1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Partial Parity Log for closing the RAID5 write hole 4 * Copyright (c) 2017, Intel Corporation. 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/crc32c.h> 11 #include <linux/async_tx.h> 12 #include <linux/raid/md_p.h> 13 #include "md.h" 14 #include "raid5.h" 15 #include "raid5-log.h" 16 17 /* 18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for 19 * partial parity data. The header contains an array of entries 20 * (struct ppl_header_entry) which describe the logged write requests. 21 * Partial parity for the entries comes after the header, written in the same 22 * sequence as the entries: 23 * 24 * Header 25 * entry0 26 * ... 27 * entryN 28 * PP data 29 * PP for entry0 30 * ... 31 * PP for entryN 32 * 33 * An entry describes one or more consecutive stripe_heads, up to a full 34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the 35 * number of stripe_heads in the entry and n is the number of modified data 36 * disks. Every stripe_head in the entry must write to the same data disks. 37 * An example of a valid case described by a single entry (writes to the first 38 * stripe of a 4 disk array, 16k chunk size): 39 * 40 * sh->sector dd0 dd1 dd2 ppl 41 * +-----+-----+-----+ 42 * 0 | --- | --- | --- | +----+ 43 * 8 | -W- | -W- | --- | | pp | data_sector = 8 44 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k 45 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k 46 * +-----+-----+-----+ +----+ 47 * 48 * data_sector is the first raid sector of the modified data, data_size is the 49 * total size of modified data and pp_size is the size of partial parity for 50 * this entry. Entries for full stripe writes contain no partial parity 51 * (pp_size = 0), they only mark the stripes for which parity should be 52 * recalculated after an unclean shutdown. Every entry holds a checksum of its 53 * partial parity, the header also has a checksum of the header itself. 54 * 55 * A write request is always logged to the PPL instance stored on the parity 56 * disk of the corresponding stripe. For each member disk there is one ppl_log 57 * used to handle logging for this disk, independently from others. They are 58 * grouped in child_logs array in struct ppl_conf, which is assigned to 59 * r5conf->log_private. 60 * 61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. 62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head 63 * can be appended to the last entry if it meets the conditions for a valid 64 * entry described above, otherwise a new entry is added. Checksums of entries 65 * are calculated incrementally as stripes containing partial parity are being 66 * added. ppl_submit_iounit() calculates the checksum of the header and submits 67 * a bio containing the header page and partial parity pages (sh->ppl_page) for 68 * all stripes of the io_unit. When the PPL write completes, the stripes 69 * associated with the io_unit are released and raid5d starts writing their data 70 * and parity. When all stripes are written, the io_unit is freed and the next 71 * can be submitted. 72 * 73 * An io_unit is used to gather stripes until it is submitted or becomes full 74 * (if the maximum number of entries or size of PPL is reached). Another io_unit 75 * can't be submitted until the previous has completed (PPL and stripe 76 * data+parity is written). The log->io_list tracks all io_units of a log 77 * (for a single member disk). New io_units are added to the end of the list 78 * and the first io_unit is submitted, if it is not submitted already. 79 * The current io_unit accepting new stripes is always at the end of the list. 80 * 81 * If write-back cache is enabled for any of the disks in the array, its data 82 * must be flushed before next io_unit is submitted. 83 */ 84 85 #define PPL_SPACE_SIZE (128 * 1024) 86 87 struct ppl_conf { 88 struct mddev *mddev; 89 90 /* array of child logs, one for each raid disk */ 91 struct ppl_log *child_logs; 92 int count; 93 94 int block_size; /* the logical block size used for data_sector 95 * in ppl_header_entry */ 96 u32 signature; /* raid array identifier */ 97 atomic64_t seq; /* current log write sequence number */ 98 99 struct kmem_cache *io_kc; 100 mempool_t io_pool; 101 struct bio_set bs; 102 struct bio_set flush_bs; 103 104 /* used only for recovery */ 105 int recovered_entries; 106 int mismatch_count; 107 108 /* stripes to retry if failed to allocate io_unit */ 109 struct list_head no_mem_stripes; 110 spinlock_t no_mem_stripes_lock; 111 112 unsigned short write_hint; 113 }; 114 115 struct ppl_log { 116 struct ppl_conf *ppl_conf; /* shared between all log instances */ 117 118 struct md_rdev *rdev; /* array member disk associated with 119 * this log instance */ 120 struct mutex io_mutex; 121 struct ppl_io_unit *current_io; /* current io_unit accepting new data 122 * always at the end of io_list */ 123 spinlock_t io_list_lock; 124 struct list_head io_list; /* all io_units of this log */ 125 126 sector_t next_io_sector; 127 unsigned int entry_space; 128 bool use_multippl; 129 bool wb_cache_on; 130 unsigned long disk_flush_bitmap; 131 }; 132 133 #define PPL_IO_INLINE_BVECS 32 134 135 struct ppl_io_unit { 136 struct ppl_log *log; 137 138 struct page *header_page; /* for ppl_header */ 139 140 unsigned int entries_count; /* number of entries in ppl_header */ 141 unsigned int pp_size; /* total size current of partial parity */ 142 143 u64 seq; /* sequence number of this log write */ 144 struct list_head log_sibling; /* log->io_list */ 145 146 struct list_head stripe_list; /* stripes added to the io_unit */ 147 atomic_t pending_stripes; /* how many stripes not written to raid */ 148 atomic_t pending_flushes; /* how many disk flushes are in progress */ 149 150 bool submitted; /* true if write to log started */ 151 152 /* inline bio and its biovec for submitting the iounit */ 153 struct bio bio; 154 struct bio_vec biovec[PPL_IO_INLINE_BVECS]; 155 }; 156 157 struct dma_async_tx_descriptor * 158 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, 159 struct dma_async_tx_descriptor *tx) 160 { 161 int disks = sh->disks; 162 struct page **srcs = percpu->scribble; 163 int count = 0, pd_idx = sh->pd_idx, i; 164 struct async_submit_ctl submit; 165 166 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 167 168 /* 169 * Partial parity is the XOR of stripe data chunks that are not changed 170 * during the write request. Depending on available data 171 * (read-modify-write vs. reconstruct-write case) we calculate it 172 * differently. 