1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Partial Parity Log for closing the RAID5 write hole 4 * Copyright (c) 2017, Intel Corporation. 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/crc32c.h> 11 #include <linux/async_tx.h> 12 #include <linux/raid/md_p.h> 13 #include "md.h" 14 #include "raid5.h" 15 #include "raid5-log.h" 16 17 /* 18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for 19 * partial parity data. The header contains an array of entries 20 * (struct ppl_header_entry) which describe the logged write requests. 21 * Partial parity for the entries comes after the header, written in the same 22 * sequence as the entries: 23 * 24 * Header 25 * entry0 26 * ... 27 * entryN 28 * PP data 29 * PP for entry0 30 * ... 31 * PP for entryN 32 * 33 * An entry describes one or more consecutive stripe_heads, up to a full 34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the 35 * number of stripe_heads in the entry and n is the number of modified data 36 * disks. Every stripe_head in the entry must write to the same data disks. 37 * An example of a valid case described by a single entry (writes to the first 38 * stripe of a 4 disk array, 16k chunk size): 39 * 40 * sh->sector dd0 dd1 dd2 ppl 41 * +-----+-----+-----+ 42 * 0 | --- | --- | --- | +----+ 43 * 8 | -W- | -W- | --- | | pp | data_sector = 8 44 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k 45 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k 46 * +-----+-----+-----+ +----+ 47 * 48 * data_sector is the first raid sector of the modified data, data_size is the 49 * total size of modified data and pp_size is the size of partial parity for 50 * this entry. Entries for full stripe writes contain no partial parity 51 * (pp_size = 0), they only mark the stripes for which parity should be 52 * recalculated after an unclean shutdown. Every entry holds a checksum of its 53 * partial parity, the header also has a checksum of the header itself. 54 * 55 * A write request is always logged to the PPL instance stored on the parity 56 * disk of the corresponding stripe. For each member disk there is one ppl_log 57 * used to handle logging for this disk, independently from others. They are 58 * grouped in child_logs array in struct ppl_conf, which is assigned to 59 * r5conf->log_private. 60 * 61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. 62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head 63 * can be appended to the last entry if it meets the conditions for a valid 64 * entry described above, otherwise a new entry is added. Checksums of entries 65 * are calculated incrementally as stripes containing partial parity are being 66 * added. ppl_submit_iounit() calculates the checksum of the header and submits 67 * a bio containing the header page and partial parity pages (sh->ppl_page) for 68 * all stripes of the io_unit. When the PPL write completes, the stripes 69 * associated with the io_unit are released and raid5d starts writing their data 70 * and parity. When all stripes are written, the io_unit is freed and the next 71 * can be submitted. 72 * 73 * An io_unit is used to gather stripes until it is submitted or becomes full 74 * (if the maximum number of entries or size of PPL is reached). Another io_unit 75 * can't be submitted until the previous has completed (PPL and stripe 76 * data+parity is written). The log->io_list tracks all io_units of a log 77 * (for a single member disk). New io_units are added to the end of the list 78 * and the first io_unit is submitted, if it is not submitted already. 79 * The current io_unit accepting new stripes is always at the end of the list. 80 * 81 * If write-back cache is enabled for any of the disks in the array, its data 82 * must be flushed before next io_unit is submitted. 83 */ 84 85 #define PPL_SPACE_SIZE (128 * 1024) 86 87 struct ppl_conf { 88 struct mddev *mddev; 89 90 /* array of child logs, one for each raid disk */ 91 struct ppl_log *child_logs; 92 int count; 93 94 int block_size; /* the logical block size used for data_sector 95 * in ppl_header_entry */ 96 u32 signature; /* raid array identifier */ 97 atomic64_t seq; /* current log write sequence number */ 98 99 struct kmem_cache *io_kc; 100 mempool_t io_pool; 101 struct bio_set bs; 102 struct bio_set flush_bs; 103 104 /* used only for recovery */ 105 int recovered_entries; 106 int mismatch_count; 107 108 /* stripes to retry if failed to allocate io_unit */ 109 struct list_head no_mem_stripes; 110 spinlock_t no_mem_stripes_lock; 111 112 unsigned short write_hint; 113 }; 114 115 struct ppl_log { 116 struct ppl_conf *ppl_conf; /* shared between all log instances */ 117 118 struct md_rdev *rdev; /* array member disk associated with 119 * this log instance */ 120 struct mutex io_mutex; 121 struct ppl_io_unit *current_io; /* current io_unit accepting new data 122 * always at the end of io_list */ 123 spinlock_t io_list_lock; 124 struct list_head io_list; /* all io_units of this log */ 125 126 sector_t next_io_sector; 127 unsigned int entry_space; 128 bool use_multippl; 129 bool wb_cache_on; 130 unsigned long disk_flush_bitmap; 131 }; 132 133 #define PPL_IO_INLINE_BVECS 32 134 135 struct ppl_io_unit { 136 struct ppl_log *log; 137 138 struct page *header_page; /* for ppl_header */ 139 140 unsigned int entries_count; /* number of entries in ppl_header */ 141 unsigned int pp_size; /* total size current of partial parity */ 142 143 u64 seq; /* sequence number of this log write */ 144 struct list_head log_sibling; /* log->io_list */ 145 146 struct list_head stripe_list; /* stripes added to the io_unit */ 147 atomic_t pending_stripes; /* how many stripes not written to raid */ 148 atomic_t pending_flushes; /* how many disk flushes are in progress */ 149 150 bool submitted; /* true if write to log started */ 151 152 /* inline bio and its biovec for submitting the iounit */ 153 struct bio bio; 154 struct bio_vec biovec[PPL_IO_INLINE_BVECS]; 155 }; 156 157 struct dma_async_tx_descriptor * 158 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, 159 struct dma_async_tx_descriptor *tx) 160 { 161 int disks = sh->disks; 162 struct page **srcs = percpu->scribble; 163 int count = 0, pd_idx = sh->pd_idx, i; 164 struct async_submit_ctl submit; 165 166 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 167 168 /* 169 * Partial parity is the XOR of stripe data chunks that are not changed 170 * during the write request. Depending on available data 171 * (read-modify-write vs. reconstruct-write case) we calculate it 172 * differently. 