1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Partial Parity Log for closing the RAID5 write hole 4 * Copyright (c) 2017, Intel Corporation. 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/crc32c.h> 11 #include <linux/async_tx.h> 12 #include <linux/raid/md_p.h> 13 #include "md.h" 14 #include "raid5.h" 15 #include "raid5-log.h" 16 17 /* 18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for 19 * partial parity data. The header contains an array of entries 20 * (struct ppl_header_entry) which describe the logged write requests. 21 * Partial parity for the entries comes after the header, written in the same 22 * sequence as the entries: 23 * 24 * Header 25 * entry0 26 * ... 27 * entryN 28 * PP data 29 * PP for entry0 30 * ... 31 * PP for entryN 32 * 33 * An entry describes one or more consecutive stripe_heads, up to a full 34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the 35 * number of stripe_heads in the entry and n is the number of modified data 36 * disks. Every stripe_head in the entry must write to the same data disks. 37 * An example of a valid case described by a single entry (writes to the first 38 * stripe of a 4 disk array, 16k chunk size): 39 * 40 * sh->sector dd0 dd1 dd2 ppl 41 * +-----+-----+-----+ 42 * 0 | --- | --- | --- | +----+ 43 * 8 | -W- | -W- | --- | | pp | data_sector = 8 44 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k 45 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k 46 * +-----+-----+-----+ +----+ 47 * 48 * data_sector is the first raid sector of the modified data, data_size is the 49 * total size of modified data and pp_size is the size of partial parity for 50 * this entry. Entries for full stripe writes contain no partial parity 51 * (pp_size = 0), they only mark the stripes for which parity should be 52 * recalculated after an unclean shutdown. Every entry holds a checksum of its 53 * partial parity, the header also has a checksum of the header itself. 54 * 55 * A write request is always logged to the PPL instance stored on the parity 56 * disk of the corresponding stripe. For each member disk there is one ppl_log 57 * used to handle logging for this disk, independently from others. They are 58 * grouped in child_logs array in struct ppl_conf, which is assigned to 59 * r5conf->log_private. 60 * 61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. 62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head 63 * can be appended to the last entry if it meets the conditions for a valid 64 * entry described above, otherwise a new entry is added. Checksums of entries 65 * are calculated incrementally as stripes containing partial parity are being 66 * added. ppl_submit_iounit() calculates the checksum of the header and submits 67 * a bio containing the header page and partial parity pages (sh->ppl_page) for 68 * all stripes of the io_unit. When the PPL write completes, the stripes 69 * associated with the io_unit are released and raid5d starts writing their data 70 * and parity. When all stripes are written, the io_unit is freed and the next 71 * can be submitted. 72 * 73 * An io_unit is used to gather stripes until it is submitted or becomes full 74 * (if the maximum number of entries or size of PPL is reached). Another io_unit 75 * can't be submitted until the previous has completed (PPL and stripe 76 * data+parity is written). The log->io_list tracks all io_units of a log 77 * (for a single member disk). New io_units are added to the end of the list 78 * and the first io_unit is submitted, if it is not submitted already. 79 * The current io_unit accepting new stripes is always at the end of the list. 80 * 81 * If write-back cache is enabled for any of the disks in the array, its data 82 * must be flushed before next io_unit is submitted. 83 */ 84 85 #define PPL_SPACE_SIZE (128 * 1024) 86 87 struct ppl_conf { 88 struct mddev *mddev; 89 90 /* array of child logs, one for each raid disk */ 91 struct ppl_log *child_logs; 92 int count; 93 94 int block_size; /* the logical block size used for data_sector 95 * in ppl_header_entry */ 96 u32 signature; /* raid array identifier */ 97 atomic64_t seq; /* current log write sequence number */ 98 99 struct kmem_cache *io_kc; 100 mempool_t io_pool; 101 struct bio_set bs; 102 struct bio_set flush_bs; 103 104 /* used only for recovery */ 105 int recovered_entries; 106 int mismatch_count; 107 108 /* stripes to retry if failed to allocate io_unit */ 109 struct list_head no_mem_stripes; 110 spinlock_t no_mem_stripes_lock; 111 112 unsigned short write_hint; 113 }; 114 115 struct ppl_log { 116 struct ppl_conf *ppl_conf; /* shared between all log instances */ 117 118 struct md_rdev *rdev; /* array member disk associated with 119 * this log instance */ 120 struct mutex io_mutex; 121 struct ppl_io_unit *current_io; /* current io_unit accepting new data 122 * always at the end of io_list */ 123 spinlock_t io_list_lock; 124 struct list_head io_list; /* all io_units of this log */ 125 126 sector_t next_io_sector; 127 unsigned int entry_space; 128 bool use_multippl; 129 bool wb_cache_on; 130 unsigned long disk_flush_bitmap; 131 }; 132 133 #define PPL_IO_INLINE_BVECS 32 134 135 struct ppl_io_unit { 136 struct ppl_log *log; 137 138 struct page *header_page; /* for ppl_header */ 139 140 unsigned int entries_count; /* number of entries in ppl_header */ 141 unsigned int pp_size; /* total size current of partial parity */ 142 143 u64 seq; /* sequence number of this log write */ 144 struct list_head log_sibling; /* log->io_list */ 145 146 struct list_head stripe_list; /* stripes added to the io_unit */ 147 atomic_t pending_stripes; /* how many stripes not written to raid */ 148 atomic_t pending_flushes; /* how many disk flushes are in progress */ 149 150 bool submitted; /* true if write to log started */ 151 152 /* inline bio and its biovec for submitting the iounit */ 153 struct bio bio; 154 struct bio_vec biovec[PPL_IO_INLINE_BVECS]; 155 }; 156 157 struct dma_async_tx_descriptor * 158 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, 159 struct dma_async_tx_descriptor *tx) 160 { 161 int disks = sh->disks; 162 struct page **srcs = percpu->scribble; 163 int count = 0, pd_idx = sh->pd_idx, i; 164 struct async_submit_ctl submit; 165 166 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 167 168 /* 169 * Partial parity is the XOR of stripe data chunks that are not changed 170 * during the write request. Depending on available data 171 * (read-modify-write vs. reconstruct-write case) we calculate it 172 * differently. 