1 /* 2 * Partial Parity Log for closing the RAID5 write hole 3 * Copyright (c) 2017, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/blkdev.h> 17 #include <linux/slab.h> 18 #include <linux/crc32c.h> 19 #include <linux/async_tx.h> 20 #include <linux/raid/md_p.h> 21 #include "md.h" 22 #include "raid5.h" 23 #include "raid5-log.h" 24 25 /* 26 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for 27 * partial parity data. The header contains an array of entries 28 * (struct ppl_header_entry) which describe the logged write requests. 29 * Partial parity for the entries comes after the header, written in the same 30 * sequence as the entries: 31 * 32 * Header 33 * entry0 34 * ... 35 * entryN 36 * PP data 37 * PP for entry0 38 * ... 39 * PP for entryN 40 * 41 * An entry describes one or more consecutive stripe_heads, up to a full 42 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the 43 * number of stripe_heads in the entry and n is the number of modified data 44 * disks. Every stripe_head in the entry must write to the same data disks. 45 * An example of a valid case described by a single entry (writes to the first 46 * stripe of a 4 disk array, 16k chunk size): 47 * 48 * sh->sector dd0 dd1 dd2 ppl 49 * +-----+-----+-----+ 50 * 0 | --- | --- | --- | +----+ 51 * 8 | -W- | -W- | --- | | pp | data_sector = 8 52 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k 53 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k 54 * +-----+-----+-----+ +----+ 55 * 56 * data_sector is the first raid sector of the modified data, data_size is the 57 * total size of modified data and pp_size is the size of partial parity for 58 * this entry. Entries for full stripe writes contain no partial parity 59 * (pp_size = 0), they only mark the stripes for which parity should be 60 * recalculated after an unclean shutdown. Every entry holds a checksum of its 61 * partial parity, the header also has a checksum of the header itself. 62 * 63 * A write request is always logged to the PPL instance stored on the parity 64 * disk of the corresponding stripe. For each member disk there is one ppl_log 65 * used to handle logging for this disk, independently from others. They are 66 * grouped in child_logs array in struct ppl_conf, which is assigned to 67 * r5conf->log_private. 68 * 69 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. 70 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head 71 * can be appended to the last entry if it meets the conditions for a valid 72 * entry described above, otherwise a new entry is added. Checksums of entries 73 * are calculated incrementally as stripes containing partial parity are being 74 * added. ppl_submit_iounit() calculates the checksum of the header and submits 75 * a bio containing the header page and partial parity pages (sh->ppl_page) for 76 * all stripes of the io_unit. When the PPL write completes, the stripes 77 * associated with the io_unit are released and raid5d starts writing their data 78 * and parity. When all stripes are written, the io_unit is freed and the next 79 * can be submitted. 80 * 81 * An io_unit is used to gather stripes until it is submitted or becomes full 82 * (if the maximum number of entries or size of PPL is reached). Another io_unit 83 * can't be submitted until the previous has completed (PPL and stripe 84 * data+parity is written). The log->io_list tracks all io_units of a log 85 * (for a single member disk). New io_units are added to the end of the list 86 * and the first io_unit is submitted, if it is not submitted already. 87 * The current io_unit accepting new stripes is always at the end of the list. 88 * 89 * If write-back cache is enabled for any of the disks in the array, its data 90 * must be flushed before next io_unit is submitted. 91 */ 92 93 #define PPL_SPACE_SIZE (128 * 1024) 94 95 struct ppl_conf { 96 struct mddev *mddev; 97 98 /* array of child logs, one for each raid disk */ 99 struct ppl_log *child_logs; 100 int count; 101 102 int block_size; /* the logical block size used for data_sector 103 * in ppl_header_entry */ 104 u32 signature; /* raid array identifier */ 105 atomic64_t seq; /* current log write sequence number */ 106 107 struct kmem_cache *io_kc; 108 mempool_t io_pool; 109 struct bio_set bs; 110 struct bio_set flush_bs; 111 112 /* used only for recovery */ 113 int recovered_entries; 114 int mismatch_count; 115 116 /* stripes to retry if failed to allocate io_unit */ 117 struct list_head no_mem_stripes; 118 spinlock_t no_mem_stripes_lock; 119 120 unsigned short write_hint; 121 }; 122 123 struct ppl_log { 124 struct ppl_conf *ppl_conf; /* shared between all log instances */ 125 126 struct md_rdev *rdev; /* array member disk associated with 127 * this log instance */ 128 struct mutex io_mutex; 129 struct ppl_io_unit *current_io; /* current io_unit accepting new data 130 * always at the end of io_list */ 131 spinlock_t io_list_lock; 132 struct list_head io_list; /* all io_units of this log */ 133 134 sector_t next_io_sector; 135 unsigned int entry_space; 136 bool use_multippl; 137 bool wb_cache_on; 138 unsigned long disk_flush_bitmap; 139 }; 140 141 #define PPL_IO_INLINE_BVECS 32 142 143 struct ppl_io_unit { 144 struct ppl_log *log; 145 146 struct page *header_page; /* for ppl_header */ 147 148 unsigned int entries_count; /* number of entries in ppl_header */ 149 unsigned int pp_size; /* total size current of partial parity */ 150 151 u64 seq; /* sequence number of this log write */ 152 struct list_head log_sibling; /* log->io_list */ 153 154 struct list_head stripe_list; /* stripes added to the io_unit */ 155 atomic_t pending_stripes; /* how many stripes not written to raid */ 156 atomic_t pending_flushes; /* how many disk flushes are in progress */ 157 158 bool submitted; /* true if write to log started */ 159 160 /* inline bio and its biovec for submitting the iounit */ 161 struct bio bio; 162 struct bio_vec biovec[PPL_IO_INLINE_BVECS]; 163 }; 164 165 struct dma_async_tx_descriptor * 166 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, 167 struct dma_async_tx_descriptor *tx) 168 { 169 int disks = sh->disks; 170 struct page **srcs = percpu->scribble; 171 int count = 0, pd_idx = sh->pd_idx, i; 172 struct async_submit_ctl submit; 173 174 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 175 176 /* 177 * Partial parity is the XOR of stripe data chunks that are not changed 178 * during the write request. Depending on available data 179 * (read-modify-write vs. reconstruct-write case) we calculate it 180 * differently. 