xref: /openbmc/linux/drivers/md/raid5-cache.c (revision d8bcaabe)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "bitmap.h"
27 #include "raid5-log.h"
28 
29 /*
30  * metadata/data stored in disk with 4k size unit (a block) regardless
31  * underneath hardware sector size. only works with PAGE_SIZE == 4096
32  */
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
35 
36 /*
37  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
38  *
39  * In write through mode, the reclaim runs every log->max_free_space.
40  * This can prevent the recovery scans for too long
41  */
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
44 
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51 
52 /*
53  * We only need 2 bios per I/O unit to make progress, but ensure we
54  * have a few more available to not get too tight.
55  */
56 #define R5L_POOL_SIZE	4
57 
58 static char *r5c_journal_mode_str[] = {"write-through",
59 				       "write-back"};
60 /*
61  * raid5 cache state machine
62  *
63  * With the RAID cache, each stripe works in two phases:
64  *	- caching phase
65  *	- writing-out phase
66  *
67  * These two phases are controlled by bit STRIPE_R5C_CACHING:
68  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
70  *
71  * When there is no journal, or the journal is in write-through mode,
72  * the stripe is always in writing-out phase.
73  *
74  * For write-back journal, the stripe is sent to caching phase on write
75  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76  * the write-out phase by clearing STRIPE_R5C_CACHING.
77  *
78  * Stripes in caching phase do not write the raid disks. Instead, all
79  * writes are committed from the log device. Therefore, a stripe in
80  * caching phase handles writes as:
81  *	- write to log device
82  *	- return IO
83  *
84  * Stripes in writing-out phase handle writes as:
85  *	- calculate parity
86  *	- write pending data and parity to journal
87  *	- write data and parity to raid disks
88  *	- return IO for pending writes
89  */
90 
91 struct r5l_log {
92 	struct md_rdev *rdev;
93 
94 	u32 uuid_checksum;
95 
96 	sector_t device_size;		/* log device size, round to
97 					 * BLOCK_SECTORS */
98 	sector_t max_free_space;	/* reclaim run if free space is at
99 					 * this size */
100 
101 	sector_t last_checkpoint;	/* log tail. where recovery scan
102 					 * starts from */
103 	u64 last_cp_seq;		/* log tail sequence */
104 
105 	sector_t log_start;		/* log head. where new data appends */
106 	u64 seq;			/* log head sequence */
107 
108 	sector_t next_checkpoint;
109 
110 	struct mutex io_mutex;
111 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
112 
113 	spinlock_t io_list_lock;
114 	struct list_head running_ios;	/* io_units which are still running,
115 					 * and have not yet been completely
116 					 * written to the log */
117 	struct list_head io_end_ios;	/* io_units which have been completely
118 					 * written to the log but not yet written
119 					 * to the RAID */
120 	struct list_head flushing_ios;	/* io_units which are waiting for log
121 					 * cache flush */
122 	struct list_head finished_ios;	/* io_units which settle down in log disk */
123 	struct bio flush_bio;
124 
125 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
126 
127 	struct kmem_cache *io_kc;
128 	mempool_t *io_pool;
129 	struct bio_set *bs;
130 	mempool_t *meta_pool;
131 
132 	struct md_thread *reclaim_thread;
133 	unsigned long reclaim_target;	/* number of space that need to be
134 					 * reclaimed.  if it's 0, reclaim spaces
135 					 * used by io_units which are in
136 					 * IO_UNIT_STRIPE_END state (eg, reclaim
137 					 * dones't wait for specific io_unit
138 					 * switching to IO_UNIT_STRIPE_END
139 					 * state) */
140 	wait_queue_head_t iounit_wait;
141 
142 	struct list_head no_space_stripes; /* pending stripes, log has no space */
143 	spinlock_t no_space_stripes_lock;
144 
145 	bool need_cache_flush;
146 
147 	/* for r5c_cache */
148 	enum r5c_journal_mode r5c_journal_mode;
149 
150 	/* all stripes in r5cache, in the order of seq at sh->log_start */
151 	struct list_head stripe_in_journal_list;
152 
153 	spinlock_t stripe_in_journal_lock;
154 	atomic_t stripe_in_journal_count;
155 
156 	/* to submit async io_units, to fulfill ordering of flush */
157 	struct work_struct deferred_io_work;
158 	/* to disable write back during in degraded mode */
159 	struct work_struct disable_writeback_work;
160 
161 	/* to for chunk_aligned_read in writeback mode, details below */
162 	spinlock_t tree_lock;
163 	struct radix_tree_root big_stripe_tree;
164 };
165 
166 /*
167  * Enable chunk_aligned_read() with write back cache.
168  *
169  * Each chunk may contain more than one stripe (for example, a 256kB
170  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172  * For each big_stripe, we count how many stripes of this big_stripe
173  * are in the write back cache. These data are tracked in a radix tree
174  * (big_stripe_tree). We use radix_tree item pointer as the counter.
175  * r5c_tree_index() is used to calculate keys for the radix tree.
176  *
177  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178  * big_stripe of each chunk in the tree. If this big_stripe is in the
179  * tree, chunk_aligned_read() aborts. This look up is protected by
180  * rcu_read_lock().
181  *
182  * It is necessary to remember whether a stripe is counted in
183  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185  * two flags are set, the stripe is counted in big_stripe_tree. This
186  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187  * r5c_try_caching_write(); and moving clear_bit of
188  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189  * r5c_finish_stripe_write_out().
190  */
191 
192 /*
193  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194  * So it is necessary to left shift the counter by 2 bits before using it
195  * as data pointer of the tree.
196  */
197 #define R5C_RADIX_COUNT_SHIFT 2
198 
199 /*
200  * calculate key for big_stripe_tree
201  *
202  * sect: align_bi->bi_iter.bi_sector or sh->sector
203  */
204 static inline sector_t r5c_tree_index(struct r5conf *conf,
205 				      sector_t sect)
206 {
207 	sector_t offset;
208 
209 	offset = sector_div(sect, conf->chunk_sectors);
210 	return sect;
211 }
212 
213 /*
214  * an IO range starts from a meta data block and end at the next meta data
215  * block. The io unit's the meta data block tracks data/parity followed it. io
216  * unit is written to log disk with normal write, as we always flush log disk
217  * first and then start move data to raid disks, there is no requirement to
218  * write io unit with FLUSH/FUA
219  */
220 struct r5l_io_unit {
221 	struct r5l_log *log;
222 
223 	struct page *meta_page;	/* store meta block */
224 	int meta_offset;	/* current offset in meta_page */
225 
226 	struct bio *current_bio;/* current_bio accepting new data */
227 
228 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
229 	u64 seq;		/* seq number of the metablock */
230 	sector_t log_start;	/* where the io_unit starts */
231 	sector_t log_end;	/* where the io_unit ends */
232 	struct list_head log_sibling; /* log->running_ios */
233 	struct list_head stripe_list; /* stripes added to the io_unit */
234 
235 	int state;
236 	bool need_split_bio;
237 	struct bio *split_bio;
238 
239 	unsigned int has_flush:1;		/* include flush request */
240 	unsigned int has_fua:1;			/* include fua request */
241 	unsigned int has_null_flush:1;		/* include null flush request */
242 	unsigned int has_flush_payload:1;	/* include flush payload  */
243 	/*
244 	 * io isn't sent yet, flush/fua request can only be submitted till it's
245 	 * the first IO in running_ios list
246 	 */
247 	unsigned int io_deferred:1;
248 
249 	struct bio_list flush_barriers;   /* size == 0 flush bios */
250 };
251 
252 /* r5l_io_unit state */
253 enum r5l_io_unit_state {
254 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
255 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
256 				 * don't accepting new bio */
257 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
258 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
259 };
260 
261 bool r5c_is_writeback(struct r5l_log *log)
262 {
263 	return (log != NULL &&
264 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
265 }
266 
267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
268 {
269 	start += inc;
270 	if (start >= log->device_size)
271 		start = start - log->device_size;
272 	return start;
273 }
274 
275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
276 				  sector_t end)
277 {
278 	if (end >= start)
279 		return end - start;
280 	else
281 		return end + log->device_size - start;
282 }
283 
284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
285 {
286 	sector_t used_size;
287 
288 	used_size = r5l_ring_distance(log, log->last_checkpoint,
289 					log->log_start);
290 
291 	return log->device_size > used_size + size;
292 }
293 
294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
295 				    enum r5l_io_unit_state state)
296 {
297 	if (WARN_ON(io->state >= state))
298 		return;
299 	io->state = state;
300 }
301 
302 static void
303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
304 {
305 	struct bio *wbi, *wbi2;
306 
307 	wbi = dev->written;
308 	dev->written = NULL;
309 	while (wbi && wbi->bi_iter.bi_sector <
310 	       dev->sector + STRIPE_SECTORS) {
311 		wbi2 = r5_next_bio(wbi, dev->sector);
312 		md_write_end(conf->mddev);
313 		bio_endio(wbi);
314 		wbi = wbi2;
315 	}
316 }
317 
318 void r5c_handle_cached_data_endio(struct r5conf *conf,
319 				  struct stripe_head *sh, int disks)
320 {
321 	int i;
322 
323 	for (i = sh->disks; i--; ) {
324 		if (sh->dev[i].written) {
325 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
326 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
327 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
328 					STRIPE_SECTORS,
329 					!test_bit(STRIPE_DEGRADED, &sh->state),
330 					0);
331 		}
332 	}
333 }
334 
335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
336 
337 /* Check whether we should flush some stripes to free up stripe cache */
338 void r5c_check_stripe_cache_usage(struct r5conf *conf)
339 {
340 	int total_cached;
341 
342 	if (!r5c_is_writeback(conf->log))
343 		return;
344 
345 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
346 		atomic_read(&conf->r5c_cached_full_stripes);
347 
348 	/*
349 	 * The following condition is true for either of the following:
350 	 *   - stripe cache pressure high:
351 	 *          total_cached > 3/4 min_nr_stripes ||
352 	 *          empty_inactive_list_nr > 0
353 	 *   - stripe cache pressure moderate:
354 	 *          total_cached > 1/2 min_nr_stripes
355 	 */
356 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
357 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
358 		r5l_wake_reclaim(conf->log, 0);
359 }
360 
361 /*
362  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
363  * stripes in the cache
364  */
365 void r5c_check_cached_full_stripe(struct r5conf *conf)
366 {
367 	if (!r5c_is_writeback(conf->log))
368 		return;
369 
370 	/*
371 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
372 	 * or a full stripe (chunk size / 4k stripes).
373 	 */
374 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
375 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
376 		conf->chunk_sectors >> STRIPE_SHIFT))
377 		r5l_wake_reclaim(conf->log, 0);
378 }
379 
380 /*
381  * Total log space (in sectors) needed to flush all data in cache
382  *
383  * To avoid deadlock due to log space, it is necessary to reserve log
384  * space to flush critical stripes (stripes that occupying log space near
385  * last_checkpoint). This function helps check how much log space is
386  * required to flush all cached stripes.
387  *
388  * To reduce log space requirements, two mechanisms are used to give cache
389  * flush higher priorities:
390  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
391  *       stripes ALREADY in journal can be flushed w/o pending writes;
392  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
393  *       can be delayed (r5l_add_no_space_stripe).
394  *
395  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
396  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
397  * pages of journal space. For stripes that has not passed 1, flushing it
398  * requires (conf->raid_disks + 1) pages of journal space. There are at
399  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
400  * required to flush all cached stripes (in pages) is:
401  *
402  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
403  *     (group_cnt + 1) * (raid_disks + 1)
404  * or
405  *     (stripe_in_journal_count) * (max_degraded + 1) +
406  *     (group_cnt + 1) * (raid_disks - max_degraded)
407  */
408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
409 {
410 	struct r5l_log *log = conf->log;
411 
412 	if (!r5c_is_writeback(log))
413 		return 0;
414 
415 	return BLOCK_SECTORS *
416 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
417 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
418 }
419 
420 /*
421  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
422  *
423  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
424  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
425  * device is less than 2x of reclaim_required_space.