173 */ 174 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 175 /* 176 * rmw: xor old data and parity from updated disks 177 * This is calculated earlier by ops_run_prexor5() so just copy 178 * the parity dev page. 179 */ 180 srcs[count++] = sh->dev[pd_idx].page; 181 } else if (sh->reconstruct_state == reconstruct_state_drain_run) { 182 /* rcw: xor data from all not updated disks */ 183 for (i = disks; i--;) { 184 struct r5dev *dev = &sh->dev[i]; 185 if (test_bit(R5_UPTODATE, &dev->flags)) 186 srcs[count++] = dev->page; 187 } 188 } else { 189 return tx; 190 } 191 192 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, 193 NULL, sh, (void *) (srcs + sh->disks + 2)); 194 195 if (count == 1) 196 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, 197 &submit); 198 else 199 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, 200 &submit); 201 202 return tx; 203 } 204 205 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) 206 { 207 struct kmem_cache *kc = pool_data; 208 struct ppl_io_unit *io; 209 210 io = kmem_cache_alloc(kc, gfp_mask); 211 if (!io) 212 return NULL; 213 214 io->header_page = alloc_page(gfp_mask); 215 if (!io->header_page) { 216 kmem_cache_free(kc, io); 217 return NULL; 218 } 219 220 return io; 221 } 222 223 static void ppl_io_pool_free(void *element, void *pool_data) 224 { 225 struct kmem_cache *kc = pool_data; 226 struct ppl_io_unit *io = element; 227 228 __free_page(io->header_page); 229 kmem_cache_free(kc, io); 230 } 231 232 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, 233 struct stripe_head *sh) 234 { 235 struct ppl_conf *ppl_conf = log->ppl_conf; 236 struct ppl_io_unit *io; 237 struct ppl_header *pplhdr; 238 struct page *header_page; 239 240 io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT); 241 if (!io) 242 return NULL; 243 244 header_page = io->header_page; 245 memset(io, 0, sizeof(*io)); 246 io->header_page = header_page; 247 248 io->log = log; 249 INIT_LIST_HEAD(&io->log_sibling); 250 INIT_LIST_HEAD(&io->stripe_list); 251 atomic_set(&io->pending_stripes, 0); 252 atomic_set(&io->pending_flushes, 0); 253 bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS); 254 255 pplhdr = page_address(io->header_page); 256 clear_page(pplhdr); 257 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 258 pplhdr->signature = cpu_to_le32(ppl_conf->signature); 259 260 io->seq = atomic64_add_return(1, &ppl_conf->seq); 261 pplhdr->generation = cpu_to_le64(io->seq); 262 263 return io; 264 } 265 266 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) 267 { 268 struct ppl_io_unit *io = log->current_io; 269 struct ppl_header_entry *e = NULL; 270 struct ppl_header *pplhdr; 271 int i; 272 sector_t data_sector = 0; 273 int data_disks = 0; 274 struct r5conf *conf = sh->raid_conf; 275 276 pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); 277 278 /* check if current io_unit is full */ 279 if (io && (io->pp_size == log->entry_space || 280 io->entries_count == PPL_HDR_MAX_ENTRIES)) { 281 pr_debug("%s: add io_unit blocked by seq: %llu\n", 282 __func__, io->seq); 283 io = NULL; 284 } 285 286 /* add a new unit if there is none or the current is full */ 287 if (!io) { 288 io = ppl_new_iounit(log, sh); 289 if (!io) 290 return -ENOMEM; 291 spin_lock_irq(&log->io_list_lock); 292 list_add_tail(&io->log_sibling, &log->io_list); 293 spin_unlock_irq(&log->io_list_lock); 294 295 log->current_io = io; 296 } 297 298 for (i = 0; i < sh->disks; i++) { 299 struct r5dev *dev = &sh->dev[i]; 300 301 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { 302 if (!data_disks || dev->sector < data_sector) 303 data_sector = dev->sector; 304 data_disks++; 305 } 306 } 307 BUG_ON(!data_disks); 308 309 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, 310 io->seq, (unsigned long long)data_sector, data_disks); 311 312 pplhdr = page_address(io->header_page); 313 314 if (io->entries_count > 0) { 315 struct ppl_header_entry *last = 316 &pplhdr->entries[io->entries_count - 1]; 317 struct stripe_head *sh_last = list_last_entry( 318 &io->stripe_list, struct stripe_head, log_list); 319 u64 data_sector_last = le64_to_cpu(last->data_sector); 320 u32 data_size_last = le32_to_cpu(last->data_size); 321 322 /* 323 * Check if we can append the stripe to the last entry. It must 324 * be just after the last logged stripe and write to the same 325 * disks. Use bit shift and logarithm to avoid 64-bit division. 326 */ 327 if ((sh->sector == sh_last->sector + STRIPE_SECTORS) && 328 (data_sector >> ilog2(conf->chunk_sectors) == 329 data_sector_last >> ilog2(conf->chunk_sectors)) && 330 ((data_sector - data_sector_last) * data_disks == 331 data_size_last >> 9)) 332 e = last; 333 } 334 335 if (!e) { 336 e = &pplhdr->entries[io->entries_count++]; 337 e->data_sector = cpu_to_le64(data_sector); 338 e->parity_disk = cpu_to_le32(sh->pd_idx); 339 e->checksum = cpu_to_le32(~0); 340 } 341 342 le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); 343 344 /* don't write any PP if full stripe write */ 345 if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { 346 le32_add_cpu(&e->pp_size, PAGE_SIZE); 347 io->pp_size += PAGE_SIZE; 348 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), 349 page_address(sh->ppl_page), 350 PAGE_SIZE)); 351 } 352 353 list_add_tail(&sh->log_list, &io->stripe_list); 354 atomic_inc(&io->pending_stripes); 355 sh->ppl_io = io; 356 357 return 0; 358 } 359 360 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) 361 { 362 struct ppl_conf *ppl_conf = conf->log_private; 363 struct ppl_io_unit *io = sh->ppl_io; 364 struct ppl_log *log; 365 366 if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || 367 !