1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 5 */ 6 #include <linux/kernel.h> 7 #include <linux/wait.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/raid/md_p.h> 11 #include <linux/crc32c.h> 12 #include <linux/random.h> 13 #include <linux/kthread.h> 14 #include <linux/types.h> 15 #include "md.h" 16 #include "raid5.h" 17 #include "md-bitmap.h" 18 #include "raid5-log.h" 19 20 /* 21 * metadata/data stored in disk with 4k size unit (a block) regardless 22 * underneath hardware sector size. only works with PAGE_SIZE == 4096 23 */ 24 #define BLOCK_SECTORS (8) 25 #define BLOCK_SECTOR_SHIFT (3) 26 27 /* 28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 29 * 30 * In write through mode, the reclaim runs every log->max_free_space. 31 * This can prevent the recovery scans for too long 32 */ 33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 35 36 /* wake up reclaim thread periodically */ 37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 38 /* start flush with these full stripes */ 39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 40 /* reclaim stripes in groups */ 41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 42 43 /* 44 * We only need 2 bios per I/O unit to make progress, but ensure we 45 * have a few more available to not get too tight. 46 */ 47 #define R5L_POOL_SIZE 4 48 49 static char *r5c_journal_mode_str[] = {"write-through", 50 "write-back"}; 51 /* 52 * raid5 cache state machine 53 * 54 * With the RAID cache, each stripe works in two phases: 55 * - caching phase 56 * - writing-out phase 57 * 58 * These two phases are controlled by bit STRIPE_R5C_CACHING: 59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 61 * 62 * When there is no journal, or the journal is in write-through mode, 63 * the stripe is always in writing-out phase. 64 * 65 * For write-back journal, the stripe is sent to caching phase on write 66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 67 * the write-out phase by clearing STRIPE_R5C_CACHING. 68 * 69 * Stripes in caching phase do not write the raid disks. Instead, all 70 * writes are committed from the log device. Therefore, a stripe in 71 * caching phase handles writes as: 72 * - write to log device 73 * - return IO 74 * 75 * Stripes in writing-out phase handle writes as: 76 * - calculate parity 77 * - write pending data and parity to journal 78 * - write data and parity to raid disks 79 * - return IO for pending writes 80 */ 81 82 struct r5l_log { 83 struct md_rdev *rdev; 84 85 u32 uuid_checksum; 86 87 sector_t device_size; /* log device size, round to 88 * BLOCK_SECTORS */ 89 sector_t max_free_space; /* reclaim run if free space is at 90 * this size */ 91 92 sector_t last_checkpoint; /* log tail. where recovery scan 93 * starts from */ 94 u64 last_cp_seq; /* log tail sequence */ 95 96 sector_t log_start; /* log head. where new data appends */ 97 u64 seq; /* log head sequence */ 98 99 sector_t next_checkpoint; 100 101 struct mutex io_mutex; 102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 103 104 spinlock_t io_list_lock; 105 struct list_head running_ios; /* io_units which are still running, 106 * and have not yet been completely 107 * written to the log */ 108 struct list_head io_end_ios; /* io_units which have been completely 109 * written to the log but not yet written 110 * to the RAID */ 111 struct list_head flushing_ios; /* io_units which are waiting for log 112 * cache flush */ 113 struct list_head finished_ios; /* io_units which settle down in log disk */ 114 struct bio flush_bio; 115 116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 117 118 struct kmem_cache *io_kc; 119 mempool_t io_pool; 120 struct bio_set bs; 121 mempool_t meta_pool; 122 123 struct md_thread *reclaim_thread; 124 unsigned long reclaim_target; /* number of space that need to be 125 * reclaimed. if it's 0, reclaim spaces 126 * used by io_units which are in 127 * IO_UNIT_STRIPE_END state (eg, reclaim 128 * dones't wait for specific io_unit 129 * switching to IO_UNIT_STRIPE_END 130 * state) */ 131 wait_queue_head_t iounit_wait; 132 133 struct list_head no_space_stripes; /* pending stripes, log has no space */ 134 spinlock_t no_space_stripes_lock; 135 136 bool need_cache_flush; 137 138 /* for r5c_cache */ 139 enum r5c_journal_mode r5c_journal_mode; 140 141 /* all stripes in r5cache, in the order of seq at sh->log_start */ 142 struct list_head stripe_in_journal_list; 143 144 spinlock_t stripe_in_journal_lock; 145 atomic_t stripe_in_journal_count; 146 147 /* to submit async io_units, to fulfill ordering of flush */ 148 struct work_struct deferred_io_work; 149 /* to disable write back during in degraded mode */ 150 struct work_struct disable_writeback_work; 151 152 /* to for chunk_aligned_read in writeback mode, details below */ 153 spinlock_t tree_lock; 154 struct radix_tree_root big_stripe_tree; 155 }; 156 157 /* 158 * Enable chunk_aligned_read() with write back cache. 159 * 160 * Each chunk may contain more than one stripe (for example, a 256kB 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 163 * For each big_stripe, we count how many stripes of this big_stripe 164 * are in the write back cache. These data are tracked in a radix tree 165 * (big_stripe_tree). We use radix_tree item pointer as the counter. 166 * r5c_tree_index() is used to calculate keys for the radix tree. 167 * 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 169 * big_stripe of each chunk in the tree. If this big_stripe is in the 170 * tree, chunk_aligned_read() aborts. This look up is protected by 171 * rcu_read_lock(). 172 * 173 * It is necessary to remember whether a stripe is counted in 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 176 * two flags are set, the stripe is counted in big_stripe_tree. This 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 178 * r5c_try_caching_write(); and moving clear_bit of 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 180 * r5c_finish_stripe_write_out(). 181 */ 182 183 /* 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 185 * So it is necessary to left shift the counter by 2 bits before using it 186 * as data pointer of the tree. 187 */ 188 #define R5C_RADIX_COUNT_SHIFT 2 189 190 /* 191 * calculate key for big_stripe_tree 192 * 193 * sect: align_bi->bi_iter.bi_sector or sh->sector 194 */ 195 static inline sector_t r5c_tree_index(struct r5conf *conf, 196 sector_t sect) 197 { 198 sector_div(sect, conf->chunk_sectors); 199 return sect; 200 } 201 202 /* 203 * an IO range starts from a meta data block and end at the next meta data 204 * block. The io unit's the meta data block tracks data/parity followed it. io 205 * unit is written to log disk with normal write, as we always flush log disk 206 * first and then start move data to raid disks, there is no requirement to 207 * write io unit with FLUSH/FUA 208 */ 209 struct r5l_io_unit { 210 struct r5l_log *log; 211 212 struct page *meta_page; /* store meta block */ 213 int meta_offset; /* current offset in meta_page */ 214 215 struct bio *current_bio;/* current_bio accepting new data */ 216 217 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 218 u64 seq; /* seq number of the metablock */ 219 sector_t log_start; /* where the io_unit starts */ 220 sector_t log_end; /* where the io_unit ends */ 221 struct list_head log_sibling; /* log->running_ios */ 222 struct list_head stripe_list; /* stripes added to the io_unit */ 223 224 int state; 225 bool need_split_bio; 226 struct bio *split_bio; 227 228 unsigned int has_flush:1; /* include flush request */ 229 unsigned int has_fua:1; /* include fua request */ 230 unsigned int has_null_flush:1; /* include null flush request */ 231 unsigned int has_flush_payload:1; /* include flush payload */ 232 /* 233 * io isn't sent yet, flush/fua request can only be submitted till it's 234 * the first IO in running_ios list 235 */ 236 unsigned int io_deferred:1; 237 238 struct bio_list flush_barriers; /* size == 0 flush bios */ 239 }; 240 241 /* r5l_io_unit state */ 242 enum r5l_io_unit_state { 243 IO_UNIT_RUNNING = 0, /* accepting new IO */ 244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 245 * don't accepting new bio */ 246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 248 }; 249 250 bool r5c_is_writeback(struct r5l_log *log) 251 { 252 return (log != NULL && 253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 254 } 255 256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 257 { 258 start += inc; 259 if (start >= log->device_size) 260 start = start - log->device_size; 261 return start; 262 } 263 264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 265 sector_t end) 266 { 267 if (end >= start) 268 return end - start; 269 else 270 return end + log->device_size - start; 271 } 272 273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 274 { 275 sector_t used_size; 276 277 used_size = r5l_ring_distance(log, log->last_checkpoint, 278 log->log_start); 279 280 return log->device_size > used_size + size; 281 } 282 283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 284 enum r5l_io_unit_state state) 285 { 286 if (WARN_ON(io->state >= state)) 287 return; 288 io->state = state; 289 } 290 291 static void 292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 293 { 294 struct bio *wbi, *wbi2; 295 296 wbi = dev->written; 297 dev->written = NULL; 298 while (wbi && wbi->bi_iter.bi_sector < 299 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 300 wbi2 = r5_next_bio(conf, wbi, dev->sector); 301 md_write_end(conf->mddev); 302 bio_endio(wbi); 303 wbi = wbi2; 304 } 305 } 306 307 void r5c_handle_cached_data_endio(struct r5conf *conf, 308 struct stripe_head *sh, int disks) 309 { 310 int i; 311 312 for (i = sh->disks; i--; ) { 313 if (sh->dev[i].written) { 314 set_bit(R5_UPTODATE, &sh->dev[i].flags); 315 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 317 RAID5_STRIPE_SECTORS(conf), 318 !test_bit(STRIPE_DEGRADED, &sh->state), 319 0); 320 } 321 } 322 } 323 324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 325 326 /* Check whether we should flush some stripes to free up stripe cache */ 327 void r5c_check_stripe_cache_usage(struct r5conf *conf) 328 { 329 int total_cached; 330 331 if (!r5c_is_writeback(conf->log)) 332 return; 333 334 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 335 atomic_read(&conf->r5c_cached_full_stripes); 336 337 /* 338 * The following condition is true for either of the following: 339 * - stripe cache pressure high: 340 * total_cached > 3/4 min_nr_stripes || 341 * empty_inactive_list_nr > 0 342 * - stripe cache pressure moderate: 343 * total_cached > 1/2 min_nr_stripes 344 */ 345 if (total_cached > conf->min_nr_stripes * 1 / 2 || 346 atomic_read(&conf->empty_inactive_list_nr) > 0) 347 r5l_wake_reclaim(conf->log, 0); 348 } 349 350 /* 351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 352 * stripes in the cache 353 */ 354 void r5c_check_cached_full_stripe(struct r5conf *conf) 355 { 356 if (!r5c_is_writeback(conf->log)) 357 return; 358 359 /* 360 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 361 * or a full stripe (chunk size / 4k stripes). 362 */ 363 if (atomic_read(&conf->r5c_cached_full_stripes) >= 364 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 365 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf))) 366 r5l_wake_reclaim(conf->log, 0); 367 } 368 369 /* 370 * Total log space (in sectors) needed to flush all data in cache 371 * 372 * To avoid deadlock due to log space, it is necessary to reserve log 373 * space to flush critical stripes (stripes that occupying log space near 374 * last_checkpoint). This function helps check how much log space is 375 * required to flush all cached stripes. 376 * 377 * To reduce log space requirements, two mechanisms are used to give cache 378 * flush higher priorities: 379 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 380 * stripes ALREADY in journal can be flushed w/o pending writes; 381 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 382 * can be delayed (r5l_add_no_space_stripe). 