xref: /openbmc/linux/drivers/md/raid5-cache.c (revision bbecb07f)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "md-bitmap.h"
27 #include "raid5-log.h"
28 
29 /*
30  * metadata/data stored in disk with 4k size unit (a block) regardless
31  * underneath hardware sector size. only works with PAGE_SIZE == 4096
32  */
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
35 
36 /*
37  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
38  *
39  * In write through mode, the reclaim runs every log->max_free_space.
40  * This can prevent the recovery scans for too long
41  */
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
44 
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51 
52 /*
53  * We only need 2 bios per I/O unit to make progress, but ensure we
54  * have a few more available to not get too tight.
55  */
56 #define R5L_POOL_SIZE	4
57 
58 static char *r5c_journal_mode_str[] = {"write-through",
59 				       "write-back"};
60 /*
61  * raid5 cache state machine
62  *
63  * With the RAID cache, each stripe works in two phases:
64  *	- caching phase
65  *	- writing-out phase
66  *
67  * These two phases are controlled by bit STRIPE_R5C_CACHING:
68  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
70  *
71  * When there is no journal, or the journal is in write-through mode,
72  * the stripe is always in writing-out phase.
73  *
74  * For write-back journal, the stripe is sent to caching phase on write
75  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76  * the write-out phase by clearing STRIPE_R5C_CACHING.
77  *
78  * Stripes in caching phase do not write the raid disks. Instead, all
79  * writes are committed from the log device. Therefore, a stripe in
80  * caching phase handles writes as:
81  *	- write to log device
82  *	- return IO
83  *
84  * Stripes in writing-out phase handle writes as:
85  *	- calculate parity
86  *	- write pending data and parity to journal
87  *	- write data and parity to raid disks
88  *	- return IO for pending writes
89  */
90 
91 struct r5l_log {
92 	struct md_rdev *rdev;
93 
94 	u32 uuid_checksum;
95 
96 	sector_t device_size;		/* log device size, round to
97 					 * BLOCK_SECTORS */
98 	sector_t max_free_space;	/* reclaim run if free space is at
99 					 * this size */
100 
101 	sector_t last_checkpoint;	/* log tail. where recovery scan
102 					 * starts from */
103 	u64 last_cp_seq;		/* log tail sequence */
104 
105 	sector_t log_start;		/* log head. where new data appends */
106 	u64 seq;			/* log head sequence */
107 
108 	sector_t next_checkpoint;
109 
110 	struct mutex io_mutex;
111 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
112 
113 	spinlock_t io_list_lock;
114 	struct list_head running_ios;	/* io_units which are still running,
115 					 * and have not yet been completely
116 					 * written to the log */
117 	struct list_head io_end_ios;	/* io_units which have been completely
118 					 * written to the log but not yet written
119 					 * to the RAID */
120 	struct list_head flushing_ios;	/* io_units which are waiting for log
121 					 * cache flush */
122 	struct list_head finished_ios;	/* io_units which settle down in log disk */
123 	struct bio flush_bio;
124 
125 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
126 
127 	struct kmem_cache *io_kc;
128 	mempool_t *io_pool;
129 	struct bio_set *bs;
130 	mempool_t *meta_pool;
131 
132 	struct md_thread *reclaim_thread;
133 	unsigned long reclaim_target;	/* number of space that need to be
134 					 * reclaimed.  if it's 0, reclaim spaces
135 					 * used by io_units which are in
136 					 * IO_UNIT_STRIPE_END state (eg, reclaim
137 					 * dones't wait for specific io_unit
138 					 * switching to IO_UNIT_STRIPE_END
139 					 * state) */
140 	wait_queue_head_t iounit_wait;
141 
142 	struct list_head no_space_stripes; /* pending stripes, log has no space */
143 	spinlock_t no_space_stripes_lock;
144 
145 	bool need_cache_flush;
146 
147 	/* for r5c_cache */
148 	enum r5c_journal_mode r5c_journal_mode;
149 
150 	/* all stripes in r5cache, in the order of seq at sh->log_start */
151 	struct list_head stripe_in_journal_list;
152 
153 	spinlock_t stripe_in_journal_lock;
154 	atomic_t stripe_in_journal_count;
155 
156 	/* to submit async io_units, to fulfill ordering of flush */
157 	struct work_struct deferred_io_work;
158 	/* to disable write back during in degraded mode */
159 	struct work_struct disable_writeback_work;
160 
161 	/* to for chunk_aligned_read in writeback mode, details below */
162 	spinlock_t tree_lock;
163 	struct radix_tree_root big_stripe_tree;
164 };
165 
166 /*
167  * Enable chunk_aligned_read() with write back cache.
168  *
169  * Each chunk may contain more than one stripe (for example, a 256kB
170  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172  * For each big_stripe, we count how many stripes of this big_stripe
173  * are in the write back cache. These data are tracked in a radix tree
174  * (big_stripe_tree). We use radix_tree item pointer as the counter.
175  * r5c_tree_index() is used to calculate keys for the radix tree.
176  *
177  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178  * big_stripe of each chunk in the tree. If this big_stripe is in the
179  * tree, chunk_aligned_read() aborts. This look up is protected by
180  * rcu_read_lock().
181  *
182  * It is necessary to remember whether a stripe is counted in
183  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185  * two flags are set, the stripe is counted in big_stripe_tree. This
186  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187  * r5c_try_caching_write(); and moving clear_bit of
188  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189  * r5c_finish_stripe_write_out().
190  */
191 
192 /*
193  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194  * So it is necessary to left shift the counter by 2 bits before using it
195  * as data pointer of the tree.
