xref: /openbmc/linux/drivers/md/raid5-ppl.c (revision 09c434b8)
1 /*
2  * Partial Parity Log for closing the RAID5 write hole
3  * Copyright (c) 2017, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/async_tx.h>
20 #include <linux/raid/md_p.h>
21 #include "md.h"
22 #include "raid5.h"
23 #include "raid5-log.h"
24 
25 /*
26  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27  * partial parity data. The header contains an array of entries
28  * (struct ppl_header_entry) which describe the logged write requests.
29  * Partial parity for the entries comes after the header, written in the same
30  * sequence as the entries:
31  *
32  * Header
33  *   entry0
34  *   ...
35  *   entryN
36  * PP data
37  *   PP for entry0
38  *   ...
39  *   PP for entryN
40  *
41  * An entry describes one or more consecutive stripe_heads, up to a full
42  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43  * number of stripe_heads in the entry and n is the number of modified data
44  * disks. Every stripe_head in the entry must write to the same data disks.
45  * An example of a valid case described by a single entry (writes to the first
46  * stripe of a 4 disk array, 16k chunk size):
47  *
48  * sh->sector   dd0   dd1   dd2    ppl
49  *            +-----+-----+-----+
50  * 0          | --- | --- | --- | +----+
51  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
52  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
53  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
54  *            +-----+-----+-----+ +----+
55  *
56  * data_sector is the first raid sector of the modified data, data_size is the
57  * total size of modified data and pp_size is the size of partial parity for
58  * this entry. Entries for full stripe writes contain no partial parity
59  * (pp_size = 0), they only mark the stripes for which parity should be
60  * recalculated after an unclean shutdown. Every entry holds a checksum of its
61  * partial parity, the header also has a checksum of the header itself.
62  *
63  * A write request is always logged to the PPL instance stored on the parity
64  * disk of the corresponding stripe. For each member disk there is one ppl_log
65  * used to handle logging for this disk, independently from others. They are
66  * grouped in child_logs array in struct ppl_conf, which is assigned to
67  * r5conf->log_private.
68  *
69  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71  * can be appended to the last entry if it meets the conditions for a valid
72  * entry described above, otherwise a new entry is added. Checksums of entries
73  * are calculated incrementally as stripes containing partial parity are being
74  * added. ppl_submit_iounit() calculates the checksum of the header and submits
75  * a bio containing the header page and partial parity pages (sh->ppl_page) for
76  * all stripes of the io_unit. When the PPL write completes, the stripes
77  * associated with the io_unit are released and raid5d starts writing their data
78  * and parity. When all stripes are written, the io_unit is freed and the next
79  * can be submitted.
80  *
81  * An io_unit is used to gather stripes until it is submitted or becomes full
82  * (if the maximum number of entries or size of PPL is reached). Another io_unit
83  * can't be submitted until the previous has completed (PPL and stripe
84  * data+parity is written). The log->io_list tracks all io_units of a log
85  * (for a single member disk). New io_units are added to the end of the list
86  * and the first io_unit is submitted, if it is not submitted already.
87  * The current io_unit accepting new stripes is always at the end of the list.
88  *
89  * If write-back cache is enabled for any of the disks in the array, its data
90  * must be flushed before next io_unit is submitted.
91  */
92 
93 #define PPL_SPACE_SIZE (128 * 1024)
94 
95 struct ppl_conf {
96 	struct mddev *mddev;
97 
98 	/* array of child logs, one for each raid disk */
99 	struct ppl_log *child_logs;
100 	int count;
101 
102 	int block_size;		/* the logical block size used for data_sector
103 				 * in ppl_header_entry */
104 	u32 signature;		/* raid array identifier */
105 	atomic64_t seq;		/* current log write sequence number */
106 
107 	struct kmem_cache *io_kc;
108 	mempool_t io_pool;
109 	struct bio_set bs;
110 	struct bio_set flush_bs;
111 
112 	/* used only for recovery */
113 	int recovered_entries;
114 	int mismatch_count;
115 
116 	/* stripes to retry if failed to allocate io_unit */
117 	struct list_head no_mem_stripes;
118 	spinlock_t no_mem_stripes_lock;
119 
120 	unsigned short write_hint;
121 };
122 
123 struct ppl_log {
124 	struct ppl_conf *ppl_conf;	/* shared between all log instances */
125 
126 	struct md_rdev *rdev;		/* array member disk associated with
127 					 * this log instance */
128 	struct mutex io_mutex;
129 	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
130 					 * always at the end of io_list */
131 	spinlock_t io_list_lock;
132 	struct list_head io_list;	/* all io_units of this log */
133 
134 	sector_t next_io_sector;
135 	unsigned int entry_space;
136 	bool use_multippl;
137 	bool wb_cache_on;
138 	unsigned long disk_flush_bitmap;
139 };
140 
141 #define PPL_IO_INLINE_BVECS 32
142 
143 struct ppl_io_unit {
144 	struct ppl_log *log;
145 
146 	struct page *header_page;	/* for ppl_header */
147 
148 	unsigned int entries_count;	/* number of entries in ppl_header */
149 	unsigned int pp_size;		/* total size current of partial parity */
150 
151 	u64 seq;			/* sequence number of this log write */
152 	struct list_head log_sibling;	/* log->io_list */
153 
154 	struct list_head stripe_list;	/* stripes added to the io_unit */
155 	atomic_t pending_stripes;	/* how many stripes not written to raid */
156 	atomic_t pending_flushes;	/* how many disk flushes are in progress */
157 
158 	bool submitted;			/* true if write to log started */
159 
160 	/* inline bio and its biovec for submitting the iounit */
161 	struct bio bio;
162 	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
163 };
164 
165 struct dma_async_tx_descriptor *
166 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
167 		       struct dma_async_tx_descriptor *tx)
168 {
169 	int disks = sh->disks;
170 	struct page **srcs = percpu->scribble;
171 	int count = 0, pd_idx = sh->pd_idx, i;
172 	struct async_submit_ctl submit;
173 
174 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
175 
176 	/*
177 	 * Partial parity is the XOR of stripe data chunks that are not changed
178 	 * during the write request. Depending on available data
179 	 * (read-modify-write vs. reconstruct-write case) we calculate it
180 	 * differently.
181 	 */
182 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
183 		/*
184 		 * rmw: xor old data and parity from updated disks
185 		 * This is calculated earlier by ops_run_prexor5() so just copy
186 		 * the parity dev page.