426  */
427 static inline void r5c_update_log_state(struct r5l_log *log)
428 {
429 	struct r5conf *conf = log->rdev->mddev->private;
430 	sector_t free_space;
431 	sector_t reclaim_space;
432 	bool wake_reclaim = false;
433 
434 	if (!r5c_is_writeback(log))
435 		return;
436 
437 	free_space = r5l_ring_distance(log, log->log_start,
438 				       log->last_checkpoint);
439 	reclaim_space = r5c_log_required_to_flush_cache(conf);
440 	if (free_space < 2 * reclaim_space)
441 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
442 	else {
443 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
444 			wake_reclaim = true;
445 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
446 	}
447 	if (free_space < 3 * reclaim_space)
448 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
449 	else
450 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
451 
452 	if (wake_reclaim)
453 		r5l_wake_reclaim(log, 0);
454 }
455 
456 /*
457  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
458  * This function should only be called in write-back mode.
459  */
460 void r5c_make_stripe_write_out(struct stripe_head *sh)
461 {
462 	struct r5conf *conf = sh->raid_conf;
463 	struct r5l_log *log = conf->log;
464 
465 	BUG_ON(!r5c_is_writeback(log));
466 
467 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
468 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
469 
470 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
471 		atomic_inc(&conf->preread_active_stripes);
472 }
473 
474 static void r5c_handle_data_cached(struct stripe_head *sh)
475 {
476 	int i;
477 
478 	for (i = sh->disks; i--; )
479 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
480 			set_bit(R5_InJournal, &sh->dev[i].flags);
481 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
482 		}
483 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
484 }
485 
486 /*
487  * this journal write must contain full parity,
488  * it may also contain some data pages
489  */
490 static void r5c_handle_parity_cached(struct stripe_head *sh)
491 {
492 	int i;
493 
494 	for (i = sh->disks; i--; )
495 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
496 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
497 }
498 
499 /*
500  * Setting proper flags after writing (or flushing) data and/or parity to the
501  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
502  */
503 static void r5c_finish_cache_stripe(struct stripe_head *sh)
504 {
505 	struct r5l_log *log = sh->raid_conf->log;
506 
507 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
508 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
509 		/*
510 		 * Set R5_InJournal for parity dev[pd_idx]. This means
511 		 * all data AND parity in the journal. For RAID 6, it is
512 		 * NOT necessary to set the flag for dev[qd_idx], as the
513 		 * two parities are written out together.
514 		 */
515 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
516 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
517 		r5c_handle_data_cached(sh);
518 	} else {
519 		r5c_handle_parity_cached(sh);
520 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
521 	}
522 }
523 
524 static void r5l_io_run_stripes(struct r5l_io_unit *io)
525 {
526 	struct stripe_head *sh, *next;
527 
528 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
529 		list_del_init(&sh->log_list);
530 
531 		r5c_finish_cache_stripe(sh);
532 
533 		set_bit(STRIPE_HANDLE, &sh->state);
534 		raid5_release_stripe(sh);
535 	}
536 }
537 
538 static void r5l_log_run_stripes(struct r5l_log *log)
539 {
540 	struct r5l_io_unit *io, *next;
541 
542 	assert_spin_locked(&log->io_list_lock);
543 
544 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
545 		/* don't change list order */
546 		if (io->state < IO_UNIT_IO_END)
547 			break;
548 
549 		list_move_tail(&io->log_sibling, &log->finished_ios);
550 		r5l_io_run_stripes(io);
551 	}
552 }
553 
554 static void r5l_move_to_end_ios(struct r5l_log *log)
555 {
556 	struct r5l_io_unit *io, *next;
557 
558 	assert_spin_locked(&log->io_list_lock);
559 
560 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
561 		/* don't change list order */
562 		if (io->state < IO_UNIT_IO_END)
563 			break;
564 		list_move_tail(&io->log_sibling, &log->io_end_ios);
565 	}
566 }
567 
568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
569 static void r5l_log_endio(struct bio *bio)
570 {
571 	struct r5l_io_unit *io = bio->bi_private;
572 	struct r5l_io_unit *io_deferred;
573 	struct r5l_log *log = io->log;
574 	unsigned long flags;
575 	bool has_null_flush;
576 	bool has_flush_payload;
577 
578 	if (bio->bi_status)
579 		md_error(log->rdev->mddev, log->rdev);
580 
581 	bio_put(bio);
582 	mempool_free(io->meta_page, log->meta_pool);
583 
584 	spin_lock_irqsave(&log->io_list_lock, flags);
585 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
586 
587 	/*
588 	 * if the io doesn't not have null_flush or flush payload,
589 	 * it is not safe to access it after releasing io_list_lock.
590 	 * Therefore, it is necessary to check the condition with
591 	 * the lock held.
592 	 */
593 	has_null_flush = io->has_null_flush;
594 	has_flush_payload = io->has_flush_payload;
595 
596 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
597 		r5l_move_to_end_ios(log);
598 	else
599 		r5l_log_run_stripes(log);
600 	if (!list_empty(&log->running_ios)) {
601 		/*
602 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
603 		 * can dispatch it
604 		 */
605 		io_deferred = list_first_entry(&log->running_ios,
606 					       struct r5l_io_unit, log_sibling);
607 		if (io_deferred->io_deferred)
608 			schedule_work(&log->deferred_io_work);
609 	}
610 
611 	spin_unlock_irqrestore(&log->io_list_lock, flags);
612 
613 	if (log->need_cache_flush)
614 		md_wakeup_thread(log->rdev->mddev->thread);
615 
616 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
617 	if (has_null_flush) {
618 		struct bio *bi;
619 
620 		WARN_ON(bio_list_empty(&io->flush_barriers));
621 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
622 			bio_endio(bi);
623 			if (atomic_dec_and_test(&io->pending_stripe)) {
624 				__r5l_stripe_write_finished(io);
625 				return;
626 			}
627 		}
628 	}
629 	/* decrease pending_stripe for flush payload */
630 	if (has_flush_payload)
631 		if (atomic_dec_and_test(&io->pending_stripe))
632 			__r5l_stripe_write_finished(io);
633 }
634 
635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
636 {
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&log->io_list_lock, flags);
640 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
641 	spin_unlock_irqrestore(&log->io_list_lock, flags);
642 
643 	/*
644 	 * In case of journal device failures, submit_bio will get error
645 	 * and calls endio, then active stripes will continue write
646 	 * process. Therefore, it is not necessary to check Faulty bit
647 	 * of journal device here.
648 	 *
649 	 * We can't check split_bio after current_bio is submitted. If
650 	 * io->split_bio is null, after current_bio is submitted, current_bio
651 	 * might already be completed and the io_unit is freed. We submit
652 	 * split_bio first to avoid the issue.
653 	 */
654 	if (io->split_bio) {
655 		if (io->has_flush)
656 			io->split_bio->bi_opf |= REQ_PREFLUSH;
657 		if (io->has_fua)
658 			io->split_bio->bi_opf |= REQ_FUA;
659 		submit_bio(io->split_bio);
660 	}
661 
662 	if (io->has_flush)
663 		io->current_bio->bi_opf |= REQ_PREFLUSH;
664 	if (io->has_fua)
665 		io->current_bio->bi_opf |= REQ_FUA;
666 	submit_bio(io->current_bio);
667 }
668 
669 /* deferred io_unit will be dispatched here */
670 static void r5l_submit_io_async(struct work_struct *work)
671 {
672 	struct r5l_log *log = container_of(work, struct r5l_log,
673 					   deferred_io_work);
674 	struct r5l_io_unit *io = NULL;
675 	unsigned long flags;
676 
677 	spin_lock_irqsave(&log->io_list_lock, flags);
678 	if (!list_empty(&log->running_ios)) {
679 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
680 				      log_sibling);
681 		if (!io->io_deferred)
682 			io = NULL;
683 		else
684 			io->io_deferred = 0;
685 	}
686 	spin_unlock_irqrestore(&log->io_list_lock, flags);
687 	if (io)
688 		r5l_do_submit_io(log, io);
689 }
690 
691 static void r5c_disable_writeback_async(struct work_struct *work)
692 {
693 	struct r5l_log *log = container_of(work, struct r5l_log,
694 					   disable_writeback_work);
695 	struct mddev *mddev = log->rdev->mddev;
696 
697 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
698 		return;
699 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
700 		mdname(mddev));
701 
702 	/* wait superblock change before suspend */
703 	wait_event(mddev->sb_wait,
704 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
705 
706 	mddev_suspend(mddev);
707 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
708 	mddev_resume(mddev);
709 }
710 
711 static void r5l_submit_current_io(struct r5l_log *log)
712 {
713 	struct r5l_io_unit *io = log->current_io;
714 	struct bio *bio;
715 	struct r5l_meta_block *block;
716 	unsigned long flags;
717 	u32 crc;
718 	bool do_submit = true;
719 
720 	if (!io)
721 		return;
722 
723 	block = page_address(io->meta_page);
724 	block->meta_size = cpu_to_le32(io->meta_offset);
725 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
726 	block->checksum = cpu_to_le32(crc);
727 	bio = io->current_bio;
728 
729 	log->current_io = NULL;
730 	spin_lock_irqsave(&log->io_list_lock, flags);
731 	if (io->has_flush || io->has_fua) {
732 		if (io != list_first_entry(&log->running_ios,
733 					   struct r5l_io_unit, log_sibling)) {
734 			io->io_deferred = 1;
735 			do_submit = false;
736 		}
737 	}
738 	spin_unlock_irqrestore(&log->io_list_lock, flags);
739 	if (do_submit)
740 		r5l_do_submit_io(log, io);
741 }
742 
743 static struct bio *r5l_bio_alloc(struct r5l_log *log)
744 {
745 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
746 
747 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
748 	bio_set_dev(bio, log->rdev->bdev);
749 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
750 
751 	return bio;
752 }
753 
754 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
755 {
756 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
757 
758 	r5c_update_log_state(log);
759 	/*
760 	 * If we filled up the log device start from the beginning again,
761 	 * which will require a new bio.
762 	 *
763 	 * Note: for this to work properly the log size needs to me a multiple
764 	 * of BLOCK_SECTORS.
765 	 */
766 	if (log->log_start == 0)
767 		io->need_split_bio = true;
768 
769 	io->log_end = log->log_start;
770 }
771 
772 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
773 {
774 	struct r5l_io_unit *io;
775 	struct r5l_meta_block *block;
776 
777 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
778 	if (!io)
779 		return NULL;
780 	memset(io, 0, sizeof(*io));
781 
782 	io->log = log;
783 	INIT_LIST_HEAD(&io->log_sibling);
784 	INIT_LIST_HEAD(&io->stripe_list);
785 	bio_list_init(&io->flush_barriers);
786 	io->state = IO_UNIT_RUNNING;
787 
788 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
789 	block = page_address(io->meta_page);
790 	clear_page(block);
791 	block->magic = cpu_to_le32(R5LOG_MAGIC);
792 	block->version = R5LOG_VERSION;
793 	block->seq = cpu_to_le64(log->seq);
794 	block->position = cpu_to_le64(log->log_start);
795 
796 	io->log_start = log->log_start;
797 	io->meta_offset = sizeof(struct r5l_meta_block);
798 	io->seq = log->seq++;
799 
800 	io->current_bio = r5l_bio_alloc(log);
801 	io->current_bio->bi_end_io = r5l_log_endio;
802 	io->current_bio->bi_private = io;
803 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
804 
805 	r5_reserve_log_entry(log, io);
806 
807 	spin_lock_irq(&log->io_list_lock);
808 	list_add_tail(&io->log_sibling, &log->running_ios);
809 	spin_unlock_irq(&log->io_list_lock);
810 
811 	return io;
812 }
813 
814 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
815 {
816 	if (log->current_io &&
817 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
818 		r5l_submit_current_io(log);
819 
820 	if (!log->current_io) {
821 		log->current_io = r5l_new_meta(log);
822 		if (!log->current_io)
823 			return -ENOMEM;
824 	}
825 
826 	return 0;
827 }
828 
829 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
830 				    sector_t location,
831 				    u32 checksum1, u32 checksum2,
832 				    bool checksum2_valid)
833 {
834 	struct r5l_io_unit *io = log->current_io;
835 	struct r5l_payload_data_parity *payload;
836 
837 	payload = page_address(io->meta_page) + io->meta_offset;
838 	payload->header.type = cpu_to_le16(type);
839 	payload->header.flags = cpu_to_le16(0);
840 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
841 				    (PAGE_SHIFT - 9));
842 	payload->location = cpu_to_le64(location);
843 	payload->checksum[0] = cpu_to_le32(checksum1);
844 	if (checksum2_valid)
845 		payload->checksum[1] = cpu_to_le32(checksum2);
846 
847 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
848 		sizeof(__le32) * (1 + !!checksum2_valid);
849 }
850 
851 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
852 {
853 	struct r5l_io_unit *io = log->current_io;
854 
855 	if (io->need_split_bio) {
856 		BUG_ON(io->split_bio);
857 		io->split_bio = io->current_bio;
858 		io->current_bio = r5l_bio_alloc(log);
859 		bio_chain(io->current_bio, io->split_bio);
860 		io->need_split_bio = false;
861 	}
862 
863 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
864 		BUG();
865 
866 	r5_reserve_log_entry(log, io);
867 }
868 
869 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
870 {
871 	struct mddev *mddev = log->rdev->mddev;
872 	struct r5conf *conf = mddev->private;
873 	struct r5l_io_unit *io;
874 	struct r5l_payload_flush *payload;
875 	int meta_size;
876 
877 	/*
878 	 * payload_flush requires extra writes to the journal.
