1 /* 2 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 #include <linux/kernel.h> 16 #include <linux/wait.h> 17 #include <linux/blkdev.h> 18 #include <linux/slab.h> 19 #include <linux/raid/md_p.h> 20 #include <linux/crc32c.h> 21 #include <linux/random.h> 22 #include <linux/kthread.h> 23 #include <linux/types.h> 24 #include "md.h" 25 #include "raid5.h" 26 #include "md-bitmap.h" 27 #include "raid5-log.h" 28 29 /* 30 * metadata/data stored in disk with 4k size unit (a block) regardless 31 * underneath hardware sector size. only works with PAGE_SIZE == 4096 32 */ 33 #define BLOCK_SECTORS (8) 34 #define BLOCK_SECTOR_SHIFT (3) 35 36 /* 37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 38 * 39 * In write through mode, the reclaim runs every log->max_free_space. 40 * This can prevent the recovery scans for too long 41 */ 42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 44 45 /* wake up reclaim thread periodically */ 46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 47 /* start flush with these full stripes */ 48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 49 /* reclaim stripes in groups */ 50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 51 52 /* 53 * We only need 2 bios per I/O unit to make progress, but ensure we 54 * have a few more available to not get too tight. 55 */ 56 #define R5L_POOL_SIZE 4 57 58 static char *r5c_journal_mode_str[] = {"write-through", 59 "write-back"}; 60 /* 61 * raid5 cache state machine 62 * 63 * With the RAID cache, each stripe works in two phases: 64 * - caching phase 65 * - writing-out phase 66 * 67 * These two phases are controlled by bit STRIPE_R5C_CACHING: 68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 70 * 71 * When there is no journal, or the journal is in write-through mode, 72 * the stripe is always in writing-out phase. 73 * 74 * For write-back journal, the stripe is sent to caching phase on write 75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 76 * the write-out phase by clearing STRIPE_R5C_CACHING. 77 * 78 * Stripes in caching phase do not write the raid disks. Instead, all 79 * writes are committed from the log device. Therefore, a stripe in 80 * caching phase handles writes as: 81 * - write to log device 82 * - return IO 83 * 84 * Stripes in writing-out phase handle writes as: 85 * - calculate parity 86 * - write pending data and parity to journal 87 * - write data and parity to raid disks 88 * - return IO for pending writes 89 */ 90 91 struct r5l_log { 92 struct md_rdev *rdev; 93 94 u32 uuid_checksum; 95 96 sector_t device_size; /* log device size, round to 97 * BLOCK_SECTORS */ 98 sector_t max_free_space; /* reclaim run if free space is at 99 * this size */ 100 101 sector_t last_checkpoint; /* log tail. where recovery scan 102 * starts from */ 103 u64 last_cp_seq; /* log tail sequence */ 104 105 sector_t log_start; /* log head. where new data appends */ 106 u64 seq; /* log head sequence */ 107 108 sector_t next_checkpoint; 109 110 struct mutex io_mutex; 111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 112 113 spinlock_t io_list_lock; 114 struct list_head running_ios; /* io_units which are still running, 115 * and have not yet been completely 116 * written to the log */ 117 struct list_head io_end_ios; /* io_units which have been completely 118 * written to the log but not yet written 119 * to the RAID */ 120 struct list_head flushing_ios; /* io_units which are waiting for log 121 * cache flush */ 122 struct list_head finished_ios; /* io_units which settle down in log disk */ 123 struct bio flush_bio; 124 125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 126 127 struct kmem_cache *io_kc; 128 mempool_t *io_pool; 129 struct bio_set *bs; 130 mempool_t *meta_pool; 131 132 struct md_thread *reclaim_thread; 133 unsigned long reclaim_target; /* number of space that need to be 134 * reclaimed. if it's 0, reclaim spaces 135 * used by io_units which are in 136 * IO_UNIT_STRIPE_END state (eg, reclaim 137 * dones't wait for specific io_unit 138 * switching to IO_UNIT_STRIPE_END 139 * state) */ 140 wait_queue_head_t iounit_wait; 141 142 struct list_head no_space_stripes; /* pending stripes, log has no space */ 143 spinlock_t no_space_stripes_lock; 144 145 bool need_cache_flush; 146 147 /* for r5c_cache */ 148 enum r5c_journal_mode r5c_journal_mode; 149 150 /* all stripes in r5cache, in the order of seq at sh->log_start */ 151 struct list_head stripe_in_journal_list; 152 153 spinlock_t stripe_in_journal_lock; 154 atomic_t stripe_in_journal_count; 155 156 /* to submit async io_units, to fulfill ordering of flush */ 157 struct work_struct deferred_io_work; 158 /* to disable write back during in degraded mode */ 159 struct work_struct disable_writeback_work; 160 161 /* to for chunk_aligned_read in writeback mode, details below */ 162 spinlock_t tree_lock; 163 struct radix_tree_root big_stripe_tree; 164 }; 165 166 /* 167 * Enable chunk_aligned_read() with write back cache. 168 * 169 * Each chunk may contain more than one stripe (for example, a 256kB 170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 171 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 172 * For each big_stripe, we count how many stripes of this big_stripe 173 * are in the write back cache. These data are tracked in a radix tree 174 * (big_stripe_tree). We use radix_tree item pointer as the counter. 175 * r5c_tree_index() is used to calculate keys for the radix tree. 176 * 177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 178 * big_stripe of each chunk in the tree. If this big_stripe is in the 179 * tree, chunk_aligned_read() aborts. This look up is protected by 180 * rcu_read_lock(). 181 * 182 * It is necessary to remember whether a stripe is counted in 183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 185 * two flags are set, the stripe is counted in big_stripe_tree. This 186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 187 * r5c_try_caching_write(); and moving clear_bit of 188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 189 * r5c_finish_stripe_write_out(). 190 */ 191 192 /* 193 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 194 * So it is necessary to left shift the counter by 2 bits before using it 195 * as data pointer of the tree. 196 */ 197 #define R5C_RADIX_COUNT_SHIFT 2 198 199 /* 200 * calculate key for big_stripe_tree 201 * 202 * sect: align_bi->bi_iter.bi_sector or sh->sector 203 */ 204 static inline sector_t r5c_tree_index(struct r5conf *conf, 205 sector_t sect) 206 { 207 sector_t offset; 208 209 offset = sector_div(sect, conf->chunk_sectors); 210 return sect; 211 } 212 213 /* 214 * an IO range starts from a meta data block and end at the next meta data 215 * block. The io unit's the meta data block tracks data/parity followed it. io 216 * unit is written to log disk with normal write, as we always flush log disk 217 * first and then start move data to raid disks, there is no requirement to 218 * write io unit with FLUSH/FUA 219 */ 220 struct r5l_io_unit { 221 struct r5l_log *log; 222 223 struct page *meta_page; /* store meta block */ 224 int meta_offset; /* current offset in meta_page */ 225 226 struct bio *current_bio;/* current_bio accepting new data */ 227 228 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 229 u64 seq; /* seq number of the metablock */ 230 sector_t log_start; /* where the io_unit starts */ 231 sector_t log_end; /* where the io_unit ends */ 232 struct list_head log_sibling; /* log->running_ios */ 233 struct list_head stripe_list; /* stripes added to the io_unit */ 234 235 int state; 236 bool need_split_bio; 237 struct bio *split_bio; 238 239 unsigned int has_flush:1; /* include flush request */ 240 unsigned int has_fua:1; /* include fua request */ 241 unsigned int has_null_flush:1; /* include null flush request */ 242 unsigned int has_flush_payload:1; /* include flush payload */ 243 /* 244 * io isn't sent yet, flush/fua request can only be submitted till it's 245 * the first IO in running_ios list 246 */ 247 unsigned int io_deferred:1; 248 249 struct bio_list flush_barriers; /* size == 0 flush bios */ 250 }; 251 252 /* r5l_io_unit state */ 253 enum r5l_io_unit_state { 254 IO_UNIT_RUNNING = 0, /* accepting new IO */ 255 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 256 * don't accepting new bio */ 257 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 258 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 259 }; 260 261 bool r5c_is_writeback(struct r5l_log *log) 262 { 263 return (log != NULL && 264 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 265 } 266 267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 268 { 269 start += inc; 270 if (start >= log->device_size) 271 start = start - log->device_size; 272 return start; 273 } 274 275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 276 sector_t end) 277 { 278 if (end >= start) 279 return end - start; 280 else 281 return end + log->device_size - start; 282 } 283 284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 285 { 286 sector_t used_size; 287 288 used_size = r5l_ring_distance(log, log->last_checkpoint, 289 log->log_start); 290 291 return log->device_size > used_size + size; 292 } 293 294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 295 enum r5l_io_unit_state state) 296 { 297 if (WARN_ON(io->state >= state)) 298 return; 299 io->state = state; 300 } 301 302 static void 303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 304 { 305 struct bio *wbi, *wbi2; 306 307 wbi = dev->written; 308 dev->written = NULL; 309 while (wbi && wbi->bi_iter.bi_sector < 310 dev->sector + STRIPE_SECTORS) { 311 wbi2 = r5_next_bio(wbi, dev->sector); 312 md_write_end(conf->mddev); 313 bio_endio(wbi); 314 wbi = wbi2; 315 } 316 } 317 318 void r5c_handle_cached_data_endio(struct r5conf *conf, 319 struct stripe_head *sh, int disks) 320 { 321 int i; 322 323 for (i = sh->disks; i--; ) { 324 if (sh->dev[i].written) { 325 set_bit(R5_UPTODATE, &sh->dev[i].flags); 326 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 327 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 328 STRIPE_SECTORS, 329 !test_bit(STRIPE_DEGRADED, &sh->state), 330 0); 331 } 332 } 333 } 334 335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 336 337 /* Check whether we should flush some stripes to free up stripe cache */ 338 void r5c_check_stripe_cache_usage(struct r5conf *conf) 339 { 340 int total_cached; 341 342 if (!r5c_is_writeback(conf->log)) 343 return; 344 345 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 346 atomic_read(&conf->r5c_cached_full_stripes); 347 348 /* 349 * The following condition is true for either of the following: 350 * - stripe cache pressure high: 351 * total_cached > 3/4 min_nr_stripes || 352 * empty_inactive_list_nr > 0 353 * - stripe cache pressure moderate: 354 * total_cached > 1/2 min_nr_stripes 355 */ 356 if (total_cached > conf->min_nr_stripes * 1 / 2 || 357 atomic_read(&conf->empty_inactive_list_nr) > 0) 358 r5l_wake_reclaim(conf->log, 0); 359 } 360 361 /* 362 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 363 * stripes in the cache 364 */ 365 void r5c_check_cached_full_stripe(struct r5conf *conf) 366 { 367 if (!r5c_is_writeback(conf->log)) 368 return; 369 370 /* 371 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 372 * or a full stripe (chunk size / 4k stripes). 373 */ 374 if (atomic_read(&conf->r5c_cached_full_stripes) >= 375 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 376 conf->chunk_sectors >> STRIPE_SHIFT)) 377 r5l_wake_reclaim(conf->log, 0); 378 } 379 380 /* 381 * Total log space (in sectors) needed to flush all data in cache 382 * 383 * To avoid deadlock due to log space, it is necessary to reserve log 384 * space to flush critical stripes (stripes that occupying log space near 385 * last_checkpoint). This function helps check how much log space is 386 * required to flush all cached stripes. 