1 /* 2 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 */ 14 #include <linux/kernel.h> 15 #include <linux/wait.h> 16 #include <linux/blkdev.h> 17 #include <linux/slab.h> 18 #include <linux/raid/md_p.h> 19 #include <linux/crc32c.h> 20 #include <linux/random.h> 21 #include "md.h" 22 #include "raid5.h" 23 24 /* 25 * metadata/data stored in disk with 4k size unit (a block) regardless 26 * underneath hardware sector size. only works with PAGE_SIZE == 4096 27 */ 28 #define BLOCK_SECTORS (8) 29 30 /* 31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent 32 * recovery scans a very long log 33 */ 34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 36 37 /* 38 * We only need 2 bios per I/O unit to make progress, but ensure we 39 * have a few more available to not get too tight. 40 */ 41 #define R5L_POOL_SIZE 4 42 43 struct r5l_log { 44 struct md_rdev *rdev; 45 46 u32 uuid_checksum; 47 48 sector_t device_size; /* log device size, round to 49 * BLOCK_SECTORS */ 50 sector_t max_free_space; /* reclaim run if free space is at 51 * this size */ 52 53 sector_t last_checkpoint; /* log tail. where recovery scan 54 * starts from */ 55 u64 last_cp_seq; /* log tail sequence */ 56 57 sector_t log_start; /* log head. where new data appends */ 58 u64 seq; /* log head sequence */ 59 60 sector_t next_checkpoint; 61 u64 next_cp_seq; 62 63 struct mutex io_mutex; 64 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 65 66 spinlock_t io_list_lock; 67 struct list_head running_ios; /* io_units which are still running, 68 * and have not yet been completely 69 * written to the log */ 70 struct list_head io_end_ios; /* io_units which have been completely 71 * written to the log but not yet written 72 * to the RAID */ 73 struct list_head flushing_ios; /* io_units which are waiting for log 74 * cache flush */ 75 struct list_head finished_ios; /* io_units which settle down in log disk */ 76 struct bio flush_bio; 77 78 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 79 80 struct kmem_cache *io_kc; 81 mempool_t *io_pool; 82 struct bio_set *bs; 83 mempool_t *meta_pool; 84 85 struct md_thread *reclaim_thread; 86 unsigned long reclaim_target; /* number of space that need to be 87 * reclaimed. if it's 0, reclaim spaces 88 * used by io_units which are in 89 * IO_UNIT_STRIPE_END state (eg, reclaim 90 * dones't wait for specific io_unit 91 * switching to IO_UNIT_STRIPE_END 92 * state) */ 93 wait_queue_head_t iounit_wait; 94 95 struct list_head no_space_stripes; /* pending stripes, log has no space */ 96 spinlock_t no_space_stripes_lock; 97 98 bool need_cache_flush; 99 bool in_teardown; 100 }; 101 102 /* 103 * an IO range starts from a meta data block and end at the next meta data 104 * block. The io unit's the meta data block tracks data/parity followed it. io 105 * unit is written to log disk with normal write, as we always flush log disk 106 * first and then start move data to raid disks, there is no requirement to 107 * write io unit with FLUSH/FUA 108 */ 109 struct r5l_io_unit { 110 struct r5l_log *log; 111 112 struct page *meta_page; /* store meta block */ 113 int meta_offset; /* current offset in meta_page */ 114 115 struct bio *current_bio;/* current_bio accepting new data */ 116 117 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 118 u64 seq; /* seq number of the metablock */ 119 sector_t log_start; /* where the io_unit starts */ 120 sector_t log_end; /* where the io_unit ends */ 121 struct list_head log_sibling; /* log->running_ios */ 122 struct list_head stripe_list; /* stripes added to the io_unit */ 123 124 int state; 125 bool need_split_bio; 126 }; 127 128 /* r5l_io_unit state */ 129 enum r5l_io_unit_state { 130 IO_UNIT_RUNNING = 0, /* accepting new IO */ 131 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 132 * don't accepting new bio */ 133 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 134 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 135 }; 136 137 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 138 { 139 start += inc; 140 if (start >= log->device_size) 141 start = start - log->device_size; 142 return start; 143 } 144 145 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 146 sector_t end) 147 { 148 if (end >= start) 149 return end - start; 150 else 151 return end + log->device_size - start; 152 } 153 154 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 155 { 156 sector_t used_size; 157 158 used_size = r5l_ring_distance(log, log->last_checkpoint, 159 log->log_start); 160 161 return log->device_size > used_size + size; 162 } 163 164 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 