181 */ 182 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 183 /* 184 * rmw: xor old data and parity from updated disks 185 * This is calculated earlier by ops_run_prexor5() so just copy 186 * the parity dev page. 187 */ 188 srcs[count++] = sh->dev[pd_idx].page; 189 } else if (sh->reconstruct_state == reconstruct_state_drain_run) { 190 /* rcw: xor data from all not updated disks */ 191 for (i = disks; i--;) { 192 struct r5dev *dev = &sh->dev[i]; 193 if (test_bit(R5_UPTODATE, &dev->flags)) 194 srcs[count++] = dev->page; 195 } 196 } else { 197 return tx; 198 } 199 200 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, 201 NULL, sh, (void *) (srcs + sh->disks + 2)); 202 203 if (count == 1) 204 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, 205 &submit); 206 else 207 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, 208 &submit); 209 210 return tx; 211 } 212 213 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) 214 { 215 struct kmem_cache *kc = pool_data; 216 struct ppl_io_unit *io; 217 218 io = kmem_cache_alloc(kc, gfp_mask); 219 if (!io) 220 return NULL; 221 222 io->header_page = alloc_page(gfp_mask); 223 if (!io->header_page) { 224 kmem_cache_free(kc, io); 225 return NULL; 226 } 227 228 return io; 229 } 230 231 static void ppl_io_pool_free(void *element, void *pool_data) 232 { 233 struct kmem_cache *kc = pool_data; 234 struct ppl_io_unit *io = element; 235 236 __free_page(io->header_page); 237 kmem_cache_free(kc, io); 238 } 239 240 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, 241 struct stripe_head *sh) 242 { 243 struct ppl_conf *ppl_conf = log->ppl_conf; 244 struct ppl_io_unit *io; 245 struct ppl_header *pplhdr; 246 struct page *header_page; 247 248 io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT); 249 if (!io) 250 return NULL; 251 252 header_page = io->header_page; 253 memset(io, 0, sizeof(*io)); 254 io->header_page = header_page; 255 256 io->log = log; 257 INIT_LIST_HEAD(&io->log_sibling); 258 INIT_LIST_HEAD(&io->stripe_list); 259 atomic_set(&io->pending_stripes, 0); 260 atomic_set(&io->pending_flushes, 0); 261 bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS); 262 263 pplhdr = page_address(io->header_page); 264 clear_page(pplhdr); 265 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 266 pplhdr->signature = cpu_to_le32(ppl_conf->signature); 267 268 io->seq = atomic64_add_return(1, &ppl_conf->seq); 269 pplhdr->generation = cpu_to_le64(io->seq); 270 271 return io; 272 } 273 274 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) 275 { 276 struct ppl_io_unit *io = log->current_io; 277 struct ppl_header_entry *e = NULL; 278 struct ppl_header *pplhdr; 279 int i; 280 sector_t data_sector = 0; 281 int data_disks = 0; 282 struct r5conf *conf = sh->raid_conf; 283 284 pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); 285 286 /* check if current io_unit is full */ 287 if (io && (io->pp_size == log->entry_space || 288 io->entries_count == PPL_HDR_MAX_ENTRIES)) { 289 pr_debug("%s: add io_unit blocked by seq: %llu\n", 290 __func__, io->seq); 291 io = NULL; 292 } 293 294 /* add a new unit if there is none or the current is full */ 295 if (!io) { 296 io = ppl_new_iounit(log, sh); 297 if (!io) 298 return -ENOMEM; 299 spin_lock_irq(&log->io_list_lock); 300 list_add_tail(&io->log_sibling, &log->io_list); 301 spin_unlock_irq(&log->io_list_lock); 302 303 log->current_io = io; 304 } 305 306 for (i = 0; i < sh->disks; i++) { 307 struct r5dev *dev = &sh->dev[i]; 308 309 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { 310 if (!data_disks || dev->sector < data_sector) 311 data_sector = dev->sector; 312 data_disks++; 313 } 314 } 315 BUG_ON(!data_disks); 316 317 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, 318 io->seq, (unsigned long long)data_sector, data_disks); 319 320 pplhdr = page_address(io->header_page); 321 322 if (io->entries_count > 0) { 323 struct ppl_header_entry *last = 324 &pplhdr->entries[io->entries_count - 1]; 325 struct stripe_head *sh_last = list_last_entry( 326 &io->stripe_list, struct stripe_head, log_list); 327 u64 data_sector_last = le64_to_cpu(last->data_sector); 328 u32 data_size_last = le32_to_cpu(last->data_size); 329 330 /* 331 * Check if we can append the stripe to the last entry. It must 332 * be just after the last logged stripe and write to the same 333 * disks. Use bit shift and logarithm to avoid 64-bit division. 334 */ 335 if ((sh->sector == sh_last->sector + STRIPE_SECTORS) && 336 (data_sector >> ilog2(conf->chunk_sectors) == 337 data_sector_last >> ilog2(conf->chunk_sectors)) && 338 ((data_sector - data_sector_last) * data_disks == 339 data_size_last >> 9)) 340 e = last; 341 } 342 343 if (!e) { 344 e = &pplhdr->entries[io->entries_count++]; 345 e->data_sector = cpu_to_le64(data_sector); 346 e->parity_disk = cpu_to_le32(sh->pd_idx); 347 e->checksum = cpu_to_le32(~0); 348 } 349 350 le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); 351 352 /* don't write any PP if full stripe write */ 353 if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { 354 le32_add_cpu(&e->pp_size, PAGE_SIZE); 355 io->pp_size += PAGE_SIZE; 356 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), 357 page_address(sh->ppl_page), 358 PAGE_SIZE)); 359 } 360 361 list_add_tail(&sh->log_list, &io->stripe_list); 362 atomic_inc(&io->pending_stripes); 363 sh->ppl_io = io; 364 365 return 0; 366 } 367 368 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) 369 { 370 struct ppl_conf *ppl_conf = conf->log_private; 371 struct ppl_io_unit *io = sh->ppl_io; 372 struct ppl_log *log; 373 374 if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || 375 !