->io_list_lock);
525 
526 	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
527 				      log_sibling);
528 	if (io && io->submitted)
529 		io = NULL;
530 
531 	spin_unlock_irq(&log->io_list_lock);
532 
533 	if (io) {
534 		io->submitted = true;
535 
536 		if (io == log->current_io)
537 			log->current_io = NULL;
538 
539 		ppl_submit_iounit(io);
540 	}
541 }
542 
543 void ppl_write_stripe_run(struct r5conf *conf)
544 {
545 	struct ppl_conf *ppl_conf = conf->log_private;
546 	struct ppl_log *log;
547 	int i;
548 
549 	for (i = 0; i < ppl_conf->count; i++) {
550 		log = &ppl_conf->child_logs[i];
551 
552 		mutex_lock(&log->io_mutex);
553 		ppl_submit_current_io(log);
554 		mutex_unlock(&log->io_mutex);
555 	}
556 }
557 
558 static void ppl_io_unit_finished(struct ppl_io_unit *io)
559 {
560 	struct ppl_log *log = io->log;
561 	struct ppl_conf *ppl_conf = log->ppl_conf;
562 	struct r5conf *conf = ppl_conf->mddev->private;
563 	unsigned long flags;
564 
565 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
566 
567 	local_irq_save(flags);
568 
569 	spin_lock(&log->io_list_lock);
570 	list_del(&io->log_sibling);
571 	spin_unlock(&log->io_list_lock);
572 
573 	mempool_free(io, &ppl_conf->io_pool);
574 
575 	spin_lock(&ppl_conf->no_mem_stripes_lock);
576 	if (!list_empty(&ppl_conf->no_mem_stripes)) {
577 		struct stripe_head *sh;
578 
579 		sh = list_first_entry(&ppl_conf->no_mem_stripes,
580 				      struct stripe_head, log_list);
581 		list_del_init(&sh->log_list);
582 		set_bit(STRIPE_HANDLE, &sh->state);
583 		raid5_release_stripe(sh);
584 	}
585 	spin_unlock(&ppl_conf->no_mem_stripes_lock);
586 
587 	local_irq_restore(flags);
588 
589 	wake_up(&conf->wait_for_quiescent);
590 }
591 
592 static void ppl_flush_endio(struct bio *bio)
593 {
594 	struct ppl_io_unit *io = bio->bi_private;
595 	struct ppl_log *log = io->log;
596 	struct ppl_conf *ppl_conf = log->ppl_conf;
597 	struct r5conf *conf = ppl_conf->mddev->private;
598 	char b[BDEVNAME_SIZE];
599 
600 	pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b));
601 
602 	if (bio->bi_status) {
603 		struct md_rdev *rdev;
604 
605 		rcu_read_lock();
606 		rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
607 		if (rdev)
608 			md_error(rdev->mddev, rdev);
609 		rcu_read_unlock();
610 	}
611 
612 	bio_put(bio);
613 
614 	if (atomic_dec_and_test(&io->pending_flushes)) {
615 		ppl_io_unit_finished(io);
616 		md_wakeup_thread(conf->mddev->thread);
617 	}
618 }
619 
620 static void ppl_do_flush(struct ppl_io_unit *io)
621 {
622 	struct ppl_log *log = io->log;
623 	struct ppl_conf *ppl_conf = log->ppl_conf;
624 	struct r5conf *conf = ppl_conf->mddev->private;
625 	int raid_disks = conf->raid_disks;
626 	int flushed_disks = 0;
627 	int i;
628 
629 	atomic_set(&io->pending_flushes, raid_disks);
630 
631 	for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
632 		struct md_rdev *rdev;
633 		struct block_device *bdev = NULL;
634 
635 		rcu_read_lock();