165 enum r5l_io_unit_state state) 166 { 167 if (WARN_ON(io->state >= state)) 168 return; 169 io->state = state; 170 } 171 172 static void r5l_io_run_stripes(struct r5l_io_unit *io) 173 { 174 struct stripe_head *sh, *next; 175 176 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 177 list_del_init(&sh->log_list); 178 set_bit(STRIPE_HANDLE, &sh->state); 179 raid5_release_stripe(sh); 180 } 181 } 182 183 static void r5l_log_run_stripes(struct r5l_log *log) 184 { 185 struct r5l_io_unit *io, *next; 186 187 assert_spin_locked(&log->io_list_lock); 188 189 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 190 /* don't change list order */ 191 if (io->state < IO_UNIT_IO_END) 192 break; 193 194 list_move_tail(&io->log_sibling, &log->finished_ios); 195 r5l_io_run_stripes(io); 196 } 197 } 198 199 static void r5l_move_to_end_ios(struct r5l_log *log) 200 { 201 struct r5l_io_unit *io, *next; 202 203 assert_spin_locked(&log->io_list_lock); 204 205 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 206 /* don't change list order */ 207 if (io->state < IO_UNIT_IO_END) 208 break; 209 list_move_tail(&io->log_sibling, &log->io_end_ios); 210 } 211 } 212 213 static void r5l_log_endio(struct bio *bio) 214 { 215 struct r5l_io_unit *io = bio->bi_private; 216 struct r5l_log *log = io->log; 217 unsigned long flags; 218 219 if (bio->bi_error) 220 md_error(log->rdev->mddev, log->rdev); 221 222 bio_put(bio); 223 mempool_free(io->meta_page, log->meta_pool); 224 225 spin_lock_irqsave(&log->io_list_lock, flags); 226 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 227 if (log->need_cache_flush) 228 r5l_move_to_end_ios(log); 229 else 230 r5l_log_run_stripes(log); 231 spin_unlock_irqrestore(&log->io_list_lock, flags); 232 233 if (log->need_cache_flush) 234 md_wakeup_thread(log->rdev->mddev->thread); 235 } 236 237 static void r5l_submit_current_io(struct r5l_log *log) 238 { 239 struct r5l_io_unit *io = log->current_io; 240 struct r5l_meta_block *block; 241 unsigned long flags; 242 u32 crc; 243 244 if (!io) 245 return; 246 247 block = page_address(io->meta_page); 248 block->meta_size = cpu_to_le32(io->meta_offset); 249 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 250 block->checksum = cpu_to_le32(crc); 251 252 log->current_io = NULL; 253 spin_lock_irqsave(&log->io_list_lock, flags); 254 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 255 spin_unlock_irqrestore(&log->io_list_lock, flags); 256 257 submit_bio(io->current_bio); 258 } 259 260 static struct bio *r5l_bio_alloc(struct r5l_log *log) 261 { 262 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs); 263 264 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 265 bio->bi_bdev = log->rdev->bdev; 266 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 267 268 return bio; 269 } 270 271 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 272 { 273 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 274 275 /* 276 * If we filled up the log device start from the beginning again, 277 * which will require a new bio. 278 * 279 * Note: for this to work properly the log size needs to me a multiple 280 * of BLOCK_SECTORS. 281 */ 282 if (log->log_start == 0) 283 io->need_split_bio = true; 284 285 io->log_end = log->log_start; 286 } 287 288 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 289 { 290 struct r5l_io_unit *io; 291 struct r5l_meta_block *block; 292 293 io = mempool_alloc(log->io_pool, GFP_ATOMIC); 294 if (!io) 295 return NULL; 296 memset(io, 0, sizeof(*io)); 297 298 io->log = log; 299 INIT_LIST_HEAD(&io->log_sibling); 300 INIT_LIST_HEAD(&io->stripe_list); 301 io->state = IO_UNIT_RUNNING; 302 303 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO); 304 block = page_address(io->meta_page); 305 clear_page(block); 306 block->magic = cpu_to_le32(R5LOG_MAGIC); 307 block->version = R5LOG_VERSION; 308 block->seq = cpu_to_le64(log->seq); 309 block->position = cpu_to_le64(log->log_start); 310 311 io->log_start = log->log_start; 312 io->meta_offset = sizeof(struct r5l_meta_block); 313 io->seq = log->seq++; 314 315 io->current_bio = r5l_bio_alloc(log); 316 io->current_bio->bi_end_io = r5l_log_endio; 317 io->current_bio->bi_private = io; 318 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 319 320 r5_reserve_log_entry(log, io); 321 322 spin_lock_irq(&log->io_list_lock); 323 list_add_tail(&io->log_sibling, &log->running_ios); 324 spin_unlock_irq(&log->io_list_lock); 325 326 return io; 327 } 328 329 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 330 { 331 if (log->current_io && 332 log->current_io->meta_offset + payload_size > PAGE_SIZE) 333 