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 376 !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { 377 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 378 return -EAGAIN; 379 } 380 381 log = &ppl_conf->child_logs[sh->pd_idx]; 382 383 mutex_lock(&log->io_mutex); 384 385 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 386 mutex_unlock(&log->io_mutex); 387 return -EAGAIN; 388 } 389 390 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 391 clear_bit(STRIPE_DELAYED, &sh->state); 392 atomic_inc(&sh->count); 393 394 if (ppl_log_stripe(log, sh)) { 395 spin_lock_irq(&ppl_conf->no_mem_stripes_lock); 396 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); 397 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); 398 } 399 400 mutex_unlock(&log->io_mutex); 401 402 return 0; 403 } 404 405 static void ppl_log_endio(struct bio *bio) 406 { 407 struct ppl_io_unit *io = bio->bi_private; 408 struct ppl_log *log = io->log; 409 struct ppl_conf *ppl_conf = log->ppl_conf; 410 struct stripe_head *sh, *next; 411 412 pr_debug("%s: seq: %llu\n", __func__, io->seq); 413 414 if (bio->bi_status) 415 md_error(ppl_conf->mddev, log->rdev); 416 417 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 418 list_del_init(&sh->log_list); 419 420 set_bit(STRIPE_HANDLE, &sh->state); 421 raid5_release_stripe(sh); 422 } 423 } 424 425 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) 426 { 427 char b[BDEVNAME_SIZE]; 428 429 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n", 430 __func__, io->seq, bio->bi_iter.bi_size, 431 (unsigned long long)bio->bi_iter.bi_sector, 432 bio_devname(bio, b)); 433 434 submit_bio(bio); 435 } 436 437 static void ppl_submit_iounit(struct ppl_io_unit *io) 438 { 439 struct ppl_log *log = io->log; 440 struct ppl_conf *ppl_conf = log->ppl_conf; 441 struct ppl_header *pplhdr = page_address(io->header_page); 442 struct bio *bio = &io->bio; 443 struct stripe_head *sh; 444 int i; 445 446 bio->bi_private = io; 447 448 if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { 449 ppl_log_endio(bio); 450 return; 451 } 452 453 for (i = 0; i < io->entries_count; i++) { 454 struct ppl_header_entry *e = &pplhdr->entries[i]; 455 456 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", 457 __func__, io->seq, i, le64_to_cpu(e->data_sector), 458 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); 459 460 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> 461 ilog2(ppl_conf->block_size >> 9)); 462 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); 463 } 464 465 pplhdr->entries_count = cpu_to_le32(io->entries_count); 466 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); 467 468 /* Rewind the buffer if current PPL is larger then remaining space */ 469 if (log->use_multippl && 470 log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector < 471 (PPL_HEADER_SIZE + io->pp_size) >> 9) 472 log->next_io_sector = log->rdev->ppl.sector; 473 474 475 bio->bi_end_io = ppl_log_endio; 476 bio->bi_opf = REQ_OP_WRITE | REQ_FUA; 477 bio_set_dev(bio, log->rdev->bdev); 478 bio->bi_iter.bi_sector = log->next_io_sector; 479 bio_add_page(bio, io->header_page, PAGE_SIZE, 0); 480 bio->bi_write_hint = ppl_conf->write_hint; 481 482 pr_debug("%s: log->current_io_sector: %llu\n", __func__, 483 (unsigned long long)log->next_io_sector); 484 485 if (log->use_multippl) 486 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9; 487 488 WARN_ON(log->disk_flush_bitmap != 0); 489 490 list_for_each_entry(sh, &io->stripe_list, log_list) { 491 for (i = 0; i < sh->disks; i++) { 492 struct r5dev *dev = &sh->dev[i]; 493 494 if ((ppl_conf->child_logs[i].wb_cache_on) && 495 (test_bit(R5_Wantwrite, &dev->flags))) { 496 set_bit(i, &log->disk_flush_bitmap); 497 } 498 } 499 500 /* entries for full stripe writes have no partial parity */ 501 if (test_bit(STRIPE_FULL_WRITE, &sh->state)) 502 continue; 503 504 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { 505 struct bio *prev = bio; 506 507 bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, 508 &ppl_conf->bs); 509 bio->bi_opf = prev->bi_opf; 510 bio->bi_write_hint = prev->bi_write_hint; 511 bio_copy_dev(bio, prev); 512 bio->bi_iter.bi_sector = bio_end_sector(prev); 513 bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); 514 515 bio_chain(bio, prev); 516 ppl_submit_iounit_bio(io, prev); 517 } 518 } 519 520 ppl_submit_iounit_bio(io, bio); 521 } 522 523 static void ppl_submit_current_io(struct ppl_log *log) 524 { 525 struct ppl_io_unit *io; 526 527 spin_lock_irq(&log->io_list_lock); 528 529 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 530 log_sibling); 531 if (io && io->submitted) 532 io = NULL; 533 534 spin_unlock_irq(&log->io_list_lock); 535 536 if (io) { 537 io->submitted = true; 538 539 if (io == log->current_io) 540 log->current_io = NULL; 541 542 ppl_submit_iounit(io); 543 } 544 } 545 546 void ppl_write_stripe_run(struct r5conf *conf) 547 { 548 struct ppl_conf *ppl_conf = conf->log_private; 549 struct ppl_log *log; 550 int i; 551 552 for (i = 0; i < ppl_conf->count; i++) { 553 log = &ppl_conf->child_logs[i]; 554 555 mutex_lock(&log->io_mutex); 556 ppl_submit_current_io(log); 557 mutex_unlock(&log->io_mutex); 558 } 559 } 560 561 static void ppl_io_unit_finished(struct