636 		rdev = rcu_dereference(conf->disks[i].rdev);
637 		if (rdev && !test_bit(Faulty, &rdev->flags))
638 			bdev = rdev->bdev;
639 		rcu_read_unlock();
640 
641 		if (bdev) {
642 			struct bio *bio;
643 			char b[BDEVNAME_SIZE];
644 
645 			bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs);
646 			bio_set_dev(bio, bdev);
647 			bio->bi_private = io;
648 			bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
649 			bio->bi_end_io = ppl_flush_endio;
650 
651 			pr_debug("%s: dev: %s\n", __func__,
652 				 bio_devname(bio, b));
653 
654 			submit_bio(bio);
655 			flushed_disks++;
656 		}
657 	}
658 
659 	log->disk_flush_bitmap = 0;
660 
661 	for (i = flushed_disks ; i < raid_disks; i++) {
662 		if (atomic_dec_and_test(&io->pending_flushes))
663 			ppl_io_unit_finished(io);
664 	}
665 }
666 
667 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
668 					    struct ppl_log *log)
669 {
670 	struct ppl_io_unit *io;
671 
672 	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
673 				      log_sibling);
674 
675 	return !io || !io->submitted;
676 }
677 
678 void ppl_quiesce(struct r5conf *conf, int quiesce)
679 {
680 	struct ppl_conf *ppl_conf = conf->log_private;
681 	int i;
682 
683 	if (quiesce) {
684 		for (i = 0; i < ppl_conf->count; i++) {
685 			struct ppl_log *log = &ppl_conf->child_logs[i];
686 
687 			spin_lock_irq(&log->io_list_lock);
688 			wait_event_lock_irq(conf->wait_for_quiescent,
689 					    ppl_no_io_unit_submitted(conf, log),
690 					    log->io_list_lock);
691 			spin_unlock_irq(&log->io_list_lock);
692 		}
693 	}
694 }
695 
696 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio)
697 {
698 	if (bio->bi_iter.bi_size == 0) {
699 		bio_endio(bio);
700 		return 0;
701 	}
702 	bio->bi_opf &= ~REQ_PREFLUSH;
703 	return -EAGAIN;
704 }
705 
706 void ppl_stripe_write_finished(struct stripe_head *sh)
707 {
708 	struct ppl_io_unit *io;
709 
710 	io = sh->ppl_io;
711 	sh->ppl_io = NULL;
712 
713 	if (io && atomic_dec_and_test(&io->pending_stripes)) {
714 		if (io->log->disk_flush_bitmap)
715 			ppl_do_flush(io);
716 		else
717 			ppl_io_unit_finished(io);
718 	}
719 }
720 
721 static void ppl_xor(int size, struct page *page1, struct page *page2)
722 {
723 	struct async_submit_ctl submit;
724 	struct dma_async_tx_descriptor *tx;
725 	struct page *xor_srcs[] = { page1, page2 };
726 
727 	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
728 			  NULL, NULL, NULL, NULL);
729 	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
730 
731 	async_tx_quiesce(&tx);
732 }
733 
734 /*
735  * PPL recovery strategy: xor partial parity and data from all modified data
736  * disks within a stripe and write the result as the new stripe parity. If all
737  * stripe data disks are modified (full stripe write), no partial parity is
738  * available, so just xor the data disks.
739  *
740  * Recovery of a PPL entry shall occur only if all modified data disks are
741  * available and read from all of them succeeds.