173 */ 174 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 175 /* 176 * rmw: xor old data and parity from updated disks 177 * This is calculated earlier by ops_run_prexor5() so just copy 178 * the parity dev page. 179 */ 180 srcs[count++] = sh->dev[pd_idx].page; 181 } else if (sh->reconstruct_state == reconstruct_state_drain_run) { 182 /* rcw: xor data from all not updated disks */ 183 for (i = disks; i--;) { 184 struct r5dev *dev = &sh->dev[i]; 185 if (test_bit(R5_UPTODATE, &dev->flags)) 186 srcs[count++] = dev->page; 187 } 188 } else { 189 return tx; 190 } 191 192 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, 193 NULL, sh, (void *) (srcs + sh->disks + 2)); 194 195 if (count == 1) 196 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, 197 &submit); 198 else 199 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, 200 &submit); 201 202 return tx; 203 } 204 205 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) 206 { 207 struct kmem_cache *kc = pool_data; 208 struct ppl_io_unit *io; 209 210 io = kmem_cache_alloc(kc, gfp_mask); 211 if (!io) 212 return NULL; 213 214 io->header_page = alloc_page(gfp_mask); 215 if (!io->header_page) { 216 kmem_cache_free(kc, io); 217 return NULL; 218 } 219 220 return io; 221 } 222 223 static void ppl_io_pool_free(void *element, void *pool_data) 224 { 225 struct kmem_cache *kc = pool_data; 226 struct ppl_io_unit *io = element; 227 228 __free_page(io->header_page); 229 kmem_cache_free(kc, io); 230 } 231 232 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, 233 struct stripe_head *sh) 234 { 235 struct ppl_conf *ppl_conf = log->ppl_conf; 236 struct ppl_io_unit *io; 237 struct ppl_header *pplhdr; 238 struct page *header_page; 239 240 io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT); 241 if (!io) 242 return NULL; 243 244 header_page = io->header_page; 245 memset(io, 0, sizeof(*io)); 246 io->header_page = header_page; 247 248 io->log = log; 249 INIT_LIST_HEAD(&io->log_sibling); 250 INIT_LIST_HEAD(&io->stripe_list); 251 atomic_set(&io->pending_stripes, 0); 252 atomic_set(&io->pending_flushes, 0); 253 bio_init(&io->bio, log->rdev->bdev, io->biovec, PPL_IO_INLINE_BVECS, 254 REQ_OP_WRITE | REQ_FUA); 255 256 pplhdr = page_address(io->header_page); 257 clear_page(pplhdr); 258 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 259 pplhdr->signature = cpu_to_le32(ppl_conf->signature); 260 261 io->seq = atomic64_add_return(1, &ppl_conf->seq); 262 pplhdr->generation = cpu_to_le64(io->seq); 263 264 return io; 265 } 266 267 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) 268 { 269 struct ppl_io_unit *io = log->current_io; 270 struct ppl_header_entry *e = NULL; 271 struct ppl_header *pplhdr; 272 int i; 273 sector_t data_sector = 0; 274 int data_disks = 0; 275 struct r5conf *conf = sh->raid_conf; 276 277 pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); 278 279 /* check if current io_unit is full */ 280 if (io && (io->pp_size == log->entry_space || 281 io->entries_count == PPL_HDR_MAX_ENTRIES)) { 282 pr_debug("%s: add io_unit blocked by seq: %llu\n", 283 __func__, io->seq); 284 io = NULL; 285 } 286 287 /* add a new unit if there is none or the current is full */ 288 if (!io) { 289 io = ppl_new_iounit(log, sh); 290 if (!io) 291 return -ENOMEM; 292 spin_lock_irq(&log->io_list_lock); 293 list_add_tail(&io->log_sibling, &log->io_list); 294 spin_unlock_irq(&log->io_list_lock); 295 296 log->current_io = io; 297 } 298 299 for (i = 0; i < sh->disks; i++) { 300 struct r5dev *dev = &sh->dev[i]; 301 302 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { 303 if (!data_disks || dev->sector < data_sector) 304 data_sector = dev->sector; 305 data_disks++; 306 } 307 } 308 BUG_ON(!data_disks); 309 310 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, 311 io->seq, (unsigned long long)data_sector, data_disks); 312 313 pplhdr = page_address(io->header_page); 314 315 if (io->entries_count > 0) { 316 struct ppl_header_entry *last = 317 &pplhdr->entries[io->entries_count - 1]; 318 struct stripe_head *sh_last = list_last_entry( 319 &io->stripe_list, struct stripe_head, log_list); 320 u64 data_sector_last = le64_to_cpu(last->data_sector); 321 u32 data_size_last = le32_to_cpu(last->data_size); 322 323 /* 324 * Check if we can append the stripe to the last entry. It must 325 * be just after the last logged stripe and write to the same 326 * disks. Use bit shift and logarithm to avoid 64-bit division. 