ppl_io_unit *io) 562 { 563 struct ppl_log *log = io->log; 564 struct ppl_conf *ppl_conf = log->ppl_conf; 565 struct r5conf *conf = ppl_conf->mddev->private; 566 unsigned long flags; 567 568 pr_debug("%s: seq: %llu\n", __func__, io->seq); 569 570 local_irq_save(flags); 571 572 spin_lock(&log->io_list_lock); 573 list_del(&io->log_sibling); 574 spin_unlock(&log->io_list_lock); 575 576 mempool_free(io, &ppl_conf->io_pool); 577 578 spin_lock(&ppl_conf->no_mem_stripes_lock); 579 if (!list_empty(&ppl_conf->no_mem_stripes)) { 580 struct stripe_head *sh; 581 582 sh = list_first_entry(&ppl_conf->no_mem_stripes, 583 struct stripe_head, log_list); 584 list_del_init(&sh->log_list); 585 set_bit(STRIPE_HANDLE, &sh->state); 586 raid5_release_stripe(sh); 587 } 588 spin_unlock(&ppl_conf->no_mem_stripes_lock); 589 590 local_irq_restore(flags); 591 592 wake_up(&conf->wait_for_quiescent); 593 } 594 595 static void ppl_flush_endio(struct bio *bio) 596 { 597 struct ppl_io_unit *io = bio->bi_private; 598 struct ppl_log *log = io->log; 599 struct ppl_conf *ppl_conf = log->ppl_conf; 600 struct r5conf *conf = ppl_conf->mddev->private; 601 char b[BDEVNAME_SIZE]; 602 603 pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b)); 604 605 if (bio->bi_status) { 606 struct md_rdev *rdev; 607 608 rcu_read_lock(); 609 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio)); 610 if (rdev) 611 md_error(rdev->mddev, rdev); 612 rcu_read_unlock(); 613 } 614 615 bio_put(bio); 616 617 if (atomic_dec_and_test(&io->pending_flushes)) { 618 ppl_io_unit_finished(io); 619 md_wakeup_thread(conf->mddev->thread); 620 } 621 } 622 623 static void ppl_do_flush(struct ppl_io_unit *io) 624 { 625 struct ppl_log *log = io->log; 626 struct ppl_conf *ppl_conf = log->ppl_conf; 627 struct r5conf *conf = ppl_conf->mddev->private; 628 int raid_disks = conf->raid_disks; 629 int flushed_disks = 0; 630 int i; 631 632 atomic_set(&io->pending_flushes, raid_disks); 633 634 for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) { 635 struct md_rdev *rdev; 636 struct block_device *bdev = NULL; 637 638 rcu_read_lock(); 639 rdev = rcu_dereference(conf->disks[i].rdev); 640 if (rdev && !test_bit(Faulty, &rdev->flags)) 641 bdev = rdev->bdev; 642 rcu_read_unlock(); 643 644 if (bdev) { 645 struct bio *bio; 646 char b[BDEVNAME_SIZE]; 647 648 bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs); 649 bio_set_dev(bio, bdev); 650 bio->bi_private = io; 651 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 652 bio->bi_end_io = ppl_flush_endio; 653 654 pr_debug("%s: dev: %s\n", __func__, 655 bio_devname(bio, b)); 656 657 submit_bio(bio); 658 flushed_disks++; 659 } 660 } 661 662 log->disk_flush_bitmap = 0; 663 664 for (i = flushed_disks ; i < raid_disks; i++) { 665 if (atomic_dec_and_test(&io->pending_flushes)) 666 ppl_io_unit_finished(io); 667 } 668 } 669 670 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf, 671 struct ppl_log *log) 672 { 673 struct ppl_io_unit *io; 674 675 io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, 676 log_sibling); 677 678 return !io || !io->submitted; 679 } 680 681 void ppl_quiesce(struct r5conf *conf, int quiesce) 682 { 683 struct ppl_conf *ppl_conf = conf->log_private; 684 int i; 685 686 if (quiesce) { 687 for (i = 0; i < ppl_conf->count; i++) { 688 struct ppl_log *log = &ppl_conf->child_logs[i]; 689 690 spin_lock_irq(&log->io_list_lock); 691 wait_event_lock_irq(conf->wait_for_quiescent, 692 ppl_no_io_unit_submitted(conf, log), 693 log->io_list_lock); 694 spin_unlock_irq(&log->io_list_lock); 695 } 696 } 697 } 698 699 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio) 700 { 701 if (bio->bi_iter.bi_size == 0) { 702 bio_endio(bio); 703 return 0; 704 } 705 bio->bi_opf &= ~REQ_PREFLUSH; 706 return -EAGAIN; 707 } 708 709 void ppl_stripe_write_finished(struct stripe_head *sh) 710 { 711 struct ppl_io_unit *io; 712 713 io = sh->ppl_io; 714 sh->ppl_io = NULL; 715 716 if (io && atomic_dec_and_test(&io->pending_stripes)) { 717 if (io->log->disk_flush_bitmap) 718 ppl_do_flush(io); 719 else 720 ppl_io_unit_finished(io); 721 } 722 } 723 724 static void ppl_xor(int size, struct page *page1, struct page *page2) 725 { 726 struct async_submit_ctl submit; 727 struct dma_async_tx_descriptor *tx; 728 struct page *xor_srcs[] = { page1, page2 }; 729 730 init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, 731 NULL, NULL, NULL, NULL); 732 tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); 733 734 async_tx_quiesce(&tx); 735 } 736 737 /* 738 * PPL recovery strategy: xor partial parity and data from all modified data 739 * disks within a stripe and write the result as the new stripe parity. If all 740 * stripe data disks are modified (full stripe write), no partial parity is 741 * available, so just xor the data disks. 742 * 743 * Recovery of a PPL entry shall occur only if all modified data disks are 744 * available and read from all of them succeeds. 745 * 746 * A PPL entry applies to a stripe, partial parity size for an entry is at most 747 * the size of the chunk. Examples of possible cases for a single entry: 748 * 749 * case 0: single data disk write: 750 * data0 data1 data2 ppl parity 751 * +--------+--------+--------+ +--------------------+ 752 * | ------ | ------ | ------ | +----+ | (no change) | 753 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 754 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | 755 * | ------ | ------ | ------ | +----+ | (no change) | 756 * +--------+--------+--------+ +--------------------+ 757 * pp_size = data_size 758 * 759 * case 1: more than one data disk write: 760 * data0 data1 data2 ppl parity 761 * +--------+--------+--------+ +--------------------+ 762 * | ------ | ------ | ------ | +----+ | (no change) | 763 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 764 