742  *
743  * A PPL entry applies to a stripe, partial parity size for an entry is at most
744  * the size of the chunk. Examples of possible cases for a single entry:
745  *
746  * case 0: single data disk write:
747  *   data0    data1    data2     ppl        parity
748  * +--------+--------+--------+           +--------------------+
749  * | ------ | ------ | ------ | +----+    | (no change)        |
750  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
751  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
752  * | ------ | ------ | ------ | +----+    | (no change)        |
753  * +--------+--------+--------+           +--------------------+
754  * pp_size = data_size
755  *
756  * case 1: more than one data disk write:
757  *   data0    data1    data2     ppl        parity
758  * +--------+--------+--------+           +--------------------+
759  * | ------ | ------ | ------ | +----+    | (no change)        |
760  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
761  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
762  * | ------ | ------ | ------ | +----+    | (no change)        |
763  * +--------+--------+--------+           +--------------------+
764  * pp_size = data_size / modified_data_disks
765  *
766  * case 2: write to all data disks (also full stripe write):
767  *   data0    data1    data2                parity
768  * +--------+--------+--------+           +--------------------+
769  * | ------ | ------ | ------ |           | (no change)        |
770  * | -data- | -data- | -data- | --------> | xor all data       |
771  * | ------ | ------ | ------ | --------> | (no change)        |
772  * | ------ | ------ | ------ |           | (no change)        |
773  * +--------+--------+--------+           +--------------------+
774  * pp_size = 0
775  *
776  * The following cases are possible only in other implementations. The recovery
777  * code can handle them, but they are not generated at runtime because they can
778  * be reduced to cases 0, 1 and 2:
779  *
780  * case 3:
781  *   data0    data1    data2     ppl        parity
782  * +--------+--------+--------+ +----+    +--------------------+
783  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
784  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
785  * | -data- | -data- | -data- | | -- | -> | xor all data       |
786  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
787  * +--------+--------+--------+ +----+    +--------------------+
788  * pp_size = chunk_size
789  *
790  * case 4:
791  *   data0    data1    data2     ppl        parity
792  * +--------+--------+--------+ +----+    +--------------------+
793  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
794  * | ------ | ------ | ------ | | -- | -> | (no change)        |
795  * | ------ | ------ | ------ | | -- | -> | (no change)        |
796  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
797  * +--------+--------+--------+ +----+    +--------------------+
798  * pp_size = chunk_size
799  */
800 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
801 			     sector_t ppl_sector)
802 {
803 	struct ppl_conf *ppl_conf = log->ppl_conf;
804 	struct mddev *mddev = ppl_conf->mddev;
805 	struct r5conf *conf = mddev->private;
806 	int block_size = ppl_conf->block_size;
807 	struct page *page1;
808 	struct page *page2;
809 	sector_t r_sector_first;
810 	sector_t r_sector_last;
811 	int strip_sectors;
812 	int data_disks;
813 	int i;
814 	int ret = 0;
815 	char b[BDEVNAME_SIZE];
816 	unsigned int pp_size = le32_to_cpu(e->pp_size);
817 	unsigned int data_size = le32_to_cpu(e->data_size);
818 
819 	page1 = alloc_page(GFP_KERNEL);
820 	page2 = alloc_page(GFP_KERNEL);
821 
822 	if (!page1 || !page2) {
823 		ret = -ENOMEM;
824 		goto out;
825 	}
826 
827 	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
828 
829 	if ((pp_size >> 9) < conf->chunk_sectors) {
830 		if (pp_size > 0) {
831 			data_disks = data_size / pp_size;
832 			strip_sectors = pp_size >> 9;
833 		} else {
834 			data_disks = conf->raid_disks - conf->max_degraded;
835 			strip_sectors = (data_size >> 9) / data_disks;
836 		}
837 		r_sector_last = r_sector_first +
838 				(data_disks - 1) * conf->chunk_sectors +
839 				strip_sectors;
840 	} else {
841 		data_disks = conf->raid_disks - conf->max_degraded;
842 		strip_sectors = conf->chunk_sectors;
843 		r_sector_last = r_sector_first + (data_size >> 9);
844 	}
845 
846 	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
847 		 (unsigned long long)r_sector_first,
848 		 (unsigned long long)r_sector_last);
849 
850 	/* if start and end is 4k aligned, use a 4k block */
851 	if (block_size == 512 &&
852 	    (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
853 	    (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
854 		block_size = STRIPE_SIZE;
855 
856 	/* iterate through blocks in strip */
857 	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
858 		bool update_parity = false;
859 		sector_t parity_sector;
860 		struct md_rdev *parity_rdev;
861 		struct stripe_head sh;
862 		int disk;