879 	 * To avoid handling the extra IO in quiesce, just skip
880 	 * flush_payload
881 	 */
882 	if (conf->quiesce)
883 		return;
884 
885 	mutex_lock(&log->io_mutex);
886 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
887 
888 	if (r5l_get_meta(log, meta_size)) {
889 		mutex_unlock(&log->io_mutex);
890 		return;
891 	}
892 
893 	/* current implementation is one stripe per flush payload */
894 	io = log->current_io;
895 	payload = page_address(io->meta_page) + io->meta_offset;
896 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
897 	payload->header.flags = cpu_to_le16(0);
898 	payload->size = cpu_to_le32(sizeof(__le64));
899 	payload->flush_stripes[0] = cpu_to_le64(sect);
900 	io->meta_offset += meta_size;
901 	/* multiple flush payloads count as one pending_stripe */
902 	if (!io->has_flush_payload) {
903 		io->has_flush_payload = 1;
904 		atomic_inc(&io->pending_stripe);
905 	}
906 	mutex_unlock(&log->io_mutex);
907 }
908 
909 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
910 			   int data_pages, int parity_pages)
911 {
912 	int i;
913 	int meta_size;
914 	int ret;
915 	struct r5l_io_unit *io;
916 
917 	meta_size =
918 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
919 		 * data_pages) +
920 		sizeof(struct r5l_payload_data_parity) +
921 		sizeof(__le32) * parity_pages;
922 
923 	ret = r5l_get_meta(log, meta_size);
924 	if (ret)
925 		return ret;
926 
927 	io = log->current_io;
928 
929 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
930 		io->has_flush = 1;
931 
932 	for (i = 0; i < sh->disks; i++) {
933 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
934 		    test_bit(R5_InJournal, &sh->dev[i].flags))
935 			continue;
936 		if (i == sh->pd_idx || i == sh->qd_idx)
937 			continue;
938 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
939 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
940 			io->has_fua = 1;
941 			/*
942 			 * we need to flush journal to make sure recovery can
943 			 * reach the data with fua flag
944 			 */
945 			io->has_flush = 1;
946 		}
947 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
948 					raid5_compute_blocknr(sh, i, 0),
949 					sh->dev[i].log_checksum, 0, false);
950 		r5l_append_payload_page(log, sh->dev[i].page);
951 	}
952 
953 	if (parity_pages == 2) {
954 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
955 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
956 					sh->dev[sh->qd_idx].log_checksum, true);
957 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
958 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
959 	} else if (parity_pages == 1) {
960 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
961 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
962 					0, false);
963 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
964 	} else  /* Just writing data, not parity, in caching phase */
965 		BUG_ON(parity_pages != 0);
966 
967 	list_add_tail(&sh->log_list, &io->stripe_list);
968 	atomic_inc(&io->pending_stripe);
969 	sh->log_io = io;
970 
971 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
972 		return 0;
973 
974 	if (sh->log_start == MaxSector) {
975 		BUG_ON(!list_empty(&sh->r5c));
976 		sh->log_start = io->log_start;
977 		spin_lock_irq(&log->stripe_in_journal_lock);
978 		list_add_tail(&sh->r5c,
979 			      &log->stripe_in_journal_list);
980 		spin_unlock_irq(&log->stripe_in_journal_lock);
981 		atomic_inc(&log->stripe_in_journal_count);
982 	}
983 	return 0;
984 }
985 
986 /* add stripe to no_space_stripes, and then wake up reclaim */
987 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
988 					   struct stripe_head *sh)
989 {
990 	spin_lock(&log->no_space_stripes_lock);
991 	list_add_tail(&sh->log_list, &log->no_space_stripes);
992 	spin_unlock(&log->no_space_stripes_lock);
993 }
994 
995 /*
996  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
997  * data from log to raid disks), so we shouldn't wait for reclaim here
998  */
999 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
1000 {
1001 	struct r5conf *conf = sh->raid_conf;
1002 	int write_disks = 0;
1003 	int data_pages, parity_pages;
1004 	int reserve;
1005 	int i;
1006 	int ret = 0;
1007 	bool wake_reclaim = false;
1008 
1009 	if (!log)
1010 		return -EAGAIN;
1011 	/* Don't support stripe batch */
1012 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1013 	    test_bit(STRIPE_SYNCING, &sh->state)) {
1014 		/* the stripe is written to log, we start writing it to raid */
1015 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1016 		return -EAGAIN;
1017 	}
1018 
1019 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1020 
1021 	for (i = 0; i < sh->disks; i++) {
1022 		void *addr;
1023 
1024 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1025 		    test_bit(R5_InJournal, &sh->dev[i].flags))
1026 			continue;
1027 
1028 		write_disks++;
1029 		/* checksum is already calculated in last run */
1030 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1031 			continue;
1032 		addr = kmap_atomic(sh->dev[i].page);
1033 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1034 						    addr, PAGE_SIZE);
1035 		kunmap_atomic(addr);
1036 	}
1037 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1038 	data_pages = write_disks - parity_pages;
1039 
1040 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1041 	/*
1042 	 * The stripe must enter state machine again to finish the write, so
1043 	 * don't delay.
1044 	 */
1045 	clear_bit(STRIPE_DELAYED, &sh->state);
1046 	atomic_inc(&sh->count);
1047 
1048 	mutex_lock(&log->io_mutex);
1049 	/* meta + data */
1050 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1051 
1052 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1053 		if (!r5l_has_free_space(log, reserve)) {
1054 			r5l_add_no_space_stripe(log, sh);
1055 			wake_reclaim = true;
1056 		} else {
1057 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1058 			if (ret) {
1059 				spin_lock_irq(&log->io_list_lock);
1060 				list_add_tail(&sh->log_list,
1061 					      &log->no_mem_stripes);
1062 				spin_unlock_irq(&log->io_list_lock);
1063 			}
1064 		}
1065 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1066 		/*
1067 		 * log space critical, do not process stripes that are
1068 		 * not in cache yet (sh->log_start == MaxSector).
1069 		 */
1070 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1071 		    sh->log_start == MaxSector) {
1072 			r5l_add_no_space_stripe(log, sh);
1073 			wake_reclaim = true;
1074 			reserve = 0;
1075 		} else if (!r5l_has_free_space(log, reserve)) {
1076 			if (sh->log_start == log->last_checkpoint)
1077 				BUG();
1078 			else
1079 				r5l_add_no_space_stripe(log, sh);
1080 		} else {
1081 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1082 			if (ret) {
1083 				spin_lock_irq(&log->io_list_lock);
1084 				list_add_tail(&sh->log_list,
1085 					      &log->no_mem_stripes);
1086 				spin_unlock_irq(&log->io_list_lock);
1087 			}
1088 		}
1089 	}
1090 
1091 	mutex_unlock(&log->io_mutex);
1092 	if (wake_reclaim)
1093 		r5l_wake_reclaim(log, reserve);
1094 	return 0;
1095 }
1096 
1097 void r5l_write_stripe_run(struct r5l_log *log)
1098 {
1099 	if (!log)
1100 		return;
1101 	mutex_lock(&log->io_mutex);
1102 	r5l_submit_current_io(log);
1103 	mutex_unlock(&log->io_mutex);
1104 }
1105 
1106 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1107 {
1108 	if (!log)
1109 		return -ENODEV;
1110 
1111 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1112 		/*
1113 		 * in write through (journal only)
1114 		 * we flush log disk cache first, then write stripe data to
1115 		 * raid disks. So if bio is finished, the log disk cache is
1116 		 * flushed already. The recovery guarantees we can recovery
1117 		 * the bio from log disk, so we don't need to flush again
1118 		 */
1119 		if (bio->bi_iter.bi_size == 0) {
1120 			bio_endio(bio);
1121 			return 0;
1122 		}
1123 		bio->bi_opf &= ~REQ_PREFLUSH;
1124 	} else {
1125 		/* write back (with cache) */
1126 		if (bio->bi_iter.bi_size == 0) {
1127 			mutex_lock(&log->io_mutex);
1128 			r5l_get_meta(log, 0);
1129 			bio_list_add(&log->current_io->flush_barriers, bio);
1130 			log->current_io->has_flush = 1;
1131 			log->current_io->has_null_flush = 1;
1132 			atomic_inc(&log->current_io->pending_stripe);
1133 			r5l_submit_current_io(log);
1134 			mutex_unlock(&log->io_mutex);
1135 			return 0;
1136 		}
1137 	}
1138 	return -EAGAIN;
1139 }
1140 
1141 /* This will run after log space is reclaimed */
1142 static void r5l_run_no_space_stripes(struct r5l_log *log)
1143 {
1144 	struct stripe_head *sh;
1145 
1146 	spin_lock(&log->no_space_stripes_lock);
1147 	while (!list_empty(&log->no_space_stripes)) {
1148 		sh = list_first_entry(&log->no_space_stripes,
1149 				      struct stripe_head, log_list);
1150 		list_del_init(&sh->log_list);
1151 		set_bit(STRIPE_HANDLE, &sh->state);
1152 		raid5_release_stripe(sh);
1153 	}
1154 	spin_unlock(&log->no_space_stripes_lock);
1155 }
1156 
1157 /*
1158  * calculate new last_checkpoint
1159  * for write through mode, returns log->next_checkpoint
1160  * for write back, returns log_start of first sh in stripe_in_journal_list
1161  */
1162 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1163 {
1164 	struct stripe_head *sh;
1165 	struct r5l_log *log = conf->log;
1166 	sector_t new_cp;
1167 	unsigned long flags;
1168 
1169 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1170 		return log->next_checkpoint;
1171 
1172 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1173 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1174 		/* all stripes flushed */
1175 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1176 		return log->next_checkpoint;
1177 	}
1178 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1179 			      struct stripe_head, r5c);
1180 	new_cp = sh->log_start;
1181 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1182 	return new_cp;
1183 }
1184 
1185 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1186 {
1187 	struct r5conf *conf = log->rdev->mddev->private;
1188 
1189 	return r5l_ring_distance(log, log->last_checkpoint,
1190 				 r5c_calculate_new_cp(conf));
1191 }
1192 
1193 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1194 {
1195 	struct stripe_head *sh;
1196 
1197 	assert_spin_locked(&log->io_list_lock);
1198 
1199 	if (!list_empty(&log->no_mem_stripes)) {
1200 		sh = list_first_entry(&log->no_mem_stripes,
1201 				      struct stripe_head, log_list);
1202 		list_del_init(&sh->log_list);
1203 		set_bit(STRIPE_HANDLE, &sh->state);
1204 		raid5_release_stripe(sh);
1205 	}
1206 }
1207 
1208 static bool r5l_complete_finished_ios(struct r5l_log *log)
1209 {
1210 	struct r5l_io_unit *io, *next;
1211 	bool found = false;
1212 
1213 	assert_spin_locked(&log->io_list_lock);
1214 
1215 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1216 		/* don't change list order */
1217 		if (io->state < IO_UNIT_STRIPE_END)
1218 			break;
1219 
1220 		log->next_checkpoint = io->log_start;
1221 
1222 		list_del(&io->log_sibling);
1223 		mempool_free(io, log->io_pool);
1224 		r5l_run_no_mem_stripe(log);
1225 
1226 		found = true;
1227 	}
1228 
1229 	return found;
1230 }
1231 
1232 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1233 {
1234 	struct r5l_log *log = io->log;
1235 	struct r5conf *conf = log->rdev->mddev->private;
1236 	unsigned long flags;
1237 
1238 	spin_lock_irqsave(&log->io_list_lock, flags);
1239 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1240 
1241 	if (!r5l_complete_finished_ios(log)) {
1242 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1243 		return;
1244 	}
1245 
1246 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1247 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1248 		r5l_wake_reclaim(log, 0);
1249 
1250 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1251 	wake_up(&log->iounit_wait);
1252 }
1253 
1254 void r5l_stripe_write_finished(struct stripe_head *sh)
1255 {
1256 	struct r5l_io_unit *io;
1257 
1258 	io = sh->log_io;
1259 	sh->log_io = NULL;
1260 
1261 	if (io && atomic_dec_and_test(&io->pending_stripe))
1262 		__r5l_stripe_write_finished(io);
1263 }
1264 
1265 static void r5l_log_flush_endio(struct bio *bio)
1266 {
1267 	struct r5l_log *log = container_of(bio, struct r5l_log,
1268 		flush_bio);
1269 	unsigned long flags;
1270 	struct r5l_io_unit *io;
1271 
1272 	if (bio->bi_status)
1273 		md_error(log->rdev->mddev, log->rdev);
1274 
1275 	spin_lock_irqsave(&log->io_list_lock, flags);
1276 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1277 		r5l_io_run_stripes(io);
1278 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1279 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1280 }
1281 
1282 /*
1283  * Starting dispatch IO to raid.