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | 765 * | ------ | ------ | ------ | +----+ | (no change) | 766 * +--------+--------+--------+ +--------------------+ 767 * pp_size = data_size / modified_data_disks 768 * 769 * case 2: write to all data disks (also full stripe write): 770 * data0 data1 data2 parity 771 * +--------+--------+--------+ +--------------------+ 772 * | ------ | ------ | ------ | | (no change) | 773 * | -data- | -data- | -data- | --------> | xor all data | 774 * | ------ | ------ | ------ | --------> | (no change) | 775 * | ------ | ------ | ------ | | (no change) | 776 * +--------+--------+--------+ +--------------------+ 777 * pp_size = 0 778 * 779 * The following cases are possible only in other implementations. The recovery 780 * code can handle them, but they are not generated at runtime because they can 781 * be reduced to cases 0, 1 and 2: 782 * 783 * case 3: 784 * data0 data1 data2 ppl parity 785 * +--------+--------+--------+ +----+ +--------------------+ 786 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | 787 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | 788 * | -data- | -data- | -data- | | -- | -> | xor all data | 789 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | 790 * +--------+--------+--------+ +----+ +--------------------+ 791 * pp_size = chunk_size 792 * 793 * case 4: 794 * data0 data1 data2 ppl parity 795 * +--------+--------+--------+ +----+ +--------------------+ 796 * | ------ | -data- | ------ | | pp | | data1 ^ pp | 797 * | ------ | ------ | ------ | | -- | -> | (no change) | 798 * | ------ | ------ | ------ | | -- | -> | (no change) | 799 * | -data- | ------ | ------ | | pp | | data0 ^ pp | 800 * +--------+--------+--------+ +----+ +--------------------+ 801 * pp_size = chunk_size 802 */ 803 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, 804 sector_t ppl_sector) 805 { 806 struct ppl_conf *ppl_conf = log->ppl_conf; 807 struct mddev *mddev = ppl_conf->mddev; 808 struct r5conf *conf = mddev->private; 809 int block_size = ppl_conf->block_size; 810 struct page *page1; 811 struct page *page2; 812 sector_t r_sector_first; 813 sector_t r_sector_last; 814 int strip_sectors; 815 int data_disks; 816 int i; 817 int ret = 0; 818 char b[BDEVNAME_SIZE]; 819 unsigned int pp_size = le32_to_cpu(e->pp_size); 820 unsigned int data_size = le32_to_cpu(e->data_size); 821 822 page1 = alloc_page(GFP_KERNEL); 823 page2 = alloc_page(GFP_KERNEL); 824 825 if (!page1 || !page2) { 826 ret = -ENOMEM; 827 goto out; 828 } 829 830 r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); 831 832 if ((pp_size >> 9) < conf->chunk_sectors) { 833 if (pp_size > 0) { 834 data_disks = data_size / pp_size; 835 strip_sectors = pp_size >> 9; 836 } else { 837 data_disks = conf->raid_disks - conf->max_degraded; 838 strip_sectors = (data_size >> 9) / data_disks; 839 } 840 r_sector_last = r_sector_first + 841 (data_disks - 1) * conf->chunk_sectors + 842 strip_sectors; 843 } else { 844 data_disks = conf->raid_disks - conf->max_degraded; 845 strip_sectors = conf->chunk_sectors; 846 r_sector_last = r_sector_first + (data_size >> 9); 847 } 848 849 pr_debug("%s: array sector first: %llu last: %llu\n", __func__, 850 (unsigned long long)r_sector_first, 851 (unsigned long long)r_sector_last); 852 853 /* if start and end is 4k aligned, use a 4k block */ 854 if (block_size == 512 && 855 (r_sector_first & (STRIPE_SECTORS - 1)) == 0 && 856 (r_sector_last & (STRIPE_SECTORS - 1)) == 0) 857 block_size = STRIPE_SIZE; 858 859 /* iterate through blocks in strip */ 860 for (i = 0; i < strip_sectors; i += (block_size >> 9)) { 861 bool update_parity = false; 862 sector_t parity_sector; 863 struct md_rdev *parity_rdev; 864 struct stripe_head sh; 865 int disk; 866 int indent = 0; 867 868 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); 869 indent += 2; 870 871 memset(page_address(page1), 0, PAGE_SIZE); 872 873 /* iterate through data member disks */ 874 for (disk = 0; disk < data_disks; disk++) { 875 int dd_idx; 876 struct md_rdev *rdev; 877 sector_t sector; 878 sector_t r_sector = r_sector_first + i + 879 (disk * conf->chunk_sectors); 880 881 pr_debug("%s:%*s data member disk %d start\n", 882 __func__, indent, "", disk); 883 indent += 2; 884 885 if (r_sector >= r_sector_last) { 886 pr_debug("%s:%*s array sector %llu doesn't need parity update\n", 887 __func__, indent, "", 888 (unsigned long long)r_sector); 889 indent -= 2; 890 continue; 891 } 892 893 update_parity = true; 894 895 /* map raid sector to member disk */ 896 sector = raid5_compute_sector(conf, r_sector, 0, 897 &dd_idx, NULL); 898 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", 899 __func__, indent, "", 900 (unsigned long long)r_sector, dd_idx, 901 (unsigned long long)sector); 902 903 rdev = conf->disks[dd_idx].rdev; 904 if (!rdev || (!test_bit(In_sync, &rdev->flags) && 905 sector >= rdev->recovery_offset)) { 906 pr_debug("%s:%*s data member disk %d missing\n", 907 __func__, indent, "", dd_idx); 908 update_parity = false; 909 break; 910 } 911 912 pr_debug("%s:%*s reading data member disk %s sector %llu\n", 913 __func__, indent, "", bdevname(rdev->bdev, b), 914 (unsigned long long)sector); 915 if (!sync_page_io(rdev, sector, block_size, page2, 916 REQ_OP_READ, 0, false)) { 917 md_error(mddev, rdev); 918 pr_debug("%s:%*s read failed!\n", __func__, 919 indent, ""); 920 ret = -EIO; 921 goto out; 922 } 923 924 ppl_xor(block_size, page1, page2); 925 926 indent -= 2; 927 } 928 929 if (!update_parity) 930 continue; 931 932 if (pp_size > 0) { 933 pr_debug("%s:%*s reading pp disk sector %llu\n", 934 __func__, indent, "", 935 (unsigned long long)(ppl_sector + i)); 936 if (!sync_page_io(log->rdev, 937 ppl_sector - log->rdev->data_offset + i, 938 block_size, page2, REQ_OP_READ, 0, 939 false)) { 940 pr_debug("%s:%*s read failed!