r5l_submit_current_io(log); 334 335 if (!log->current_io) { 336 log->current_io = r5l_new_meta(log); 337 if (!log->current_io) 338 return -ENOMEM; 339 } 340 341 return 0; 342 } 343 344 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 345 sector_t location, 346 u32 checksum1, u32 checksum2, 347 bool checksum2_valid) 348 { 349 struct r5l_io_unit *io = log->current_io; 350 struct r5l_payload_data_parity *payload; 351 352 payload = page_address(io->meta_page) + io->meta_offset; 353 payload->header.type = cpu_to_le16(type); 354 payload->header.flags = cpu_to_le16(0); 355 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 356 (PAGE_SHIFT - 9)); 357 payload->location = cpu_to_le64(location); 358 payload->checksum[0] = cpu_to_le32(checksum1); 359 if (checksum2_valid) 360 payload->checksum[1] = cpu_to_le32(checksum2); 361 362 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 363 sizeof(__le32) * (1 + !!checksum2_valid); 364 } 365 366 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 367 { 368 struct r5l_io_unit *io = log->current_io; 369 370 if (io->need_split_bio) { 371 struct bio *prev = io->current_bio; 372 373 io->current_bio = r5l_bio_alloc(log); 374 bio_chain(io->current_bio, prev); 375 376 submit_bio(prev); 377 } 378 379 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 380 BUG(); 381 382 r5_reserve_log_entry(log, io); 383 } 384 385 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 386 int data_pages, int parity_pages) 387 { 388 int i; 389 int meta_size; 390 int ret; 391 struct r5l_io_unit *io; 392 393 meta_size = 394 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 395 * data_pages) + 396 sizeof(struct r5l_payload_data_parity) + 397 sizeof(__le32) * parity_pages; 398 399 ret = r5l_get_meta(log, meta_size); 400 if (ret) 401 return ret; 402 403 io = log->current_io; 404 405 for (i = 0; i < sh->disks; i++) { 406 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 407 continue; 408 if (i == sh->pd_idx || i == sh->qd_idx) 409 continue; 410 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 411 raid5_compute_blocknr(sh, i, 0), 412 sh->dev[i].log_checksum, 0, false); 413 r5l_append_payload_page(log, sh->dev[i].page); 414 } 415 416 if (sh->qd_idx >= 0) { 417 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 418 sh->sector, sh->dev[sh->pd_idx].log_checksum, 419 sh->dev[sh->qd_idx].log_checksum, true); 420 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 421 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 422 } else { 423 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 424 sh->sector, sh->dev[sh->pd_idx].log_checksum, 425 0, false); 426 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 427 } 428 429 list_add_tail(&sh->log_list, &io->stripe_list); 430 atomic_inc(&io->pending_stripe); 431 sh->log_io = io; 432 433 return 0; 434 } 435 436 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 437 /* 438 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 439 * data from log to raid disks), so we shouldn't wait for reclaim here 440 */ 441 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 442 { 443 int write_disks = 0; 444 int data_pages, parity_pages; 445 int meta_size; 446 int reserve; 447 int i; 448 int ret = 0; 449 450 if (!log) 451 return -EAGAIN; 452 /* Don't support stripe batch */ 453 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 454 test_bit(STRIPE_SYNCING, &sh->state)) { 455 /* the stripe is written to log, we start writing it to raid */ 456 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 457 return -EAGAIN; 458 } 459 460 for (i = 0; i < sh->disks; i++) { 461 void *addr; 462 463 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 464 continue; 465 write_disks++; 466 /* checksum is already calculated in last run */ 467 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 468 continue; 469 addr = kmap_atomic(sh->dev[i].page); 470 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 471 addr, PAGE_SIZE); 472 kunmap_atomic(addr); 473 } 474 parity_pages = 1 + !!(sh->qd_idx >= 0); 475 data_pages = write_disks - parity_pages; 476 477 meta_size = 478 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 479 * data_pages) + 480 sizeof(struct r5l_payload_data_parity) + 481 sizeof(__le32) * parity_pages; 482 /* Doesn't work with very big raid array */ 483 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE) 484 return -EINVAL; 485 486 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 487 /* 488 * The stripe must enter state machine again to finish the write, so 489 * don't delay. 