1284  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1285  * broken meta in the middle of a log causes recovery can't find meta at the
1286  * head of log. If operations require meta at the head persistent in log, we
1287  * must make sure meta before it persistent in log too. A case is:
1288  *
1289  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1290  * data/parity must be persistent in log before we do the write to raid disks.
1291  *
1292  * The solution is we restrictly maintain io_unit list order. In this case, we
1293  * only write stripes of an io_unit to raid disks till the io_unit is the first
1294  * one whose data/parity is in log.
1295  */
1296 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1297 {
1298 	bool do_flush;
1299 
1300 	if (!log || !log->need_cache_flush)
1301 		return;
1302 
1303 	spin_lock_irq(&log->io_list_lock);
1304 	/* flush bio is running */
1305 	if (!list_empty(&log->flushing_ios)) {
1306 		spin_unlock_irq(&log->io_list_lock);
1307 		return;
1308 	}
1309 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1310 	do_flush = !list_empty(&log->flushing_ios);
1311 	spin_unlock_irq(&log->io_list_lock);
1312 
1313 	if (!do_flush)
1314 		return;
1315 	bio_reset(&log->flush_bio);
1316 	bio_set_dev(&log->flush_bio, log->rdev->bdev);
1317 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1318 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1319 	submit_bio(&log->flush_bio);
1320 }
1321 
1322 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1323 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1324 	sector_t end)
1325 {
1326 	struct block_device *bdev = log->rdev->bdev;
1327 	struct mddev *mddev;
1328 
1329 	r5l_write_super(log, end);
1330 
1331 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1332 		return;
1333 
1334 	mddev = log->rdev->mddev;
1335 	/*
1336 	 * Discard could zero data, so before discard we must make sure
1337 	 * superblock is updated to new log tail. Updating superblock (either
1338 	 * directly call md_update_sb() or depend on md thread) must hold
1339 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1340 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1341 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1342 	 * thread is calling this function and waitting for reconfig mutex. So
1343 	 * there is a deadlock. We workaround this issue with a trylock.
1344 	 * FIXME: we could miss discard if we can't take reconfig mutex
1345 	 */
1346 	set_mask_bits(&mddev->sb_flags, 0,
1347 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1348 	if (!mddev_trylock(mddev))
1349 		return;
1350 	md_update_sb(mddev, 1);
1351 	mddev_unlock(mddev);
1352 
1353 	/* discard IO error really doesn't matter, ignore it */
1354 	if (log->last_checkpoint < end) {
1355 		blkdev_issue_discard(bdev,
1356 				log->last_checkpoint + log->rdev->data_offset,
1357 				end - log->last_checkpoint, GFP_NOIO, 0);
1358 	} else {
1359 		blkdev_issue_discard(bdev,
1360 				log->last_checkpoint + log->rdev->data_offset,
1361 				log->device_size - log->last_checkpoint,
1362 				GFP_NOIO, 0);
1363 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1364 				GFP_NOIO, 0);
1365 	}
1366 }
1367 
1368 /*
1369  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1370  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1371  *
1372  * must hold conf->device_lock
1373  */
1374 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1375 {
1376 	BUG_ON(list_empty(&sh->lru));
1377 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1378 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1379 
1380 	/*
1381 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1382 	 * raid5_release_stripe() while holding conf->device_lock
1383 	 */
1384 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1385 	assert_spin_locked(&conf->device_lock);
1386 
1387 	list_del_init(&sh->lru);
1388 	atomic_inc(&sh->count);
1389 
1390 	set_bit(STRIPE_HANDLE, &sh->state);
1391 	atomic_inc(&conf->active_stripes);
1392 	r5c_make_stripe_write_out(sh);
1393 
1394 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1395 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1396 	else
1397 		atomic_inc(&conf->r5c_flushing_full_stripes);
1398 	raid5_release_stripe(sh);
1399 }
1400 
1401 /*
1402  * if num == 0, flush all full stripes
1403  * if num > 0, flush all full stripes. If less than num full stripes are
1404  *             flushed, flush some partial stripes until totally num stripes are
1405  *             flushed or there is no more cached stripes.
1406  */
1407 void r5c_flush_cache(struct r5conf *conf, int num)
1408 {
1409 	int count;
1410 	struct stripe_head *sh, *next;
1411 
1412 	assert_spin_locked(&conf->device_lock);
1413 	if (!conf->log)
1414 		return;
1415 
1416 	count = 0;
1417 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1418 		r5c_flush_stripe(conf, sh);
1419 		count++;
1420 	}
1421 
1422 	if (count >= num)
1423 		return;
1424 	list_for_each_entry_safe(sh, next,
1425 				 &conf->r5c_partial_stripe_list, lru) {
1426 		r5c_flush_stripe(conf, sh);
1427 		if (++count >= num)
1428 			break;
1429 	}
1430 }
1431 
1432 static void r5c_do_reclaim(struct r5conf *conf)
1433 {
1434 	struct r5l_log *log = conf->log;
1435 	struct stripe_head *sh;
1436 	int count = 0;
1437 	unsigned long flags;
1438 	int total_cached;
1439 	int stripes_to_flush;
1440 	int flushing_partial, flushing_full;
1441 
1442 	if (!r5c_is_writeback(log))
1443 		return;
1444 
1445 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1446 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1447 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1448 		atomic_read(&conf->r5c_cached_full_stripes) -
1449 		flushing_full - flushing_partial;
1450 
1451 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1452 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1453 		/*
1454 		 * if stripe cache pressure high, flush all full stripes and
1455 		 * some partial stripes
1456 		 */
1457 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1458 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1459 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1460 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1461 		/*
1462 		 * if stripe cache pressure moderate, or if there is many full
1463 		 * stripes,flush all full stripes
1464 		 */
1465 		stripes_to_flush = 0;
1466 	else
1467 		/* no need to flush */
1468 		stripes_to_flush = -1;
1469 
1470 	if (stripes_to_flush >= 0) {
1471 		spin_lock_irqsave(&conf->device_lock, flags);
1472 		r5c_flush_cache(conf, stripes_to_flush);
1473 		spin_unlock_irqrestore(&conf->device_lock, flags);
1474 	}
1475 
1476 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1477 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1478 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1479 		spin_lock(&conf->device_lock);
1480 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1481 			/*
1482 			 * stripes on stripe_in_journal_list could be in any
1483 			 * state of the stripe_cache state machine. In this
1484 			 * case, we only want to flush stripe on
1485 			 * r5c_cached_full/partial_stripes. The following
1486 			 * condition makes sure the stripe is on one of the
1487 			 * two lists.
1488 			 */
1489 			if (!list_empty(&sh->lru) &&
1490 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1491 			    atomic_read(&sh->count) == 0) {
1492 				r5c_flush_stripe(conf, sh);
1493 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1494 					break;
1495 			}
1496 		}
1497 		spin_unlock(&conf->device_lock);
1498 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1499 	}
1500 
1501 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1502 		r5l_run_no_space_stripes(log);
1503 
1504 	md_wakeup_thread(conf->mddev->thread);
1505 }
1506 
1507 static void r5l_do_reclaim(struct r5l_log *log)
1508 {
1509 	struct r5conf *conf = log->rdev->mddev->private;
1510 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1511 	sector_t reclaimable;
1512 	sector_t next_checkpoint;
1513 	bool write_super;
1514 
1515 	spin_lock_irq(&log->io_list_lock);
1516 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1517 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1518 	/*
1519 	 * move proper io_unit to reclaim list. We should not change the order.
1520 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1521 	 * shouldn't reuse space of an unreclaimable io_unit
1522 	 */
1523 	while (1) {
1524 		reclaimable = r5l_reclaimable_space(log);
1525 		if (reclaimable >= reclaim_target ||
1526 		    (list_empty(&log->running_ios) &&
1527 		     list_empty(&log->io_end_ios) &&
1528 		     list_empty(&log->flushing_ios) &&
1529 		     list_empty(&log->finished_ios)))
1530 			break;
1531 
1532 		md_wakeup_thread(log->rdev->mddev->thread);
1533 		wait_event_lock_irq(log->iounit_wait,
1534 				    r5l_reclaimable_space(log) > reclaimable,
1535 				    log->io_list_lock);
1536 	}
1537 
1538 	next_checkpoint = r5c_calculate_new_cp(conf);
1539 	spin_unlock_irq(&log->io_list_lock);
1540 
1541 	if (reclaimable == 0 || !write_super)
1542 		return;
1543 
1544 	/*
1545 	 * write_super will flush cache of each raid disk. We must write super
1546 	 * here, because the log area might be reused soon and we don't want to
1547 	 * confuse recovery
1548 	 */
1549 	r5l_write_super_and_discard_space(log, next_checkpoint);
1550 
1551 	mutex_lock(&log->io_mutex);
1552 	log->last_checkpoint = next_checkpoint;
1553 	r5c_update_log_state(log);
1554 	mutex_unlock(&log->io_mutex);
1555 
1556 	r5l_run_no_space_stripes(log);
1557 }
1558 
1559 static void r5l_reclaim_thread(struct md_thread *thread)
1560 {
1561 	struct mddev *mddev = thread->mddev;
1562 	struct r5conf *conf = mddev->private;
1563 	struct r5l_log *log = conf->log;
1564 
1565 	if (!log)
1566 		return;
1567 	r5c_do_reclaim(conf);
1568 	r5l_do_reclaim(log);
1569 }
1570 
1571 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1572 {
1573 	unsigned long target;
1574 	unsigned long new = (unsigned long)space; /* overflow in theory */
1575 
1576 	if (!log)
1577 		return;
1578 	do {
1579 		target = log->reclaim_target;
1580 		if (new < target)
1581 			return;
1582 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1583 	md_wakeup_thread(log->reclaim_thread);
1584 }
1585 
1586 void r5l_quiesce(struct r5l_log *log, int state)
1587 {
1588 	struct mddev *mddev;
1589 	if (!log || state == 2)
1590 		return;
1591 	if (state == 0)
1592 		kthread_unpark(log->reclaim_thread->tsk);
1593 	else if (state == 1) {
1594 		/* make sure r5l_write_super_and_discard_space exits */
1595 		mddev = log->rdev->mddev;
1596 		wake_up(&mddev->sb_wait);
1597 		kthread_park(log->reclaim_thread->tsk);
1598 		r5l_wake_reclaim(log, MaxSector);
1599 		r5l_do_reclaim(log);
1600 	}
1601 }
1602 
1603 bool r5l_log_disk_error(struct r5conf *conf)
1604 {
1605 	struct r5l_log *log;
1606 	bool ret;
1607 	/* don't allow write if journal disk is missing */
1608 	rcu_read_lock();
1609 	log = rcu_dereference(conf->log);
1610 
1611 	if (!log)
1612 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1613 	else
1614 		ret = test_bit(Faulty, &log->rdev->flags);
1615 	rcu_read_unlock();
1616 	return ret;
1617 }
1618 
1619 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1620 
1621 struct r5l_recovery_ctx {
1622 	struct page *meta_page;		/* current meta */
1623 	sector_t meta_total_blocks;	/* total size of current meta and data */
1624 	sector_t pos;			/* recovery position */
1625 	u64 seq;			/* recovery position seq */
1626 	int data_parity_stripes;	/* number of data_parity stripes */
1627 	int data_only_stripes;		/* number of data_only stripes */
1628 	struct list_head cached_list;
1629 
1630 	/*
1631 	 * read ahead page pool (ra_pool)
1632 	 * in recovery, log is read sequentially. It is not efficient to
1633 	 * read every page with sync_page_io(). The read ahead page pool
1634 	 * reads multiple pages with one IO, so further log read can
1635 	 * just copy data from the pool.