\n", __func__, 941 indent, ""); 942 md_error(mddev, log->rdev); 943 ret = -EIO; 944 goto out; 945 } 946 947 ppl_xor(block_size, page1, page2); 948 } 949 950 /* map raid sector to parity disk */ 951 parity_sector = raid5_compute_sector(conf, r_sector_first + i, 952 0, &disk, &sh); 953 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); 954 parity_rdev = conf->disks[sh.pd_idx].rdev; 955 956 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); 957 pr_debug("%s:%*s write parity at sector %llu, disk %s\n", 958 __func__, indent, "", 959 (unsigned long long)parity_sector, 960 bdevname(parity_rdev->bdev, b)); 961 if (!sync_page_io(parity_rdev, parity_sector, block_size, 962 page1, REQ_OP_WRITE, 0, false)) { 963 pr_debug("%s:%*s parity write error!\n", __func__, 964 indent, ""); 965 md_error(mddev, parity_rdev); 966 ret = -EIO; 967 goto out; 968 } 969 } 970 out: 971 if (page1) 972 __free_page(page1); 973 if (page2) 974 __free_page(page2); 975 return ret; 976 } 977 978 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr, 979 sector_t offset) 980 { 981 struct ppl_conf *ppl_conf = log->ppl_conf; 982 struct md_rdev *rdev = log->rdev; 983 struct mddev *mddev = rdev->mddev; 984 sector_t ppl_sector = rdev->ppl.sector + offset + 985 (PPL_HEADER_SIZE >> 9); 986 struct page *page; 987 int i; 988 int ret = 0; 989 990 page = alloc_page(GFP_KERNEL); 991 if (!page) 992 return -ENOMEM; 993 994 /* iterate through all PPL entries saved */ 995 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { 996 struct ppl_header_entry *e = &pplhdr->entries[i]; 997 u32 pp_size = le32_to_cpu(e->pp_size); 998 sector_t sector = ppl_sector; 999 int ppl_entry_sectors = pp_size >> 9; 1000 u32 crc, crc_stored; 1001 1002 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", 1003 __func__, rdev->raid_disk, i, 1004 (unsigned long long)ppl_sector, pp_size); 1005 1006 crc = ~0; 1007 crc_stored = le32_to_cpu(e->checksum); 1008 1009 /* read parial parity for this entry and calculate its checksum */ 1010 while (pp_size) { 1011 int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; 1012 1013 if (!sync_page_io(rdev, sector - rdev->data_offset, 1014 s, page, REQ_OP_READ, 0, false)) { 1015 md_error(mddev, rdev); 1016 ret = -EIO; 1017 goto out; 1018 } 1019 1020 crc = crc32c_le(crc, page_address(page), s); 1021 1022 pp_size -= s; 1023 sector += s >> 9; 1024 } 1025 1026 crc = ~crc; 1027 1028 if (crc != crc_stored) { 1029 /* 1030 * Don't recover this entry if the checksum does not 1031 * match, but keep going and try to recover other 1032 * entries. 1033 */ 1034 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", 1035 __func__, crc_stored, crc); 1036 ppl_conf->mismatch_count++; 1037 } else { 1038 ret = ppl_recover_entry(log, e, ppl_sector); 1039 if (ret) 1040 goto out; 1041 ppl_conf->recovered_entries++; 1042 } 1043 1044 ppl_sector += ppl_entry_sectors; 1045 } 1046 1047 /* flush the disk cache after recovery if necessary */ 1048 ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL); 1049 out: 1050 __free_page(page); 1051 return ret; 1052 } 1053 1054 static int ppl_write_empty_header(struct ppl_log *log) 1055 { 1056 struct page *page; 1057 struct ppl_header *pplhdr; 1058 struct md_rdev *rdev = log->rdev; 1059 int ret = 0; 1060 1061 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, 1062 rdev->raid_disk, (unsigned long long)rdev->ppl.sector); 1063 1064 page = alloc_page(GFP_NOIO | __GFP_ZERO); 1065 if (!page) 1066 return -ENOMEM; 1067 1068 pplhdr = page_address(page); 1069 /* zero out PPL space to avoid collision with old PPLs */ 1070 blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector, 1071 log->rdev->ppl.size, GFP_NOIO, 0); 1072 memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); 1073 pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); 1074 pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); 1075 1076 if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, 1077 PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC | 1078 REQ_FUA, 0, false)) { 1079 md_error(rdev->mddev, rdev); 1080 ret = -EIO; 1081 } 1082 1083 __free_page(page); 1084 return ret; 1085 } 1086 1087 static int ppl_load_distributed(struct ppl_log *log) 1088 { 1089 struct ppl_conf *ppl_conf = log->ppl_conf; 1090 struct md_rdev *rdev = log->rdev; 1091 struct mddev *mddev = rdev->mddev; 1092 struct page *page, *page2, *tmp; 1093 struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL; 1094 u32 crc, crc_stored; 1095 u32 signature; 1096 int ret = 0, i; 1097 sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0; 1098 1099 pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); 1100 /* read PPL headers, find the recent one */ 1101 page = alloc_page(GFP_KERNEL); 1102 if (!page) 1103 return -ENOMEM; 1104 1105 page2 = alloc_page(GFP_KERNEL); 1106 if (!page2) { 1107 __free_page(page); 1108 return -ENOMEM; 1109 } 1110 1111 /* searching ppl area for latest ppl */ 1112 while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) { 1113 if (!sync_page_io(rdev, 1114 rdev->ppl.sector - rdev->data_offset + 1115 pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ, 1116 0, false)) { 1117 md_error(mddev, rdev); 1118 ret = -EIO; 1119 /* if not able to read - don't recover any PPL */ 1120 pplhdr = NULL; 1121 break; 1122 } 1123 pplhdr = page_address(page); 1124 1125 /* check header validity */ 1126 crc_stored = le32_to_cpu(pplhdr->checksum); 1127 pplhdr->checksum = 0; 1128 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); 1129 1130 if (crc_stored != crc) { 1131 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n", 1132 __func__, crc_stored, crc, 1133 (unsigned long long)pplhdr_offset); 1134 pplhdr = prev_pplhdr; 1135 pplhdr_offset = prev_pplhdr_offset; 1136 break; 1137 } 1138 1139 signature = le32_to_cpu(pplhdr->signature); 1140 1141 if (mddev->external) { 1142 /* 1143 * For external metadata the header signature is set and 1144 * validated in userspace. 