196  */
197 #define R5C_RADIX_COUNT_SHIFT 2
198 
199 /*
200  * calculate key for big_stripe_tree
201  *
202  * sect: align_bi->bi_iter.bi_sector or sh->sector
203  */
204 static inline sector_t r5c_tree_index(struct r5conf *conf,
205 				      sector_t sect)
206 {
207 	sector_t offset;
208 
209 	offset = sector_div(sect, conf->chunk_sectors);
210 	return sect;
211 }
212 
213 /*
214  * an IO range starts from a meta data block and end at the next meta data
215  * block. The io unit's the meta data block tracks data/parity followed it. io
216  * unit is written to log disk with normal write, as we always flush log disk
217  * first and then start move data to raid disks, there is no requirement to
218  * write io unit with FLUSH/FUA
219  */
220 struct r5l_io_unit {
221 	struct r5l_log *log;
222 
223 	struct page *meta_page;	/* store meta block */
224 	int meta_offset;	/* current offset in meta_page */
225 
226 	struct bio *current_bio;/* current_bio accepting new data */
227 
228 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
229 	u64 seq;		/* seq number of the metablock */
230 	sector_t log_start;	/* where the io_unit starts */
231 	sector_t log_end;	/* where the io_unit ends */
232 	struct list_head log_sibling; /* log->running_ios */
233 	struct list_head stripe_list; /* stripes added to the io_unit */
234 
235 	int state;
236 	bool need_split_bio;
237 	struct bio *split_bio;
238 
239 	unsigned int has_flush:1;		/* include flush request */
240 	unsigned int has_fua:1;			/* include fua request */
241 	unsigned int has_null_flush:1;		/* include null flush request */
242 	unsigned int has_flush_payload:1;	/* include flush payload  */
243 	/*
244 	 * io isn't sent yet, flush/fua request can only be submitted till it's
245 	 * the first IO in running_ios list
246 	 */
247 	unsigned int io_deferred:1;
248 
249 	struct bio_list flush_barriers;   /* size == 0 flush bios */
250 };
251 
252 /* r5l_io_unit state */
253 enum r5l_io_unit_state {
254 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
255 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
256 				 * don't accepting new bio */
257 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
258 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
259 };
260 
261 bool r5c_is_writeback(struct r5l_log *log)
262 {
263 	return (log != NULL &&
264 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
265 }
266 
267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
268 {
269 	start += inc;
270 	if (start >= log->device_size)
271 		start = start - log->device_size;
272 	return start;
273 }
274 
275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
276 				  sector_t end)
277 {
278 	if (end >= start)
279 		return end - start;
280 	else
281 		return end + log->device_size - start;
282 }
283 
284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
285 {
286 	sector_t used_size;
287 
288 	used_size = r5l_ring_distance(log, log->last_checkpoint,
289 					log->log_start);
290 
291 	return log->device_size > used_size + size;
292 }
293 
294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
295 				    enum r5l_io_unit_state state)
296 {
297 	if (WARN_ON(io->state >= state))
298 		return;
299 	io->state = state;
300 }
301 
302 static void
303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
304 {
305 	struct bio *wbi, *wbi2;
306 
307 	wbi = dev->written;
308 	dev->written = NULL;
309 	while (wbi && wbi->bi_iter.bi_sector <
310 	       dev->sector + STRIPE_SECTORS) {
311 		wbi2 = r5_next_bio(wbi, dev->sector);
312 		md_write_end(conf->mddev);
313 		bio_endio(wbi);
314 		wbi = wbi2;
315 	}
316 }
317 
318 void r5c_handle_cached_data_endio(struct r5conf *conf,
319 				  struct stripe_head *sh, int disks)
320 {
321 	int i;
322 
323 	for (i = sh->disks; i--; ) {
324 		if (sh->dev[i].written) {
325 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
326 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
327 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
328 					STRIPE_SECTORS,
329 					!test_bit(STRIPE_DEGRADED, &sh->state),
330 					0);
331 		}
332 	}
333 }
334 
335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
336 
337 /* Check whether we should flush some stripes to free up stripe cache */
338 void r5c_check_stripe_cache_usage(struct r5conf *conf)
339 {
340 	int total_cached;
341 
342 	if (!r5c_is_writeback(conf->log))
343 		return;
344 
345 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
346 		atomic_read(&conf->r5c_cached_full_stripes);
347 
348 	/*
349 	 * The following condition is true for either of the following:
350 	 *   - stripe cache pressure high:
351 	 *          total_cached > 3/4 min_nr_stripes ||
352 	 *          empty_inactive_list_nr > 0
353 	 *   - stripe cache pressure moderate:
354 	 *          total_cached > 1/2 min_nr_stripes
355 	 */
356 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
357 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
358 		r5l_wake_reclaim(conf->log, 0);
359 }
360 
361 /*
362  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
363  * stripes in the cache
364  */
365 void r5c_check_cached_full_stripe(struct r5conf *conf)
366 {
367 	if (!r5c_is_writeback(conf->log))
368 		return;
369 
370 	/*
371 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
372 	 * or a full stripe (chunk size / 4k stripes).
373 	 */
374 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
375 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
376 		conf->chunk_sectors >> STRIPE_SHIFT))
377 		r5l_wake_reclaim(conf->log, 0);
378 }
379 
380 /*
381  * Total log space (in sectors) needed to flush all data in cache
382  *
383  * To avoid deadlock due to log space, it is necessary to reserve log
384  * space to flush critical stripes (stripes that occupying log space near
385  * last_checkpoint). This function helps check how much log space is
386  * required to flush all cached stripes.
387  *
388  * To reduce log space requirements, two mechanisms are used to give cache
389  * flush higher priorities:
390  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
391  *       stripes ALREADY in journal can be flushed w/o pending writes;
392  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
393  *       can be delayed (r5l_add_no_space_stripe).
394  *
395  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
396  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
397  * pages of journal space. For stripes that has not passed 1, flushing it
398  * requires (conf->raid_disks + 1) pages of journal space. There are at
399  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
400  * required to flush all cached stripes (in pages) is:
401  *
402  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
403  *     (group_cnt + 1) * (raid_disks + 1)
404  * or
405  *     (stripe_in_journal_count) * (max_degraded + 1) +
406  *     (group_cnt + 1) * (raid_disks - max_degraded)
407  */
408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
409 {
410 	struct r5l_log *log = conf->log;
411 
412 	if (!r5c_is_writeback(log))
413 		return 0;
414 
415 	return BLOCK_SECTORS *
416 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
417 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
418 }
419 
420 /*
421  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
422  *
423  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
424  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
425  * device is less than 2x of reclaim_required_space.
426  */
427 static inline void r5c_update_log_state(struct r5l_log *log)
428 {
429 	struct r5conf *conf = log->rdev->mddev->private;
430 	sector_t free_space;
431 	sector_t reclaim_space;
432 	bool wake_reclaim = false;
433 
434 	if (!r5c_is_writeback(log))
435 		return;
436 
437 	free_space = r5l_ring_distance(log, log->log_start,
438 				       log->last_checkpoint);
439 	reclaim_space = r5c_log_required_to_flush_cache(conf);
440 	if (free_space < 2 * reclaim_space)
441 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
442 	else {
443 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
444 			wake_reclaim = true;
445 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
446 	}
447 	if (free_space < 3 * reclaim_space)
448 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
449 	else
450 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
451 
452 	if (wake_reclaim)
453 		r5l_wake_reclaim(log, 0);
454 }
455 
456 /*
457  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
458  * This function should only be called in write-back mode.
459  */
460 void r5c_make_stripe_write_out(struct stripe_head *sh)
461 {
462 	struct r5conf *conf = sh->raid_conf;
463 	struct r5l_log *log = conf->log;
464 
465 	BUG_ON(!r5c_is_writeback(log));
466 
467 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
468 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
469 
470 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
471 		atomic_inc(&conf->preread_active_stripes);
472 }
473 
474 static void r5c_handle_data_cached(struct stripe_head *sh)
475 {
476 	int i;
477 
478 	for (i = sh->disks; i--; )
479 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
480 			set_bit(R5_InJournal, &sh->dev[i].flags);
481 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
482 		}
483 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
484 }
485 
486 /*
487  * this journal write must contain full parity,
488  * it may also contain some data pages
489  */
490 static void r5c_handle_parity_cached(struct stripe_head *sh)
491 {
492 	int i;
493 
494 	for (i = sh->disks; i--; )
495 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
496 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
497 }
498 
499 /*
500  * Setting proper flags after writing (or flushing) data and/or parity to the
501  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
502  */
503 static void r5c_finish_cache_stripe(struct stripe_head *sh)
504 {
505 	struct r5l_log *log = sh->raid_conf->log;
506 
507 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
508 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
509 		/*
510 		 * Set R5_InJournal for parity dev[pd_idx]. This means
511 		 * all data AND parity in the journal. For RAID 6, it is
512 		 * NOT necessary to set the flag for dev[qd_idx], as the
513 		 * two parities are written out together.