387 * 388 * To reduce log space requirements, two mechanisms are used to give cache 389 * flush higher priorities: 390 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 391 * stripes ALREADY in journal can be flushed w/o pending writes; 392 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 393 * can be delayed (r5l_add_no_space_stripe). 394 * 395 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 396 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 397 * pages of journal space. For stripes that has not passed 1, flushing it 398 * requires (conf->raid_disks + 1) pages of journal space. There are at 399 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 400 * required to flush all cached stripes (in pages) is: 401 * 402 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 403 * (group_cnt + 1) * (raid_disks + 1) 404 * or 405 * (stripe_in_journal_count) * (max_degraded + 1) + 406 * (group_cnt + 1) * (raid_disks - max_degraded) 407 */ 408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 409 { 410 struct r5l_log *log = conf->log; 411 412 if (!r5c_is_writeback(log)) 413 return 0; 414 415 return BLOCK_SECTORS * 416 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 417 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 418 } 419 420 /* 421 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 422 * 423 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 424 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 425 * device is less than 2x of reclaim_required_space. 426 */ 427 static inline void r5c_update_log_state(struct r5l_log *log) 428 { 429 struct r5conf *conf = log->rdev->mddev->private; 430 sector_t free_space; 431 sector_t reclaim_space; 432 bool wake_reclaim = false; 433 434 if (!r5c_is_writeback(log)) 435 return; 436 437 free_space = r5l_ring_distance(log, log->log_start, 438 log->last_checkpoint); 439 reclaim_space = r5c_log_required_to_flush_cache(conf); 440 if (free_space < 2 * reclaim_space) 441 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 442 else { 443 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 444 wake_reclaim = true; 445 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 446 } 447 if (free_space < 3 * reclaim_space) 448 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 449 else 450 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 451 452 if (wake_reclaim) 453 r5l_wake_reclaim(log, 0); 454 } 455 456 /* 457 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 458 * This function should only be called in write-back mode. 459 */ 460 void r5c_make_stripe_write_out(struct stripe_head *sh) 461 { 462 struct r5conf *conf = sh->raid_conf; 463 struct r5l_log *log = conf->log; 464 465 BUG_ON(!r5c_is_writeback(log)); 466 467 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 468 clear_bit(STRIPE_R5C_CACHING, &sh->state); 469 470 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 471 atomic_inc(&conf->preread_active_stripes); 472 } 473 474 static void r5c_handle_data_cached(struct stripe_head *sh) 475 { 476 int i; 477 478 for (i = sh->disks; i--; ) 479 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 480 set_bit(R5_InJournal, &sh->dev[i].flags); 481 clear_bit(R5_LOCKED, &sh->dev[i].flags); 482 } 483 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 484 } 485 486 /* 487 * this journal write must contain full parity, 488 * it may also contain some data pages 489 */ 490 static void r5c_handle_parity_cached(struct stripe_head *sh) 491 { 492 int i; 493 494 for (i = sh->disks; i--; ) 495 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 496 set_bit(R5_Wantwrite, &sh->dev[i].flags); 497 } 498 499 /* 500 * Setting proper flags after writing (or flushing) data and/or parity to the 501 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 502 */ 503 static void r5c_finish_cache_stripe(struct stripe_head *sh) 504 { 505 struct r5l_log *log = sh->raid_conf->log; 506 507 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 508 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 509 /* 510 * Set R5_InJournal for parity dev[pd_idx]. This means 511 * all data AND parity in the journal. For RAID 6, it is 512 * NOT necessary to set the flag for dev[qd_idx], as the 513 * two parities are written out together. 514 */ 515 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 516 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 517 r5c_handle_data_cached(sh); 518 } else { 519 r5c_handle_parity_cached(sh); 520 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 521 } 522 } 523 524 static void r5l_io_run_stripes(struct r5l_io_unit *io) 525 { 526 struct stripe_head *sh, *next; 527 528 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 529 list_del_init(&sh->log_list); 530 531 r5c_finish_cache_stripe(sh); 532 533 set_bit(STRIPE_HANDLE, &sh->state); 534 raid5_release_stripe(sh); 535 } 536 } 537 538 static void r5l_log_run_stripes(struct r5l_log *log) 539 { 540 struct r5l_io_unit *io, *next; 541 542 lockdep_assert_held(&log->io_list_lock); 543 544 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 545 /* don't change list order */ 546 if (io->state < IO_UNIT_IO_END) 547 break; 548 549 list_move_tail(&io->log_sibling, &log->finished_ios); 550 r5l_io_run_stripes(io); 551 } 552 } 553 554 static void r5l_move_to_end_ios(struct r5l_log *log) 555 { 556 struct r5l_io_unit *io, *next; 557 558 lockdep_assert_held(&log->io_list_lock); 559 560 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 561 /* don't change list order */ 562 if (io->state < IO_UNIT_IO_END) 563 break; 564 list_move_tail(&io->log_sibling, &log->io_end_ios); 565 } 566 } 567 568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 569 static void r5l_log_endio(struct bio *bio) 570 { 571 struct r5l_io_unit *io = bio->bi_private; 572 struct r5l_io_unit *io_deferred; 573 struct r5l_log *log = io->log; 574 unsigned long flags; 575 bool has_null_flush; 576 bool has_flush_payload; 577 578 if (bio->bi_status) 579 md_error(log->rdev->mddev, log->rdev); 580 581 bio_put(bio); 582 mempool_free(io->meta_page, log->meta_pool); 583 584 spin_lock_irqsave(&log->io_list_lock, flags); 585 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 586 587 /* 588 * if the io doesn't not have null_flush or flush payload, 589 * it is not safe to access it after releasing io_list_lock. 590 * Therefore, it is necessary to check the condition with 591 * the lock held. 592 */ 593 has_null_flush = io->has_null_flush; 594 has_flush_payload = io->has_flush_payload; 595 596 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 597 r5l_move_to_end_ios(log); 598 else 599 r5l_log_run_stripes(log); 600 if (!list_empty(&log->running_ios)) { 601 /* 602 * FLUSH/FUA io_unit is deferred because of ordering, now we 603 * can dispatch it 604 */ 605 io_deferred = list_first_entry(&log->running_ios, 606 struct r5l_io_unit, log_sibling); 607 if (io_deferred->io_deferred) 608 schedule_work(&log->deferred_io_work); 609 } 610 611 spin_unlock_irqrestore(&log->io_list_lock, flags); 612 613 if (log->need_cache_flush) 614 md_wakeup_thread(log->rdev->mddev->thread); 615 616 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 617 if (has_null_flush) { 618 struct bio *bi; 619 620 WARN_ON(bio_list_empty(&io->flush_barriers)); 621 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 622 bio_endio(bi); 623 if (atomic_dec_and_test(&io->pending_stripe)) { 624 __r5l_stripe_write_finished(io); 625 return; 626 } 627 } 628 } 629 /* decrease pending_stripe for flush payload */ 630 if (has_flush_payload) 631 if (atomic_dec_and_test(&io->pending_stripe)) 632 __r5l_stripe_write_finished(io); 633 } 634 635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 636 { 637 unsigned long flags; 638 639 spin_lock_irqsave(&log->io_list_lock, flags); 640 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 641 spin_unlock_irqrestore(&log->io_list_lock, flags); 642 643 /* 644 * In case of journal device failures, submit_bio will get error 645 * and calls endio, then active stripes will continue write 646 * process. Therefore, it is not necessary to check Faulty bit 647 * of journal device here. 648 * 649 * We can't check split_bio after current_bio is submitted. If 650 * io->split_bio is null, after current_bio is submitted, current_bio 651 * might already be completed and the io_unit is freed. We submit 652 * split_bio first to avoid the issue. 653 */ 654 if (io->split_bio) { 655 if (io->has_flush) 656 io->split_bio->bi_opf |= REQ_PREFLUSH; 657 if (io->has_fua) 658 io->split_bio->bi_opf |= REQ_FUA; 659 submit_bio(io->split_bio); 660 } 661 662 if (io->has_flush) 663 io->current_bio->bi_opf |= REQ_PREFLUSH; 664 if (io->has_fua) 665 io->current_bio->bi_opf |= REQ_FUA; 666 submit_bio(io->current_bio); 667 } 668 669 /* deferred io_unit will be dispatched here */ 670 static void r5l_submit_io_async(struct work_struct *work) 671 { 672 struct r5l_log *log = container_of(work, struct r5l_log, 673 deferred_io_work); 674 struct r5l_io_unit *io = NULL; 675 unsigned long flags; 676 677 spin_lock_irqsave(&log->io_list_lock, flags); 678 if (!list_empty(&log->running_ios)) { 679 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 680 log_sibling); 681 if (!io->io_deferred) 682 io = NULL; 683 else 684 io->io_deferred = 0; 685 } 686 spin_unlock_irqrestore(&log->io_list_lock, flags); 687 if (io) 688 r5l_do_submit_io(log, io); 689 } 690 691 static void r5c_disable_writeback_async(struct work_struct *work) 692 { 693 struct r5l_log *log = container_of(work, struct r5l_log, 694 disable_writeback_work); 695 struct mddev *mddev = log->rdev->mddev; 696 struct r5conf *conf = mddev->private; 697 int locked = 0; 698 699 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 700 return; 701 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 702 mdname(mddev)); 703 704 /* wait superblock change before suspend */ 705 wait_event(mddev->sb_wait, 706 conf->log == NULL || 707 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && 708 (locked = mddev_trylock(mddev)))); 709 if (locked) { 710 mddev_suspend(mddev); 711 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 712 mddev_resume(mddev); 713 mddev_unlock(mddev); 714 } 715 } 716 717 static void r5l_submit_current_io(struct r5l_log *log) 718 { 719 struct r5l_io_unit *io = log->current_io; 720 struct bio *bio; 721 struct r5l_meta_block *block; 722 unsigned long flags; 723 u32 crc; 724 bool do_submit = true; 725 726 if (!io) 727 return; 728 729 block = page_address(io->meta_page); 730 block->meta_size = cpu_to_le32(io->meta_offset); 731 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 732 block->checksum = cpu_to_le32(crc); 733 bio = io->current_bio; 734 735 log->current_io = NULL; 736 spin_lock_irqsave(&log->io_list_lock, flags); 737 if (io->has_flush || io->has_fua) { 738 if (io != list_first_entry(&log->running_ios, 739 struct r5l_io_unit, log_sibling)) { 740 io->io_deferred = 1; 741 do_submit = false; 742 } 743 } 744 spin_unlock_irqrestore(&log->io_list_lock, flags); 745 if (do_submit) 746 r5l_do_submit_io(log, io); 747 } 748 749 static struct bio *r5l_bio_alloc(struct r5l_log *log) 750 { 751 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs); 752 753 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 754 bio_set_dev(bio, log->rdev->bdev); 755 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 756 757 return bio; 758 } 759 760 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 761 { 762 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 763 764 r5c_update_log_state(log); 765 /* 766 * If we filled up the log device start from the beginning again, 767 * which will require a new bio. 768 * 769 * Note: for this to work properly the log size needs to me a multiple 770 * of BLOCK_SECTORS. 