1145 */ 1146 ppl_conf->signature = signature; 1147 } else if (ppl_conf->signature != signature) { 1148 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n", 1149 __func__, signature, ppl_conf->signature, 1150 (unsigned long long)pplhdr_offset); 1151 pplhdr = prev_pplhdr; 1152 pplhdr_offset = prev_pplhdr_offset; 1153 break; 1154 } 1155 1156 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) > 1157 le64_to_cpu(pplhdr->generation)) { 1158 /* previous was newest */ 1159 pplhdr = prev_pplhdr; 1160 pplhdr_offset = prev_pplhdr_offset; 1161 break; 1162 } 1163 1164 prev_pplhdr_offset = pplhdr_offset; 1165 prev_pplhdr = pplhdr; 1166 1167 tmp = page; 1168 page = page2; 1169 page2 = tmp; 1170 1171 /* calculate next potential ppl offset */ 1172 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) 1173 pplhdr_offset += 1174 le32_to_cpu(pplhdr->entries[i].pp_size) >> 9; 1175 pplhdr_offset += PPL_HEADER_SIZE >> 9; 1176 } 1177 1178 /* no valid ppl found */ 1179 if (!pplhdr) 1180 ppl_conf->mismatch_count++; 1181 else 1182 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n", 1183 __func__, (unsigned long long)pplhdr_offset, 1184 le64_to_cpu(pplhdr->generation)); 1185 1186 /* attempt to recover from log if we are starting a dirty array */ 1187 if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector) 1188 ret = ppl_recover(log, pplhdr, pplhdr_offset); 1189 1190 /* write empty header if we are starting the array */ 1191 if (!ret && !mddev->pers) 1192 ret = ppl_write_empty_header(log); 1193 1194 __free_page(page); 1195 __free_page(page2); 1196 1197 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1198 __func__, ret, ppl_conf->mismatch_count, 1199 ppl_conf->recovered_entries); 1200 return ret; 1201 } 1202 1203 static int ppl_load(struct ppl_conf *ppl_conf) 1204 { 1205 int ret = 0; 1206 u32 signature = 0; 1207 bool signature_set = false; 1208 int i; 1209 1210 for (i = 0; i < ppl_conf->count; i++) { 1211 struct ppl_log *log = &ppl_conf->child_logs[i]; 1212 1213 /* skip missing drive */ 1214 if (!log->rdev) 1215 continue; 1216 1217 ret = ppl_load_distributed(log); 1218 if (ret) 1219 break; 1220 1221 /* 1222 * For external metadata we can't check if the signature is 1223 * correct on a single drive, but we can check if it is the same 1224 * on all drives. 1225 */ 1226 if (ppl_conf->mddev->external) { 1227 if (!signature_set) { 1228 signature = ppl_conf->signature; 1229 signature_set = true; 1230 } else if (signature != ppl_conf->signature) { 1231 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", 1232 mdname(ppl_conf->mddev)); 1233 ret = -EINVAL; 1234 break; 1235 } 1236 } 1237 } 1238 1239 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", 1240 __func__, ret, ppl_conf->mismatch_count, 1241 ppl_conf->recovered_entries); 1242 return ret; 1243 } 1244 1245 static void __ppl_exit_log(struct ppl_conf *ppl_conf) 1246 { 1247 clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1248 clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags); 1249 1250 kfree(ppl_conf->child_logs); 1251 1252 bioset_exit(&ppl_conf->bs); 1253 bioset_exit(&ppl_conf->flush_bs); 1254 mempool_exit(&ppl_conf->io_pool); 1255 kmem_cache_destroy(ppl_conf->io_kc); 1256 1257 kfree(ppl_conf); 1258 } 1259 1260 void ppl_exit_log(struct r5conf *conf) 1261 { 1262 struct ppl_conf *ppl_conf = conf->log_private; 1263 1264 if (ppl_conf) { 1265 __ppl_exit_log(ppl_conf); 1266 conf->log_private = NULL; 1267 } 1268 } 1269 1270 static int ppl_validate_rdev(struct md_rdev *rdev) 1271 { 1272 char b[BDEVNAME_SIZE]; 1273 int ppl_data_sectors; 1274 int ppl_size_new; 1275 1276 /* 1277 * The configured PPL size must be enough to store 1278 * the header and (at the very least) partial parity 1279 * for one stripe. Round it down to ensure the data 1280 * space is cleanly divisible by stripe size. 1281 */ 1282 ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); 1283 1284 if (ppl_data_sectors > 0) 1285 ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS); 1286 1287 if (ppl_data_sectors <= 0) { 1288 pr_warn("md/raid:%s: PPL space too small on %s\n", 1289 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1290 return -ENOSPC; 1291 } 1292 1293 ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); 1294 1295 if ((rdev->ppl.sector < rdev->data_offset && 1296 rdev->ppl.sector + ppl_size_new > rdev->data_offset) || 1297 (rdev->ppl.sector >= rdev->data_offset && 1298 rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { 1299 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n", 1300 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1301 return -EINVAL; 1302 } 1303 1304 if (!rdev->mddev->external && 1305 ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || 1306 (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { 1307 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n", 1308 mdname(rdev->mddev), bdevname(rdev->bdev, b)); 1309 return -EINVAL; 1310 } 1311 1312 rdev->ppl.size = ppl_size_new; 1313 1314 return 0; 1315 } 1316 1317 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev) 1318 { 1319 struct request_queue *q; 1320 1321 if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE + 1322 PPL_HEADER_SIZE) * 2) { 1323 log->use_multippl = true; 1324 set_bit(MD_HAS_MULTIPLE_PPLS, 1325 &log->ppl_conf->mddev->flags); 1326 log->entry_space = PPL_SPACE_SIZE; 1327 } else { 1328 log->use_multippl = false; 1329 log->entry_space = (log->rdev->ppl.size << 9) - 1330 PPL_HEADER_SIZE; 1331 } 1332 log->next_io_sector = rdev->ppl.sector; 1333 1334 q = bdev_get_queue(rdev->bdev); 1335 if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 1336 log->wb_cache_on = true; 1337 } 1338 1339 int ppl_init_log(struct r5conf *conf) 