1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 5 */ 6 #include <linux/kernel.h> 7 #include <linux/wait.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/raid/md_p.h> 11 #include <linux/crc32c.h> 12 #include <linux/random.h> 13 #include <linux/kthread.h> 14 #include <linux/types.h> 15 #include "md.h" 16 #include "raid5.h" 17 #include "md-bitmap.h" 18 #include "raid5-log.h" 19 20 /* 21 * metadata/data stored in disk with 4k size unit (a block) regardless 22 * underneath hardware sector size. only works with PAGE_SIZE == 4096 23 */ 24 #define BLOCK_SECTORS (8) 25 #define BLOCK_SECTOR_SHIFT (3) 26 27 /* 28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 29 * 30 * In write through mode, the reclaim runs every log->max_free_space. 31 * This can prevent the recovery scans for too long 32 */ 33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 35 36 /* wake up reclaim thread periodically */ 37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 38 /* start flush with these full stripes */ 39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 40 /* reclaim stripes in groups */ 41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 42 43 /* 44 * We only need 2 bios per I/O unit to make progress, but ensure we 45 * have a few more available to not get too tight. 46 */ 47 #define R5L_POOL_SIZE 4 48 49 static char *r5c_journal_mode_str[] = {"write-through", 50 "write-back"}; 51 /* 52 * raid5 cache state machine 53 * 54 * With the RAID cache, each stripe works in two phases: 55 * - caching phase 56 * - writing-out phase 57 * 58 * These two phases are controlled by bit STRIPE_R5C_CACHING: 59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 61 * 62 * When there is no journal, or the journal is in write-through mode, 63 * the stripe is always in writing-out phase. 64 * 65 * For write-back journal, the stripe is sent to caching phase on write 66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 67 * the write-out phase by clearing STRIPE_R5C_CACHING. 68 * 69 * Stripes in caching phase do not write the raid disks. Instead, all 70 * writes are committed from the log device. Therefore, a stripe in 71 * caching phase handles writes as: 72 * - write to log device 73 * - return IO 74 * 75 * Stripes in writing-out phase handle writes as: 76 * - calculate parity 77 * - write pending data and parity to journal 78 * - write data and parity to raid disks 79 * - return IO for pending writes 80 */ 81 82 struct r5l_log { 83 struct md_rdev *rdev; 84 85 u32 uuid_checksum; 86 87 sector_t device_size; /* log device size, round to 88 * BLOCK_SECTORS */ 89 sector_t max_free_space; /* reclaim run if free space is at 90 * this size */ 91 92 sector_t last_checkpoint; /* log tail. where recovery scan 93 * starts from */ 94 u64 last_cp_seq; /* log tail sequence */ 95 96 sector_t log_start; /* log head. where new data appends */ 97 u64 seq; /* log head sequence */ 98 99 sector_t next_checkpoint; 100 101 struct mutex io_mutex; 102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 103 104 spinlock_t io_list_lock; 105 struct list_head running_ios; /* io_units which are still running, 106 * and have not yet been completely 107 * written to the log */ 108 struct list_head io_end_ios; /* io_units which have been completely 109 * written to the log but not yet written 110 * to the RAID */ 111 struct list_head flushing_ios; /* io_units which are waiting for log 112 * cache flush */ 113 struct list_head finished_ios; /* io_units which settle down in log disk */ 114 struct bio flush_bio; 115 116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 117 118 struct kmem_cache *io_kc; 119 mempool_t io_pool; 120 struct bio_set bs; 121 mempool_t meta_pool; 122 123 struct md_thread *reclaim_thread; 124 unsigned long reclaim_target; /* number of space that need to be 125 * reclaimed. if it's 0, reclaim spaces 126 * used by io_units which are in 127 * IO_UNIT_STRIPE_END state (eg, reclaim 128 * dones't wait for specific io_unit 129 * switching to IO_UNIT_STRIPE_END 130 * state) */ 131 wait_queue_head_t iounit_wait; 132 133 struct list_head no_space_stripes; /* pending stripes, log has no space */ 134 spinlock_t no_space_stripes_lock; 135 136 bool need_cache_flush; 137 138 /* for r5c_cache */ 139 enum r5c_journal_mode r5c_journal_mode; 140 141 /* all stripes in r5cache, in the order of seq at sh->log_start */ 142 struct list_head stripe_in_journal_list; 143 144 spinlock_t stripe_in_journal_lock; 145 atomic_t stripe_in_journal_count; 146 147 /* to submit async io_units, to fulfill ordering of flush */ 148 struct work_struct deferred_io_work; 149 /* to disable write back during in degraded mode */ 150 struct work_struct disable_writeback_work; 151 152 /* to for chunk_aligned_read in writeback mode, details below */ 153 spinlock_t tree_lock; 154 struct radix_tree_root big_stripe_tree; 155 }; 156 157 /* 158 * Enable chunk_aligned_read() with write back cache. 159 * 160 * Each chunk may contain more than one stripe (for example, a 256kB 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 163 * For each big_stripe, we count how many stripes of this big_stripe 164 * are in the write back cache. These data are tracked in a radix tree 165 * (big_stripe_tree). We use radix_tree item pointer as the counter. 166 * r5c_tree_index() is used to calculate keys for the radix tree. 167 * 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 169 * big_stripe of each chunk in the tree. If this big_stripe is in the 170 * tree, chunk_aligned_read() aborts. This look up is protected by 171 * rcu_read_lock(). 172 * 173 * It is necessary to remember whether a stripe is counted in 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 176 * two flags are set, the stripe is counted in big_stripe_tree. This 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 178 * r5c_try_caching_write(); and moving clear_bit of 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 180 * r5c_finish_stripe_write_out(). 181 */ 182 183 /* 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 185 * So it is necessary to left shift the counter by 2 bits before using it 186 * as data pointer of the tree. 187 */ 188 #define R5C_RADIX_COUNT_SHIFT 2 189 190 /* 191 * calculate key for big_stripe_tree 192 * 193 * sect: align_bi->bi_iter.bi_sector or sh->sector 194 */ 195 static inline sector_t r5c_tree_index(struct r5conf *conf, 196 sector_t sect) 197 { 198 sector_div(sect, conf->chunk_sectors); 199 return sect; 200 } 201 202 /* 203 * an IO range starts from a meta data block and end at the next meta data 204 * block. The io unit's the meta data block tracks data/parity followed it. io 205 * unit is written to log disk with normal write, as we always flush log disk 206 * first and then start move data to raid disks, there is no requirement to 207 * write io unit with FLUSH/FUA 208 */ 209 struct r5l_io_unit { 210 struct r5l_log *log; 211 212 struct page *meta_page; /* store meta block */ 213 int meta_offset; /* current offset in meta_page */ 214 215 struct bio *current_bio;/* current_bio accepting new data */ 216 217 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 218 u64 seq; /* seq number of the metablock */ 219 sector_t log_start; /* where the io_unit starts */ 220 sector_t log_end; /* where the io_unit ends */ 221 struct list_head log_sibling; /* log->running_ios */ 222 struct list_head stripe_list; /* stripes added to the io_unit */ 223 224 int state; 225 bool need_split_bio; 226 struct bio *split_bio; 227 228 unsigned int has_flush:1; /* include flush request */ 229 unsigned int has_fua:1; /* include fua request */ 230 unsigned int has_null_flush:1; /* include null flush request */ 231 unsigned int has_flush_payload:1; /* include flush payload */ 232 /* 233 * io isn't sent yet, flush/fua request can only be submitted till it's 234 * the first IO in running_ios list 235 */ 236 unsigned int io_deferred:1; 237 238 struct bio_list flush_barriers; /* size == 0 flush bios */ 239 }; 240 241 /* r5l_io_unit state */ 242 enum r5l_io_unit_state { 243 IO_UNIT_RUNNING = 0, /* accepting new IO */ 244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 245 * don't accepting new bio */ 246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 248 }; 249 250 bool r5c_is_writeback(struct r5l_log *log) 251 { 252 return (log != NULL && 253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 254 } 255 256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 257 { 258 start += inc; 259 if (start >= log->device_size) 260 start = start - log->device_size; 261 return start; 262 } 263 264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 265 sector_t end) 266 { 267 if (end >= start) 268 return end - start; 269 else 270 return end + log->device_size - start; 271 } 272 273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 274 { 275 sector_t used_size; 276 277 used_size = r5l_ring_distance(log, log->last_checkpoint, 278 log->log_start); 279 280 return log->device_size > used_size + size; 281 } 282 283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 284 enum r5l_io_unit_state state) 285 { 286 if (WARN_ON(io->state >= state)) 287 return; 288 io->state = state; 289 } 290 291 static void 292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 293 { 294 struct bio *wbi, *wbi2; 295 296 wbi = dev->written; 297 dev->written = NULL; 298 while (wbi && wbi->bi_iter.bi_sector < 299 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 300 wbi2 = r5_next_bio(conf, wbi, dev->sector); 301 md_write_end(conf->mddev); 302 bio_endio(wbi); 303 wbi = wbi2; 304 } 305 } 306 307 void r5c_handle_cached_data_endio(struct r5conf *conf, 308 struct stripe_head *sh, int disks) 309 { 310 int i; 311 312 for (i = sh->disks; i--; ) { 313 if (sh->dev[i].written) { 314 set_bit(R5_UPTODATE, &sh->dev[i].flags); 315 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 317 RAID5_STRIPE_SECTORS(conf), 318 !test_bit(STRIPE_DEGRADED, &sh->state), 319 0); 320 } 321 } 322 } 323 324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 325 326 /* Check whether we should flush some stripes to free up stripe cache */ 327 void r5c_check_stripe_cache_usage(struct r5conf *conf) 328 { 329 int total_cached; 330 331 if (!r5c_is_writeback(conf->log)) 332 return; 333 334 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 335 atomic_read(&conf->r5c_cached_full_stripes); 336 337 /* 338 * The following condition is true for either of the following: 339 * - stripe cache pressure high: 340 * total_cached > 3/4 min_nr_stripes || 341 * empty_inactive_list_nr > 0 342 * - stripe cache pressure moderate: 343 * total_cached > 1/2 min_nr_stripes 344 */ 345 if (total_cached > conf->min_nr_stripes * 1 / 2 || 346 atomic_read(&conf->empty_inactive_list_nr) > 0) 347 r5l_wake_reclaim(conf->log, 0); 348 } 349 350 /* 351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 352 * stripes in the cache 353 */ 354 void r5c_check_cached_full_stripe(struct r5conf *conf) 355 { 356 if (!r5c_is_writeback(conf->log)) 357 return; 358 359 /* 360 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 361 * or a full stripe (chunk size / 4k stripes). 362 */ 363 if (atomic_read(&conf->r5c_cached_full_stripes) >= 364 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 365 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf))) 366 r5l_wake_reclaim(conf->log, 0); 367 } 368 369 /* 370 * Total log space (in sectors) needed to flush all data in cache 371 * 372 * To avoid deadlock due to log space, it is necessary to reserve log 373 * space to flush critical stripes (stripes that occupying log space near 374 * last_checkpoint). This function helps check how much log space is 375 * required to flush all cached stripes. 376 * 377 * To reduce log space requirements, two mechanisms are used to give cache 378 * flush higher priorities: 379 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 380 * stripes ALREADY in journal can be flushed w/o pending writes; 381 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 382 * can be delayed (r5l_add_no_space_stripe). 