187 		 */
188 		srcs[count++] = sh->dev[pd_idx].page;
189 	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
190 		/* rcw: xor data from all not updated disks */
191 		for (i = disks; i--;) {
192 			struct r5dev *dev = &sh->dev[i];
193 			if (test_bit(R5_UPTODATE, &dev->flags))
194 				srcs[count++] = dev->page;
195 		}
196 	} else {
197 		return tx;
198 	}
199 
200 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
201 			  NULL, sh, (void *) (srcs + sh->disks + 2));
202 
203 	if (count == 1)
204 		tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
205 				  &submit);
206 	else
207 		tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
208 			       &submit);
209 
210 	return tx;
211 }
212 
213 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
214 {
215 	struct kmem_cache *kc = pool_data;
216 	struct ppl_io_unit *io;
217 
218 	io = kmem_cache_alloc(kc, gfp_mask);
219 	if (!io)
220 		return NULL;
221 
222 	io->header_page = alloc_page(gfp_mask);
223 	if (!io->header_page) {
224 		kmem_cache_free(kc, io);
225 		return NULL;
226 	}
227 
228 	return io;
229 }
230 
231 static void ppl_io_pool_free(void *element, void *pool_data)
232 {
233 	struct kmem_cache *kc = pool_data;
234 	struct ppl_io_unit *io = element;
235 
236 	__free_page(io->header_page);
237 	kmem_cache_free(kc, io);
238 }
239 
240 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
241 					  struct stripe_head *sh)
242 {
243 	struct ppl_conf *ppl_conf = log->ppl_conf;
244 	struct ppl_io_unit *io;
245 	struct ppl_header *pplhdr;
246 	struct page *header_page;
247 
248 	io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
249 	if (!io)
250 		return NULL;
251 
252 	header_page = io->header_page;
253 	memset(io, 0, sizeof(*io));
254 	io->header_page = header_page;
255 
256 	io->log = log;
257 	INIT_LIST_HEAD(&io->log_sibling);
258 	INIT_LIST_HEAD(&io->stripe_list);
259 	atomic_set(&io->pending_stripes, 0);
260 	atomic_set(&io->pending_flushes, 0);
261 	bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
262 
263 	pplhdr = page_address(io->header_page);
264 	clear_page(pplhdr);
265 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
266 	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
267 
268 	io->seq = atomic64_add_return(1, &ppl_conf->seq);
269 	pplhdr->generation = cpu_to_le64(io->seq);
270 
271 	return io;
272 }
273 
274 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
275 {
276 	struct ppl_io_unit *io = log->current_io;
277 	struct ppl_header_entry *e = NULL;
278 	struct ppl_header *pplhdr;
279 	int i;
280 	sector_t data_sector = 0;
281 	int data_disks = 0;
282 	struct r5conf *conf = sh->raid_conf;
283 
284 	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
285 
286 	/* check if current io_unit is full */
287 	if (io && (io->pp_size == log->entry_space ||
288 		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
289 		pr_debug("%s: add io_unit blocked by seq: %llu\n",
290 			 __func__, io->seq);
291 		io = NULL;
292 	}
293 
294 	/* add a new unit if there is none or the current is full */
295 	if (!io) {
296 		io = ppl_new_iounit(log, sh);
297 		if (!io)
298 			return -ENOMEM;
299 		spin_lock_irq(&log->io_list_lock);
300 		list_add_tail(&io->log_sibling, &log->io_list);
301 		spin_unlock_irq(&log->io_list_lock);
302 
303 		log->current_io = io;
304 	}
305 
306 	for (i = 0; i < sh->disks; i++) {
307 		struct r5dev *dev = &sh->dev[i];
308 
309 		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
310 			if (!data_disks || dev->sector < data_sector)
311 				data_sector = dev->sector;
312 			data_disks++;
313 		}
314 	}
315 	BUG_ON(!data_disks);
316 
317 	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
318 		 io->seq, (unsigned long long)data_sector, data_disks);
319 
320 	pplhdr = page_address(io->header_page);
321 
322 	if (io->entries_count > 0) {
323 		struct ppl_header_entry *last =
324 				&pplhdr->entries[io->entries_count - 1];
325 		struct stripe_head *sh_last = list_last_entry(
326 				&io->stripe_list, struct stripe_head, log_list);
327 		u64 data_sector_last = le64_to_cpu(last->data_sector);
328 		u32 data_size_last = le32_to_cpu(last->data_size);
329 
330 		/*
331 		 * Check if we can append the stripe to the last entry. It must
332 		 * be just after the last logged stripe and write to the same
333 		 * disks. Use bit shift and logarithm to avoid 64-bit division.