383 * 384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 385 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 386 * pages of journal space. For stripes that has not passed 1, flushing it 387 * requires (conf->raid_disks + 1) pages of journal space. There are at 388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 389 * required to flush all cached stripes (in pages) is: 390 * 391 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 392 * (group_cnt + 1) * (raid_disks + 1) 393 * or 394 * (stripe_in_journal_count) * (max_degraded + 1) + 395 * (group_cnt + 1) * (raid_disks - max_degraded) 396 */ 397 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 398 { 399 struct r5l_log *log = conf->log; 400 401 if (!r5c_is_writeback(log)) 402 return 0; 403 404 return BLOCK_SECTORS * 405 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 406 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 407 } 408 409 /* 410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 411 * 412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 414 * device is less than 2x of reclaim_required_space. 415 */ 416 static inline void r5c_update_log_state(struct r5l_log *log) 417 { 418 struct r5conf *conf = log->rdev->mddev->private; 419 sector_t free_space; 420 sector_t reclaim_space; 421 bool wake_reclaim = false; 422 423 if (!r5c_is_writeback(log)) 424 return; 425 426 free_space = r5l_ring_distance(log, log->log_start, 427 log->last_checkpoint); 428 reclaim_space = r5c_log_required_to_flush_cache(conf); 429 if (free_space < 2 * reclaim_space) 430 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 431 else { 432 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 433 wake_reclaim = true; 434 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 435 } 436 if (free_space < 3 * reclaim_space) 437 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 438 else 439 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 440 441 if (wake_reclaim) 442 r5l_wake_reclaim(log, 0); 443 } 444 445 /* 446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 447 * This function should only be called in write-back mode. 448 */ 449 void r5c_make_stripe_write_out(struct stripe_head *sh) 450 { 451 struct r5conf *conf = sh->raid_conf; 452 struct r5l_log *log = conf->log; 453 454 BUG_ON(!r5c_is_writeback(log)); 455 456 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 457 clear_bit(STRIPE_R5C_CACHING, &sh->state); 458 459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 460 atomic_inc(&conf->preread_active_stripes); 461 } 462 463 static void r5c_handle_data_cached(struct stripe_head *sh) 464 { 465 int i; 466 467 for (i = sh->disks; i--; ) 468 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 469 set_bit(R5_InJournal, &sh->dev[i].flags); 470 clear_bit(R5_LOCKED, &sh->dev[i].flags); 471 } 472 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 473 } 474 475 /* 476 * this journal write must contain full parity, 477 * it may also contain some data pages 478 */ 479 static void r5c_handle_parity_cached(struct stripe_head *sh) 480 { 481 int i; 482 483 for (i = sh->disks; i--; ) 484 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 485 set_bit(R5_Wantwrite, &sh->dev[i].flags); 486 } 487 488 /* 489 * Setting proper flags after writing (or flushing) data and/or parity to the 490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 491 */ 492 static void r5c_finish_cache_stripe(struct stripe_head *sh) 493 { 494 struct r5l_log *log = sh->raid_conf->log; 495 496 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 497 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 498 /* 499 * Set R5_InJournal for parity dev[pd_idx]. This means 500 * all data AND parity in the journal. For RAID 6, it is 501 * NOT necessary to set the flag for dev[qd_idx], as the 502 * two parities are written out together. 503 */ 504 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 505 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 506 r5c_handle_data_cached(sh); 507 } else { 508 r5c_handle_parity_cached(sh); 509 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 510 } 511 } 512 513 static void r5l_io_run_stripes(struct r5l_io_unit *io) 514 { 515 struct stripe_head *sh, *next; 516 517 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 518 list_del_init(&sh->log_list); 519 520 r5c_finish_cache_stripe(sh); 521 522 set_bit(STRIPE_HANDLE, &sh->state); 523 raid5_release_stripe(sh); 524 } 525 } 526 527 static void r5l_log_run_stripes(struct r5l_log *log) 528 { 529 struct r5l_io_unit *io, *next; 530 531 lockdep_assert_held(&log->io_list_lock); 532 533 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 534 /* don't change list order */ 535 if (io->state < IO_UNIT_IO_END) 536 break; 537 538 list_move_tail(&io->log_sibling, &log->finished_ios); 539 r5l_io_run_stripes(io); 540 } 541 } 542 543 static void r5l_move_to_end_ios(struct r5l_log *log) 544 { 545 struct r5l_io_unit *io, *next; 546 547 lockdep_assert_held(&log->io_list_lock); 548 549 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 550 /* don't change list order */ 551 if (io->state < IO_UNIT_IO_END) 552 break; 553 list_move_tail(&io->log_sibling, &log->io_end_ios); 554 } 555 } 556 557 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 558 static void r5l_log_endio(struct bio *bio) 559 { 560 struct r5l_io_unit *io = bio->bi_private; 561 struct r5l_io_unit *io_deferred; 562 struct r5l_log *log = io->log; 563 unsigned long flags; 564 bool has_null_flush; 565 bool has_flush_payload; 566 567 if (bio->bi_status) 568 md_error(log->rdev->mddev, log->rdev); 569 570 bio_put(bio); 571 mempool_free(io->meta_page, &log->meta_pool); 572 573 spin_lock_irqsave(&log->io_list_lock, flags); 574 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 575 576 /* 577 * if the io doesn't not have null_flush or flush payload, 578 * it is not safe to access it after releasing io_list_lock. 579 * Therefore, it is necessary to check the condition with 580 * the lock held. 581 */ 582 has_null_flush = io->has_null_flush; 583 has_flush_payload = io->has_flush_payload; 584 585 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 586 r5l_move_to_end_ios(log); 587 else 588 r5l_log_run_stripes(log); 589 if (!list_empty(&log->running_ios)) { 590 /* 591 * FLUSH/FUA io_unit is deferred because of ordering, now we 592 * can dispatch it 593 */ 594 io_deferred = list_first_entry(&log->running_ios, 595 struct r5l_io_unit, log_sibling); 596 if (io_deferred->io_deferred) 597 schedule_work(&log->deferred_io_work); 598 } 599 600 spin_unlock_irqrestore(&log->io_list_lock, flags); 601 602 if (log->need_cache_flush) 603 md_wakeup_thread(log->rdev->mddev->thread); 604 605 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 606 if (has_null_flush) { 607 struct bio *bi; 608 609 WARN_ON(bio_list_empty(&io->flush_barriers)); 610 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 611 bio_endio(bi); 612 if (atomic_dec_and_test(&io->pending_stripe)) { 613 __r5l_stripe_write_finished(io); 614 return; 615 } 616 } 617 } 618 /* decrease pending_stripe for flush payload */ 619 if (has_flush_payload) 620 if (atomic_dec_and_test(&io->pending_stripe)) 621 __r5l_stripe_write_finished(io); 622 } 623 624 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 625 { 626 unsigned long flags; 627 628 spin_lock_irqsave(&log->io_list_lock, flags); 629 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 630 spin_unlock_irqrestore(&log->io_list_lock, flags); 631 632 /* 633 * In case of journal device failures, submit_bio will get error 634 * and calls endio, then active stripes will continue write 635 * process. Therefore, it is not necessary to check Faulty bit 636 * of journal device here. 637 * 638 * We can't check split_bio after current_bio is submitted. If 639 * io->split_bio is null, after current_bio is submitted, current_bio 640 * might already be completed and the io_unit is freed. We submit 641 * split_bio first to avoid the issue. 642 */ 643 if (io->split_bio) { 644 if (io->has_flush) 645 io->split_bio->bi_opf |= REQ_PREFLUSH; 646 if (io->has_fua) 647 io->split_bio->bi_opf |= REQ_FUA; 648 submit_bio(io->split_bio); 649 } 650 651 if (io->has_flush) 652 io->current_bio->bi_opf |= REQ_PREFLUSH; 653 if (io->has_fua) 654 io->current_bio->bi_opf |= REQ_FUA; 655 submit_bio(io->current_bio); 656 } 657 658 /* deferred io_unit will be dispatched here */ 659 static void r5l_submit_io_async(struct work_struct *work) 660 { 661 struct r5l_log *log = container_of(work, struct r5l_log, 662 deferred_io_work); 663 struct r5l_io_unit *io = NULL; 664 unsigned long flags; 665 666 spin_lock_irqsave(&log->io_list_lock, flags); 667 if (!list_empty(&log->running_ios)) { 668 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 669 log_sibling); 670 if (!io->io_deferred) 671 io = NULL; 672 else 673 io->io_deferred = 0; 674 } 675 spin_unlock_irqrestore(&log->io_list_lock, flags); 676 if (io) 677 r5l_do_submit_io(log, io); 678 } 679 680 static void r5c_disable_writeback_async(struct work_struct *work) 681 { 682 struct r5l_log *log = container_of(work, struct r5l_log, 683 disable_writeback_work); 684 struct mddev *mddev = log->rdev->mddev; 685 struct r5conf *conf = mddev->private; 686 int locked = 0; 687 688 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 689 return; 690 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 691 mdname(mddev)); 692 693 /* wait superblock change before suspend */ 694 wait_event(mddev->sb_wait, 695 conf->log == NULL || 696 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && 697 (locked = mddev_trylock(mddev)))); 698 if (locked) { 699 mddev_suspend(mddev); 700 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 701 mddev_resume(mddev); 702 mddev_unlock(mddev); 703 } 704 } 705 706 static void r5l_submit_current_io(struct r5l_log *log) 707 { 708 struct r5l_io_unit *io = log->current_io; 709 struct r5l_meta_block *block; 710 unsigned long flags; 711 u32 crc; 712 bool do_submit = true; 713 714 if (!io) 715 return; 716 717 block = page_address(io->meta_page); 718 block->meta_size = cpu_to_le32(io->meta_offset); 719 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 720 block->checksum = cpu_to_le32(crc); 721 722 log->current_io = NULL; 723 spin_lock_irqsave(&log->io_list_lock, flags); 724 if (io->has_flush || io->has_fua) { 725 if (io != list_first_entry(&log->running_ios, 726 struct r5l_io_unit, log_sibling)) { 727 io->io_deferred = 1; 728 do_submit = false; 729 } 730 } 731 spin_unlock_irqrestore(&log->io_list_lock, flags); 732 if (do_submit) 733 r5l_do_submit_io(log, io); 734 } 735 736 static struct bio *r5l_bio_alloc(struct r5l_log *log) 737 { 738 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs); 739 740 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 741 bio_set_dev(bio, log->rdev->bdev); 742 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 743 744 return bio; 745 } 746 747 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 748 { 749 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 750 751 r5c_update_log_state(log); 752 /* 753 * If we filled up the log device start from the beginning again, 754 * which will require a new bio. 755 * 756 * Note: for this to work properly the log size needs to me a multiple 757 * of BLOCK_SECTORS. 