383 * 384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 385 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 386 * pages of journal space. For stripes that has not passed 1, flushing it 387 * requires (conf->raid_disks + 1) pages of journal space. There are at 388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 389 * required to flush all cached stripes (in pages) is: 390 * 391 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 392 * (group_cnt + 1) * (raid_disks + 1) 393 * or 394 * (stripe_in_journal_count) * (max_degraded + 1) + 395 * (group_cnt + 1) * (raid_disks - max_degraded) 396 */ 397 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 398 { 399 struct r5l_log *log = conf->log; 400 401 if (!r5c_is_writeback(log)) 402 return 0; 403 404 return BLOCK_SECTORS * 405 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 406 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 407 } 408 409 /* 410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 411 * 412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 414 * device is less than 2x of reclaim_required_space. 415 */ 416 static inline void r5c_update_log_state(struct r5l_log *log) 417 { 418 struct r5conf *conf = log->rdev->mddev->private; 419 sector_t free_space; 420 sector_t reclaim_space; 421 bool wake_reclaim = false; 422 423 if (!r5c_is_writeback(log)) 424 return; 425 426 free_space = r5l_ring_distance(log, log->log_start, 427 log->last_checkpoint); 428 reclaim_space = r5c_log_required_to_flush_cache(conf); 429 if (free_space < 2 * reclaim_space) 430 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 431 else { 432 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 433 wake_reclaim = true; 434 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 435 } 436 if (free_space < 3 * reclaim_space) 437 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 438 else 439 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 440 441 if (wake_reclaim) 442 r5l_wake_reclaim(log, 0); 443 } 444 445 /* 446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 447 * This function should only be called in write-back mode. 448 */ 449 void r5c_make_stripe_write_out(struct stripe_head *sh) 450 { 451 struct r5conf *conf = sh->raid_conf; 452 struct r5l_log *log = conf->log; 453 454 BUG_ON(!r5c_is_writeback(log)); 455 456 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 457 clear_bit(STRIPE_R5C_CACHING, &sh->state); 458 459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 460 atomic_inc(&conf->preread_active_stripes); 461 } 462 463 static void r5c_handle_data_cached(struct stripe_head *sh) 464 { 465 int i; 466 467 for (i = sh->disks; i--; ) 468 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 469 set_bit(R5_InJournal, &sh->dev[i].flags); 470 clear_bit(R5_LOCKED, &sh->dev[i].flags); 471 } 472 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 473 } 474 475 /* 476 * this journal write must contain full parity, 477 * it may also contain some data pages 478 */ 479 static void r5c_handle_parity_cached(struct stripe_head *sh) 480 { 481 int i; 482 483 for (i = sh->disks; i--; ) 484 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 485 set_bit(R5_Wantwrite, &sh->dev[i].flags); 486 } 487 488 /* 489 * Setting proper flags after writing (or flushing) data and/or parity to the 490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 491 */ 492 static void r5c_finish_cache_stripe(struct stripe_head *sh) 493 { 494 struct r5l_log *log = sh->raid_conf->log; 495 496 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 497 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 498 /* 499 * Set R5_InJournal for parity dev[pd_idx]. This means 500 * all data AND parity in the journal. For RAID 6, it is 501 * NOT necessary to set the flag for dev[qd_idx], as the 502 * two parities are written out together. 503 */ 504 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 505 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 506 r5c_handle_data_cached(sh); 507 } else { 508 r5c_handle_parity_cached(sh); 509 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 510 } 511 } 512 513 static void r5l_io_run_stripes(struct r5l_io_unit *io) 514 { 515 struct stripe_head *sh, *next; 516 517 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 518 list_del_init(&sh->log_list); 519 520 r5c_finish_cache_stripe(sh); 521 522 set_bit(STRIPE_HANDLE, &sh->state); 523 raid5_release_stripe(sh); 524 } 525 } 526 527 static void r5l_log_run_stripes(struct r5l_log *log) 528 { 529 struct r5l_io_unit *io, *next; 530 531 lockdep_assert_held(&log->io_list_lock); 532 533 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 534 /* don't change list order */ 535 if (io->state < IO_UNIT_IO_END) 536 break; 537 538 list_move_tail(&io->log_sibling, &log->finished_ios); 539 r5l_io_run_stripes(io); 540 } 541 } 542 543 static void r5l_move_to_end_ios(struct r5l_log *log) 544 { 545 struct r5l_io_unit *io, *next; 546 547 lockdep_assert_held(&log->io_list_lock); 548 549 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 550 /* don't change list order */ 551 if (io->state < IO_UNIT_IO_END) 552 break; 553 list_move_tail(&io->log_sibling, &log->io_end_ios); 554 } 555 } 556 557 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 558 static void r5l_log_endio(struct bio *bio) 559 { 560 struct r5l_io_unit *io = bio->bi_private; 561 struct r5l_io_unit *io_deferred; 562 struct r5l_log *log = io->log; 563 unsigned long flags; 564 bool has_null_flush; 565 bool has_flush_payload; 566 567 if (bio->bi_status) 568 md_error(log->rdev->mddev, log->rdev); 569 570 bio_put(bio); 571 mempool_free(io->meta_page, &log->meta_pool); 572 573 spin_lock_irqsave(&log->io_list_lock, flags); 574 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 575 576 /* 577 * if the io doesn't not have null_flush or flush payload, 578 * it is not safe to access it after releasing io_list_lock. 579 * Therefore, it is necessary to check the condition with 580 * the lock held. 581 */ 582 has_null_flush = io->has_null_flush; 583 has_flush_payload = io->has_flush_payload; 584 585 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 586 r5l_move_to_end_ios(log); 587 else 588 r5l_log_run_stripes(log); 589 if (!list_empty(&log->running_ios)) { 590 /* 591 * FLUSH/FUA io_unit is deferred because of ordering, now we 592 * can dispatch it 593 */ 594 io_deferred = list_first_entry(&log->running_ios, 595 struct r5l_io_unit, log_sibling); 596 if (io_deferred->io_deferred) 597 schedule_work(&log->deferred_io_work); 598 } 599 600 spin_unlock_irqrestore(&log->io_list_lock, flags); 601 602 if (log->need_cache_flush) 603 md_wakeup_thread(log->rdev->mddev->thread); 604 605 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 606 if (has_null_flush) { 607 struct bio *bi; 608 609 WARN_ON(bio_list_empty(&io->flush_barriers)); 610 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 611 bio_endio(bi); 612 if (atomic_dec_and_test(&io->pending_stripe)) { 613 __r5l_stripe_write_finished(io); 614 return; 615 } 616 } 617 } 618 /* decrease pending_stripe for flush payload */ 619 if (has_flush_payload) 620 if (atomic_dec_and_test(&io->pending_stripe)) 621 __r5l_stripe_write_finished(io); 622 } 623 624 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 625 { 626 unsigned long flags; 627 628 spin_lock_irqsave(&log->io_list_lock, flags); 629 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 630 spin_unlock_irqrestore(&log->io_list_lock, flags); 631 632 /* 633 * In case of journal device failures, submit_bio will get error 634 * and calls endio, then active stripes will continue write 635 * process. Therefore, it is not necessary to check Faulty bit 636 * of journal device here. 637 * 638 * We can't check split_bio after current_bio is submitted. If 639 * io->split_bio is null, after current_bio is submitted, current_bio 640 * might already be completed and the io_unit is freed. We submit 641 * split_bio first to avoid the issue. 642 */ 643 if (io->split_bio) { 644 if (io->has_flush) 645 io->split_bio->bi_opf |= REQ_PREFLUSH; 646 if (io->has_fua) 647 io->split_bio->bi_opf |= REQ_FUA; 648 submit_bio(io->split_bio); 649 } 650 651 if (io->has_flush) 652 io->current_bio->bi_opf |= REQ_PREFLUSH; 653 if (io->has_fua) 654 io->current_bio->bi_opf |= REQ_FUA; 655 submit_bio(io->current_bio); 656 } 657 658 /* deferred io_unit will be dispatched here */ 659 static void r5l_submit_io_async(struct work_struct *work) 660 { 661 struct r5l_log *log = container_of(work, struct r5l_log, 662 deferred_io_work); 663 struct r5l_io_unit *io = NULL; 664 unsigned long flags; 665 666 spin_lock_irqsave(&log->io_list_lock, flags); 667 if (!list_empty(&log->running_ios)) { 668 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 669 log_sibling); 670 if (!io->io_deferred) 671 io = NULL; 672 else 673 io->io_deferred = 0; 674 } 675 spin_unlock_irqrestore(&log->io_list_lock, flags); 676 if (io) 677 r5l_do_submit_io(log, io); 678 } 679 680 static void r5c_disable_writeback_async(struct work_struct *work) 681 { 682 struct r5l_log *log = container_of(work, struct r5l_log, 683 disable_writeback_work); 684 struct mddev *mddev = log->rdev->mddev; 685 struct r5conf *conf = mddev->private; 686 int locked = 0; 687 688 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 689 return; 690 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 691 mdname(mddev)); 692 693 /* wait superblock change before suspend */ 694 wait_event(mddev->sb_wait, 695 conf->log == NULL || 696 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && 697 (locked = mddev_trylock(mddev)))); 698 if (locked) { 699 mddev_suspend(mddev); 700 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 701 mddev_resume(mddev); 702 mddev_unlock(mddev); 703 } 704 } 705 706 static void r5l_submit_current_io(struct r5l_log *log) 707 { 708 struct r5l_io_unit *io = log->current_io; 709 struct r5l_meta_block *block; 710 unsigned long flags; 711 u32 crc; 712 bool do_submit = true; 713 714 if (!io) 715 return; 716 717 block = page_address(io->meta_page); 718 block->meta_size = cpu_to_le32(io->meta_offset); 719 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 720 block->checksum = cpu_to_le32(crc); 721 722 log->current_io = NULL; 723 spin_lock_irqsave(&log->io_list_lock, flags); 724 if (io->has_flush || io->has_fua) { 725 if (io != list_first_entry(&log->running_ios, 726 struct r5l_io_unit, log_sibling)) { 727 io->io_deferred = 1; 728 do_submit = false; 729 } 730 } 731 spin_unlock_irqrestore(&log->io_list_lock, flags); 732 if (do_submit) 733 r5l_do_submit_io(log, io); 734 } 735 736 static struct bio *r5l_bio_alloc(struct r5l_log *log) 737 { 738 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS, 739 REQ_OP_WRITE, GFP_NOIO, &log->bs); 740 741 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 742 743 return bio; 744 } 745 746 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 747 { 748 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 749 750 r5c_update_log_state(log); 751 /* 752 * If we filled up the log device start from the beginning again, 753 * which will require a new bio. 754 * 755 * Note: for this to work properly the log size needs to me a multiple 756 * of BLOCK_SECTORS. 