334 		 */
335 		if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
336 		    (data_sector >> ilog2(conf->chunk_sectors) ==
337 		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
338 		    ((data_sector - data_sector_last) * data_disks ==
339 		     data_size_last >> 9))
340 			e = last;
341 	}
342 
343 	if (!e) {
344 		e = &pplhdr->entries[io->entries_count++];
345 		e->data_sector = cpu_to_le64(data_sector);
346 		e->parity_disk = cpu_to_le32(sh->pd_idx);
347 		e->checksum = cpu_to_le32(~0);
348 	}
349 
350 	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
351 
352 	/* don't write any PP if full stripe write */
353 	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
354 		le32_add_cpu(&e->pp_size, PAGE_SIZE);
355 		io->pp_size += PAGE_SIZE;
356 		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
357 						    page_address(sh->ppl_page),
358 						    PAGE_SIZE));
359 	}
360 
361 	list_add_tail(&sh->log_list, &io->stripe_list);
362 	atomic_inc(&io->pending_stripes);
363 	sh->ppl_io = io;
364 
365 	return 0;
366 }
367 
368 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
369 {
370 	struct ppl_conf *ppl_conf = conf->log_private;
371 	struct ppl_io_unit *io = sh->ppl_io;
372 	struct ppl_log *log;
373 
374 	if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
375 	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
376 	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
377 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
378 		return -EAGAIN;
379 	}
380 
381 	log = &ppl_conf->child_logs[sh->pd_idx];
382 
383 	mutex_lock(&log->io_mutex);
384 
385 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
386 		mutex_unlock(&log->io_mutex);
387 		return -EAGAIN;
388 	}
389 
390 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
391 	clear_bit(STRIPE_DELAYED, &sh->state);
392 	atomic_inc(&sh->count);
393 
394 	if (ppl_log_stripe(log, sh)) {
395 		spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
396 		list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
397 		spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
398 	}
399 
400 	mutex_unlock(&log->io_mutex);
401 
402 	return 0;
403 }
404 
405 static void ppl_log_endio(struct bio *bio)
406 {
407 	struct ppl_io_unit *io = bio->bi_private;
408 	struct ppl_log *log = io->log;
409 	struct ppl_conf *ppl_conf = log->ppl_conf;
410 	struct stripe_head *sh, *next;
411 
412 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
413 
414 	if (bio->bi_status)
415 		md_error(ppl_conf->mddev, log->rdev);
416 
417 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
418 		list_del_init(&sh->log_list);
419 
420 		set_bit(STRIPE_HANDLE, &sh->state);
421 		raid5_release_stripe(sh);
422 	}
423 }
424 
425 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
426 {
427 	char b[BDEVNAME_SIZE];
428 
429 	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
430 		 __func__, io->seq, bio->bi_iter.bi_size,
431 		 (unsigned long long)bio->bi_iter.bi_sector,
432 		 bio_devname(bio, b));
433 
434 	submit_bio(bio);
435 }
436 
437 static void ppl_submit_iounit(struct ppl_io_unit *io)
438 {
439 	struct ppl_log *log = io->log;
440 	struct ppl_conf *ppl_conf = log->ppl_conf;
441 	struct ppl_header *pplhdr = page_address(io->header_page);
442 	struct bio *bio = &io->bio;
443 	struct stripe_head *sh;
444 	int i;
445 
446 	bio->bi_private = io;
447 
448 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
449 		ppl_log_endio(bio);
450 		return;
451 	}
452 
453 	for (i = 0; i < io->entries_count; i++) {
454 		struct ppl_header_entry *e = &pplhdr->entries[i];
455 
456 		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
457 			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
458 			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
459 
460 		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
461 					     ilog2(ppl_conf->block_size >> 9));
462 		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
463 	}
464 
465 	pplhdr->entries_count = cpu_to_le32(io->entries_count);
466 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
467 
468 	/* Rewind the buffer if current PPL is larger then remaining space */
469 	if (log->use_multippl &&
470 	    log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
471 	    (PPL_HEADER_SIZE + io->pp_size) >> 9)
472 		log->next_io_sector = log->rdev->ppl.sector;
473 
474 
475 	bio->bi_end_io = ppl_log_endio;
476 	bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
477 	bio_set_dev(bio, log->rdev->bdev);
478 	bio->bi_iter.bi_sector = log->next_io_sector;
479 	bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
480 	bio->bi_write_hint = ppl_conf->write_hint;
481 
482 	pr_debug("%s: log->current_io_sector: %llu\n", __func__,
483 	    (unsigned long long)log->next_io_sector);
484 
485 	if (log->use_multippl)
486 		log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
487 
488 	WARN_ON(log->disk_flush_bitmap != 0);
489 
490 	list_for_each_entry(sh, &io->stripe_list, log_list) {
491 		for (i = 0; i < sh->disks; i++) {
492 			struct r5dev *dev = &sh->dev[i];
493 
494 			if ((ppl_conf->child_logs[i].wb_cache_on) &&
495 			    (test_bit(R5_Wantwrite, &dev->flags))) {
496 				set_bit(i, &log->disk_flush_bitmap);
497 			}
498 		}
499 
500 		/* entries for full stripe writes have no partial parity */
501 		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
502 			continue;
503 
504 		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
505 			struct bio *prev = bio;
506 
507 			bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
508 					       &ppl_conf->bs);
509 			bio->bi_opf = prev->bi_opf;
510 			bio->bi_write_hint = prev->bi_write_hint;
511 			bio_copy_dev(bio, prev);
512 			bio->bi_iter.bi_sector = bio_end_sector(prev);
513 			bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
514 
515 			bio_chain(bio, prev);
516 			ppl_submit_iounit_bio(io, prev);
517 		}
518 	}
519 
520 	ppl_submit_iounit_bio(io, bio);
521 }
522 
523 static void ppl_submit_current_io(struct ppl_log *log)