1340 { 1341 struct ppl_conf *ppl_conf; 1342 struct mddev *mddev = conf->mddev; 1343 int ret = 0; 1344 int max_disks; 1345 int i; 1346 1347 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", 1348 mdname(conf->mddev)); 1349 1350 if (PAGE_SIZE != 4096) 1351 return -EINVAL; 1352 1353 if (mddev->level != 5) { 1354 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", 1355 mdname(mddev), mddev->level); 1356 return -EINVAL; 1357 } 1358 1359 if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { 1360 pr_warn("md/raid:%s PPL is not compatible with bitmap\n", 1361 mdname(mddev)); 1362 return -EINVAL; 1363 } 1364 1365 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 1366 pr_warn("md/raid:%s PPL is not compatible with journal\n", 1367 mdname(mddev)); 1368 return -EINVAL; 1369 } 1370 1371 max_disks = FIELD_SIZEOF(struct ppl_log, disk_flush_bitmap) * 1372 BITS_PER_BYTE; 1373 if (conf->raid_disks > max_disks) { 1374 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n", 1375 mdname(mddev), max_disks); 1376 return -EINVAL; 1377 } 1378 1379 ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); 1380 if (!ppl_conf) 1381 return -ENOMEM; 1382 1383 ppl_conf->mddev = mddev; 1384 1385 ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); 1386 if (!ppl_conf->io_kc) { 1387 ret = -ENOMEM; 1388 goto err; 1389 } 1390 1391 ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc, 1392 ppl_io_pool_free, ppl_conf->io_kc); 1393 if (ret) 1394 goto err; 1395 1396 ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS); 1397 if (ret) 1398 goto err; 1399 1400 ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0); 1401 if (ret) 1402 goto err; 1403 1404 ppl_conf->count = conf->raid_disks; 1405 ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), 1406 GFP_KERNEL); 1407 if (!ppl_conf->child_logs) { 1408 ret = -ENOMEM; 1409 goto err; 1410 } 1411 1412 atomic64_set(&ppl_conf->seq, 0); 1413 INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); 1414 spin_lock_init(&ppl_conf->no_mem_stripes_lock); 1415 ppl_conf->write_hint = RWF_WRITE_LIFE_NOT_SET; 1416 1417 if (!mddev->external) { 1418 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); 1419 ppl_conf->block_size = 512; 1420 } else { 1421 ppl_conf->block_size = queue_logical_block_size(mddev->queue); 1422 } 1423 1424 for (i = 0; i < ppl_conf->count; i++) { 1425 struct ppl_log *log = &ppl_conf->child_logs[i]; 1426 struct md_rdev *rdev = conf->disks[i].rdev; 1427 1428 mutex_init(&log->io_mutex); 1429 spin_lock_init(&log->io_list_lock); 1430 INIT_LIST_HEAD(&log->io_list); 1431 1432 log->ppl_conf = ppl_conf; 1433 log->rdev = rdev; 1434 1435 if (rdev) { 1436 ret = ppl_validate_rdev(rdev); 1437 if (ret) 1438 goto err; 1439 1440 ppl_init_child_log(log, rdev); 1441 } 1442 } 1443 1444 /* load and possibly recover the logs from the member disks */ 1445 ret = ppl_load(ppl_conf); 1446 1447 if (ret) { 1448 goto err; 1449 } else if (!mddev->pers && mddev->recovery_cp == 0 && 1450 ppl_conf->recovered_entries > 0 && 1451 ppl_conf->mismatch_count == 0) { 1452 /* 1453 * If we are starting a dirty array and the recovery succeeds 1454 * without any issues, set the array as clean. 1455 */ 1456 mddev->recovery_cp = MaxSector; 1457 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 1458 } else if (mddev->pers && ppl_conf->mismatch_count > 0) { 1459 /* no mismatch allowed when enabling PPL for a running array */ 1460 ret = -EINVAL; 1461 goto err; 1462 } 1463 1464 conf->log_private = ppl_conf; 1465 set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); 1466 1467 return 0; 1468 err: 1469 __ppl_exit_log(ppl_conf); 1470 return ret; 1471 } 1472 1473 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) 1474 { 1475 struct ppl_conf *ppl_conf = conf->log_private; 1476 struct ppl_log *log; 1477 int ret = 0; 1478 char b[BDEVNAME_SIZE]; 1479 1480 if (!rdev) 1481 return -EINVAL; 1482 1483 pr_debug("%s: disk: %d operation: %s dev: %s\n", 1484 __func__, rdev->raid_disk, add ? "add" : "remove", 1485 bdevname(rdev->bdev, b)); 1486 1487 if (rdev->raid_disk < 0) 1488 return 0; 1489 1490 if (rdev->raid_disk >= ppl_conf->count) 1491 return -ENODEV; 1492 1493 log = &ppl_conf->child_logs[rdev->raid_disk]; 1494 1495 mutex_lock(&log->io_mutex); 1496 if (add) { 1497 ret = ppl_validate_rdev(rdev); 1498 if (!ret) { 1499 log->rdev = rdev; 1500 ret = ppl_write_empty_header(log); 1501 ppl_init_child_log(log, rdev); 1502 } 1503 } else { 1504 log->rdev = NULL; 1505 } 1506 mutex_unlock(&log->io_mutex); 1507 1508 return ret; 1509 } 1510 1511 static ssize_t 1512 ppl_write_hint_show(struct mddev *mddev, char *buf) 1513 { 1514 size_t ret = 0; 1515 struct r5conf *conf; 1516 struct ppl_conf *ppl_conf = NULL; 1517 1518 spin_lock(&mddev->lock); 1519 conf = mddev->private; 1520 if (conf && raid5_has_ppl(conf)) 1521 ppl_conf = conf->log_private; 1522 ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0); 1523 spin_unlock(&mddev->lock); 1524 1525 return ret; 1526 } 1527 1528 static ssize_t 1529 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len) 1530 { 1531 struct r5conf *conf; 1532 struct ppl_conf *ppl_conf; 1533 int err = 0; 1534 unsigned short new; 1535 1536 if (len >= PAGE_SIZE) 1537 return -EINVAL; 1538 if (kstrtou16(page, 10, &new)) 1539 return -EINVAL; 1540 1541 err = mddev_lock(mddev); 1542 if (err) 1543 return err; 1544 1545 conf = mddev->private; 1546 if (!conf) { 1547 err = -ENODEV; 1548 } else if (raid5_has_ppl(conf)) { 1549 ppl_conf = conf->log_private; 1550 if (!ppl_conf) 1551 err = -EINVAL; 1552 else 1553 ppl_conf->write_hint = new; 1554 } else { 1555 err = -EINVAL; 1556 } 1557 1558 mddev_unlock(mddev); 1559 1560 return err ?: len; 1561 } 1562 1563 struct md_sysfs_entry 1564 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR, 1565 ppl_write_hint_show, 1566 ppl_write_hint_store); 1567