771 */ 772 if (log->log_start == 0) 773 io->need_split_bio = true; 774 775 io->log_end = log->log_start; 776 } 777 778 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 779 { 780 struct r5l_io_unit *io; 781 struct r5l_meta_block *block; 782 783 io = mempool_alloc(log->io_pool, GFP_ATOMIC); 784 if (!io) 785 return NULL; 786 memset(io, 0, sizeof(*io)); 787 788 io->log = log; 789 INIT_LIST_HEAD(&io->log_sibling); 790 INIT_LIST_HEAD(&io->stripe_list); 791 bio_list_init(&io->flush_barriers); 792 io->state = IO_UNIT_RUNNING; 793 794 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO); 795 block = page_address(io->meta_page); 796 clear_page(block); 797 block->magic = cpu_to_le32(R5LOG_MAGIC); 798 block->version = R5LOG_VERSION; 799 block->seq = cpu_to_le64(log->seq); 800 block->position = cpu_to_le64(log->log_start); 801 802 io->log_start = log->log_start; 803 io->meta_offset = sizeof(struct r5l_meta_block); 804 io->seq = log->seq++; 805 806 io->current_bio = r5l_bio_alloc(log); 807 io->current_bio->bi_end_io = r5l_log_endio; 808 io->current_bio->bi_private = io; 809 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 810 811 r5_reserve_log_entry(log, io); 812 813 spin_lock_irq(&log->io_list_lock); 814 list_add_tail(&io->log_sibling, &log->running_ios); 815 spin_unlock_irq(&log->io_list_lock); 816 817 return io; 818 } 819 820 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 821 { 822 if (log->current_io && 823 log->current_io->meta_offset + payload_size > PAGE_SIZE) 824 r5l_submit_current_io(log); 825 826 if (!log->current_io) { 827 log->current_io = r5l_new_meta(log); 828 if (!log->current_io) 829 return -ENOMEM; 830 } 831 832 return 0; 833 } 834 835 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 836 sector_t location, 837 u32 checksum1, u32 checksum2, 838 bool checksum2_valid) 839 { 840 struct r5l_io_unit *io = log->current_io; 841 struct r5l_payload_data_parity *payload; 842 843 payload = page_address(io->meta_page) + io->meta_offset; 844 payload->header.type = cpu_to_le16(type); 845 payload->header.flags = cpu_to_le16(0); 846 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 847 (PAGE_SHIFT - 9)); 848 payload->location = cpu_to_le64(location); 849 payload->checksum[0] = cpu_to_le32(checksum1); 850 if (checksum2_valid) 851 payload->checksum[1] = cpu_to_le32(checksum2); 852 853 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 854 sizeof(__le32) * (1 + !!checksum2_valid); 855 } 856 857 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 858 { 859 struct r5l_io_unit *io = log->current_io; 860 861 if (io->need_split_bio) { 862 BUG_ON(io->split_bio); 863 io->split_bio = io->current_bio; 864 io->current_bio = r5l_bio_alloc(log); 865 bio_chain(io->current_bio, io->split_bio); 866 io->need_split_bio = false; 867 } 868 869 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 870 BUG(); 871 872 r5_reserve_log_entry(log, io); 873 } 874 875 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 876 { 877 struct mddev *mddev = log->rdev->mddev; 878 struct r5conf *conf = mddev->private; 879 struct r5l_io_unit *io; 880 struct r5l_payload_flush *payload; 881 int meta_size; 882 883 /* 884 * payload_flush requires extra writes to the journal. 885 * To avoid handling the extra IO in quiesce, just skip 886 * flush_payload 887 */ 888 if (conf->quiesce) 889 return; 890 891 mutex_lock(&log->io_mutex); 892 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 893 894 if (r5l_get_meta(log, meta_size)) { 895 mutex_unlock(&log->io_mutex); 896 return; 897 } 898 899 /* current implementation is one stripe per flush payload */ 900 io = log->current_io; 901 payload = page_address(io->meta_page) + io->meta_offset; 902 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 903 payload->header.flags = cpu_to_le16(0); 904 payload->size = cpu_to_le32(sizeof(__le64)); 905 payload->flush_stripes[0] = cpu_to_le64(sect); 906 io->meta_offset += meta_size; 907 /* multiple flush payloads count as one pending_stripe */ 908 if (!io->has_flush_payload) { 909 io->has_flush_payload = 1; 910 atomic_inc(&io->pending_stripe); 911 } 912 mutex_unlock(&log->io_mutex); 913 } 914 915 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 916 int data_pages, int parity_pages) 917 { 918 int i; 919 int meta_size; 920 int ret; 921 struct r5l_io_unit *io; 922 923 meta_size = 924 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 925 * data_pages) + 926 sizeof(struct r5l_payload_data_parity) + 927 sizeof(__le32) * parity_pages; 928 929 ret = r5l_get_meta(log, meta_size); 930 if (ret) 931 return ret; 932 933 io = log->current_io; 934 935 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 936 io->has_flush = 1; 937 938 for (i = 0; i < sh->disks; i++) { 939 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 940 test_bit(R5_InJournal, &sh->dev[i].flags)) 941 continue; 942 if (i == sh->pd_idx || i == sh->qd_idx) 943 continue; 944 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 945 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 946 io->has_fua = 1; 947 /* 948 * we need to flush journal to make sure recovery can 949 * reach the data with fua flag 950 */ 951 io->has_flush = 1; 952 } 953 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 954 raid5_compute_blocknr(sh, i, 0), 955 sh->dev[i].log_checksum, 0, false); 956 r5l_append_payload_page(log, sh->dev[i].page); 957 } 958 959 if (parity_pages == 2) { 960 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 961 sh->sector, sh->dev[sh->pd_idx].log_checksum, 962 sh->dev[sh->qd_idx].log_checksum, true); 963 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 964 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 965 } else if (parity_pages == 1) { 966 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 967 sh->sector, sh->dev[sh->pd_idx].log_checksum, 968 0, false); 969 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 970 } else /* Just writing data, not parity, in caching phase */ 971 BUG_ON(parity_pages != 0); 972 973 list_add_tail(&sh->log_list, &io->stripe_list); 974 atomic_inc(&io->pending_stripe); 975 sh->log_io = io; 976 977 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 978 return 0; 979 980 if (sh->log_start == MaxSector) { 981 BUG_ON(!list_empty(&sh->r5c)); 982 sh->log_start = io->log_start; 983 spin_lock_irq(&log->stripe_in_journal_lock); 984 list_add_tail(&sh->r5c, 985 &log->stripe_in_journal_list); 986 spin_unlock_irq(&log->stripe_in_journal_lock); 987 atomic_inc(&log->stripe_in_journal_count); 988 } 989 return 0; 990 } 991 992 /* add stripe to no_space_stripes, and then wake up reclaim */ 993 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 994 struct stripe_head *sh) 995 { 996 spin_lock(&log->no_space_stripes_lock); 997 list_add_tail(&sh->log_list, &log->no_space_stripes); 998 spin_unlock(&log->no_space_stripes_lock); 999 } 1000 1001 /* 1002 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 1003 * data from log to raid disks), so we shouldn't wait for reclaim here 1004 */ 1005 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 1006 { 1007 struct r5conf *conf = sh->raid_conf; 1008 int write_disks = 0; 1009 int data_pages, parity_pages; 1010 int reserve; 1011 int i; 1012 int ret = 0; 1013 bool wake_reclaim = false; 1014 1015 if (!log) 1016 return -EAGAIN; 1017 /* Don't support stripe batch */ 1018 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1019 test_bit(STRIPE_SYNCING, &sh->state)) { 1020 /* the stripe is written to log, we start writing it to raid */ 1021 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1022 return -EAGAIN; 1023 } 1024 1025 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1026 1027 for (i = 0; i < sh->disks; i++) { 1028 void *addr; 1029 1030 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1031 test_bit(R5_InJournal, &sh->dev[i].flags)) 1032 continue; 1033 1034 write_disks++; 1035 /* checksum is already calculated in last run */ 1036 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1037 continue; 1038 addr = kmap_atomic(sh->dev[i].page); 1039 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1040 addr, PAGE_SIZE); 1041 kunmap_atomic(addr); 1042 } 1043 parity_pages = 1 + !!(sh->qd_idx >= 0); 1044 data_pages = write_disks - parity_pages; 1045 1046 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1047 /* 1048 * The stripe must enter state machine again to finish the write, so 1049 * don't delay. 1050 */ 1051 clear_bit(STRIPE_DELAYED, &sh->state); 1052 atomic_inc(&sh->count); 1053 1054 mutex_lock(&log->io_mutex); 1055 /* meta + data */ 1056 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1057 1058 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1059 if (!r5l_has_free_space(log, reserve)) { 1060 r5l_add_no_space_stripe(log, sh); 1061 wake_reclaim = true; 1062 } else { 1063 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1064 if (ret) { 1065 spin_lock_irq(&log->io_list_lock); 1066 list_add_tail(&sh->log_list, 1067 &log->no_mem_stripes); 1068 spin_unlock_irq(&log->io_list_lock); 1069 } 1070 } 1071 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1072 /* 1073 * log space critical, do not process stripes that are 1074 * not in cache yet (sh->log_start == MaxSector). 1075 */ 1076 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1077 sh->log_start == MaxSector) { 1078 r5l_add_no_space_stripe(log, sh); 1079 wake_reclaim = true; 1080 reserve = 0; 1081 } else if (!r5l_has_free_space(log, reserve)) { 1082 if (sh->log_start == log->last_checkpoint) 1083 BUG(); 1084 else 1085 r5l_add_no_space_stripe(log, sh); 1086 } else { 1087 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1088 if (ret) { 1089 spin_lock_irq(&log->io_list_lock); 1090 list_add_tail(&sh->log_list, 1091 &log->no_mem_stripes); 1092 spin_unlock_irq(&log->io_list_lock); 1093 } 1094 } 1095 } 1096 1097 mutex_unlock(&log->io_mutex); 1098 if (wake_reclaim) 1099 r5l_wake_reclaim(log, reserve); 1100 return 0; 1101 } 1102 1103 void r5l_write_stripe_run(struct r5l_log *log) 1104 { 1105 if (!log) 1106 return; 1107 mutex_lock(&log->io_mutex); 1108 r5l_submit_current_io(log); 1109 mutex_unlock(&log->io_mutex); 1110 } 1111 1112 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1113 { 1114 if (!log) 1115 return -ENODEV; 1116 1117 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1118 /* 1119 * in write through (journal only) 1120 * we flush log disk cache first, then write stripe data to 1121 * raid disks. So if bio is finished, the log disk cache is 1122 * flushed already. The recovery guarantees we can recovery 1123 * the bio from log disk, so we don't need to flush again 1124 */ 1125 if (bio->bi_iter.bi_size == 0) { 1126 bio_endio(bio); 1127 return 0; 1128 } 1129 bio->bi_opf &= ~REQ_PREFLUSH; 1130 } else { 1131 /* write back (with cache) */ 1132 if (bio->bi_iter.bi_size == 0) { 1133 mutex_lock(&log->io_mutex); 1134 r5l_get_meta(log, 0); 1135 bio_list_add(&log->current_io->flush_barriers, bio); 1136 log->current_io->has_flush = 1; 1137 log->current_io->has_null_flush = 1; 1138 atomic_inc(&log->current_io->pending_stripe); 1139 r5l_submit_current_io(log); 1140 mutex_unlock(&log->io_mutex); 1141 return 0; 1142 } 1143 } 1144 return -EAGAIN; 1145 } 1146 1147 /* This will run after log space is reclaimed */ 1148 static void r5l_run_no_space_stripes(struct r5l_log *log) 1149 { 1150 struct stripe_head *sh; 1151 1152 spin_lock(&log->no_space_stripes_lock); 1153 while (!list_empty(&log->no_space_stripes)) { 1154 sh = list_first_entry(&log->no_space_stripes, 1155 struct stripe_head, log_list); 1156 list_del_init(&sh->log_list); 1157 set_bit(STRIPE_HANDLE, &sh->state); 1158 raid5_release_stripe(sh); 1159 } 1160 spin_unlock(&log->no_space_stripes_lock); 1161 } 1162 1163 /* 1164 * calculate new last_checkpoint 1165 * for write through mode, returns log->next_checkpoint 1166 * for write back, returns log_start of first sh in stripe_in_journal_list 1167 */ 1168 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1169 { 1170 struct stripe_head *sh; 1171 struct r5l_log *log = conf->log; 1172 sector_t new_cp; 1173 unsigned long flags; 1174 1175 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1176 return log->next_checkpoint; 1177 1178 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1179 if (list_empty(&conf->log->stripe_in_journal_list)) { 1180 /* all stripes flushed */ 1181 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1182 return