524 {
525 	struct ppl_io_unit *io;
526 
527 	spin_lock_irq(&log->io_list_lock);
528 
529 	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
530 				      log_sibling);
531 	if (io && io->submitted)
532 		io = NULL;
533 
534 	spin_unlock_irq(&log->io_list_lock);
535 
536 	if (io) {
537 		io->submitted = true;
538 
539 		if (io == log->current_io)
540 			log->current_io = NULL;
541 
542 		ppl_submit_iounit(io);
543 	}
544 }
545 
546 void ppl_write_stripe_run(struct r5conf *conf)
547 {
548 	struct ppl_conf *ppl_conf = conf->log_private;
549 	struct ppl_log *log;
550 	int i;
551 
552 	for (i = 0; i < ppl_conf->count; i++) {
553 		log = &ppl_conf->child_logs[i];
554 
555 		mutex_lock(&log->io_mutex);
556 		ppl_submit_current_io(log);
557 		mutex_unlock(&log->io_mutex);
558 	}
559 }
560 
561 static void ppl_io_unit_finished(struct ppl_io_unit *io)
562 {
563 	struct ppl_log *log = io->log;
564 	struct ppl_conf *ppl_conf = log->ppl_conf;
565 	struct r5conf *conf = ppl_conf->mddev->private;
566 	unsigned long flags;
567 
568 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
569 
570 	local_irq_save(flags);
571 
572 	spin_lock(&log->io_list_lock);
573 	list_del(&io->log_sibling);
574 	spin_unlock(&log->io_list_lock);
575 
576 	mempool_free(io, &ppl_conf->io_pool);
577 
578 	spin_lock(&ppl_conf->no_mem_stripes_lock);
579 	if (!list_empty(&ppl_conf->no_mem_stripes)) {
580 		struct stripe_head *sh;
581 
582 		sh = list_first_entry(&ppl_conf->no_mem_stripes,
583 				      struct stripe_head, log_list);
584 		list_del_init(&sh->log_list);
585 		set_bit(STRIPE_HANDLE, &sh->state);
586 		raid5_release_stripe(sh);
587 	}
588 	spin_unlock(&ppl_conf->no_mem_stripes_lock);
589 
590 	local_irq_restore(flags);
591 
592 	wake_up(&conf->wait_for_quiescent);
593 }
594 
595 static void ppl_flush_endio(struct bio *bio)
596 {
597 	struct ppl_io_unit *io = bio->bi_private;
598 	struct ppl_log *log = io->log;
599 	struct ppl_conf *ppl_conf = log->ppl_conf;
600 	struct r5conf *conf = ppl_conf->mddev->private;
601 	char b[BDEVNAME_SIZE];
602 
603 	pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b));
604 
605 	if (bio->bi_status) {
606 		struct md_rdev *rdev;
607 
608 		rcu_read_lock();
609 		rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
610 		if (rdev)
611 			md_error(rdev->mddev, rdev);
612 		rcu_read_unlock();
613 	}
614 
615 	bio_put(bio);
616 
617 	if (atomic_dec_and_test(&io->pending_flushes)) {
618 		ppl_io_unit_finished(io);
619 		md_wakeup_thread(conf->mddev->thread);
620 	}
621 }
622 
623 static void ppl_do_flush(struct ppl_io_unit *io)
624 {
625 	struct ppl_log *log = io->log;
626 	struct ppl_conf *ppl_conf = log->ppl_conf;
627 	struct r5conf *conf = ppl_conf->mddev->private;
628 	int raid_disks = conf->raid_disks;
629 	int flushed_disks = 0;
630 	int i;
631 
632 	atomic_set(&io->pending_flushes, raid_disks);
633 
634 	for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
635 		struct md_rdev *rdev;
636 		struct block_device *bdev = NULL;
637 
638 		rcu_read_lock();
639 		rdev = rcu_dereference(conf->disks[i].rdev);
640 		if (rdev && !test_bit(Faulty, &rdev->flags))
641 			bdev = rdev->bdev;
642 		rcu_read_unlock();
643 
644 		if (bdev) {
645 			struct bio *bio;
646 			char b[BDEVNAME_SIZE];
647 
648 			bio = bio_alloc_bioset(GFP_NOIO, 0, &ppl_conf->flush_bs);
649 			bio_set_dev(bio, bdev);
650 			bio->bi_private = io;
651 			bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
652 			bio->bi_end_io = ppl_flush_endio;
653 
654 			pr_debug("%s: dev: %s\n", __func__,
655 				 bio_devname(bio, b));
656 
657 			submit_bio(bio);
658 			flushed_disks++;
659 		}
660 	}
661 
662 	log->disk_flush_bitmap = 0;
663 
664 	for (i = flushed_disks ; i < raid_disks; i++) {
665 		if (atomic_dec_and_test(&io->pending_flushes))
666 			ppl_io_unit_finished(io);
667 	}
668 }
669 
670 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
671 					    struct ppl_log *log)
672 {
673 	struct ppl_io_unit *io;
674 
675 	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
676 				      log_sibling);
677 
678 	return !io || !io->submitted;
679 }
680 
681 void ppl_quiesce(struct r5conf *conf, int quiesce)
682 {
683 	struct ppl_conf *ppl_conf = conf->log_private;
684 	int i;
685 
686 	if (quiesce) {
687 		for (i = 0; i < ppl_conf->count; i++) {
688 			struct ppl_log *log = &ppl_conf->child_logs[i];
689 
690 			spin_lock_irq(&log->io_list_lock);
691 			wait_event_lock_irq(conf->wait_for_quiescent,
692 					    ppl_no_io_unit_submitted(conf, log),
693 					    log->io_list_lock);
694 			spin_unlock_irq(&log->io_list_lock);
695 		}
696 	}
697 }
698 
699 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio)
700 {
701 	if (bio->bi_iter.bi_size == 0) {
702 		bio_endio(bio);
703 		return 0;
704 	}
705 	bio->bi_opf &= ~REQ_PREFLUSH;
706 	return -EAGAIN;
707 }
708 
709 void ppl_stripe_write_finished(struct stripe_head *sh)
710 {
711 	struct ppl_io_unit *io;
712 
713 	io = sh->ppl_io;
714 	sh->ppl_io = NULL;
715 
716 	if (io && atomic_dec_and_test(&io->pending_stripes)) {
717 		if (io->log->disk_flush_bitmap)
718 			ppl_do_flush(io);
719 		else
720 			ppl_io_unit_finished(io);
721 	}
722 }
723 
724 static void ppl_xor(int size, struct page *page1, struct page *page2)
725 {
726 	struct async_submit_ctl submit;
727 	struct dma_async_tx_descriptor *tx;
728 	struct page *xor_srcs[] = { page1, page2 };
729 
730 	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
731 			  NULL, NULL, NULL, NULL);
732 	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
733 
734 	async_tx_quiesce(&tx);
735 }
736 
737 /*
738  * PPL recovery strategy: xor partial parity and data from all modified data
739  * disks within a stripe and write the result as the new stripe parity. If all
740  * stripe data disks are modified (full stripe write), no partial parity is
741  * available, so just xor the data disks.
742  *
743  * Recovery of a PPL entry shall occur only if all modified data disks are
744  * available and read from all of them succeeds.