863 		int indent = 0;
864 
865 		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
866 		indent += 2;
867 
868 		memset(page_address(page1), 0, PAGE_SIZE);
869 
870 		/* iterate through data member disks */
871 		for (disk = 0; disk < data_disks; disk++) {
872 			int dd_idx;
873 			struct md_rdev *rdev;
874 			sector_t sector;
875 			sector_t r_sector = r_sector_first + i +
876 					    (disk * conf->chunk_sectors);
877 
878 			pr_debug("%s:%*s data member disk %d start\n",
879 				 __func__, indent, "", disk);
880 			indent += 2;
881 
882 			if (r_sector >= r_sector_last) {
883 				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
884 					 __func__, indent, "",
885 					 (unsigned long long)r_sector);
886 				indent -= 2;
887 				continue;
888 			}
889 
890 			update_parity = true;
891 
892 			/* map raid sector to member disk */
893 			sector = raid5_compute_sector(conf, r_sector, 0,
894 						      &dd_idx, NULL);
895 			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
896 				 __func__, indent, "",
897 				 (unsigned long long)r_sector, dd_idx,
898 				 (unsigned long long)sector);
899 
900 			rdev = conf->disks[dd_idx].rdev;
901 			if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
902 				      sector >= rdev->recovery_offset)) {
903 				pr_debug("%s:%*s data member disk %d missing\n",
904 					 __func__, indent, "", dd_idx);
905 				update_parity = false;
906 				break;
907 			}
908 
909 			pr_debug("%s:%*s reading data member disk %s sector %llu\n",
910 				 __func__, indent, "", bdevname(rdev->bdev, b),
911 				 (unsigned long long)sector);
912 			if (!sync_page_io(rdev, sector, block_size, page2,
913 					REQ_OP_READ, 0, false)) {
914 				md_error(mddev, rdev);
915 				pr_debug("%s:%*s read failed!\n", __func__,
916 					 indent, "");
917 				ret = -EIO;
918 				goto out;
919 			}
920 
921 			ppl_xor(block_size, page1, page2);
922 
923 			indent -= 2;
924 		}
925 
926 		if (!update_parity)
927 			continue;
928 
929 		if (pp_size > 0) {
930 			pr_debug("%s:%*s reading pp disk sector %llu\n",
931 				 __func__, indent, "",
932 				 (unsigned long long)(ppl_sector + i));
933 			if (!sync_page_io(log->rdev,
934 					ppl_sector - log->rdev->data_offset + i,
935 					block_size, page2, REQ_OP_READ, 0,
936 					false)) {
937 				pr_debug("%s:%*s read failed!\n", __func__,
938 					 indent, "");
939 				md_error(mddev, log->rdev);
940 				ret = -EIO;
941 				goto out;
942 			}
943 
944 			ppl_xor(block_size, page1, page2);
945 		}
946 
947 		/* map raid sector to parity disk */
948 		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
949 				0, &disk, &sh);
950 		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
951 		parity_rdev = conf->disks[sh.pd_idx].rdev;
952 
953 		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
954 		pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
955 			 __func__, indent, "",
956 			 (unsigned long long)parity_sector,
957 			 bdevname(parity_rdev->bdev, b));
958 		if (!sync_page_io(parity_rdev, parity_sector, block_size,
959 				page1, REQ_OP_WRITE, 0, false)) {
960 			pr_debug("%s:%*s parity write error!\n", __func__,
961 				 indent, "");
962 			md_error(mddev, parity_rdev);
963 			ret = -EIO;
964 			goto out;
965 		}
966 	}
967 out:
968 	if (page1)
969 		__free_page(page1);
970 	if (page2)
971 		__free_page(page2);
972 	return ret;
973 }
974 
975 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
976 		       sector_t offset)
977 {
978 	struct ppl_conf *ppl_conf = log->ppl_conf;
979 	struct md_rdev *rdev = log->rdev;
980 	struct mddev *mddev = rdev->mddev;
981 	sector_t ppl_sector = rdev->ppl.sector + offset +
982 			      (PPL_HEADER_SIZE >> 9);
983 	struct page *page;
984 	int i;
985 	int ret = 0;
986 
987 	page = alloc_page(GFP_KERNEL);
988 	if (!page)
989 		return -ENOMEM;
990 
991 	/* iterate through all PPL entries saved */
992 	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
993 		struct ppl_header_entry *e = &pplhdr->entries[i];
994 		u32 pp_size = le32_to_cpu(e->pp_size);
995 		sector_t sector = ppl_sector;
996 		int ppl_entry_sectors = pp_size >> 9;
997 		u32 crc, crc_stored;
998 
999 		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
1000 			 __func__, rdev->raid_disk, i,
1001 			 (unsigned long long)ppl_sector, pp_size);
1002 
1003 		crc = ~0;
1004 		crc_stored = le32_to_cpu(e->checksum);
1005 
1006 		/* read parial parity for this entry and calculate its checksum */
1007 		while (pp_size) {
1008 			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
1009 
1010 			if (!sync_page_io(rdev, sector - rdev->data_offset,
1011 					s, page, REQ_OP_READ, 0, false)) {
1012 				md_error(mddev, rdev);
1013 				ret = -EIO;
1014 				goto out;
1015 			}
1016 
1017 			crc = crc32c_le(crc, page_address(page), s);
1018 
1019 			pp_size -= s;
1020 			sector += s >> 9;
1021 		}
1022 
1023 		crc = ~crc;
1024 
1025 		if (crc != crc_stored) {
1026 			/*
1027 			 * Don't recover this entry if the checksum does not
1028 			 * match, but keep going and try to recover other
1029 			 * entries.