757 */ 758 if (log->log_start == 0) 759 io->need_split_bio = true; 760 761 io->log_end = log->log_start; 762 } 763 764 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 765 { 766 struct r5l_io_unit *io; 767 struct r5l_meta_block *block; 768 769 io = mempool_alloc(&log->io_pool, GFP_ATOMIC); 770 if (!io) 771 return NULL; 772 memset(io, 0, sizeof(*io)); 773 774 io->log = log; 775 INIT_LIST_HEAD(&io->log_sibling); 776 INIT_LIST_HEAD(&io->stripe_list); 777 bio_list_init(&io->flush_barriers); 778 io->state = IO_UNIT_RUNNING; 779 780 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); 781 block = page_address(io->meta_page); 782 clear_page(block); 783 block->magic = cpu_to_le32(R5LOG_MAGIC); 784 block->version = R5LOG_VERSION; 785 block->seq = cpu_to_le64(log->seq); 786 block->position = cpu_to_le64(log->log_start); 787 788 io->log_start = log->log_start; 789 io->meta_offset = sizeof(struct r5l_meta_block); 790 io->seq = log->seq++; 791 792 io->current_bio = r5l_bio_alloc(log); 793 io->current_bio->bi_end_io = r5l_log_endio; 794 io->current_bio->bi_private = io; 795 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 796 797 r5_reserve_log_entry(log, io); 798 799 spin_lock_irq(&log->io_list_lock); 800 list_add_tail(&io->log_sibling, &log->running_ios); 801 spin_unlock_irq(&log->io_list_lock); 802 803 return io; 804 } 805 806 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 807 { 808 if (log->current_io && 809 log->current_io->meta_offset + payload_size > PAGE_SIZE) 810 r5l_submit_current_io(log); 811 812 if (!log->current_io) { 813 log->current_io = r5l_new_meta(log); 814 if (!log->current_io) 815 return -ENOMEM; 816 } 817 818 return 0; 819 } 820 821 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 822 sector_t location, 823 u32 checksum1, u32 checksum2, 824 bool checksum2_valid) 825 { 826 struct r5l_io_unit *io = log->current_io; 827 struct r5l_payload_data_parity *payload; 828 829 payload = page_address(io->meta_page) + io->meta_offset; 830 payload->header.type = cpu_to_le16(type); 831 payload->header.flags = cpu_to_le16(0); 832 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 833 (PAGE_SHIFT - 9)); 834 payload->location = cpu_to_le64(location); 835 payload->checksum[0] = cpu_to_le32(checksum1); 836 if (checksum2_valid) 837 payload->checksum[1] = cpu_to_le32(checksum2); 838 839 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 840 sizeof(__le32) * (1 + !!checksum2_valid); 841 } 842 843 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 844 { 845 struct r5l_io_unit *io = log->current_io; 846 847 if (io->need_split_bio) { 848 BUG_ON(io->split_bio); 849 io->split_bio = io->current_bio; 850 io->current_bio = r5l_bio_alloc(log); 851 bio_chain(io->current_bio, io->split_bio); 852 io->need_split_bio = false; 853 } 854 855 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 856 BUG(); 857 858 r5_reserve_log_entry(log, io); 859 } 860 861 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 862 { 863 struct mddev *mddev = log->rdev->mddev; 864 struct r5conf *conf = mddev->private; 865 struct r5l_io_unit *io; 866 struct r5l_payload_flush *payload; 867 int meta_size; 868 869 /* 870 * payload_flush requires extra writes to the journal. 871 * To avoid handling the extra IO in quiesce, just skip 872 * flush_payload 873 */ 874 if (conf->quiesce) 875 return; 876 877 mutex_lock(&log->io_mutex); 878 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 879 880 if (r5l_get_meta(log, meta_size)) { 881 mutex_unlock(&log->io_mutex); 882 return; 883 } 884 885 /* current implementation is one stripe per flush payload */ 886 io = log->current_io; 887 payload = page_address(io->meta_page) + io->meta_offset; 888 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 889 payload->header.flags = cpu_to_le16(0); 890 payload->size = cpu_to_le32(sizeof(__le64)); 891 payload->flush_stripes[0] = cpu_to_le64(sect); 892 io->meta_offset += meta_size; 893 /* multiple flush payloads count as one pending_stripe */ 894 if (!io->has_flush_payload) { 895 io->has_flush_payload = 1; 896 atomic_inc(&io->pending_stripe); 897 } 898 mutex_unlock(&log->io_mutex); 899 } 900 901 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 902 int data_pages, int parity_pages) 903 { 904 int i; 905 int meta_size; 906 int ret; 907 struct r5l_io_unit *io; 908 909 meta_size = 910 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 911 * data_pages) + 912 sizeof(struct r5l_payload_data_parity) + 913 sizeof(__le32) * parity_pages; 914 915 ret = r5l_get_meta(log, meta_size); 916 if (ret) 917 return ret; 918 919 io = log->current_io; 920 921 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 922 io->has_flush = 1; 923 924 for (i = 0; i < sh->disks; i++) { 925 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 926 test_bit(R5_InJournal, &sh->dev[i].flags)) 927 continue; 928 if (i == sh->pd_idx || i == sh->qd_idx) 929 continue; 930 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 931 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 932 io->has_fua = 1; 933 /* 934 * we need to flush journal to make sure recovery can 935 * reach the data with fua flag 936 */ 937 io->has_flush = 1; 938 } 939 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 940 raid5_compute_blocknr(sh, i, 0), 941 sh->dev[i].log_checksum, 0, false); 942 r5l_append_payload_page(log, sh->dev[i].page); 943 } 944 945 if (parity_pages == 2) { 946 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 947 sh->sector, sh->dev[sh->pd_idx].log_checksum, 948 sh->dev[sh->qd_idx].log_checksum, true); 949 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 950 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 951 } else if (parity_pages == 1) { 952 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 953 sh->sector, sh->dev[sh->pd_idx].log_checksum, 954 0, false); 955 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 956 } else /* Just writing data, not parity, in caching phase */ 957 BUG_ON(parity_pages != 0); 958 959 list_add_tail(&sh->log_list, &io->stripe_list); 960 atomic_inc(&io->pending_stripe); 961 sh->log_io = io; 962 963 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 964 return 0; 965 966 if (sh->log_start == MaxSector) { 967 BUG_ON(!list_empty(&sh->r5c)); 968 sh->log_start = io->log_start; 969 spin_lock_irq(&log->stripe_in_journal_lock); 970 list_add_tail(&sh->r5c, 971 &log->stripe_in_journal_list); 972 spin_unlock_irq(&log->stripe_in_journal_lock); 973 atomic_inc(&log->stripe_in_journal_count); 974 } 975 return 0; 976 } 977 978 /* add stripe to no_space_stripes, and then wake up reclaim */ 979 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 980 struct stripe_head *sh) 981 { 982 spin_lock(&log->no_space_stripes_lock); 983 list_add_tail(&sh->log_list, &log->no_space_stripes); 984 spin_unlock(&log->no_space_stripes_lock); 985 } 986 987 /* 988 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 989 * data from log to raid disks), so we shouldn't wait for reclaim here 990 */ 991 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 992 { 993 struct r5conf *conf = sh->raid_conf; 994 int write_disks = 0; 995 int data_pages, parity_pages; 996 int reserve; 997 int i; 998 int ret = 0; 999 bool wake_reclaim = false; 1000 1001 if (!log) 1002 return -EAGAIN; 1003 /* Don't support stripe batch */ 1004 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1005 test_bit(STRIPE_SYNCING, &sh->state)) { 1006 /* the stripe is written to log, we start writing it to raid */ 1007 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1008 return -EAGAIN; 1009 } 1010 1011 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1012 1013 for (i = 0; i < sh->disks; i++) { 1014 void *addr; 1015 1016 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1017 test_bit(R5_InJournal, &sh->dev[i].flags)) 1018 continue; 1019 1020 write_disks++; 1021 /* checksum is already calculated in last run */ 1022 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1023 continue; 1024 addr = kmap_atomic(sh->dev[i].page); 1025 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1026 addr, PAGE_SIZE); 1027 kunmap_atomic(addr); 1028 } 1029 parity_pages = 1 + !!(sh->qd_idx >= 0); 1030 data_pages = write_disks - parity_pages; 1031 1032 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1033 /* 1034 * The stripe must enter state machine again to finish the write, so 1035 * don't delay. 1036 */ 1037 clear_bit(STRIPE_DELAYED, &sh->state); 1038 atomic_inc(&sh->count); 1039 1040 mutex_lock(&log->io_mutex); 1041 /* meta + data */ 1042 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1043 1044 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1045 if (!r5l_has_free_space(log, reserve)) { 1046 r5l_add_no_space_stripe(log, sh); 1047 wake_reclaim = true; 1048 } else { 1049 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1050 if (ret) { 1051 spin_lock_irq(&log->io_list_lock); 1052 list_add_tail(&sh->log_list, 1053 &log->no_mem_stripes); 1054 spin_unlock_irq(&log->io_list_lock); 1055 } 1056 } 1057 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1058 /* 1059 * log space critical, do not process stripes that are 1060 * not in cache yet (sh->log_start == MaxSector). 1061 */ 1062 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1063 sh->log_start == MaxSector) { 1064 r5l_add_no_space_stripe(log, sh); 1065 wake_reclaim = true; 1066 reserve = 0; 1067 } else if (!r5l_has_free_space(log, reserve)) { 1068 if (sh->log_start == log->last_checkpoint) 1069 BUG(); 1070 else 1071 r5l_add_no_space_stripe(log, sh); 1072 } else { 1073 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1074 if (ret) { 1075 spin_lock_irq(&log->io_list_lock); 1076 list_add_tail(&sh->log_list, 1077 &log->no_mem_stripes); 1078 spin_unlock_irq(&log->io_list_lock); 1079 } 1080 } 1081 } 1082 1083 mutex_unlock(&log->io_mutex); 1084 if (wake_reclaim) 1085 r5l_wake_reclaim(log, reserve); 1086 return 0; 1087 } 1088 1089 void r5l_write_stripe_run(struct r5l_log *log) 1090 { 1091 if (!log) 1092 return; 1093 mutex_lock(&log->io_mutex); 1094 r5l_submit_current_io(log); 1095 mutex_unlock(&log->io_mutex); 1096 } 1097 1098 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1099 { 1100 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1101 /* 1102 * in write through (journal only) 1103 * we flush log disk cache first, then write stripe data to 1104 * raid disks. So if bio is finished, the log disk cache is 1105 * flushed already. The recovery guarantees we can recovery 1106 * the bio from log disk, so we don't need to flush again 1107 */ 1108 if (bio->bi_iter.bi_size == 0) { 1109 bio_endio(bio); 1110 return 0; 1111 } 1112 bio->bi_opf &= ~REQ_PREFLUSH; 1113 } else { 1114 /* write back (with cache) */ 1115 if (bio->bi_iter.bi_size == 0) { 1116 mutex_lock(&log->io_mutex); 1117 r5l_get_meta(log, 0); 1118 bio_list_add(&log->current_io->flush_barriers, bio); 1119 log->current_io->has_flush = 1; 1120 log->current_io->has_null_flush = 1; 1121 atomic_inc(&log->current_io->pending_stripe); 1122 r5l_submit_current_io(log); 1123 mutex_unlock(&log->io_mutex); 1124 return 0; 1125 } 1126 } 1127 return -EAGAIN; 1128 } 1129 1130 /* This will run after log space is reclaimed */ 1131 static void r5l_run_no_space_stripes(struct r5l_log *log) 1132 { 1133 struct stripe_head *sh; 1134 1135 spin_lock(&log->no_space_stripes_lock); 1136 while (!list_empty(&log->no_space_stripes)) { 1137 sh = list_first_entry(&log->no_space_stripes, 1138 struct stripe_head, log_list); 1139 list_del_init(&sh->log_list); 1140 set_bit(STRIPE_HANDLE, &sh->state); 1141 raid5_release_stripe(sh); 1142 } 1143 spin_unlock(&log->no_space_stripes_lock); 1144 } 1145 1146 /* 1147 * calculate new last_checkpoint 1148 * for write through mode, returns log->next_checkpoint 1149 * for write back, returns log_start of first sh in stripe_in_journal_list 1150 */ 1151 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1152 { 1153 struct stripe_head *sh; 1154 struct r5l_log *log = conf->log; 1155 sector_t new_cp; 1156 unsigned long flags; 1157 1158 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1159 return log->next_checkpoint; 1160 1161 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1162 if (list_empty(&conf->log->stripe_in_journal_list)) { 1163 /* all stripes flushed */ 1164 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1165 return log->next_checkpoint; 1166 } 1167 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1168 struct stripe_head, r5c); 1169 new_cp = sh->log_start; 1170 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1171 return new_cp; 1172 } 1173 1174 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1175 { 1176 struct r5conf *conf = log->rdev->mddev->private; 1177 1178 return r5l_ring_distance(log, log->last_checkpoint, 1179 r5c_calculate_new_cp(conf)); 1180 } 1181 1182 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1183 { 1184 struct stripe_head *sh; 1185 1186 lockdep_assert_held(&log->io_list_lock); 1187 1188 if (!list_empty(&log->no_mem_stripes)) { 1189 sh = list_first_entry(&log->no_mem_stripes, 1190 struct stripe_head, log_list); 1191 list_del_init(&sh->log_list); 1192 set_bit(STRIPE_HANDLE, &sh->state); 1193 raid5_release_stripe(sh); 1194 } 1195 } 1196 1197 static bool r5l_complete_finished_ios(struct r5l_log *log) 1198 { 1199 struct r5l_io_unit *io, *next; 1200 bool found = false; 1201 1202 lockdep_assert_held(&log->io_list_lock); 1203 1204 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1205 /* don't change list order */ 1206 if (io->state < IO_UNIT_STRIPE_END) 1207 break; 1208 1209 log->next_checkpoint = io->log_start; 1210 1211 list_del(&io->log_sibling); 1212 mempool_free(io, &log->io_pool); 1213 r5l_run_no_mem_stripe(log); 1214 1215 found = true; 1216 } 1217 1218 return found; 1219 } 1220 1221 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1222 { 1223 struct r5l_log *log = io->log; 1224 struct r5conf *conf = log->rdev->mddev->private; 1225 unsigned long flags; 1226 1227 spin_lock_irqsave(&log->io_list_lock, flags); 1228 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1229 1230 if (!r5l_complete_finished_ios(log)) { 1231 spin_unlock_irqrestore(&log->io_list_lock, flags); 1232 return; 1233 } 1234 1235 if (r5l_reclaimable_space(log) > log->max_free_space || 1236 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1237 r5l_wake_reclaim(log, 0); 1238 1239 spin_unlock_irqrestore(&log->io_list_lock, flags); 1240 wake_up(&log->iounit_wait); 1241 } 1242 1243 void r5l_stripe_write_finished(struct stripe_head *sh) 1244 { 1245 struct r5l_io_unit *io; 1246 1247 io = sh->log_io; 1248 sh->log_io = NULL; 1249 1250 if (io && atomic_dec_and_test(&io->pending_stripe)) 1251 __r5l_stripe_write_finished(io); 1252 } 1253 1254 static void r5l_log_flush_endio(struct bio *bio) 1255 { 1256 struct r5l_log *log = container_of(bio, struct r5l_log, 1257 flush_bio); 1258 unsigned long flags; 1259 struct r5l_io_unit *io; 1260 1261 if (bio->bi_status) 1262 md_error(log->rdev->mddev, log->rdev); 1263 1264 spin_lock_irqsave(&log->io_list_lock, flags); 1265 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1266 r5l_io_run_stripes(io); 1267 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1268 spin_unlock_irqrestore(&log->io_list_lock, flags); 1269 1270 bio_uninit(bio); 1271 } 1272 1273 /* 1274 * Starting dispatch IO to raid. 1275 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1276 * broken meta in the middle of a log causes recovery can't find meta at the 1277 * head of log. If operations require meta at the head persistent in log, we 1278 * must make sure meta before it persistent in log too. A case is: 1279 * 1280 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1281 * data/parity must be persistent in log before we do the write to raid disks. 1282 * 1283 * The solution is we restrictly maintain io_unit list order. In this case, we 1284 * only write stripes of an io_unit to raid disks till the io_unit is the first 1285 * one whose data/parity is in log. 1286 */ 1287 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1288 { 1289 bool do_flush; 1290 1291 if (!log || !log->need_cache_flush) 1292 return; 1293 1294 spin_lock_irq(&log->io_list_lock); 1295 /* flush bio is running */ 1296 if (!list_empty(&log->flushing_ios)) { 1297 spin_unlock_irq(&log->io_list_lock); 1298 return; 1299 } 1300 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1301 do_flush = !list_empty(&log->flushing_ios); 1302 spin_unlock_irq(&log->io_list_lock); 1303 1304 if (!do_flush) 1305 return; 1306 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0, 1307 REQ_OP_WRITE | REQ_PREFLUSH); 1308 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1309 submit_bio(&log->flush_bio); 1310 } 1311 1312 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1313 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1314 sector_t end) 1315 { 1316 struct block_device *bdev = log->rdev->bdev; 1317 struct mddev *mddev; 1318 1319 r5l_write_super(log, end); 1320 1321 if (!bdev_max_discard_sectors(bdev)) 1322 return; 1323 1324 mddev = log->rdev->mddev; 1325 /* 1326 * Discard could zero data, so before discard we must make sure 1327 * superblock is updated to new log tail. Updating superblock (either 1328 * directly call md_update_sb() or depend on md thread) must hold 1329 * reconfig mutex. On the other hand, raid5_quiesce is called with 1330 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1331 * for all IO finish, hence waitting for reclaim thread, while reclaim 1332 * thread is calling this function and waitting for reconfig mutex. So 1333 * there is a deadlock. We workaround this issue with a trylock. 1334 * FIXME: we could miss discard if we can't take reconfig mutex 1335 */ 1336 set_mask_bits(&mddev->sb_flags, 0, 1337 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1338 if (!mddev_trylock(mddev)) 1339 return; 1340 md_update_sb(mddev, 1); 1341 mddev_unlock(mddev); 1342 1343 /* discard IO error really doesn't matter, ignore it */ 1344 if (log->last_checkpoint < end) { 1345 blkdev_issue_discard(bdev, 1346 log->last_checkpoint + log->rdev->data_offset, 1347 end - log->last_checkpoint, GFP_NOIO); 1348 } else { 1349 blkdev_issue_discard(bdev, 1350 log->last_checkpoint + log->rdev->data_offset, 1351 log->device_size - log->last_checkpoint, 1352 GFP_NOIO); 1353 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1354 GFP_NOIO); 1355 } 1356 } 1357 1358 /* 1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1361 * 1362 * must hold conf->device_lock 1363 */ 1364 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1365 { 1366 BUG_ON(list_empty(&sh->lru)); 1367 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1368 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1369 1370 /* 1371 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1372 * raid5_release_stripe() while holding conf->device_lock 1373 */ 1374 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1375 lockdep_assert_held(&conf->device_lock); 1376 1377 list_del_init(&sh->lru); 1378 atomic_inc(&sh->count); 1379 1380 set_bit(STRIPE_HANDLE, &sh->state); 1381 atomic_inc(&conf->active_stripes); 1382 r5c_make_stripe_write_out(sh); 1383 1384 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1385 atomic_inc(&conf->r5c_flushing_partial_stripes); 1386 else 1387 atomic_inc(&conf->r5c_flushing_full_stripes); 1388 raid5_release_stripe(sh); 1389 } 1390 1391 /* 1392 * if num == 0, flush all full stripes 1393 * if num > 0, flush all full stripes. If less than num full stripes are 1394 * flushed, flush some partial stripes until totally num stripes are 1395 * flushed or there is no more cached stripes. 1396 */ 1397 void r5c_flush_cache(struct r5conf *conf, int num) 1398 { 1399 int count; 1400 struct stripe_head *sh, *next; 1401 1402 lockdep_assert_held(&conf->device_lock); 1403 if (!conf->log) 1404 return; 1405 1406 count = 0; 1407 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1408 r5c_flush_stripe(conf, sh); 1409 count++; 1410 } 1411 1412 if (count >= num) 1413 return; 1414 list_for_each_entry_safe(sh, next, 1415 &conf->r5c_partial_stripe_list, lru) { 1416 r5c_flush_stripe(conf, sh); 1417 if (++count >= num) 1418 break; 1419 } 1420 } 1421 1422 static void r5c_do_reclaim(struct r5conf *conf) 1423 { 1424 struct r5l_log *log = conf->log; 1425 struct stripe_head *sh; 1426 int count = 0; 1427 unsigned long flags; 1428 int total_cached; 1429 int stripes_to_flush; 1430 int flushing_partial, flushing_full; 1431 1432 if (!r5c_is_writeback(log)) 1433 return; 1434 1435 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1436 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1437 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1438 atomic_read(&conf->r5c_cached_full_stripes) - 1439 flushing_full - flushing_partial; 1440 1441 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1442 atomic_read(&conf->empty_inactive_list_nr) > 0) 1443 /* 1444 * if stripe cache pressure high, flush all full stripes and 1445 * some partial stripes 1446 */ 1447 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1448 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1449 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1450 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1451 /* 1452 * if stripe cache pressure moderate, or if there is many full 1453 * stripes,flush all full stripes 1454 */ 1455 stripes_to_flush = 0; 1456 else 1457 /* no need to flush */ 1458 stripes_to_flush = -1; 1459 1460 if (stripes_to_flush >= 0) { 1461 spin_lock_irqsave(&conf->device_lock, flags); 1462 r5c_flush_cache(conf, stripes_to_flush); 1463 spin_unlock_irqrestore(&conf->device_lock, flags); 1464 } 1465 1466 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1467 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1468 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1469 spin_lock(&conf->device_lock); 1470 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1471 /* 1472 * stripes on stripe_in_journal_list could be in any 1473 * state of the stripe_cache state machine. In this 1474 * case, we only want to flush stripe on 1475 * r5c_cached_full/partial_stripes. The following 1476 * condition makes sure the stripe is on one of the 1477 * two lists. 1478 */ 1479 if (!list_empty(&sh->lru) && 1480 !test_bit(STRIPE_HANDLE, &sh->state) && 1481 atomic_read(&sh->count) == 0) { 1482 r5c_flush_stripe(conf, sh); 1483 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1484 break; 1485 } 1486 } 1487 spin_unlock(&conf->device_lock); 1488 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1489 } 1490 1491 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1492 r5l_run_no_space_stripes(log); 1493 1494 md_wakeup_thread(conf->mddev->thread); 1495 } 1496 1497 static void r5l_do_reclaim(struct r5l_log *log) 1498 { 1499 struct r5conf *conf = log->rdev->mddev->private; 1500 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1501 sector_t reclaimable; 1502 sector_t next_checkpoint; 1503 bool write_super; 1504 1505 spin_lock_irq(&log->io_list_lock); 1506 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1507 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1508 /* 1509 * move proper io_unit to reclaim list. We should not change the order. 