173 */ 174 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 175 /* 176 * rmw: xor old data and parity from updated disks 177 * This is calculated earlier by ops_run_prexor5() so just copy 178 * the parity dev page. 179 */ 180 srcs[count++] = sh->dev[pd_idx].page; 181 } else if (sh->reconstruct_state == reconstruct_state_drain_run) { 182 /* rcw: xor data from all not updated disks */ 183 for (i = disks; i--;) { 184 struct r5dev *dev = &sh->dev[i]; 185 if (test_bit(R5_UPTODATE, &dev->flags)) 186 srcs[count++] = dev->page; 187 } 188 } else { 189 return tx; 190 } 191 192 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, 193 NULL, sh, (void *) (srcs + sh->disks + 2)); 194 195 if (count == 1) 196 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, 197 &submit); 198 else 199 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, 200 &submit); 201 202 return tx; 203 } 204 205 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) 206 { 207 struct kmem_cache *kc = pool_data; 208 struct ppl_io_unit *io; 209 210 io = kmem_cache_alloc(kc, gfp_mask); 211 if (!io) 212 return NULL; 213 214 io->header_page = alloc_page(gfp_mask); 215 if (!io->header_page) { 216 kmem_cache_free(kc, io); 217 return NULL; 218 } 219 220 return io; 221 } 222 223 static void ppl_io_pool_free(void *element, void *pool_data) 224 { 225 struct kmem_cache *kc = pool_data; 226 struct ppl_io_unit *io = element; 227 228 __free_page(io->header_page); 229 kmem_cache_free(kc, io); 230 } 231 232 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, 233 struct stripe_head *sh) 234 { 235 struct ppl_conf *ppl_conf = log->ppl_conf; 236 struct ppl_io_unit *io; 237 struct ppl_header *pplhdr; 238 struct page *header_page; 239 240 io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT); 241 if (!io) 242 return NULL; 243 244 header_page = io->header_page; 245 memset(io, 0, sizeof(*io)); 246 io->header_page = header_page; 247 248 io->log = log; 249 INIT_LIST_HEAD(&io->log_sibling); 250 INIT_LIST_HEAD(&io->stripe_list); 251 atomic_set(&io->pending_stripes, 0); 252 atomic_set(&io->pending_flushes, 0); 253 bio_init(&io->bio, log->rdev->bdev, io->biovec, PPL_IO_INLINE_BVECS, 254 REQ_OP_WRITE | REQ_FUA); 255 256 pplhdr = page_address(io->header_page); 257 clear_page(pplhdr); 258 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 259 pplhdr->signature = cpu_to_le32(ppl_conf->signature); 260 261 io->seq = atomic64_add_return(1, &ppl_conf->seq); 262 pplhdr->generation = cpu_to_le64(io->seq); 263 264 return io; 265 } 266 267 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) 268 { 269 struct ppl_io_unit *io = log->current_io; 270 struct ppl_header_entry *e = NULL; 271 struct ppl_header *pplhdr; 272 int i; 273 sector_t data_sector = 0; 274 int data_disks = 0; 275 struct r5conf *conf = sh->raid_conf; 276 277 pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); 278 279 /* check if current io_unit is full */ 280 if (io && (io->pp_size == log->entry_space || 281 io->entries_count == PPL_HDR_MAX_ENTRIES)) { 282 pr_debug("%s: add io_unit blocked by seq: %llu\n", 283 __func__, io->seq); 284 io = NULL; 285 } 286 287 /* add a new unit if there is none or the current is full */ 288 if (!io) { 289 io = ppl_new_iounit(log, sh); 290 if (!io) 291 return -ENOMEM; 292 spin_lock_irq(&log->io_list_lock); 293 list_add_tail(&io->log_sibling, &log->io_list); 294 spin_unlock_irq(&log->io_list_lock); 295 296 log->current_io = io; 297 } 298 299 for (i = 0; i < sh->disks; i++) { 300 struct r5dev *dev = &sh->dev[i]; 301 302 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { 303 if (!data_disks || dev->sector < data_sector) 304 data_sector = dev->sector; 305 data_disks++; 306 } 307 } 308 BUG_ON(!data_disks); 309 310 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, 311 io->seq, (unsigned long long)data_sector, data_disks); 312 313 pplhdr = page_address(io->header_page); 314 315 if (io->entries_count > 0) { 316 struct ppl_header_entry *last = 317 &pplhdr->entries[io->entries_count - 1]; 318 struct stripe_head *sh_last = list_last_entry( 319 &io->stripe_list, struct stripe_head, log_list); 320 u64 data_sector_last = le64_to_cpu(last->data_sector); 321 u32 data_size_last = le32_to_cpu(last->data_size); 322 323 /* 324 * Check if we can append the stripe to the last entry. It must 325 * be just after the last logged stripe and write to the same 326 * disks. Use bit shift and logarithm to avoid 64-bit division. 