log->next_checkpoint; 1183 } 1184 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1185 struct stripe_head, r5c); 1186 new_cp = sh->log_start; 1187 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1188 return new_cp; 1189 } 1190 1191 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1192 { 1193 struct r5conf *conf = log->rdev->mddev->private; 1194 1195 return r5l_ring_distance(log, log->last_checkpoint, 1196 r5c_calculate_new_cp(conf)); 1197 } 1198 1199 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1200 { 1201 struct stripe_head *sh; 1202 1203 lockdep_assert_held(&log->io_list_lock); 1204 1205 if (!list_empty(&log->no_mem_stripes)) { 1206 sh = list_first_entry(&log->no_mem_stripes, 1207 struct stripe_head, log_list); 1208 list_del_init(&sh->log_list); 1209 set_bit(STRIPE_HANDLE, &sh->state); 1210 raid5_release_stripe(sh); 1211 } 1212 } 1213 1214 static bool r5l_complete_finished_ios(struct r5l_log *log) 1215 { 1216 struct r5l_io_unit *io, *next; 1217 bool found = false; 1218 1219 lockdep_assert_held(&log->io_list_lock); 1220 1221 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1222 /* don't change list order */ 1223 if (io->state < IO_UNIT_STRIPE_END) 1224 break; 1225 1226 log->next_checkpoint = io->log_start; 1227 1228 list_del(&io->log_sibling); 1229 mempool_free(io, log->io_pool); 1230 r5l_run_no_mem_stripe(log); 1231 1232 found = true; 1233 } 1234 1235 return found; 1236 } 1237 1238 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1239 { 1240 struct r5l_log *log = io->log; 1241 struct r5conf *conf = log->rdev->mddev->private; 1242 unsigned long flags; 1243 1244 spin_lock_irqsave(&log->io_list_lock, flags); 1245 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1246 1247 if (!r5l_complete_finished_ios(log)) { 1248 spin_unlock_irqrestore(&log->io_list_lock, flags); 1249 return; 1250 } 1251 1252 if (r5l_reclaimable_space(log) > log->max_free_space || 1253 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1254 r5l_wake_reclaim(log, 0); 1255 1256 spin_unlock_irqrestore(&log->io_list_lock, flags); 1257 wake_up(&log->iounit_wait); 1258 } 1259 1260 void r5l_stripe_write_finished(struct stripe_head *sh) 1261 { 1262 struct r5l_io_unit *io; 1263 1264 io = sh->log_io; 1265 sh->log_io = NULL; 1266 1267 if (io && atomic_dec_and_test(&io->pending_stripe)) 1268 __r5l_stripe_write_finished(io); 1269 } 1270 1271 static void r5l_log_flush_endio(struct bio *bio) 1272 { 1273 struct r5l_log *log = container_of(bio, struct r5l_log, 1274 flush_bio); 1275 unsigned long flags; 1276 struct r5l_io_unit *io; 1277 1278 if (bio->bi_status) 1279 md_error(log->rdev->mddev, log->rdev); 1280 1281 spin_lock_irqsave(&log->io_list_lock, flags); 1282 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1283 r5l_io_run_stripes(io); 1284 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1285 spin_unlock_irqrestore(&log->io_list_lock, flags); 1286 } 1287 1288 /* 1289 * Starting dispatch IO to raid. 1290 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1291 * broken meta in the middle of a log causes recovery can't find meta at the 1292 * head of log. If operations require meta at the head persistent in log, we 1293 * must make sure meta before it persistent in log too. A case is: 1294 * 1295 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1296 * data/parity must be persistent in log before we do the write to raid disks. 1297 * 1298 * The solution is we restrictly maintain io_unit list order. In this case, we 1299 * only write stripes of an io_unit to raid disks till the io_unit is the first 1300 * one whose data/parity is in log. 1301 */ 1302 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1303 { 1304 bool do_flush; 1305 1306 if (!log || !log->need_cache_flush) 1307 return; 1308 1309 spin_lock_irq(&log->io_list_lock); 1310 /* flush bio is running */ 1311 if (!list_empty(&log->flushing_ios)) { 1312 spin_unlock_irq(&log->io_list_lock); 1313 return; 1314 } 1315 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1316 do_flush = !list_empty(&log->flushing_ios); 1317 spin_unlock_irq(&log->io_list_lock); 1318 1319 if (!do_flush) 1320 return; 1321 bio_reset(&log->flush_bio); 1322 bio_set_dev(&log->flush_bio, log->rdev->bdev); 1323 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1324 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1325 submit_bio(&log->flush_bio); 1326 } 1327 1328 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1329 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1330 sector_t end) 1331 { 1332 struct block_device *bdev = log->rdev->bdev; 1333 struct mddev *mddev; 1334 1335 r5l_write_super(log, end); 1336 1337 if (!blk_queue_discard(bdev_get_queue(bdev))) 1338 return; 1339 1340 mddev = log->rdev->mddev; 1341 /* 1342 * Discard could zero data, so before discard we must make sure 1343 * superblock is updated to new log tail. Updating superblock (either 1344 * directly call md_update_sb() or depend on md thread) must hold 1345 * reconfig mutex. On the other hand, raid5_quiesce is called with 1346 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1347 * for all IO finish, hence waitting for reclaim thread, while reclaim 1348 * thread is calling this function and waitting for reconfig mutex. So 1349 * there is a deadlock. We workaround this issue with a trylock. 1350 * FIXME: we could miss discard if we can't take reconfig mutex 1351 */ 1352 set_mask_bits(&mddev->sb_flags, 0, 1353 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1354 if (!mddev_trylock(mddev)) 1355 return; 1356 md_update_sb(mddev, 1); 1357 mddev_unlock(mddev); 1358 1359 /* discard IO error really doesn't matter, ignore it */ 1360 if (log->last_checkpoint < end) { 1361 blkdev_issue_discard(bdev, 1362 log->last_checkpoint + log->rdev->data_offset, 1363 end - log->last_checkpoint, GFP_NOIO, 0); 1364 } else { 1365 blkdev_issue_discard(bdev, 1366 log->last_checkpoint + log->rdev->data_offset, 1367 log->device_size - log->last_checkpoint, 1368 GFP_NOIO, 0); 1369 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1370 GFP_NOIO, 0); 1371 } 1372 } 1373 1374 /* 1375 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1376 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1377 * 1378 * must hold conf->device_lock 1379 */ 1380 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1381 { 1382 BUG_ON(list_empty(&sh->lru)); 1383 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1384 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1385 1386 /* 1387 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1388 * raid5_release_stripe() while holding conf->device_lock 1389 */ 1390 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1391 lockdep_assert_held(&conf->device_lock); 1392 1393 list_del_init(&sh->lru); 1394 atomic_inc(&sh->count); 1395 1396 set_bit(STRIPE_HANDLE, &sh->state); 1397 atomic_inc(&conf->active_stripes); 1398 r5c_make_stripe_write_out(sh); 1399 1400 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1401 atomic_inc(&conf->r5c_flushing_partial_stripes); 1402 else 1403 atomic_inc(&conf->r5c_flushing_full_stripes); 1404 raid5_release_stripe(sh); 1405 } 1406 1407 /* 1408 * if num == 0, flush all full stripes 1409 * if num > 0, flush all full stripes. If less than num full stripes are 1410 * flushed, flush some partial stripes until totally num stripes are 1411 * flushed or there is no more cached stripes. 1412 */ 1413 void r5c_flush_cache(struct r5conf *conf, int num) 1414 { 1415 int count; 1416 struct stripe_head *sh, *next; 1417 1418 lockdep_assert_held(&conf->device_lock); 1419 if (!conf->log) 1420 return; 1421 1422 count = 0; 1423 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1424 r5c_flush_stripe(conf, sh); 1425 count++; 1426 } 1427 1428 if (count >= num) 1429 return; 1430 list_for_each_entry_safe(sh, next, 1431 &conf->r5c_partial_stripe_list, lru) { 1432 r5c_flush_stripe(conf, sh); 1433 if (++count >= num) 1434 break; 1435 } 1436 } 1437 1438 static void r5c_do_reclaim(struct r5conf *conf) 1439 { 1440 struct r5l_log *log = conf->log; 1441 struct stripe_head *sh; 1442 int count = 0; 1443 unsigned long flags; 1444 int total_cached; 1445 int stripes_to_flush; 1446 int flushing_partial, flushing_full; 1447 1448 if (!r5c_is_writeback(log)) 1449 return; 1450 1451 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1452 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1453 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1454 atomic_read(&conf->r5c_cached_full_stripes) - 1455 flushing_full - flushing_partial; 1456 1457 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1458 atomic_read(&conf->empty_inactive_list_nr) > 0) 1459 /* 1460 * if stripe cache pressure high, flush all full stripes and 1461 * some partial stripes 1462 */ 1463 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1464 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1465 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1466 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1467 /* 1468 * if stripe cache pressure moderate, or if there is many full 1469 * stripes,flush all full stripes 1470 */ 1471 stripes_to_flush = 0; 1472 else 1473 /* no need to flush */ 1474 stripes_to_flush = -1; 1475 1476 if (stripes_to_flush >= 0) { 1477 spin_lock_irqsave(&conf->device_lock, flags); 1478 r5c_flush_cache(conf, stripes_to_flush); 1479 spin_unlock_irqrestore(&conf->device_lock, flags); 1480 } 1481 1482 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1483 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1484 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1485 spin_lock(&conf->device_lock); 1486 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1487 /* 1488 * stripes on stripe_in_journal_list could be in any 1489 * state of the stripe_cache state machine. In this 1490 * case, we only want to flush stripe on 1491 * r5c_cached_full/partial_stripes. The following 1492 * condition makes sure the stripe is on one of the 1493 * two lists. 1494 */ 1495 if (!list_empty(&sh->lru) && 1496 !test_bit(STRIPE_HANDLE, &sh->state) && 1497 atomic_read(&sh->count) == 0) { 1498 r5c_flush_stripe(conf, sh); 1499 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1500 break; 1501 } 1502 } 1503 spin_unlock(&conf->device_lock); 1504 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1505 } 1506 1507 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1508 r5l_run_no_space_stripes(log); 1509 1510 md_wakeup_thread(conf->mddev->thread); 1511 } 1512 1513 static void r5l_do_reclaim(struct r5l_log *log) 1514 { 1515 struct r5conf *conf = log->rdev->mddev->private; 1516 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1517 sector_t reclaimable; 1518 sector_t next_checkpoint; 1519 bool write_super; 1520 1521 spin_lock_irq(&log->io_list_lock); 1522 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1523 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1524 /* 1525 * move proper io_unit to reclaim list. We should not change the order. 