758 */ 759 if (log->log_start == 0) 760 io->need_split_bio = true; 761 762 io->log_end = log->log_start; 763 } 764 765 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 766 { 767 struct r5l_io_unit *io; 768 struct r5l_meta_block *block; 769 770 io = mempool_alloc(&log->io_pool, GFP_ATOMIC); 771 if (!io) 772 return NULL; 773 memset(io, 0, sizeof(*io)); 774 775 io->log = log; 776 INIT_LIST_HEAD(&io->log_sibling); 777 INIT_LIST_HEAD(&io->stripe_list); 778 bio_list_init(&io->flush_barriers); 779 io->state = IO_UNIT_RUNNING; 780 781 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); 782 block = page_address(io->meta_page); 783 clear_page(block); 784 block->magic = cpu_to_le32(R5LOG_MAGIC); 785 block->version = R5LOG_VERSION; 786 block->seq = cpu_to_le64(log->seq); 787 block->position = cpu_to_le64(log->log_start); 788 789 io->log_start = log->log_start; 790 io->meta_offset = sizeof(struct r5l_meta_block); 791 io->seq = log->seq++; 792 793 io->current_bio = r5l_bio_alloc(log); 794 io->current_bio->bi_end_io = r5l_log_endio; 795 io->current_bio->bi_private = io; 796 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 797 798 r5_reserve_log_entry(log, io); 799 800 spin_lock_irq(&log->io_list_lock); 801 list_add_tail(&io->log_sibling, &log->running_ios); 802 spin_unlock_irq(&log->io_list_lock); 803 804 return io; 805 } 806 807 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 808 { 809 if (log->current_io && 810 log->current_io->meta_offset + payload_size > PAGE_SIZE) 811 r5l_submit_current_io(log); 812 813 if (!log->current_io) { 814 log->current_io = r5l_new_meta(log); 815 if (!log->current_io) 816 return -ENOMEM; 817 } 818 819 return 0; 820 } 821 822 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 823 sector_t location, 824 u32 checksum1, u32 checksum2, 825 bool checksum2_valid) 826 { 827 struct r5l_io_unit *io = log->current_io; 828 struct r5l_payload_data_parity *payload; 829 830 payload = page_address(io->meta_page) + io->meta_offset; 831 payload->header.type = cpu_to_le16(type); 832 payload->header.flags = cpu_to_le16(0); 833 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 834 (PAGE_SHIFT - 9)); 835 payload->location = cpu_to_le64(location); 836 payload->checksum[0] = cpu_to_le32(checksum1); 837 if (checksum2_valid) 838 payload->checksum[1] = cpu_to_le32(checksum2); 839 840 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 841 sizeof(__le32) * (1 + !!checksum2_valid); 842 } 843 844 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 845 { 846 struct r5l_io_unit *io = log->current_io; 847 848 if (io->need_split_bio) { 849 BUG_ON(io->split_bio); 850 io->split_bio = io->current_bio; 851 io->current_bio = r5l_bio_alloc(log); 852 bio_chain(io->current_bio, io->split_bio); 853 io->need_split_bio = false; 854 } 855 856 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 857 BUG(); 858 859 r5_reserve_log_entry(log, io); 860 } 861 862 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 863 { 864 struct mddev *mddev = log->rdev->mddev; 865 struct r5conf *conf = mddev->private; 866 struct r5l_io_unit *io; 867 struct r5l_payload_flush *payload; 868 int meta_size; 869 870 /* 871 * payload_flush requires extra writes to the journal. 872 * To avoid handling the extra IO in quiesce, just skip 873 * flush_payload 874 */ 875 if (conf->quiesce) 876 return; 877 878 mutex_lock(&log->io_mutex); 879 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 880 881 if (r5l_get_meta(log, meta_size)) { 882 mutex_unlock(&log->io_mutex); 883 return; 884 } 885 886 /* current implementation is one stripe per flush payload */ 887 io = log->current_io; 888 payload = page_address(io->meta_page) + io->meta_offset; 889 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 890 payload->header.flags = cpu_to_le16(0); 891 payload->size = cpu_to_le32(sizeof(__le64)); 892 payload->flush_stripes[0] = cpu_to_le64(sect); 893 io->meta_offset += meta_size; 894 /* multiple flush payloads count as one pending_stripe */ 895 if (!io->has_flush_payload) { 896 io->has_flush_payload = 1; 897 atomic_inc(&io->pending_stripe); 898 } 899 mutex_unlock(&log->io_mutex); 900 } 901 902 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 903 int data_pages, int parity_pages) 904 { 905 int i; 906 int meta_size; 907 int ret; 908 struct r5l_io_unit *io; 909 910 meta_size = 911 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 912 * data_pages) + 913 sizeof(struct r5l_payload_data_parity) + 914 sizeof(__le32) * parity_pages; 915 916 ret = r5l_get_meta(log, meta_size); 917 if (ret) 918 return ret; 919 920 io = log->current_io; 921 922 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 923 io->has_flush = 1; 924 925 for (i = 0; i < sh->disks; i++) { 926 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 927 test_bit(R5_InJournal, &sh->dev[i].flags)) 928 continue; 929 if (i == sh->pd_idx || i == sh->qd_idx) 930 continue; 931 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 932 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 933 io->has_fua = 1; 934 /* 935 * we need to flush journal to make sure recovery can 936 * reach the data with fua flag 937 */ 938 io->has_flush = 1; 939 } 940 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 941 raid5_compute_blocknr(sh, i, 0), 942 sh->dev[i].log_checksum, 0, false); 943 r5l_append_payload_page(log, sh->dev[i].page); 944 } 945 946 if (parity_pages == 2) { 947 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 948 sh->sector, sh->dev[sh->pd_idx].log_checksum, 949 sh->dev[sh->qd_idx].log_checksum, true); 950 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 951 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 952 } else if (parity_pages == 1) { 953 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 954 sh->sector, sh->dev[sh->pd_idx].log_checksum, 955 0, false); 956 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 957 } else /* Just writing data, not parity, in caching phase */ 958 BUG_ON(parity_pages != 0); 959 960 list_add_tail(&sh->log_list, &io->stripe_list); 961 atomic_inc(&io->pending_stripe); 962 sh->log_io = io; 963 964 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 965 return 0; 966 967 if (sh->log_start == MaxSector) { 968 BUG_ON(!list_empty(&sh->r5c)); 969 sh->log_start = io->log_start; 970 spin_lock_irq(&log->stripe_in_journal_lock); 971 list_add_tail(&sh->r5c, 972 &log->stripe_in_journal_list); 973 spin_unlock_irq(&log->stripe_in_journal_lock); 974 atomic_inc(&log->stripe_in_journal_count); 975 } 976 return 0; 977 } 978 979 /* add stripe to no_space_stripes, and then wake up reclaim */ 980 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 981 struct stripe_head *sh) 982 { 983 spin_lock(&log->no_space_stripes_lock); 984 list_add_tail(&sh->log_list, &log->no_space_stripes); 985 spin_unlock(&log->no_space_stripes_lock); 986 } 987 988 /* 989 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 990 * data from log to raid disks), so we shouldn't wait for reclaim here 991 */ 992 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 993 { 994 struct r5conf *conf = sh->raid_conf; 995 int write_disks = 0; 996 int data_pages, parity_pages; 997 int reserve; 998 int i; 999 int ret = 0; 1000 bool wake_reclaim = false; 1001 1002 if (!log) 1003 return -EAGAIN; 1004 /* Don't support stripe batch */ 1005 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1006 test_bit(STRIPE_SYNCING, &sh->state)) { 1007 /* the stripe is written to log, we start writing it to raid */ 1008 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1009 return -EAGAIN; 1010 } 1011 1012 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1013 1014 for (i = 0; i < sh->disks; i++) { 1015 void *addr; 1016 1017 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1018 test_bit(R5_InJournal, &sh->dev[i].flags)) 1019 continue; 1020 1021 write_disks++; 1022 /* checksum is already calculated in last run */ 1023 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1024 continue; 1025 addr = kmap_atomic(sh->dev[i].page); 1026 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1027 addr, PAGE_SIZE); 1028 kunmap_atomic(addr); 1029 } 1030 parity_pages = 1 + !!(sh->qd_idx >= 0); 1031 data_pages = write_disks - parity_pages; 1032 1033 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1034 /* 1035 * The stripe must enter state machine again to finish the write, so 1036 * don't delay. 1037 */ 1038 clear_bit(STRIPE_DELAYED, &sh->state); 1039 atomic_inc(&sh->count); 1040 1041 mutex_lock(&log->io_mutex); 1042 /* meta + data */ 1043 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1044 1045 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1046 if (!r5l_has_free_space(log, reserve)) { 1047 r5l_add_no_space_stripe(log, sh); 1048 wake_reclaim = true; 1049 } else { 1050 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1051 if (ret) { 1052 spin_lock_irq(&log->io_list_lock); 1053 list_add_tail(&sh->log_list, 1054 &log->no_mem_stripes); 1055 spin_unlock_irq(&log->io_list_lock); 1056 } 1057 } 1058 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1059 /* 1060 * log space critical, do not process stripes that are 1061 * not in cache yet (sh->log_start == MaxSector). 1062 */ 1063 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1064 sh->log_start == MaxSector) { 1065 r5l_add_no_space_stripe(log, sh); 1066 wake_reclaim = true; 1067 reserve = 0; 1068 } else if (!r5l_has_free_space(log, reserve)) { 1069 if (sh->log_start == log->last_checkpoint) 1070 BUG(); 1071 else 1072 r5l_add_no_space_stripe(log, sh); 1073 } else { 1074 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1075 if (ret) { 1076 spin_lock_irq(&log->io_list_lock); 1077 list_add_tail(&sh->log_list, 1078 &log->no_mem_stripes); 1079 spin_unlock_irq(&log->io_list_lock); 1080 } 1081 } 1082 } 1083 1084 mutex_unlock(&log->io_mutex); 1085 if (wake_reclaim) 1086 r5l_wake_reclaim(log, reserve); 1087 return 0; 1088 } 1089 1090 void r5l_write_stripe_run(struct r5l_log *log) 1091 { 1092 if (!log) 1093 return; 1094 mutex_lock(&log->io_mutex); 1095 r5l_submit_current_io(log); 1096 mutex_unlock(&log->io_mutex); 1097 } 1098 1099 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1100 { 1101 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1102 /* 1103 * in write through (journal only) 1104 * we flush log disk cache first, then write stripe data to 1105 * raid disks. So if bio is finished, the log disk cache is 1106 * flushed already. The recovery guarantees we can recovery 1107 * the bio from log disk, so we don't need to flush again 1108 */ 1109 if (bio->bi_iter.bi_size == 0) { 1110 bio_endio(bio); 1111 return 0; 1112 } 1113 bio->bi_opf &= ~REQ_PREFLUSH; 1114 } else { 1115 /* write back (with cache) */ 1116 if (bio->bi_iter.bi_size == 0) { 1117 mutex_lock(&log->io_mutex); 1118 r5l_get_meta(log, 0); 1119 bio_list_add(&log->current_io->flush_barriers, bio); 1120 log->current_io->has_flush = 1; 1121 log->current_io->has_null_flush = 1; 1122 atomic_inc(&log->current_io->pending_stripe); 1123 r5l_submit_current_io(log); 1124 mutex_unlock(&log->io_mutex); 1125 return 0; 1126 } 1127 } 1128 return -EAGAIN; 1129 } 1130 1131 /* This will run after log space is reclaimed */ 1132 static void r5l_run_no_space_stripes(struct r5l_log *log) 1133 { 1134 struct stripe_head *sh; 1135 1136 spin_lock(&log->no_space_stripes_lock); 1137 while (!list_empty(&log->no_space_stripes)) { 1138 sh = list_first_entry(&log->no_space_stripes, 1139 struct stripe_head, log_list); 1140 list_del_init(&sh->log_list); 1141 set_bit(STRIPE_HANDLE, &sh->state); 1142 raid5_release_stripe(sh); 1143 } 1144 spin_unlock(&log->no_space_stripes_lock); 1145 } 1146 1147 /* 1148 * calculate new last_checkpoint 1149 * for write through mode, returns log->next_checkpoint 1150 * for write back, returns log_start of first sh in stripe_in_journal_list 1151 */ 1152 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1153 { 1154 struct stripe_head *sh; 1155 struct r5l_log *log = conf->log; 1156 sector_t new_cp; 1157 unsigned long flags; 1158 1159 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1160 return log->next_checkpoint; 1161 1162 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1163 if (list_empty(&conf->log->stripe_in_journal_list)) { 1164 /* all stripes flushed */ 1165 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1166 return log->next_checkpoint; 1167 } 1168 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1169 struct stripe_head, r5c); 1170 new_cp = sh->log_start; 1171 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1172 return new_cp; 1173 } 1174 1175 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1176 { 1177 struct r5conf *conf = log->rdev->mddev->private; 1178 1179 return r5l_ring_distance(log, log->last_checkpoint, 1180 r5c_calculate_new_cp(conf)); 