327 */ 328 if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) && 329 (data_sector >> ilog2(conf->chunk_sectors) == 330 data_sector_last >> ilog2(conf->chunk_sectors)) && 331 ((data_sector - data_sector_last) * data_disks == 332 data_size_last >> 9)) 333 e = last; 334 } 335 336 if (!e) { 337 e = &pplhdr->entries[io->entries_count++]; 338 e->data_sector = cpu_to_le64(data_sector); 339 e->parity_disk = cpu_to_le32(sh->pd_idx); 340 e->checksum = cpu_to_le32(~0); 341 } 342 343 le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); 344 345 /* don't write any PP if full stripe write */ 346 if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { 347 le32_add_cpu(&e->pp_size, PAGE_SIZE); 348 io->pp_size += PAGE_SIZE; 349 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), 350 page_address(sh->ppl_page), 351 PAGE_SIZE)); 352 } 353 354 list_add_tail(&sh->log_list, &io->stripe_list); 355 atomic_inc(&io->pending_stripes); 356 sh->ppl_io = io; 357 358 return 0; 359 } 360 361 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) 362 { 363 struct ppl_conf *ppl_conf = conf->log_private; 364 struct ppl_io_unit *io = sh->ppl_io; 365 struct ppl_log *log; 366 367 if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || 368 !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 369 !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { 370 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 371 return -EAGAIN; 372 } 373 374 log = &ppl_conf->child_logs[sh->pd_idx]; 375 376 mutex_lock(&log->io_mutex); 377 378 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 379 mutex_unlock(&log->io_mutex); 380 return -EAGAIN; 381 } 382 383 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 384 clear_bit(STRIPE_DELAYED, &sh->state); 385 atomic_inc(&sh->count); 386 387 if (ppl_log_stripe(log, sh)) { 388 spin_lock_irq(&ppl_conf->no_mem_stripes_lock); 389 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); 390 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); 391 } 392 393 mutex_unlock(&log->io_mutex); 394 395 return 0; 396 } 397 398 static void ppl_log_endio(struct bio *bio) 399 { 400 struct ppl_io_unit *io = bio->bi_private; 401 struct ppl_log *log = io->log; 402 struct ppl_conf *ppl_conf = log->ppl_conf; 403 struct stripe_head *sh, *next; 404 405 pr_debug("%s: seq: %llu\n", __func__, io->seq); 406 407 if (bio->bi_status) 408 md_error(ppl_conf->mddev, log->rdev); 409 410 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 411 list_del_init(&sh->log_list); 412 413 set_bit(STRIPE_HANDLE, &sh->state); 414 raid5_release_stripe(sh); 415 } 416 } 417 418 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) 419 { 420 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n", 421 __func__, io->seq, bio->bi_iter.bi_size, 422 (unsigned long long)bio->bi_iter.bi_sector, 423 bio->bi_bdev); 424 425 submit_bio(bio); 426 } 427 428 static void ppl_submit_iounit(struct ppl_io_unit *io) 429 { 430 struct ppl_log *log = io->log; 431 struct ppl_conf *ppl_conf = log->ppl_conf; 432 struct ppl_header *pplhdr = page_address(io->header_page); 433 struct bio *bio = &io->bio; 434 struct stripe_head *sh; 435 int i; 436 437 bio->bi_private = io; 438 439 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 440 ppl_log_endio(bio); 441 return; 442 } 443 444 for (i = 0; i < io->entries_count; i++) { 445 struct ppl_header_entry *e = &pplhdr->entries[i]; 446 447 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", 448 __func__, io->seq, i, le64_to_cpu(e->data_sector), 449 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); 450 451 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> 452 ilog2(ppl_conf->block_size >> 9)); 453 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); 454 } 455 456 pplhdr->entries_count = cpu_to_le32(io->entries_count); 457 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); 458 459 /* Rewind the buffer if current PPL is larger then remaining space */ 460 if (log->use_multippl && 461 log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector < 462 (PPL_HEADER_SIZE + io->pp_size) >> 9) 463 log->next_io_sector = log->rdev->ppl.sector; 464 465 466 bio->bi_end_io = ppl_log_endio; 467 bio->bi_iter.bi_sector = log->next_io_sector; 468 bio_add_page(bio, io->header_page, PAGE_SIZE, 0); 469 bio->bi_write_hint = ppl_conf->write_hint; 470 471 pr_debug("%s: log->current_io_sector: %llu\n", __func__, 472 (unsigned long long)log->next_io_sector); 473 474 if (log->use_multippl) 475 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9; 476 477 WARN_ON(log->disk_flush_bitmap != 0); 478 479 list_for_each_entry(sh, &io->stripe_list, log_list) { 480 for (i = 0; i < sh->disks; i++) { 481 struct r5dev *dev = &sh->dev[i]; 482 483 if ((ppl_conf->child_logs[i].wb_cache_on) && 484 (test_bit(R5_Wantwrite, &dev->flags))) { 485 set_bit(i, &log->disk_flush_bitmap); 486 } 487 } 488 489 /* entries for full stripe writes have no partial parity */ 490 if (test_bit(STRIPE_FULL_WRITE, &sh->state)) 491 continue; 492 493 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { 494 struct bio *prev = bio; 495 496 bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS, 497 prev->bi_opf, GFP_NOIO, 498 &ppl_conf->bs); 499 bio->bi_write_hint = prev->bi_write_hint; 500 bio->bi_iter.bi_sector = bio_end_sector(prev); 501 bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); 502 503 bio_chain(bio, prev); 504 ppl_submit_iounit_bio(io, prev); 505 } 506 } 507 508 ppl_submit_iounit_bio(io, bio); 509 } 510 511 static void ppl_submit_current_io(struct ppl_log *log) 512 { 513 struct ppl_io_unit *io; 514 515 spin_lock_irq(&log->io_list_lock); 516 517 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 518 log_sibling); 519 if (io && io->submitted) 520 io = NULL; 521 522 spin_unlock_irq(&log->io_list_lock); 523 524 if (io) { 525 io->submitted = true; 526 527 if (io == log->current_io) 528 log->current_io = NULL; 529 530 ppl_submit_iounit(io); 531 } 532 } 533 534 void ppl_write_stripe_run(struct r5conf *conf) 535 { 536 struct ppl_conf *ppl_conf = conf->log_private; 537 struct ppl_log *log; 538 int i; 539 540 for (i = 0; i < ppl_conf->count; i++) { 541 log = &ppl_conf->child_logs[i]; 542 543 mutex_lock(&log->io_mutex); 544 ppl_submit_current_io(log); 545 mutex_unlock(&log->io_mutex); 546 } 547 } 548 549 static void ppl_io_unit_finished(struct ppl_io_unit *io) 550 { 551 struct