745  *
746  * A PPL entry applies to a stripe, partial parity size for an entry is at most
747  * the size of the chunk. Examples of possible cases for a single entry:
748  *
749  * case 0: single data disk write:
750  *   data0    data1    data2     ppl        parity
751  * +--------+--------+--------+           +--------------------+
752  * | ------ | ------ | ------ | +----+    | (no change)        |
753  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
754  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
755  * | ------ | ------ | ------ | +----+    | (no change)        |
756  * +--------+--------+--------+           +--------------------+
757  * pp_size = data_size
758  *
759  * case 1: more than one data disk write:
760  *   data0    data1    data2     ppl        parity
761  * +--------+--------+--------+           +--------------------+
762  * | ------ | ------ | ------ | +----+    | (no change)        |
763  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
764  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
765  * | ------ | ------ | ------ | +----+    | (no change)        |
766  * +--------+--------+--------+           +--------------------+
767  * pp_size = data_size / modified_data_disks
768  *
769  * case 2: write to all data disks (also full stripe write):
770  *   data0    data1    data2                parity
771  * +--------+--------+--------+           +--------------------+
772  * | ------ | ------ | ------ |           | (no change)        |
773  * | -data- | -data- | -data- | --------> | xor all data       |
774  * | ------ | ------ | ------ | --------> | (no change)        |
775  * | ------ | ------ | ------ |           | (no change)        |
776  * +--------+--------+--------+           +--------------------+
777  * pp_size = 0
778  *
779  * The following cases are possible only in other implementations. The recovery
780  * code can handle them, but they are not generated at runtime because they can
781  * be reduced to cases 0, 1 and 2:
782  *
783  * case 3:
784  *   data0    data1    data2     ppl        parity
785  * +--------+--------+--------+ +----+    +--------------------+
786  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
787  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
788  * | -data- | -data- | -data- | | -- | -> | xor all data       |
789  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
790  * +--------+--------+--------+ +----+    +--------------------+
791  * pp_size = chunk_size
792  *
793  * case 4:
794  *   data0    data1    data2     ppl        parity
795  * +--------+--------+--------+ +----+    +--------------------+
796  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
797  * | ------ | ------ | ------ | | -- | -> | (no change)        |
798  * | ------ | ------ | ------ | | -- | -> | (no change)        |
799  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
800  * +--------+--------+--------+ +----+    +--------------------+
801  * pp_size = chunk_size
802  */
803 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
804 			     sector_t ppl_sector)
805 {
806 	struct ppl_conf *ppl_conf = log->ppl_conf;
807 	struct mddev *mddev = ppl_conf->mddev;
808 	struct r5conf *conf = mddev->private;
809 	int block_size = ppl_conf->block_size;
810 	struct page *page1;
811 	struct page *page2;
812 	sector_t r_sector_first;
813 	sector_t r_sector_last;
814 	int strip_sectors;
815 	int data_disks;
816 	int i;
817 	int ret = 0;
818 	char b[BDEVNAME_SIZE];
819 	unsigned int pp_size = le32_to_cpu(e->pp_size);
820 	unsigned int data_size = le32_to_cpu(e->data_size);
821 
822 	page1 = alloc_page(GFP_KERNEL);
823 	page2 = alloc_page(GFP_KERNEL);
824 
825 	if (!page1 || !page2) {
826 		ret = -ENOMEM;
827 		goto out;
828 	}
829 
830 	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
831 
832 	if ((pp_size >> 9) < conf->chunk_sectors) {
833 		if (pp_size > 0) {
834 			data_disks = data_size / pp_size;
835 			strip_sectors = pp_size >> 9;
836 		} else {
837 			data_disks = conf->raid_disks - conf->max_degraded;
838 			strip_sectors = (data_size >> 9) / data_disks;
839 		}
840 		r_sector_last = r_sector_first +
841 				(data_disks - 1) * conf->chunk_sectors +
842 				strip_sectors;
843 	} else {
844 		data_disks = conf->raid_disks - conf->max_degraded;
845 		strip_sectors = conf->chunk_sectors;
846 		r_sector_last = r_sector_first + (data_size >> 9);
847 	}
848 
849 	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
850 		 (unsigned long long)r_sector_first,
851 		 (unsigned long long)r_sector_last);
852 
853 	/* if start and end is 4k aligned, use a 4k block */
854 	if (block_size == 512 &&
855 	    (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
856 	    (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
857 		block_size = STRIPE_SIZE;
858 
859 	/* iterate through blocks in strip */
860 	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
861 		bool update_parity = false;
862 		sector_t parity_sector;
863 		struct md_rdev *parity_rdev;
864 		struct stripe_head sh;
865 		int disk;
866 		int indent = 0;
867 
868 		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
869 		indent += 2;
870 
871 		memset(page_address(page1), 0, PAGE_SIZE);
872 
873 		/* iterate through data member disks */
874 		for (disk = 0; disk < data_disks; disk++) {
875 			int dd_idx;
876 			struct md_rdev *rdev;
877 			sector_t sector;
878 			sector_t r_sector = r_sector_first + i +
879 					    (disk * conf->chunk_sectors);
880 
881 			pr_debug("%s:%*s data member disk %d start\n",
882 				 __func__, indent, "", disk);
883 			indent += 2;
884 
885 			if (r_sector >= r_sector_last) {
886 				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
887 					 __func__, indent, "",
888 					 (unsigned long long)r_sector);
889 				indent -= 2;
890 				continue;
891 			}
892 
893 			update_parity = true;
894 
895 			/* map raid sector to member disk */
896 			sector = raid5_compute_sector(conf, r_sector, 0,
897 						      &dd_idx, NULL);
898 			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
899 				 __func__, indent, "",
900 				 (unsigned long long)r_sector, dd_idx,
901 				 (unsigned long long)sector);
902 
903 			rdev = conf->disks[dd_idx].rdev;
904 			if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
905 				      sector >= rdev->recovery_offset)) {
906 				pr_debug("%s:%*s data member disk %d missing\n",
907 					 __func__, indent, "", dd_idx);
908 				update_parity = false;
909 				break;
910 			}
911 
912 			pr_debug("%s:%*s reading data member disk %s sector %llu\n",
913 				 __func__, indent, "", bdevname(rdev->bdev, b),
914 				 (unsigned long long)sector);
915 			if (!sync_page_io(rdev, sector, block_size, page2,
916 					REQ_OP_READ, 0, false)) {
917 				md_error(mddev, rdev);
918 				pr_debug("%s:%*s read failed!\n", __func__,