327 */ 328 if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) && 329 (data_sector >> ilog2(conf->chunk_sectors) == 330 data_sector_last >> ilog2(conf->chunk_sectors)) && 331 ((data_sector - data_sector_last) * data_disks == 332 data_size_last >> 9)) 333 e = last; 334 } 335 336 if (!e) { 337 e = &pplhdr->entries[io->entries_count++]; 338 e->data_sector = cpu_to_le64(data_sector); 339 e->parity_disk = cpu_to_le32(sh->pd_idx); 340 e->checksum = cpu_to_le32(~0); 341 } 342 343 le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); 344 345 /* don't write any PP if full stripe write */ 346 if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { 347 le32_add_cpu(&e->pp_size, PAGE_SIZE); 348 io->pp_size += PAGE_SIZE; 349 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), 350 page_address(sh->ppl_page), 351 PAGE_SIZE)); 352 } 353 354 list_add_tail(&sh->log_list, &io->stripe_list); 355 atomic_inc(&io->pending_stripes); 356 sh->ppl_io = io; 357 358 return 0; 359 } 360 361 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) 362 { 363 struct ppl_conf *ppl_conf = conf->log_private; 364 struct ppl_io_unit *io = sh->ppl_io; 365 struct ppl_log *log; 366 367 if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || 368 !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 369 !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { 370 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 371 return -EAGAIN; 372 } 373 374 log = &ppl_conf->child_logs[sh->pd_idx]; 375 376 mutex_lock(&log->io_mutex); 377 378 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 379 mutex_unlock(&log->io_mutex); 380 return -EAGAIN; 381 } 382 383 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 384 clear_bit(STRIPE_DELAYED, &sh->state); 385 atomic_inc(&sh->count); 386 387 if (ppl_log_stripe(log, sh)) { 388 spin_lock_irq(&ppl_conf->no_mem_stripes_lock); 389 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); 390 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); 391 } 392 393 mutex_unlock(&log->io_mutex); 394 395 return 0; 396 } 397 398 static void ppl_log_endio(struct bio *bio) 399 { 400 struct ppl_io_unit *io = bio->bi_private; 401 struct ppl_log *log = io->log; 402 struct ppl_conf *ppl_conf = log->ppl_conf; 403 struct stripe_head *sh, *next; 404 405 pr_debug("%s: seq: %llu\n", __func__, io->seq); 406 407 if (bio->bi_status) 408 md_error(ppl_conf->mddev, log->rdev); 409 410 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 411 list_del_init(&sh->log_list); 412 413 set_bit(STRIPE_HANDLE, &sh->state); 414 raid5_release_stripe(sh); 415 } 416 } 417 418 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) 419 { 420 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n", 421 __func__, io->seq, bio->bi_iter.bi_size, 422 (unsigned long long)bio->bi_iter.bi_sector, 423 bio->bi_bdev); 424 425 submit_bio(bio); 426 } 427 428 static void ppl_submit_iounit(struct ppl_io_unit *io) 429 { 430 struct ppl_log *log = io->log; 431 struct ppl_conf *ppl_conf = log->ppl_conf; 432 struct ppl_header *pplhdr = page_address(io->header_page); 433 struct bio *bio = &io->bio; 434 struct stripe_head *sh; 435 int i; 436 437 bio->bi_private = io; 438 439 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 440 ppl_log_endio(bio); 441 return; 442 } 443 444 for (i = 0; i < io->entries_count; i++) { 445 struct ppl_header_entry *e = &pplhdr->entries[i]; 446 447 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", 448 __func__, io->seq, i, le64_to_cpu(e->data_sector), 449 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); 450 451 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> 452 ilog2(ppl_conf->block_size >> 9)); 453 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); 454 } 455 456 pplhdr->entries_count = cpu_to_le32(io->entries_count); 457 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); 458 459 /* Rewind the buffer if current PPL is larger then remaining space */ 460 if (log->use_multippl && 461 log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector < 462 (PPL_HEADER_SIZE + io->pp_size) >> 9) 463 log->next_io_sector = log->rdev->ppl.sector; 464 465 466 bio->bi_end_io = ppl_log_endio; 467 bio->bi_iter.bi_sector = log->next_io_sector; 468 __bio_add_page(bio, io->header_page, PAGE_SIZE, 0); 469 470 pr_debug("%s: log->current_io_sector: %llu\n", __func__, 471 (unsigned long long)log->next_io_sector); 472 473 if (log->use_multippl) 474 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9; 475 476 WARN_ON(log->disk_flush_bitmap != 0); 477 478 list_for_each_entry(sh, &io->stripe_list, log_list) { 479 for (i = 0; i < sh->disks; i++) { 480 struct r5dev *dev = &sh->dev[i]; 481 482 if ((ppl_conf->child_logs[i].wb_cache_on) && 483 (test_bit(R5_Wantwrite, &dev->flags))) { 484 set_bit(i, &log->disk_flush_bitmap); 485 } 486 } 487 488 /* entries for full stripe writes have no partial parity */ 489 if (test_bit(STRIPE_FULL_WRITE, &sh->state)) 490 continue; 491 492 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { 493 struct bio *prev = bio; 494 495 bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS, 496 prev->bi_opf, GFP_NOIO, 497 &ppl_conf->bs); 498 bio->bi_iter.bi_sector = bio_end_sector(prev); 499 __bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); 500 501 bio_chain(bio, prev); 502 ppl_submit_iounit_bio(io, prev); 503 } 504 } 505 506 ppl_submit_iounit_bio(io, bio); 507 } 508 509 static void ppl_submit_current_io(struct ppl_log *log) 510 { 511 struct ppl_io_unit *io; 512 513 spin_lock_irq(&log->io_list_lock); 514 515 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 516 log_sibling); 517 if (io && io->submitted) 518 io = NULL; 519 520 spin_unlock_irq(&log->io_list_lock); 521 522 if (io) { 523 io->submitted = true; 524 525 if (io == log->current_io) 526 log->current_io = NULL; 527 528 ppl_submit_iounit(io); 529 } 530 } 531 532 void ppl_write_stripe_run(struct r5conf *conf) 533 { 534 struct ppl_conf *ppl_conf = conf->log_private; 535 struct ppl_log *log; 536 int i; 537 538 for (i = 0; i < ppl_conf->count; i++) { 539 log = &ppl_conf->child_logs[i]; 540 541 mutex_lock(&log->io_mutex); 542 ppl_submit_current_io(log); 