514 		 */
515 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
516 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
517 		r5c_handle_data_cached(sh);
518 	} else {
519 		r5c_handle_parity_cached(sh);
520 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
521 	}
522 }
523 
524 static void r5l_io_run_stripes(struct r5l_io_unit *io)
525 {
526 	struct stripe_head *sh, *next;
527 
528 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
529 		list_del_init(&sh->log_list);
530 
531 		r5c_finish_cache_stripe(sh);
532 
533 		set_bit(STRIPE_HANDLE, &sh->state);
534 		raid5_release_stripe(sh);
535 	}
536 }
537 
538 static void r5l_log_run_stripes(struct r5l_log *log)
539 {
540 	struct r5l_io_unit *io, *next;
541 
542 	lockdep_assert_held(&log->io_list_lock);
543 
544 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
545 		/* don't change list order */
546 		if (io->state < IO_UNIT_IO_END)
547 			break;
548 
549 		list_move_tail(&io->log_sibling, &log->finished_ios);
550 		r5l_io_run_stripes(io);
551 	}
552 }
553 
554 static void r5l_move_to_end_ios(struct r5l_log *log)
555 {
556 	struct r5l_io_unit *io, *next;
557 
558 	lockdep_assert_held(&log->io_list_lock);
559 
560 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
561 		/* don't change list order */
562 		if (io->state < IO_UNIT_IO_END)
563 			break;
564 		list_move_tail(&io->log_sibling, &log->io_end_ios);
565 	}
566 }
567 
568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
569 static void r5l_log_endio(struct bio *bio)
570 {
571 	struct r5l_io_unit *io = bio->bi_private;
572 	struct r5l_io_unit *io_deferred;
573 	struct r5l_log *log = io->log;
574 	unsigned long flags;
575 	bool has_null_flush;
576 	bool has_flush_payload;
577 
578 	if (bio->bi_status)
579 		md_error(log->rdev->mddev, log->rdev);
580 
581 	bio_put(bio);
582 	mempool_free(io->meta_page, log->meta_pool);
583 
584 	spin_lock_irqsave(&log->io_list_lock, flags);
585 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
586 
587 	/*
588 	 * if the io doesn't not have null_flush or flush payload,
589 	 * it is not safe to access it after releasing io_list_lock.
590 	 * Therefore, it is necessary to check the condition with
591 	 * the lock held.
592 	 */
593 	has_null_flush = io->has_null_flush;
594 	has_flush_payload = io->has_flush_payload;
595 
596 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
597 		r5l_move_to_end_ios(log);
598 	else
599 		r5l_log_run_stripes(log);
600 	if (!list_empty(&log->running_ios)) {
601 		/*
602 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
603 		 * can dispatch it
604 		 */
605 		io_deferred = list_first_entry(&log->running_ios,
606 					       struct r5l_io_unit, log_sibling);
607 		if (io_deferred->io_deferred)
608 			schedule_work(&log->deferred_io_work);
609 	}
610 
611 	spin_unlock_irqrestore(&log->io_list_lock, flags);
612 
613 	if (log->need_cache_flush)
614 		md_wakeup_thread(log->rdev->mddev->thread);
615 
616 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
617 	if (has_null_flush) {
618 		struct bio *bi;
619 
620 		WARN_ON(bio_list_empty(&io->flush_barriers));
621 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
622 			bio_endio(bi);
623 			if (atomic_dec_and_test(&io->pending_stripe)) {
624 				__r5l_stripe_write_finished(io);
625 				return;
626 			}
627 		}
628 	}
629 	/* decrease pending_stripe for flush payload */
630 	if (has_flush_payload)
631 		if (atomic_dec_and_test(&io->pending_stripe))
632 			__r5l_stripe_write_finished(io);
633 }
634 
635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
636 {
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&log->io_list_lock, flags);
640 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
641 	spin_unlock_irqrestore(&log->io_list_lock, flags);
642 
643 	/*
644 	 * In case of journal device failures, submit_bio will get error
645 	 * and calls endio, then active stripes will continue write
646 	 * process. Therefore, it is not necessary to check Faulty bit
647 	 * of journal device here.
648 	 *
649 	 * We can't check split_bio after current_bio is submitted. If
650 	 * io->split_bio is null, after current_bio is submitted, current_bio
651 	 * might already be completed and the io_unit is freed. We submit
652 	 * split_bio first to avoid the issue.
653 	 */
654 	if (io->split_bio) {
655 		if (io->has_flush)
656 			io->split_bio->bi_opf |= REQ_PREFLUSH;
657 		if (io->has_fua)
658 			io->split_bio->bi_opf |= REQ_FUA;
659 		submit_bio(io->split_bio);
660 	}
661 
662 	if (io->has_flush)
663 		io->current_bio->bi_opf |= REQ_PREFLUSH;
664 	if (io->has_fua)
665 		io->current_bio->bi_opf |= REQ_FUA;
666 	submit_bio(io->current_bio);
667 }
668 
669 /* deferred io_unit will be dispatched here */
670 static void r5l_submit_io_async(struct work_struct *work)
671 {
672 	struct r5l_log *log = container_of(work, struct r5l_log,
673 					   deferred_io_work);
674 	struct r5l_io_unit *io = NULL;
675 	unsigned long flags;
676 
677 	spin_lock_irqsave(&log->io_list_lock, flags);
678 	if (!list_empty(&log->running_ios)) {
679 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
680 				      log_sibling);
681 		if (!io->io_deferred)
682 			io = NULL;
683 		else
684 			io->io_deferred = 0;
685 	}
686 	spin_unlock_irqrestore(&log->io_list_lock, flags);
687 	if (io)
688 		r5l_do_submit_io(log, io);
689 }
690 
691 static void r5c_disable_writeback_async(struct work_struct *work)
692 {
693 	struct r5l_log *log = container_of(work, struct r5l_log,
694 					   disable_writeback_work);
695 	struct mddev *mddev = log->rdev->mddev;
696 	struct r5conf *conf = mddev->private;
697 	int locked = 0;
698 
699 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
700 		return;
701 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
702 		mdname(mddev));
703 
704 	/* wait superblock change before suspend */
705 	wait_event(mddev->sb_wait,
706 		   conf->log == NULL ||
707 		   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
708 		    (locked = mddev_trylock(mddev))));
709 	if (locked) {
710 		mddev_suspend(mddev);
711 		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
712 		mddev_resume(mddev);
713 		mddev_unlock(mddev);
714 	}
715 }
716 
717 static void r5l_submit_current_io(struct r5l_log *log)
718 {
719 	struct r5l_io_unit *io = log->current_io;
720 	struct bio *bio;
721 	struct r5l_meta_block *block;
722 	unsigned long flags;
723 	u32 crc;
724 	bool do_submit = true;
725 
726 	if (!io)
727 		return;
728 
729 	block = page_address(io->meta_page);
730 	block->meta_size = cpu_to_le32(io->meta_offset);
731 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
732 	block->checksum = cpu_to_le32(crc);
733 	bio = io->current_bio;
734 
735 	log->current_io = NULL;
736 	spin_lock_irqsave(&log->io_list_lock, flags);
737 	if (io->has_flush || io->has_fua) {
738 		if (io != list_first_entry(&log->running_ios,
739 					   struct r5l_io_unit, log_sibling)) {
740 			io->io_deferred = 1;
741 			do_submit = false;
742 		}
743 	}
744 	spin_unlock_irqrestore(&log->io_list_lock, flags);
745 	if (do_submit)
746 		r5l_do_submit_io(log, io);
747 }
748 
749 static struct bio *r5l_bio_alloc(struct r5l_log *log)
750 {
751 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
752 
753 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
754 	bio_set_dev(bio, log->rdev->bdev);
755 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
756 
757 	return bio;
758 }
759 
760 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
761 {
762 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
763 
764 	r5c_update_log_state(log);
765 	/*
766 	 * If we filled up the log device start from the beginning again,
767 	 * which will require a new bio.