1510 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1511 * shouldn't reuse space of an unreclaimable io_unit 1512 */ 1513 while (1) { 1514 reclaimable = r5l_reclaimable_space(log); 1515 if (reclaimable >= reclaim_target || 1516 (list_empty(&log->running_ios) && 1517 list_empty(&log->io_end_ios) && 1518 list_empty(&log->flushing_ios) && 1519 list_empty(&log->finished_ios))) 1520 break; 1521 1522 md_wakeup_thread(log->rdev->mddev->thread); 1523 wait_event_lock_irq(log->iounit_wait, 1524 r5l_reclaimable_space(log) > reclaimable, 1525 log->io_list_lock); 1526 } 1527 1528 next_checkpoint = r5c_calculate_new_cp(conf); 1529 spin_unlock_irq(&log->io_list_lock); 1530 1531 if (reclaimable == 0 || !write_super) 1532 return; 1533 1534 /* 1535 * write_super will flush cache of each raid disk. We must write super 1536 * here, because the log area might be reused soon and we don't want to 1537 * confuse recovery 1538 */ 1539 r5l_write_super_and_discard_space(log, next_checkpoint); 1540 1541 mutex_lock(&log->io_mutex); 1542 log->last_checkpoint = next_checkpoint; 1543 r5c_update_log_state(log); 1544 mutex_unlock(&log->io_mutex); 1545 1546 r5l_run_no_space_stripes(log); 1547 } 1548 1549 static void r5l_reclaim_thread(struct md_thread *thread) 1550 { 1551 struct mddev *mddev = thread->mddev; 1552 struct r5conf *conf = mddev->private; 1553 struct r5l_log *log = conf->log; 1554 1555 if (!log) 1556 return; 1557 r5c_do_reclaim(conf); 1558 r5l_do_reclaim(log); 1559 } 1560 1561 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1562 { 1563 unsigned long target; 1564 unsigned long new = (unsigned long)space; /* overflow in theory */ 1565 1566 if (!log) 1567 return; 1568 do { 1569 target = log->reclaim_target; 1570 if (new < target) 1571 return; 1572 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1573 md_wakeup_thread(log->reclaim_thread); 1574 } 1575 1576 void r5l_quiesce(struct r5l_log *log, int quiesce) 1577 { 1578 struct mddev *mddev; 1579 1580 if (quiesce) { 1581 /* make sure r5l_write_super_and_discard_space exits */ 1582 mddev = log->rdev->mddev; 1583 wake_up(&mddev->sb_wait); 1584 kthread_park(log->reclaim_thread->tsk); 1585 r5l_wake_reclaim(log, MaxSector); 1586 r5l_do_reclaim(log); 1587 } else 1588 kthread_unpark(log->reclaim_thread->tsk); 1589 } 1590 1591 bool r5l_log_disk_error(struct r5conf *conf) 1592 { 1593 struct r5l_log *log; 1594 bool ret; 1595 /* don't allow write if journal disk is missing */ 1596 rcu_read_lock(); 1597 log = rcu_dereference(conf->log); 1598 1599 if (!log) 1600 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1601 else 1602 ret = test_bit(Faulty, &log->rdev->flags); 1603 rcu_read_unlock(); 1604 return ret; 1605 } 1606 1607 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1608 1609 struct r5l_recovery_ctx { 1610 struct page *meta_page; /* current meta */ 1611 sector_t meta_total_blocks; /* total size of current meta and data */ 1612 sector_t pos; /* recovery position */ 1613 u64 seq; /* recovery position seq */ 1614 int data_parity_stripes; /* number of data_parity stripes */ 1615 int data_only_stripes; /* number of data_only stripes */ 1616 struct list_head cached_list; 1617 1618 /* 1619 * read ahead page pool (ra_pool) 1620 * in recovery, log is read sequentially. It is not efficient to 1621 * read every page with sync_page_io(). The read ahead page pool 1622 * reads multiple pages with one IO, so further log read can 1623 * just copy data from the pool. 1624 */ 1625 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1626 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE]; 1627 sector_t pool_offset; /* offset of first page in the pool */ 1628 int total_pages; /* total allocated pages */ 1629 int valid_pages; /* pages with valid data */ 1630 }; 1631 1632 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1633 struct r5l_recovery_ctx *ctx) 1634 { 1635 struct page *page; 1636 1637 ctx->valid_pages = 0; 1638 ctx->total_pages = 0; 1639 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1640 page = alloc_page(GFP_KERNEL); 1641 1642 if (!page) 1643 break; 1644 ctx->ra_pool[ctx->total_pages] = page; 1645 ctx->total_pages += 1; 1646 } 1647 1648 if (ctx->total_pages == 0) 1649 return -ENOMEM; 1650 1651 ctx->pool_offset = 0; 1652 return 0; 1653 } 1654 1655 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1656 struct r5l_recovery_ctx *ctx) 1657 { 1658 int i; 1659 1660 for (i = 0; i < ctx->total_pages; ++i) 1661 put_page(ctx->ra_pool[i]); 1662 } 1663 1664 /* 1665 * fetch ctx->valid_pages pages from offset 1666 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1667 * However, if the offset is close to the end of the journal device, 1668 * ctx->valid_pages could be smaller than ctx->total_pages 1669 */ 1670 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1671 struct r5l_recovery_ctx *ctx, 1672 sector_t offset) 1673 { 1674 struct bio bio; 1675 int ret; 1676 1677 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec, 1678 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ); 1679 bio.bi_iter.bi_sector = log->rdev->data_offset + offset; 1680 1681 ctx->valid_pages = 0; 1682 ctx->pool_offset = offset; 1683 1684 while (ctx->valid_pages < ctx->total_pages) { 1685 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 1686 0); 1687 ctx->valid_pages += 1; 1688 1689 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1690 1691 if (offset == 0) /* reached end of the device */ 1692 break; 1693 } 1694 1695 ret = submit_bio_wait(&bio); 1696 bio_uninit(&bio); 1697 return ret; 1698 } 1699 1700 /* 1701 * try read a page from the read ahead page pool, if the page is not in the 1702 * pool, call r5l_recovery_fetch_ra_pool 1703 */ 1704 static int r5l_recovery_read_page(struct r5l_log *log, 1705 struct r5l_recovery_ctx *ctx, 1706 struct page *page, 1707 sector_t offset) 1708 { 1709 int ret; 1710 1711 if (offset < ctx->pool_offset || 1712 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1713 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1714 if (ret) 1715 return ret; 1716 } 1717 1718 BUG_ON(offset < ctx->pool_offset || 1719 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1720 1721 memcpy(page_address(page), 1722 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1723 BLOCK_SECTOR_SHIFT]), 1724 PAGE_SIZE); 1725 return 0; 1726 } 1727 1728 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1729 struct r5l_recovery_ctx *ctx) 1730 { 1731 struct page *page = ctx->meta_page; 1732 struct r5l_meta_block *mb; 1733 u32 crc, stored_crc; 1734 int ret; 1735 1736 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1737 if (ret != 0) 1738 return ret; 1739 1740 mb = page_address(page); 1741 stored_crc = le32_to_cpu(mb->checksum); 1742 mb->checksum = 0; 1743 1744 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1745 le64_to_cpu(mb->seq) != ctx->seq || 1746 mb->version != R5LOG_VERSION || 1747 le64_to_cpu(mb->position) != ctx->pos) 1748 return -EINVAL; 1749 1750 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1751 if (stored_crc != crc) 1752 return -EINVAL; 1753 1754 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1755 return -EINVAL; 1756 1757 ctx->meta_total_blocks = BLOCK_SECTORS; 1758 1759 return 0; 1760 } 1761 1762 static void 1763 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1764 struct page *page, 1765 sector_t pos, u64 seq) 1766 { 1767 struct r5l_meta_block *mb; 1768 1769 mb = page_address(page); 1770 clear_page(mb); 1771 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1772 mb->version = R5LOG_VERSION; 1773 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1774 mb->seq = cpu_to_le64(seq); 1775 mb->position = cpu_to_le64(pos); 1776 } 1777 1778 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1779 u64 seq) 1780 { 1781 struct page *page; 1782 struct r5l_meta_block *mb; 1783 1784 page = alloc_page(GFP_KERNEL); 1785 if (!page) 1786 return -ENOMEM; 1787 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1788 mb = page_address(page); 1789 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1790 mb, PAGE_SIZE)); 1791 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1792 REQ_SYNC | REQ_FUA, false)) { 1793 __free_page(page); 1794 return -EIO; 1795 } 1796 __free_page(page); 1797 return 0; 1798 } 1799 1800 /* 1801 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1802 * to mark valid (potentially not flushed) data in the journal. 1803 * 1804 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1805 * so there should not be any mismatch here. 1806 */ 1807 static void r5l_recovery_load_data(struct r5l_log *log, 1808 struct stripe_head *sh, 1809 struct r5l_recovery_ctx *ctx, 1810 struct r5l_payload_data_parity *payload, 1811 sector_t log_offset) 1812 { 1813 struct mddev *mddev = log->rdev->mddev; 1814 struct r5conf *conf = mddev->private; 1815 int dd_idx; 1816 1817 raid5_compute_sector(conf, 1818 le64_to_cpu(payload->location), 0, 1819 &dd_idx, sh); 1820 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1821 sh->dev[dd_idx].log_checksum = 1822 le32_to_cpu(payload->checksum[0]); 1823 ctx->meta_total_blocks += BLOCK_SECTORS; 1824 1825 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1826 set_bit(STRIPE_R5C_CACHING, &sh->state); 1827 } 1828 1829 static void r5l_recovery_load_parity(struct r5l_log *log, 1830 struct stripe_head *sh, 1831 struct r5l_recovery_ctx *ctx, 1832 struct r5l_payload_data_parity *payload, 1833 sector_t log_offset) 1834 { 1835 struct mddev *mddev = log->rdev->mddev; 1836 struct r5conf *conf = mddev->private; 1837 1838 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1839 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1840 sh->dev[sh->pd_idx].log_checksum = 1841 le32_to_cpu(payload->checksum[0]); 1842 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1843 1844 if (sh->qd_idx >= 0) { 1845 r5l_recovery_read_page( 1846 log, ctx, sh->dev[sh->qd_idx].page, 1847 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1848 sh->dev[sh->qd_idx].log_checksum = 1849 le32_to_cpu(payload->checksum[1]); 1850 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1851 } 1852 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1853 } 1854 1855 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1856 { 1857 int i; 1858 1859 sh->state = 0; 1860 sh->log_start = MaxSector; 1861 for (i = sh->disks; i--; ) 1862 sh->dev[i].flags = 0; 1863 } 1864 1865 static void 1866 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1867 struct stripe_head *sh, 1868 struct r5l_recovery_ctx *ctx) 1869 { 1870 struct md_rdev *rdev, *rrdev; 1871 int disk_index; 1872 int data_count = 0; 1873 1874 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1875 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1876 continue; 1877 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1878 continue; 1879 data_count++; 1880 } 1881 1882 /* 1883 * stripes that only have parity must have been flushed 1884 * before the crash that we are now recovering from, so 1885 * there is nothing more to recovery. 1886 */ 1887 if (data_count == 0) 1888 goto out; 1889 1890 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1891 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1892 continue; 1893 1894 /* in case device is broken */ 1895 rcu_read_lock(); 1896 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1897 if (rdev) { 1898 atomic_inc(&rdev->nr_pending); 1899 rcu_read_unlock(); 1900 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1901 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1902 false); 1903 rdev_dec_pending(rdev, rdev->mddev); 1904 rcu_read_lock(); 1905 } 1906 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1907 if (rrdev) { 1908 atomic_inc(&rrdev->nr_pending); 1909 rcu_read_unlock(); 1910 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1911 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1912 false); 1913 rdev_dec_pending(rrdev, rrdev->mddev); 1914 rcu_read_lock(); 1915 } 1916 rcu_read_unlock(); 1917 } 1918 ctx->data_parity_stripes++; 1919 out: 1920 r5l_recovery_reset_stripe(sh); 1921 } 1922 1923 static struct stripe_head * 1924 r5c_recovery_alloc_stripe( 1925 struct r5conf *conf, 1926 sector_t stripe_sect, 1927 int noblock) 1928 { 1929 struct stripe_head *sh; 1930 1931 sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0); 1932 if (!sh) 1933 return NULL; /* no more stripe available */ 1934 1935 r5l_recovery_reset_stripe(sh); 1936 1937 return sh; 1938 } 1939 1940 static struct stripe_head * 1941 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1942 { 1943 struct stripe_head *sh; 1944 1945 list_for_each_entry(sh, list, lru) 1946 if (sh->sector == sect) 1947 return sh; 1948 return NULL; 1949 } 1950 1951 static void 1952 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1953 struct r5l_recovery_ctx *ctx) 1954 { 1955 struct stripe_head *sh, *next; 1956 1957 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1958 r5l_recovery_reset_stripe(sh); 1959 list_del_init(&sh->lru); 1960 raid5_release_stripe(sh); 1961 } 1962 } 1963 1964 static void 1965 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1966 struct r5l_recovery_ctx *ctx) 1967 { 1968 struct stripe_head *sh, *next; 1969 1970 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1971 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1972 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1973 list_del_init(&sh->lru); 1974 raid5_release_stripe(sh); 1975 } 1976 } 1977 1978 /* if matches return 