490 */ 491 clear_bit(STRIPE_DELAYED, &sh->state); 492 atomic_inc(&sh->count); 493 494 mutex_lock(&log->io_mutex); 495 /* meta + data */ 496 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 497 if (!r5l_has_free_space(log, reserve)) { 498 spin_lock(&log->no_space_stripes_lock); 499 list_add_tail(&sh->log_list, &log->no_space_stripes); 500 spin_unlock(&log->no_space_stripes_lock); 501 502 r5l_wake_reclaim(log, reserve); 503 } else { 504 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 505 if (ret) { 506 spin_lock_irq(&log->io_list_lock); 507 list_add_tail(&sh->log_list, &log->no_mem_stripes); 508 spin_unlock_irq(&log->io_list_lock); 509 } 510 } 511 512 mutex_unlock(&log->io_mutex); 513 return 0; 514 } 515 516 void r5l_write_stripe_run(struct r5l_log *log) 517 { 518 if (!log) 519 return; 520 mutex_lock(&log->io_mutex); 521 r5l_submit_current_io(log); 522 mutex_unlock(&log->io_mutex); 523 } 524 525 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 526 { 527 if (!log) 528 return -ENODEV; 529 /* 530 * we flush log disk cache first, then write stripe data to raid disks. 531 * So if bio is finished, the log disk cache is flushed already. The 532 * recovery guarantees we can recovery the bio from log disk, so we 533 * don't need to flush again 534 */ 535 if (bio->bi_iter.bi_size == 0) { 536 bio_endio(bio); 537 return 0; 538 } 539 bio->bi_opf &= ~REQ_PREFLUSH; 540 return -EAGAIN; 541 } 542 543 /* This will run after log space is reclaimed */ 544 static void r5l_run_no_space_stripes(struct r5l_log *log) 545 { 546 struct stripe_head *sh; 547 548 spin_lock(&log->no_space_stripes_lock); 549 while (!list_empty(&log->no_space_stripes)) { 550 sh = list_first_entry(&log->no_space_stripes, 551 struct stripe_head, log_list); 552 list_del_init(&sh->log_list); 553 set_bit(STRIPE_HANDLE, &sh->state); 554 raid5_release_stripe(sh); 555 } 556 spin_unlock(&log->no_space_stripes_lock); 557 } 558 559 static sector_t r5l_reclaimable_space(struct r5l_log *log) 560 { 561 return r5l_ring_distance(log, log->last_checkpoint, 562 log->next_checkpoint); 563 } 564 565 static void r5l_run_no_mem_stripe(struct r5l_log *log) 566 { 567 struct stripe_head *sh; 568 569 assert_spin_locked(&log->io_list_lock); 570 571 if (!list_empty(&log->no_mem_stripes)) { 572 sh = list_first_entry(&log->no_mem_stripes, 573 struct stripe_head, log_list); 574 list_del_init(&sh->log_list); 575 set_bit(STRIPE_HANDLE, &sh->state); 576 raid5_release_stripe(sh); 577 } 578 } 579 580 static bool r5l_complete_finished_ios(struct r5l_log *log) 581 { 582 struct r5l_io_unit *io, *next; 583 bool found = false; 584 585 assert_spin_locked(&log->io_list_lock); 586 587 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 588 /* don't change list order */ 589 if (io->state < IO_UNIT_STRIPE_END) 590 break; 591 592 log->next_checkpoint = io->log_start; 593 log->next_cp_seq = io->seq; 594 595 list_del(&io->log_sibling); 596 mempool_free(io, log->io_pool); 597 r5l_run_no_mem_stripe(log); 598 599 found = true; 600 } 601 602 return found; 603 } 604 605 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 606 { 607 struct r5l_log *log = io->log; 608 unsigned long flags; 609 610 spin_lock_irqsave(&log->io_list_lock, flags); 611 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 612 613 if (!r5l_complete_finished_ios(log)) { 614 spin_unlock_irqrestore(&log->io_list_lock, flags); 615 return; 616 } 617 618 if (r5l_reclaimable_space(log) > log->max_free_space) 619 r5l_wake_reclaim(log, 0); 620 621 spin_unlock_irqrestore(&log->io_list_lock, flags); 622 wake_up(&log->iounit_wait); 623 } 624 625 void r5l_stripe_write_finished(struct stripe_head *sh) 626 { 627 struct r5l_io_unit *io; 628 629 io = sh->log_io; 630 sh->log_io = NULL; 631 632 if (io && atomic_dec_and_test(&io->pending_stripe)) 633 __r5l_stripe_write_finished(io); 634 } 635 636 static void r5l_log_flush_endio(struct bio *bio) 637 { 638 struct r5l_log *log = container_of(bio, struct r5l_log, 639 flush_bio); 640 unsigned long flags; 641 struct r5l_io_unit *io; 642 643 if (bio->bi_error) 644 md_error(log->rdev->mddev, log->rdev); 645 646 spin_lock_irqsave(&log->io_list_lock, flags); 647 list_for_each_entry(io, &log->flushing_ios, log_sibling) 648 r5l_io_run_stripes(io); 649 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 650 spin_unlock_irqrestore(&log->io_list_lock, flags); 651 } 652 653 /* 654 * Starting dispatch IO to raid. 655 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 656 * broken meta in the middle of a log causes recovery can't find meta at the 657 * head of log. If operations require meta at the head persistent in log, we 658 * must make sure meta before it persistent in log too. A case is: 659 * 660 * stripe data/parity is in log, we start write stripe to raid disks. stripe 661 * data/parity must be persistent in log before we do the write to raid disks. 