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 368 !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { 369 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 370 return -EAGAIN; 371 } 372 373 log = &ppl_conf->child_logs[sh->pd_idx]; 374 375 mutex_lock(&log->io_mutex); 376 377 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 378 mutex_unlock(&log->io_mutex); 379 return -EAGAIN; 380 } 381 382 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 383 clear_bit(STRIPE_DELAYED, &sh->state); 384 atomic_inc(&sh->count); 385 386 if (ppl_log_stripe(log, sh)) { 387 spin_lock_irq(&ppl_conf->no_mem_stripes_lock); 388 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); 389 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); 390 } 391 392 mutex_unlock(&log->io_mutex); 393 394 return 0; 395 } 396 397 static void ppl_log_endio(struct bio *bio) 398 { 399 struct ppl_io_unit *io = bio->bi_private; 400 struct ppl_log *log = io->log; 401 struct ppl_conf *ppl_conf = log->ppl_conf; 402 struct stripe_head *sh, *next; 403 404 pr_debug("%s: seq: %llu\n", __func__, io->seq); 405 406 if (bio->bi_status) 407 md_error(ppl_conf->mddev, log->rdev); 408 409 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 410 list_del_init(&sh->log_list); 411 412 set_bit(STRIPE_HANDLE, &sh->state); 413 raid5_release_stripe(sh); 414 } 415 } 416 417 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) 418 { 419 char b[BDEVNAME_SIZE]; 420 421 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n", 422 __func__, io->seq, bio->bi_iter.bi_size, 423 (unsigned long long)bio->bi_iter.bi_sector, 424 bio_devname(bio, b)); 425 426 submit_bio(bio); 427 } 428 429 static void ppl_submit_iounit(struct ppl_io_unit *io) 430 { 431 struct ppl_log *log = io->log; 432 struct ppl_conf *ppl_conf = log->ppl_conf; 433 struct ppl_header *pplhdr = page_address(io->header_page); 434 struct bio *bio = &io->bio; 435 struct stripe_head *sh; 436 int i; 437 438 bio->bi_private = io; 439 440 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 441 ppl_log_endio(bio); 442 return; 443 } 444 445 for (i = 0; i < io->entries_count; i++) { 446 struct ppl_header_entry *e = &pplhdr->entries[i]; 447 448 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", 449 __func__, io->seq, i, le64_to_cpu(e->data_sector), 450 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); 451 452 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> 453 ilog2(ppl_conf->block_size >> 9)); 454 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); 455 } 456 457 pplhdr->entries_count = cpu_to_le32(io->entries_count); 458 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); 459 460 /* Rewind the buffer if current PPL is larger then remaining space */ 461 if (log->use_multippl && 462 log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector < 463 (PPL_HEADER_SIZE + io->pp_size) >> 9) 464 log->next_io_sector = log->rdev->ppl.sector; 465 466 467 bio->bi_end_io = ppl_log_endio; 468 bio->bi_opf = REQ_OP_WRITE | REQ_FUA; 469 bio_set_dev(bio, log->rdev->bdev); 470 bio->bi_iter.bi_sector = log->next_io_sector; 471 bio_add_page(bio, io->header_page, PAGE_SIZE, 0); 472 bio->bi_write_hint = ppl_conf->write_hint; 473 474 pr_debug("%s: log->current_io_sector: %llu\n", __func__, 475 (unsigned long long)log->next_io_sector); 476 477 if (log->use_multippl) 478 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9; 479 480 WARN_ON(log->disk_flush_bitmap != 0); 481 482 list_for_each_entry(sh, &io->stripe_list, log_list) { 483 for (i = 0; i < sh->disks; i++) { 484 struct r5dev *dev = &sh->dev[i]; 485 486 if ((ppl_conf->child_logs[i].wb_cache_on) && 487 (test_bit(R5_Wantwrite, &dev->flags))) { 488 set_bit(i, &log->disk_flush_bitmap); 489 } 490 } 491 492 /* entries for full stripe writes have no partial parity */ 493 if (test_bit(STRIPE_FULL_WRITE, &sh->state)) 494 continue; 495 496 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { 497 struct bio *prev = bio; 498 499 bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, 500 &ppl_conf->bs); 501 bio->bi_opf = prev->bi_opf; 502 bio->bi_write_hint = prev->bi_write_hint; 503 bio_copy_dev(bio, prev); 504 bio->bi_iter.bi_sector = bio_end_sector(prev); 505 bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); 506 507 bio_chain(bio, prev); 508 ppl_submit_iounit_bio(io, prev); 509 } 510 } 511 512 ppl_submit_iounit_bio(io, bio); 513 } 514 515 static void ppl_submit_current_io(struct ppl_log *log) 516 { 517 struct ppl_io_unit *io; 518 519 spin_lock_irq(&log->io_list_lock); 520 521 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 522 log_sibling); 523 if (io && io->submitted) 524 io = NULL; 525 526 spin_unlock_irq(&log->io_list_lock); 527 528 if (io) { 529 io->submitted = true; 530 531 if (io == log->current_io) 532 log->current_io = NULL; 533 534 ppl_submit_iounit(io); 535 } 536 } 537 538 void ppl_write_stripe_run(struct r5conf *conf) 539 { 540 struct ppl_conf *ppl_conf = conf->log_private; 541 struct ppl_log *log; 542 int i; 543 544 for (i = 0; i < ppl_conf->count; i++) { 545 log = &ppl_conf->child_logs[i]; 546 547 mutex_lock(&log->io_mutex); 548 ppl_submit_current_io(log); 549 mutex_unlock(&log->io_mutex); 550 } 551 } 552 553 static void ppl_io_unit_finished(struct