0; otherwise return -EINVAL */ 1979 static int 1980 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1981 struct r5l_recovery_ctx *ctx, 1982 struct page *page, 1983 sector_t log_offset, __le32 log_checksum) 1984 { 1985 void *addr; 1986 u32 checksum; 1987 1988 r5l_recovery_read_page(log, ctx, page, log_offset); 1989 addr = kmap_atomic(page); 1990 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1991 kunmap_atomic(addr); 1992 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1993 } 1994 1995 /* 1996 * before loading data to stripe cache, we need verify checksum for all data, 1997 * if there is mismatch for any data page, we drop all data in the mata block 1998 */ 1999 static int 2000 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 2001 struct r5l_recovery_ctx *ctx) 2002 { 2003 struct mddev *mddev = log->rdev->mddev; 2004 struct r5conf *conf = mddev->private; 2005 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2006 sector_t mb_offset = sizeof(struct r5l_meta_block); 2007 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2008 struct page *page; 2009 struct r5l_payload_data_parity *payload; 2010 struct r5l_payload_flush *payload_flush; 2011 2012 page = alloc_page(GFP_KERNEL); 2013 if (!page) 2014 return -ENOMEM; 2015 2016 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2017 payload = (void *)mb + mb_offset; 2018 payload_flush = (void *)mb + mb_offset; 2019 2020 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2021 if (r5l_recovery_verify_data_checksum( 2022 log, ctx, page, log_offset, 2023 payload->checksum[0]) < 0) 2024 goto mismatch; 2025 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2026 if (r5l_recovery_verify_data_checksum( 2027 log, ctx, page, log_offset, 2028 payload->checksum[0]) < 0) 2029 goto mismatch; 2030 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2031 r5l_recovery_verify_data_checksum( 2032 log, ctx, page, 2033 r5l_ring_add(log, log_offset, 2034 BLOCK_SECTORS), 2035 payload->checksum[1]) < 0) 2036 goto mismatch; 2037 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2038 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2039 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2040 goto mismatch; 2041 2042 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2043 mb_offset += sizeof(struct r5l_payload_flush) + 2044 le32_to_cpu(payload_flush->size); 2045 } else { 2046 /* DATA or PARITY payload */ 2047 log_offset = r5l_ring_add(log, log_offset, 2048 le32_to_cpu(payload->size)); 2049 mb_offset += sizeof(struct r5l_payload_data_parity) + 2050 sizeof(__le32) * 2051 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2052 } 2053 2054 } 2055 2056 put_page(page); 2057 return 0; 2058 2059 mismatch: 2060 put_page(page); 2061 return -EINVAL; 2062 } 2063 2064 /* 2065 * Analyze all data/parity pages in one meta block 2066 * Returns: 2067 * 0 for success 2068 * -EINVAL for unknown playload type 2069 * -EAGAIN for checksum mismatch of data page 2070 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2071 */ 2072 static int 2073 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2074 struct r5l_recovery_ctx *ctx, 2075 struct list_head *cached_stripe_list) 2076 { 2077 struct mddev *mddev = log->rdev->mddev; 2078 struct r5conf *conf = mddev->private; 2079 struct r5l_meta_block *mb; 2080 struct r5l_payload_data_parity *payload; 2081 struct r5l_payload_flush *payload_flush; 2082 int mb_offset; 2083 sector_t log_offset; 2084 sector_t stripe_sect; 2085 struct stripe_head *sh; 2086 int ret; 2087 2088 /* 2089 * for mismatch in data blocks, we will drop all data in this mb, but 2090 * we will still read next mb for other data with FLUSH flag, as 2091 * io_unit could finish out of order. 2092 */ 2093 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2094 if (ret == -EINVAL) 2095 return -EAGAIN; 2096 else if (ret) 2097 return ret; /* -ENOMEM duo to alloc_page() failed */ 2098 2099 mb = page_address(ctx->meta_page); 2100 mb_offset = sizeof(struct r5l_meta_block); 2101 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2102 2103 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2104 int dd; 2105 2106 payload = (void *)mb + mb_offset; 2107 payload_flush = (void *)mb + mb_offset; 2108 2109 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2110 int i, count; 2111 2112 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2113 for (i = 0; i < count; ++i) { 2114 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2115 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2116 stripe_sect); 2117 if (sh) { 2118 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2119 r5l_recovery_reset_stripe(sh); 2120 list_del_init(&sh->lru); 2121 raid5_release_stripe(sh); 2122 } 2123 } 2124 2125 mb_offset += sizeof(struct r5l_payload_flush) + 2126 le32_to_cpu(payload_flush->size); 2127 continue; 2128 } 2129 2130 /* DATA or PARITY payload */ 2131 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2132 raid5_compute_sector( 2133 conf, le64_to_cpu(payload->location), 0, &dd, 2134 NULL) 2135 : le64_to_cpu(payload->location); 2136 2137 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2138 stripe_sect); 2139 2140 if (!sh) { 2141 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); 2142 /* 2143 * cannot get stripe from raid5_get_active_stripe 2144 * try replay some stripes 2145 */ 2146 if (!sh) { 2147 r5c_recovery_replay_stripes( 2148 cached_stripe_list, ctx); 2149 sh = r5c_recovery_alloc_stripe( 2150 conf, stripe_sect, 1); 2151 } 2152 if (!sh) { 2153 int new_size = conf->min_nr_stripes * 2; 2154 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2155 mdname(mddev), 2156 new_size); 2157 ret = raid5_set_cache_size(mddev, new_size); 2158 if (conf->min_nr_stripes <= new_size / 2) { 2159 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", 2160 mdname(mddev), 2161 ret, 2162 new_size, 2163 conf->min_nr_stripes, 2164 conf->max_nr_stripes); 2165 return -ENOMEM; 2166 } 2167 sh = r5c_recovery_alloc_stripe( 2168 conf, stripe_sect, 0); 2169 } 2170 if (!sh) { 2171 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2172 mdname(mddev)); 2173 return -ENOMEM; 2174 } 2175 list_add_tail(&sh->lru, cached_stripe_list); 2176 } 2177 2178 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2179 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2180 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2181 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2182 list_move_tail(&sh->lru, cached_stripe_list); 2183 } 2184 r5l_recovery_load_data(log, sh, ctx, payload, 2185 log_offset); 2186 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2187 r5l_recovery_load_parity(log, sh, ctx, payload, 2188 log_offset); 2189 else 2190 return -EINVAL; 2191 2192 log_offset = r5l_ring_add(log, log_offset, 2193 le32_to_cpu(payload->size)); 2194 2195 mb_offset += sizeof(struct r5l_payload_data_parity) + 2196 sizeof(__le32) * 2197 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2198 } 2199 2200 return 0; 2201 } 2202 2203 /* 2204 * Load the stripe into cache. The stripe will be written out later by 2205 * the stripe cache state machine. 2206 */ 2207 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2208 struct stripe_head *sh) 2209 { 2210 struct r5dev *dev; 2211 int i; 2212 2213 for (i = sh->disks; i--; ) { 2214 dev = sh->dev + i; 2215 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2216 set_bit(R5_InJournal, &dev->flags); 2217 set_bit(R5_UPTODATE, &dev->flags); 2218 } 2219 } 2220 } 2221 2222 /* 2223 * Scan through the log for all to-be-flushed data 2224 * 2225 * For stripes with data and parity, namely Data-Parity stripe 2226 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2227 * 2228 * For stripes with only data, namely Data-Only stripe 2229 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2230 * 2231 * For a stripe, if we see data after parity, we should discard all previous 2232 * data and parity for this stripe, as these data are already flushed to 2233 * the array. 2234 * 2235 * At the end of the scan, we return the new journal_tail, which points to 2236 * first data-only stripe on the journal device, or next invalid meta block. 2237 */ 2238 static int r5c_recovery_flush_log(struct r5l_log *log, 2239 struct r5l_recovery_ctx *ctx) 2240 { 2241 struct stripe_head *sh; 2242 int ret = 0; 2243 2244 /* scan through the log */ 2245 while (1) { 2246 if (r5l_recovery_read_meta_block(log, ctx)) 2247 break; 2248 2249 ret = r5c_recovery_analyze_meta_block(log, ctx, 2250 &ctx->cached_list); 2251 /* 2252 * -EAGAIN means mismatch in data block, in this case, we still 2253 * try scan the next metablock 2254 */ 2255 if (ret && ret != -EAGAIN) 2256 break; /* ret == -EINVAL or -ENOMEM */ 2257 ctx->seq++; 2258 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2259 } 2260 2261 if (ret == -ENOMEM) { 2262 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2263 return ret; 2264 } 2265 2266 /* replay data-parity stripes */ 2267 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2268 2269 /* load data-only stripes to stripe cache */ 2270 list_for_each_entry(sh, &ctx->cached_list, lru) { 2271 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2272 r5c_recovery_load_one_stripe(log, sh); 2273 ctx->data_only_stripes++; 2274 } 2275 2276 return 0; 2277 } 2278 2279 /* 2280 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2281 * log will start here. but we can't let superblock point to last valid 2282 * meta block. The log might looks like: 2283 * | meta 1| meta 2| meta 3| 2284 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2285 * superblock points to meta 1, we write a new valid meta 2n. if crash 2286 * happens again, new recovery will start from meta 1. Since meta 2n is 2287 * valid now, recovery will think meta 3 is valid, which is wrong. 2288 * The solution is we create a new meta in meta2 with its seq == meta 2289 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2290 * will not think meta 3 is a valid meta, because its seq doesn't match 2291 */ 2292 2293 /* 2294 * Before recovery, the log looks like the following 2295 * 2296 * --------------------------------------------- 2297 * | valid log | invalid log | 2298 * --------------------------------------------- 2299 * ^ 2300 * |- log->last_checkpoint 2301 * |- log->last_cp_seq 2302 * 2303 * Now we scan through the log until we see invalid entry 2304 * 2305 * --------------------------------------------- 2306 * | valid log | invalid log | 2307 * --------------------------------------------- 2308 * ^ ^ 2309 * |- log->last_checkpoint |- ctx->pos 2310 * |- log->last_cp_seq |- ctx->seq 2311 * 2312 * From this point, we need to increase seq number by 10 to avoid 2313 * confusing next recovery. 2314 * 2315 * --------------------------------------------- 2316 * | valid log | invalid log | 2317 * --------------------------------------------- 2318 * ^ ^ 2319 * |- log->last_checkpoint |- ctx->pos+1 2320 * |- log->last_cp_seq |- ctx->seq+10001 2321 * 2322 * However, it is not safe to start the state machine yet, because data only 2323 * parities are not yet secured in RAID. To save these data only parities, we 2324 * rewrite them from seq+11. 2325 * 2326 * ----------------------------------------------------------------- 2327 * | valid log | data only stripes | invalid log | 2328 * ----------------------------------------------------------------- 2329 * ^ ^ 2330 * |- log->last_checkpoint |- ctx->pos+n 2331 * |- log->last_cp_seq |- ctx->seq+10000+n 2332 * 2333 * If failure happens again during this process, the recovery can safe start 2334 * again from log->last_checkpoint. 2335 * 2336 * Once data only stripes are rewritten to journal, we move log_tail 2337 * 2338 * ----------------------------------------------------------------- 2339 * | old log | data only stripes | invalid log | 2340 * ----------------------------------------------------------------- 2341 * ^ ^ 2342 * |- log->last_checkpoint |- ctx->pos+n 2343 * |- log->last_cp_seq |- ctx->seq+10000+n 2344 * 2345 * Then we can safely start the state machine. If failure happens from this 2346 * point on, the recovery will start from new log->last_checkpoint. 