ppl_log *log = io->log; 552 struct ppl_conf *ppl_conf = log->ppl_conf; 553 struct r5conf *conf = ppl_conf->mddev->private; 554 unsigned long flags; 555 556 pr_debug("%s: seq: %llu\n", __func__, io->seq); 557 558 local_irq_save(flags); 559 560 spin_lock(&log->io_list_lock); 561 list_del(&io->log_sibling); 562 spin_unlock(&log->io_list_lock); 563 564 mempool_free(io, &ppl_conf->io_pool); 565 566 spin_lock(&ppl_conf->no_mem_stripes_lock); 567 if (!list_empty(&ppl_conf->no_mem_stripes)) { 568 struct stripe_head *sh; 569 570 sh = list_first_entry(&ppl_conf->no_mem_stripes, 571 struct stripe_head, log_list); 572 list_del_init(&sh->log_list); 573 set_bit(STRIPE_HANDLE, &sh->state); 574 raid5_release_stripe(sh); 575 } 576 spin_unlock(&ppl_conf->no_mem_stripes_lock); 577 578 local_irq_restore(flags); 579 580 wake_up(&conf->wait_for_quiescent); 581 } 582 583 static void ppl_flush_endio(struct bio *bio) 584 { 585 struct ppl_io_unit *io = bio->bi_private; 586 struct ppl_log *log = io->log; 587 struct ppl_conf *ppl_conf = log->ppl_conf; 588 struct r5conf *conf = ppl_conf->mddev->private; 589 590 pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev); 591 592 if (bio->bi_status) { 593 struct md_rdev *rdev; 594 595 rcu_read_lock(); 596 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio)); 597 if (rdev) 598 md_error(rdev->mddev, rdev); 599 rcu_read_unlock(); 600 } 601 602 bio_put(bio); 603 604 if (atomic_dec_and_test(&io->pending_flushes)) { 605 ppl_io_unit_finished(io); 606 md_wakeup_thread(conf->mddev->thread); 607 } 608 } 609 610 static void ppl_do_flush(struct ppl_io_unit *io) 611 { 612 struct ppl_log *log = io->log; 613 struct ppl_conf *ppl_conf = log->ppl_conf; 614 struct r5conf *conf = ppl_conf->mddev->private; 615 int raid_disks = conf->raid_disks; 616 int flushed_disks = 0; 617 int i; 618 619 atomic_set(&io->pending_flushes, raid_disks); 620 621 for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) { 622 struct md_rdev *rdev; 623 struct block_device *bdev = NULL; 624 625 rcu_read_lock(); 626 rdev = rcu_dereference(conf->disks[i].rdev); 627 if (rdev && !test_bit(Faulty, &rdev->flags)) 628 bdev = rdev->bdev; 629 rcu_read_unlock(); 630 631 if (bdev) { 632 struct bio *bio; 633 634 bio = bio_alloc_bioset(bdev, 0, GFP_NOIO, 635 REQ_OP_WRITE | REQ_PREFLUSH, 636 &ppl_conf->flush_bs); 637 bio->bi_private = io; 638 bio->bi_end_io = ppl_flush_endio; 639 640 pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev); 641 642 submit_bio(bio); 643 flushed_disks++; 644 } 645 } 646 647 log->disk_flush_bitmap = 0; 648 649 for (i = flushed_disks ; i < raid_disks; i++) { 650 if (atomic_dec_and_test(&io->pending_flushes)) 651 ppl_io_unit_finished(io); 652 } 653 } 654 655 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf, 656 struct ppl_log *log) 657 { 658 struct ppl_io_unit *io; 659 660 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 661 log_sibling); 662 663 return !io || !io->submitted; 664 } 665 666 void ppl_quiesce(struct r5conf *conf, int quiesce) 667 { 668 struct ppl_conf *ppl_conf = conf->log_private; 669 int i; 670 671 if (quiesce) { 672 for (i = 0; i < ppl_conf->count; i++) { 673 struct ppl_log *log = &ppl_conf->child_logs[i]; 674 675 spin_lock_irq(&log->io_list_lock); 676 wait_event_lock_irq(conf->wait_for_quiescent, 677 ppl_no_io_unit_submitted(conf, log), 678 log->io_list_lock); 679 spin_unlock_irq(&log->io_list_lock); 680 } 681 } 682 } 683 684 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio) 685 { 686 if (bio->bi_iter.bi_size == 0) { 687 bio_endio(bio); 688 return 0; 689 } 690 bio->bi_opf &= ~REQ_PREFLUSH; 691 return -EAGAIN; 692 } 693 694 void ppl_stripe_write_finished(struct stripe_head *sh) 695 { 696 struct ppl_io_unit *io; 697 698 io = sh->ppl_io; 699 sh->ppl_io = NULL; 700 701 if (io && atomic_dec_and_test(&io->pending_stripes)) { 702 if (io->log->disk_flush_bitmap) 703 ppl_do_flush(io); 704 else 705 ppl_io_unit_finished(io); 706 } 707 } 708 709 static void ppl_xor(int size, struct page *page1, struct page *page2) 710 { 711 struct async_submit_ctl submit; 712 struct dma_async_tx_descriptor *tx; 713 struct page *xor_srcs[] = { page1, page2 }; 714 715 init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, 716 NULL, NULL, NULL, NULL); 717 tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); 718 719 async_tx_quiesce(&tx); 720 } 721 722 /* 723 * PPL recovery strategy: xor partial parity and data from all modified data 724 * disks within a stripe and write the result as the new stripe parity. If all 725 * stripe data disks are modified (full stripe write), no partial parity is 726 * available, so just xor the data disks. 727 * 728 * Recovery of a PPL entry shall occur only if all modified data disks are 729 * available and read from all of them succeeds. 730 * 731 * A PPL entry applies to a stripe, partial parity size for an entry is at most 732 * the size of the chunk. Examples of possible cases for a single entry: 733 * 734 * case 0: single data disk write: 735 * data0 data1 data2 ppl parity 736 * +--------+--------+--------+ +--------------------+ 737 * | ------ | ------ | ------ | +----+ | (no change) | 738 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 739 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 740 * | ------ | ------ | ------ | +----+ | (no change) | 741 * +--------+--------+--------+ +--------------------+ 742 * pp_size = data_size 743 * 744 * case 1: more than one data disk write: 745 * data0 data1 data2 ppl parity 746 * +--------+--------+--------+ +--------------------+ 747 * | ------ | ------ | ------ | +----+ | (no change) | 748 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 749 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 750 * | ------ | ------ | ------ | +----+ | (no change) | 751 * +--------+--------+--------+ +--------------------+ 752 * pp_size = data_size / modified_data_disks 753 * 754 * case 2: write to all data disks (also full stripe write): 755 * data0 data1 data2 parity 756 * +--------+--------+--------+ +--------------------+ 757 * | ------ | ------ | ------ | | (no change) | 758 * | -data- | -data- | -data- | --------> | xor all data | 759 * | ------ | ------ | ------ | --------> | (no change) | 760 * | ------ | ------ | ------ | | (no change) | 761 * +--------+--------+--------+ +--------------------+ 762 * pp_size = 0 763 * 764 * The following cases are possible only in other implementations. The recovery 765 * code can handle them, but they are not generated at runtime because they can 766 * be reduced to cases 0, 1 and 2: 767 * 768 * case 3: 769 * data0 data1 data2 ppl parity 770 * +--------+--------+--------+ +----+ +--------------------+ 771 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | 772 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | 773 * | -data- | -data- | -data- | | -- | -> | xor all data | 774 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | 775 * +--------+--------+--------+ +----+ +--------------------+ 776 * pp_size = chunk_size 777 * 778 * case 4: 779 * data0 data1 data2 ppl parity 780 * +--------+--------+--------+ +----+ +--------------------+ 781 * | ------ | -data- | ------ | | pp | | data1 ^ pp | 782 * | ------ | ------ | ------ | | -- | -> | (no change) | 783 * | ------ | ------ | ------ | | -- | -> | (no change) | 784 * | -data- | ------ | ------ | | pp | | data0 ^ pp | 785 * +--------+--------+--------+ +----+ +--------------------+ 786 * pp_size = chunk_size 787 */ 788 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, 789 sector_t ppl_sector) 790 { 791 struct ppl_conf *ppl_conf = log->ppl_conf; 792 struct mddev *mddev = ppl_conf->mddev; 793 struct r5conf *conf = mddev->private; 794 int block_size = ppl_conf->block_size; 795 struct page *page1; 796 struct page *page2; 797 sector_t r_sector_first; 798 sector_t r_sector_last; 799 int strip_sectors; 800 int data_disks; 801 int i; 802 int ret = 0; 803 char b[BDEVNAME_SIZE]; 804 unsigned int pp_size = le32_to_cpu(e->pp_size); 805 unsigned int data_size = le32_to_cpu(e->data_size); 806 807 page1 = alloc_page(GFP_KERNEL); 808 page2 = alloc_page(GFP_KERNEL); 809 810 if (!page1 || !page2) { 811 ret = -ENOMEM; 812 goto out; 813 } 814 815 r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); 816 817 if ((pp_size >> 9) < conf->chunk_sectors) { 818 if (pp_size > 0) { 819 data_disks = data_size / pp_size; 820 strip_sectors = pp_size >> 9; 821 } else { 822 data_disks = conf->raid_disks - conf->max_degraded; 823 strip_sectors = (data_size >> 9) / data_disks; 824 } 825 r_sector_last = r_sector_first + 826 (data_disks - 1) * conf->chunk_sectors + 827 strip_sectors; 828 } else { 829 data_disks = conf->raid_disks - conf->max_degraded; 830 strip_sectors = conf->chunk_sectors; 831 r_sector_last = r_sector_first + (data_size >> 9); 832 } 833 834 pr_debug("%s: array sector first: %llu last: %llu\n", __func__, 835 (unsigned long long)r_sector_first, 836 (unsigned long long)r_sector_last); 837 838 /* if start and end is 4k aligned, use a 4k block */ 839 if (block_size == 512 && 840 (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 && 841 (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0) 842 block_size = RAID5_STRIPE_SIZE(conf); 843 844 /* iterate through blocks in strip */ 845 for (i = 0; i < strip_sectors; i += (block_size >> 9)) { 846 bool update_parity = false; 847 sector_t parity_sector; 848 struct md_rdev *parity_rdev; 849 struct stripe_head sh; 850 int disk; 851 int indent = 0; 852 853 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); 854 indent += 2; 855 856 memset(page_address(page1), 0, PAGE_SIZE); 857 858 /* iterate through data member disks */ 859 for (disk = 0; disk < data_disks; disk++) { 860 int dd_idx; 861 struct md_rdev *rdev; 862 sector_t sector; 863 sector_t r_sector = r_sector_first + i + 864 (disk * conf->chunk_sectors); 865 866 pr_debug("%s:%*s data member disk %d start\n", 867 __func__, indent, "", disk); 868 indent += 2; 869 870 if (r_sector >= r_sector_last) { 871 pr_debug("%s:%*s array sector %llu doesn't need parity update\n", 872 __func__, indent, "", 873 (unsigned long long)r_sector); 874 indent -= 2; 875 continue; 876 } 877 878 update_parity = true; 879 880 /* map raid sector to member disk */ 881 sector = raid5_compute_sector(conf, r_sector, 0, 882 &dd_idx, NULL); 883 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", 884 __func__, indent, "", 885 (unsigned long long)r_sector, dd_idx, 886 (unsigned long long)sector); 887 888 rdev = conf->disks[dd_idx].rdev; 889 if (!rdev || (!test_bit(In_sync, &rdev->flags) && 890 sector >= rdev->recovery_offset)) { 891 pr_debug("%s:%*s data member disk %d missing\n", 892 __func__, indent, "", dd_idx); 893 update_parity = false; 894 break; 895 } 896 897 pr_debug("%s:%*s reading data member disk %s sector %llu\n", 898 __func__, indent, "", bdevname(rdev->bdev, b), 899 (unsigned long long)sector); 900 if (!sync_page_io(rdev, sector, block_size, page2, 901 REQ_OP_READ, 0, false)) { 902 md_error(mddev, rdev); 903 pr_debug("%s:%*s read failed!\n", __func__, 904 indent, ""); 905 ret = -EIO; 906 goto out; 907 } 908 909 ppl_xor(block_size, page1, page2); 910 911 indent -= 2; 912 } 913 914 if (!update_parity) 915 continue; 916 917 if (pp_size > 0) { 918 pr_debug("%s:%*s reading pp disk sector %llu\n", 919 __func__, indent, "", 920 (unsigned long long)(ppl_sector + i)); 921 if (!sync_page_io(log->rdev, 922 ppl_sector - log->rdev->data_offset + i, 923 block_size, page2, REQ_OP_READ, 0, 924 false)) { 925 pr_debug("%s:%*s read failed!