ppl_io_unit *io) 554 { 555 struct ppl_log *log = io->log; 556 struct ppl_conf *ppl_conf = log->ppl_conf; 557 struct r5conf *conf = ppl_conf->mddev->private; 558 unsigned long flags; 559 560 pr_debug("%s: seq: %llu\n", __func__, io->seq); 561 562 local_irq_save(flags); 563 564 spin_lock(&log->io_list_lock); 565 list_del(&io->log_sibling); 566 spin_unlock(&log->io_list_lock); 567 568 mempool_free(io, &ppl_conf->io_pool); 569 570 spin_lock(&ppl_conf->no_mem_stripes_lock); 571 if (!list_empty(&ppl_conf->no_mem_stripes)) { 572 struct stripe_head *sh; 573 574 sh = list_first_entry(&ppl_conf->no_mem_stripes, 575 struct stripe_head, log_list); 576 list_del_init(&sh->log_list); 577 set_bit(STRIPE_HANDLE, &sh->state); 578 raid5_release_stripe(sh); 579 } 580 spin_unlock(&ppl_conf->no_mem_stripes_lock); 581 582 local_irq_restore(flags); 583 584 wake_up(&conf->wait_for_quiescent); 585 } 586 587 static void ppl_flush_endio(struct bio *bio) 588 { 589 struct ppl_io_unit *io = bio->bi_private; 590 struct ppl_log *log = io->log; 591 struct ppl_conf *ppl_conf = log->ppl_conf; 592 struct r5conf *conf = ppl_conf->mddev->private; 593 char b[BDEVNAME_SIZE]; 594 595 pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b)); 596 597 if (bio->bi_status) { 598 struct md_rdev *rdev; 599 600 rcu_read_lock(); 601 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio)); 602 if (rdev) 603 md_error(rdev->mddev, rdev); 604 rcu_read_unlock(); 605 } 606 607 bio_put(bio); 608 609 if (atomic_dec_and_test(&io->pending_flushes)) { 610 ppl_io_unit_finished(io); 611 md_wakeup_thread(conf->mddev->thread); 612 } 613 } 614 615 static void ppl_do_flush(struct ppl_io_unit *io) 616 { 617 struct ppl_log *log = io->log; 618 struct ppl_conf *ppl_conf = log->ppl_conf; 619 struct r5conf *conf = ppl_conf->mddev->private; 620 int raid_disks = conf->raid_disks; 621 int flushed_disks = 0; 622 int i; 623 624 atomic_set(&io->pending_flushes, raid_disks); 625 626 for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) { 627 struct md_rdev *rdev; 628 struct block_device *bdev = NULL; 629 630 rcu_read_lock(); 631 rdev = rcu_dereference(conf->disks[i].rdev); 632 if (rdev && !test_bit(Faulty, &rdev->flags)) 633 bdev = rdev->bdev; 634 rcu_read_unlock(); 635 636 if (bdev) { 637 struct bio *bio; 638 char b[BDEVNAME_SIZE]; 639 640 bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs); 641 bio_set_dev(bio, bdev); 642 bio->bi_private = io; 643 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 644 bio->bi_end_io = ppl_flush_endio; 645 646 pr_debug("%s: dev: %s\n", __func__, 647 bio_devname(bio, b)); 648 649 submit_bio(bio); 650 flushed_disks++; 651 } 652 } 653 654 log->disk_flush_bitmap = 0; 655 656 for (i = flushed_disks ; i < raid_disks; i++) { 657 if (atomic_dec_and_test(&io->pending_flushes)) 658 ppl_io_unit_finished(io); 659 } 660 } 661 662 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf, 663 struct ppl_log *log) 664 { 665 struct ppl_io_unit *io; 666 667 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 668 log_sibling); 669 670 return !io || !io->submitted; 671 } 672 673 void ppl_quiesce(struct r5conf *conf, int quiesce) 674 { 675 struct ppl_conf *ppl_conf = conf->log_private; 676 int i; 677 678 if (quiesce) { 679 for (i = 0; i < ppl_conf->count; i++) { 680 struct ppl_log *log = &ppl_conf->child_logs[i]; 681 682 spin_lock_irq(&log->io_list_lock); 683 wait_event_lock_irq(conf->wait_for_quiescent, 684 ppl_no_io_unit_submitted(conf, log), 685 log->io_list_lock); 686 spin_unlock_irq(&log->io_list_lock); 687 } 688 } 689 } 690 691 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio) 692 { 693 if (bio->bi_iter.bi_size == 0) { 694 bio_endio(bio); 695 return 0; 696 } 697 bio->bi_opf &= ~REQ_PREFLUSH; 698 return -EAGAIN; 699 } 700 701 void ppl_stripe_write_finished(struct stripe_head *sh) 702 { 703 struct ppl_io_unit *io; 704 705 io = sh->ppl_io; 706 sh->ppl_io = NULL; 707 708 if (io && atomic_dec_and_test(&io->pending_stripes)) { 709 if (io->log->disk_flush_bitmap) 710 ppl_do_flush(io); 711 else 712 ppl_io_unit_finished(io); 713 } 714 } 715 716 static void ppl_xor(int size, struct page *page1, struct page *page2) 717 { 718 struct async_submit_ctl submit; 719 struct dma_async_tx_descriptor *tx; 720 struct page *xor_srcs[] = { page1, page2 }; 721 722 init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, 723 NULL, NULL, NULL, NULL); 724 tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); 725 726 async_tx_quiesce(&tx); 727 } 728 729 /* 730 * PPL recovery strategy: xor partial parity and data from all modified data 731 * disks within a stripe and write the result as the new stripe parity. If all 732 * stripe data disks are modified (full stripe write), no partial parity is 733 * available, so just xor the data disks. 734 * 735 * Recovery of a PPL entry shall occur only if all modified data disks are 736 * available and read from all of them succeeds. 737 * 738 * A PPL entry applies to a stripe, partial parity size for an entry is at most 739 * the size of the chunk. Examples of possible cases for a single entry: 740 * 741 * case 0: single data disk write: 742 * data0 data1 data2 ppl parity 743 * +--------+--------+--------+ +--------------------+ 744 * | ------ | ------ | ------ | +----+ | (no change) | 745 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 746 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 747 * | ------ | ------ | ------ | +----+ | (no change) | 748 * +--------+--------+--------+ +--------------------+ 749 * pp_size = data_size 750 * 751 * case 1: more than one data disk write: 752 * data0 data1 data2 ppl parity 753 * +--------+--------+--------+ +--------------------+ 754 * | ------ | ------ | ------ | +----+ | (no change) | 755 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 756 