543 mutex_unlock(&log->io_mutex); 544 } 545 } 546 547 static void ppl_io_unit_finished(struct ppl_io_unit *io) 548 { 549 struct ppl_log *log = io->log; 550 struct ppl_conf *ppl_conf = log->ppl_conf; 551 struct r5conf *conf = ppl_conf->mddev->private; 552 unsigned long flags; 553 554 pr_debug("%s: seq: %llu\n", __func__, io->seq); 555 556 local_irq_save(flags); 557 558 spin_lock(&log->io_list_lock); 559 list_del(&io->log_sibling); 560 spin_unlock(&log->io_list_lock); 561 562 mempool_free(io, &ppl_conf->io_pool); 563 564 spin_lock(&ppl_conf->no_mem_stripes_lock); 565 if (!list_empty(&ppl_conf->no_mem_stripes)) { 566 struct stripe_head *sh; 567 568 sh = list_first_entry(&ppl_conf->no_mem_stripes, 569 struct stripe_head, log_list); 570 list_del_init(&sh->log_list); 571 set_bit(STRIPE_HANDLE, &sh->state); 572 raid5_release_stripe(sh); 573 } 574 spin_unlock(&ppl_conf->no_mem_stripes_lock); 575 576 local_irq_restore(flags); 577 578 wake_up(&conf->wait_for_quiescent); 579 } 580 581 static void ppl_flush_endio(struct bio *bio) 582 { 583 struct ppl_io_unit *io = bio->bi_private; 584 struct ppl_log *log = io->log; 585 struct ppl_conf *ppl_conf = log->ppl_conf; 586 struct r5conf *conf = ppl_conf->mddev->private; 587 588 pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev); 589 590 if (bio->bi_status) { 591 struct md_rdev *rdev; 592 593 rcu_read_lock(); 594 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio)); 595 if (rdev) 596 md_error(rdev->mddev, rdev); 597 rcu_read_unlock(); 598 } 599 600 bio_put(bio); 601 602 if (atomic_dec_and_test(&io->pending_flushes)) { 603 ppl_io_unit_finished(io); 604 md_wakeup_thread(conf->mddev->thread); 605 } 606 } 607 608 static void ppl_do_flush(struct ppl_io_unit *io) 609 { 610 struct ppl_log *log = io->log; 611 struct ppl_conf *ppl_conf = log->ppl_conf; 612 struct r5conf *conf = ppl_conf->mddev->private; 613 int raid_disks = conf->raid_disks; 614 int flushed_disks = 0; 615 int i; 616 617 atomic_set(&io->pending_flushes, raid_disks); 618 619 for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) { 620 struct md_rdev *rdev; 621 struct block_device *bdev = NULL; 622 623 rcu_read_lock(); 624 rdev = rcu_dereference(conf->disks[i].rdev); 625 if (rdev && !test_bit(Faulty, &rdev->flags)) 626 bdev = rdev->bdev; 627 rcu_read_unlock(); 628 629 if (bdev) { 630 struct bio *bio; 631 632 bio = bio_alloc_bioset(bdev, 0, 633 REQ_OP_WRITE | REQ_PREFLUSH, 634 GFP_NOIO, &ppl_conf->flush_bs); 635 bio->bi_private = io; 636 bio->bi_end_io = ppl_flush_endio; 637 638 pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev); 639 640 submit_bio(bio); 641 flushed_disks++; 642 } 643 } 644 645 log->disk_flush_bitmap = 0; 646 647 for (i = flushed_disks ; i < raid_disks; i++) { 648 if (atomic_dec_and_test(&io->pending_flushes)) 649 ppl_io_unit_finished(io); 650 } 651 } 652 653 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf, 654 struct ppl_log *log) 655 { 656 struct ppl_io_unit *io; 657 658 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 659 log_sibling); 660 661 return !io || !io->submitted; 662 } 663 664 void ppl_quiesce(struct r5conf *conf, int quiesce) 665 { 666 struct ppl_conf *ppl_conf = conf->log_private; 667 int i; 668 669 if (quiesce) { 670 for (i = 0; i < ppl_conf->count; i++) { 671 struct ppl_log *log = &ppl_conf->child_logs[i]; 672 673 spin_lock_irq(&log->io_list_lock); 674 wait_event_lock_irq(conf->wait_for_quiescent, 675 ppl_no_io_unit_submitted(conf, log), 676 log->io_list_lock); 677 spin_unlock_irq(&log->io_list_lock); 678 } 679 } 680 } 681 682 int ppl_handle_flush_request(struct bio *bio) 683 { 684 if (bio->bi_iter.bi_size == 0) { 685 bio_endio(bio); 686 return 0; 687 } 688 bio->bi_opf &= ~REQ_PREFLUSH; 689 return -EAGAIN; 690 } 691 692 void ppl_stripe_write_finished(struct stripe_head *sh) 693 { 694 struct ppl_io_unit *io; 695 696 io = sh->ppl_io; 697 sh->ppl_io = NULL; 698 699 if (io && atomic_dec_and_test(&io->pending_stripes)) { 700 if (io->log->disk_flush_bitmap) 701 ppl_do_flush(io); 702 else 703 ppl_io_unit_finished(io); 704 } 705 } 706 707 static void ppl_xor(int size, struct page *page1, struct page *page2) 708 { 709 struct async_submit_ctl submit; 710 struct dma_async_tx_descriptor *tx; 711 struct page *xor_srcs[] = { page1, page2 }; 712 713 init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, 714 NULL, NULL, NULL, NULL); 715 tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); 716 717 async_tx_quiesce(&tx); 718 } 719 720 /* 721 * PPL recovery strategy: xor partial parity and data from all modified data 722 * disks within a stripe and write the result as the new stripe parity. If all 723 * stripe data disks are modified (full stripe write), no partial parity is 724 * available, so just xor the data disks. 725 * 726 * Recovery of a PPL entry shall occur only if all modified data disks are 727 * available and read from all of them succeeds. 