2347 */ 2348 static int 2349 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2350 struct r5l_recovery_ctx *ctx) 2351 { 2352 struct stripe_head *sh; 2353 struct mddev *mddev = log->rdev->mddev; 2354 struct page *page; 2355 sector_t next_checkpoint = MaxSector; 2356 2357 page = alloc_page(GFP_KERNEL); 2358 if (!page) { 2359 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2360 mdname(mddev)); 2361 return -ENOMEM; 2362 } 2363 2364 WARN_ON(list_empty(&ctx->cached_list)); 2365 2366 list_for_each_entry(sh, &ctx->cached_list, lru) { 2367 struct r5l_meta_block *mb; 2368 int i; 2369 int offset; 2370 sector_t write_pos; 2371 2372 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2373 r5l_recovery_create_empty_meta_block(log, page, 2374 ctx->pos, ctx->seq); 2375 mb = page_address(page); 2376 offset = le32_to_cpu(mb->meta_size); 2377 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2378 2379 for (i = sh->disks; i--; ) { 2380 struct r5dev *dev = &sh->dev[i]; 2381 struct r5l_payload_data_parity *payload; 2382 void *addr; 2383 2384 if (test_bit(R5_InJournal, &dev->flags)) { 2385 payload = (void *)mb + offset; 2386 payload->header.type = cpu_to_le16( 2387 R5LOG_PAYLOAD_DATA); 2388 payload->size = cpu_to_le32(BLOCK_SECTORS); 2389 payload->location = cpu_to_le64( 2390 raid5_compute_blocknr(sh, i, 0)); 2391 addr = kmap_atomic(dev->page); 2392 payload->checksum[0] = cpu_to_le32( 2393 crc32c_le(log->uuid_checksum, addr, 2394 PAGE_SIZE)); 2395 kunmap_atomic(addr); 2396 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2397 dev->page, REQ_OP_WRITE, 0, false); 2398 write_pos = r5l_ring_add(log, write_pos, 2399 BLOCK_SECTORS); 2400 offset += sizeof(__le32) + 2401 sizeof(struct r5l_payload_data_parity); 2402 2403 } 2404 } 2405 mb->meta_size = cpu_to_le32(offset); 2406 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2407 mb, PAGE_SIZE)); 2408 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2409 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); 2410 sh->log_start = ctx->pos; 2411 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2412 atomic_inc(&log->stripe_in_journal_count); 2413 ctx->pos = write_pos; 2414 ctx->seq += 1; 2415 next_checkpoint = sh->log_start; 2416 } 2417 log->next_checkpoint = next_checkpoint; 2418 __free_page(page); 2419 return 0; 2420 } 2421 2422 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2423 struct r5l_recovery_ctx *ctx) 2424 { 2425 struct mddev *mddev = log->rdev->mddev; 2426 struct r5conf *conf = mddev->private; 2427 struct stripe_head *sh, *next; 2428 bool cleared_pending = false; 2429 2430 if (ctx->data_only_stripes == 0) 2431 return; 2432 2433 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2434 cleared_pending = true; 2435 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2436 } 2437 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2438 2439 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2440 r5c_make_stripe_write_out(sh); 2441 set_bit(STRIPE_HANDLE, &sh->state); 2442 list_del_init(&sh->lru); 2443 raid5_release_stripe(sh); 2444 } 2445 2446 /* reuse conf->wait_for_quiescent in recovery */ 2447 wait_event(conf->wait_for_quiescent, 2448 atomic_read(&conf->active_stripes) == 0); 2449 2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2451 if (cleared_pending) 2452 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2453 } 2454 2455 static int r5l_recovery_log(struct r5l_log *log) 2456 { 2457 struct mddev *mddev = log->rdev->mddev; 2458 struct r5l_recovery_ctx *ctx; 2459 int ret; 2460 sector_t pos; 2461 2462 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2463 if (!ctx) 2464 return -ENOMEM; 2465 2466 ctx->pos = log->last_checkpoint; 2467 ctx->seq = log->last_cp_seq; 2468 INIT_LIST_HEAD(&ctx->cached_list); 2469 ctx->meta_page = alloc_page(GFP_KERNEL); 2470 2471 if (!ctx->meta_page) { 2472 ret = -ENOMEM; 2473 goto meta_page; 2474 } 2475 2476 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2477 ret = -ENOMEM; 2478 goto ra_pool; 2479 } 2480 2481 ret = r5c_recovery_flush_log(log, ctx); 2482 2483 if (ret) 2484 goto error; 2485 2486 pos = ctx->pos; 2487 ctx->seq += 10000; 2488 2489 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2490 pr_info("md/raid:%s: starting from clean shutdown\n", 2491 mdname(mddev)); 2492 else 2493 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2494 mdname(mddev), ctx->data_only_stripes, 2495 ctx->data_parity_stripes); 2496 2497 if (ctx->data_only_stripes == 0) { 2498 log->next_checkpoint = ctx->pos; 2499 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2500 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2501 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2502 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2503 mdname(mddev)); 2504 ret = -EIO; 2505 goto error; 2506 } 2507 2508 log->log_start = ctx->pos; 2509 log->seq = ctx->seq; 2510 log->last_checkpoint = pos; 2511 r5l_write_super(log, pos); 2512 2513 r5c_recovery_flush_data_only_stripes(log, ctx); 2514 ret = 0; 2515 error: 2516 r5l_recovery_free_ra_pool(log, ctx); 2517 ra_pool: 2518 __free_page(ctx->meta_page); 2519 meta_page: 2520 kfree(ctx); 2521 return ret; 2522 } 2523 2524 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2525 { 2526 struct mddev *mddev = log->rdev->mddev; 2527 2528 log->rdev->journal_tail = cp; 2529 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2530 } 2531 2532 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2533 { 2534 struct r5conf *conf; 2535 int ret; 2536 2537 spin_lock(&mddev->lock); 2538 conf = mddev->private; 2539 if (!conf || !conf->log) { 2540 spin_unlock(&mddev->lock); 2541 return 0; 2542 } 2543 2544 switch (conf->log->r5c_journal_mode) { 2545 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2546 ret = snprintf( 2547 page, PAGE_SIZE, "[%s] %s\n", 2548 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2550 break; 2551 case R5C_JOURNAL_MODE_WRITE_BACK: 2552 ret = snprintf( 2553 page, PAGE_SIZE, "%s [%s]\n", 2554 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2556 break; 2557 default: 2558 ret = 0; 2559 } 2560 spin_unlock(&mddev->lock); 2561 return ret; 2562 } 2563 2564 /* 2565 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2566 * 2567 * @mode as defined in 'enum r5c_journal_mode'. 2568 * 2569 */ 2570 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2571 { 2572 struct r5conf *conf; 2573 2574 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2575 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2576 return -EINVAL; 2577 2578 conf = mddev->private; 2579 if (!conf || !conf->log) 2580 return -ENODEV; 2581 2582 if (raid5_calc_degraded(conf) > 0 && 2583 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2584 return -EINVAL; 2585 2586 mddev_suspend(mddev); 2587 conf->log->r5c_journal_mode = mode; 2588 mddev_resume(mddev); 2589 2590 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2591 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2592 return 0; 2593 } 2594 EXPORT_SYMBOL(r5c_journal_mode_set); 2595 2596 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2597 const char *page, size_t length) 2598 { 2599 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2600 size_t len = length; 2601 int ret; 2602 2603 if (len < 2) 2604 return -EINVAL; 2605 2606 if (page[len - 1] == '\n') 2607 len--; 2608 2609 while (mode--) 2610 if (strlen(r5c_journal_mode_str[mode]) == len && 2611 !strncmp(page, r5c_journal_mode_str[mode], len)) 2612 break; 2613 ret = mddev_lock(mddev); 2614 if (ret) 2615 return ret; 2616 ret = r5c_journal_mode_set(mddev, mode); 2617 mddev_unlock(mddev); 2618 return ret ?: length; 2619 } 2620 2621 struct md_sysfs_entry 2622 r5c_journal_mode = __ATTR(journal_mode, 0644, 2623 r5c_journal_mode_show, r5c_journal_mode_store); 2624 2625 /* 2626 * Try handle write operation in caching phase. This function should only 2627 * be called in write-back mode. 2628 * 2629 * If all outstanding writes can be handled in caching phase, returns 0 2630 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2631 * and returns -EAGAIN 2632 */ 2633 int r5c_try_caching_write(struct r5conf *conf, 2634 struct stripe_head *sh, 2635 struct stripe_head_state *s, 2636 int disks) 2637 { 2638 struct r5l_log *log = conf->log; 2639 int i; 2640 struct r5dev *dev; 2641 int to_cache = 0; 2642 void **pslot; 2643 sector_t tree_index; 2644 int ret; 2645 uintptr_t refcount; 2646 2647 BUG_ON(!r5c_is_writeback(log)); 2648 2649 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2650 /* 2651 * There are two different scenarios here: 2652 * 1. The stripe has some data cached, and it is sent to 2653 * write-out phase for reclaim 2654 * 2. The stripe is clean, and this is the first write 2655 * 2656 * For 1, return -EAGAIN, so we continue with 2657 * handle_stripe_dirtying(). 2658 * 2659 * For 2, set STRIPE_R5C_CACHING and continue with caching 2660 * write. 2661 */ 2662 2663 /* case 1: anything injournal or anything in written */ 2664 if (s->injournal > 0 || s->written > 0) 2665 return -EAGAIN; 2666 /* case 2 */ 2667 set_bit(STRIPE_R5C_CACHING, &sh->state); 2668 } 2669 2670 /* 2671 * When run in degraded mode, array is set to write-through mode. 2672 * This check helps drain pending write safely in the transition to 2673 * write-through mode. 2674 * 2675 * When a stripe is syncing, the write is also handled in write 2676 * through mode. 2677 */ 2678 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2679 r5c_make_stripe_write_out(sh); 2680 return -EAGAIN; 2681 } 2682 2683 for (i = disks; i--; ) { 2684 dev = &sh->dev[i]; 2685 /* if non-overwrite, use writing-out phase */ 2686 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2687 !test_bit(R5_InJournal, &dev->flags)) { 2688 r5c_make_stripe_write_out(sh); 2689 return -EAGAIN; 2690 } 2691 } 2692 2693 /* if the stripe is not counted in big_stripe_tree, add it now */ 2694 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2695 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2696 tree_index = r5c_tree_index(conf, sh->sector); 2697 spin_lock(&log->tree_lock); 2698 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2699 tree_index); 2700 if (pslot) { 2701 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2702 pslot, &log->tree_lock) >> 2703 R5C_RADIX_COUNT_SHIFT; 2704 radix_tree_replace_slot( 2705 &log->big_stripe_tree, pslot, 2706 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2707 } else { 2708 /* 2709 * this radix_tree_insert can fail safely, so no 2710 * need to call radix_tree_preload() 2711 */ 2712 ret = radix_tree_insert( 2713 &log->big_stripe_tree, tree_index, 2714 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2715 if (ret) { 2716 spin_unlock(&log->tree_lock); 2717 r5c_make_stripe_write_out(sh); 2718 return -EAGAIN; 2719 } 2720 } 2721 spin_unlock(&log->tree_lock); 2722 2723 /* 2724 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2725 * counted in the radix tree 2726 */ 2727 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2728 atomic_inc(&conf->r5c_cached_partial_stripes); 2729 } 2730 2731 for (i = disks; i--; ) { 2732 dev = &sh->dev[i]; 2733 if (dev->towrite) { 2734 set_bit(R5_Wantwrite, &dev->flags); 2735 set_bit(R5_Wantdrain, &dev->flags); 2736 set_bit(R5_LOCKED, &dev->flags); 2737 to_cache++; 2738 } 2739 } 2740 2741 if (to_cache) { 2742 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2743 /* 2744 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2745 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2746 * r5c_handle_data_cached() 2747 */ 2748 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2749 } 2750 2751 return 0; 2752 } 2753 2754 /* 2755 * free extra pages (orig_page) we allocated for prexor 2756 */ 2757 void r5c_release_extra_page(struct stripe_head *sh) 2758 { 2759 struct r5conf *conf = sh->raid_conf; 2760 int i; 2761 bool using_disk_info_extra_page; 2762 2763 using_disk_info_extra_page = 2764 sh->dev[0].orig_page == conf->disks[0].extra_page; 2765 2766 for (i = sh->disks; i--; ) 2767 if (sh->dev[i].page != sh->dev[i].orig_page) { 2768 struct page *p = sh->dev[i].orig_page; 2769 2770 sh->dev[i].orig_page = sh->dev[i].page; 2771 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2772 2773 if (!using_disk_info_extra_page) 2774 put_page(p); 2775 } 2776 2777 if (using_disk_info_extra_page) { 2778 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2779 md_wakeup_thread(conf->mddev->thread); 2780 } 2781 } 2782 2783 void r5c_use_extra_page(struct stripe_head *sh) 2784 { 2785 struct r5conf *conf = sh->raid_conf; 2786 int i; 2787 struct r5dev *dev; 2788 2789 for (i = sh->disks; i--; ) { 2790 dev = &sh->dev[i]; 2791 if (dev->orig_page != dev->page) 2792 put_page(dev->orig_page); 2793 dev->orig_page = conf->disks[i].extra_page; 2794 } 2795 } 2796 2797 /* 2798 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2799 * stripe is committed to RAID disks. 