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 757 * | ------ | ------ | ------ | +----+ | (no change) | 758 * +--------+--------+--------+ +--------------------+ 759 * pp_size = data_size / modified_data_disks 760 * 761 * case 2: write to all data disks (also full stripe write): 762 * data0 data1 data2 parity 763 * +--------+--------+--------+ +--------------------+ 764 * | ------ | ------ | ------ | | (no change) | 765 * | -data- | -data- | -data- | --------> | xor all data | 766 * | ------ | ------ | ------ | --------> | (no change) | 767 * | ------ | ------ | ------ | | (no change) | 768 * +--------+--------+--------+ +--------------------+ 769 * pp_size = 0 770 * 771 * The following cases are possible only in other implementations. The recovery 772 * code can handle them, but they are not generated at runtime because they can 773 * be reduced to cases 0, 1 and 2: 774 * 775 * case 3: 776 * data0 data1 data2 ppl parity 777 * +--------+--------+--------+ +----+ +--------------------+ 778 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | 779 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | 780 * | -data- | -data- | -data- | | -- | -> | xor all data | 781 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | 782 * +--------+--------+--------+ +----+ +--------------------+ 783 * pp_size = chunk_size 784 * 785 * case 4: 786 * data0 data1 data2 ppl parity 787 * +--------+--------+--------+ +----+ +--------------------+ 788 * | ------ | -data- | ------ | | pp | | data1 ^ pp | 789 * | ------ | ------ | ------ | | -- | -> | (no change) | 790 * | ------ | ------ | ------ | | -- | -> | (no change) | 791 * | -data- | ------ | ------ | | pp | | data0 ^ pp | 792 * +--------+--------+--------+ +----+ +--------------------+ 793 * pp_size = chunk_size 794 */ 795 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, 796 sector_t ppl_sector) 797 { 798 struct ppl_conf *ppl_conf = log->ppl_conf; 799 struct mddev *mddev = ppl_conf->mddev; 800 struct r5conf *conf = mddev->private; 801 int block_size = ppl_conf->block_size; 802 struct page *page1; 803 struct page *page2; 804 sector_t r_sector_first; 805 sector_t r_sector_last; 806 int strip_sectors; 807 int data_disks; 808 int i; 809 int ret = 0; 810 char b[BDEVNAME_SIZE]; 811 unsigned int pp_size = le32_to_cpu(e->pp_size); 812 unsigned int data_size = le32_to_cpu(e->data_size); 813 814 page1 = alloc_page(GFP_KERNEL); 815 page2 = alloc_page(GFP_KERNEL); 816 817 if (!page1 || !page2) { 818 ret = -ENOMEM; 819 goto out; 820 } 821 822 r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); 823 824 if ((pp_size >> 9) < conf->chunk_sectors) { 825 if (pp_size > 0) { 826 data_disks = data_size / pp_size; 827 strip_sectors = pp_size >> 9; 828 } else { 829 data_disks = conf->raid_disks - conf->max_degraded; 830 strip_sectors = (data_size >> 9) / data_disks; 831 } 832 r_sector_last = r_sector_first + 833 (data_disks - 1) * conf->chunk_sectors + 834 strip_sectors; 835 } else { 836 data_disks = conf->raid_disks - conf->max_degraded; 837 strip_sectors = conf->chunk_sectors; 838 r_sector_last = r_sector_first + (data_size >> 9); 839 } 840 841 pr_debug("%s: array sector first: %llu last: %llu\n", __func__, 842 (unsigned long long)r_sector_first, 843 (unsigned long long)r_sector_last); 844 845 /* if start and end is 4k aligned, use a 4k block */ 846 if (block_size == 512 && 847 (r_sector_first & (STRIPE_SECTORS - 1)) == 0 && 848 (r_sector_last & (STRIPE_SECTORS - 1)) == 0) 849 block_size = STRIPE_SIZE; 850 851 /* iterate through blocks in strip */ 852 for (i = 0; i < strip_sectors; i += (block_size >> 9)) { 853 bool update_parity = false; 854 sector_t parity_sector; 855 struct md_rdev *parity_rdev; 856 struct stripe_head sh; 857 int disk; 858 int indent = 0; 859 860 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); 861 indent += 2; 862 863 memset(page_address(page1), 0, PAGE_SIZE); 864 865 /* iterate through data member disks */ 866 for (disk = 0; disk < data_disks; disk++) { 867 int dd_idx; 868 struct md_rdev *rdev; 869 sector_t sector; 870 sector_t r_sector = r_sector_first + i + 871 (disk * conf->chunk_sectors); 872 873 pr_debug("%s:%*s data member disk %d start\n", 874 __func__, indent, "", disk); 875 indent += 2; 876 877 if (r_sector >= r_sector_last) { 878 pr_debug("%s:%*s array sector %llu doesn't need parity update\n", 879 __func__, indent, "", 880 (unsigned long long)r_sector); 881 indent -= 2; 882 continue; 883 } 884 885 update_parity = true; 886 887 /* map raid sector to member disk */ 888 sector = raid5_compute_sector(conf, r_sector, 0, 889 &dd_idx, NULL); 890 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", 891 __func__, indent, "", 892 (unsigned long long)r_sector, dd_idx, 893 (unsigned long long)sector); 894 895 rdev = conf->disks[dd_idx].rdev; 896 if (!rdev || (!test_bit(In_sync, &rdev->flags) && 897 sector >= rdev->recovery_offset)) { 898 pr_debug("%s:%*s data member disk %d missing\n", 899 __func__, indent, "", dd_idx); 900 update_parity = false; 901 break; 902 } 903 904 pr_debug("%s:%*s reading data member disk %s sector %llu\n", 905 __func__, indent, "", bdevname(rdev->bdev, b), 906 (unsigned long long)sector); 907 if (!sync_page_io(rdev, sector, block_size, page2, 908 REQ_OP_READ, 0, false)) { 909 md_error(mddev, rdev); 910 pr_debug("%s:%*s read failed!\n", __func__, 911 indent, ""); 912 ret = -EIO; 913 goto out; 914 } 915 916 ppl_xor(block_size, page1, page2); 917 918 indent -= 2; 919 } 920 921 if (!update_parity) 922 continue; 923 924 if (pp_size > 0) { 925 pr_debug("%s:%*s reading pp disk sector %llu\n", 926 __func__, indent, "", 927 (unsigned long long)(ppl_sector + i)); 928 if (!sync_page_io(log->rdev, 929 ppl_sector - log->rdev->data_offset + i, 930 block_size, page2, REQ_OP_READ, 0, 931 false)) { 932 pr_debug("%s:%*s read failed!