919 					 indent, "");
920 				ret = -EIO;
921 				goto out;
922 			}
923 
924 			ppl_xor(block_size, page1, page2);
925 
926 			indent -= 2;
927 		}
928 
929 		if (!update_parity)
930 			continue;
931 
932 		if (pp_size > 0) {
933 			pr_debug("%s:%*s reading pp disk sector %llu\n",
934 				 __func__, indent, "",
935 				 (unsigned long long)(ppl_sector + i));
936 			if (!sync_page_io(log->rdev,
937 					ppl_sector - log->rdev->data_offset + i,
938 					block_size, page2, REQ_OP_READ, 0,
939 					false)) {
940 				pr_debug("%s:%*s read failed!\n", __func__,
941 					 indent, "");
942 				md_error(mddev, log->rdev);
943 				ret = -EIO;
944 				goto out;
945 			}
946 
947 			ppl_xor(block_size, page1, page2);
948 		}
949 
950 		/* map raid sector to parity disk */
951 		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
952 				0, &disk, &sh);
953 		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
954 		parity_rdev = conf->disks[sh.pd_idx].rdev;
955 
956 		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
957 		pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
958 			 __func__, indent, "",
959 			 (unsigned long long)parity_sector,
960 			 bdevname(parity_rdev->bdev, b));
961 		if (!sync_page_io(parity_rdev, parity_sector, block_size,
962 				page1, REQ_OP_WRITE, 0, false)) {
963 			pr_debug("%s:%*s parity write error!\n", __func__,
964 				 indent, "");
965 			md_error(mddev, parity_rdev);
966 			ret = -EIO;
967 			goto out;
968 		}
969 	}
970 out:
971 	if (page1)
972 		__free_page(page1);
973 	if (page2)
974 		__free_page(page2);
975 	return ret;
976 }
977 
978 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
979 		       sector_t offset)
980 {
981 	struct ppl_conf *ppl_conf = log->ppl_conf;
982 	struct md_rdev *rdev = log->rdev;
983 	struct mddev *mddev = rdev->mddev;
984 	sector_t ppl_sector = rdev->ppl.sector + offset +
985 			      (PPL_HEADER_SIZE >> 9);
986 	struct page *page;
987 	int i;
988 	int ret = 0;
989 
990 	page = alloc_page(GFP_KERNEL);
991 	if (!page)
992 		return -ENOMEM;
993 
994 	/* iterate through all PPL entries saved */
995 	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
996 		struct ppl_header_entry *e = &pplhdr->entries[i];
997 		u32 pp_size = le32_to_cpu(e->pp_size);
998 		sector_t sector = ppl_sector;
999 		int ppl_entry_sectors = pp_size >> 9;
1000 		u32 crc, crc_stored;
1001 
1002 		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
1003 			 __func__, rdev->raid_disk, i,
1004 			 (unsigned long long)ppl_sector, pp_size);
1005 
1006 		crc = ~0;
1007 		crc_stored = le32_to_cpu(e->checksum);
1008 
1009 		/* read parial parity for this entry and calculate its checksum */
1010 		while (pp_size) {
1011 			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
1012 
1013 			if (!sync_page_io(rdev, sector - rdev->data_offset,
1014 					s, page, REQ_OP_READ, 0, false)) {
1015 				md_error(mddev, rdev);
1016 				ret = -EIO;
1017 				goto out;
1018 			}
1019 
1020 			crc = crc32c_le(crc, page_address(page), s);
1021 
1022 			pp_size -= s;
1023 			sector += s >> 9;
1024 		}
1025 
1026 		crc = ~crc;
1027 
1028 		if (crc != crc_stored) {
1029 			/*
1030 			 * Don't recover this entry if the checksum does not
1031 			 * match, but keep going and try to recover other
1032 			 * entries.
1033 			 */
1034 			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1035 				 __func__, crc_stored, crc);
1036 			ppl_conf->mismatch_count++;
1037 		} else {
1038 			ret = ppl_recover_entry(log, e, ppl_sector);
1039 			if (ret)
1040 				goto out;
1041 			ppl_conf->recovered_entries++;
1042 		}
1043 
1044 		ppl_sector += ppl_entry_sectors;
1045 	}
1046 
1047 	/* flush the disk cache after recovery if necessary */
1048 	ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
1049 out:
1050 	__free_page(page);
1051 	return ret;
1052 }
1053 
1054 static int ppl_write_empty_header(struct ppl_log *log)
1055 {
1056 	struct page *page;
1057 	struct ppl_header *pplhdr;
1058 	struct md_rdev *rdev = log->rdev;
1059 	int ret = 0;
1060 
1061 	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1062 		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1063 
1064 	page = alloc_page(GFP_NOIO | __GFP_ZERO);
1065 	if (!page)
1066 		return -ENOMEM;
1067 
1068 	pplhdr = page_address(page);
1069 	/* zero out PPL space to avoid collision with old PPLs */
1070 	blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1071 			    log->rdev->ppl.size, GFP_NOIO, 0);
1072 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1073 	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1074 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1075 
1076 	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1077 			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1078 			  REQ_FUA, 0, false)) {
1079 		md_error(rdev->mddev, rdev);
1080 		ret = -EIO;
1081 	}
1082 
1083 	__free_page(page);
1084 	return ret;
1085 }
1086 
1087 static int ppl_load_distributed(struct ppl_log *log)
1088 {
1089 	struct ppl_conf *ppl_conf = log->ppl_conf;
1090 	struct md_rdev *rdev = log->rdev;
1091 	struct mddev *mddev = rdev->mddev;
1092 	struct page *page, *page2, *tmp;
1093 	struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1094 	u32 crc, crc_stored;
1095 	u32 signature;
1096 	int ret = 0, i;
1097 	sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1098 
1099 	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1100 	/* read PPL headers, find the recent one */
1101 	page = alloc_page(GFP_KERNEL);
1102 	if (!page)
1103 		return -ENOMEM;
1104 
1105 	page2 = alloc_page(GFP_KERNEL);
1106 	if (!page2) {
1107 		__free_page(page);
1108 		return -ENOMEM;
1109 	}
1110 
1111 	/* searching ppl area for latest ppl */
1112 	while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1113 		if (!sync_page_io(rdev,
1114 				  rdev->ppl.sector - rdev->data_offset +
1115 				  pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1116 				  0, false)) {
1117 			md_error(mddev, rdev);
1118 			ret = -EIO;
1119 			/* if not able to read - don't recover any PPL */
1120 			pplhdr = NULL;
1121 			break;
1122 		}
1123 		pplhdr = page_address(page);
1124 
1125 		/* check header validity */
1126 		crc_stored = le32_to_cpu(pplhdr->checksum);
1127 		pplhdr->checksum = 0;
1128 		crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1129 
1130 		if (crc_stored != crc) {
1131 			pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1132 				 __func__, crc_stored, crc,
1133 				 (unsigned long long)pplhdr_offset);
1134 			pplhdr = prev_pplhdr;
1135 			pplhdr_offset = prev_pplhdr_offset;
1136 			break;
1137 		}
1138 
1139 		signature = le32_to_cpu(pplhdr->signature);
1140 
1141 		if (mddev->external) {
1142 			/*
1143 			 * For external metadata the header signature is set and
1144 			 * validated in userspace.