2800 */ 2801 void r5c_finish_stripe_write_out(struct r5conf *conf, 2802 struct stripe_head *sh, 2803 struct stripe_head_state *s) 2804 { 2805 struct r5l_log *log = conf->log; 2806 int i; 2807 int do_wakeup = 0; 2808 sector_t tree_index; 2809 void **pslot; 2810 uintptr_t refcount; 2811 2812 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2813 return; 2814 2815 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2816 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2817 2818 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2819 return; 2820 2821 for (i = sh->disks; i--; ) { 2822 clear_bit(R5_InJournal, &sh->dev[i].flags); 2823 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2824 do_wakeup = 1; 2825 } 2826 2827 /* 2828 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2829 * We updated R5_InJournal, so we also update s->injournal. 2830 */ 2831 s->injournal = 0; 2832 2833 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2834 if (atomic_dec_and_test(&conf->pending_full_writes)) 2835 md_wakeup_thread(conf->mddev->thread); 2836 2837 if (do_wakeup) 2838 wake_up(&conf->wait_for_overlap); 2839 2840 spin_lock_irq(&log->stripe_in_journal_lock); 2841 list_del_init(&sh->r5c); 2842 spin_unlock_irq(&log->stripe_in_journal_lock); 2843 sh->log_start = MaxSector; 2844 2845 atomic_dec(&log->stripe_in_journal_count); 2846 r5c_update_log_state(log); 2847 2848 /* stop counting this stripe in big_stripe_tree */ 2849 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2850 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2851 tree_index = r5c_tree_index(conf, sh->sector); 2852 spin_lock(&log->tree_lock); 2853 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2854 tree_index); 2855 BUG_ON(pslot == NULL); 2856 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2857 pslot, &log->tree_lock) >> 2858 R5C_RADIX_COUNT_SHIFT; 2859 if (refcount == 1) 2860 radix_tree_delete(&log->big_stripe_tree, tree_index); 2861 else 2862 radix_tree_replace_slot( 2863 &log->big_stripe_tree, pslot, 2864 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2865 spin_unlock(&log->tree_lock); 2866 } 2867 2868 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2869 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2870 atomic_dec(&conf->r5c_flushing_partial_stripes); 2871 atomic_dec(&conf->r5c_cached_partial_stripes); 2872 } 2873 2874 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2875 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2876 atomic_dec(&conf->r5c_flushing_full_stripes); 2877 atomic_dec(&conf->r5c_cached_full_stripes); 2878 } 2879 2880 r5l_append_flush_payload(log, sh->sector); 2881 /* stripe is flused to raid disks, we can do resync now */ 2882 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2883 set_bit(STRIPE_HANDLE, &sh->state); 2884 } 2885 2886 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2887 { 2888 struct r5conf *conf = sh->raid_conf; 2889 int pages = 0; 2890 int reserve; 2891 int i; 2892 int ret = 0; 2893 2894 BUG_ON(!log); 2895 2896 for (i = 0; i < sh->disks; i++) { 2897 void *addr; 2898 2899 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2900 continue; 2901 addr = kmap_atomic(sh->dev[i].page); 2902 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2903 addr, PAGE_SIZE); 2904 kunmap_atomic(addr); 2905 pages++; 2906 } 2907 WARN_ON(pages == 0); 2908 2909 /* 2910 * The stripe must enter state machine again to call endio, so 2911 * don't delay. 2912 */ 2913 clear_bit(STRIPE_DELAYED, &sh->state); 2914 atomic_inc(&sh->count); 2915 2916 mutex_lock(&log->io_mutex); 2917 /* meta + data */ 2918 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2919 2920 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2921 sh->log_start == MaxSector) 2922 r5l_add_no_space_stripe(log, sh); 2923 else if (!r5l_has_free_space(log, reserve)) { 2924 if (sh->log_start == log->last_checkpoint) 2925 BUG(); 2926 else 2927 r5l_add_no_space_stripe(log, sh); 2928 } else { 2929 ret = r5l_log_stripe(log, sh, pages, 0); 2930 if (ret) { 2931 spin_lock_irq(&log->io_list_lock); 2932 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2933 spin_unlock_irq(&log->io_list_lock); 2934 } 2935 } 2936 2937 mutex_unlock(&log->io_mutex); 2938 return 0; 2939 } 2940 2941 /* check whether this big stripe is in write back cache. */ 2942 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2943 { 2944 struct r5l_log *log = conf->log; 2945 sector_t tree_index; 2946 void *slot; 2947 2948 if (!log) 2949 return false; 2950 2951 WARN_ON_ONCE(!rcu_read_lock_held()); 2952 tree_index = r5c_tree_index(conf, sect); 2953 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2954 return slot != NULL; 2955 } 2956 2957 static int r5l_load_log(struct r5l_log *log) 2958 { 2959 struct md_rdev *rdev = log->rdev; 2960 struct page *page; 2961 struct r5l_meta_block *mb; 2962 sector_t cp = log->rdev->journal_tail; 2963 u32 stored_crc, expected_crc; 2964 bool create_super = false; 2965 int ret = 0; 2966 2967 /* Make sure it's valid */ 2968 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2969 cp = 0; 2970 page = alloc_page(GFP_KERNEL); 2971 if (!page) 2972 return -ENOMEM; 2973 2974 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2975 ret = -EIO; 2976 goto ioerr; 2977 } 2978 mb = page_address(page); 2979 2980 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2981 mb->version != R5LOG_VERSION) { 2982 create_super = true; 2983 goto create; 2984 } 2985 stored_crc = le32_to_cpu(mb->checksum); 2986 mb->checksum = 0; 2987 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2988 if (stored_crc != expected_crc) { 2989 create_super = true; 2990 goto create; 2991 } 2992 if (le64_to_cpu(mb->position) != cp) { 2993 create_super = true; 2994 goto create; 2995 } 2996 create: 2997 if (create_super) { 2998 log->last_cp_seq = prandom_u32(); 2999 cp = 0; 3000 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3001 /* 3002 * Make sure super points to correct address. Log might have 3003 * data very soon. If super hasn't correct log tail address, 3004 * recovery can't find the log 3005 */ 3006 r5l_write_super(log, cp); 3007 } else 3008 log->last_cp_seq = le64_to_cpu(mb->seq); 3009 3010 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3011 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3012 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3013 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3014 log->last_checkpoint = cp; 3015 3016 __free_page(page); 3017 3018 if (create_super) { 3019 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3020 log->seq = log->last_cp_seq + 1; 3021 log->next_checkpoint = cp; 3022 } else 3023 ret = r5l_recovery_log(log); 3024 3025 r5c_update_log_state(log); 3026 return ret; 3027 ioerr: 3028 __free_page(page); 3029 return ret; 3030 } 3031 3032 int r5l_start(struct r5l_log *log) 3033 { 3034 int ret; 3035 3036 if (!log) 3037 return 0; 3038 3039 ret = r5l_load_log(log); 3040 if (ret) { 3041 struct mddev *mddev = log->rdev->mddev; 3042 struct r5conf *conf = mddev->private; 3043 3044 r5l_exit_log(conf); 3045 } 3046 return ret; 3047 } 3048 3049 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3050 { 3051 struct r5conf *conf = mddev->private; 3052 struct r5l_log *log = conf->log; 3053 3054 if (!log) 3055 return; 3056 3057 if ((raid5_calc_degraded(conf) > 0 || 3058 test_bit(Journal, &rdev->flags)) && 3059 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3060 schedule_work(&log->disable_writeback_work); 3061 } 3062 3063 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3064 { 3065 struct request_queue *q = bdev_get_queue(rdev->bdev); 3066 struct r5l_log *log; 3067 int ret; 3068 3069 pr_debug("md/raid:%s: using device %pg as journal\n", 3070 mdname(conf->mddev), rdev->bdev); 3071 3072 if (PAGE_SIZE != 4096) 3073 return -EINVAL; 3074 3075 /* 3076 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3077 * raid_disks r5l_payload_data_parity. 3078 * 3079 * Write journal and cache does not work for very big array 3080 * (raid_disks > 203) 3081 */ 3082 if (sizeof(struct r5l_meta_block) + 3083 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3084 conf->raid_disks) > PAGE_SIZE) { 3085 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3086 mdname(conf->mddev), conf->raid_disks); 3087 return -EINVAL; 3088 } 3089 3090 log = kzalloc(sizeof(*log), GFP_KERNEL); 3091 if (!log) 3092 return -ENOMEM; 3093 log->rdev = rdev; 3094 3095 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3096 3097 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3098 sizeof(rdev->mddev->uuid)); 3099 3100 mutex_init(&log->io_mutex); 3101 3102 spin_lock_init(&log->io_list_lock); 3103 INIT_LIST_HEAD(&log->running_ios); 3104 INIT_LIST_HEAD(&log->io_end_ios); 3105 INIT_LIST_HEAD(&log->flushing_ios); 3106 INIT_LIST_HEAD(&log->finished_ios); 3107 3108 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3109 if (!log->io_kc) 3110 goto io_kc; 3111 3112 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); 3113 if (ret) 3114 goto io_pool; 3115 3116 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3117 if (ret) 3118 goto io_bs; 3119 3120 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); 3121 if (ret) 3122 goto out_mempool; 3123 3124 spin_lock_init(&log->tree_lock); 3125 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3126 3127 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3128 log->rdev->mddev, "reclaim"); 3129 if (!log->reclaim_thread) 3130 goto reclaim_thread; 3131 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3132 3133 init_waitqueue_head(&log->iounit_wait); 3134 3135 INIT_LIST_HEAD(&log->no_mem_stripes); 3136 3137 INIT_LIST_HEAD(&log->no_space_stripes); 3138 spin_lock_init(&log->no_space_stripes_lock); 3139 3140 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3141 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3142 3143 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3144 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3145 spin_lock_init(&log->stripe_in_journal_lock); 3146 atomic_set(&log->stripe_in_journal_count, 0); 3147 3148 rcu_assign_pointer(conf->log, log); 3149 3150 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3151 return 0; 3152 3153 reclaim_thread: 3154 mempool_exit(&log->meta_pool); 3155 out_mempool: 3156 bioset_exit(&log->bs); 3157 io_bs: 3158 mempool_exit(&log->io_pool); 3159 io_pool: 3160 kmem_cache_destroy(log->io_kc); 3161 io_kc: 3162 kfree(log); 3163 return -EINVAL; 3164 } 3165 3166 void r5l_exit_log(struct r5conf *conf) 3167 { 3168 struct r5l_log *log = conf->log; 3169 3170 conf->log = NULL; 3171 synchronize_rcu(); 3172 3173 /* Ensure disable_writeback_work wakes up and exits */ 3174 wake_up(&conf->mddev->sb_wait); 3175 flush_work(&log->disable_writeback_work); 3176 md_unregister_thread(&log->reclaim_thread); 3177 mempool_exit(&log->meta_pool); 3178 bioset_exit(&log->bs); 3179 mempool_exit(&log->io_pool); 3180 kmem_cache_destroy(log->io_kc); 3181 kfree(log); 3182 } 3183