1030 			 */
1031 			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1032 				 __func__, crc_stored, crc);
1033 			ppl_conf->mismatch_count++;
1034 		} else {
1035 			ret = ppl_recover_entry(log, e, ppl_sector);
1036 			if (ret)
1037 				goto out;
1038 			ppl_conf->recovered_entries++;
1039 		}
1040 
1041 		ppl_sector += ppl_entry_sectors;
1042 	}
1043 
1044 	/* flush the disk cache after recovery if necessary */
1045 	ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
1046 out:
1047 	__free_page(page);
1048 	return ret;
1049 }
1050 
1051 static int ppl_write_empty_header(struct ppl_log *log)
1052 {
1053 	struct page *page;
1054 	struct ppl_header *pplhdr;
1055 	struct md_rdev *rdev = log->rdev;
1056 	int ret = 0;
1057 
1058 	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1059 		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1060 
1061 	page = alloc_page(GFP_NOIO | __GFP_ZERO);
1062 	if (!page)
1063 		return -ENOMEM;
1064 
1065 	pplhdr = page_address(page);
1066 	/* zero out PPL space to avoid collision with old PPLs */
1067 	blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1068 			    log->rdev->ppl.size, GFP_NOIO, 0);
1069 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1070 	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1071 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1072 
1073 	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1074 			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1075 			  REQ_FUA, 0, false)) {
1076 		md_error(rdev->mddev, rdev);
1077 		ret = -EIO;
1078 	}
1079 
1080 	__free_page(page);
1081 	return ret;
1082 }
1083 
1084 static int ppl_load_distributed(struct ppl_log *log)
1085 {
1086 	struct ppl_conf *ppl_conf = log->ppl_conf;
1087 	struct md_rdev *rdev = log->rdev;
1088 	struct mddev *mddev = rdev->mddev;
1089 	struct page *page, *page2, *tmp;
1090 	struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1091 	u32 crc, crc_stored;
1092 	u32 signature;
1093 	int ret = 0, i;
1094 	sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1095 
1096 	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1097 	/* read PPL headers, find the recent one */
1098 	page = alloc_page(GFP_KERNEL);
1099 	if (!page)
1100 		return -ENOMEM;
1101 
1102 	page2 = alloc_page(GFP_KERNEL);
1103 	if (!page2) {
1104 		__free_page(page);
1105 		return -ENOMEM;
1106 	}
1107 
1108 	/* searching ppl area for latest ppl */
1109 	while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1110 		if (!sync_page_io(rdev,
1111 				  rdev->ppl.sector - rdev->data_offset +
1112 				  pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1113 				  0, false)) {
1114 			md_error(mddev, rdev);
1115 			ret = -EIO;
1116 			/* if not able to read - don't recover any PPL */
1117 			pplhdr = NULL;
1118 			break;
1119 		}
1120 		pplhdr = page_address(page);
1121 
1122 		/* check header validity */
1123 		crc_stored = le32_to_cpu(pplhdr->checksum);
1124 		pplhdr->checksum = 0;
1125 		crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1126 
1127 		if (crc_stored != crc) {
1128 			pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1129 				 __func__, crc_stored, crc,
1130 				 (unsigned long long)pplhdr_offset);
1131 			pplhdr = prev_pplhdr;
1132 			pplhdr_offset = prev_pplhdr_offset;
1133 			break;
1134 		}
1135 
1136 		signature = le32_to_cpu(pplhdr->signature);
1137 
1138 		if (mddev->external) {
1139 			/*
1140 			 * For external metadata the header signature is set and
1141 			 * validated in userspace.