1145 			 */
1146 			ppl_conf->signature = signature;
1147 		} else if (ppl_conf->signature != signature) {
1148 			pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1149 				 __func__, signature, ppl_conf->signature,
1150 				 (unsigned long long)pplhdr_offset);
1151 			pplhdr = prev_pplhdr;
1152 			pplhdr_offset = prev_pplhdr_offset;
1153 			break;
1154 		}
1155 
1156 		if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1157 		    le64_to_cpu(pplhdr->generation)) {
1158 			/* previous was newest */
1159 			pplhdr = prev_pplhdr;
1160 			pplhdr_offset = prev_pplhdr_offset;
1161 			break;
1162 		}
1163 
1164 		prev_pplhdr_offset = pplhdr_offset;
1165 		prev_pplhdr = pplhdr;
1166 
1167 		tmp = page;
1168 		page = page2;
1169 		page2 = tmp;
1170 
1171 		/* calculate next potential ppl offset */
1172 		for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1173 			pplhdr_offset +=
1174 			    le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1175 		pplhdr_offset += PPL_HEADER_SIZE >> 9;
1176 	}
1177 
1178 	/* no valid ppl found */
1179 	if (!pplhdr)
1180 		ppl_conf->mismatch_count++;
1181 	else
1182 		pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1183 		    __func__, (unsigned long long)pplhdr_offset,
1184 		    le64_to_cpu(pplhdr->generation));
1185 
1186 	/* attempt to recover from log if we are starting a dirty array */
1187 	if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1188 		ret = ppl_recover(log, pplhdr, pplhdr_offset);
1189 
1190 	/* write empty header if we are starting the array */
1191 	if (!ret && !mddev->pers)
1192 		ret = ppl_write_empty_header(log);
1193 
1194 	__free_page(page);
1195 	__free_page(page2);
1196 
1197 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1198 		 __func__, ret, ppl_conf->mismatch_count,
1199 		 ppl_conf->recovered_entries);
1200 	return ret;
1201 }
1202 
1203 static int ppl_load(struct ppl_conf *ppl_conf)
1204 {
1205 	int ret = 0;
1206 	u32 signature = 0;
1207 	bool signature_set = false;
1208 	int i;
1209 
1210 	for (i = 0; i < ppl_conf->count; i++) {
1211 		struct ppl_log *log = &ppl_conf->child_logs[i];
1212 
1213 		/* skip missing drive */
1214 		if (!log->rdev)
1215 			continue;
1216 
1217 		ret = ppl_load_distributed(log);
1218 		if (ret)
1219 			break;
1220 
1221 		/*
1222 		 * For external metadata we can't check if the signature is
1223 		 * correct on a single drive, but we can check if it is the same
1224 		 * on all drives.
1225 		 */
1226 		if (ppl_conf->mddev->external) {
1227 			if (!signature_set) {
1228 				signature = ppl_conf->signature;
1229 				signature_set = true;
1230 			} else if (signature != ppl_conf->signature) {
1231 				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1232 					mdname(ppl_conf->mddev));
1233 				ret = -EINVAL;
1234 				break;
1235 			}
1236 		}
1237 	}
1238 
1239 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1240 		 __func__, ret, ppl_conf->mismatch_count,
1241 		 ppl_conf->recovered_entries);
1242 	return ret;
1243 }
1244 
1245 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1246 {
1247 	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1248 	clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1249 
1250 	kfree(ppl_conf->child_logs);
1251 
1252 	bioset_exit(&ppl_conf->bs);
1253 	bioset_exit(&ppl_conf->flush_bs);
1254 	mempool_exit(&ppl_conf->io_pool);
1255 	kmem_cache_destroy(ppl_conf->io_kc);
1256 
1257 	kfree(ppl_conf);
1258 }
1259 
1260 void ppl_exit_log(struct r5conf *conf)
1261 {
1262 	struct ppl_conf *ppl_conf = conf->log_private;
1263 
1264 	if (ppl_conf) {
1265 		__ppl_exit_log(ppl_conf);
1266 		conf->log_private = NULL;
1267 	}
1268 }
1269 
1270 static int ppl_validate_rdev(struct md_rdev *rdev)
1271 {
1272 	char b[BDEVNAME_SIZE];
1273 	int ppl_data_sectors;
1274 	int ppl_size_new;
1275 
1276 	/*
1277 	 * The configured PPL size must be enough to store
1278 	 * the header and (at the very least) partial parity
1279 	 * for one stripe. Round it down to ensure the data
1280 	 * space is cleanly divisible by stripe size.
1281 	 */
1282 	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1283 
1284 	if (ppl_data_sectors > 0)
1285 		ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1286 
1287 	if (ppl_data_sectors <= 0) {
1288 		pr_warn("md/raid:%s: PPL space too small on %s\n",
1289 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1290 		return -ENOSPC;
1291 	}
1292 
1293 	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1294 
1295 	if ((rdev->ppl.sector < rdev->data_offset &&
1296 	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1297 	    (rdev->ppl.sector >= rdev->data_offset &&
1298 	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1299 		pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1300 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1301 		return -EINVAL;
1302 	}
1303 
1304 	if (!rdev->mddev->external &&
1305 	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1306 	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1307 		pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1308 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1309 		return -EINVAL;
1310 	}
1311 
1312 	rdev->ppl.size = ppl_size_new;
1313 
1314 	return 0;
1315 }
1316 
1317 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1318 {
1319 	struct request_queue *q;
1320 
1321 	if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1322 				      PPL_HEADER_SIZE) * 2) {
1323 		log->use_multippl = true;
1324 		set_bit(MD_HAS_MULTIPLE_PPLS,
1325 			&log->ppl_conf->mddev->flags);
1326 		log->entry_space = PPL_SPACE_SIZE;
1327 	} else {
1328 		log->use_multippl = false;
1329 		log->entry_space = (log->rdev->ppl.size << 9) -
1330 				   PPL_HEADER_SIZE;
1331 	}
1332 	log->next_io_sector = rdev->ppl.sector;
1333 
1334 	q = bdev_get_queue(rdev->bdev);
1335 	if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1336 		log->wb_cache_on = true;
1337 }
1338 
1339 int ppl_init_log(struct r5conf *conf)
1340 {
1341 	struct ppl_conf *ppl_conf;