1526 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1527 * shouldn't reuse space of an unreclaimable io_unit 1528 */ 1529 while (1) { 1530 reclaimable = r5l_reclaimable_space(log); 1531 if (reclaimable >= reclaim_target || 1532 (list_empty(&log->running_ios) && 1533 list_empty(&log->io_end_ios) && 1534 list_empty(&log->flushing_ios) && 1535 list_empty(&log->finished_ios))) 1536 break; 1537 1538 md_wakeup_thread(log->rdev->mddev->thread); 1539 wait_event_lock_irq(log->iounit_wait, 1540 r5l_reclaimable_space(log) > reclaimable, 1541 log->io_list_lock); 1542 } 1543 1544 next_checkpoint = r5c_calculate_new_cp(conf); 1545 spin_unlock_irq(&log->io_list_lock); 1546 1547 if (reclaimable == 0 || !write_super) 1548 return; 1549 1550 /* 1551 * write_super will flush cache of each raid disk. We must write super 1552 * here, because the log area might be reused soon and we don't want to 1553 * confuse recovery 1554 */ 1555 r5l_write_super_and_discard_space(log, next_checkpoint); 1556 1557 mutex_lock(&log->io_mutex); 1558 log->last_checkpoint = next_checkpoint; 1559 r5c_update_log_state(log); 1560 mutex_unlock(&log->io_mutex); 1561 1562 r5l_run_no_space_stripes(log); 1563 } 1564 1565 static void r5l_reclaim_thread(struct md_thread *thread) 1566 { 1567 struct mddev *mddev = thread->mddev; 1568 struct r5conf *conf = mddev->private; 1569 struct r5l_log *log = conf->log; 1570 1571 if (!log) 1572 return; 1573 r5c_do_reclaim(conf); 1574 r5l_do_reclaim(log); 1575 } 1576 1577 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1578 { 1579 unsigned long target; 1580 unsigned long new = (unsigned long)space; /* overflow in theory */ 1581 1582 if (!log) 1583 return; 1584 do { 1585 target = log->reclaim_target; 1586 if (new < target) 1587 return; 1588 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1589 md_wakeup_thread(log->reclaim_thread); 1590 } 1591 1592 void r5l_quiesce(struct r5l_log *log, int quiesce) 1593 { 1594 struct mddev *mddev; 1595 if (!log) 1596 return; 1597 1598 if (quiesce) { 1599 /* make sure r5l_write_super_and_discard_space exits */ 1600 mddev = log->rdev->mddev; 1601 wake_up(&mddev->sb_wait); 1602 kthread_park(log->reclaim_thread->tsk); 1603 r5l_wake_reclaim(log, MaxSector); 1604 r5l_do_reclaim(log); 1605 } else 1606 kthread_unpark(log->reclaim_thread->tsk); 1607 } 1608 1609 bool r5l_log_disk_error(struct r5conf *conf) 1610 { 1611 struct r5l_log *log; 1612 bool ret; 1613 /* don't allow write if journal disk is missing */ 1614 rcu_read_lock(); 1615 log = rcu_dereference(conf->log); 1616 1617 if (!log) 1618 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1619 else 1620 ret = test_bit(Faulty, &log->rdev->flags); 1621 rcu_read_unlock(); 1622 return ret; 1623 } 1624 1625 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1626 1627 struct r5l_recovery_ctx { 1628 struct page *meta_page; /* current meta */ 1629 sector_t meta_total_blocks; /* total size of current meta and data */ 1630 sector_t pos; /* recovery position */ 1631 u64 seq; /* recovery position seq */ 1632 int data_parity_stripes; /* number of data_parity stripes */ 1633 int data_only_stripes; /* number of data_only stripes */ 1634 struct list_head cached_list; 1635 1636 /* 1637 * read ahead page pool (ra_pool) 1638 * in recovery, log is read sequentially. It is not efficient to 1639 * read every page with sync_page_io(). The read ahead page pool 1640 * reads multiple pages with one IO, so further log read can 1641 * just copy data from the pool. 1642 */ 1643 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1644 sector_t pool_offset; /* offset of first page in the pool */ 1645 int total_pages; /* total allocated pages */ 1646 int valid_pages; /* pages with valid data */ 1647 struct bio *ra_bio; /* bio to do the read ahead */ 1648 }; 1649 1650 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1651 struct r5l_recovery_ctx *ctx) 1652 { 1653 struct page *page; 1654 1655 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs); 1656 if (!ctx->ra_bio) 1657 return -ENOMEM; 1658 1659 ctx->valid_pages = 0; 1660 ctx->total_pages = 0; 1661 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1662 page = alloc_page(GFP_KERNEL); 1663 1664 if (!page) 1665 break; 1666 ctx->ra_pool[ctx->total_pages] = page; 1667 ctx->total_pages += 1; 1668 } 1669 1670 if (ctx->total_pages == 0) { 1671 bio_put(ctx->ra_bio); 1672 return -ENOMEM; 1673 } 1674 1675 ctx->pool_offset = 0; 1676 return 0; 1677 } 1678 1679 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1680 struct r5l_recovery_ctx *ctx) 1681 { 1682 int i; 1683 1684 for (i = 0; i < ctx->total_pages; ++i) 1685 put_page(ctx->ra_pool[i]); 1686 bio_put(ctx->ra_bio); 1687 } 1688 1689 /* 1690 * fetch ctx->valid_pages pages from offset 1691 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1692 * However, if the offset is close to the end of the journal device, 1693 * ctx->valid_pages could be smaller than ctx->total_pages 1694 */ 1695 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1696 struct r5l_recovery_ctx *ctx, 1697 sector_t offset) 1698 { 1699 bio_reset(ctx->ra_bio); 1700 bio_set_dev(ctx->ra_bio, log->rdev->bdev); 1701 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); 1702 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; 1703 1704 ctx->valid_pages = 0; 1705 ctx->pool_offset = offset; 1706 1707 while (ctx->valid_pages < ctx->total_pages) { 1708 bio_add_page(ctx->ra_bio, 1709 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); 1710 ctx->valid_pages += 1; 1711 1712 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1713 1714 if (offset == 0) /* reached end of the device */ 1715 break; 1716 } 1717 1718 return submit_bio_wait(ctx->ra_bio); 1719 } 1720 1721 /* 1722 * try read a page from the read ahead page pool, if the page is not in the 1723 * pool, call r5l_recovery_fetch_ra_pool 1724 */ 1725 static int r5l_recovery_read_page(struct r5l_log *log, 1726 struct r5l_recovery_ctx *ctx, 1727 struct page *page, 1728 sector_t offset) 1729 { 1730 int ret; 1731 1732 if (offset < ctx->pool_offset || 1733 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1734 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1735 if (ret) 1736 return ret; 1737 } 1738 1739 BUG_ON(offset < ctx->pool_offset || 1740 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1741 1742 memcpy(page_address(page), 1743 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1744 BLOCK_SECTOR_SHIFT]), 1745 PAGE_SIZE); 1746 return 0; 1747 } 1748 1749 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1750 struct r5l_recovery_ctx *ctx) 1751 { 1752 struct page *page = ctx->meta_page; 1753 struct r5l_meta_block *mb; 1754 u32 crc, stored_crc; 1755 int ret; 1756 1757 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1758 if (ret != 0) 1759 return ret; 1760 1761 mb = page_address(page); 1762 stored_crc = le32_to_cpu(mb->checksum); 1763 mb->checksum = 0; 1764 1765 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1766 le64_to_cpu(mb->seq) != ctx->seq || 1767 mb->version != R5LOG_VERSION || 1768 le64_to_cpu(mb->position) != ctx->pos) 1769 return -EINVAL; 1770 1771 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1772 if (stored_crc != crc) 1773 return -EINVAL; 1774 1775 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1776 return -EINVAL; 1777 1778 ctx->meta_total_blocks = BLOCK_SECTORS; 1779 1780 return 0; 1781 } 1782 1783 static void 1784 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1785 struct page *page, 1786 sector_t pos, u64 seq) 1787 { 1788 struct r5l_meta_block *mb; 1789 1790 mb = page_address(page); 1791 clear_page(mb); 1792 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1793 mb->version = R5LOG_VERSION; 1794 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1795 mb->seq = cpu_to_le64(seq); 1796 mb->position = cpu_to_le64(pos); 1797 } 1798 1799 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1800 u64 seq) 1801 { 1802 struct page *page; 1803 struct r5l_meta_block *mb; 1804 1805 page = alloc_page(GFP_KERNEL); 1806 if (!page) 1807 return -ENOMEM; 1808 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1809 mb = page_address(page); 1810 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1811 mb, PAGE_SIZE)); 1812 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1813 REQ_SYNC | REQ_FUA, false)) { 1814 __free_page(page); 1815 return -EIO; 1816 } 1817 __free_page(page); 1818 return 0; 1819 } 1820 1821 /* 1822 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1823 * to mark valid (potentially not flushed) data in the journal. 1824 * 1825 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1826 * so there should not be any mismatch here. 1827 */ 1828 static void r5l_recovery_load_data(struct r5l_log *log, 1829 struct stripe_head *sh, 1830 struct r5l_recovery_ctx *ctx, 1831 struct r5l_payload_data_parity *payload, 1832 sector_t log_offset) 1833 { 1834 struct mddev *mddev = log->rdev->mddev; 1835 struct r5conf *conf = mddev->private; 1836 int dd_idx; 1837 1838 raid5_compute_sector(conf, 1839 le64_to_cpu(payload->location), 0, 1840 &dd_idx, sh); 1841 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1842 sh->dev[dd_idx].log_checksum = 1843 le32_to_cpu(payload->checksum[0]); 1844 ctx->meta_total_blocks += BLOCK_SECTORS; 1845 1846 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1847 set_bit(STRIPE_R5C_CACHING, &sh->state); 1848 } 1849 1850 static void r5l_recovery_load_parity(struct r5l_log *log, 1851 struct stripe_head *sh, 1852 struct r5l_recovery_ctx *ctx, 1853 struct r5l_payload_data_parity *payload, 1854 sector_t log_offset) 1855 { 1856 struct mddev *mddev = log->rdev->mddev; 1857 struct r5conf *conf = mddev->private; 1858 1859 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1860 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1861 sh->dev[sh->pd_idx].log_checksum = 1862 le32_to_cpu(payload->checksum[0]); 1863 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1864 1865 if (sh->qd_idx >= 0) { 1866 r5l_recovery_read_page( 1867 log, ctx, sh->dev[sh->qd_idx].page, 1868 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1869 sh->dev[sh->qd_idx].log_checksum = 1870 le32_to_cpu(payload->checksum[1]); 1871 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1872 } 1873 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1874 } 1875 1876 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1877 { 1878 int i; 1879 1880 sh->state = 0; 1881 sh->log_start = MaxSector; 1882 for (i = sh->disks; i--; ) 1883 sh->dev[i].flags = 0; 1884 } 1885 1886 static void 1887 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1888 struct stripe_head *sh, 1889 struct r5l_recovery_ctx *ctx) 1890 { 1891 struct md_rdev *rdev, *rrdev; 1892 int disk_index; 1893 int data_count = 0; 1894 1895 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1896 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1897 continue; 1898 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1899 continue; 1900 data_count++; 1901 } 1902 1903 /* 1904 * stripes that only have parity must have been flushed 1905 * before the crash that we are now recovering from, so 1906 * there is nothing more to recovery. 1907 */ 1908 if (data_count == 0) 1909 goto out; 1910 1911 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1912 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1913 continue; 1914 1915 /* in case device is broken */ 1916 rcu_read_lock(); 1917 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1918 if (rdev) { 1919 atomic_inc(&rdev->nr_pending); 1920 rcu_read_unlock(); 1921 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1922 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1923 false); 1924 rdev_dec_pending(rdev, rdev->mddev); 1925 rcu_read_lock(); 1926 } 1927 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1928 if (rrdev) { 1929 atomic_inc(&rrdev->nr_pending); 1930 rcu_read_unlock(); 1931 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1932 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1933 false); 1934 rdev_dec_pending(rrdev, rrdev->mddev); 1935 rcu_read_lock(); 1936 } 1937 rcu_read_unlock(); 1938 } 1939 ctx->data_parity_stripes++; 1940 out: 1941 r5l_recovery_reset_stripe(sh); 1942 } 1943 1944 static struct stripe_head * 1945 r5c_recovery_alloc_stripe(struct r5conf *conf, 1946 sector_t stripe_sect) 1947 { 1948 struct stripe_head *sh; 1949 1950 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0); 1951 if (!sh) 1952 return NULL; /* no more stripe available */ 1953 1954 r5l_recovery_reset_stripe(sh); 1955 1956 return sh; 1957 } 1958 1959 static struct stripe_head * 1960 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1961 { 1962 struct stripe_head *sh; 1963 1964 list_for_each_entry(sh, list, lru) 1965 if (sh->sector == sect) 1966 return sh; 1967 return NULL; 1968 } 1969 1970 static void 1971 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1972 struct r5l_recovery_ctx *ctx) 1973 { 1974 struct stripe_head *sh, *next; 1975 1976 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1977 r5l_recovery_reset_stripe(sh); 1978 list_del_init(&sh->lru); 