1181 } 1182 1183 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1184 { 1185 struct stripe_head *sh; 1186 1187 lockdep_assert_held(&log->io_list_lock); 1188 1189 if (!list_empty(&log->no_mem_stripes)) { 1190 sh = list_first_entry(&log->no_mem_stripes, 1191 struct stripe_head, log_list); 1192 list_del_init(&sh->log_list); 1193 set_bit(STRIPE_HANDLE, &sh->state); 1194 raid5_release_stripe(sh); 1195 } 1196 } 1197 1198 static bool r5l_complete_finished_ios(struct r5l_log *log) 1199 { 1200 struct r5l_io_unit *io, *next; 1201 bool found = false; 1202 1203 lockdep_assert_held(&log->io_list_lock); 1204 1205 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1206 /* don't change list order */ 1207 if (io->state < IO_UNIT_STRIPE_END) 1208 break; 1209 1210 log->next_checkpoint = io->log_start; 1211 1212 list_del(&io->log_sibling); 1213 mempool_free(io, &log->io_pool); 1214 r5l_run_no_mem_stripe(log); 1215 1216 found = true; 1217 } 1218 1219 return found; 1220 } 1221 1222 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1223 { 1224 struct r5l_log *log = io->log; 1225 struct r5conf *conf = log->rdev->mddev->private; 1226 unsigned long flags; 1227 1228 spin_lock_irqsave(&log->io_list_lock, flags); 1229 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1230 1231 if (!r5l_complete_finished_ios(log)) { 1232 spin_unlock_irqrestore(&log->io_list_lock, flags); 1233 return; 1234 } 1235 1236 if (r5l_reclaimable_space(log) > log->max_free_space || 1237 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1238 r5l_wake_reclaim(log, 0); 1239 1240 spin_unlock_irqrestore(&log->io_list_lock, flags); 1241 wake_up(&log->iounit_wait); 1242 } 1243 1244 void r5l_stripe_write_finished(struct stripe_head *sh) 1245 { 1246 struct r5l_io_unit *io; 1247 1248 io = sh->log_io; 1249 sh->log_io = NULL; 1250 1251 if (io && atomic_dec_and_test(&io->pending_stripe)) 1252 __r5l_stripe_write_finished(io); 1253 } 1254 1255 static void r5l_log_flush_endio(struct bio *bio) 1256 { 1257 struct r5l_log *log = container_of(bio, struct r5l_log, 1258 flush_bio); 1259 unsigned long flags; 1260 struct r5l_io_unit *io; 1261 1262 if (bio->bi_status) 1263 md_error(log->rdev->mddev, log->rdev); 1264 1265 spin_lock_irqsave(&log->io_list_lock, flags); 1266 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1267 r5l_io_run_stripes(io); 1268 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1269 spin_unlock_irqrestore(&log->io_list_lock, flags); 1270 } 1271 1272 /* 1273 * Starting dispatch IO to raid. 1274 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1275 * broken meta in the middle of a log causes recovery can't find meta at the 1276 * head of log. If operations require meta at the head persistent in log, we 1277 * must make sure meta before it persistent in log too. A case is: 1278 * 1279 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1280 * data/parity must be persistent in log before we do the write to raid disks. 1281 * 1282 * The solution is we restrictly maintain io_unit list order. In this case, we 1283 * only write stripes of an io_unit to raid disks till the io_unit is the first 1284 * one whose data/parity is in log. 1285 */ 1286 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1287 { 1288 bool do_flush; 1289 1290 if (!log || !log->need_cache_flush) 1291 return; 1292 1293 spin_lock_irq(&log->io_list_lock); 1294 /* flush bio is running */ 1295 if (!list_empty(&log->flushing_ios)) { 1296 spin_unlock_irq(&log->io_list_lock); 1297 return; 1298 } 1299 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1300 do_flush = !list_empty(&log->flushing_ios); 1301 spin_unlock_irq(&log->io_list_lock); 1302 1303 if (!do_flush) 1304 return; 1305 bio_reset(&log->flush_bio); 1306 bio_set_dev(&log->flush_bio, log->rdev->bdev); 1307 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1308 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1309 submit_bio(&log->flush_bio); 1310 } 1311 1312 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1313 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1314 sector_t end) 1315 { 1316 struct block_device *bdev = log->rdev->bdev; 1317 struct mddev *mddev; 1318 1319 r5l_write_super(log, end); 1320 1321 if (!blk_queue_discard(bdev_get_queue(bdev))) 1322 return; 1323 1324 mddev = log->rdev->mddev; 1325 /* 1326 * Discard could zero data, so before discard we must make sure 1327 * superblock is updated to new log tail. Updating superblock (either 1328 * directly call md_update_sb() or depend on md thread) must hold 1329 * reconfig mutex. On the other hand, raid5_quiesce is called with 1330 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1331 * for all IO finish, hence waitting for reclaim thread, while reclaim 1332 * thread is calling this function and waitting for reconfig mutex. So 1333 * there is a deadlock. We workaround this issue with a trylock. 1334 * FIXME: we could miss discard if we can't take reconfig mutex 1335 */ 1336 set_mask_bits(&mddev->sb_flags, 0, 1337 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1338 if (!mddev_trylock(mddev)) 1339 return; 1340 md_update_sb(mddev, 1); 1341 mddev_unlock(mddev); 1342 1343 /* discard IO error really doesn't matter, ignore it */ 1344 if (log->last_checkpoint < end) { 1345 blkdev_issue_discard(bdev, 1346 log->last_checkpoint + log->rdev->data_offset, 1347 end - log->last_checkpoint, GFP_NOIO, 0); 1348 } else { 1349 blkdev_issue_discard(bdev, 1350 log->last_checkpoint + log->rdev->data_offset, 1351 log->device_size - log->last_checkpoint, 1352 GFP_NOIO, 0); 1353 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1354 GFP_NOIO, 0); 1355 } 1356 } 1357 1358 /* 1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1361 * 1362 * must hold conf->device_lock 1363 */ 1364 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1365 { 1366 BUG_ON(list_empty(&sh->lru)); 1367 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1368 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1369 1370 /* 1371 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1372 * raid5_release_stripe() while holding conf->device_lock 1373 */ 1374 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1375 lockdep_assert_held(&conf->device_lock); 1376 1377 list_del_init(&sh->lru); 1378 atomic_inc(&sh->count); 1379 1380 set_bit(STRIPE_HANDLE, &sh->state); 1381 atomic_inc(&conf->active_stripes); 1382 r5c_make_stripe_write_out(sh); 1383 1384 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1385 atomic_inc(&conf->r5c_flushing_partial_stripes); 1386 else 1387 atomic_inc(&conf->r5c_flushing_full_stripes); 1388 raid5_release_stripe(sh); 1389 } 1390 1391 /* 1392 * if num == 0, flush all full stripes 1393 * if num > 0, flush all full stripes. If less than num full stripes are 1394 * flushed, flush some partial stripes until totally num stripes are 1395 * flushed or there is no more cached stripes. 1396 */ 1397 void r5c_flush_cache(struct r5conf *conf, int num) 1398 { 1399 int count; 1400 struct stripe_head *sh, *next; 1401 1402 lockdep_assert_held(&conf->device_lock); 1403 if (!conf->log) 1404 return; 1405 1406 count = 0; 1407 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1408 r5c_flush_stripe(conf, sh); 1409 count++; 1410 } 1411 1412 if (count >= num) 1413 return; 1414 list_for_each_entry_safe(sh, next, 1415 &conf->r5c_partial_stripe_list, lru) { 1416 r5c_flush_stripe(conf, sh); 1417 if (++count >= num) 1418 break; 1419 } 1420 } 1421 1422 static void r5c_do_reclaim(struct r5conf *conf) 1423 { 1424 struct r5l_log *log = conf->log; 1425 struct stripe_head *sh; 1426 int count = 0; 1427 unsigned long flags; 1428 int total_cached; 1429 int stripes_to_flush; 1430 int flushing_partial, flushing_full; 1431 1432 if (!r5c_is_writeback(log)) 1433 return; 1434 1435 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1436 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1437 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1438 atomic_read(&conf->r5c_cached_full_stripes) - 1439 flushing_full - flushing_partial; 1440 1441 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1442 atomic_read(&conf->empty_inactive_list_nr) > 0) 1443 /* 1444 * if stripe cache pressure high, flush all full stripes and 1445 * some partial stripes 1446 */ 1447 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1448 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1449 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1450 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1451 /* 1452 * if stripe cache pressure moderate, or if there is many full 1453 * stripes,flush all full stripes 1454 */ 1455 stripes_to_flush = 0; 1456 else 1457 /* no need to flush */ 1458 stripes_to_flush = -1; 1459 1460 if (stripes_to_flush >= 0) { 1461 spin_lock_irqsave(&conf->device_lock, flags); 1462 r5c_flush_cache(conf, stripes_to_flush); 1463 spin_unlock_irqrestore(&conf->device_lock, flags); 1464 } 1465 1466 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1467 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1468 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1469 spin_lock(&conf->device_lock); 1470 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1471 /* 1472 * stripes on stripe_in_journal_list could be in any 1473 * state of the stripe_cache state machine. In this 1474 * case, we only want to flush stripe on 1475 * r5c_cached_full/partial_stripes. The following 1476 * condition makes sure the stripe is on one of the 1477 * two lists. 1478 */ 1479 if (!list_empty(&sh->lru) && 1480 !test_bit(STRIPE_HANDLE, &sh->state) && 1481 atomic_read(&sh->count) == 0) { 1482 r5c_flush_stripe(conf, sh); 1483 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1484 break; 1485 } 1486 } 1487 spin_unlock(&conf->device_lock); 1488 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1489 } 1490 1491 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1492 r5l_run_no_space_stripes(log); 1493 1494 md_wakeup_thread(conf->mddev->thread); 1495 } 1496 1497 static void r5l_do_reclaim(struct r5l_log *log) 1498 { 1499 struct r5conf *conf = log->rdev->mddev->private; 1500 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1501 sector_t reclaimable; 1502 sector_t next_checkpoint; 1503 bool write_super; 1504 1505 spin_lock_irq(&log->io_list_lock); 1506 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1507 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1508 /* 1509 * move proper io_unit to reclaim list. We should not change the order. 