662 * 663 * The solution is we restrictly maintain io_unit list order. In this case, we 664 * only write stripes of an io_unit to raid disks till the io_unit is the first 665 * one whose data/parity is in log. 666 */ 667 void r5l_flush_stripe_to_raid(struct r5l_log *log) 668 { 669 bool do_flush; 670 671 if (!log || !log->need_cache_flush) 672 return; 673 674 spin_lock_irq(&log->io_list_lock); 675 /* flush bio is running */ 676 if (!list_empty(&log->flushing_ios)) { 677 spin_unlock_irq(&log->io_list_lock); 678 return; 679 } 680 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 681 do_flush = !list_empty(&log->flushing_ios); 682 spin_unlock_irq(&log->io_list_lock); 683 684 if (!do_flush) 685 return; 686 bio_reset(&log->flush_bio); 687 log->flush_bio.bi_bdev = log->rdev->bdev; 688 log->flush_bio.bi_end_io = r5l_log_flush_endio; 689 bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH); 690 submit_bio(&log->flush_bio); 691 } 692 693 static void r5l_write_super(struct r5l_log *log, sector_t cp); 694 static void r5l_write_super_and_discard_space(struct r5l_log *log, 695 sector_t end) 696 { 697 struct block_device *bdev = log->rdev->bdev; 698 struct mddev *mddev; 699 700 r5l_write_super(log, end); 701 702 if (!blk_queue_discard(bdev_get_queue(bdev))) 703 return; 704 705 mddev = log->rdev->mddev; 706 /* 707 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and 708 * wait for this thread to finish. This thread waits for 709 * MD_CHANGE_PENDING clear, which is supposed to be done in 710 * md_check_recovery(). md_check_recovery() tries to get 711 * reconfig_mutex. Since r5l_quiesce already holds the mutex, 712 * md_check_recovery() fails, so the PENDING never get cleared. The 713 * in_teardown check workaround this issue. 714 */ 715 if (!log->in_teardown) { 716 set_mask_bits(&mddev->flags, 0, 717 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 718 md_wakeup_thread(mddev->thread); 719 wait_event(mddev->sb_wait, 720 !test_bit(MD_CHANGE_PENDING, &mddev->flags) || 721 log->in_teardown); 722 /* 723 * r5l_quiesce could run after in_teardown check and hold 724 * mutex first. Superblock might get updated twice. 725 */ 726 if (log->in_teardown) 727 md_update_sb(mddev, 1); 728 } else { 729 WARN_ON(!mddev_is_locked(mddev)); 730 md_update_sb(mddev, 1); 731 } 732 733 /* discard IO error really doesn't matter, ignore it */ 734 if (log->last_checkpoint < end) { 735 blkdev_issue_discard(bdev, 736 log->last_checkpoint + log->rdev->data_offset, 737 end - log->last_checkpoint, GFP_NOIO, 0); 738 } else { 739 blkdev_issue_discard(bdev, 740 log->last_checkpoint + log->rdev->data_offset, 741 log->device_size - log->last_checkpoint, 742 GFP_NOIO, 0); 743 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 744 GFP_NOIO, 0); 745 } 746 } 747 748 749 static void r5l_do_reclaim(struct r5l_log *log) 750 { 751 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 752 sector_t reclaimable; 753 sector_t next_checkpoint; 754 u64 next_cp_seq; 755 756 spin_lock_irq(&log->io_list_lock); 757 /* 758 * move proper io_unit to reclaim list. We should not change the order. 759 * reclaimable/unreclaimable io_unit can be mixed in the list, we 760 * shouldn't reuse space of an unreclaimable io_unit 761 */ 762 while (1) { 763 reclaimable = r5l_reclaimable_space(log); 764 if (reclaimable >= reclaim_target || 765 (list_empty(&log->running_ios) && 766 list_empty(&log->io_end_ios) && 767 list_empty(&log->flushing_ios) && 768 list_empty(&log->finished_ios))) 769 break; 770 771 md_wakeup_thread(log->rdev->mddev->thread); 772 wait_event_lock_irq(log->iounit_wait, 773 r5l_reclaimable_space(log) > reclaimable, 774 log->io_list_lock); 775 } 776 777 next_checkpoint = log->next_checkpoint; 778 next_cp_seq = log->next_cp_seq; 779 spin_unlock_irq(&log->io_list_lock); 780 781 BUG_ON(reclaimable < 0); 782 if (reclaimable == 0) 783 return; 784 785 /* 786 * write_super will flush cache of each raid disk. We must write super 787 * here, because the log area might be reused soon and we don't want to 788 * confuse recovery 789 */ 790 r5l_write_super_and_discard_space(log, next_checkpoint); 791 792 mutex_lock(&log->io_mutex); 793 log->last_checkpoint = next_checkpoint; 794 log->last_cp_seq = next_cp_seq; 795 mutex_unlock(&log->io_mutex); 796 797 r5l_run_no_space_stripes(log); 798 } 799 800 static void r5l_reclaim_thread(struct md_thread *thread) 801 { 802 struct mddev *mddev = thread->mddev; 803 