1636 	 */
1637 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1638 	sector_t pool_offset;	/* offset of first page in the pool */
1639 	int total_pages;	/* total allocated pages */
1640 	int valid_pages;	/* pages with valid data */
1641 	struct bio *ra_bio;	/* bio to do the read ahead */
1642 };
1643 
1644 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1645 					    struct r5l_recovery_ctx *ctx)
1646 {
1647 	struct page *page;
1648 
1649 	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1650 	if (!ctx->ra_bio)
1651 		return -ENOMEM;
1652 
1653 	ctx->valid_pages = 0;
1654 	ctx->total_pages = 0;
1655 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1656 		page = alloc_page(GFP_KERNEL);
1657 
1658 		if (!page)
1659 			break;
1660 		ctx->ra_pool[ctx->total_pages] = page;
1661 		ctx->total_pages += 1;
1662 	}
1663 
1664 	if (ctx->total_pages == 0) {
1665 		bio_put(ctx->ra_bio);
1666 		return -ENOMEM;
1667 	}
1668 
1669 	ctx->pool_offset = 0;
1670 	return 0;
1671 }
1672 
1673 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1674 					struct r5l_recovery_ctx *ctx)
1675 {
1676 	int i;
1677 
1678 	for (i = 0; i < ctx->total_pages; ++i)
1679 		put_page(ctx->ra_pool[i]);
1680 	bio_put(ctx->ra_bio);
1681 }
1682 
1683 /*
1684  * fetch ctx->valid_pages pages from offset
1685  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1686  * However, if the offset is close to the end of the journal device,
1687  * ctx->valid_pages could be smaller than ctx->total_pages
1688  */
1689 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1690 				      struct r5l_recovery_ctx *ctx,
1691 				      sector_t offset)
1692 {
1693 	bio_reset(ctx->ra_bio);
1694 	bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1695 	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1696 	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1697 
1698 	ctx->valid_pages = 0;
1699 	ctx->pool_offset = offset;
1700 
1701 	while (ctx->valid_pages < ctx->total_pages) {
1702 		bio_add_page(ctx->ra_bio,
1703 			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1704 		ctx->valid_pages += 1;
1705 
1706 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1707 
1708 		if (offset == 0)  /* reached end of the device */
1709 			break;
1710 	}
1711 
1712 	return submit_bio_wait(ctx->ra_bio);
1713 }
1714 
1715 /*
1716  * try read a page from the read ahead page pool, if the page is not in the
1717  * pool, call r5l_recovery_fetch_ra_pool
1718  */
1719 static int r5l_recovery_read_page(struct r5l_log *log,
1720 				  struct r5l_recovery_ctx *ctx,
1721 				  struct page *page,
1722 				  sector_t offset)
1723 {
1724 	int ret;
1725 
1726 	if (offset < ctx->pool_offset ||
1727 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1728 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1729 		if (ret)
1730 			return ret;
1731 	}
1732 
1733 	BUG_ON(offset < ctx->pool_offset ||
1734 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1735 
1736 	memcpy(page_address(page),
1737 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1738 					 BLOCK_SECTOR_SHIFT]),
1739 	       PAGE_SIZE);
1740 	return 0;
1741 }
1742 
1743 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1744 					struct r5l_recovery_ctx *ctx)
1745 {
1746 	struct page *page = ctx->meta_page;
1747 	struct r5l_meta_block *mb;
1748 	u32 crc, stored_crc;
1749 	int ret;
1750 
1751 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1752 	if (ret != 0)
1753 		return ret;
1754 
1755 	mb = page_address(page);
1756 	stored_crc = le32_to_cpu(mb->checksum);
1757 	mb->checksum = 0;
1758 
1759 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1760 	    le64_to_cpu(mb->seq) != ctx->seq ||
1761 	    mb->version != R5LOG_VERSION ||
1762 	    le64_to_cpu(mb->position) != ctx->pos)
1763 		return -EINVAL;
1764 
1765 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1766 	if (stored_crc != crc)
1767 		return -EINVAL;
1768 
1769 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1770 		return -EINVAL;
1771 
1772 	ctx->meta_total_blocks = BLOCK_SECTORS;
1773 
1774 	return 0;
1775 }
1776 
1777 static void
1778 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1779 				     struct page *page,
1780 				     sector_t pos, u64 seq)
1781 {
1782 	struct r5l_meta_block *mb;
1783 
1784 	mb = page_address(page);
1785 	clear_page(mb);
1786 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1787 	mb->version = R5LOG_VERSION;
1788 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1789 	mb->seq = cpu_to_le64(seq);
1790 	mb->position = cpu_to_le64(pos);
1791 }
1792 
1793 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1794 					  u64 seq)
1795 {
1796 	struct page *page;
1797 	struct r5l_meta_block *mb;
1798 
1799 	page = alloc_page(GFP_KERNEL);
1800 	if (!page)
1801 		return -ENOMEM;
1802 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1803 	mb = page_address(page);
1804 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1805 					     mb, PAGE_SIZE));
1806 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1807 			  REQ_SYNC | REQ_FUA, false)) {
1808 		__free_page(page);
1809 		return -EIO;
1810 	}
1811 	__free_page(page);
1812 	return 0;
1813 }
1814 
1815 /*
1816  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1817  * to mark valid (potentially not flushed) data in the journal.
1818  *
1819  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1820  * so there should not be any mismatch here.
1821  */
1822 static void r5l_recovery_load_data(struct r5l_log *log,
1823 				   struct stripe_head *sh,
1824 				   struct r5l_recovery_ctx *ctx,
1825 				   struct r5l_payload_data_parity *payload,
1826 				   sector_t log_offset)
1827 {
1828 	struct mddev *mddev = log->rdev->mddev;
1829 	struct r5conf *conf = mddev->private;
1830 	int dd_idx;
1831 
1832 	raid5_compute_sector(conf,
1833 			     le64_to_cpu(payload->location), 0,
1834 			     &dd_idx, sh);
1835 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1836 	sh->dev[dd_idx].log_checksum =
1837 		le32_to_cpu(payload->checksum[0]);
1838 	ctx->meta_total_blocks += BLOCK_SECTORS;
1839 
1840 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1841 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1842 }
1843 
1844 static void r5l_recovery_load_parity(struct r5l_log *log,
1845 				     struct stripe_head *sh,
1846 				     struct r5l_recovery_ctx *ctx,
1847 				     struct r5l_payload_data_parity *payload,
1848 				     sector_t log_offset)
1849 {
1850 	struct mddev *mddev = log->rdev->mddev;
1851 	struct r5conf *conf = mddev->private;
1852 
1853 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1854 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1855 	sh->dev[sh->pd_idx].log_checksum =
1856 		le32_to_cpu(payload->checksum[0]);
1857 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1858 
1859 	if (sh->qd_idx >= 0) {
1860 		r5l_recovery_read_page(
1861 			log, ctx, sh->dev[sh->qd_idx].page,
1862 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1863 		sh->dev[sh->qd_idx].log_checksum =
1864 			le32_to_cpu(payload->checksum[1]);
1865 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1866 	}
1867 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1868 }
1869 
1870 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1871 {
1872 	int i;
1873 
1874 	sh->state = 0;
1875 	sh->log_start = MaxSector;
1876 	for (i = sh->disks; i--; )
1877 		sh->dev[i].flags = 0;
1878 }
1879 
1880 static void
1881 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1882 			       struct stripe_head *sh,
1883 			       struct r5l_recovery_ctx *ctx)
1884 {
1885 	struct md_rdev *rdev, *rrdev;
1886 	int disk_index;
1887 	int data_count = 0;
1888 
1889 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1890 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1891 			continue;
1892 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1893 			continue;
1894 		data_count++;
1895 	}
1896 
1897 	/*
1898 	 * stripes that only have parity must have been flushed
1899 	 * before the crash that we are now recovering from, so
1900 	 * there is nothing more to recovery.