1510 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1511 * shouldn't reuse space of an unreclaimable io_unit 1512 */ 1513 while (1) { 1514 reclaimable = r5l_reclaimable_space(log); 1515 if (reclaimable >= reclaim_target || 1516 (list_empty(&log->running_ios) && 1517 list_empty(&log->io_end_ios) && 1518 list_empty(&log->flushing_ios) && 1519 list_empty(&log->finished_ios))) 1520 break; 1521 1522 md_wakeup_thread(log->rdev->mddev->thread); 1523 wait_event_lock_irq(log->iounit_wait, 1524 r5l_reclaimable_space(log) > reclaimable, 1525 log->io_list_lock); 1526 } 1527 1528 next_checkpoint = r5c_calculate_new_cp(conf); 1529 spin_unlock_irq(&log->io_list_lock); 1530 1531 if (reclaimable == 0 || !write_super) 1532 return; 1533 1534 /* 1535 * write_super will flush cache of each raid disk. We must write super 1536 * here, because the log area might be reused soon and we don't want to 1537 * confuse recovery 1538 */ 1539 r5l_write_super_and_discard_space(log, next_checkpoint); 1540 1541 mutex_lock(&log->io_mutex); 1542 log->last_checkpoint = next_checkpoint; 1543 r5c_update_log_state(log); 1544 mutex_unlock(&log->io_mutex); 1545 1546 r5l_run_no_space_stripes(log); 1547 } 1548 1549 static void r5l_reclaim_thread(struct md_thread *thread) 1550 { 1551 struct mddev *mddev = thread->mddev; 1552 struct r5conf *conf = mddev->private; 1553 struct r5l_log *log = conf->log; 1554 1555 if (!log) 1556 return; 1557 r5c_do_reclaim(conf); 1558 r5l_do_reclaim(log); 1559 } 1560 1561 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1562 { 1563 unsigned long target; 1564 unsigned long new = (unsigned long)space; /* overflow in theory */ 1565 1566 if (!log) 1567 return; 1568 do { 1569 target = log->reclaim_target; 1570 if (new < target) 1571 return; 1572 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1573 md_wakeup_thread(log->reclaim_thread); 1574 } 1575 1576 void r5l_quiesce(struct r5l_log *log, int quiesce) 1577 { 1578 struct mddev *mddev; 1579 1580 if (quiesce) { 1581 /* make sure r5l_write_super_and_discard_space exits */ 1582 mddev = log->rdev->mddev; 1583 wake_up(&mddev->sb_wait); 1584 kthread_park(log->reclaim_thread->tsk); 1585 r5l_wake_reclaim(log, MaxSector); 1586 r5l_do_reclaim(log); 1587 } else 1588 kthread_unpark(log->reclaim_thread->tsk); 1589 } 1590 1591 bool r5l_log_disk_error(struct r5conf *conf) 1592 { 1593 struct r5l_log *log; 1594 bool ret; 1595 /* don't allow write if journal disk is missing */ 1596 rcu_read_lock(); 1597 log = rcu_dereference(conf->log); 1598 1599 if (!log) 1600 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1601 else 1602 ret = test_bit(Faulty, &log->rdev->flags); 1603 rcu_read_unlock(); 1604 return ret; 1605 } 1606 1607 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1608 1609 struct r5l_recovery_ctx { 1610 struct page *meta_page; /* current meta */ 1611 sector_t meta_total_blocks; /* total size of current meta and data */ 1612 sector_t pos; /* recovery position */ 1613 u64 seq; /* recovery position seq */ 1614 int data_parity_stripes; /* number of data_parity stripes */ 1615 int data_only_stripes; /* number of data_only stripes */ 1616 struct list_head cached_list; 1617 1618 /* 1619 * read ahead page pool (ra_pool) 1620 * in recovery, log is read sequentially. It is not efficient to 1621 * read every page with sync_page_io(). The read ahead page pool 1622 * reads multiple pages with one IO, so further log read can 1623 * just copy data from the pool. 1624 */ 1625 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1626 sector_t pool_offset; /* offset of first page in the pool */ 1627 int total_pages; /* total allocated pages */ 1628 int valid_pages; /* pages with valid data */ 1629 struct bio *ra_bio; /* bio to do the read ahead */ 1630 }; 1631 1632 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1633 struct r5l_recovery_ctx *ctx) 1634 { 1635 struct page *page; 1636 1637 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs); 1638 if (!ctx->ra_bio) 1639 return -ENOMEM; 1640 1641 ctx->valid_pages = 0; 1642 ctx->total_pages = 0; 1643 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1644 page = alloc_page(GFP_KERNEL); 1645 1646 if (!page) 1647 break; 1648 ctx->ra_pool[ctx->total_pages] = page; 1649 ctx->total_pages += 1; 1650 } 1651 1652 if (ctx->total_pages == 0) { 1653 bio_put(ctx->ra_bio); 1654 return -ENOMEM; 1655 } 1656 1657 ctx->pool_offset = 0; 1658 return 0; 1659 } 1660 1661 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1662 struct r5l_recovery_ctx *ctx) 1663 { 1664 int i; 1665 1666 for (i = 0; i < ctx->total_pages; ++i) 1667 put_page(ctx->ra_pool[i]); 1668 bio_put(ctx->ra_bio); 1669 } 1670 1671 /* 1672 * fetch ctx->valid_pages pages from offset 1673 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1674 * However, if the offset is close to the end of the journal device, 1675 * ctx->valid_pages could be smaller than ctx->total_pages 1676 */ 1677 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1678 struct r5l_recovery_ctx *ctx, 1679 sector_t offset) 1680 { 1681 bio_reset(ctx->ra_bio); 1682 bio_set_dev(ctx->ra_bio, log->rdev->bdev); 1683 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); 1684 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; 1685 1686 ctx->valid_pages = 0; 1687 ctx->pool_offset = offset; 1688 1689 while (ctx->valid_pages < ctx->total_pages) { 1690 bio_add_page(ctx->ra_bio, 1691 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); 1692 ctx->valid_pages += 1; 1693 1694 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1695 1696 if (offset == 0) /* reached end of the device */ 1697 break; 1698 } 1699 1700 return submit_bio_wait(ctx->ra_bio); 1701 } 1702 1703 /* 1704 * try read a page from the read ahead page pool, if the page is not in the 1705 * pool, call r5l_recovery_fetch_ra_pool 1706 */ 1707 static int r5l_recovery_read_page(struct r5l_log *log, 1708 struct r5l_recovery_ctx *ctx, 1709 struct page *page, 1710 sector_t offset) 1711 { 1712 int ret; 1713 1714 if (offset < ctx->pool_offset || 1715 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1716 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1717 if (ret) 1718 return ret; 1719 } 1720 1721 BUG_ON(offset < ctx->pool_offset || 1722 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1723 1724 memcpy(page_address(page), 1725 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1726 BLOCK_SECTOR_SHIFT]), 1727 PAGE_SIZE); 1728 return 0; 1729 } 1730 1731 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1732 struct r5l_recovery_ctx *ctx) 1733 { 1734 struct page *page = ctx->meta_page; 1735 struct r5l_meta_block *mb; 1736 u32 crc, stored_crc; 1737 int ret; 1738 1739 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1740 if (ret != 0) 1741 return ret; 1742 1743 mb = page_address(page); 1744 stored_crc = le32_to_cpu(mb->checksum); 1745 mb->checksum = 0; 1746 1747 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1748 le64_to_cpu(mb->seq) != ctx->seq || 1749 mb->version != R5LOG_VERSION || 1750 le64_to_cpu(mb->position) != ctx->pos) 1751 return -EINVAL; 1752 1753 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1754 if (stored_crc != crc) 1755 return -EINVAL; 1756 1757 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1758 return -EINVAL; 1759 1760 ctx->meta_total_blocks = BLOCK_SECTORS; 1761 1762 return 0; 1763 } 1764 1765 static void 1766 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1767 struct page *page, 1768 sector_t pos, u64 seq) 1769 { 1770 struct r5l_meta_block *mb; 1771 1772 mb = page_address(page); 1773 clear_page(mb); 1774 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1775 mb->version = R5LOG_VERSION; 1776 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1777 mb->seq = cpu_to_le64(seq); 1778 mb->position = cpu_to_le64(pos); 1779 } 1780 1781 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1782 u64 seq) 1783 { 1784 struct page *page; 1785 struct r5l_meta_block *mb; 1786 1787 page = alloc_page(GFP_KERNEL); 1788 if (!page) 1789 return -ENOMEM; 1790 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1791 mb = page_address(page); 1792 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1793 mb, PAGE_SIZE)); 1794 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1795 REQ_SYNC | REQ_FUA, false)) { 1796 __free_page(page); 1797 return -EIO; 1798 } 1799 __free_page(page); 1800 return 0; 1801 } 1802 1803 /* 1804 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1805 * to mark valid (potentially not flushed) data in the journal. 1806 * 1807 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1808 * so there should not be any mismatch here. 1809 */ 1810 static void r5l_recovery_load_data(struct r5l_log *log, 1811 struct stripe_head *sh, 1812 struct r5l_recovery_ctx *ctx, 1813 struct r5l_payload_data_parity *payload, 1814 sector_t log_offset) 1815 { 1816 struct mddev *mddev = log->rdev->mddev; 1817 struct r5conf *conf = mddev->private; 1818 int dd_idx; 1819 1820 raid5_compute_sector(conf, 1821 le64_to_cpu(payload->location), 0, 1822 &dd_idx, sh); 1823 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1824 sh->dev[dd_idx].log_checksum = 1825 le32_to_cpu(payload->checksum[0]); 1826 ctx->meta_total_blocks += BLOCK_SECTORS; 1827 1828 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1829 set_bit(STRIPE_R5C_CACHING, &sh->state); 1830 } 1831 1832 static void r5l_recovery_load_parity(struct r5l_log *log, 1833 struct stripe_head *sh, 1834 struct r5l_recovery_ctx *ctx, 1835 struct r5l_payload_data_parity *payload, 1836 sector_t log_offset) 1837 { 1838 struct mddev *mddev = log->rdev->mddev; 1839 struct r5conf *conf = mddev->private; 1840 1841 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1842 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1843 sh->dev[sh->pd_idx].log_checksum = 1844 le32_to_cpu(payload->checksum[0]); 1845 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1846 1847 if (sh->qd_idx >= 0) { 1848 r5l_recovery_read_page( 1849 log, ctx, sh->dev[sh->qd_idx].page, 1850 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1851 sh->dev[sh->qd_idx].log_checksum = 1852 le32_to_cpu(payload->checksum[1]); 1853 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1854 } 1855 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1856 } 1857 1858 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1859 { 1860 int i; 1861 1862 sh->state = 0; 1863 sh->log_start = MaxSector; 1864 for (i = sh->disks; i--; ) 1865 sh->dev[i].flags = 0; 1866 } 1867 1868 static void 1869 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1870 struct stripe_head *sh, 1871 struct r5l_recovery_ctx *ctx) 1872 { 1873 struct md_rdev *rdev, *rrdev; 1874 int disk_index; 1875 int data_count = 0; 1876 1877 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1878 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1879 continue; 1880 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1881 continue; 1882 data_count++; 1883 } 1884 1885 /* 1886 * stripes that only have parity must have been flushed 1887 * before the crash that we are now recovering from, so 1888 * there is nothing more to recovery. 1889 */ 1890 if (data_count == 0) 1891 goto out; 1892 1893 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1894 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1895 continue; 1896 1897 /* in case device is broken */ 1898 rcu_read_lock(); 1899 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1900 if (rdev) { 1901 atomic_inc(&rdev->nr_pending); 1902 rcu_read_unlock(); 1903 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1904 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1905 false); 1906 rdev_dec_pending(rdev, rdev->mddev); 1907 rcu_read_lock(); 1908 } 1909 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1910 if (rrdev) { 1911 atomic_inc(&rrdev->nr_pending); 1912 rcu_read_unlock(); 1913 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1914 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1915 false); 1916 rdev_dec_pending(rrdev, rrdev->mddev); 1917 rcu_read_lock(); 1918 } 1919 rcu_read_unlock(); 1920 } 1921 ctx->data_parity_stripes++; 1922 out: 1923 r5l_recovery_reset_stripe(sh); 1924 } 1925 1926 static struct stripe_head * 1927 r5c_recovery_alloc_stripe( 1928 struct r5conf *conf, 1929 sector_t stripe_sect, 1930 int noblock) 1931 { 1932 struct stripe_head *sh; 1933 1934 sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0); 1935 if (!sh) 1936 return NULL; /* no more stripe available */ 1937 1938 r5l_recovery_reset_stripe(sh); 1939 1940 return sh; 1941 } 1942 1943 static struct stripe_head * 1944 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1945 { 1946 struct stripe_head *sh; 1947 1948 list_for_each_entry(sh, list, lru) 1949 if (sh->sector == sect) 1950 return sh; 1951 return NULL; 1952 } 1953 1954 static void 1955 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1956 struct r5l_recovery_ctx *ctx) 1957 { 1958 struct stripe_head *sh, *next; 1959 1960 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1961 r5l_recovery_reset_stripe(sh); 1962 list_del_init(&sh->lru); 1963 raid5_release_stripe(sh); 1964 } 1965 } 1966 1967 static void 1968 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1969 struct r5l_recovery_ctx *ctx) 1970 { 1971 struct stripe_head *sh, *next; 1972 1973 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1974 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1975 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1976 list_del_init(&sh->lru); 1977 raid5_release_stripe(sh); 1978 } 1979 } 1980 1981 /* if matches return 0; otherwise return -EINVAL */ 1982 