1979 raid5_release_stripe(sh); 1980 } 1981 } 1982 1983 static void 1984 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1985 struct r5l_recovery_ctx *ctx) 1986 { 1987 struct stripe_head *sh, *next; 1988 1989 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1990 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1991 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1992 list_del_init(&sh->lru); 1993 raid5_release_stripe(sh); 1994 } 1995 } 1996 1997 /* if matches return 0; otherwise return -EINVAL */ 1998 static int 1999 r5l_recovery_verify_data_checksum(struct r5l_log *log, 2000 struct r5l_recovery_ctx *ctx, 2001 struct page *page, 2002 sector_t log_offset, __le32 log_checksum) 2003 { 2004 void *addr; 2005 u32 checksum; 2006 2007 r5l_recovery_read_page(log, ctx, page, log_offset); 2008 addr = kmap_atomic(page); 2009 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 2010 kunmap_atomic(addr); 2011 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 2012 } 2013 2014 /* 2015 * before loading data to stripe cache, we need verify checksum for all data, 2016 * if there is mismatch for any data page, we drop all data in the mata block 2017 */ 2018 static int 2019 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 2020 struct r5l_recovery_ctx *ctx) 2021 { 2022 struct mddev *mddev = log->rdev->mddev; 2023 struct r5conf *conf = mddev->private; 2024 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2025 sector_t mb_offset = sizeof(struct r5l_meta_block); 2026 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2027 struct page *page; 2028 struct r5l_payload_data_parity *payload; 2029 struct r5l_payload_flush *payload_flush; 2030 2031 page = alloc_page(GFP_KERNEL); 2032 if (!page) 2033 return -ENOMEM; 2034 2035 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2036 payload = (void *)mb + mb_offset; 2037 payload_flush = (void *)mb + mb_offset; 2038 2039 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2040 if (r5l_recovery_verify_data_checksum( 2041 log, ctx, page, log_offset, 2042 payload->checksum[0]) < 0) 2043 goto mismatch; 2044 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2045 if (r5l_recovery_verify_data_checksum( 2046 log, ctx, page, log_offset, 2047 payload->checksum[0]) < 0) 2048 goto mismatch; 2049 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2050 r5l_recovery_verify_data_checksum( 2051 log, ctx, page, 2052 r5l_ring_add(log, log_offset, 2053 BLOCK_SECTORS), 2054 payload->checksum[1]) < 0) 2055 goto mismatch; 2056 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2057 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2058 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2059 goto mismatch; 2060 2061 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2062 mb_offset += sizeof(struct r5l_payload_flush) + 2063 le32_to_cpu(payload_flush->size); 2064 } else { 2065 /* DATA or PARITY payload */ 2066 log_offset = r5l_ring_add(log, log_offset, 2067 le32_to_cpu(payload->size)); 2068 mb_offset += sizeof(struct r5l_payload_data_parity) + 2069 sizeof(__le32) * 2070 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2071 } 2072 2073 } 2074 2075 put_page(page); 2076 return 0; 2077 2078 mismatch: 2079 put_page(page); 2080 return -EINVAL; 2081 } 2082 2083 /* 2084 * Analyze all data/parity pages in one meta block 2085 * Returns: 2086 * 0 for success 2087 * -EINVAL for unknown playload type 2088 * -EAGAIN for checksum mismatch of data page 2089 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2090 */ 2091 static int 2092 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2093 struct r5l_recovery_ctx *ctx, 2094 struct list_head *cached_stripe_list) 2095 { 2096 struct mddev *mddev = log->rdev->mddev; 2097 struct r5conf *conf = mddev->private; 2098 struct r5l_meta_block *mb; 2099 struct r5l_payload_data_parity *payload; 2100 struct r5l_payload_flush *payload_flush; 2101 int mb_offset; 2102 sector_t log_offset; 2103 sector_t stripe_sect; 2104 struct stripe_head *sh; 2105 int ret; 2106 2107 /* 2108 * for mismatch in data blocks, we will drop all data in this mb, but 2109 * we will still read next mb for other data with FLUSH flag, as 2110 * io_unit could finish out of order. 2111 */ 2112 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2113 if (ret == -EINVAL) 2114 return -EAGAIN; 2115 else if (ret) 2116 return ret; /* -ENOMEM duo to alloc_page() failed */ 2117 2118 mb = page_address(ctx->meta_page); 2119 mb_offset = sizeof(struct r5l_meta_block); 2120 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2121 2122 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2123 int dd; 2124 2125 payload = (void *)mb + mb_offset; 2126 payload_flush = (void *)mb + mb_offset; 2127 2128 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2129 int i, count; 2130 2131 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2132 for (i = 0; i < count; ++i) { 2133 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2134 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2135 stripe_sect); 2136 if (sh) { 2137 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2138 r5l_recovery_reset_stripe(sh); 2139 list_del_init(&sh->lru); 2140 raid5_release_stripe(sh); 2141 } 2142 } 2143 2144 mb_offset += sizeof(struct r5l_payload_flush) + 2145 le32_to_cpu(payload_flush->size); 2146 continue; 2147 } 2148 2149 /* DATA or PARITY payload */ 2150 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2151 raid5_compute_sector( 2152 conf, le64_to_cpu(payload->location), 0, &dd, 2153 NULL) 2154 : le64_to_cpu(payload->location); 2155 2156 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2157 stripe_sect); 2158 2159 if (!sh) { 2160 sh = r5c_recovery_alloc_stripe(conf, stripe_sect); 2161 /* 2162 * cannot get stripe from raid5_get_active_stripe 2163 * try replay some stripes 2164 */ 2165 if (!sh) { 2166 r5c_recovery_replay_stripes( 2167 cached_stripe_list, ctx); 2168 sh = r5c_recovery_alloc_stripe( 2169 conf, stripe_sect); 2170 } 2171 if (!sh) { 2172 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2173 mdname(mddev), 2174 conf->min_nr_stripes * 2); 2175 raid5_set_cache_size(mddev, 2176 conf->min_nr_stripes * 2); 2177 sh = r5c_recovery_alloc_stripe(conf, 2178 stripe_sect); 2179 } 2180 if (!sh) { 2181 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2182 mdname(mddev)); 2183 return -ENOMEM; 2184 } 2185 list_add_tail(&sh->lru, cached_stripe_list); 2186 } 2187 2188 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2189 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2190 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2191 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2192 list_move_tail(&sh->lru, cached_stripe_list); 2193 } 2194 r5l_recovery_load_data(log, sh, ctx, payload, 2195 log_offset); 2196 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2197 r5l_recovery_load_parity(log, sh, ctx, payload, 2198 log_offset); 2199 else 2200 return -EINVAL; 2201 2202 log_offset = r5l_ring_add(log, log_offset, 2203 le32_to_cpu(payload->size)); 2204 2205 mb_offset += sizeof(struct r5l_payload_data_parity) + 2206 sizeof(__le32) * 2207 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2208 } 2209 2210 return 0; 2211 } 2212 2213 /* 2214 * Load the stripe into cache. The stripe will be written out later by 2215 * the stripe cache state machine. 2216 */ 2217 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2218 struct stripe_head *sh) 2219 { 2220 struct r5dev *dev; 2221 int i; 2222 2223 for (i = sh->disks; i--; ) { 2224 dev = sh->dev + i; 2225 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2226 set_bit(R5_InJournal, &dev->flags); 2227 set_bit(R5_UPTODATE, &dev->flags); 2228 } 2229 } 2230 } 2231 2232 /* 2233 * Scan through the log for all to-be-flushed data 2234 * 2235 * For stripes with data and parity, namely Data-Parity stripe 2236 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2237 * 2238 * For stripes with only data, namely Data-Only stripe 2239 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2240 * 2241 * For a stripe, if we see data after parity, we should discard all previous 2242 * data and parity for this stripe, as these data are already flushed to 2243 * the array. 2244 * 2245 * At the end of the scan, we return the new journal_tail, which points to 2246 * first data-only stripe on the journal device, or next invalid meta block. 2247 */ 2248 static int r5c_recovery_flush_log(struct r5l_log *log, 2249 struct r5l_recovery_ctx *ctx) 2250 { 2251 struct stripe_head *sh; 2252 int ret = 0; 2253 2254 /* scan through the log */ 2255 while (1) { 2256 if (r5l_recovery_read_meta_block(log, ctx)) 2257 break; 2258 2259 ret = r5c_recovery_analyze_meta_block(log, ctx, 2260 &ctx->cached_list); 2261 /* 2262 * -EAGAIN means mismatch in data block, in this case, we still 2263 * try scan the next metablock 2264 */ 2265 if (ret && ret != -EAGAIN) 2266 break; /* ret == -EINVAL or -ENOMEM */ 2267 ctx->seq++; 2268 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2269 } 2270 2271 if (ret == -ENOMEM) { 2272 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2273 return ret; 2274 } 2275 2276 /* replay data-parity stripes */ 2277 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2278 2279 /* load data-only stripes to stripe cache */ 2280 list_for_each_entry(sh, &ctx->cached_list, lru) { 2281 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2282 r5c_recovery_load_one_stripe(log, sh); 2283 ctx->data_only_stripes++; 2284 } 2285 2286 return 0; 2287 } 2288 2289 /* 2290 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2291 * log will start here. but we can't let superblock point to last valid 2292 * meta block. The log might looks like: 2293 * | meta 1| meta 2| meta 3| 2294 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2295 * superblock points to meta 1, we write a new valid meta 2n. if crash 2296 * happens again, new recovery will start from meta 1. Since meta 2n is 2297 * valid now, recovery will think meta 3 is valid, which is wrong. 2298 * The solution is we create a new meta in meta2 with its seq == meta 2299 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2300 * will not think meta 3 is a valid meta, because its seq doesn't match 2301 */ 2302 2303 /* 2304 * Before recovery, the log looks like the following 2305 * 2306 * --------------------------------------------- 2307 * | valid log | invalid log | 2308 * --------------------------------------------- 2309 * ^ 2310 * |- log->last_checkpoint 2311 * |- log->last_cp_seq 2312 * 2313 * Now we scan through the log until we see invalid entry 2314 * 2315 * --------------------------------------------- 2316 * | valid log | invalid log | 2317 * --------------------------------------------- 2318 * ^ ^ 2319 * |- log->last_checkpoint |- ctx->pos 2320 * |- log->last_cp_seq |- ctx->seq 2321 * 2322 * From this point, we need to increase seq number by 10 to avoid 2323 * confusing next recovery. 2324 * 2325 * --------------------------------------------- 2326 * | valid log | invalid log | 2327 * --------------------------------------------- 2328 * ^ ^ 2329 * |- log->last_checkpoint |- ctx->pos+1 2330 * |- log->last_cp_seq |- ctx->seq+10001 2331 * 2332 * However, it is not safe to start the state machine yet, because data only 2333 * parities are not yet secured in RAID. To save these data only parities, we 2334 * rewrite them from seq+11. 2335 * 2336 * ----------------------------------------------------------------- 2337 * | valid log | data only stripes | invalid log | 2338 * ----------------------------------------------------------------- 2339 * ^ ^ 2340 * |- log->last_checkpoint |- ctx->pos+n 2341 * |- log->last_cp_seq |- ctx->seq+10000+n 2342 * 2343 * If failure happens again during this process, the recovery can safe start 2344 * again from log->last_checkpoint. 