1901 	 */
1902 	if (data_count == 0)
1903 		goto out;
1904 
1905 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1906 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1907 			continue;
1908 
1909 		/* in case device is broken */
1910 		rcu_read_lock();
1911 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1912 		if (rdev) {
1913 			atomic_inc(&rdev->nr_pending);
1914 			rcu_read_unlock();
1915 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1916 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1917 				     false);
1918 			rdev_dec_pending(rdev, rdev->mddev);
1919 			rcu_read_lock();
1920 		}
1921 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1922 		if (rrdev) {
1923 			atomic_inc(&rrdev->nr_pending);
1924 			rcu_read_unlock();
1925 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1926 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1927 				     false);
1928 			rdev_dec_pending(rrdev, rrdev->mddev);
1929 			rcu_read_lock();
1930 		}
1931 		rcu_read_unlock();
1932 	}
1933 	ctx->data_parity_stripes++;
1934 out:
1935 	r5l_recovery_reset_stripe(sh);
1936 }
1937 
1938 static struct stripe_head *
1939 r5c_recovery_alloc_stripe(struct r5conf *conf,
1940 			  sector_t stripe_sect)
1941 {
1942 	struct stripe_head *sh;
1943 
1944 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1945 	if (!sh)
1946 		return NULL;  /* no more stripe available */
1947 
1948 	r5l_recovery_reset_stripe(sh);
1949 
1950 	return sh;
1951 }
1952 
1953 static struct stripe_head *
1954 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1955 {
1956 	struct stripe_head *sh;
1957 
1958 	list_for_each_entry(sh, list, lru)
1959 		if (sh->sector == sect)
1960 			return sh;
1961 	return NULL;
1962 }
1963 
1964 static void
1965 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1966 			  struct r5l_recovery_ctx *ctx)
1967 {
1968 	struct stripe_head *sh, *next;
1969 
1970 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1971 		r5l_recovery_reset_stripe(sh);
1972 		list_del_init(&sh->lru);
1973 		raid5_release_stripe(sh);
1974 	}
1975 }
1976 
1977 static void
1978 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1979 			    struct r5l_recovery_ctx *ctx)
1980 {
1981 	struct stripe_head *sh, *next;
1982 
1983 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1984 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1985 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1986 			list_del_init(&sh->lru);
1987 			raid5_release_stripe(sh);
1988 		}
1989 }
1990 
1991 /* if matches return 0; otherwise return -EINVAL */
1992 static int
1993 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1994 				  struct r5l_recovery_ctx *ctx,
1995 				  struct page *page,
1996 				  sector_t log_offset, __le32 log_checksum)
1997 {
1998 	void *addr;
1999 	u32 checksum;
2000 
2001 	r5l_recovery_read_page(log, ctx, page, log_offset);
2002 	addr = kmap_atomic(page);
2003 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
2004 	kunmap_atomic(addr);
2005 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
2006 }
2007 
2008 /*
2009  * before loading data to stripe cache, we need verify checksum for all data,
2010  * if there is mismatch for any data page, we drop all data in the mata block
2011  */
2012 static int
2013 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2014 					 struct r5l_recovery_ctx *ctx)
2015 {
2016 	struct mddev *mddev = log->rdev->mddev;
2017 	struct r5conf *conf = mddev->private;
2018 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
2019 	sector_t mb_offset = sizeof(struct r5l_meta_block);
2020 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2021 	struct page *page;
2022 	struct r5l_payload_data_parity *payload;
2023 	struct r5l_payload_flush *payload_flush;
2024 
2025 	page = alloc_page(GFP_KERNEL);
2026 	if (!page)
2027 		return -ENOMEM;
2028 
2029 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2030 		payload = (void *)mb + mb_offset;
2031 		payload_flush = (void *)mb + mb_offset;
2032 
2033 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2034 			if (r5l_recovery_verify_data_checksum(
2035 				    log, ctx, page, log_offset,
2036 				    payload->checksum[0]) < 0)
2037 				goto mismatch;
2038 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2039 			if (r5l_recovery_verify_data_checksum(
2040 				    log, ctx, page, log_offset,
2041 				    payload->checksum[0]) < 0)
2042 				goto mismatch;
2043 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2044 			    r5l_recovery_verify_data_checksum(
2045 				    log, ctx, page,
2046 				    r5l_ring_add(log, log_offset,
2047 						 BLOCK_SECTORS),
2048 				    payload->checksum[1]) < 0)
2049 				goto mismatch;
2050 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2051 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2052 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2053 			goto mismatch;
2054 
2055 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2056 			mb_offset += sizeof(struct r5l_payload_flush) +
2057 				le32_to_cpu(payload_flush->size);
2058 		} else {
2059 			/* DATA or PARITY payload */
2060 			log_offset = r5l_ring_add(log, log_offset,
2061 						  le32_to_cpu(payload->size));
2062 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2063 				sizeof(__le32) *
2064 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2065 		}
2066 
2067 	}
2068 
2069 	put_page(page);
2070 	return 0;
2071 
2072 mismatch:
2073 	put_page(page);
2074 	return -EINVAL;
2075 }
2076 
2077 /*
2078  * Analyze all data/parity pages in one meta block
2079  * Returns:
2080  * 0 for success
2081  * -EINVAL for unknown playload type
2082  * -EAGAIN for checksum mismatch of data page
2083  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2084  */
2085 static int
2086 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2087 				struct r5l_recovery_ctx *ctx,
2088 				struct list_head *cached_stripe_list)
2089 {
2090 	struct mddev *mddev = log->rdev->mddev;
2091 	struct r5conf *conf = mddev->private;
2092 	struct r5l_meta_block *mb;
2093 	struct r5l_payload_data_parity *payload;
2094 	struct r5l_payload_flush *payload_flush;
2095 	int mb_offset;
2096 	sector_t log_offset;
2097 	sector_t stripe_sect;
2098 	struct stripe_head *sh;
2099 	int ret;
2100 
2101 	/*
2102 	 * for mismatch in data blocks, we will drop all data in this mb, but
2103 	 * we will still read next mb for other data with FLUSH flag, as
2104 	 * io_unit could finish out of order.
2105 	 */
2106 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2107 	if (ret == -EINVAL)
2108 		return -EAGAIN;
2109 	else if (ret)
2110 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2111 
2112 	mb = page_address(ctx->meta_page);
2113 	mb_offset = sizeof(struct r5l_meta_block);
2114 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2115 
2116 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2117 		int dd;
2118 
2119 		payload = (void *)mb + mb_offset;
2120 		payload_flush = (void *)mb + mb_offset;
2121 
2122 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2123 			int i, count;
2124 
2125 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2126 			for (i = 0; i < count; ++i) {
2127 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2128 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2129 								stripe_sect);
2130 				if (sh) {
2131 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2132 					r5l_recovery_reset_stripe(sh);
2133 					list_del_init(&sh->lru);
2134 					raid5_release_stripe(sh);
2135 				}
2136 			}
2137 
2138 			mb_offset += sizeof(struct r5l_payload_flush) +
2139 				le32_to_cpu(payload_flush->size);
2140 			continue;
2141 		}
2142 
2143 		/* DATA or PARITY payload */
2144 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2145 			raid5_compute_sector(
2146 				conf, le64_to_cpu(payload->location), 0, &dd,
2147 				NULL)
2148 			: le64_to_cpu(payload->location);
2149 
2150 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2151 						stripe_sect);
2152 
2153 		if (!sh) {
2154 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2155 			/*
2156 			 * cannot get stripe from raid5_get_active_stripe
2157 			 * try replay some stripes
2158 			 */
2159 			if (!sh) {
2160 				r5c_recovery_replay_stripes(
2161 					cached_stripe_list, ctx);
2162 				sh = r5c_recovery_alloc_stripe(
2163 					conf, stripe_sect);
2164 			}
2165 			if (!sh) {
2166 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2167 					mdname(mddev),
2168 					conf->min_nr_stripes * 2);
2169 				raid5_set_cache_size(mddev,
2170 						     conf->min_nr_stripes * 2);
2171 				sh = r5c_recovery_alloc_stripe(conf,
2172 							       stripe_sect);
2173 			}
2174 			if (!sh) {
2175 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2176 				       mdname(mddev));
2177 				return -ENOMEM;
2178 			}
2179 			list_add_tail(&sh->lru, cached_stripe_list);
2180 		}
2181 
2182 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2183 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2184 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2185 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2186 				list_move_tail(&sh->lru, cached_stripe_list);
2187 			}
2188 			r5l_recovery_load_data(log, sh, ctx, payload,
2189 					       log_offset);
2190 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2191 			r5l_recovery_load_parity(log, sh, ctx, payload,
2192 						 log_offset);
2193 		else
2194 			return -EINVAL;
2195 
2196 		log_offset = r5l_ring_add(log, log_offset,
2197 					  le32_to_cpu(payload->size));
2198 
2199 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2200 			sizeof(__le32) *
2201 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 /*
2208  * Load the stripe into cache. The stripe will be written out later by
2209  * the stripe cache state machine.
2210  */
2211 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2212 					 struct stripe_head *sh)
2213 {
2214 	struct r5dev *dev;
2215 	int i;
2216 
2217 	for (i = sh->disks; i--; ) {
2218 		dev = sh->dev + i;
2219 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2220 			set_bit(R5_InJournal, &dev->flags);
2221 			set_bit(R5_UPTODATE, &dev->flags);
2222 		}
2223 	}
2224 }
2225 
2226 /*
2227  * Scan through the log for all to-be-flushed data
2228  *
2229  * For stripes with data and parity, namely Data-Parity stripe
2230  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2231  *
2232  * For stripes with only data, namely Data-Only stripe
2233  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2234  *
2235  * For a stripe, if we see data after parity, we should discard all previous
2236  * data and parity for this stripe, as these data are already flushed to
2237  * the array.
2238  *
2239  * At the end of the scan, we return the new journal_tail, which points to
2240  * first data-only stripe on the journal device, or next invalid meta block.
2241  */
2242 static int r5c_recovery_flush_log(struct r5l_log *log,
2243 				  struct r5l_recovery_ctx *ctx)
2244 {
2245 	struct stripe_head *sh;
2246 	int ret = 0;
2247 
2248 	/* scan through the log */
2249 	while (1) {
2250 		if (r5l_recovery_read_meta_block(log, ctx))
2251 			break;
2252 
2253 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2254 						      &ctx->cached_list);
2255 		/*
2256 		 * -EAGAIN means mismatch in data block, in this case, we still
2257 		 * try scan the next metablock
2258 		 */
2259 		if (ret && ret != -EAGAIN)
2260 			break;   /* ret == -EINVAL or -ENOMEM */
2261 		ctx->seq++;
2262 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2263 	}
2264 
2265 	if (ret == -ENOMEM) {
2266 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2267 		return ret;
2268 	}
2269 
2270 	/* replay data-parity stripes */
2271 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2272 
2273 	/* load data-only stripes to stripe cache */
2274 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2275 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2276 		r5c_recovery_load_one_stripe(log, sh);
2277 		ctx->data_only_stripes++;
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 /*
2284  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2285  * log will start here. but we can't let superblock point to last valid
2286  * meta block. The log might looks like:
2287  * | meta 1| meta 2| meta 3|
2288  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2289  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2290  * happens again, new recovery will start from meta 1. Since meta 2n is
2291  * valid now, recovery will think meta 3 is valid, which is wrong.
2292  * The solution is we create a new meta in meta2 with its seq == meta
2293  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2294  * will not think meta 3 is a valid meta, because its seq doesn't match
2295  */
2296 
2297 /*
2298  * Before recovery, the log looks like the following
2299  *
2300  *   ---------------------------------------------
2301  *   |           valid log        | invalid log  |
2302  *   ---------------------------------------------
2303  *   ^
2304  *   |- log->last_checkpoint
2305  *   |- log->last_cp_seq
2306  *
2307  * Now we scan through the log until we see invalid entry
2308  *
2309  *   ---------------------------------------------
2310  *   |           valid log        | invalid log  |
2311  *   ---------------------------------------------
2312  *   ^                            ^
2313  *   |- log->last_checkpoint      |- ctx->pos
2314  *   |- log->last_cp_seq          |- ctx->seq
2315  *
2316  * From this point, we need to increase seq number by 10 to avoid
2317  * confusing next recovery.
2318  *
2319  *   ---------------------------------------------
2320  *   |           valid log        | invalid log  |
2321  *   ---------------------------------------------
2322  *   ^                              ^
2323  *   |- log->last_checkpoint        |- ctx->pos+1
2324  *   |- log->last_cp_seq            |- ctx->seq+10001
2325  *
2326  * However, it is not safe to start the state machine yet, because data only
2327  * parities are not yet secured in RAID. To save these data only parities, we
2328  * rewrite them from seq+11.
2329  *
2330  *   -----------------------------------------------------------------
2331  *   |           valid log        | data only stripes | invalid log  |
2332  *   -----------------------------------------------------------------
2333  *   ^                                                ^
2334  *   |- log->last_checkpoint                          |- ctx->pos+n
2335  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2336  *
2337  * If failure happens again during this process, the recovery can safe start
2338  * again from log->last_checkpoint.
2339  *
2340  * Once data only stripes are rewritten to journal, we move log_tail
2341  *
2342  *   -----------------------------------------------------------------
2343  *   |     old log        |    data only stripes    | invalid log  |
2344  *   -----------------------------------------------------------------
2345  *                        ^                         ^
2346  *                        |- log->last_checkpoint   |- ctx->pos+n
2347  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2348  *
2349  * Then we can safely start the state machine. If failure happens from this
2350  * point on, the recovery will start from new log->last_checkpoint.