static int 1983 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1984 struct r5l_recovery_ctx *ctx, 1985 struct page *page, 1986 sector_t log_offset, __le32 log_checksum) 1987 { 1988 void *addr; 1989 u32 checksum; 1990 1991 r5l_recovery_read_page(log, ctx, page, log_offset); 1992 addr = kmap_atomic(page); 1993 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1994 kunmap_atomic(addr); 1995 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1996 } 1997 1998 /* 1999 * before loading data to stripe cache, we need verify checksum for all data, 2000 * if there is mismatch for any data page, we drop all data in the mata block 2001 */ 2002 static int 2003 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 2004 struct r5l_recovery_ctx *ctx) 2005 { 2006 struct mddev *mddev = log->rdev->mddev; 2007 struct r5conf *conf = mddev->private; 2008 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2009 sector_t mb_offset = sizeof(struct r5l_meta_block); 2010 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2011 struct page *page; 2012 struct r5l_payload_data_parity *payload; 2013 struct r5l_payload_flush *payload_flush; 2014 2015 page = alloc_page(GFP_KERNEL); 2016 if (!page) 2017 return -ENOMEM; 2018 2019 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2020 payload = (void *)mb + mb_offset; 2021 payload_flush = (void *)mb + mb_offset; 2022 2023 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2024 if (r5l_recovery_verify_data_checksum( 2025 log, ctx, page, log_offset, 2026 payload->checksum[0]) < 0) 2027 goto mismatch; 2028 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2029 if (r5l_recovery_verify_data_checksum( 2030 log, ctx, page, log_offset, 2031 payload->checksum[0]) < 0) 2032 goto mismatch; 2033 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2034 r5l_recovery_verify_data_checksum( 2035 log, ctx, page, 2036 r5l_ring_add(log, log_offset, 2037 BLOCK_SECTORS), 2038 payload->checksum[1]) < 0) 2039 goto mismatch; 2040 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2041 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2042 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2043 goto mismatch; 2044 2045 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2046 mb_offset += sizeof(struct r5l_payload_flush) + 2047 le32_to_cpu(payload_flush->size); 2048 } else { 2049 /* DATA or PARITY payload */ 2050 log_offset = r5l_ring_add(log, log_offset, 2051 le32_to_cpu(payload->size)); 2052 mb_offset += sizeof(struct r5l_payload_data_parity) + 2053 sizeof(__le32) * 2054 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2055 } 2056 2057 } 2058 2059 put_page(page); 2060 return 0; 2061 2062 mismatch: 2063 put_page(page); 2064 return -EINVAL; 2065 } 2066 2067 /* 2068 * Analyze all data/parity pages in one meta block 2069 * Returns: 2070 * 0 for success 2071 * -EINVAL for unknown playload type 2072 * -EAGAIN for checksum mismatch of data page 2073 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2074 */ 2075 static int 2076 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2077 struct r5l_recovery_ctx *ctx, 2078 struct list_head *cached_stripe_list) 2079 { 2080 struct mddev *mddev = log->rdev->mddev; 2081 struct r5conf *conf = mddev->private; 2082 struct r5l_meta_block *mb; 2083 struct r5l_payload_data_parity *payload; 2084 struct r5l_payload_flush *payload_flush; 2085 int mb_offset; 2086 sector_t log_offset; 2087 sector_t stripe_sect; 2088 struct stripe_head *sh; 2089 int ret; 2090 2091 /* 2092 * for mismatch in data blocks, we will drop all data in this mb, but 2093 * we will still read next mb for other data with FLUSH flag, as 2094 * io_unit could finish out of order. 2095 */ 2096 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2097 if (ret == -EINVAL) 2098 return -EAGAIN; 2099 else if (ret) 2100 return ret; /* -ENOMEM duo to alloc_page() failed */ 2101 2102 mb = page_address(ctx->meta_page); 2103 mb_offset = sizeof(struct r5l_meta_block); 2104 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2105 2106 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2107 int dd; 2108 2109 payload = (void *)mb + mb_offset; 2110 payload_flush = (void *)mb + mb_offset; 2111 2112 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2113 int i, count; 2114 2115 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2116 for (i = 0; i < count; ++i) { 2117 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2118 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2119 stripe_sect); 2120 if (sh) { 2121 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2122 r5l_recovery_reset_stripe(sh); 2123 list_del_init(&sh->lru); 2124 raid5_release_stripe(sh); 2125 } 2126 } 2127 2128 mb_offset += sizeof(struct r5l_payload_flush) + 2129 le32_to_cpu(payload_flush->size); 2130 continue; 2131 } 2132 2133 /* DATA or PARITY payload */ 2134 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2135 raid5_compute_sector( 2136 conf, le64_to_cpu(payload->location), 0, &dd, 2137 NULL) 2138 : le64_to_cpu(payload->location); 2139 2140 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2141 stripe_sect); 2142 2143 if (!sh) { 2144 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); 2145 /* 2146 * cannot get stripe from raid5_get_active_stripe 2147 * try replay some stripes 2148 */ 2149 if (!sh) { 2150 r5c_recovery_replay_stripes( 2151 cached_stripe_list, ctx); 2152 sh = r5c_recovery_alloc_stripe( 2153 conf, stripe_sect, 1); 2154 } 2155 if (!sh) { 2156 int new_size = conf->min_nr_stripes * 2; 2157 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2158 mdname(mddev), 2159 new_size); 2160 ret = raid5_set_cache_size(mddev, new_size); 2161 if (conf->min_nr_stripes <= new_size / 2) { 2162 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", 2163 mdname(mddev), 2164 ret, 2165 new_size, 2166 conf->min_nr_stripes, 2167 conf->max_nr_stripes); 2168 return -ENOMEM; 2169 } 2170 sh = r5c_recovery_alloc_stripe( 2171 conf, stripe_sect, 0); 2172 } 2173 if (!sh) { 2174 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2175 mdname(mddev)); 2176 return -ENOMEM; 2177 } 2178 list_add_tail(&sh->lru, cached_stripe_list); 2179 } 2180 2181 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2182 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2183 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2184 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2185 list_move_tail(&sh->lru, cached_stripe_list); 2186 } 2187 r5l_recovery_load_data(log, sh, ctx, payload, 2188 log_offset); 2189 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2190 r5l_recovery_load_parity(log, sh, ctx, payload, 2191 log_offset); 2192 else 2193 return -EINVAL; 2194 2195 log_offset = r5l_ring_add(log, log_offset, 2196 le32_to_cpu(payload->size)); 2197 2198 mb_offset += sizeof(struct r5l_payload_data_parity) + 2199 sizeof(__le32) * 2200 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2201 } 2202 2203 return 0; 2204 } 2205 2206 /* 2207 * Load the stripe into cache. The stripe will be written out later by 2208 * the stripe cache state machine. 2209 */ 2210 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2211 struct stripe_head *sh) 2212 { 2213 struct r5dev *dev; 2214 int i; 2215 2216 for (i = sh->disks; i--; ) { 2217 dev = sh->dev + i; 2218 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2219 set_bit(R5_InJournal, &dev->flags); 2220 set_bit(R5_UPTODATE, &dev->flags); 2221 } 2222 } 2223 } 2224 2225 /* 2226 * Scan through the log for all to-be-flushed data 2227 * 2228 * For stripes with data and parity, namely Data-Parity stripe 2229 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2230 * 2231 * For stripes with only data, namely Data-Only stripe 2232 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2233 * 2234 * For a stripe, if we see data after parity, we should discard all previous 2235 * data and parity for this stripe, as these data are already flushed to 2236 * the array. 2237 * 2238 * At the end of the scan, we return the new journal_tail, which points to 2239 * first data-only stripe on the journal device, or next invalid meta block. 2240 */ 2241 static int r5c_recovery_flush_log(struct r5l_log *log, 2242 struct r5l_recovery_ctx *ctx) 2243 { 2244 struct stripe_head *sh; 2245 int ret = 0; 2246 2247 /* scan through the log */ 2248 while (1) { 2249 if (r5l_recovery_read_meta_block(log, ctx)) 2250 break; 2251 2252 ret = r5c_recovery_analyze_meta_block(log, ctx, 2253 &ctx->cached_list); 2254 /* 2255 * -EAGAIN means mismatch in data block, in this case, we still 2256 * try scan the next metablock 2257 */ 2258 if (ret && ret != -EAGAIN) 2259 break; /* ret == -EINVAL or -ENOMEM */ 2260 ctx->seq++; 2261 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2262 } 2263 2264 if (ret == -ENOMEM) { 2265 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2266 return ret; 2267 } 2268 2269 /* replay data-parity stripes */ 2270 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2271 2272 /* load data-only stripes to stripe cache */ 2273 list_for_each_entry(sh, &ctx->cached_list, lru) { 2274 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2275 r5c_recovery_load_one_stripe(log, sh); 2276 ctx->data_only_stripes++; 2277 } 2278 2279 return 0; 2280 } 2281 2282 /* 2283 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2284 * log will start here. but we can't let superblock point to last valid 2285 * meta block. The log might looks like: 2286 * | meta 1| meta 2| meta 3| 2287 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2288 * superblock points to meta 1, we write a new valid meta 2n. if crash 2289 * happens again, new recovery will start from meta 1. Since meta 2n is 2290 * valid now, recovery will think meta 3 is valid, which is wrong. 2291 * The solution is we create a new meta in meta2 with its seq == meta 2292 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2293 * will not think meta 3 is a valid meta, because its seq doesn't match 2294 */ 2295 2296 /* 2297 * Before recovery, the log looks like the following 2298 * 2299 * --------------------------------------------- 2300 * | valid log | invalid log | 2301 * --------------------------------------------- 2302 * ^ 2303 * |- log->last_checkpoint 2304 * |- log->last_cp_seq 2305 * 2306 * Now we scan through the log until we see invalid entry 2307 * 2308 * --------------------------------------------- 2309 * | valid log | invalid log | 2310 * --------------------------------------------- 2311 * ^ ^ 2312 * |- log->last_checkpoint |- ctx->pos 2313 * |- log->last_cp_seq |- ctx->seq 2314 * 2315 * From this point, we need to increase seq number by 10 to avoid 2316 * confusing next recovery. 2317 * 2318 * --------------------------------------------- 2319 * | valid log | invalid log | 2320 * --------------------------------------------- 2321 * ^ ^ 2322 * |- log->last_checkpoint |- ctx->pos+1 2323 * |- log->last_cp_seq |- ctx->seq+10001 2324 * 2325 * However, it is not safe to start the state machine yet, because data only 2326 * parities are not yet secured in RAID. To save these data only parities, we 2327 * rewrite them from seq+11. 2328 * 2329 * ----------------------------------------------------------------- 2330 * | valid log | data only stripes | invalid log | 2331 * ----------------------------------------------------------------- 2332 * ^ ^ 2333 * |- log->last_checkpoint |- ctx->pos+n 2334 * |- log->last_cp_seq |- ctx->seq+10000+n 2335 * 2336 * If failure happens again during this process, the recovery can safe start 2337 * again from log->last_checkpoint. 2338 * 2339 * Once data only stripes are rewritten to journal, we move log_tail 2340 * 2341 * ----------------------------------------------------------------- 2342 * | old log | data only stripes | invalid log | 2343 * ----------------------------------------------------------------- 2344 * ^ ^ 2345 * |- log->last_checkpoint |- ctx->pos+n 2346 * |- log->last_cp_seq |- ctx->seq+10000+n 2347 * 2348 * Then we can safely start the state machine. If failure happens from this 2349 * point on, the recovery will start from new log->last_checkpoint. 