2345 * 2346 * Once data only stripes are rewritten to journal, we move log_tail 2347 * 2348 * ----------------------------------------------------------------- 2349 * | old log | data only stripes | invalid log | 2350 * ----------------------------------------------------------------- 2351 * ^ ^ 2352 * |- log->last_checkpoint |- ctx->pos+n 2353 * |- log->last_cp_seq |- ctx->seq+10000+n 2354 * 2355 * Then we can safely start the state machine. If failure happens from this 2356 * point on, the recovery will start from new log->last_checkpoint. 2357 */ 2358 static int 2359 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2360 struct r5l_recovery_ctx *ctx) 2361 { 2362 struct stripe_head *sh; 2363 struct mddev *mddev = log->rdev->mddev; 2364 struct page *page; 2365 sector_t next_checkpoint = MaxSector; 2366 2367 page = alloc_page(GFP_KERNEL); 2368 if (!page) { 2369 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2370 mdname(mddev)); 2371 return -ENOMEM; 2372 } 2373 2374 WARN_ON(list_empty(&ctx->cached_list)); 2375 2376 list_for_each_entry(sh, &ctx->cached_list, lru) { 2377 struct r5l_meta_block *mb; 2378 int i; 2379 int offset; 2380 sector_t write_pos; 2381 2382 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2383 r5l_recovery_create_empty_meta_block(log, page, 2384 ctx->pos, ctx->seq); 2385 mb = page_address(page); 2386 offset = le32_to_cpu(mb->meta_size); 2387 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2388 2389 for (i = sh->disks; i--; ) { 2390 struct r5dev *dev = &sh->dev[i]; 2391 struct r5l_payload_data_parity *payload; 2392 void *addr; 2393 2394 if (test_bit(R5_InJournal, &dev->flags)) { 2395 payload = (void *)mb + offset; 2396 payload->header.type = cpu_to_le16( 2397 R5LOG_PAYLOAD_DATA); 2398 payload->size = cpu_to_le32(BLOCK_SECTORS); 2399 payload->location = cpu_to_le64( 2400 raid5_compute_blocknr(sh, i, 0)); 2401 addr = kmap_atomic(dev->page); 2402 payload->checksum[0] = cpu_to_le32( 2403 crc32c_le(log->uuid_checksum, addr, 2404 PAGE_SIZE)); 2405 kunmap_atomic(addr); 2406 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2407 dev->page, REQ_OP_WRITE, 0, false); 2408 write_pos = r5l_ring_add(log, write_pos, 2409 BLOCK_SECTORS); 2410 offset += sizeof(__le32) + 2411 sizeof(struct r5l_payload_data_parity); 2412 2413 } 2414 } 2415 mb->meta_size = cpu_to_le32(offset); 2416 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2417 mb, PAGE_SIZE)); 2418 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2419 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); 2420 sh->log_start = ctx->pos; 2421 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2422 atomic_inc(&log->stripe_in_journal_count); 2423 ctx->pos = write_pos; 2424 ctx->seq += 1; 2425 next_checkpoint = sh->log_start; 2426 } 2427 log->next_checkpoint = next_checkpoint; 2428 __free_page(page); 2429 return 0; 2430 } 2431 2432 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2433 struct r5l_recovery_ctx *ctx) 2434 { 2435 struct mddev *mddev = log->rdev->mddev; 2436 struct r5conf *conf = mddev->private; 2437 struct stripe_head *sh, *next; 2438 2439 if (ctx->data_only_stripes == 0) 2440 return; 2441 2442 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2443 2444 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2445 r5c_make_stripe_write_out(sh); 2446 set_bit(STRIPE_HANDLE, &sh->state); 2447 list_del_init(&sh->lru); 2448 raid5_release_stripe(sh); 2449 } 2450 2451 md_wakeup_thread(conf->mddev->thread); 2452 /* reuse conf->wait_for_quiescent in recovery */ 2453 wait_event(conf->wait_for_quiescent, 2454 atomic_read(&conf->active_stripes) == 0); 2455 2456 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2457 } 2458 2459 static int r5l_recovery_log(struct r5l_log *log) 2460 { 2461 struct mddev *mddev = log->rdev->mddev; 2462 struct r5l_recovery_ctx *ctx; 2463 int ret; 2464 sector_t pos; 2465 2466 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2467 if (!ctx) 2468 return -ENOMEM; 2469 2470 ctx->pos = log->last_checkpoint; 2471 ctx->seq = log->last_cp_seq; 2472 INIT_LIST_HEAD(&ctx->cached_list); 2473 ctx->meta_page = alloc_page(GFP_KERNEL); 2474 2475 if (!ctx->meta_page) { 2476 ret = -ENOMEM; 2477 goto meta_page; 2478 } 2479 2480 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2481 ret = -ENOMEM; 2482 goto ra_pool; 2483 } 2484 2485 ret = r5c_recovery_flush_log(log, ctx); 2486 2487 if (ret) 2488 goto error; 2489 2490 pos = ctx->pos; 2491 ctx->seq += 10000; 2492 2493 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2494 pr_debug("md/raid:%s: starting from clean shutdown\n", 2495 mdname(mddev)); 2496 else 2497 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2498 mdname(mddev), ctx->data_only_stripes, 2499 ctx->data_parity_stripes); 2500 2501 if (ctx->data_only_stripes == 0) { 2502 log->next_checkpoint = ctx->pos; 2503 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2504 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2505 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2506 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2507 mdname(mddev)); 2508 ret = -EIO; 2509 goto error; 2510 } 2511 2512 log->log_start = ctx->pos; 2513 log->seq = ctx->seq; 2514 log->last_checkpoint = pos; 2515 r5l_write_super(log, pos); 2516 2517 r5c_recovery_flush_data_only_stripes(log, ctx); 2518 ret = 0; 2519 error: 2520 r5l_recovery_free_ra_pool(log, ctx); 2521 ra_pool: 2522 __free_page(ctx->meta_page); 2523 meta_page: 2524 kfree(ctx); 2525 return ret; 2526 } 2527 2528 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2529 { 2530 struct mddev *mddev = log->rdev->mddev; 2531 2532 log->rdev->journal_tail = cp; 2533 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2534 } 2535 2536 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2537 { 2538 struct r5conf *conf; 2539 int ret; 2540 2541 ret = mddev_lock(mddev); 2542 if (ret) 2543 return ret; 2544 2545 conf = mddev->private; 2546 if (!conf || !conf->log) { 2547 mddev_unlock(mddev); 2548 return 0; 2549 } 2550 2551 switch (conf->log->r5c_journal_mode) { 2552 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2553 ret = snprintf( 2554 page, PAGE_SIZE, "[%s] %s\n", 2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2556 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2557 break; 2558 case R5C_JOURNAL_MODE_WRITE_BACK: 2559 ret = snprintf( 2560 page, PAGE_SIZE, "%s [%s]\n", 2561 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2562 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2563 break; 2564 default: 2565 ret = 0; 2566 } 2567 mddev_unlock(mddev); 2568 return ret; 2569 } 2570 2571 /* 2572 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2573 * 2574 * @mode as defined in 'enum r5c_journal_mode'. 2575 * 2576 */ 2577 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2578 { 2579 struct r5conf *conf; 2580 2581 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2582 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2583 return -EINVAL; 2584 2585 conf = mddev->private; 2586 if (!conf || !conf->log) 2587 return -ENODEV; 2588 2589 if (raid5_calc_degraded(conf) > 0 && 2590 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2591 return -EINVAL; 2592 2593 mddev_suspend(mddev); 2594 conf->log->r5c_journal_mode = mode; 2595 mddev_resume(mddev); 2596 2597 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2598 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2599 return 0; 2600 } 2601 EXPORT_SYMBOL(r5c_journal_mode_set); 2602 2603 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2604 const char *page, size_t length) 2605 { 2606 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2607 size_t len = length; 2608 int ret; 2609 2610 if (len < 2) 2611 return -EINVAL; 2612 2613 if (page[len - 1] == '\n') 2614 len--; 2615 2616 while (mode--) 2617 if (strlen(r5c_journal_mode_str[mode]) == len && 2618 !strncmp(page, r5c_journal_mode_str[mode], len)) 2619 break; 2620 ret = mddev_lock(mddev); 2621 if (ret) 2622 return ret; 2623 ret = r5c_journal_mode_set(mddev, mode); 2624 mddev_unlock(mddev); 2625 return ret ?: length; 2626 } 2627 2628 struct md_sysfs_entry 2629 r5c_journal_mode = __ATTR(journal_mode, 0644, 2630 r5c_journal_mode_show, r5c_journal_mode_store); 2631 2632 /* 2633 * Try handle write operation in caching phase. This function should only 2634 * be called in write-back mode. 2635 * 2636 * If all outstanding writes can be handled in caching phase, returns 0 2637 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2638 * and returns -EAGAIN 2639 */ 2640 int r5c_try_caching_write(struct r5conf *conf, 2641 struct stripe_head *sh, 2642 struct stripe_head_state *s, 2643 int disks) 2644 { 2645 struct r5l_log *log = conf->log; 2646 int i; 2647 struct r5dev *dev; 2648 int to_cache = 0; 2649 void **pslot; 2650 sector_t tree_index; 2651 int ret; 2652 uintptr_t refcount; 2653 2654 BUG_ON(!r5c_is_writeback(log)); 2655 2656 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2657 /* 2658 * There are two different scenarios here: 2659 * 1. The stripe has some data cached, and it is sent to 2660 * write-out phase for reclaim 2661 * 2. The stripe is clean, and this is the first write 2662 * 2663 * For 1, return -EAGAIN, so we continue with 2664 * handle_stripe_dirtying(). 2665 * 2666 * For 2, set STRIPE_R5C_CACHING and continue with caching 2667 * write. 2668 */ 2669 2670 /* case 1: anything injournal or anything in written */ 2671 if (s->injournal > 0 || s->written > 0) 2672 return -EAGAIN; 2673 /* case 2 */ 2674 set_bit(STRIPE_R5C_CACHING, &sh->state); 2675 } 2676 2677 /* 2678 * When run in degraded mode, array is set to write-through mode. 2679 * This check helps drain pending write safely in the transition to 2680 * write-through mode. 2681 * 2682 * When a stripe is syncing, the write is also handled in write 2683 * through mode. 2684 */ 2685 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2686 r5c_make_stripe_write_out(sh); 2687 return -EAGAIN; 2688 } 2689 2690 for (i = disks; i--; ) { 2691 dev = &sh->dev[i]; 2692 /* if non-overwrite, use writing-out phase */ 2693 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2694 !test_bit(R5_InJournal, &dev->flags)) { 2695 r5c_make_stripe_write_out(sh); 2696 return -EAGAIN; 2697 } 2698 } 2699 2700 /* if the stripe is not counted in big_stripe_tree, add it now */ 2701 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2702 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2703 tree_index = r5c_tree_index(conf, sh->sector); 2704 spin_lock(&log->tree_lock); 2705 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2706 tree_index); 2707 if (pslot) { 2708 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2709 pslot, &log->tree_lock) >> 2710 R5C_RADIX_COUNT_SHIFT; 2711 radix_tree_replace_slot( 2712 &log->big_stripe_tree, pslot, 2713 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2714 } else { 2715 /* 2716 * this radix_tree_insert can fail safely, so no 2717 * need to call radix_tree_preload() 2718 */ 2719 ret = radix_tree_insert( 2720 &log->big_stripe_tree, tree_index, 2721 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2722 if (ret) { 2723 spin_unlock(&log->tree_lock); 2724 r5c_make_stripe_write_out(sh); 2725 return -EAGAIN; 2726 } 2727 } 2728 spin_unlock(&log->tree_lock); 2729 2730 /* 2731 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2732 * counted in the radix tree 2733 */ 2734 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2735 atomic_inc(&conf->r5c_cached_partial_stripes); 2736 } 2737 2738 for (i = disks; i--; ) { 2739 dev = &sh->dev[i]; 2740 if (dev->towrite) { 2741 set_bit(R5_Wantwrite, &dev->flags); 2742 set_bit(R5_Wantdrain, &dev->flags); 2743 set_bit(R5_LOCKED, &dev->flags); 2744 to_cache++; 2745 } 2746 } 2747 2748 if (to_cache) { 2749 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2750 /* 2751 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2752 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2753 * r5c_handle_data_cached() 2754 */ 2755 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2756 } 2757 2758 return 0; 2759 } 2760 2761 /* 2762 * free extra pages (orig_page) we allocated for prexor 2763 */ 2764 void r5c_release_extra_page(struct stripe_head *sh) 2765 { 2766 struct r5conf *conf = sh->raid_conf; 2767 int i; 2768 bool using_disk_info_extra_page; 2769 2770 using_disk_info_extra_page = 2771 sh->dev[0].orig_page == conf->disks[0].extra_page; 2772 2773 for (i = sh->disks; i--; ) 2774 if (sh->dev[i].page != sh->dev[i].orig_page) { 2775 struct page *p = sh->dev[i].orig_page; 2776 2777 sh->dev[i].orig_page = sh->dev[i].page; 2778 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2779 2780 if (!using_disk_info_extra_page) 2781 put_page(p); 2782 } 2783 2784 if (using_disk_info_extra_page) { 2785 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2786 md_wakeup_thread(conf->mddev->thread); 2787 } 2788 } 2789 2790 void r5c_use_extra_page(struct stripe_head *sh) 2791 { 2792 struct r5conf *conf = sh->raid_conf; 2793 int i; 2794 struct r5dev *dev; 2795 2796 for (i = sh->disks; i--; ) { 2797 dev = &sh->dev[i]; 2798 if (dev->orig_page != dev->page) 2799 put_page(dev->orig_page); 2800 dev->orig_page = conf->disks[i].extra_page; 2801 } 2802 } 2803 2804 /* 2805 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2806 * stripe is committed to RAID disks. 