\n", __func__, 926 indent, ""); 927 md_error(mddev, log->rdev); 928 ret = -EIO; 929 goto out; 930 } 931 932 ppl_xor(block_size, page1, page2); 933 } 934 935 /* map raid sector to parity disk */ 936 parity_sector = raid5_compute_sector(conf, r_sector_first + i, 937 0, &disk, &sh); 938 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); 939 parity_rdev = conf->disks[sh.pd_idx].rdev; 940 941 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); 942 pr_debug("%s:%*s write parity at sector %llu, disk %s\n", 943 __func__, indent, "", 944 (unsigned long long)parity_sector, 945 bdevname(parity_rdev->bdev, b)); 946 if (!sync_page_io(parity_rdev, parity_sector, block_size, 947 page1, REQ_OP_WRITE, 0, false)) { 948 pr_debug("%s:%*s parity write error!\n", __func__, 949 indent, ""); 950 md_error(mddev, parity_rdev); 951 ret = -EIO; 952 goto out; 953 } 954 } 955 out: 956 if (page1) 957 __free_page(page1); 958 if (page2) 959 __free_page(page2); 960 return ret; 961 } 962 963 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr, 964 sector_t offset) 965 { 966 struct ppl_conf *ppl_conf = log->ppl_conf; 967 struct md_rdev *rdev = log->rdev; 968 struct mddev *mddev = rdev->mddev; 969 sector_t ppl_sector = rdev->ppl.sector + offset + 970 (PPL_HEADER_SIZE >> 9); 971 struct page *page; 972 int i; 973 int ret = 0; 974 975 page = alloc_page(GFP_KERNEL); 976 if (!page) 977 return -ENOMEM; 978 979 /* iterate through all PPL entries saved */ 980 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { 981 struct ppl_header_entry *e = &pplhdr->entries[i]; 982 u32 pp_size = le32_to_cpu(e->pp_size); 983 sector_t sector = ppl_sector; 984 int ppl_entry_sectors = pp_size >> 9; 985 u32 crc, crc_stored; 986 987 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", 988 __func__, rdev->raid_disk, i, 989 (unsigned long long)ppl_sector, pp_size); 990 991 crc = ~0; 992 crc_stored = le32_to_cpu(e->checksum); 993 994 /* read parial parity for this entry and calculate its checksum */ 995 while (pp_size) { 996 int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; 997 998 if (!sync_page_io(rdev, sector - rdev->data_offset, 999 s, page, REQ_OP_READ, 0, false)) { 1000 md_error(mddev, rdev); 1001 ret = -EIO; 1002 goto out; 1003 } 1004 1005 crc = crc32c_le(crc, page_address(page), s); 1006 1007 pp_size -= s; 1008 sector += s >> 9; 1009 } 1010 1011 crc = ~crc; 1012 1013 if (crc != crc_stored) { 1014 /* 1015 * Don't recover this entry if the checksum does not 1016 * match, but keep going and try to recover other 1017 * entries. 1018 */ 1019 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", 1020 __func__, crc_stored, crc); 1021 ppl_conf->mismatch_count++; 1022 } else { 1023 ret = ppl_recover_entry(log, e, ppl_sector); 1024 if (ret) 1025 goto out; 1026 ppl_conf->recovered_entries++; 1027 } 1028 1029 ppl_sector += ppl_entry_sectors; 1030 } 1031 1032 /* flush the disk cache after recovery if necessary */ 1033 ret = blkdev_issue_flush(rdev->bdev); 1034 out: 1035 __free_page(page); 1036 return ret; 1037 } 1038 1039 static int ppl_write_empty_header(struct ppl_log *log) 1040 { 1041 struct page *page; 1042 struct ppl_header *pplhdr; 1043 struct md_rdev *rdev = log->rdev; 1044 int ret = 0; 1045 1046 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, 1047 rdev->raid_disk, (unsigned long long)rdev->ppl.sector); 1048 1049 page = alloc_page(GFP_NOIO | __GFP_ZERO); 1050 if (!page) 1051 return -ENOMEM; 1052 1053 pplhdr = page_address(page); 1054 /* zero out PPL space to avoid collision with old PPLs */ 1055 blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector, 1056 log->rdev->ppl.size, GFP_NOIO, 0); 1057 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 1058 pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); 1059 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); 1060 1061 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, 1062 PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC | 1063 REQ_FUA, 0, false)) { 1064 md_error(rdev->mddev, rdev); 1065 ret = -EIO; 1066 } 1067 1068 __free_page(page); 1069 return ret; 1070 } 1071 1072 static int ppl_load_distributed(struct ppl_log *log) 1073 { 1074 struct ppl_conf *ppl_conf = log->ppl_conf; 1075 struct md_rdev *rdev = log->rdev; 1076 struct mddev *mddev = rdev->mddev; 1077 struct page *page, *page2; 1078 struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL; 1079 u32 crc, crc_stored; 1080 u32 signature; 1081 int ret = 0, i; 1082 sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0; 1083 1084 pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); 1085 /* read PPL headers, find the recent one */ 1086 page = alloc_page(GFP_KERNEL); 1087 if (!page) 1088 return -ENOMEM; 1089 1090 page2 = alloc_page(GFP_KERNEL); 1091 if (!page2) { 1092 __free_page(page); 1093 return -ENOMEM; 1094 } 1095 1096 /* searching ppl area for latest ppl */ 1097 while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) { 1098 if (!sync_page_io(rdev, 1099 rdev->ppl.sector - rdev->data_offset + 1100 pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ, 1101 0, false)) { 1102 md_error(mddev, rdev); 1103 ret = -EIO; 1104 /* if not able to read - don't recover any PPL */ 1105 pplhdr = NULL; 1106 break; 1107 } 1108 pplhdr = page_address(page); 1109 1110 /* check header validity */ 1111 crc_stored = le32_to_cpu(pplhdr->checksum); 1112 pplhdr->checksum = 0; 1113 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); 1114 1115 if (crc_stored != crc) { 1116 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n", 1117 __func__, crc_stored, crc, 1118 (unsigned long long)pplhdr_offset); 1119 pplhdr = prev_pplhdr; 1120 pplhdr_offset = prev_pplhdr_offset; 1121 break; 1122 } 1123 1124 signature = le32_to_cpu(pplhdr->signature); 1125 1126 if (mddev->external) { 1127 /* 1128 * For external metadata the header signature is set and 1129 * validated in userspace. 