2351  */
2352 static int
2353 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2354 				       struct r5l_recovery_ctx *ctx)
2355 {
2356 	struct stripe_head *sh;
2357 	struct mddev *mddev = log->rdev->mddev;
2358 	struct page *page;
2359 	sector_t next_checkpoint = MaxSector;
2360 
2361 	page = alloc_page(GFP_KERNEL);
2362 	if (!page) {
2363 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2364 		       mdname(mddev));
2365 		return -ENOMEM;
2366 	}
2367 
2368 	WARN_ON(list_empty(&ctx->cached_list));
2369 
2370 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2371 		struct r5l_meta_block *mb;
2372 		int i;
2373 		int offset;
2374 		sector_t write_pos;
2375 
2376 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2377 		r5l_recovery_create_empty_meta_block(log, page,
2378 						     ctx->pos, ctx->seq);
2379 		mb = page_address(page);
2380 		offset = le32_to_cpu(mb->meta_size);
2381 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2382 
2383 		for (i = sh->disks; i--; ) {
2384 			struct r5dev *dev = &sh->dev[i];
2385 			struct r5l_payload_data_parity *payload;
2386 			void *addr;
2387 
2388 			if (test_bit(R5_InJournal, &dev->flags)) {
2389 				payload = (void *)mb + offset;
2390 				payload->header.type = cpu_to_le16(
2391 					R5LOG_PAYLOAD_DATA);
2392 				payload->size = cpu_to_le32(BLOCK_SECTORS);
2393 				payload->location = cpu_to_le64(
2394 					raid5_compute_blocknr(sh, i, 0));
2395 				addr = kmap_atomic(dev->page);
2396 				payload->checksum[0] = cpu_to_le32(
2397 					crc32c_le(log->uuid_checksum, addr,
2398 						  PAGE_SIZE));
2399 				kunmap_atomic(addr);
2400 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2401 					     dev->page, REQ_OP_WRITE, 0, false);
2402 				write_pos = r5l_ring_add(log, write_pos,
2403 							 BLOCK_SECTORS);
2404 				offset += sizeof(__le32) +
2405 					sizeof(struct r5l_payload_data_parity);
2406 
2407 			}
2408 		}
2409 		mb->meta_size = cpu_to_le32(offset);
2410 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2411 						     mb, PAGE_SIZE));
2412 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2413 			     REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2414 		sh->log_start = ctx->pos;
2415 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2416 		atomic_inc(&log->stripe_in_journal_count);
2417 		ctx->pos = write_pos;
2418 		ctx->seq += 1;
2419 		next_checkpoint = sh->log_start;
2420 	}
2421 	log->next_checkpoint = next_checkpoint;
2422 	__free_page(page);
2423 	return 0;
2424 }
2425 
2426 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2427 						 struct r5l_recovery_ctx *ctx)
2428 {
2429 	struct mddev *mddev = log->rdev->mddev;
2430 	struct r5conf *conf = mddev->private;
2431 	struct stripe_head *sh, *next;
2432 
2433 	if (ctx->data_only_stripes == 0)
2434 		return;
2435 
2436 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2437 
2438 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2439 		r5c_make_stripe_write_out(sh);
2440 		set_bit(STRIPE_HANDLE, &sh->state);
2441 		list_del_init(&sh->lru);
2442 		raid5_release_stripe(sh);
2443 	}
2444 
2445 	md_wakeup_thread(conf->mddev->thread);
2446 	/* reuse conf->wait_for_quiescent in recovery */
2447 	wait_event(conf->wait_for_quiescent,
2448 		   atomic_read(&conf->active_stripes) == 0);
2449 
2450 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2451 }
2452 
2453 static int r5l_recovery_log(struct r5l_log *log)
2454 {
2455 	struct mddev *mddev = log->rdev->mddev;
2456 	struct r5l_recovery_ctx *ctx;
2457 	int ret;
2458 	sector_t pos;
2459 
2460 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2461 	if (!ctx)
2462 		return -ENOMEM;
2463 
2464 	ctx->pos = log->last_checkpoint;
2465 	ctx->seq = log->last_cp_seq;
2466 	INIT_LIST_HEAD(&ctx->cached_list);
2467 	ctx->meta_page = alloc_page(GFP_KERNEL);
2468 
2469 	if (!ctx->meta_page) {
2470 		ret =  -ENOMEM;
2471 		goto meta_page;
2472 	}
2473 
2474 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2475 		ret = -ENOMEM;
2476 		goto ra_pool;
2477 	}
2478 
2479 	ret = r5c_recovery_flush_log(log, ctx);
2480 
2481 	if (ret)
2482 		goto error;
2483 
2484 	pos = ctx->pos;
2485 	ctx->seq += 10000;
2486 
2487 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2488 		pr_debug("md/raid:%s: starting from clean shutdown\n",
2489 			 mdname(mddev));
2490 	else
2491 		pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2492 			 mdname(mddev), ctx->data_only_stripes,
2493 			 ctx->data_parity_stripes);
2494 
2495 	if (ctx->data_only_stripes == 0) {
2496 		log->next_checkpoint = ctx->pos;
2497 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2498 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2499 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2500 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2501 		       mdname(mddev));
2502 		ret =  -EIO;
2503 		goto error;
2504 	}
2505 
2506 	log->log_start = ctx->pos;
2507 	log->seq = ctx->seq;
2508 	log->last_checkpoint = pos;
2509 	r5l_write_super(log, pos);
2510 
2511 	r5c_recovery_flush_data_only_stripes(log, ctx);
2512 	ret = 0;
2513 error:
2514 	r5l_recovery_free_ra_pool(log, ctx);
2515 ra_pool:
2516 	__free_page(ctx->meta_page);
2517 meta_page:
2518 	kfree(ctx);
2519 	return ret;
2520 }
2521 
2522 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2523 {
2524 	struct mddev *mddev = log->rdev->mddev;
2525 
2526 	log->rdev->journal_tail = cp;
2527 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2528 }
2529 
2530 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2531 {
2532 	struct r5conf *conf;
2533 	int ret;
2534 
2535 	ret = mddev_lock(mddev);
2536 	if (ret)
2537 		return ret;
2538 
2539 	conf = mddev->private;
2540 	if (!conf || !conf->log) {
2541 		mddev_unlock(mddev);
2542 		return 0;
2543 	}
2544 
2545 	switch (conf->log->r5c_journal_mode) {
2546 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2547 		ret = snprintf(
2548 			page, PAGE_SIZE, "[%s] %s\n",
2549 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2550 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2551 		break;
2552 	case R5C_JOURNAL_MODE_WRITE_BACK:
2553 		ret = snprintf(
2554 			page, PAGE_SIZE, "%s [%s]\n",
2555 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557 		break;
2558 	default:
2559 		ret = 0;
2560 	}
2561 	mddev_unlock(mddev);
2562 	return ret;
2563 }
2564 
2565 /*
2566  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2567  *
2568  * @mode as defined in 'enum r5c_journal_mode'.
2569  *
2570  */
2571 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2572 {
2573 	struct r5conf *conf;
2574 	int err;
2575 
2576 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2577 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2578 		return -EINVAL;
2579 
2580 	err = mddev_lock(mddev);
2581 	if (err)
2582 		return err;
2583 	conf = mddev->private;
2584 	if (!conf || !conf->log) {
2585 		mddev_unlock(mddev);
2586 		return -ENODEV;
2587 	}
2588 
2589 	if (raid5_calc_degraded(conf) > 0 &&
2590 	    mode == R5C_JOURNAL_MODE_WRITE_BACK) {
2591 		mddev_unlock(mddev);
2592 		return -EINVAL;
2593 	}
2594 
2595 	mddev_suspend(mddev);
2596 	conf->log->r5c_journal_mode = mode;
2597 	mddev_resume(mddev);
2598 	mddev_unlock(mddev);
2599 
2600 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2601 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2602 	return 0;
2603 }
2604 EXPORT_SYMBOL(r5c_journal_mode_set);
2605 
2606 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2607 				      const char *page, size_t length)
2608 {
2609 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2610 	size_t len = length;
2611 
2612 	if (len < 2)
2613 		return -EINVAL;
2614 
2615 	if (page[len - 1] == '\n')
2616 		len--;
2617 
2618 	while (mode--)
2619 		if (strlen(r5c_journal_mode_str[mode]) == len &&
2620 		    !strncmp(page, r5c_journal_mode_str[mode], len))
2621 			break;
2622 
2623 	return r5c_journal_mode_set(mddev, mode) ?: length;
2624 }
2625 
2626 struct md_sysfs_entry
2627 r5c_journal_mode = __ATTR(journal_mode, 0644,
2628 			  r5c_journal_mode_show, r5c_journal_mode_store);
2629 
2630 /*
2631  * Try handle write operation in caching phase. This function should only
2632  * be called in write-back mode.
2633  *
2634  * If all outstanding writes can be handled in caching phase, returns 0
2635  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2636  * and returns -EAGAIN
2637  */
2638 int r5c_try_caching_write(struct r5conf *conf,
2639 			  struct stripe_head *sh,
2640 			  struct stripe_head_state *s,
2641 			  int disks)
2642 {
2643 	struct r5l_log *log = conf->log;
2644 	int i;
2645 	struct r5dev *dev;
2646 	int to_cache = 0;
2647 	void **pslot;
2648 	sector_t tree_index;
2649 	int ret;
2650 	uintptr_t refcount;
2651 
2652 	BUG_ON(!r5c_is_writeback(log));
2653 
2654 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2655 		/*
2656 		 * There are two different scenarios here:
2657 		 *  1. The stripe has some data cached, and it is sent to
2658 		 *     write-out phase for reclaim
2659 		 *  2. The stripe is clean, and this is the first write
2660 		 *
2661 		 * For 1, return -EAGAIN, so we continue with
2662 		 * handle_stripe_dirtying().
2663 		 *
2664 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2665 		 * write.
2666 		 */
2667 
2668 		/* case 1: anything injournal or anything in written */
2669 		if (s->injournal > 0 || s->written > 0)
2670 			return -EAGAIN;
2671 		/* case 2 */
2672 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2673 	}
2674 
2675 	/*
2676 	 * When run in degraded mode, array is set to write-through mode.
2677 	 * This check helps drain pending write safely in the transition to
2678 	 * write-through mode.
2679 	 *
2680 	 * When a stripe is syncing, the write is also handled in write
2681 	 * through mode.
2682 	 */
2683 	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2684 		r5c_make_stripe_write_out(sh);
2685 		return -EAGAIN;
2686 	}
2687 
2688 	for (i = disks; i--; ) {
2689 		dev = &sh->dev[i];
2690 		/* if non-overwrite, use writing-out phase */
2691 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2692 		    !test_bit(R5_InJournal, &dev->flags)) {
2693 			r5c_make_stripe_write_out(sh);
2694 			return -EAGAIN;
2695 		}
2696 	}
2697 
2698 	/* if the stripe is not counted in big_stripe_tree, add it now */
2699 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2700 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2701 		tree_index = r5c_tree_index(conf, sh->sector);
2702 		spin_lock(&log->tree_lock);
2703 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2704 					       tree_index);
2705 		if (pslot) {
2706 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2707 				pslot, &log->tree_lock) >>
2708 				R5C_RADIX_COUNT_SHIFT;
2709 			radix_tree_replace_slot(
2710 				&log->big_stripe_tree, pslot,
2711 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2712 		} else {
2713 			/*
2714 			 * this radix_tree_insert can fail safely, so no
2715 			 * need to call radix_tree_preload()
2716 			 */
2717 			ret = radix_tree_insert(
2718 				&log->big_stripe_tree, tree_index,
2719 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2720 			if (ret) {
2721 				spin_unlock(&log->tree_lock);
2722 				r5c_make_stripe_write_out(sh);
2723 				return -EAGAIN;
2724 			}
2725 		}
2726 		spin_unlock(&log->tree_lock);
2727 
2728 		/*
2729 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2730 		 * counted in the radix tree
2731 		 */
2732 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2733 		atomic_inc(&conf->r5c_cached_partial_stripes);
2734 	}
2735 
2736 	for (i = disks; i--; ) {
2737 		dev = &sh->dev[i];
2738 		if (dev->towrite) {
2739 			set_bit(R5_Wantwrite, &dev->flags);
2740 			set_bit(R5_Wantdrain, &dev->flags);
2741 			set_bit(R5_LOCKED, &dev->flags);
2742 			to_cache++;
2743 		}
2744 	}
2745 
2746 	if (to_cache) {
2747 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2748 		/*
2749 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2750 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2751 		 * r5c_handle_data_cached()
2752 		 */
2753 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 /*
2760  * free extra pages (orig_page) we allocated for prexor
2761  */
2762 void r5c_release_extra_page(struct stripe_head *sh)
2763 {
2764 	struct r5conf *conf = sh->raid_conf;
2765 	int i;
2766 	bool using_disk_info_extra_page;
2767 
2768 	using_disk_info_extra_page =
2769 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2770 
2771 	for (i = sh->disks; i--; )
2772 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2773 			struct page *p = sh->dev[i].orig_page;
2774 
2775 			sh->dev[i].orig_page = sh->dev[i].page;
2776 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2777 
2778 			if (!using_disk_info_extra_page)
2779 				put_page(p);
2780 		}
2781 
2782 	if (using_disk_info_extra_page) {
2783 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2784 		md_wakeup_thread(conf->mddev->thread);
2785 	}
2786 }
2787 
2788 void r5c_use_extra_page(struct stripe_head *sh)
2789 {
2790 	struct r5conf *conf = sh->raid_conf;
2791 	int i;
2792 	struct r5dev *dev;
2793 
2794 	for (i = sh->disks; i--; ) {
2795 		dev = &sh->dev[i];
2796 		if (dev->orig_page != dev->page)
2797 			put_page(dev->orig_page);
2798 		dev->orig_page = conf->disks[i].extra_page;
2799 	}
2800 }
2801 
2802 /*
2803  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2804  * stripe is committed to RAID disks.