768 	 *
769 	 * Note: for this to work properly the log size needs to me a multiple
770 	 * of BLOCK_SECTORS.
771 	 */
772 	if (log->log_start == 0)
773 		io->need_split_bio = true;
774 
775 	io->log_end = log->log_start;
776 }
777 
778 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
779 {
780 	struct r5l_io_unit *io;
781 	struct r5l_meta_block *block;
782 
783 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
784 	if (!io)
785 		return NULL;
786 	memset(io, 0, sizeof(*io));
787 
788 	io->log = log;
789 	INIT_LIST_HEAD(&io->log_sibling);
790 	INIT_LIST_HEAD(&io->stripe_list);
791 	bio_list_init(&io->flush_barriers);
792 	io->state = IO_UNIT_RUNNING;
793 
794 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
795 	block = page_address(io->meta_page);
796 	clear_page(block);
797 	block->magic = cpu_to_le32(R5LOG_MAGIC);
798 	block->version = R5LOG_VERSION;
799 	block->seq = cpu_to_le64(log->seq);
800 	block->position = cpu_to_le64(log->log_start);
801 
802 	io->log_start = log->log_start;
803 	io->meta_offset = sizeof(struct r5l_meta_block);
804 	io->seq = log->seq++;
805 
806 	io->current_bio = r5l_bio_alloc(log);
807 	io->current_bio->bi_end_io = r5l_log_endio;
808 	io->current_bio->bi_private = io;
809 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
810 
811 	r5_reserve_log_entry(log, io);
812 
813 	spin_lock_irq(&log->io_list_lock);
814 	list_add_tail(&io->log_sibling, &log->running_ios);
815 	spin_unlock_irq(&log->io_list_lock);
816 
817 	return io;
818 }
819 
820 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
821 {
822 	if (log->current_io &&
823 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
824 		r5l_submit_current_io(log);
825 
826 	if (!log->current_io) {
827 		log->current_io = r5l_new_meta(log);
828 		if (!log->current_io)
829 			return -ENOMEM;
830 	}
831 
832 	return 0;
833 }
834 
835 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
836 				    sector_t location,
837 				    u32 checksum1, u32 checksum2,
838 				    bool checksum2_valid)
839 {
840 	struct r5l_io_unit *io = log->current_io;
841 	struct r5l_payload_data_parity *payload;
842 
843 	payload = page_address(io->meta_page) + io->meta_offset;
844 	payload->header.type = cpu_to_le16(type);
845 	payload->header.flags = cpu_to_le16(0);
846 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
847 				    (PAGE_SHIFT - 9));
848 	payload->location = cpu_to_le64(location);
849 	payload->checksum[0] = cpu_to_le32(checksum1);
850 	if (checksum2_valid)
851 		payload->checksum[1] = cpu_to_le32(checksum2);
852 
853 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
854 		sizeof(__le32) * (1 + !!checksum2_valid);
855 }
856 
857 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
858 {
859 	struct r5l_io_unit *io = log->current_io;
860 
861 	if (io->need_split_bio) {
862 		BUG_ON(io->split_bio);
863 		io->split_bio = io->current_bio;
864 		io->current_bio = r5l_bio_alloc(log);
865 		bio_chain(io->current_bio, io->split_bio);
866 		io->need_split_bio = false;
867 	}
868 
869 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
870 		BUG();
871 
872 	r5_reserve_log_entry(log, io);
873 }
874 
875 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
876 {
877 	struct mddev *mddev = log->rdev->mddev;
878 	struct r5conf *conf = mddev->private;
879 	struct r5l_io_unit *io;
880 	struct r5l_payload_flush *payload;
881 	int meta_size;
882 
883 	/*
884 	 * payload_flush requires extra writes to the journal.
885 	 * To avoid handling the extra IO in quiesce, just skip
886 	 * flush_payload
887 	 */
888 	if (conf->quiesce)
889 		return;
890 
891 	mutex_lock(&log->io_mutex);
892 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
893 
894 	if (r5l_get_meta(log, meta_size)) {
895 		mutex_unlock(&log->io_mutex);
896 		return;
897 	}
898 
899 	/* current implementation is one stripe per flush payload */
900 	io = log->current_io;
901 	payload = page_address(io->meta_page) + io->meta_offset;
902 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
903 	payload->header.flags = cpu_to_le16(0);
904 	payload->size = cpu_to_le32(sizeof(__le64));
905 	payload->flush_stripes[0] = cpu_to_le64(sect);
906 	io->meta_offset += meta_size;
907 	/* multiple flush payloads count as one pending_stripe */
908 	if (!io->has_flush_payload) {
909 		io->has_flush_payload = 1;
910 		atomic_inc(&io->pending_stripe);
911 	}
912 	mutex_unlock(&log->io_mutex);
913 }
914 
915 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
916 			   int data_pages, int parity_pages)
917 {
918 	int i;
919 	int meta_size;
920 	int ret;
921 	struct r5l_io_unit *io;
922 
923 	meta_size =
924 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
925 		 * data_pages) +
926 		sizeof(struct r5l_payload_data_parity) +
927 		sizeof(__le32) * parity_pages;
928 
929 	ret = r5l_get_meta(log, meta_size);
930 	if (ret)
931 		return ret;
932 
933 	io = log->current_io;
934 
935 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
936 		io->has_flush = 1;
937 
938 	for (i = 0; i < sh->disks; i++) {
939 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
940 		    test_bit(R5_InJournal, &sh->dev[i].flags))
941 			continue;
942 		if (i == sh->pd_idx || i == sh->qd_idx)
943 			continue;
944 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
945 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
946 			io->has_fua = 1;
947 			/*
948 			 * we need to flush journal to make sure recovery can
949 			 * reach the data with fua flag
950 			 */
951 			io->has_flush = 1;
952 		}
953 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
954 					raid5_compute_blocknr(sh, i, 0),
955 					sh->dev[i].log_checksum, 0, false);
956 		r5l_append_payload_page(log, sh->dev[i].page);
957 	}
958 
959 	if (parity_pages == 2) {
960 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
961 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
962 					sh->dev[sh->qd_idx].log_checksum, true);
963 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
964 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
965 	} else if (parity_pages == 1) {
966 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
967 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
968 					0, false);
969 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
970 	} else  /* Just writing data, not parity, in caching phase */
971 		BUG_ON(parity_pages != 0);
972 
973 	list_add_tail(&sh->log_list, &io->stripe_list);
974 	atomic_inc(&io->pending_stripe);
975 	sh->log_io = io;
976 
977 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
978 		return 0;
979 
980 	if (sh->log_start == MaxSector) {
981 		BUG_ON(!list_empty(&sh->r5c));
982 		sh->log_start = io->log_start;
983 		spin_lock_irq(&log->stripe_in_journal_lock);
984 		list_add_tail(&sh->r5c,
985 			      &log->stripe_in_journal_list);
986 		spin_unlock_irq(&log->stripe_in_journal_lock);
987 		atomic_inc(&log->stripe_in_journal_count);
988 	}
989 	return 0;
990 }
991 
992 /* add stripe to no_space_stripes, and then wake up reclaim */
993 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
994 					   struct stripe_head *sh)
995 {
996 	spin_lock(&log->no_space_stripes_lock);
997 	list_add_tail(&sh->log_list, &log->no_space_stripes);
998 	spin_unlock(&log->no_space_stripes_lock);
999 }
1000 
1001 /*
1002  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
1003  * data from log to raid disks), so we shouldn't wait for reclaim here
1004  */
1005 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
1006 {
1007 	struct r5conf *conf = sh->raid_conf;
1008 	int write_disks = 0;
1009 	int data_pages, parity_pages;
1010 	int reserve;
1011 	int i;
1012 	int ret = 0;
1013 	bool wake_reclaim = false;
1014 
1015 	if (!log)
1016 		return -EAGAIN;
1017 	/* Don't support stripe batch */
1018 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1019 	    test_bit(STRIPE_SYNCING, &sh->state)) {
1020 		/* the stripe is written to log, we start writing it to raid */
1021 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1022 		return -EAGAIN;
1023 	}
1024 
1025 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1026 
1027 	for (i = 0; i < sh->disks; i++) {
1028 		void *addr;
1029 
1030 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1031 		    test_bit(R5_InJournal, &sh->dev[i].flags))
1032 			continue;
1033 
1034 		write_disks++;
1035 		/* checksum is already calculated in last run */
1036 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1037 			continue;
1038 		addr = kmap_atomic(sh->dev[i].page);
1039 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1040 						    addr, PAGE_SIZE);
1041 		kunmap_atomic(addr);
1042 	}
1043 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1044 	data_pages = write_disks - parity_pages;
1045 
1046 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1047 	/*
1048 	 * The stripe must enter state machine again to finish the write, so
1049 	 * don't delay.