1342 	struct mddev *mddev = conf->mddev;
1343 	int ret = 0;
1344 	int max_disks;
1345 	int i;
1346 
1347 	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1348 		 mdname(conf->mddev));
1349 
1350 	if (PAGE_SIZE != 4096)
1351 		return -EINVAL;
1352 
1353 	if (mddev->level != 5) {
1354 		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1355 			mdname(mddev), mddev->level);
1356 		return -EINVAL;
1357 	}
1358 
1359 	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1360 		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1361 			mdname(mddev));
1362 		return -EINVAL;
1363 	}
1364 
1365 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1366 		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1367 			mdname(mddev));
1368 		return -EINVAL;
1369 	}
1370 
1371 	max_disks = FIELD_SIZEOF(struct ppl_log, disk_flush_bitmap) *
1372 		BITS_PER_BYTE;
1373 	if (conf->raid_disks > max_disks) {
1374 		pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1375 			mdname(mddev), max_disks);
1376 		return -EINVAL;
1377 	}
1378 
1379 	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1380 	if (!ppl_conf)
1381 		return -ENOMEM;
1382 
1383 	ppl_conf->mddev = mddev;
1384 
1385 	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1386 	if (!ppl_conf->io_kc) {
1387 		ret = -ENOMEM;
1388 		goto err;
1389 	}
1390 
1391 	ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1392 			   ppl_io_pool_free, ppl_conf->io_kc);
1393 	if (ret)
1394 		goto err;
1395 
1396 	ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1397 	if (ret)
1398 		goto err;
1399 
1400 	ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1401 	if (ret)
1402 		goto err;
1403 
1404 	ppl_conf->count = conf->raid_disks;
1405 	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1406 				       GFP_KERNEL);
1407 	if (!ppl_conf->child_logs) {
1408 		ret = -ENOMEM;
1409 		goto err;
1410 	}
1411 
1412 	atomic64_set(&ppl_conf->seq, 0);
1413 	INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1414 	spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1415 	ppl_conf->write_hint = RWF_WRITE_LIFE_NOT_SET;
1416 
1417 	if (!mddev->external) {
1418 		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1419 		ppl_conf->block_size = 512;
1420 	} else {
1421 		ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1422 	}
1423 
1424 	for (i = 0; i < ppl_conf->count; i++) {
1425 		struct ppl_log *log = &ppl_conf->child_logs[i];
1426 		struct md_rdev *rdev = conf->disks[i].rdev;
1427 
1428 		mutex_init(&log->io_mutex);
1429 		spin_lock_init(&log->io_list_lock);
1430 		INIT_LIST_HEAD(&log->io_list);
1431 
1432 		log->ppl_conf = ppl_conf;
1433 		log->rdev = rdev;
1434 
1435 		if (rdev) {
1436 			ret = ppl_validate_rdev(rdev);
1437 			if (ret)
1438 				goto err;
1439 
1440 			ppl_init_child_log(log, rdev);
1441 		}
1442 	}
1443 
1444 	/* load and possibly recover the logs from the member disks */
1445 	ret = ppl_load(ppl_conf);
1446 
1447 	if (ret) {
1448 		goto err;
1449 	} else if (!mddev->pers && mddev->recovery_cp == 0 &&
1450 		   ppl_conf->recovered_entries > 0 &&
1451 		   ppl_conf->mismatch_count == 0) {
1452 		/*
1453 		 * If we are starting a dirty array and the recovery succeeds
1454 		 * without any issues, set the array as clean.
1455 		 */
1456 		mddev->recovery_cp = MaxSector;
1457 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1458 	} else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1459 		/* no mismatch allowed when enabling PPL for a running array */
1460 		ret = -EINVAL;
1461 		goto err;
1462 	}
1463 
1464 	conf->log_private = ppl_conf;
1465 	set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1466 
1467 	return 0;
1468 err:
1469 	__ppl_exit_log(ppl_conf);
1470 	return ret;
1471 }
1472 
1473 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1474 {
1475 	struct ppl_conf *ppl_conf = conf->log_private;
1476 	struct ppl_log *log;
1477 	int ret = 0;
1478 	char b[BDEVNAME_SIZE];
1479 
1480 	if (!rdev)
1481 		return -EINVAL;
1482 
1483 	pr_debug("%s: disk: %d operation: %s dev: %s\n",
1484 		 __func__, rdev->raid_disk, add ? "add" : "remove",
1485 		 bdevname(rdev->bdev, b));
1486 
1487 	if (rdev->raid_disk < 0)
1488 		return 0;
1489 
1490 	if (rdev->raid_disk >= ppl_conf->count)
1491 		return -ENODEV;
1492 
1493 	log = &ppl_conf->child_logs[rdev->raid_disk];
1494 
1495 	mutex_lock(&log->io_mutex);
1496 	if (add) {
1497 		ret = ppl_validate_rdev(rdev);
1498 		if (!ret) {
1499 			log->rdev = rdev;
1500 			ret = ppl_write_empty_header(log);
1501 			ppl_init_child_log(log, rdev);
1502 		}
1503 	} else {
1504 		log->rdev = NULL;
1505 	}
1506 	mutex_unlock(&log->io_mutex);
1507 
1508 	return ret;
1509 }
1510 
1511 static ssize_t
1512 ppl_write_hint_show(struct mddev *mddev, char *buf)
1513 {
1514 	size_t ret = 0;
1515 	struct r5conf *conf;
1516 	struct ppl_conf *ppl_conf = NULL;
1517 
1518 	spin_lock(&mddev->lock);
1519 	conf = mddev->private;
1520 	if (conf && raid5_has_ppl(conf))
1521 		ppl_conf = conf->log_private;
1522 	ret = sprintf(buf, "%d\n", ppl_conf ? ppl_conf->write_hint : 0);
1523 	spin_unlock(&mddev->lock);
1524 
1525 	return ret;
1526 }
1527 
1528 static ssize_t
1529 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1530 {
1531 	struct r5conf *conf;
1532 	struct ppl_conf *ppl_conf;
1533 	int err = 0;
1534 	unsigned short new;
1535 
1536 	if (len >= PAGE_SIZE)
1537 		return -EINVAL;
1538 	if (kstrtou16(page, 10, &new))
1539 		return -EINVAL;
1540 
1541 	err = mddev_lock(mddev);
1542 	if (err)
1543 		return err;
1544 
1545 	conf = mddev->private;
1546 	if (!conf) {
1547 		err = -ENODEV;
1548 	} else if (raid5_has_ppl(conf)) {
1549 		ppl_conf = conf->log_private;
1550 		if (!ppl_conf)
1551 			err = -EINVAL;
1552 		else
1553 			ppl_conf->write_hint = new;
1554 	} else {
1555 		err = -EINVAL;
1556 	}
1557 
1558 	mddev_unlock(mddev);
1559 
1560 	return err ?: len;
1561 }
1562 
1563 struct md_sysfs_entry
1564 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1565 			ppl_write_hint_show,
1566 			ppl_write_hint_store);
1567