struct r5conf *conf = mddev->private; 804 struct r5l_log *log = conf->log; 805 806 if (!log) 807 return; 808 r5l_do_reclaim(log); 809 } 810 811 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 812 { 813 unsigned long target; 814 unsigned long new = (unsigned long)space; /* overflow in theory */ 815 816 do { 817 target = log->reclaim_target; 818 if (new < target) 819 return; 820 } while (cmpxchg(&log->reclaim_target, target, new) != target); 821 md_wakeup_thread(log->reclaim_thread); 822 } 823 824 void r5l_quiesce(struct r5l_log *log, int state) 825 { 826 struct mddev *mddev; 827 if (!log || state == 2) 828 return; 829 if (state == 0) { 830 log->in_teardown = 0; 831 /* 832 * This is a special case for hotadd. In suspend, the array has 833 * no journal. In resume, journal is initialized as well as the 834 * reclaim thread. 835 */ 836 if (log->reclaim_thread) 837 return; 838 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 839 log->rdev->mddev, "reclaim"); 840 } else if (state == 1) { 841 /* 842 * at this point all stripes are finished, so io_unit is at 843 * least in STRIPE_END state 844 */ 845 log->in_teardown = 1; 846 /* make sure r5l_write_super_and_discard_space exits */ 847 mddev = log->rdev->mddev; 848 wake_up(&mddev->sb_wait); 849 r5l_wake_reclaim(log, -1L); 850 md_unregister_thread(&log->reclaim_thread); 851 r5l_do_reclaim(log); 852 } 853 } 854 855 bool r5l_log_disk_error(struct r5conf *conf) 856 { 857 struct r5l_log *log; 858 bool ret; 859 /* don't allow write if journal disk is missing */ 860 rcu_read_lock(); 861 log = rcu_dereference(conf->log); 862 863 if (!log) 864 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 865 else 866 ret = test_bit(Faulty, &log->rdev->flags); 867 rcu_read_unlock(); 868 return ret; 869 } 870 871 struct r5l_recovery_ctx { 872 struct page *meta_page; /* current meta */ 873 sector_t meta_total_blocks; /* total size of current meta and data */ 874 sector_t pos; /* recovery position */ 875 u64 seq; /* recovery position seq */ 876 }; 877 878 static int r5l_read_meta_block(struct r5l_log *log, 879 struct r5l_recovery_ctx *ctx) 880 { 881 struct page *page = ctx->meta_page; 882 struct r5l_meta_block *mb; 883 u32 crc, stored_crc; 884 885 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0, 886 false)) 887 return -EIO; 888 889 mb = page_address(page); 890 stored_crc = le32_to_cpu(mb->checksum); 891 mb->checksum = 0; 892 893 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 894 le64_to_cpu(mb->seq) != ctx->seq || 895 mb->version != R5LOG_VERSION || 896 le64_to_cpu(mb->position) != ctx->pos) 897 return -EINVAL; 898 899 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 900 if (stored_crc != crc) 901 return -EINVAL; 902 903 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 904 return -EINVAL; 905 906 ctx->meta_total_blocks = BLOCK_SECTORS; 907 908 return 0; 909 } 910 911 static int r5l_recovery_flush_one_stripe(struct r5l_log *log, 912 struct r5l_recovery_ctx *ctx, 913 sector_t stripe_sect, 914 int *offset, sector_t *log_offset) 915 { 916 struct r5conf *conf = log->rdev->mddev->private; 917 struct stripe_head *sh; 918 struct r5l_payload_data_parity *payload; 919 int disk_index; 920 921 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0); 922 while (1) { 923 payload = page_address(ctx->meta_page) + *offset; 924 925 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 926 raid5_compute_sector(conf, 927 le64_to_cpu(payload->location), 0, 928 &disk_index, sh); 929 930 sync_page_io(log->rdev, *log_offset, PAGE_SIZE, 931 sh->dev[disk_index].page, REQ_OP_READ, 0, 932 false); 933 sh->dev[disk_index].log_checksum = 934 le32_to_cpu(payload->checksum[0]); 935 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags); 936 ctx->meta_total_blocks += BLOCK_SECTORS; 937 } else { 938 disk_index = sh->pd_idx; 939 sync_page_io(log->rdev, *log_offset, PAGE_SIZE, 940 sh->dev[disk_index].page, REQ_OP_READ, 0, 941 false); 942 sh->dev[disk_index].log_checksum = 943 le32_to_cpu(payload->checksum[0]); 944 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags); 945 946 if (sh->qd_idx >= 0) { 947 disk_index = sh->qd_idx; 948 sync_page_io(log->rdev, 949 r5l_ring_add(log, *log_offset, BLOCK_SECTORS), 950 PAGE_SIZE, sh->dev[disk_index].page, 951 REQ_OP_READ, 0, false); 952 sh->dev[disk_index].log_checksum = 953 le32_to_cpu(payload->checksum[1]); 954 set_bit(R5_Wantwrite, 955 &sh->dev[disk_index].flags); 956 } 957 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 958 } 959 960 *log_offset = r5l_ring_add(log, *log_offset, 961 le32_to_cpu(payload->size)); 962 *offset += sizeof(struct