\n", __func__, 933 indent, ""); 934 md_error(mddev, log->rdev); 935 ret = -EIO; 936 goto out; 937 } 938 939 ppl_xor(block_size, page1, page2); 940 } 941 942 /* map raid sector to parity disk */ 943 parity_sector = raid5_compute_sector(conf, r_sector_first + i, 944 0, &disk, &sh); 945 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); 946 parity_rdev = conf->disks[sh.pd_idx].rdev; 947 948 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); 949 pr_debug("%s:%*s write parity at sector %llu, disk %s\n", 950 __func__, indent, "", 951 (unsigned long long)parity_sector, 952 bdevname(parity_rdev->bdev, b)); 953 if (!sync_page_io(parity_rdev, parity_sector, block_size, 954 page1, REQ_OP_WRITE, 0, false)) { 955 pr_debug("%s:%*s parity write error!\n", __func__, 956 indent, ""); 957 md_error(mddev, parity_rdev); 958 ret = -EIO; 959 goto out; 960 } 961 } 962 out: 963 if (page1) 964 __free_page(page1); 965 if (page2) 966 __free_page(page2); 967 return ret; 968 } 969 970 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr, 971 sector_t offset) 972 { 973 struct ppl_conf *ppl_conf = log->ppl_conf; 974 struct md_rdev *rdev = log->rdev; 975 struct mddev *mddev = rdev->mddev; 976 sector_t ppl_sector = rdev->ppl.sector + offset + 977 (PPL_HEADER_SIZE >> 9); 978 struct page *page; 979 int i; 980 int ret = 0; 981 982 page = alloc_page(GFP_KERNEL); 983 if (!page) 984 return -ENOMEM; 985 986 /* iterate through all PPL entries saved */ 987 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { 988 struct ppl_header_entry *e = &pplhdr->entries[i]; 989 u32 pp_size = le32_to_cpu(e->pp_size); 990 sector_t sector = ppl_sector; 991 int ppl_entry_sectors = pp_size >> 9; 992 u32 crc, crc_stored; 993 994 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", 995 __func__, rdev->raid_disk, i, 996 (unsigned long long)ppl_sector, pp_size); 997 998 crc = ~0; 999 crc_stored = le32_to_cpu(e->checksum); 1000 1001 /* read parial parity for this entry and calculate its checksum */ 1002 while (pp_size) { 1003 int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; 1004 1005 if (!sync_page_io(rdev, sector - rdev->data_offset, 1006 s, page, REQ_OP_READ, 0, false)) { 1007 md_error(mddev, rdev); 1008 ret = -EIO; 1009 goto out; 1010 } 1011 1012 crc = crc32c_le(crc, page_address(page), s); 1013 1014 pp_size -= s; 1015 sector += s >> 9; 1016 } 1017 1018 crc = ~crc; 1019 1020 if (crc != crc_stored) { 1021 /* 1022 * Don't recover this entry if the checksum does not 1023 * match, but keep going and try to recover other 1024 * entries. 1025 */ 1026 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", 1027 __func__, crc_stored, crc); 1028 ppl_conf->mismatch_count++; 1029 } else { 1030 ret = ppl_recover_entry(log, e, ppl_sector); 1031 if (ret) 1032 goto out; 1033 ppl_conf->recovered_entries++; 1034 } 1035 1036 ppl_sector += ppl_entry_sectors; 1037 } 1038 1039 /* flush the disk cache after recovery if necessary */ 1040 ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL); 1041 out: 1042 __free_page(page); 1043 return ret; 1044 } 1045 1046 static int ppl_write_empty_header(struct ppl_log *log) 1047 { 1048 struct page *page; 1049 struct ppl_header *pplhdr; 1050 struct md_rdev *rdev = log->rdev; 1051 int ret = 0; 1052 1053 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, 1054 rdev->raid_disk, (unsigned long long)rdev->ppl.sector); 1055 1056 page = alloc_page(GFP_NOIO | __GFP_ZERO); 1057 if (!page) 1058 return -ENOMEM; 1059 1060 pplhdr = page_address(page); 1061 /* zero out PPL space to avoid collision with old PPLs */ 1062 blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector, 1063 log->rdev->ppl.size, GFP_NOIO, 0); 1064 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 1065 pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); 1066 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); 1067 1068 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, 1069 PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC | 1070 REQ_FUA, 0, false)) { 1071 md_error(rdev->mddev, rdev); 1072 ret = -EIO; 1073 } 1074 1075 __free_page(page); 1076 return ret; 1077 } 1078 1079 static int ppl_load_distributed(struct ppl_log *log) 1080 { 1081 struct ppl_conf *ppl_conf = log->ppl_conf; 1082 struct md_rdev *rdev = log->rdev; 1083 struct mddev *mddev = rdev->mddev; 1084 struct page *page, *page2, *tmp; 1085 struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL; 1086 u32 crc, crc_stored; 1087 u32 signature; 1088 int ret = 0, i; 1089 sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0; 1090 1091 pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); 1092 /* read PPL headers, find the recent one */ 1093 page = alloc_page(GFP_KERNEL); 1094 if (!page) 1095 return -ENOMEM; 1096 1097 page2 = alloc_page(GFP_KERNEL); 1098 if (!page2) { 1099 __free_page(page); 1100 return -ENOMEM; 1101 } 1102 1103 /* searching ppl area for latest ppl */ 1104 while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) { 1105 if (!sync_page_io(rdev, 1106 rdev->ppl.sector - rdev->data_offset + 1107 pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ, 1108 0, false)) { 1109 md_error(mddev, rdev); 1110 ret = -EIO; 1111 /* if not able to read - don't recover any PPL */ 1112 pplhdr = NULL; 1113 break; 1114 } 1115 pplhdr = page_address(page); 1116 1117 /* check header validity */ 1118 crc_stored = le32_to_cpu(pplhdr->checksum); 1119 pplhdr->checksum = 0; 1120 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); 1121 1122 if (crc_stored != crc) { 1123 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n", 1124 __func__, crc_stored, crc, 1125 (unsigned long long)pplhdr_offset); 1126 pplhdr = prev_pplhdr; 1127 pplhdr_offset = prev_pplhdr_offset; 1128 break; 1129 } 1130 1131 signature = le32_to_cpu(pplhdr->signature); 1132 1133 if (mddev->external) { 1134 /* 1135 * For external metadata the header signature is set and 1136 * validated in userspace. 