1050 	 */
1051 	clear_bit(STRIPE_DELAYED, &sh->state);
1052 	atomic_inc(&sh->count);
1053 
1054 	mutex_lock(&log->io_mutex);
1055 	/* meta + data */
1056 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1057 
1058 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1059 		if (!r5l_has_free_space(log, reserve)) {
1060 			r5l_add_no_space_stripe(log, sh);
1061 			wake_reclaim = true;
1062 		} else {
1063 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1064 			if (ret) {
1065 				spin_lock_irq(&log->io_list_lock);
1066 				list_add_tail(&sh->log_list,
1067 					      &log->no_mem_stripes);
1068 				spin_unlock_irq(&log->io_list_lock);
1069 			}
1070 		}
1071 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1072 		/*
1073 		 * log space critical, do not process stripes that are
1074 		 * not in cache yet (sh->log_start == MaxSector).
1075 		 */
1076 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1077 		    sh->log_start == MaxSector) {
1078 			r5l_add_no_space_stripe(log, sh);
1079 			wake_reclaim = true;
1080 			reserve = 0;
1081 		} else if (!r5l_has_free_space(log, reserve)) {
1082 			if (sh->log_start == log->last_checkpoint)
1083 				BUG();
1084 			else
1085 				r5l_add_no_space_stripe(log, sh);
1086 		} else {
1087 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1088 			if (ret) {
1089 				spin_lock_irq(&log->io_list_lock);
1090 				list_add_tail(&sh->log_list,
1091 					      &log->no_mem_stripes);
1092 				spin_unlock_irq(&log->io_list_lock);
1093 			}
1094 		}
1095 	}
1096 
1097 	mutex_unlock(&log->io_mutex);
1098 	if (wake_reclaim)
1099 		r5l_wake_reclaim(log, reserve);
1100 	return 0;
1101 }
1102 
1103 void r5l_write_stripe_run(struct r5l_log *log)
1104 {
1105 	if (!log)
1106 		return;
1107 	mutex_lock(&log->io_mutex);
1108 	r5l_submit_current_io(log);
1109 	mutex_unlock(&log->io_mutex);
1110 }
1111 
1112 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1113 {
1114 	if (!log)
1115 		return -ENODEV;
1116 
1117 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1118 		/*
1119 		 * in write through (journal only)
1120 		 * we flush log disk cache first, then write stripe data to
1121 		 * raid disks. So if bio is finished, the log disk cache is
1122 		 * flushed already. The recovery guarantees we can recovery
1123 		 * the bio from log disk, so we don't need to flush again
1124 		 */
1125 		if (bio->bi_iter.bi_size == 0) {
1126 			bio_endio(bio);
1127 			return 0;
1128 		}
1129 		bio->bi_opf &= ~REQ_PREFLUSH;
1130 	} else {
1131 		/* write back (with cache) */
1132 		if (bio->bi_iter.bi_size == 0) {
1133 			mutex_lock(&log->io_mutex);
1134 			r5l_get_meta(log, 0);
1135 			bio_list_add(&log->current_io->flush_barriers, bio);
1136 			log->current_io->has_flush = 1;
1137 			log->current_io->has_null_flush = 1;
1138 			atomic_inc(&log->current_io->pending_stripe);
1139 			r5l_submit_current_io(log);
1140 			mutex_unlock(&log->io_mutex);
1141 			return 0;
1142 		}
1143 	}
1144 	return -EAGAIN;
1145 }
1146 
1147 /* This will run after log space is reclaimed */
1148 static void r5l_run_no_space_stripes(struct r5l_log *log)
1149 {
1150 	struct stripe_head *sh;
1151 
1152 	spin_lock(&log->no_space_stripes_lock);
1153 	while (!list_empty(&log->no_space_stripes)) {
1154 		sh = list_first_entry(&log->no_space_stripes,
1155 				      struct stripe_head, log_list);
1156 		list_del_init(&sh->log_list);
1157 		set_bit(STRIPE_HANDLE, &sh->state);
1158 		raid5_release_stripe(sh);
1159 	}
1160 	spin_unlock(&log->no_space_stripes_lock);
1161 }
1162 
1163 /*
1164  * calculate new last_checkpoint
1165  * for write through mode, returns log->next_checkpoint
1166  * for write back, returns log_start of first sh in stripe_in_journal_list
1167  */
1168 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1169 {
1170 	struct stripe_head *sh;
1171 	struct r5l_log *log = conf->log;
1172 	sector_t new_cp;
1173 	unsigned long flags;
1174 
1175 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1176 		return log->next_checkpoint;
1177 
1178 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1179 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1180 		/* all stripes flushed */
1181 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1182 		return log->next_checkpoint;
1183 	}
1184 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1185 			      struct stripe_head, r5c);
1186 	new_cp = sh->log_start;
1187 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1188 	return new_cp;
1189 }
1190 
1191 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1192 {
1193 	struct r5conf *conf = log->rdev->mddev->private;
1194 
1195 	return r5l_ring_distance(log, log->last_checkpoint,
1196 				 r5c_calculate_new_cp(conf));
1197 }
1198 
1199 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1200 {
1201 	struct stripe_head *sh;
1202 
1203 	lockdep_assert_held(&log->io_list_lock);
1204 
1205 	if (!list_empty(&log->no_mem_stripes)) {
1206 		sh = list_first_entry(&log->no_mem_stripes,
1207 				      struct stripe_head, log_list);
1208 		list_del_init(&sh->log_list);
1209 		set_bit(STRIPE_HANDLE, &sh->state);
1210 		raid5_release_stripe(sh);
1211 	}
1212 }
1213 
1214 static bool r5l_complete_finished_ios(struct r5l_log *log)
1215 {
1216 	struct r5l_io_unit *io, *next;
1217 	bool found = false;
1218 
1219 	lockdep_assert_held(&log->io_list_lock);
1220 
1221 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1222 		/* don't change list order */
1223 		if (io->state < IO_UNIT_STRIPE_END)
1224 			break;
1225 
1226 		log->next_checkpoint = io->log_start;
1227 
1228 		list_del(&io->log_sibling);
1229 		mempool_free(io, log->io_pool);
1230 		r5l_run_no_mem_stripe(log);
1231 
1232 		found = true;
1233 	}
1234 
1235 	return found;
1236 }
1237 
1238 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1239 {
1240 	struct r5l_log *log = io->log;
1241 	struct r5conf *conf = log->rdev->mddev->private;
1242 	unsigned long flags;
1243 
1244 	spin_lock_irqsave(&log->io_list_lock, flags);
1245 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1246 
1247 	if (!r5l_complete_finished_ios(log)) {
1248 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1249 		return;
1250 	}
1251 
1252 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1253 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1254 		r5l_wake_reclaim(log, 0);
1255 
1256 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1257 	wake_up(&log->iounit_wait);
1258 }
1259 
1260 void r5l_stripe_write_finished(struct stripe_head *sh)
1261 {
1262 	struct r5l_io_unit *io;
1263 
1264 	io = sh->log_io;
1265 	sh->log_io = NULL;
1266 
1267 	if (io && atomic_dec_and_test(&io->pending_stripe))
1268 		__r5l_stripe_write_finished(io);
1269 }
1270 
1271 static void r5l_log_flush_endio(struct bio *bio)
1272 {
1273 	struct r5l_log *log = container_of(bio, struct r5l_log,
1274 		flush_bio);
1275 	unsigned long flags;
1276 	struct r5l_io_unit *io;
1277 
1278 	if (bio->bi_status)
1279 		md_error(log->rdev->mddev, log->rdev);
1280 
1281 	spin_lock_irqsave(&log->io_list_lock, flags);
1282 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1283 		r5l_io_run_stripes(io);
1284 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1285 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1286 }
1287 
1288 /*
1289  * Starting dispatch IO to raid.