1142 			 */
1143 			ppl_conf->signature = signature;
1144 		} else if (ppl_conf->signature != signature) {
1145 			pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1146 				 __func__, signature, ppl_conf->signature,
1147 				 (unsigned long long)pplhdr_offset);
1148 			pplhdr = prev_pplhdr;
1149 			pplhdr_offset = prev_pplhdr_offset;
1150 			break;
1151 		}
1152 
1153 		if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1154 		    le64_to_cpu(pplhdr->generation)) {
1155 			/* previous was newest */
1156 			pplhdr = prev_pplhdr;
1157 			pplhdr_offset = prev_pplhdr_offset;
1158 			break;
1159 		}
1160 
1161 		prev_pplhdr_offset = pplhdr_offset;
1162 		prev_pplhdr = pplhdr;
1163 
1164 		tmp = page;
1165 		page = page2;
1166 		page2 = tmp;
1167 
1168 		/* calculate next potential ppl offset */
1169 		for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1170 			pplhdr_offset +=
1171 			    le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1172 		pplhdr_offset += PPL_HEADER_SIZE >> 9;
1173 	}
1174 
1175 	/* no valid ppl found */
1176 	if (!pplhdr)
1177 		ppl_conf->mismatch_count++;
1178 	else
1179 		pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1180 		    __func__, (unsigned long long)pplhdr_offset,
1181 		    le64_to_cpu(pplhdr->generation));
1182 
1183 	/* attempt to recover from log if we are starting a dirty array */
1184 	if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1185 		ret = ppl_recover(log, pplhdr, pplhdr_offset);
1186 
1187 	/* write empty header if we are starting the array */
1188 	if (!ret && !mddev->pers)
1189 		ret = ppl_write_empty_header(log);
1190 
1191 	__free_page(page);
1192 	__free_page(page2);
1193 
1194 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1195 		 __func__, ret, ppl_conf->mismatch_count,
1196 		 ppl_conf->recovered_entries);
1197 	return ret;
1198 }
1199 
1200 static int ppl_load(struct ppl_conf *ppl_conf)
1201 {
1202 	int ret = 0;
1203 	u32 signature = 0;
1204 	bool signature_set = false;
1205 	int i;
1206 
1207 	for (i = 0; i < ppl_conf->count; i++) {
1208 		struct ppl_log *log = &ppl_conf->child_logs[i];
1209 
1210 		/* skip missing drive */
1211 		if (!log->rdev)
1212 			continue;
1213 
1214 		ret = ppl_load_distributed(log);
1215 		if (ret)
1216 			break;
1217 
1218 		/*
1219 		 * For external metadata we can't check if the signature is
1220 		 * correct on a single drive, but we can check if it is the same
1221 		 * on all drives.