r5l_payload_data_parity) + 963 sizeof(__le32) * 964 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 965 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 966 break; 967 } 968 969 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 970 void *addr; 971 u32 checksum; 972 973 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 974 continue; 975 addr = kmap_atomic(sh->dev[disk_index].page); 976 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 977 kunmap_atomic(addr); 978 if (checksum != sh->dev[disk_index].log_checksum) 979 goto error; 980 } 981 982 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 983 struct md_rdev *rdev, *rrdev; 984 985 if (!test_and_clear_bit(R5_Wantwrite, 986 &sh->dev[disk_index].flags)) 987 continue; 988 989 /* in case device is broken */ 990 rdev = rcu_dereference(conf->disks[disk_index].rdev); 991 if (rdev) 992 sync_page_io(rdev, stripe_sect, PAGE_SIZE, 993 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 994 false); 995 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 996 if (rrdev) 997 sync_page_io(rrdev, stripe_sect, PAGE_SIZE, 998 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 999 false); 1000 } 1001 raid5_release_stripe(sh); 1002 return 0; 1003 1004 error: 1005 for (disk_index = 0; disk_index < sh->disks; disk_index++) 1006 sh->dev[disk_index].flags = 0; 1007 raid5_release_stripe(sh); 1008 return -EINVAL; 1009 } 1010 1011 static int r5l_recovery_flush_one_meta(struct r5l_log *log, 1012 struct r5l_recovery_ctx *ctx) 1013 { 1014 struct r5conf *conf = log->rdev->mddev->private; 1015 struct r5l_payload_data_parity *payload; 1016 struct r5l_meta_block *mb; 1017 int offset; 1018 sector_t log_offset; 1019 sector_t stripe_sector; 1020 1021 mb = page_address(ctx->meta_page); 1022 offset = sizeof(struct r5l_meta_block); 1023 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 1024 1025 while (offset < le32_to_cpu(mb->meta_size)) { 1026 int dd; 1027 1028 payload = (void *)mb + offset; 1029 stripe_sector = raid5_compute_sector(conf, 1030 le64_to_cpu(payload->location), 0, &dd, NULL); 1031 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector, 1032 &offset, &log_offset)) 1033 return -EINVAL; 1034 } 1035 return 0; 1036 } 1037 1038 /* copy data/parity from log to raid disks */ 1039 static void r5l_recovery_flush_log(struct r5l_log *log, 1040 struct r5l_recovery_ctx *ctx) 1041 { 1042 while (1) { 1043 if (r5l_read_meta_block(log, ctx)) 1044 return; 1045 if (r5l_recovery_flush_one_meta(log, ctx)) 1046 return; 1047 ctx->seq++; 1048 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 1049 } 1050 } 1051 1052 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1053 u64 seq) 1054 { 1055 struct page *page; 1056 struct r5l_meta_block *mb; 1057 u32 crc; 1058 1059 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 1060 if (!page) 1061 return -ENOMEM; 1062 mb = page_address(page); 1063 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1064 mb->version = R5LOG_VERSION; 1065 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1066 mb->seq = cpu_to_le64(seq); 1067 mb->position = cpu_to_le64(pos); 1068 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1069 mb->checksum = cpu_to_le32(crc); 1070 1071 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1072 WRITE_FUA, false)) { 1073 __free_page(page); 1074 return -EIO; 1075 } 1076 __free_page(page); 1077 return 0; 1078 } 1079 1080 static int r5l_recovery_log(struct r5l_log *log) 1081 { 1082 struct r5l_recovery_ctx ctx; 1083 1084 ctx.pos = log->last_checkpoint; 1085 ctx.seq = log->last_cp_seq; 1086 ctx.meta_page = alloc_page(GFP_KERNEL); 1087 if (!ctx.meta_page) 1088 return -ENOMEM; 1089 1090 r5l_recovery_flush_log(log, &ctx); 1091 __free_page(ctx.meta_page); 1092 1093 /* 1094 * we did a recovery. Now ctx.pos points to an invalid meta block. New 1095 * log will start here. but we can't let superblock point to last valid 1096 * meta block. The log might looks like: 1097 * | meta 1| meta 2| meta 3| 1098 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 1099 * superblock points to meta 1, we write a new valid meta 2n. if crash 1100 * happens again, new recovery will start from meta 1. Since meta 2n is 1101 * valid now, recovery will think meta 3 is valid, which is wrong. 