728 * 729 * A PPL entry applies to a stripe, partial parity size for an entry is at most 730 * the size of the chunk. Examples of possible cases for a single entry: 731 * 732 * case 0: single data disk write: 733 * data0 data1 data2 ppl parity 734 * +--------+--------+--------+ +--------------------+ 735 * | ------ | ------ | ------ | +----+ | (no change) | 736 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 737 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 738 * | ------ | ------ | ------ | +----+ | (no change) | 739 * +--------+--------+--------+ +--------------------+ 740 * pp_size = data_size 741 * 742 * case 1: more than one data disk write: 743 * data0 data1 data2 ppl parity 744 * +--------+--------+--------+ +--------------------+ 745 * | ------ | ------ | ------ | +----+ | (no change) | 746 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 747 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 748 * | ------ | ------ | ------ | +----+ | (no change) | 749 * +--------+--------+--------+ +--------------------+ 750 * pp_size = data_size / modified_data_disks 751 * 752 * case 2: write to all data disks (also full stripe write): 753 * data0 data1 data2 parity 754 * +--------+--------+--------+ +--------------------+ 755 * | ------ | ------ | ------ | | (no change) | 756 * | -data- | -data- | -data- | --------> | xor all data | 757 * | ------ | ------ | ------ | --------> | (no change) | 758 * | ------ | ------ | ------ | | (no change) | 759 * +--------+--------+--------+ +--------------------+ 760 * pp_size = 0 761 * 762 * The following cases are possible only in other implementations. The recovery 763 * code can handle them, but they are not generated at runtime because they can 764 * be reduced to cases 0, 1 and 2: 765 * 766 * case 3: 767 * data0 data1 data2 ppl parity 768 * +--------+--------+--------+ +----+ +--------------------+ 769 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | 770 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | 771 * | -data- | -data- | -data- | | -- | -> | xor all data | 772 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | 773 * +--------+--------+--------+ +----+ +--------------------+ 774 * pp_size = chunk_size 775 * 776 * case 4: 777 * data0 data1 data2 ppl parity 778 * +--------+--------+--------+ +----+ +--------------------+ 779 * | ------ | -data- | ------ | | pp | | data1 ^ pp | 780 * | ------ | ------ | ------ | | -- | -> | (no change) | 781 * | ------ | ------ | ------ | | -- | -> | (no change) | 782 * | -data- | ------ | ------ | | pp | | data0 ^ pp | 783 * +--------+--------+--------+ +----+ +--------------------+ 784 * pp_size = chunk_size 785 */ 786 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, 787 sector_t ppl_sector) 788 { 789 struct ppl_conf *ppl_conf = log->ppl_conf; 790 struct mddev *mddev = ppl_conf->mddev; 791 struct r5conf *conf = mddev->private; 792 int block_size = ppl_conf->block_size; 793 struct page *page1; 794 struct page *page2; 795 sector_t r_sector_first; 796 sector_t r_sector_last; 797 int strip_sectors; 798 int data_disks; 799 int i; 800 int ret = 0; 801 unsigned int pp_size = le32_to_cpu(e->pp_size); 802 unsigned int data_size = le32_to_cpu(e->data_size); 803 804 page1 = alloc_page(GFP_KERNEL); 805 page2 = alloc_page(GFP_KERNEL); 806 807 if (!page1 || !page2) { 808 ret = -ENOMEM; 809 goto out; 810 } 811 812 r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); 813 814 if ((pp_size >> 9) < conf->chunk_sectors) { 815 if (pp_size > 0) { 816 data_disks = data_size / pp_size; 817 strip_sectors = pp_size >> 9; 818 } else { 819 data_disks = conf->raid_disks - conf->max_degraded; 820 strip_sectors = (data_size >> 9) / data_disks; 821 } 822 r_sector_last = r_sector_first + 823 (data_disks - 1) * conf->chunk_sectors + 824 strip_sectors; 825 } else { 826 data_disks = conf->raid_disks - conf->max_degraded; 827 strip_sectors = conf->chunk_sectors; 828 r_sector_last = r_sector_first + (data_size >> 9); 829 } 830 831 pr_debug("%s: array sector first: %llu last: %llu\n", __func__, 832 (unsigned long long)r_sector_first, 833 (unsigned long long)r_sector_last); 834 835 /* if start and end is 4k aligned, use a 4k block */ 836 if (block_size == 512 && 837 (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 && 838 (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0) 839 block_size = RAID5_STRIPE_SIZE(conf); 840 841 /* iterate through blocks in strip */ 842 for (i = 0; i < strip_sectors; i += (block_size >> 9)) { 843 bool update_parity = false; 844 sector_t parity_sector; 845 struct md_rdev *parity_rdev; 846 struct stripe_head sh; 847 int disk; 848 int indent = 0; 849 850 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); 851 indent += 2; 852 853 memset(page_address(page1), 0, PAGE_SIZE); 854 855 /* iterate through data member disks */ 856 for (disk = 0; disk < data_disks; disk++) { 857 int dd_idx; 858 struct md_rdev *rdev; 859 sector_t sector; 860 sector_t r_sector = r_sector_first + i + 861 (disk * conf->chunk_sectors); 862 863 pr_debug("%s:%*s data member disk %d start\n", 864 __func__, indent, "", disk); 865 indent += 2; 866 867 if (r_sector >= r_sector_last) { 868 pr_debug("%s:%*s array sector %llu doesn't need parity update\n", 869 __func__, indent, "", 870 (unsigned long long)r_sector); 871 indent -= 2; 872 continue; 873 } 874 875 update_parity = true; 876 877 /* map raid sector to member disk */ 878 sector = raid5_compute_sector(conf, r_sector, 0, 879 &dd_idx, NULL); 880 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", 881 __func__, indent, "", 882 (unsigned long long)r_sector, dd_idx, 883 (unsigned long long)sector); 884 885 /* Array has not started so rcu dereference is safe */ 886 rdev = rcu_dereference_protected( 887 conf->disks[dd_idx].rdev, 1); 888 if (!rdev || (!test_bit(In_sync, &rdev->flags) && 889 sector >= rdev->recovery_offset)) { 890 pr_debug("%s:%*s data member disk %d missing\n", 891 __func__, indent, "", dd_idx); 892 update_parity = false; 893 break; 894 } 895 896 pr_debug("%s:%*s reading data member disk %pg sector %llu\n", 897 __func__, indent, "", rdev->bdev, 898 (unsigned long long)sector); 899 if (!sync_page_io(rdev, sector, block_size, page2, 900 REQ_OP_READ, false)) { 901 md_error(mddev, rdev); 902 pr_debug("%s:%*s read failed!