1222 		 */
1223 		if (ppl_conf->mddev->external) {
1224 			if (!signature_set) {
1225 				signature = ppl_conf->signature;
1226 				signature_set = true;
1227 			} else if (signature != ppl_conf->signature) {
1228 				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1229 					mdname(ppl_conf->mddev));
1230 				ret = -EINVAL;
1231 				break;
1232 			}
1233 		}
1234 	}
1235 
1236 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1237 		 __func__, ret, ppl_conf->mismatch_count,
1238 		 ppl_conf->recovered_entries);
1239 	return ret;
1240 }
1241 
1242 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1243 {
1244 	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1245 	clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1246 
1247 	kfree(ppl_conf->child_logs);
1248 
1249 	bioset_exit(&ppl_conf->bs);
1250 	bioset_exit(&ppl_conf->flush_bs);
1251 	mempool_exit(&ppl_conf->io_pool);
1252 	kmem_cache_destroy(ppl_conf->io_kc);
1253 
1254 	kfree(ppl_conf);
1255 }
1256 
1257 void ppl_exit_log(struct r5conf *conf)
1258 {
1259 	struct ppl_conf *ppl_conf = conf->log_private;
1260 
1261 	if (ppl_conf) {
1262 		__ppl_exit_log(ppl_conf);
1263 		conf->log_private = NULL;
1264 	}
1265 }
1266 
1267 static int ppl_validate_rdev(struct md_rdev *rdev)
1268 {
1269 	char b[BDEVNAME_SIZE];
1270 	int ppl_data_sectors;
1271 	int ppl_size_new;
1272 
1273 	/*
1274 	 * The configured PPL size must be enough to store
1275 	 * the header and (at the very least) partial parity
1276 	 * for one stripe. Round it down to ensure the data
1277 	 * space is cleanly divisible by stripe size.
1278 	 */
1279 	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1280 
1281 	if (ppl_data_sectors > 0)
1282 		ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1283 
1284 	if (ppl_data_sectors <= 0) {
1285 		pr_warn("md/raid:%s: PPL space too small on %s\n",
1286 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1287 		return -ENOSPC;
1288 	}
1289 
1290 	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1291 
1292 	if ((rdev->ppl.sector < rdev->data_offset &&
1293 	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1294 	    (rdev->ppl.sector >= rdev->data_offset &&
1295 	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1296 		pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1297 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1298 		return -EINVAL;
1299 	}
1300 
1301 	if (!rdev->mddev->external &&
1302 	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1303 	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1304 		pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1305 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1306 		return -EINVAL;
1307 	}
1308 
1309 	rdev->ppl.size = ppl_size_new;
1310 
1311 	return 0;
1312 }
1313 
1314 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1315 {
1316 	struct request_queue *q;
1317 
1318 	if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1319 				      PPL_HEADER_SIZE) * 2) {
1320 		log->use_multippl = true;
1321 		set_bit(MD_HAS_MULTIPLE_PPLS,
1322 			&log->ppl_conf->mddev->flags);
1323 		log->entry_space = PPL_SPACE_SIZE;
1324 	} else {
1325 		log->use_multippl = false;
1326 		log->entry_space = (log->rdev->ppl.size << 9) -
1327 				   PPL_HEADER_SIZE;
1328 	}
1329 	log->next_io_sector = rdev->ppl.sector;
1330 
1331 	q = bdev_get_queue(rdev->bdev);
1332 	if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1333 		log->wb_cache_on = true;
1334 }
1335 
1336 int ppl_init_log(struct r5conf *conf)
1337 {
1338 	struct ppl_conf *ppl_conf;
1339 	struct mddev *mddev = conf->mddev;
1340 	int ret = 0;
1341 	int max_disks;
1342 	int i;
1343 
1344 	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1345 		 mdname(conf->mddev));
1346 
1347 	if (PAGE_SIZE != 4096)
1348 		return -EINVAL;
1349 
1350 	if (mddev->level != 5) {
1351 		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1352 			mdname(mddev), mddev->level);
1353 		return -EINVAL;
1354 	}
1355 
1356 	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1357 		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1358 			mdname(mddev));