1102 * The solution is we create a new meta in meta2 with its seq == meta 1103 * 1's seq + 10 and let superblock points to meta2. The same recovery will 1104 * not think meta 3 is a valid meta, because its seq doesn't match 1105 */ 1106 if (ctx.seq > log->last_cp_seq + 1) { 1107 int ret; 1108 1109 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10); 1110 if (ret) 1111 return ret; 1112 log->seq = ctx.seq + 11; 1113 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS); 1114 r5l_write_super(log, ctx.pos); 1115 } else { 1116 log->log_start = ctx.pos; 1117 log->seq = ctx.seq; 1118 } 1119 return 0; 1120 } 1121 1122 static void r5l_write_super(struct r5l_log *log, sector_t cp) 1123 { 1124 struct mddev *mddev = log->rdev->mddev; 1125 1126 log->rdev->journal_tail = cp; 1127 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1128 } 1129 1130 static int r5l_load_log(struct r5l_log *log) 1131 { 1132 struct md_rdev *rdev = log->rdev; 1133 struct page *page; 1134 struct r5l_meta_block *mb; 1135 sector_t cp = log->rdev->journal_tail; 1136 u32 stored_crc, expected_crc; 1137 bool create_super = false; 1138 int ret; 1139 1140 /* Make sure it's valid */ 1141 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 1142 cp = 0; 1143 page = alloc_page(GFP_KERNEL); 1144 if (!page) 1145 return -ENOMEM; 1146 1147 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 1148 ret = -EIO; 1149 goto ioerr; 1150 } 1151 mb = page_address(page); 1152 1153 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1154 mb->version != R5LOG_VERSION) { 1155 create_super = true; 1156 goto create; 1157 } 1158 stored_crc = le32_to_cpu(mb->checksum); 1159 mb->checksum = 0; 1160 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1161 if (stored_crc != expected_crc) { 1162 create_super = true; 1163 goto create; 1164 } 1165 if (le64_to_cpu(mb->position) != cp) { 1166 create_super = true; 1167 goto create; 1168 } 1169 create: 1170 if (create_super) { 1171 log->last_cp_seq = prandom_u32(); 1172 cp = 0; 1173 /* 1174 * Make sure super points to correct address. Log might have 1175 * data very soon. If super hasn't correct log tail address, 1176 * recovery can't find the log 1177 */ 1178 r5l_write_super(log, cp); 1179 } else 1180 log->last_cp_seq = le64_to_cpu(mb->seq); 1181 1182 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 1183 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 1184 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 1185 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 1186 log->last_checkpoint = cp; 1187 1188 __free_page(page); 1189 1190 return r5l_recovery_log(log); 1191 ioerr: 1192 __free_page(page); 1193 return ret; 1194 } 1195 1196 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 1197 { 1198 struct request_queue *q = bdev_get_queue(rdev->bdev); 1199 struct r5l_log *log; 1200 1201 if (PAGE_SIZE != 4096) 1202 return -EINVAL; 1203 log = kzalloc(sizeof(*log), GFP_KERNEL); 1204 if (!log) 1205 return -ENOMEM; 1206 log->rdev = rdev; 1207 1208 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 1209 1210 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 1211 sizeof(rdev->mddev->uuid)); 1212 1213 mutex_init(&log->io_mutex); 1214 1215 spin_lock_init(&log->io_list_lock); 1216 INIT_LIST_HEAD(&log->running_ios); 1217 INIT_LIST_HEAD(&log->io_end_ios); 1218 INIT_LIST_HEAD(&log->flushing_ios); 1219 INIT_LIST_HEAD(&log->finished_ios); 1220 bio_init(&log->flush_bio); 1221 1222 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 1223 if (!log->io_kc) 1224 goto io_kc; 1225 1226 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc); 1227 if (!log->io_pool) 1228 goto io_pool; 1229 1230 log->bs = bioset_create(R5L_POOL_SIZE, 0); 1231 if (!log->bs) 1232 goto io_bs; 1233 1234 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0); 1235 if (!log->meta_pool) 1236 goto out_mempool; 1237 1238 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 1239 log->rdev->mddev, "reclaim"); 1240 if (!log->reclaim_thread) 1241 goto reclaim_thread; 1242 init_waitqueue_head(&log->iounit_wait); 1243 1244 INIT_LIST_HEAD(&log->no_mem_stripes); 1245 1246 INIT_LIST_HEAD(&log->no_space_stripes); 1247 spin_lock_init(&log->no_space_stripes_lock); 1248 1249 if (r5l_load_log(log)) 1250 goto error; 1251 1252 rcu_assign_pointer(conf->log, log); 1253 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1254 return 0; 1255 1256 error: 1257 md_unregister_thread(&log->reclaim_thread); 1258 reclaim_thread: 1259 mempool_destroy(log->meta_pool); 1260 out_mempool: 1261 bioset_free(log->bs); 1262 io_bs: 1263 mempool_destroy(log->io_pool); 1264 io_pool: 1265 kmem_cache_destroy(log->io_kc); 1266 io_kc: 1267 kfree(log); 1268 return -EINVAL; 1269 } 1270 1271 void r5l_exit_log(struct r5l_log *log) 1272 { 1273 md_unregister_thread(&log->reclaim_thread); 1274 mempool_destroy(log->meta_pool); 1275 bioset_free(log->bs); 1276 mempool_destroy(log->io_pool); 1277 kmem_cache_destroy(log->io_kc); 1278 kfree(log); 1279 } 1280