1290  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1291  * broken meta in the middle of a log causes recovery can't find meta at the
1292  * head of log. If operations require meta at the head persistent in log, we
1293  * must make sure meta before it persistent in log too. A case is:
1294  *
1295  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1296  * data/parity must be persistent in log before we do the write to raid disks.
1297  *
1298  * The solution is we restrictly maintain io_unit list order. In this case, we
1299  * only write stripes of an io_unit to raid disks till the io_unit is the first
1300  * one whose data/parity is in log.
1301  */
1302 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1303 {
1304 	bool do_flush;
1305 
1306 	if (!log || !log->need_cache_flush)
1307 		return;
1308 
1309 	spin_lock_irq(&log->io_list_lock);
1310 	/* flush bio is running */
1311 	if (!list_empty(&log->flushing_ios)) {
1312 		spin_unlock_irq(&log->io_list_lock);
1313 		return;
1314 	}
1315 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1316 	do_flush = !list_empty(&log->flushing_ios);
1317 	spin_unlock_irq(&log->io_list_lock);
1318 
1319 	if (!do_flush)
1320 		return;
1321 	bio_reset(&log->flush_bio);
1322 	bio_set_dev(&log->flush_bio, log->rdev->bdev);
1323 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1324 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1325 	submit_bio(&log->flush_bio);
1326 }
1327 
1328 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1329 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1330 	sector_t end)
1331 {
1332 	struct block_device *bdev = log->rdev->bdev;
1333 	struct mddev *mddev;
1334 
1335 	r5l_write_super(log, end);
1336 
1337 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1338 		return;
1339 
1340 	mddev = log->rdev->mddev;
1341 	/*
1342 	 * Discard could zero data, so before discard we must make sure
1343 	 * superblock is updated to new log tail. Updating superblock (either
1344 	 * directly call md_update_sb() or depend on md thread) must hold
1345 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1346 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1347 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1348 	 * thread is calling this function and waitting for reconfig mutex. So
1349 	 * there is a deadlock. We workaround this issue with a trylock.
1350 	 * FIXME: we could miss discard if we can't take reconfig mutex
1351 	 */
1352 	set_mask_bits(&mddev->sb_flags, 0,
1353 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1354 	if (!mddev_trylock(mddev))
1355 		return;
1356 	md_update_sb(mddev, 1);
1357 	mddev_unlock(mddev);
1358 
1359 	/* discard IO error really doesn't matter, ignore it */
1360 	if (log->last_checkpoint < end) {
1361 		blkdev_issue_discard(bdev,
1362 				log->last_checkpoint + log->rdev->data_offset,
1363 				end - log->last_checkpoint, GFP_NOIO, 0);
1364 	} else {
1365 		blkdev_issue_discard(bdev,
1366 				log->last_checkpoint + log->rdev->data_offset,
1367 				log->device_size - log->last_checkpoint,
1368 				GFP_NOIO, 0);
1369 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1370 				GFP_NOIO, 0);
1371 	}
1372 }
1373 
1374 /*
1375  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1376  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1377  *
1378  * must hold conf->device_lock
1379  */
1380 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1381 {
1382 	BUG_ON(list_empty(&sh->lru));
1383 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1384 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1385 
1386 	/*
1387 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1388 	 * raid5_release_stripe() while holding conf->device_lock
1389 	 */
1390 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1391 	lockdep_assert_held(&conf->device_lock);
1392 
1393 	list_del_init(&sh->lru);
1394 	atomic_inc(&sh->count);
1395 
1396 	set_bit(STRIPE_HANDLE, &sh->state);
1397 	atomic_inc(&conf->active_stripes);
1398 	r5c_make_stripe_write_out(sh);
1399 
1400 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1401 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1402 	else
1403 		atomic_inc(&conf->r5c_flushing_full_stripes);
1404 	raid5_release_stripe(sh);
1405 }
1406 
1407 /*
1408  * if num == 0, flush all full stripes
1409  * if num > 0, flush all full stripes. If less than num full stripes are
1410  *             flushed, flush some partial stripes until totally num stripes are
1411  *             flushed or there is no more cached stripes.
1412  */
1413 void r5c_flush_cache(struct r5conf *conf, int num)
1414 {
1415 	int count;
1416 	struct stripe_head *sh, *next;
1417 
1418 	lockdep_assert_held(&conf->device_lock);
1419 	if (!conf->log)
1420 		return;
1421 
1422 	count = 0;
1423 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1424 		r5c_flush_stripe(conf, sh);
1425 		count++;
1426 	}
1427 
1428 	if (count >= num)
1429 		return;
1430 	list_for_each_entry_safe(sh, next,
1431 				 &conf->r5c_partial_stripe_list, lru) {
1432 		r5c_flush_stripe(conf, sh);
1433 		if (++count >= num)
1434 			break;
1435 	}
1436 }
1437 
1438 static void r5c_do_reclaim(struct r5conf *conf)
1439 {
1440 	struct r5l_log *log = conf->log;
1441 	struct stripe_head *sh;
1442 	int count = 0;
1443 	unsigned long flags;
1444 	int total_cached;
1445 	int stripes_to_flush;
1446 	int flushing_partial, flushing_full;
1447 
1448 	if (!r5c_is_writeback(log))
1449 		return;
1450 
1451 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1452 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1453 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1454 		atomic_read(&conf->r5c_cached_full_stripes) -
1455 		flushing_full - flushing_partial;
1456 
1457 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1458 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1459 		/*
1460 		 * if stripe cache pressure high, flush all full stripes and
1461 		 * some partial stripes
1462 		 */
1463 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1464 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1465 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1466 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1467 		/*
1468 		 * if stripe cache pressure moderate, or if there is many full
1469 		 * stripes,flush all full stripes
1470 		 */
1471 		stripes_to_flush = 0;
1472 	else
1473 		/* no need to flush */
1474 		stripes_to_flush = -1;
1475 
1476 	if (stripes_to_flush >= 0) {
1477 		spin_lock_irqsave(&conf->device_lock, flags);
1478 		r5c_flush_cache(conf, stripes_to_flush);
1479 		spin_unlock_irqrestore(&conf->device_lock, flags);
1480 	}
1481 
1482 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1483 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1484 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1485 		spin_lock(&conf->device_lock);
1486 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1487 			/*
1488 			 * stripes on stripe_in_journal_list could be in any
1489 			 * state of the stripe_cache state machine. In this
1490 			 * case, we only want to flush stripe on
1491 			 * r5c_cached_full/partial_stripes. The following
1492 			 * condition makes sure the stripe is on one of the
1493 			 * two lists.