1130 */ 1131 ppl_conf->signature = signature; 1132 } else if (ppl_conf->signature != signature) { 1133 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n", 1134 __func__, signature, ppl_conf->signature, 1135 (unsigned long long)pplhdr_offset); 1136 pplhdr = prev_pplhdr; 1137 pplhdr_offset = prev_pplhdr_offset; 1138 break; 1139 } 1140 1141 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) > 1142 le64_to_cpu(pplhdr->generation)) { 1143 /* previous was newest */ 1144 pplhdr = prev_pplhdr; 1145 pplhdr_offset = prev_pplhdr_offset; 1146 break; 1147 } 1148 1149 prev_pplhdr_offset = pplhdr_offset; 1150 prev_pplhdr = pplhdr; 1151 1152 swap(page, page2); 1153 1154 /* calculate next potential ppl offset */ 1155 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) 1156 pplhdr_offset += 1157 le32_to_cpu(pplhdr->entries[i].pp_size) >> 9; 1158 pplhdr_offset += PPL_HEADER_SIZE >> 9; 1159 } 1160 1161 /* no valid ppl found */ 1162 if (!pplhdr) 1163 ppl_conf->mismatch_count++; 1164 else 1165 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n", 1166 __func__, (unsigned long long)pplhdr_offset, 1167 le64_to_cpu(pplhdr->generation)); 1168 1169 /* attempt to recover from log if we are starting a dirty array */ 1170 if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector) 1171 ret = ppl_recover(log, pplhdr, pplhdr_offset); 1172 1173 /* write empty header if we are starting the array */ 1174 if (!ret && !mddev->pers) 1175 ret = ppl_write_empty_header(log); 1176 1177 __free_page(page); 1178 __free_page(page2); 1179 1180 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1181 __func__, ret, ppl_conf->mismatch_count, 1182 ppl_conf->recovered_entries); 1183 return ret; 1184 } 1185 1186 static int ppl_load(struct ppl_conf *ppl_conf) 1187 { 1188 int ret = 0; 1189 u32 signature = 0; 1190 bool signature_set = false; 1191 int i; 1192 1193 for (i = 0; i < ppl_conf->count; i++) { 1194 struct ppl_log *log = &ppl_conf->child_logs[i]; 1195 1196 /* skip missing drive */ 1197 if (!log->rdev) 1198 continue; 1199 1200 ret = ppl_load_distributed(log); 1201 if (ret) 1202 break; 1203 1204 /* 1205 * For external metadata we can't check if the signature is 1206 * correct on a single drive, but we can check if it is the same 1207 * on all drives. 1208 */ 1209 if (ppl_conf->mddev->external) { 1210 if (!signature_set) { 1211 signature = ppl_conf->signature; 1212 signature_set = true; 1213 } else if (signature != ppl_conf->signature) { 1214 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", 1215 mdname(ppl_conf->mddev)); 1216 ret = -EINVAL; 1217 break; 1218 } 1219 } 1220 } 1221 1222 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1223 __func__, ret, ppl_conf->mismatch_count, 1224 ppl_conf->recovered_entries); 1225 return ret; 1226 } 1227 1228 static void __ppl_exit_log(struct ppl_conf *ppl_conf) 1229 { 1230 clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1231 clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags); 1232 1233 kfree(ppl_conf->child_logs); 1234 1235 bioset_exit(&ppl_conf->bs); 1236 bioset_exit(&ppl_conf->flush_bs); 1237 mempool_exit(&ppl_conf->io_pool); 1238 kmem_cache_destroy(ppl_conf->io_kc); 1239 1240 kfree(ppl_conf); 1241 } 1242 1243 void ppl_exit_log(struct r5conf *conf) 1244 { 1245 struct ppl_conf *ppl_conf = conf->log_private; 1246 1247 if (ppl_conf) { 1248 __ppl_exit_log(ppl_conf); 1249 conf->log_private = NULL; 1250 } 1251 } 1252 1253 static int ppl_validate_rdev(struct md_rdev *rdev) 1254 { 1255 char b[BDEVNAME_SIZE]; 1256 int ppl_data_sectors; 1257 int ppl_size_new; 1258 1259 /* 1260 * The configured PPL size must be enough to store 1261 * the header and (at the very least) partial parity 1262 * for one stripe. Round it down to ensure the data 1263 * space is cleanly divisible by stripe size. 1264 */ 1265 ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); 1266 1267 if (ppl_data_sectors > 0) 1268 ppl_data_sectors = rounddown(ppl_data_sectors, 1269 RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private)); 1270 1271 if (ppl_data_sectors <= 0) { 1272 pr_warn("md/raid:%s: PPL space too small on %s\n", 1273 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1274 return -ENOSPC; 1275 } 1276 1277 ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); 1278 1279 if ((rdev->ppl.sector < rdev->data_offset && 1280 rdev->ppl.sector + ppl_size_new > rdev->data_offset) || 1281 (rdev->ppl.sector >= rdev->data_offset && 1282 rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { 1283 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n", 1284 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1285 return -EINVAL; 1286 } 1287 1288 if (!rdev->mddev->external && 1289 ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || 1290 (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { 1291 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n", 1292 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1293 return -EINVAL; 1294 } 1295 1296 rdev->ppl.size = ppl_size_new; 1297 1298 return 0; 1299 } 1300 1301 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev) 1302 { 1303 struct request_queue *q; 1304 1305 if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE + 1306 PPL_HEADER_SIZE) * 2) { 1307 log->use_multippl = true; 1308 set_bit(MD_HAS_MULTIPLE_PPLS, 1309 &log->ppl_conf->mddev->flags); 1310 log->entry_space = PPL_SPACE_SIZE; 1311 } else { 1312 log->use_multippl = false; 1313 log->entry_space = (log->rdev->ppl.size << 9) - 1314 PPL_HEADER_SIZE; 1315 } 1316 log->next_io_sector = rdev->ppl.sector; 1317 1318 q = bdev_get_queue(rdev->bdev); 1319 if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 1320 log->wb_cache_on = true; 1321 } 1322 1323 int ppl_init_log(struct r5conf *conf) 1324 { 1325 struct