\n", __func__, 903 indent, ""); 904 ret = -EIO; 905 goto out; 906 } 907 908 ppl_xor(block_size, page1, page2); 909 910 indent -= 2; 911 } 912 913 if (!update_parity) 914 continue; 915 916 if (pp_size > 0) { 917 pr_debug("%s:%*s reading pp disk sector %llu\n", 918 __func__, indent, "", 919 (unsigned long long)(ppl_sector + i)); 920 if (!sync_page_io(log->rdev, 921 ppl_sector - log->rdev->data_offset + i, 922 block_size, page2, REQ_OP_READ, 923 false)) { 924 pr_debug("%s:%*s read failed!\n", __func__, 925 indent, ""); 926 md_error(mddev, log->rdev); 927 ret = -EIO; 928 goto out; 929 } 930 931 ppl_xor(block_size, page1, page2); 932 } 933 934 /* map raid sector to parity disk */ 935 parity_sector = raid5_compute_sector(conf, r_sector_first + i, 936 0, &disk, &sh); 937 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); 938 939 /* Array has not started so rcu dereference is safe */ 940 parity_rdev = rcu_dereference_protected( 941 conf->disks[sh.pd_idx].rdev, 1); 942 943 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); 944 pr_debug("%s:%*s write parity at sector %llu, disk %pg\n", 945 __func__, indent, "", 946 (unsigned long long)parity_sector, 947 parity_rdev->bdev); 948 if (!sync_page_io(parity_rdev, parity_sector, block_size, 949 page1, REQ_OP_WRITE, false)) { 950 pr_debug("%s:%*s parity write error!\n", __func__, 951 indent, ""); 952 md_error(mddev, parity_rdev); 953 ret = -EIO; 954 goto out; 955 } 956 } 957 out: 958 if (page1) 959 __free_page(page1); 960 if (page2) 961 __free_page(page2); 962 return ret; 963 } 964 965 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr, 966 sector_t offset) 967 { 968 struct ppl_conf *ppl_conf = log->ppl_conf; 969 struct md_rdev *rdev = log->rdev; 970 struct mddev *mddev = rdev->mddev; 971 sector_t ppl_sector = rdev->ppl.sector + offset + 972 (PPL_HEADER_SIZE >> 9); 973 struct page *page; 974 int i; 975 int ret = 0; 976 977 page = alloc_page(GFP_KERNEL); 978 if (!page) 979 return -ENOMEM; 980 981 /* iterate through all PPL entries saved */ 982 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { 983 struct ppl_header_entry *e = &pplhdr->entries[i]; 984 u32 pp_size = le32_to_cpu(e->pp_size); 985 sector_t sector = ppl_sector; 986 int ppl_entry_sectors = pp_size >> 9; 987 u32 crc, crc_stored; 988 989 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", 990 __func__, rdev->raid_disk, i, 991 (unsigned long long)ppl_sector, pp_size); 992 993 crc = ~0; 994 crc_stored = le32_to_cpu(e->checksum); 995 996 /* read parial parity for this entry and calculate its checksum */ 997 while (pp_size) { 998 int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; 999 1000 if (!sync_page_io(rdev, sector - rdev->data_offset, 1001 s, page, REQ_OP_READ, false)) { 1002 md_error(mddev, rdev); 1003 ret = -EIO; 1004 goto out; 1005 } 1006 1007 crc = crc32c_le(crc, page_address(page), s); 1008 1009 pp_size -= s; 1010 sector += s >> 9; 1011 } 1012 1013 crc = ~crc; 1014 1015 if (crc != crc_stored) { 1016 /* 1017 * Don't recover this entry if the checksum does not 1018 * match, but keep going and try to recover other 1019 * entries. 1020 */ 1021 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", 1022 __func__, crc_stored, crc); 1023 ppl_conf->mismatch_count++; 1024 } else { 1025 ret = ppl_recover_entry(log, e, ppl_sector); 1026 if (ret) 1027 goto out; 1028 ppl_conf->recovered_entries++; 1029 } 1030 1031 ppl_sector += ppl_entry_sectors; 1032 } 1033 1034 /* flush the disk cache after recovery if necessary */ 1035 ret = blkdev_issue_flush(rdev->bdev); 1036 out: 1037 __free_page(page); 1038 return ret; 1039 } 1040 1041 static int ppl_write_empty_header(struct ppl_log *log) 1042 { 1043 struct page *page; 1044 struct ppl_header *pplhdr; 1045 struct md_rdev *rdev = log->rdev; 1046 int ret = 0; 1047 1048 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, 1049 rdev->raid_disk, (unsigned long long)rdev->ppl.sector); 1050 1051 page = alloc_page(GFP_NOIO | __GFP_ZERO); 1052 if (!page) 1053 return -ENOMEM; 1054 1055 pplhdr = page_address(page); 1056 /* zero out PPL space to avoid collision with old PPLs */ 1057 blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector, 1058 log->rdev->ppl.size, GFP_NOIO, 0); 1059 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 1060 pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); 1061 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); 1062 1063 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, 1064 PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC | 1065 REQ_FUA, false)) { 1066 md_error(rdev->mddev, rdev); 1067 ret = -EIO; 1068 } 1069 1070 __free_page(page); 1071 return ret; 1072 } 1073 1074 static int ppl_load_distributed(struct ppl_log *log) 1075 { 1076 struct ppl_conf *ppl_conf = log->ppl_conf; 1077 struct md_rdev *rdev = log->rdev; 1078 struct mddev *mddev = rdev->mddev; 1079 struct page *page, *page2; 1080 struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL; 1081 u32 crc, crc_stored; 1082 u32 signature; 1083 int ret = 0, i; 1084 sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0; 1085 1086 pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); 1087 /* read PPL headers, find the recent one */ 1088 page = alloc_page(GFP_KERNEL); 1089 if (!page) 1090 return -ENOMEM; 1091 1092 page2 = alloc_page(GFP_KERNEL); 1093 if (!page2) { 1094 __free_page(page); 1095 return -ENOMEM; 1096 } 1097 1098 /* searching ppl area for latest ppl */ 1099 while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) { 1100 if (!sync_page_io(rdev, 1101 rdev->ppl.sector - rdev->data_offset + 1102 pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ, 1103 false)) { 1104 md_error(mddev, rdev); 1105 ret = -EIO; 1106 /* if not able to read - don't recover any PPL */ 1107 pplhdr = NULL; 1108 break; 1109 } 1110 pplhdr = page_address(page); 1111 1112 /* check header validity */ 1113 crc_stored = le32_to_cpu(pplhdr->checksum); 1114 pplhdr->checksum = 0; 1115 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); 1116 1117 if (crc_stored != crc) { 1118 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n", 1119 __func__, crc_stored, crc, 1120 (unsigned long long)pplhdr_offset); 1121 pplhdr = prev_pplhdr; 1122 pplhdr_offset = prev_pplhdr_offset; 1123 break; 1124 } 1125 1126 signature = le32_to_cpu(pplhdr->signature); 1127 1128 if (mddev->external) { 1129 /* 1130 * For external metadata the header signature is set and 1131 * validated in userspace. 