1494 			 */
1495 			if (!list_empty(&sh->lru) &&
1496 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1497 			    atomic_read(&sh->count) == 0) {
1498 				r5c_flush_stripe(conf, sh);
1499 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1500 					break;
1501 			}
1502 		}
1503 		spin_unlock(&conf->device_lock);
1504 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1505 	}
1506 
1507 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1508 		r5l_run_no_space_stripes(log);
1509 
1510 	md_wakeup_thread(conf->mddev->thread);
1511 }
1512 
1513 static void r5l_do_reclaim(struct r5l_log *log)
1514 {
1515 	struct r5conf *conf = log->rdev->mddev->private;
1516 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1517 	sector_t reclaimable;
1518 	sector_t next_checkpoint;
1519 	bool write_super;
1520 
1521 	spin_lock_irq(&log->io_list_lock);
1522 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1523 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1524 	/*
1525 	 * move proper io_unit to reclaim list. We should not change the order.
1526 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1527 	 * shouldn't reuse space of an unreclaimable io_unit
1528 	 */
1529 	while (1) {
1530 		reclaimable = r5l_reclaimable_space(log);
1531 		if (reclaimable >= reclaim_target ||
1532 		    (list_empty(&log->running_ios) &&
1533 		     list_empty(&log->io_end_ios) &&
1534 		     list_empty(&log->flushing_ios) &&
1535 		     list_empty(&log->finished_ios)))
1536 			break;
1537 
1538 		md_wakeup_thread(log->rdev->mddev->thread);
1539 		wait_event_lock_irq(log->iounit_wait,
1540 				    r5l_reclaimable_space(log) > reclaimable,
1541 				    log->io_list_lock);
1542 	}
1543 
1544 	next_checkpoint = r5c_calculate_new_cp(conf);
1545 	spin_unlock_irq(&log->io_list_lock);
1546 
1547 	if (reclaimable == 0 || !write_super)
1548 		return;
1549 
1550 	/*
1551 	 * write_super will flush cache of each raid disk. We must write super
1552 	 * here, because the log area might be reused soon and we don't want to
1553 	 * confuse recovery
1554 	 */
1555 	r5l_write_super_and_discard_space(log, next_checkpoint);
1556 
1557 	mutex_lock(&log->io_mutex);
1558 	log->last_checkpoint = next_checkpoint;
1559 	r5c_update_log_state(log);
1560 	mutex_unlock(&log->io_mutex);
1561 
1562 	r5l_run_no_space_stripes(log);
1563 }
1564 
1565 static void r5l_reclaim_thread(struct md_thread *thread)
1566 {
1567 	struct mddev *mddev = thread->mddev;
1568 	struct r5conf *conf = mddev->private;
1569 	struct r5l_log *log = conf->log;
1570 
1571 	if (!log)
1572 		return;
1573 	r5c_do_reclaim(conf);
1574 	r5l_do_reclaim(log);
1575 }
1576 
1577 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1578 {
1579 	unsigned long target;
1580 	unsigned long new = (unsigned long)space; /* overflow in theory */
1581 
1582 	if (!log)
1583 		return;
1584 	do {
1585 		target = log->reclaim_target;
1586 		if (new < target)
1587 			return;
1588 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1589 	md_wakeup_thread(log->reclaim_thread);
1590 }
1591 
1592 void r5l_quiesce(struct r5l_log *log, int quiesce)
1593 {
1594 	struct mddev *mddev;
1595 	if (!log)
1596 		return;
1597 
1598 	if (quiesce) {
1599 		/* make sure r5l_write_super_and_discard_space exits */
1600 		mddev = log->rdev->mddev;
1601 		wake_up(&mddev->sb_wait);
1602 		kthread_park(log->reclaim_thread->tsk);
1603 		r5l_wake_reclaim(log, MaxSector);
1604 		r5l_do_reclaim(log);
1605 	} else
1606 		kthread_unpark(log->reclaim_thread->tsk);
1607 }
1608 
1609 bool r5l_log_disk_error(struct r5conf *conf)
1610 {
1611 	struct r5l_log *log;
1612 	bool ret;
1613 	/* don't allow write if journal disk is missing */
1614 	rcu_read_lock();
1615 	log = rcu_dereference(conf->log);
1616 
1617 	if (!log)
1618 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1619 	else
1620 		ret = test_bit(Faulty, &log->rdev->flags);
1621 	rcu_read_unlock();
1622 	return ret;
1623 }
1624 
1625 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1626 
1627 struct r5l_recovery_ctx {
1628 	struct page *meta_page;		/* current meta */
1629 	sector_t meta_total_blocks;	/* total size of current meta and data */
1630 	sector_t pos;			/* recovery position */
1631 	u64 seq;			/* recovery position seq */
1632 	int data_parity_stripes;	/* number of data_parity stripes */
1633 	int data_only_stripes;		/* number of data_only stripes */
1634 	struct list_head cached_list;
1635 
1636 	/*
1637 	 * read ahead page pool (ra_pool)
1638 	 * in recovery, log is read sequentially. It is not efficient to
1639 	 * read every page with sync_page_io(). The read ahead page pool
1640 	 * reads multiple pages with one IO, so further log read can
1641 	 * just copy data from the pool.