2807 */ 2808 void r5c_finish_stripe_write_out(struct r5conf *conf, 2809 struct stripe_head *sh, 2810 struct stripe_head_state *s) 2811 { 2812 struct r5l_log *log = conf->log; 2813 int i; 2814 int do_wakeup = 0; 2815 sector_t tree_index; 2816 void **pslot; 2817 uintptr_t refcount; 2818 2819 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2820 return; 2821 2822 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2823 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2824 2825 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2826 return; 2827 2828 for (i = sh->disks; i--; ) { 2829 clear_bit(R5_InJournal, &sh->dev[i].flags); 2830 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2831 do_wakeup = 1; 2832 } 2833 2834 /* 2835 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2836 * We updated R5_InJournal, so we also update s->injournal. 2837 */ 2838 s->injournal = 0; 2839 2840 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2841 if (atomic_dec_and_test(&conf->pending_full_writes)) 2842 md_wakeup_thread(conf->mddev->thread); 2843 2844 if (do_wakeup) 2845 wake_up(&conf->wait_for_overlap); 2846 2847 spin_lock_irq(&log->stripe_in_journal_lock); 2848 list_del_init(&sh->r5c); 2849 spin_unlock_irq(&log->stripe_in_journal_lock); 2850 sh->log_start = MaxSector; 2851 2852 atomic_dec(&log->stripe_in_journal_count); 2853 r5c_update_log_state(log); 2854 2855 /* stop counting this stripe in big_stripe_tree */ 2856 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2857 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2858 tree_index = r5c_tree_index(conf, sh->sector); 2859 spin_lock(&log->tree_lock); 2860 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2861 tree_index); 2862 BUG_ON(pslot == NULL); 2863 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2864 pslot, &log->tree_lock) >> 2865 R5C_RADIX_COUNT_SHIFT; 2866 if (refcount == 1) 2867 radix_tree_delete(&log->big_stripe_tree, tree_index); 2868 else 2869 radix_tree_replace_slot( 2870 &log->big_stripe_tree, pslot, 2871 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2872 spin_unlock(&log->tree_lock); 2873 } 2874 2875 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2876 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2877 atomic_dec(&conf->r5c_flushing_partial_stripes); 2878 atomic_dec(&conf->r5c_cached_partial_stripes); 2879 } 2880 2881 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2882 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2883 atomic_dec(&conf->r5c_flushing_full_stripes); 2884 atomic_dec(&conf->r5c_cached_full_stripes); 2885 } 2886 2887 r5l_append_flush_payload(log, sh->sector); 2888 /* stripe is flused to raid disks, we can do resync now */ 2889 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2890 set_bit(STRIPE_HANDLE, &sh->state); 2891 } 2892 2893 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2894 { 2895 struct r5conf *conf = sh->raid_conf; 2896 int pages = 0; 2897 int reserve; 2898 int i; 2899 int ret = 0; 2900 2901 BUG_ON(!log); 2902 2903 for (i = 0; i < sh->disks; i++) { 2904 void *addr; 2905 2906 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2907 continue; 2908 addr = kmap_atomic(sh->dev[i].page); 2909 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2910 addr, PAGE_SIZE); 2911 kunmap_atomic(addr); 2912 pages++; 2913 } 2914 WARN_ON(pages == 0); 2915 2916 /* 2917 * The stripe must enter state machine again to call endio, so 2918 * don't delay. 2919 */ 2920 clear_bit(STRIPE_DELAYED, &sh->state); 2921 atomic_inc(&sh->count); 2922 2923 mutex_lock(&log->io_mutex); 2924 /* meta + data */ 2925 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2926 2927 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2928 sh->log_start == MaxSector) 2929 r5l_add_no_space_stripe(log, sh); 2930 else if (!r5l_has_free_space(log, reserve)) { 2931 if (sh->log_start == log->last_checkpoint) 2932 BUG(); 2933 else 2934 r5l_add_no_space_stripe(log, sh); 2935 } else { 2936 ret = r5l_log_stripe(log, sh, pages, 0); 2937 if (ret) { 2938 spin_lock_irq(&log->io_list_lock); 2939 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2940 spin_unlock_irq(&log->io_list_lock); 2941 } 2942 } 2943 2944 mutex_unlock(&log->io_mutex); 2945 return 0; 2946 } 2947 2948 /* check whether this big stripe is in write back cache. */ 2949 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2950 { 2951 struct r5l_log *log = conf->log; 2952 sector_t tree_index; 2953 void *slot; 2954 2955 if (!log) 2956 return false; 2957 2958 WARN_ON_ONCE(!rcu_read_lock_held()); 2959 tree_index = r5c_tree_index(conf, sect); 2960 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2961 return slot != NULL; 2962 } 2963 2964 static int r5l_load_log(struct r5l_log *log) 2965 { 2966 struct md_rdev *rdev = log->rdev; 2967 struct page *page; 2968 struct r5l_meta_block *mb; 2969 sector_t cp = log->rdev->journal_tail; 2970 u32 stored_crc, expected_crc; 2971 bool create_super = false; 2972 int ret = 0; 2973 2974 /* Make sure it's valid */ 2975 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2976 cp = 0; 2977 page = alloc_page(GFP_KERNEL); 2978 if (!page) 2979 return -ENOMEM; 2980 2981 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2982 ret = -EIO; 2983 goto ioerr; 2984 } 2985 mb = page_address(page); 2986 2987 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2988 mb->version != R5LOG_VERSION) { 2989 create_super = true; 2990 goto create; 2991 } 2992 stored_crc = le32_to_cpu(mb->checksum); 2993 mb->checksum = 0; 2994 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2995 if (stored_crc != expected_crc) { 2996 create_super = true; 2997 goto create; 2998 } 2999 if (le64_to_cpu(mb->position) != cp) { 3000 create_super = true; 3001 goto create; 3002 } 3003 create: 3004 if (create_super) { 3005 log->last_cp_seq = prandom_u32(); 3006 cp = 0; 3007 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3008 /* 3009 * Make sure super points to correct address. Log might have 3010 * data very soon. If super hasn't correct log tail address, 3011 * recovery can't find the log 3012 */ 3013 r5l_write_super(log, cp); 3014 } else 3015 log->last_cp_seq = le64_to_cpu(mb->seq); 3016 3017 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3018 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3019 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3020 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3021 log->last_checkpoint = cp; 3022 3023 __free_page(page); 3024 3025 if (create_super) { 3026 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3027 log->seq = log->last_cp_seq + 1; 3028 log->next_checkpoint = cp; 3029 } else 3030 ret = r5l_recovery_log(log); 3031 3032 r5c_update_log_state(log); 3033 return ret; 3034 ioerr: 3035 __free_page(page); 3036 return ret; 3037 } 3038 3039 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3040 { 3041 struct r5conf *conf = mddev->private; 3042 struct r5l_log *log = conf->log; 3043 3044 if (!log) 3045 return; 3046 3047 if ((raid5_calc_degraded(conf) > 0 || 3048 test_bit(Journal, &rdev->flags)) && 3049 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3050 schedule_work(&log->disable_writeback_work); 3051 } 3052 3053 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3054 { 3055 struct request_queue *q = bdev_get_queue(rdev->bdev); 3056 struct r5l_log *log; 3057 char b[BDEVNAME_SIZE]; 3058 3059 pr_debug("md/raid:%s: using device %s as journal\n", 3060 mdname(conf->mddev), bdevname(rdev->bdev, b)); 3061 3062 if (PAGE_SIZE != 4096) 3063 return -EINVAL; 3064 3065 /* 3066 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3067 * raid_disks r5l_payload_data_parity. 3068 * 3069 * Write journal and cache does not work for very big array 3070 * (raid_disks > 203) 3071 */ 3072 if (sizeof(struct r5l_meta_block) + 3073 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3074 conf->raid_disks) > PAGE_SIZE) { 3075 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3076 mdname(conf->mddev), conf->raid_disks); 3077 return -EINVAL; 3078 } 3079 3080 log = kzalloc(sizeof(*log), GFP_KERNEL); 3081 if (!log) 3082 return -ENOMEM; 3083 log->rdev = rdev; 3084 3085 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3086 3087 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3088 sizeof(rdev->mddev->uuid)); 3089 3090 mutex_init(&log->io_mutex); 3091 3092 spin_lock_init(&log->io_list_lock); 3093 INIT_LIST_HEAD(&log->running_ios); 3094 INIT_LIST_HEAD(&log->io_end_ios); 3095 INIT_LIST_HEAD(&log->flushing_ios); 3096 INIT_LIST_HEAD(&log->finished_ios); 3097 bio_init(&log->flush_bio, NULL, 0); 3098 3099 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3100 if (!log->io_kc) 3101 goto io_kc; 3102 3103 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc); 3104 if (!log->io_pool) 3105 goto io_pool; 3106 3107 log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3108 if (!log->bs) 3109 goto io_bs; 3110 3111 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0); 3112 if (!log->meta_pool) 3113 goto out_mempool; 3114 3115 spin_lock_init(&log->tree_lock); 3116 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3117 3118 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3119 log->rdev->mddev, "reclaim"); 3120 if (!log->reclaim_thread) 3121 goto reclaim_thread; 3122 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3123 3124 init_waitqueue_head(&log->iounit_wait); 3125 3126 INIT_LIST_HEAD(&log->no_mem_stripes); 3127 3128 INIT_LIST_HEAD(&log->no_space_stripes); 3129 spin_lock_init(&log->no_space_stripes_lock); 3130 3131 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3132 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3133 3134 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3135 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3136 spin_lock_init(&log->stripe_in_journal_lock); 3137 atomic_set(&log->stripe_in_journal_count, 0); 3138 3139 rcu_assign_pointer(conf->log, log); 3140 3141 if (r5l_load_log(log)) 3142 goto error; 3143 3144 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3145 return 0; 3146 3147 error: 3148 rcu_assign_pointer(conf->log, NULL); 3149 md_unregister_thread(&log->reclaim_thread); 3150 reclaim_thread: 3151 mempool_destroy(log->meta_pool); 3152 out_mempool: 3153 bioset_free(log->bs); 3154 io_bs: 3155 mempool_destroy(log->io_pool); 3156 io_pool: 3157 kmem_cache_destroy(log->io_kc); 3158 io_kc: 3159 kfree(log); 3160 return -EINVAL; 3161 } 3162 3163 void r5l_exit_log(struct r5conf *conf) 3164 { 3165 struct r5l_log *log = conf->log; 3166 3167 conf->log = NULL; 3168 synchronize_rcu(); 3169 3170 /* Ensure disable_writeback_work wakes up and exits */ 3171 wake_up(&conf->mddev->sb_wait); 3172 flush_work(&log->disable_writeback_work); 3173 md_unregister_thread(&log->reclaim_thread); 3174 mempool_destroy(log->meta_pool); 3175 bioset_free(log->bs); 3176 mempool_destroy(log->io_pool); 3177 kmem_cache_destroy(log->io_kc); 3178 kfree(log); 3179 } 3180