2350 */ 2351 static int 2352 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2353 struct r5l_recovery_ctx *ctx) 2354 { 2355 struct stripe_head *sh; 2356 struct mddev *mddev = log->rdev->mddev; 2357 struct page *page; 2358 sector_t next_checkpoint = MaxSector; 2359 2360 page = alloc_page(GFP_KERNEL); 2361 if (!page) { 2362 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2363 mdname(mddev)); 2364 return -ENOMEM; 2365 } 2366 2367 WARN_ON(list_empty(&ctx->cached_list)); 2368 2369 list_for_each_entry(sh, &ctx->cached_list, lru) { 2370 struct r5l_meta_block *mb; 2371 int i; 2372 int offset; 2373 sector_t write_pos; 2374 2375 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2376 r5l_recovery_create_empty_meta_block(log, page, 2377 ctx->pos, ctx->seq); 2378 mb = page_address(page); 2379 offset = le32_to_cpu(mb->meta_size); 2380 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2381 2382 for (i = sh->disks; i--; ) { 2383 struct r5dev *dev = &sh->dev[i]; 2384 struct r5l_payload_data_parity *payload; 2385 void *addr; 2386 2387 if (test_bit(R5_InJournal, &dev->flags)) { 2388 payload = (void *)mb + offset; 2389 payload->header.type = cpu_to_le16( 2390 R5LOG_PAYLOAD_DATA); 2391 payload->size = cpu_to_le32(BLOCK_SECTORS); 2392 payload->location = cpu_to_le64( 2393 raid5_compute_blocknr(sh, i, 0)); 2394 addr = kmap_atomic(dev->page); 2395 payload->checksum[0] = cpu_to_le32( 2396 crc32c_le(log->uuid_checksum, addr, 2397 PAGE_SIZE)); 2398 kunmap_atomic(addr); 2399 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2400 dev->page, REQ_OP_WRITE, 0, false); 2401 write_pos = r5l_ring_add(log, write_pos, 2402 BLOCK_SECTORS); 2403 offset += sizeof(__le32) + 2404 sizeof(struct r5l_payload_data_parity); 2405 2406 } 2407 } 2408 mb->meta_size = cpu_to_le32(offset); 2409 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2410 mb, PAGE_SIZE)); 2411 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2412 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); 2413 sh->log_start = ctx->pos; 2414 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2415 atomic_inc(&log->stripe_in_journal_count); 2416 ctx->pos = write_pos; 2417 ctx->seq += 1; 2418 next_checkpoint = sh->log_start; 2419 } 2420 log->next_checkpoint = next_checkpoint; 2421 __free_page(page); 2422 return 0; 2423 } 2424 2425 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2426 struct r5l_recovery_ctx *ctx) 2427 { 2428 struct mddev *mddev = log->rdev->mddev; 2429 struct r5conf *conf = mddev->private; 2430 struct stripe_head *sh, *next; 2431 bool cleared_pending = false; 2432 2433 if (ctx->data_only_stripes == 0) 2434 return; 2435 2436 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2437 cleared_pending = true; 2438 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2439 } 2440 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2441 2442 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2443 r5c_make_stripe_write_out(sh); 2444 set_bit(STRIPE_HANDLE, &sh->state); 2445 list_del_init(&sh->lru); 2446 raid5_release_stripe(sh); 2447 } 2448 2449 /* reuse conf->wait_for_quiescent in recovery */ 2450 wait_event(conf->wait_for_quiescent, 2451 atomic_read(&conf->active_stripes) == 0); 2452 2453 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2454 if (cleared_pending) 2455 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2456 } 2457 2458 static int r5l_recovery_log(struct r5l_log *log) 2459 { 2460 struct mddev *mddev = log->rdev->mddev; 2461 struct r5l_recovery_ctx *ctx; 2462 int ret; 2463 sector_t pos; 2464 2465 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2466 if (!ctx) 2467 return -ENOMEM; 2468 2469 ctx->pos = log->last_checkpoint; 2470 ctx->seq = log->last_cp_seq; 2471 INIT_LIST_HEAD(&ctx->cached_list); 2472 ctx->meta_page = alloc_page(GFP_KERNEL); 2473 2474 if (!ctx->meta_page) { 2475 ret = -ENOMEM; 2476 goto meta_page; 2477 } 2478 2479 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2480 ret = -ENOMEM; 2481 goto ra_pool; 2482 } 2483 2484 ret = r5c_recovery_flush_log(log, ctx); 2485 2486 if (ret) 2487 goto error; 2488 2489 pos = ctx->pos; 2490 ctx->seq += 10000; 2491 2492 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2493 pr_info("md/raid:%s: starting from clean shutdown\n", 2494 mdname(mddev)); 2495 else 2496 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2497 mdname(mddev), ctx->data_only_stripes, 2498 ctx->data_parity_stripes); 2499 2500 if (ctx->data_only_stripes == 0) { 2501 log->next_checkpoint = ctx->pos; 2502 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2503 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2504 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2505 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2506 mdname(mddev)); 2507 ret = -EIO; 2508 goto error; 2509 } 2510 2511 log->log_start = ctx->pos; 2512 log->seq = ctx->seq; 2513 log->last_checkpoint = pos; 2514 r5l_write_super(log, pos); 2515 2516 r5c_recovery_flush_data_only_stripes(log, ctx); 2517 ret = 0; 2518 error: 2519 r5l_recovery_free_ra_pool(log, ctx); 2520 ra_pool: 2521 __free_page(ctx->meta_page); 2522 meta_page: 2523 kfree(ctx); 2524 return ret; 2525 } 2526 2527 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2528 { 2529 struct mddev *mddev = log->rdev->mddev; 2530 2531 log->rdev->journal_tail = cp; 2532 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2533 } 2534 2535 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2536 { 2537 struct r5conf *conf; 2538 int ret; 2539 2540 spin_lock(&mddev->lock); 2541 conf = mddev->private; 2542 if (!conf || !conf->log) { 2543 spin_unlock(&mddev->lock); 2544 return 0; 2545 } 2546 2547 switch (conf->log->r5c_journal_mode) { 2548 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2549 ret = snprintf( 2550 page, PAGE_SIZE, "[%s] %s\n", 2551 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2552 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2553 break; 2554 case R5C_JOURNAL_MODE_WRITE_BACK: 2555 ret = snprintf( 2556 page, PAGE_SIZE, "%s [%s]\n", 2557 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2558 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2559 break; 2560 default: 2561 ret = 0; 2562 } 2563 spin_unlock(&mddev->lock); 2564 return ret; 2565 } 2566 2567 /* 2568 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2569 * 2570 * @mode as defined in 'enum r5c_journal_mode'. 2571 * 2572 */ 2573 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2574 { 2575 struct r5conf *conf; 2576 2577 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2578 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2579 return -EINVAL; 2580 2581 conf = mddev->private; 2582 if (!conf || !conf->log) 2583 return -ENODEV; 2584 2585 if (raid5_calc_degraded(conf) > 0 && 2586 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2587 return -EINVAL; 2588 2589 mddev_suspend(mddev); 2590 conf->log->r5c_journal_mode = mode; 2591 mddev_resume(mddev); 2592 2593 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2594 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2595 return 0; 2596 } 2597 EXPORT_SYMBOL(r5c_journal_mode_set); 2598 2599 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2600 const char *page, size_t length) 2601 { 2602 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2603 size_t len = length; 2604 int ret; 2605 2606 if (len < 2) 2607 return -EINVAL; 2608 2609 if (page[len - 1] == '\n') 2610 len--; 2611 2612 while (mode--) 2613 if (strlen(r5c_journal_mode_str[mode]) == len && 2614 !strncmp(page, r5c_journal_mode_str[mode], len)) 2615 break; 2616 ret = mddev_lock(mddev); 2617 if (ret) 2618 return ret; 2619 ret = r5c_journal_mode_set(mddev, mode); 2620 mddev_unlock(mddev); 2621 return ret ?: length; 2622 } 2623 2624 struct md_sysfs_entry 2625 r5c_journal_mode = __ATTR(journal_mode, 0644, 2626 r5c_journal_mode_show, r5c_journal_mode_store); 2627 2628 /* 2629 * Try handle write operation in caching phase. This function should only 2630 * be called in write-back mode. 2631 * 2632 * If all outstanding writes can be handled in caching phase, returns 0 2633 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2634 * and returns -EAGAIN 2635 */ 2636 int r5c_try_caching_write(struct r5conf *conf, 2637 struct stripe_head *sh, 2638 struct stripe_head_state *s, 2639 int disks) 2640 { 2641 struct r5l_log *log = conf->log; 2642 int i; 2643 struct r5dev *dev; 2644 int to_cache = 0; 2645 void **pslot; 2646 sector_t tree_index; 2647 int ret; 2648 uintptr_t refcount; 2649 2650 BUG_ON(!r5c_is_writeback(log)); 2651 2652 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2653 /* 2654 * There are two different scenarios here: 2655 * 1. The stripe has some data cached, and it is sent to 2656 * write-out phase for reclaim 2657 * 2. The stripe is clean, and this is the first write 2658 * 2659 * For 1, return -EAGAIN, so we continue with 2660 * handle_stripe_dirtying(). 2661 * 2662 * For 2, set STRIPE_R5C_CACHING and continue with caching 2663 * write. 2664 */ 2665 2666 /* case 1: anything injournal or anything in written */ 2667 if (s->injournal > 0 || s->written > 0) 2668 return -EAGAIN; 2669 /* case 2 */ 2670 set_bit(STRIPE_R5C_CACHING, &sh->state); 2671 } 2672 2673 /* 2674 * When run in degraded mode, array is set to write-through mode. 2675 * This check helps drain pending write safely in the transition to 2676 * write-through mode. 2677 * 2678 * When a stripe is syncing, the write is also handled in write 2679 * through mode. 2680 */ 2681 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2682 r5c_make_stripe_write_out(sh); 2683 return -EAGAIN; 2684 } 2685 2686 for (i = disks; i--; ) { 2687 dev = &sh->dev[i]; 2688 /* if non-overwrite, use writing-out phase */ 2689 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2690 !test_bit(R5_InJournal, &dev->flags)) { 2691 r5c_make_stripe_write_out(sh); 2692 return -EAGAIN; 2693 } 2694 } 2695 2696 /* if the stripe is not counted in big_stripe_tree, add it now */ 2697 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2698 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2699 tree_index = r5c_tree_index(conf, sh->sector); 2700 spin_lock(&log->tree_lock); 2701 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2702 tree_index); 2703 if (pslot) { 2704 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2705 pslot, &log->tree_lock) >> 2706 R5C_RADIX_COUNT_SHIFT; 2707 radix_tree_replace_slot( 2708 &log->big_stripe_tree, pslot, 2709 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2710 } else { 2711 /* 2712 * this radix_tree_insert can fail safely, so no 2713 * need to call radix_tree_preload() 2714 */ 2715 ret = radix_tree_insert( 2716 &log->big_stripe_tree, tree_index, 2717 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2718 if (ret) { 2719 spin_unlock(&log->tree_lock); 2720 r5c_make_stripe_write_out(sh); 2721 return -EAGAIN; 2722 } 2723 } 2724 spin_unlock(&log->tree_lock); 2725 2726 /* 2727 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2728 * counted in the radix tree 2729 */ 2730 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2731 atomic_inc(&conf->r5c_cached_partial_stripes); 2732 } 2733 2734 for (i = disks; i--; ) { 2735 dev = &sh->dev[i]; 2736 if (dev->towrite) { 2737 set_bit(R5_Wantwrite, &dev->flags); 2738 set_bit(R5_Wantdrain, &dev->flags); 2739 set_bit(R5_LOCKED, &dev->flags); 2740 to_cache++; 2741 } 2742 } 2743 2744 if (to_cache) { 2745 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2746 /* 2747 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2748 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2749 * r5c_handle_data_cached() 2750 */ 2751 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2752 } 2753 2754 return 0; 2755 } 2756 2757 /* 2758 * free extra pages (orig_page) we allocated for prexor 2759 */ 2760 void r5c_release_extra_page(struct stripe_head *sh) 2761 { 2762 struct r5conf *conf = sh->raid_conf; 2763 int i; 2764 bool using_disk_info_extra_page; 2765 2766 using_disk_info_extra_page = 2767 sh->dev[0].orig_page == conf->disks[0].extra_page; 2768 2769 for (i = sh->disks; i--; ) 2770 if (sh->dev[i].page != sh->dev[i].orig_page) { 2771 struct page *p = sh->dev[i].orig_page; 2772 2773 sh->dev[i].orig_page = sh->dev[i].page; 2774 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2775 2776 if (!using_disk_info_extra_page) 2777 put_page(p); 2778 } 2779 2780 if (using_disk_info_extra_page) { 2781 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2782 md_wakeup_thread(conf->mddev->thread); 2783 } 2784 } 2785 2786 void r5c_use_extra_page(struct stripe_head *sh) 2787 { 2788 struct r5conf *conf = sh->raid_conf; 2789 int i; 2790 struct r5dev *dev; 2791 2792 for (i = sh->disks; i--; ) { 2793 dev = &sh->dev[i]; 2794 if (dev->orig_page != dev->page) 2795 put_page(dev->orig_page); 2796 dev->orig_page = conf->disks[i].extra_page; 2797 } 2798 } 2799 2800 /* 2801 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2802 * stripe is committed to RAID disks. 