1132 */ 1133 ppl_conf->signature = signature; 1134 } else if (ppl_conf->signature != signature) { 1135 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n", 1136 __func__, signature, ppl_conf->signature, 1137 (unsigned long long)pplhdr_offset); 1138 pplhdr = prev_pplhdr; 1139 pplhdr_offset = prev_pplhdr_offset; 1140 break; 1141 } 1142 1143 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) > 1144 le64_to_cpu(pplhdr->generation)) { 1145 /* previous was newest */ 1146 pplhdr = prev_pplhdr; 1147 pplhdr_offset = prev_pplhdr_offset; 1148 break; 1149 } 1150 1151 prev_pplhdr_offset = pplhdr_offset; 1152 prev_pplhdr = pplhdr; 1153 1154 swap(page, page2); 1155 1156 /* calculate next potential ppl offset */ 1157 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) 1158 pplhdr_offset += 1159 le32_to_cpu(pplhdr->entries[i].pp_size) >> 9; 1160 pplhdr_offset += PPL_HEADER_SIZE >> 9; 1161 } 1162 1163 /* no valid ppl found */ 1164 if (!pplhdr) 1165 ppl_conf->mismatch_count++; 1166 else 1167 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n", 1168 __func__, (unsigned long long)pplhdr_offset, 1169 le64_to_cpu(pplhdr->generation)); 1170 1171 /* attempt to recover from log if we are starting a dirty array */ 1172 if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector) 1173 ret = ppl_recover(log, pplhdr, pplhdr_offset); 1174 1175 /* write empty header if we are starting the array */ 1176 if (!ret && !mddev->pers) 1177 ret = ppl_write_empty_header(log); 1178 1179 __free_page(page); 1180 __free_page(page2); 1181 1182 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1183 __func__, ret, ppl_conf->mismatch_count, 1184 ppl_conf->recovered_entries); 1185 return ret; 1186 } 1187 1188 static int ppl_load(struct ppl_conf *ppl_conf) 1189 { 1190 int ret = 0; 1191 u32 signature = 0; 1192 bool signature_set = false; 1193 int i; 1194 1195 for (i = 0; i < ppl_conf->count; i++) { 1196 struct ppl_log *log = &ppl_conf->child_logs[i]; 1197 1198 /* skip missing drive */ 1199 if (!log->rdev) 1200 continue; 1201 1202 ret = ppl_load_distributed(log); 1203 if (ret) 1204 break; 1205 1206 /* 1207 * For external metadata we can't check if the signature is 1208 * correct on a single drive, but we can check if it is the same 1209 * on all drives. 1210 */ 1211 if (ppl_conf->mddev->external) { 1212 if (!signature_set) { 1213 signature = ppl_conf->signature; 1214 signature_set = true; 1215 } else if (signature != ppl_conf->signature) { 1216 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", 1217 mdname(ppl_conf->mddev)); 1218 ret = -EINVAL; 1219 break; 1220 } 1221 } 1222 } 1223 1224 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1225 __func__, ret, ppl_conf->mismatch_count, 1226 ppl_conf->recovered_entries); 1227 return ret; 1228 } 1229 1230 static void __ppl_exit_log(struct ppl_conf *ppl_conf) 1231 { 1232 clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1233 clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags); 1234 1235 kfree(ppl_conf->child_logs); 1236 1237 bioset_exit(&ppl_conf->bs); 1238 bioset_exit(&ppl_conf->flush_bs); 1239 mempool_exit(&ppl_conf->io_pool); 1240 kmem_cache_destroy(ppl_conf->io_kc); 1241 1242 kfree(ppl_conf); 1243 } 1244 1245 void ppl_exit_log(struct r5conf *conf) 1246 { 1247 struct ppl_conf *ppl_conf = conf->log_private; 1248 1249 if (ppl_conf) { 1250 __ppl_exit_log(ppl_conf); 1251 conf->log_private = NULL; 1252 } 1253 } 1254 1255 static int ppl_validate_rdev(struct md_rdev *rdev) 1256 { 1257 int ppl_data_sectors; 1258 int ppl_size_new; 1259 1260 /* 1261 * The configured PPL size must be enough to store 1262 * the header and (at the very least) partial parity 1263 * for one stripe. Round it down to ensure the data 1264 * space is cleanly divisible by stripe size. 1265 */ 1266 ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); 1267 1268 if (ppl_data_sectors > 0) 1269 ppl_data_sectors = rounddown(ppl_data_sectors, 1270 RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private)); 1271 1272 if (ppl_data_sectors <= 0) { 1273 pr_warn("md/raid:%s: PPL space too small on %pg\n", 1274 mdname(rdev->mddev), rdev->bdev); 1275 return -ENOSPC; 1276 } 1277 1278 ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); 1279 1280 if ((rdev->ppl.sector < rdev->data_offset && 1281 rdev->ppl.sector + ppl_size_new > rdev->data_offset) || 1282 (rdev->ppl.sector >= rdev->data_offset && 1283 rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { 1284 pr_warn("md/raid:%s: PPL space overlaps with data on %pg\n", 1285 mdname(rdev->mddev), rdev->bdev); 1286 return -EINVAL; 1287 } 1288 1289 if (!rdev->mddev->external && 1290 ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || 1291 (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { 1292 pr_warn("md/raid:%s: PPL space overlaps with superblock on %pg\n", 1293 mdname(rdev->mddev), rdev->bdev); 1294 return -EINVAL; 1295 } 1296 1297 rdev->ppl.size = ppl_size_new; 1298 1299 return 0; 1300 } 1301 1302 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev) 1303 { 1304 if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE + 1305 PPL_HEADER_SIZE) * 2) { 1306 log->use_multippl = true; 1307 set_bit(MD_HAS_MULTIPLE_PPLS, 1308 &log->ppl_conf->mddev->flags); 1309 log->entry_space = PPL_SPACE_SIZE; 1310 } else { 1311 log->use_multippl = false; 1312 log->entry_space = (log->rdev->ppl.size << 9) - 1313 PPL_HEADER_SIZE; 1314 } 1315 log->next_io_sector = rdev->ppl.sector; 1316 1317 if (bdev_write_cache(rdev->bdev)) 1318 log->wb_cache_on = true; 1319 } 1320 1321 int ppl_init_log(struct r5conf *conf) 1322 { 1323 struct ppl_conf *ppl_conf; 1324 struct mddev *mddev = conf->mddev; 1325 int ret = 0; 1326 int max_disks; 1327 int i; 1328 1329 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", 1330 mdname(conf->mddev)); 1331 1332 if (PAGE_SIZE != 4096) 1333 return -EINVAL; 1334 1335 if (mddev->level != 5) { 1336 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", 1337 mdname(mddev), mddev->level); 1338 return -EINVAL; 1339 } 1340 1341 if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { 1342 pr_warn("md/raid:%s PPL is not compatible with bitmap\n", 1343 mdname(mddev)); 1344 return -EINVAL; 1345 } 1346 1347 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 1348 pr_warn("md/raid:%s PPL is not compatible with journal\n", 1349 mdname(mddev)); 1350 return -EINVAL; 1351 } 1352 1353 max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) * 1354 BITS_PER_BYTE; 1355 if (conf->raid_disks > max_disks) { 1356 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n", 1357 mdname(mddev), max_disks); 1358 return -EINVAL; 1359 } 1360 1361 ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); 1362 if (!ppl_conf) 1363 return -ENOMEM; 1364 1365 ppl_conf->mddev = mddev; 1366 1367 ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); 1368 if (!ppl_conf->io_kc) { 1369 ret = -ENOMEM; 1370 goto err; 1371 } 1372 1373 ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc, 1374 ppl_io_pool_free, ppl_conf->io_kc); 1375 if (ret) 1376 goto err; 1377 1378 ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS); 1379 if (ret) 1380 goto err; 1381 1382 ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0); 1383 if (ret) 1384 goto err; 1385 1386 ppl_conf->count = conf->raid_disks; 1387 ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), 1388 GFP_KERNEL); 1389 if (!ppl_conf->child_logs) { 1390 ret = -ENOMEM; 1391 goto err; 1392 } 1393 1394 atomic64_set(&ppl_conf->seq, 0); 1395 INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); 1396 spin_lock_init(&ppl_conf->no_mem_stripes_lock); 1397 1398 if (!mddev->external) { 1399 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); 1400 ppl_conf->block_size = 512; 1401 } else { 1402 ppl_conf->block_size = queue_logical_block_size(mddev->queue); 1403 } 1404 1405 for (i = 0; i < ppl_conf->count; i++) { 1406 struct ppl_log *log = &ppl_conf->child_logs[i]; 1407 /* Array has not started so rcu dereference is safe */ 1408 struct md_rdev *rdev = 1409 rcu_dereference_protected(conf->disks[i].rdev, 1); 1410 1411 mutex_init(&log->io_mutex); 1412 spin_lock_init(&log->io_list_lock); 1413 INIT_LIST_HEAD(&log->io_list); 1414 1415 log->ppl_conf = ppl_conf; 1416 log->rdev = rdev; 1417 1418 if (rdev) { 1419 ret = ppl_validate_rdev(rdev); 1420 if (ret) 1421 goto err; 1422 1423 ppl_init_child_log(log, rdev); 1424 } 1425 } 1426 1427 /* load and possibly recover the logs from the member disks */ 1428 ret = ppl_load(ppl_conf); 1429 1430 if (ret) { 1431 goto err; 1432 } else if (!mddev->pers && mddev->recovery_cp == 0 && 1433 ppl_conf->recovered_entries > 0 && 1434 ppl_conf->mismatch_count == 0) { 1435 /* 1436 * If we are starting a dirty array and the recovery succeeds 1437 * without any issues, set the array as clean. 1438 */ 1439 mddev->recovery_cp = MaxSector; 1440 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 1441 } else if (mddev->pers && ppl_conf->mismatch_count > 0) { 1442 /* no mismatch allowed when enabling PPL for a running array */ 1443 ret = -EINVAL; 1444 goto err; 1445 } 1446 1447 conf->log_private = ppl_conf; 1448 set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1449 1450 return 0; 1451 err: 1452 __ppl_exit_log(ppl_conf); 1453 return ret; 1454 } 1455 1456 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) 1457 { 1458 struct ppl_conf *ppl_conf = conf->log_private; 1459 struct ppl_log *log; 1460 int ret = 0; 1461 1462 if (!rdev) 1463 return -EINVAL; 1464 1465 pr_debug("%s: disk: %d operation: %s dev: %pg\n", 1466 __func__, rdev->raid_disk, add ? "add" : "remove", 1467 rdev->bdev); 1468 1469 if (rdev->raid_disk < 0) 1470 return 0; 1471 1472 if (rdev->raid_disk >= ppl_conf->count) 1473 return -ENODEV; 1474 1475 log = &ppl_conf->child_logs[rdev->raid_disk]; 1476 1477 mutex_lock(&log->io_mutex); 1478 if (add) { 1479 ret = ppl_validate_rdev(rdev); 1480 if (!ret) { 1481 log->rdev = rdev; 1482 ret = ppl_write_empty_header(log); 1483 ppl_init_child_log(log, rdev); 1484 } 1485 } else { 1486 log->rdev = NULL; 1487 } 1488 mutex_unlock(&log->io_mutex); 1489 1490 return ret; 1491 } 1492 1493 static ssize_t 1494 ppl_write_hint_show(struct mddev *mddev, char *buf) 1495 { 1496 return sprintf(buf, "%d\n", 0); 1497 } 1498 1499 static ssize_t 1500 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len) 1501 { 1502 struct r5conf *conf; 1503 int err = 0; 1504 unsigned short new; 1505 1506 if (len >= PAGE_SIZE) 1507 return -EINVAL; 1508 if (kstrtou16(page, 10, &new)) 1509 return -EINVAL; 1510 1511 err = mddev_lock(mddev); 1512 if (err) 1513 return err; 1514 1515 conf = mddev->private; 1516 if (!conf) 1517 err = -ENODEV; 1518 else if (!raid5_has_ppl(conf) || !conf->log_private) 1519 err = -EINVAL; 1520 1521 mddev_unlock(mddev); 1522 1523 return err ?: len; 1524 } 1525 1526 struct md_sysfs_entry 1527 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR, 1528 ppl_write_hint_show, 1529 ppl_write_hint_store); 1530