1137 */ 1138 ppl_conf->signature = signature; 1139 } else if (ppl_conf->signature != signature) { 1140 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n", 1141 __func__, signature, ppl_conf->signature, 1142 (unsigned long long)pplhdr_offset); 1143 pplhdr = prev_pplhdr; 1144 pplhdr_offset = prev_pplhdr_offset; 1145 break; 1146 } 1147 1148 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) > 1149 le64_to_cpu(pplhdr->generation)) { 1150 /* previous was newest */ 1151 pplhdr = prev_pplhdr; 1152 pplhdr_offset = prev_pplhdr_offset; 1153 break; 1154 } 1155 1156 prev_pplhdr_offset = pplhdr_offset; 1157 prev_pplhdr = pplhdr; 1158 1159 tmp = page; 1160 page = page2; 1161 page2 = tmp; 1162 1163 /* calculate next potential ppl offset */ 1164 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) 1165 pplhdr_offset += 1166 le32_to_cpu(pplhdr->entries[i].pp_size) >> 9; 1167 pplhdr_offset += PPL_HEADER_SIZE >> 9; 1168 } 1169 1170 /* no valid ppl found */ 1171 if (!pplhdr) 1172 ppl_conf->mismatch_count++; 1173 else 1174 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n", 1175 __func__, (unsigned long long)pplhdr_offset, 1176 le64_to_cpu(pplhdr->generation)); 1177 1178 /* attempt to recover from log if we are starting a dirty array */ 1179 if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector) 1180 ret = ppl_recover(log, pplhdr, pplhdr_offset); 1181 1182 /* write empty header if we are starting the array */ 1183 if (!ret && !mddev->pers) 1184 ret = ppl_write_empty_header(log); 1185 1186 __free_page(page); 1187 __free_page(page2); 1188 1189 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1190 __func__, ret, ppl_conf->mismatch_count, 1191 ppl_conf->recovered_entries); 1192 return ret; 1193 } 1194 1195 static int ppl_load(struct ppl_conf *ppl_conf) 1196 { 1197 int ret = 0; 1198 u32 signature = 0; 1199 bool signature_set = false; 1200 int i; 1201 1202 for (i = 0; i < ppl_conf->count; i++) { 1203 struct ppl_log *log = &ppl_conf->child_logs[i]; 1204 1205 /* skip missing drive */ 1206 if (!log->rdev) 1207 continue; 1208 1209 ret = ppl_load_distributed(log); 1210 if (ret) 1211 break; 1212 1213 /* 1214 * For external metadata we can't check if the signature is 1215 * correct on a single drive, but we can check if it is the same 1216 * on all drives. 1217 */ 1218 if (ppl_conf->mddev->external) { 1219 if (!signature_set) { 1220 signature = ppl_conf->signature; 1221 signature_set = true; 1222 } else if (signature != ppl_conf->signature) { 1223 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", 1224 mdname(ppl_conf->mddev)); 1225 ret = -EINVAL; 1226 break; 1227 } 1228 } 1229 } 1230 1231 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1232 __func__, ret, ppl_conf->mismatch_count, 1233 ppl_conf->recovered_entries); 1234 return ret; 1235 } 1236 1237 static void __ppl_exit_log(struct ppl_conf *ppl_conf) 1238 { 1239 clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1240 clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags); 1241 1242 kfree(ppl_conf->child_logs); 1243 1244 bioset_exit(&ppl_conf->bs); 1245 bioset_exit(&ppl_conf->flush_bs); 1246 mempool_exit(&ppl_conf->io_pool); 1247 kmem_cache_destroy(ppl_conf->io_kc); 1248 1249 kfree(ppl_conf); 1250 } 1251 1252 void ppl_exit_log(struct r5conf *conf) 1253 { 1254 struct ppl_conf *ppl_conf = conf->log_private; 1255 1256 if (ppl_conf) { 1257 __ppl_exit_log(ppl_conf); 1258 conf->log_private = NULL; 1259 } 1260 } 1261 1262 static int ppl_validate_rdev(struct md_rdev *rdev) 1263 { 1264 char b[BDEVNAME_SIZE]; 1265 int ppl_data_sectors; 1266 int ppl_size_new; 1267 1268 /* 1269 * The configured PPL size must be enough to store 1270 * the header and (at the very least) partial parity 1271 * for one stripe. Round it down to ensure the data 1272 * space is cleanly divisible by stripe size. 1273 */ 1274 ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); 1275 1276 if (ppl_data_sectors > 0) 1277 ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS); 1278 1279 if (ppl_data_sectors <= 0) { 1280 pr_warn("md/raid:%s: PPL space too small on %s\n", 1281 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1282 return -ENOSPC; 1283 } 1284 1285 ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); 1286 1287 if ((rdev->ppl.sector < rdev->data_offset && 1288 rdev->ppl.sector + ppl_size_new > rdev->data_offset) || 1289 (rdev->ppl.sector >= rdev->data_offset && 1290 rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { 1291 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n", 1292 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1293 return -EINVAL; 1294 } 1295 1296 if (!rdev->mddev->external && 1297 ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || 1298 (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { 1299 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n", 1300 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1301 return -EINVAL; 1302 } 1303 1304 rdev->ppl.size = ppl_size_new; 1305 1306 return 0; 1307 } 1308 1309 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev) 1310 { 1311 struct request_queue *q; 1312 1313 if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE + 1314 PPL_HEADER_SIZE) * 2) { 1315 log->use_multippl = true; 1316 set_bit(MD_HAS_MULTIPLE_PPLS, 1317 &log->ppl_conf->mddev->flags); 1318 log->entry_space = PPL_SPACE_SIZE; 1319 } else { 1320 log->use_multippl = false; 1321 log->entry_space = (log->rdev->ppl.size << 9) - 1322 PPL_HEADER_SIZE; 1323 } 1324 log->next_io_sector = rdev->ppl.sector; 1325 1326 q = bdev_get_queue(rdev->bdev); 1327 if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 1328 log->wb_cache_on = true; 1329 } 1330 1331 int ppl_init_log(struct r5conf *conf) 