2805  */
2806 void r5c_finish_stripe_write_out(struct r5conf *conf,
2807 				 struct stripe_head *sh,
2808 				 struct stripe_head_state *s)
2809 {
2810 	struct r5l_log *log = conf->log;
2811 	int i;
2812 	int do_wakeup = 0;
2813 	sector_t tree_index;
2814 	void **pslot;
2815 	uintptr_t refcount;
2816 
2817 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2818 		return;
2819 
2820 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2821 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2822 
2823 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2824 		return;
2825 
2826 	for (i = sh->disks; i--; ) {
2827 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2828 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2829 			do_wakeup = 1;
2830 	}
2831 
2832 	/*
2833 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2834 	 * We updated R5_InJournal, so we also update s->injournal.
2835 	 */
2836 	s->injournal = 0;
2837 
2838 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2839 		if (atomic_dec_and_test(&conf->pending_full_writes))
2840 			md_wakeup_thread(conf->mddev->thread);
2841 
2842 	if (do_wakeup)
2843 		wake_up(&conf->wait_for_overlap);
2844 
2845 	spin_lock_irq(&log->stripe_in_journal_lock);
2846 	list_del_init(&sh->r5c);
2847 	spin_unlock_irq(&log->stripe_in_journal_lock);
2848 	sh->log_start = MaxSector;
2849 
2850 	atomic_dec(&log->stripe_in_journal_count);
2851 	r5c_update_log_state(log);
2852 
2853 	/* stop counting this stripe in big_stripe_tree */
2854 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2855 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2856 		tree_index = r5c_tree_index(conf, sh->sector);
2857 		spin_lock(&log->tree_lock);
2858 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2859 					       tree_index);
2860 		BUG_ON(pslot == NULL);
2861 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2862 			pslot, &log->tree_lock) >>
2863 			R5C_RADIX_COUNT_SHIFT;
2864 		if (refcount == 1)
2865 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2866 		else
2867 			radix_tree_replace_slot(
2868 				&log->big_stripe_tree, pslot,
2869 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2870 		spin_unlock(&log->tree_lock);
2871 	}
2872 
2873 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2874 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2875 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2876 		atomic_dec(&conf->r5c_cached_partial_stripes);
2877 	}
2878 
2879 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2880 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2881 		atomic_dec(&conf->r5c_flushing_full_stripes);
2882 		atomic_dec(&conf->r5c_cached_full_stripes);
2883 	}
2884 
2885 	r5l_append_flush_payload(log, sh->sector);
2886 	/* stripe is flused to raid disks, we can do resync now */
2887 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2888 		set_bit(STRIPE_HANDLE, &sh->state);
2889 }
2890 
2891 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2892 {
2893 	struct r5conf *conf = sh->raid_conf;
2894 	int pages = 0;
2895 	int reserve;
2896 	int i;
2897 	int ret = 0;
2898 
2899 	BUG_ON(!log);
2900 
2901 	for (i = 0; i < sh->disks; i++) {
2902 		void *addr;
2903 
2904 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2905 			continue;
2906 		addr = kmap_atomic(sh->dev[i].page);
2907 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2908 						    addr, PAGE_SIZE);
2909 		kunmap_atomic(addr);
2910 		pages++;
2911 	}
2912 	WARN_ON(pages == 0);
2913 
2914 	/*
2915 	 * The stripe must enter state machine again to call endio, so
2916 	 * don't delay.
2917 	 */
2918 	clear_bit(STRIPE_DELAYED, &sh->state);
2919 	atomic_inc(&sh->count);
2920 
2921 	mutex_lock(&log->io_mutex);
2922 	/* meta + data */
2923 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2924 
2925 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2926 	    sh->log_start == MaxSector)
2927 		r5l_add_no_space_stripe(log, sh);
2928 	else if (!r5l_has_free_space(log, reserve)) {
2929 		if (sh->log_start == log->last_checkpoint)
2930 			BUG();
2931 		else
2932 			r5l_add_no_space_stripe(log, sh);
2933 	} else {
2934 		ret = r5l_log_stripe(log, sh, pages, 0);
2935 		if (ret) {
2936 			spin_lock_irq(&log->io_list_lock);
2937 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2938 			spin_unlock_irq(&log->io_list_lock);
2939 		}
2940 	}
2941 
2942 	mutex_unlock(&log->io_mutex);
2943 	return 0;
2944 }
2945 
2946 /* check whether this big stripe is in write back cache. */
2947 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2948 {
2949 	struct r5l_log *log = conf->log;
2950 	sector_t tree_index;
2951 	void *slot;
2952 
2953 	if (!log)
2954 		return false;
2955 
2956 	WARN_ON_ONCE(!rcu_read_lock_held());
2957 	tree_index = r5c_tree_index(conf, sect);
2958 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2959 	return slot != NULL;
2960 }
2961 
2962 static int r5l_load_log(struct r5l_log *log)
2963 {
2964 	struct md_rdev *rdev = log->rdev;
2965 	struct page *page;
2966 	struct r5l_meta_block *mb;
2967 	sector_t cp = log->rdev->journal_tail;
2968 	u32 stored_crc, expected_crc;
2969 	bool create_super = false;
2970 	int ret = 0;
2971 
2972 	/* Make sure it's valid */
2973 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2974 		cp = 0;
2975 	page = alloc_page(GFP_KERNEL);
2976 	if (!page)
2977 		return -ENOMEM;
2978 
2979 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2980 		ret = -EIO;
2981 		goto ioerr;
2982 	}
2983 	mb = page_address(page);
2984 
2985 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2986 	    mb->version != R5LOG_VERSION) {
2987 		create_super = true;
2988 		goto create;
2989 	}
2990 	stored_crc = le32_to_cpu(mb->checksum);
2991 	mb->checksum = 0;
2992 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2993 	if (stored_crc != expected_crc) {
2994 		create_super = true;
2995 		goto create;
2996 	}
2997 	if (le64_to_cpu(mb->position) != cp) {
2998 		create_super = true;
2999 		goto create;
3000 	}
3001 create:
3002 	if (create_super) {
3003 		log->last_cp_seq = prandom_u32();
3004 		cp = 0;
3005 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3006 		/*
3007 		 * Make sure super points to correct address. Log might have
3008 		 * data very soon. If super hasn't correct log tail address,
3009 		 * recovery can't find the log
3010 		 */
3011 		r5l_write_super(log, cp);
3012 	} else
3013 		log->last_cp_seq = le64_to_cpu(mb->seq);
3014 
3015 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3016 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3017 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3018 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3019 	log->last_checkpoint = cp;
3020 
3021 	__free_page(page);
3022 
3023 	if (create_super) {
3024 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3025 		log->seq = log->last_cp_seq + 1;
3026 		log->next_checkpoint = cp;
3027 	} else
3028 		ret = r5l_recovery_log(log);
3029 
3030 	r5c_update_log_state(log);
3031 	return ret;
3032 ioerr:
3033 	__free_page(page);
3034 	return ret;
3035 }
3036 
3037 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3038 {
3039 	struct r5conf *conf = mddev->private;
3040 	struct r5l_log *log = conf->log;
3041 
3042 	if (!log)
3043 		return;
3044 
3045 	if ((raid5_calc_degraded(conf) > 0 ||
3046 	     test_bit(Journal, &rdev->flags)) &&
3047 	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3048 		schedule_work(&log->disable_writeback_work);
3049 }
3050 
3051 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3052 {
3053 	struct request_queue *q = bdev_get_queue(rdev->bdev);
3054 	struct r5l_log *log;
3055 	char b[BDEVNAME_SIZE];
3056 
3057 	pr_debug("md/raid:%s: using device %s as journal\n",
3058 		 mdname(conf->mddev), bdevname(rdev->bdev, b));
3059 
3060 	if (PAGE_SIZE != 4096)
3061 		return -EINVAL;
3062 
3063 	/*
3064 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3065 	 * raid_disks r5l_payload_data_parity.
3066 	 *
3067 	 * Write journal and cache does not work for very big array
3068 	 * (raid_disks > 203)
3069 	 */
3070 	if (sizeof(struct r5l_meta_block) +
3071 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3072 	     conf->raid_disks) > PAGE_SIZE) {
3073 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3074 		       mdname(conf->mddev), conf->raid_disks);
3075 		return -EINVAL;
3076 	}
3077 
3078 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3079 	if (!log)
3080 		return -ENOMEM;
3081 	log->rdev = rdev;
3082 
3083 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3084 
3085 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3086 				       sizeof(rdev->mddev->uuid));
3087 
3088 	mutex_init(&log->io_mutex);
3089 
3090 	spin_lock_init(&log->io_list_lock);
3091 	INIT_LIST_HEAD(&log->running_ios);
3092 	INIT_LIST_HEAD(&log->io_end_ios);
3093 	INIT_LIST_HEAD(&log->flushing_ios);
3094 	INIT_LIST_HEAD(&log->finished_ios);
3095 	bio_init(&log->flush_bio, NULL, 0);
3096 
3097 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3098 	if (!log->io_kc)
3099 		goto io_kc;
3100 
3101 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3102 	if (!log->io_pool)
3103 		goto io_pool;
3104 
3105 	log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3106 	if (!log->bs)
3107 		goto io_bs;
3108 
3109 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3110 	if (!log->meta_pool)
3111 		goto out_mempool;
3112 
3113 	spin_lock_init(&log->tree_lock);
3114 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3115 
3116 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3117 						 log->rdev->mddev, "reclaim");
3118 	if (!log->reclaim_thread)
3119 		goto reclaim_thread;
3120 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3121 
3122 	init_waitqueue_head(&log->iounit_wait);
3123 
3124 	INIT_LIST_HEAD(&log->no_mem_stripes);
3125 
3126 	INIT_LIST_HEAD(&log->no_space_stripes);
3127 	spin_lock_init(&log->no_space_stripes_lock);
3128 
3129 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3130 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3131 
3132 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3133 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3134 	spin_lock_init(&log->stripe_in_journal_lock);
3135 	atomic_set(&log->stripe_in_journal_count, 0);
3136 
3137 	rcu_assign_pointer(conf->log, log);
3138 
3139 	if (r5l_load_log(log))
3140 		goto error;
3141 
3142 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3143 	return 0;
3144 
3145 error:
3146 	rcu_assign_pointer(conf->log, NULL);
3147 	md_unregister_thread(&log->reclaim_thread);
3148 reclaim_thread:
3149 	mempool_destroy(log->meta_pool);
3150 out_mempool:
3151 	bioset_free(log->bs);
3152 io_bs:
3153 	mempool_destroy(log->io_pool);
3154 io_pool:
3155 	kmem_cache_destroy(log->io_kc);
3156 io_kc:
3157 	kfree(log);
3158 	return -EINVAL;
3159 }
3160 
3161 void r5l_exit_log(struct r5conf *conf)
3162 {
3163 	struct r5l_log *log = conf->log;
3164 
3165 	conf->log = NULL;
3166 	synchronize_rcu();
3167 
3168 	flush_work(&log->disable_writeback_work);
3169 	md_unregister_thread(&log->reclaim_thread);
3170 	mempool_destroy(log->meta_pool);
3171 	bioset_free(log->bs);
3172 	mempool_destroy(log->io_pool);
3173 	kmem_cache_destroy(log->io_kc);
3174 	kfree(log);
3175 }
3176