ppl_conf *ppl_conf; 1326 struct mddev *mddev = conf->mddev; 1327 int ret = 0; 1328 int max_disks; 1329 int i; 1330 1331 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", 1332 mdname(conf->mddev)); 1333 1334 if (PAGE_SIZE != 4096) 1335 return -EINVAL; 1336 1337 if (mddev->level != 5) { 1338 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", 1339 mdname(mddev), mddev->level); 1340 return -EINVAL; 1341 } 1342 1343 if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { 1344 pr_warn("md/raid:%s PPL is not compatible with bitmap\n", 1345 mdname(mddev)); 1346 return -EINVAL; 1347 } 1348 1349 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 1350 pr_warn("md/raid:%s PPL is not compatible with journal\n", 1351 mdname(mddev)); 1352 return -EINVAL; 1353 } 1354 1355 max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) * 1356 BITS_PER_BYTE; 1357 if (conf->raid_disks > max_disks) { 1358 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n", 1359 mdname(mddev), max_disks); 1360 return -EINVAL; 1361 } 1362 1363 ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); 1364 if (!ppl_conf) 1365 return -ENOMEM; 1366 1367 ppl_conf->mddev = mddev; 1368 1369 ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); 1370 if (!ppl_conf->io_kc) { 1371 ret = -ENOMEM; 1372 goto err; 1373 } 1374 1375 ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc, 1376 ppl_io_pool_free, ppl_conf->io_kc); 1377 if (ret) 1378 goto err; 1379 1380 ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS); 1381 if (ret) 1382 goto err; 1383 1384 ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0); 1385 if (ret) 1386 goto err; 1387 1388 ppl_conf->count = conf->raid_disks; 1389 ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), 1390 GFP_KERNEL); 1391 if (!ppl_conf->child_logs) { 1392 ret = -ENOMEM; 1393 goto err; 1394 } 1395 1396 atomic64_set(&ppl_conf->seq, 0); 1397 INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); 1398 spin_lock_init(&ppl_conf->no_mem_stripes_lock); 1399 ppl_conf->write_hint = RWH_WRITE_LIFE_NOT_SET; 1400 1401 if (!mddev->external) { 1402 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); 1403 ppl_conf->block_size = 512; 1404 } else { 1405 ppl_conf->block_size = queue_logical_block_size(mddev->queue); 1406 } 1407 1408 for (i = 0; i < ppl_conf->count; i++) { 1409 struct ppl_log *log = &ppl_conf->child_logs[i]; 1410 struct md_rdev *rdev = conf->disks[i].rdev; 1411 1412 mutex_init(&log->io_mutex); 1413 spin_lock_init(&log->io_list_lock); 1414 INIT_LIST_HEAD(&log->io_list); 1415 1416 log->ppl_conf = ppl_conf; 1417 log->rdev = rdev; 1418 1419 if (rdev) { 1420 ret = ppl_validate_rdev(rdev); 1421 if (ret) 1422 goto err; 1423 1424 ppl_init_child_log(log, rdev); 1425 } 1426 } 1427 1428 /* load and possibly recover the logs from the member disks */ 1429 ret = ppl_load(ppl_conf); 1430 1431 if (ret) { 1432 goto err; 1433 } else if (!mddev->pers && mddev->recovery_cp == 0 && 1434 ppl_conf->recovered_entries > 0 && 1435 ppl_conf->mismatch_count == 0) { 1436 /* 1437 * If we are starting a dirty array and the recovery succeeds 1438 * without any issues, set the array as clean. 1439 */ 1440 mddev->recovery_cp = MaxSector; 1441 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 1442 } else if (mddev->pers && ppl_conf->mismatch_count > 0) { 1443 /* no mismatch allowed when enabling PPL for a running array */ 1444 ret = -EINVAL; 1445 goto err; 1446 } 1447 1448 conf->log_private = ppl_conf; 1449 set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1450 1451 return 0; 1452 err: 1453 __ppl_exit_log(ppl_conf); 1454 return ret; 1455 } 1456 1457 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) 1458 { 1459 struct ppl_conf *ppl_conf = conf->log_private; 1460 struct ppl_log *log; 1461 int ret = 0; 1462 char b[BDEVNAME_SIZE]; 1463 1464 if (!rdev) 1465 return -EINVAL; 1466 1467 pr_debug("%s: disk: %d operation: %s dev: %s\n", 1468 __func__, rdev->raid_disk, add ? "add" : "remove", 1469 bdevname(rdev->bdev, b)); 1470 1471 if (rdev->raid_disk < 0) 1472 return 0; 1473 1474 if (rdev->raid_disk >= ppl_conf->count) 1475 return -ENODEV; 1476 1477 log = &ppl_conf->child_logs[rdev->raid_disk]; 1478 1479 mutex_lock(&log->io_mutex); 1480 if (add) { 1481 ret = ppl_validate_rdev(rdev); 1482 if (!ret) { 1483 log->rdev = rdev; 1484 ret = ppl_write_empty_header(log); 1485 ppl_init_child_log(log, rdev); 1486 } 1487 } else { 1488 log->rdev = NULL; 1489 } 1490 mutex_unlock(&log->io_mutex); 1491 1492 return ret; 1493 } 1494 1495 static ssize_t 1496 ppl_write_hint_show(struct mddev *mddev, char *buf) 1497 { 1498 size_t ret = 0; 1499 struct r5conf *conf; 1500 struct ppl_conf *ppl_conf = NULL; 1501 1502 spin_lock(&mddev->lock); 1503 conf = mddev->private; 1504 if (conf && raid5_has_ppl(conf)) 1505 ppl_conf = conf->log_private; 1506 ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0); 1507 spin_unlock(&mddev->lock); 1508 1509 return ret; 1510 } 1511 1512 static ssize_t 1513 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len) 1514 { 1515 struct r5conf *conf; 1516 struct ppl_conf *ppl_conf; 1517 int err = 0; 1518 unsigned short new; 1519 1520 if (len >= PAGE_SIZE) 1521 return -EINVAL; 1522 if (kstrtou16(page, 10, &new)) 1523 return -EINVAL; 1524 1525 err = mddev_lock(mddev); 1526 if (err) 1527 return err; 1528 1529 conf = mddev->private; 1530 if (!conf) { 1531 err = -ENODEV; 1532 } else if (raid5_has_ppl(conf)) { 1533 ppl_conf = conf->log_private; 1534 if (!ppl_conf) 1535 err = -EINVAL; 1536 else 1537 ppl_conf->write_hint = new; 1538 } else { 1539 err = -EINVAL; 1540 } 1541 1542 mddev_unlock(mddev); 1543 1544 return err ?: len; 1545 } 1546 1547 struct md_sysfs_entry 1548 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR, 1549 ppl_write_hint_show, 1550 ppl_write_hint_store); 1551