2803 */ 2804 void r5c_finish_stripe_write_out(struct r5conf *conf, 2805 struct stripe_head *sh, 2806 struct stripe_head_state *s) 2807 { 2808 struct r5l_log *log = conf->log; 2809 int i; 2810 int do_wakeup = 0; 2811 sector_t tree_index; 2812 void **pslot; 2813 uintptr_t refcount; 2814 2815 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2816 return; 2817 2818 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2819 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2820 2821 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2822 return; 2823 2824 for (i = sh->disks; i--; ) { 2825 clear_bit(R5_InJournal, &sh->dev[i].flags); 2826 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2827 do_wakeup = 1; 2828 } 2829 2830 /* 2831 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2832 * We updated R5_InJournal, so we also update s->injournal. 2833 */ 2834 s->injournal = 0; 2835 2836 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2837 if (atomic_dec_and_test(&conf->pending_full_writes)) 2838 md_wakeup_thread(conf->mddev->thread); 2839 2840 if (do_wakeup) 2841 wake_up(&conf->wait_for_overlap); 2842 2843 spin_lock_irq(&log->stripe_in_journal_lock); 2844 list_del_init(&sh->r5c); 2845 spin_unlock_irq(&log->stripe_in_journal_lock); 2846 sh->log_start = MaxSector; 2847 2848 atomic_dec(&log->stripe_in_journal_count); 2849 r5c_update_log_state(log); 2850 2851 /* stop counting this stripe in big_stripe_tree */ 2852 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2853 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2854 tree_index = r5c_tree_index(conf, sh->sector); 2855 spin_lock(&log->tree_lock); 2856 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2857 tree_index); 2858 BUG_ON(pslot == NULL); 2859 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2860 pslot, &log->tree_lock) >> 2861 R5C_RADIX_COUNT_SHIFT; 2862 if (refcount == 1) 2863 radix_tree_delete(&log->big_stripe_tree, tree_index); 2864 else 2865 radix_tree_replace_slot( 2866 &log->big_stripe_tree, pslot, 2867 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2868 spin_unlock(&log->tree_lock); 2869 } 2870 2871 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2872 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2873 atomic_dec(&conf->r5c_flushing_partial_stripes); 2874 atomic_dec(&conf->r5c_cached_partial_stripes); 2875 } 2876 2877 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2878 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2879 atomic_dec(&conf->r5c_flushing_full_stripes); 2880 atomic_dec(&conf->r5c_cached_full_stripes); 2881 } 2882 2883 r5l_append_flush_payload(log, sh->sector); 2884 /* stripe is flused to raid disks, we can do resync now */ 2885 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2886 set_bit(STRIPE_HANDLE, &sh->state); 2887 } 2888 2889 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2890 { 2891 struct r5conf *conf = sh->raid_conf; 2892 int pages = 0; 2893 int reserve; 2894 int i; 2895 int ret = 0; 2896 2897 BUG_ON(!log); 2898 2899 for (i = 0; i < sh->disks; i++) { 2900 void *addr; 2901 2902 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2903 continue; 2904 addr = kmap_atomic(sh->dev[i].page); 2905 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2906 addr, PAGE_SIZE); 2907 kunmap_atomic(addr); 2908 pages++; 2909 } 2910 WARN_ON(pages == 0); 2911 2912 /* 2913 * The stripe must enter state machine again to call endio, so 2914 * don't delay. 2915 */ 2916 clear_bit(STRIPE_DELAYED, &sh->state); 2917 atomic_inc(&sh->count); 2918 2919 mutex_lock(&log->io_mutex); 2920 /* meta + data */ 2921 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2922 2923 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2924 sh->log_start == MaxSector) 2925 r5l_add_no_space_stripe(log, sh); 2926 else if (!r5l_has_free_space(log, reserve)) { 2927 if (sh->log_start == log->last_checkpoint) 2928 BUG(); 2929 else 2930 r5l_add_no_space_stripe(log, sh); 2931 } else { 2932 ret = r5l_log_stripe(log, sh, pages, 0); 2933 if (ret) { 2934 spin_lock_irq(&log->io_list_lock); 2935 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2936 spin_unlock_irq(&log->io_list_lock); 2937 } 2938 } 2939 2940 mutex_unlock(&log->io_mutex); 2941 return 0; 2942 } 2943 2944 /* check whether this big stripe is in write back cache. */ 2945 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2946 { 2947 struct r5l_log *log = conf->log; 2948 sector_t tree_index; 2949 void *slot; 2950 2951 if (!log) 2952 return false; 2953 2954 WARN_ON_ONCE(!rcu_read_lock_held()); 2955 tree_index = r5c_tree_index(conf, sect); 2956 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2957 return slot != NULL; 2958 } 2959 2960 static int r5l_load_log(struct r5l_log *log) 2961 { 2962 struct md_rdev *rdev = log->rdev; 2963 struct page *page; 2964 struct r5l_meta_block *mb; 2965 sector_t cp = log->rdev->journal_tail; 2966 u32 stored_crc, expected_crc; 2967 bool create_super = false; 2968 int ret = 0; 2969 2970 /* Make sure it's valid */ 2971 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2972 cp = 0; 2973 page = alloc_page(GFP_KERNEL); 2974 if (!page) 2975 return -ENOMEM; 2976 2977 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2978 ret = -EIO; 2979 goto ioerr; 2980 } 2981 mb = page_address(page); 2982 2983 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2984 mb->version != R5LOG_VERSION) { 2985 create_super = true; 2986 goto create; 2987 } 2988 stored_crc = le32_to_cpu(mb->checksum); 2989 mb->checksum = 0; 2990 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2991 if (stored_crc != expected_crc) { 2992 create_super = true; 2993 goto create; 2994 } 2995 if (le64_to_cpu(mb->position) != cp) { 2996 create_super = true; 2997 goto create; 2998 } 2999 create: 3000 if (create_super) { 3001 log->last_cp_seq = prandom_u32(); 3002 cp = 0; 3003 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3004 /* 3005 * Make sure super points to correct address. Log might have 3006 * data very soon. If super hasn't correct log tail address, 3007 * recovery can't find the log 3008 */ 3009 r5l_write_super(log, cp); 3010 } else 3011 log->last_cp_seq = le64_to_cpu(mb->seq); 3012 3013 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3014 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3015 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3016 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3017 log->last_checkpoint = cp; 3018 3019 __free_page(page); 3020 3021 if (create_super) { 3022 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3023 log->seq = log->last_cp_seq + 1; 3024 log->next_checkpoint = cp; 3025 } else 3026 ret = r5l_recovery_log(log); 3027 3028 r5c_update_log_state(log); 3029 return ret; 3030 ioerr: 3031 __free_page(page); 3032 return ret; 3033 } 3034 3035 int r5l_start(struct r5l_log *log) 3036 { 3037 int ret; 3038 3039 if (!log) 3040 return 0; 3041 3042 ret = r5l_load_log(log); 3043 if (ret) { 3044 struct mddev *mddev = log->rdev->mddev; 3045 struct r5conf *conf = mddev->private; 3046 3047 r5l_exit_log(conf); 3048 } 3049 return ret; 3050 } 3051 3052 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3053 { 3054 struct r5conf *conf = mddev->private; 3055 struct r5l_log *log = conf->log; 3056 3057 if (!log) 3058 return; 3059 3060 if ((raid5_calc_degraded(conf) > 0 || 3061 test_bit(Journal, &rdev->flags)) && 3062 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3063 schedule_work(&log->disable_writeback_work); 3064 } 3065 3066 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3067 { 3068 struct request_queue *q = bdev_get_queue(rdev->bdev); 3069 struct r5l_log *log; 3070 char b[BDEVNAME_SIZE]; 3071 int ret; 3072 3073 pr_debug("md/raid:%s: using device %s as journal\n", 3074 mdname(conf->mddev), bdevname(rdev->bdev, b)); 3075 3076 if (PAGE_SIZE != 4096) 3077 return -EINVAL; 3078 3079 /* 3080 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3081 * raid_disks r5l_payload_data_parity. 3082 * 3083 * Write journal and cache does not work for very big array 3084 * (raid_disks > 203) 3085 */ 3086 if (sizeof(struct r5l_meta_block) + 3087 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3088 conf->raid_disks) > PAGE_SIZE) { 3089 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3090 mdname(conf->mddev), conf->raid_disks); 3091 return -EINVAL; 3092 } 3093 3094 log = kzalloc(sizeof(*log), GFP_KERNEL); 3095 if (!log) 3096 return -ENOMEM; 3097 log->rdev = rdev; 3098 3099 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3100 3101 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3102 sizeof(rdev->mddev->uuid)); 3103 3104 mutex_init(&log->io_mutex); 3105 3106 spin_lock_init(&log->io_list_lock); 3107 INIT_LIST_HEAD(&log->running_ios); 3108 INIT_LIST_HEAD(&log->io_end_ios); 3109 INIT_LIST_HEAD(&log->flushing_ios); 3110 INIT_LIST_HEAD(&log->finished_ios); 3111 bio_init(&log->flush_bio, NULL, 0); 3112 3113 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3114 if (!log->io_kc) 3115 goto io_kc; 3116 3117 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); 3118 if (ret) 3119 goto io_pool; 3120 3121 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3122 if (ret) 3123 goto io_bs; 3124 3125 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); 3126 if (ret) 3127 goto out_mempool; 3128 3129 spin_lock_init(&log->tree_lock); 3130 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3131 3132 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3133 log->rdev->mddev, "reclaim"); 3134 if (!log->reclaim_thread) 3135 goto reclaim_thread; 3136 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3137 3138 init_waitqueue_head(&log->iounit_wait); 3139 3140 INIT_LIST_HEAD(&log->no_mem_stripes); 3141 3142 INIT_LIST_HEAD(&log->no_space_stripes); 3143 spin_lock_init(&log->no_space_stripes_lock); 3144 3145 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3146 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3147 3148 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3149 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3150 spin_lock_init(&log->stripe_in_journal_lock); 3151 atomic_set(&log->stripe_in_journal_count, 0); 3152 3153 rcu_assign_pointer(conf->log, log); 3154 3155 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3156 return 0; 3157 3158 reclaim_thread: 3159 mempool_exit(&log->meta_pool); 3160 out_mempool: 3161 bioset_exit(&log->bs); 3162 io_bs: 3163 mempool_exit(&log->io_pool); 3164 io_pool: 3165 kmem_cache_destroy(log->io_kc); 3166 io_kc: 3167 kfree(log); 3168 return -EINVAL; 3169 } 3170 3171 void r5l_exit_log(struct r5conf *conf) 3172 { 3173 struct r5l_log *log = conf->log; 3174 3175 conf->log = NULL; 3176 synchronize_rcu(); 3177 3178 /* Ensure disable_writeback_work wakes up and exits */ 3179 wake_up(&conf->mddev->sb_wait); 3180 flush_work(&log->disable_writeback_work); 3181 md_unregister_thread(&log->reclaim_thread); 3182 mempool_exit(&log->meta_pool); 3183 bioset_exit(&log->bs); 3184 mempool_exit(&log->io_pool); 3185 kmem_cache_destroy(log->io_kc); 3186 kfree(log); 3187 } 3188