1359 		return -EINVAL;
1360 	}
1361 
1362 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1363 		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1364 			mdname(mddev));
1365 		return -EINVAL;
1366 	}
1367 
1368 	max_disks = FIELD_SIZEOF(struct ppl_log, disk_flush_bitmap) *
1369 		BITS_PER_BYTE;
1370 	if (conf->raid_disks > max_disks) {
1371 		pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1372 			mdname(mddev), max_disks);
1373 		return -EINVAL;
1374 	}
1375 
1376 	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1377 	if (!ppl_conf)
1378 		return -ENOMEM;
1379 
1380 	ppl_conf->mddev = mddev;
1381 
1382 	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1383 	if (!ppl_conf->io_kc) {
1384 		ret = -ENOMEM;
1385 		goto err;
1386 	}
1387 
1388 	ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1389 			   ppl_io_pool_free, ppl_conf->io_kc);
1390 	if (ret)
1391 		goto err;
1392 
1393 	ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1394 	if (ret)
1395 		goto err;
1396 
1397 	ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1398 	if (ret)
1399 		goto err;
1400 
1401 	ppl_conf->count = conf->raid_disks;
1402 	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1403 				       GFP_KERNEL);
1404 	if (!ppl_conf->child_logs) {
1405 		ret = -ENOMEM;
1406 		goto err;
1407 	}
1408 
1409 	atomic64_set(&ppl_conf->seq, 0);
1410 	INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1411 	spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1412 
1413 	if (!mddev->external) {
1414 		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1415 		ppl_conf->block_size = 512;
1416 	} else {
1417 		ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1418 	}
1419 
1420 	for (i = 0; i < ppl_conf->count; i++) {
1421 		struct ppl_log *log = &ppl_conf->child_logs[i];
1422 		struct md_rdev *rdev = conf->disks[i].rdev;
1423 
1424 		mutex_init(&log->io_mutex);
1425 		spin_lock_init(&log->io_list_lock);
1426 		INIT_LIST_HEAD(&log->io_list);
1427 
1428 		log->ppl_conf = ppl_conf;
1429 		log->rdev = rdev;
1430 
1431 		if (rdev) {
1432 			ret = ppl_validate_rdev(rdev);
1433 			if (ret)
1434 				goto err;
1435 
1436 			ppl_init_child_log(log, rdev);
1437 		}
1438 	}
1439 
1440 	/* load and possibly recover the logs from the member disks */
1441 	ret = ppl_load(ppl_conf);
1442 
1443 	if (ret) {
1444 		goto err;
1445 	} else if (!mddev->pers && mddev->recovery_cp == 0 &&
1446 		   ppl_conf->recovered_entries > 0 &&
1447 		   ppl_conf->mismatch_count == 0) {
1448 		/*
1449 		 * If we are starting a dirty array and the recovery succeeds
1450 		 * without any issues, set the array as clean.
1451 		 */
1452 		mddev->recovery_cp = MaxSector;
1453 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1454 	} else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1455 		/* no mismatch allowed when enabling PPL for a running array */
1456 		ret = -EINVAL;
1457 		goto err;
1458 	}
1459 
1460 	conf->log_private = ppl_conf;
1461 	set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1462 
1463 	return 0;
1464 err:
1465 	__ppl_exit_log(ppl_conf);
1466 	return ret;
1467 }
1468 
1469 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1470 {
1471 	struct ppl_conf *ppl_conf = conf->log_private;
1472 	struct ppl_log *log;
1473 	int ret = 0;
1474 	char b[BDEVNAME_SIZE];
1475 
1476 	if (!rdev)
1477 		return -EINVAL;
1478 
1479 	pr_debug("%s: disk: %d operation: %s dev: %s\n",
1480 		 __func__, rdev->raid_disk, add ? "add" : "remove",
1481 		 bdevname(rdev->bdev, b));
1482 
1483 	if (rdev->raid_disk < 0)
1484 		return 0;
1485 
1486 	if (rdev->raid_disk >= ppl_conf->count)
1487 		return -ENODEV;
1488 
1489 	log = &ppl_conf->child_logs[rdev->raid_disk];
1490 
1491 	mutex_lock(&log->io_mutex);
1492 	if (add) {
1493 		ret = ppl_validate_rdev(rdev);
1494 		if (!ret) {
1495 			log->rdev = rdev;
1496 			ret = ppl_write_empty_header(log);
1497 			ppl_init_child_log(log, rdev);
1498 		}
1499 	} else {
1500 		log->rdev = NULL;
1501 	}
1502 	mutex_unlock(&log->io_mutex);
1503 
1504 	return ret;
1505 }
1506