1332 { 1333 struct ppl_conf *ppl_conf; 1334 struct mddev *mddev = conf->mddev; 1335 int ret = 0; 1336 int max_disks; 1337 int i; 1338 1339 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", 1340 mdname(conf->mddev)); 1341 1342 if (PAGE_SIZE != 4096) 1343 return -EINVAL; 1344 1345 if (mddev->level != 5) { 1346 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", 1347 mdname(mddev), mddev->level); 1348 return -EINVAL; 1349 } 1350 1351 if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { 1352 pr_warn("md/raid:%s PPL is not compatible with bitmap\n", 1353 mdname(mddev)); 1354 return -EINVAL; 1355 } 1356 1357 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 1358 pr_warn("md/raid:%s PPL is not compatible with journal\n", 1359 mdname(mddev)); 1360 return -EINVAL; 1361 } 1362 1363 max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) * 1364 BITS_PER_BYTE; 1365 if (conf->raid_disks > max_disks) { 1366 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n", 1367 mdname(mddev), max_disks); 1368 return -EINVAL; 1369 } 1370 1371 ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); 1372 if (!ppl_conf) 1373 return -ENOMEM; 1374 1375 ppl_conf->mddev = mddev; 1376 1377 ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); 1378 if (!ppl_conf->io_kc) { 1379 ret = -ENOMEM; 1380 goto err; 1381 } 1382 1383 ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc, 1384 ppl_io_pool_free, ppl_conf->io_kc); 1385 if (ret) 1386 goto err; 1387 1388 ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS); 1389 if (ret) 1390 goto err; 1391 1392 ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0); 1393 if (ret) 1394 goto err; 1395 1396 ppl_conf->count = conf->raid_disks; 1397 ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), 1398 GFP_KERNEL); 1399 if (!ppl_conf->child_logs) { 1400 ret = -ENOMEM; 1401 goto err; 1402 } 1403 1404 atomic64_set(&ppl_conf->seq, 0); 1405 INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); 1406 spin_lock_init(&ppl_conf->no_mem_stripes_lock); 1407 ppl_conf->write_hint = RWH_WRITE_LIFE_NOT_SET; 1408 1409 if (!mddev->external) { 1410 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); 1411 ppl_conf->block_size = 512; 1412 } else { 1413 ppl_conf->block_size = queue_logical_block_size(mddev->queue); 1414 } 1415 1416 for (i = 0; i < ppl_conf->count; i++) { 1417 struct ppl_log *log = &ppl_conf->child_logs[i]; 1418 struct md_rdev *rdev = conf->disks[i].rdev; 1419 1420 mutex_init(&log->io_mutex); 1421 spin_lock_init(&log->io_list_lock); 1422 INIT_LIST_HEAD(&log->io_list); 1423 1424 log->ppl_conf = ppl_conf; 1425 log->rdev = rdev; 1426 1427 if (rdev) { 1428 ret = ppl_validate_rdev(rdev); 1429 if (ret) 1430 goto err; 1431 1432 ppl_init_child_log(log, rdev); 1433 } 1434 } 1435 1436 /* load and possibly recover the logs from the member disks */ 1437 ret = ppl_load(ppl_conf); 1438 1439 if (ret) { 1440 goto err; 1441 } else if (!mddev->pers && mddev->recovery_cp == 0 && 1442 ppl_conf->recovered_entries > 0 && 1443 ppl_conf->mismatch_count == 0) { 1444 /* 1445 * If we are starting a dirty array and the recovery succeeds 1446 * without any issues, set the array as clean. 1447 */ 1448 mddev->recovery_cp = MaxSector; 1449 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 1450 } else if (mddev->pers && ppl_conf->mismatch_count > 0) { 1451 /* no mismatch allowed when enabling PPL for a running array */ 1452 ret = -EINVAL; 1453 goto err; 1454 } 1455 1456 conf->log_private = ppl_conf; 1457 set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1458 1459 return 0; 1460 err: 1461 __ppl_exit_log(ppl_conf); 1462 return ret; 1463 } 1464 1465 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) 1466 { 1467 struct ppl_conf *ppl_conf = conf->log_private; 1468 struct ppl_log *log; 1469 int ret = 0; 1470 char b[BDEVNAME_SIZE]; 1471 1472 if (!rdev) 1473 return -EINVAL; 1474 1475 pr_debug("%s: disk: %d operation: %s dev: %s\n", 1476 __func__, rdev->raid_disk, add ? "add" : "remove", 1477 bdevname(rdev->bdev, b)); 1478 1479 if (rdev->raid_disk < 0) 1480 return 0; 1481 1482 if (rdev->raid_disk >= ppl_conf->count) 1483 return -ENODEV; 1484 1485 log = &ppl_conf->child_logs[rdev->raid_disk]; 1486 1487 mutex_lock(&log->io_mutex); 1488 if (add) { 1489 ret = ppl_validate_rdev(rdev); 1490 if (!ret) { 1491 log->rdev = rdev; 1492 ret = ppl_write_empty_header(log); 1493 ppl_init_child_log(log, rdev); 1494 } 1495 } else { 1496 log->rdev = NULL; 1497 } 1498 mutex_unlock(&log->io_mutex); 1499 1500 return ret; 1501 } 1502 1503 static ssize_t 1504 ppl_write_hint_show(struct mddev *mddev, char *buf) 1505 { 1506 size_t ret = 0; 1507 struct r5conf *conf; 1508 struct ppl_conf *ppl_conf = NULL; 1509 1510 spin_lock(&mddev->lock); 1511 conf = mddev->private; 1512 if (conf && raid5_has_ppl(conf)) 1513 ppl_conf = conf->log_private; 1514 ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0); 1515 spin_unlock(&mddev->lock); 1516 1517 return ret; 1518 } 1519 1520 static ssize_t 1521 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len) 1522 { 1523 struct r5conf *conf; 1524 struct ppl_conf *ppl_conf; 1525 int err = 0; 1526 unsigned short new; 1527 1528 if (len >= PAGE_SIZE) 1529 return -EINVAL; 1530 if (kstrtou16(page, 10, &new)) 1531 return -EINVAL; 1532 1533 err = mddev_lock(mddev); 1534 if (err) 1535 return err; 1536 1537 conf = mddev->private; 1538 if (!conf) { 1539 err = -ENODEV; 1540 } else if (raid5_has_ppl(conf)) { 1541 ppl_conf = conf->log_private; 1542 if (!ppl_conf) 1543 err = -EINVAL; 1544 else 1545 ppl_conf->write_hint = new; 1546 } else { 1547 err = -EINVAL; 1548 } 1549 1550 mddev_unlock(mddev); 1551 1552 return err ?: len; 1553 } 1554 1555 struct md_sysfs_entry 1556 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR, 1557 ppl_write_hint_show, 1558 ppl_write_hint_store); 1559