1642 	 */
1643 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1644 	sector_t pool_offset;	/* offset of first page in the pool */
1645 	int total_pages;	/* total allocated pages */
1646 	int valid_pages;	/* pages with valid data */
1647 	struct bio *ra_bio;	/* bio to do the read ahead */
1648 };
1649 
1650 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1651 					    struct r5l_recovery_ctx *ctx)
1652 {
1653 	struct page *page;
1654 
1655 	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1656 	if (!ctx->ra_bio)
1657 		return -ENOMEM;
1658 
1659 	ctx->valid_pages = 0;
1660 	ctx->total_pages = 0;
1661 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1662 		page = alloc_page(GFP_KERNEL);
1663 
1664 		if (!page)
1665 			break;
1666 		ctx->ra_pool[ctx->total_pages] = page;
1667 		ctx->total_pages += 1;
1668 	}
1669 
1670 	if (ctx->total_pages == 0) {
1671 		bio_put(ctx->ra_bio);
1672 		return -ENOMEM;
1673 	}
1674 
1675 	ctx->pool_offset = 0;
1676 	return 0;
1677 }
1678 
1679 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1680 					struct r5l_recovery_ctx *ctx)
1681 {
1682 	int i;
1683 
1684 	for (i = 0; i < ctx->total_pages; ++i)
1685 		put_page(ctx->ra_pool[i]);
1686 	bio_put(ctx->ra_bio);
1687 }
1688 
1689 /*
1690  * fetch ctx->valid_pages pages from offset
1691  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1692  * However, if the offset is close to the end of the journal device,
1693  * ctx->valid_pages could be smaller than ctx->total_pages
1694  */
1695 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1696 				      struct r5l_recovery_ctx *ctx,
1697 				      sector_t offset)
1698 {
1699 	bio_reset(ctx->ra_bio);
1700 	bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1701 	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1702 	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1703 
1704 	ctx->valid_pages = 0;
1705 	ctx->pool_offset = offset;
1706 
1707 	while (ctx->valid_pages < ctx->total_pages) {
1708 		bio_add_page(ctx->ra_bio,
1709 			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1710 		ctx->valid_pages += 1;
1711 
1712 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1713 
1714 		if (offset == 0)  /* reached end of the device */
1715 			break;
1716 	}
1717 
1718 	return submit_bio_wait(ctx->ra_bio);
1719 }
1720 
1721 /*
1722  * try read a page from the read ahead page pool, if the page is not in the
1723  * pool, call r5l_recovery_fetch_ra_pool
1724  */
1725 static int r5l_recovery_read_page(struct r5l_log *log,
1726 				  struct r5l_recovery_ctx *ctx,
1727 				  struct page *page,
1728 				  sector_t offset)
1729 {
1730 	int ret;
1731 
1732 	if (offset < ctx->pool_offset ||
1733 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1734 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1735 		if (ret)
1736 			return ret;
1737 	}
1738 
1739 	BUG_ON(offset < ctx->pool_offset ||
1740 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1741 
1742 	memcpy(page_address(page),
1743 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1744 					 BLOCK_SECTOR_SHIFT]),
1745 	       PAGE_SIZE);
1746 	return 0;
1747 }
1748 
1749 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1750 					struct r5l_recovery_ctx *ctx)
1751 {
1752 	struct page *page = ctx->meta_page;
1753 	struct r5l_meta_block *mb;
1754 	u32 crc, stored_crc;
1755 	int ret;
1756 
1757 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1758 	if (ret != 0)
1759 		return ret;
1760 
1761 	mb = page_address(page);
1762 	stored_crc = le32_to_cpu(mb->checksum);
1763 	mb->checksum = 0;
1764 
1765 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1766 	    le64_to_cpu(mb->seq) != ctx->seq ||
1767 	    mb->version != R5LOG_VERSION ||
1768 	    le64_to_cpu(mb->position) != ctx->pos)
1769 		return -EINVAL;
1770 
1771 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1772 	if (stored_crc != crc)
1773 		return -EINVAL;
1774 
1775 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1776 		return -EINVAL;
1777 
1778 	ctx->meta_total_blocks = BLOCK_SECTORS;
1779 
1780 	return 0;
1781 }
1782 
1783 static void
1784 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1785 				     struct page *page,
1786 				     sector_t pos, u64 seq)
1787 {
1788 	struct r5l_meta_block *mb;
1789 
1790 	mb = page_address(page);
1791 	clear_page(mb);
1792 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1793 	mb->version = R5LOG_VERSION;
1794 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1795 	mb->seq = cpu_to_le64(seq);
1796 	mb->position = cpu_to_le64(pos);
1797 }
1798 
1799 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1800 					  u64 seq)
1801 {
1802 	struct page *page;
1803 	struct r5l_meta_block *mb;
1804 
1805 	page = alloc_page(GFP_KERNEL);
1806 	if (!page)
1807 		return -ENOMEM;
1808 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1809 	mb = page_address(page);
1810 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1811 					     mb, PAGE_SIZE));
1812 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1813 			  REQ_SYNC | REQ_FUA, false)) {
1814 		__free_page(page);
1815 		return -EIO;
1816 	}
1817 	__free_page(page);
1818 	return 0;
1819 }
1820 
1821 /*
1822  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1823  * to mark valid (potentially not flushed) data in the journal.
1824  *
1825  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1826  * so there should not be any mismatch here.
1827  */
1828 static void r5l_recovery_load_data(struct r5l_log *log,
1829 				   struct stripe_head *sh,
1830 				   struct r5l_recovery_ctx *ctx,
1831 				   struct r5l_payload_data_parity *payload,
1832 				   sector_t log_offset)
1833 {
1834 	struct mddev *mddev = log->rdev->mddev;
1835 	struct r5conf *conf = mddev->private;
1836 	int dd_idx;
1837 
1838 	raid5_compute_sector(conf,
1839 			     le64_to_cpu(payload->location), 0,
1840 			     &dd_idx, sh);
1841 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1842 	sh->dev[dd_idx].log_checksum =
1843 		le32_to_cpu(payload->checksum[0]);
1844 	ctx->meta_total_blocks += BLOCK_SECTORS;
1845 
1846 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1847 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1848 }
1849 
1850 static void r5l_recovery_load_parity(struct r5l_log *log,
1851 				     struct stripe_head *sh,
1852 				     struct r5l_recovery_ctx *ctx,
1853 				     struct r5l_payload_data_parity *payload,
1854 				     sector_t log_offset)
1855 {
1856 	struct mddev *mddev = log->rdev->mddev;
1857 	struct r5conf *conf = mddev->private;
1858 
1859 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1860 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1861 	sh->dev[sh->pd_idx].log_checksum =
1862 		le32_to_cpu(payload->checksum[0]);
1863 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1864 
1865 	if (sh->qd_idx >= 0) {
1866 		r5l_recovery_read_page(
1867 			log, ctx, sh->dev[sh->qd_idx].page,
1868 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1869 		sh->dev[sh->qd_idx].log_checksum =
1870 			le32_to_cpu(payload->checksum[1]);
1871 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1872 	}
1873 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1874 }
1875 
1876 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1877 {
1878 	int i;
1879 
1880 	sh->state = 0;
1881 	sh->log_start = MaxSector;
1882 	for (i = sh->disks; i--; )
1883 		sh->dev[i].flags = 0;
1884 }
1885 
1886 static void
1887 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1888 			       struct stripe_head *sh,
1889 			       struct r5l_recovery_ctx *ctx)
1890 {
1891 	struct md_rdev *rdev, *rrdev;
1892 	int disk_index;
1893 	int data_count = 0;
1894 
1895 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1896 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1897 			continue;
1898 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1899 			continue;
1900 		data_count++;
1901 	}
1902 
1903 	/*
1904 	 * stripes that only have parity must have been flushed
1905 	 * before the crash that we are now recovering from, so
1906 	 * there is nothing more to recovery.
1907 	 */
1908 	if (data_count == 0)
1909 		goto out;
1910 
1911 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1912 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1913 			continue;
1914 
1915 		/* in case device is broken */
1916 		rcu_read_lock();
1917 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1918 		if (rdev) {
1919 			atomic_inc(&rdev->nr_pending);
1920 			rcu_read_unlock();
1921 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1922 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1923 				     false);
1924 			rdev_dec_pending(rdev, rdev->mddev);
1925 			rcu_read_lock();
1926 		}
1927 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1928 		if (rrdev) {
1929 			atomic_inc(&rrdev->nr_pending);
1930 			rcu_read_unlock();
1931 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1932 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1933 				     false);
1934 			rdev_dec_pending(rrdev, rrdev->mddev);
1935 			rcu_read_lock();
1936 		}
1937 		rcu_read_unlock();
1938 	}
1939 	ctx->data_parity_stripes++;
1940 out:
1941 	r5l_recovery_reset_stripe(sh);
1942 }
1943 
1944 static struct stripe_head *
1945 r5c_recovery_alloc_stripe(struct r5conf *conf,
1946 			  sector_t stripe_sect)
1947 {
1948 	struct stripe_head *sh;
1949 
1950 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1951 	if (!sh)
1952 		return NULL;  /* no more stripe available */
1953 
1954 	r5l_recovery_reset_stripe(sh);
1955 
1956 	return sh;
1957 }
1958 
1959 static struct stripe_head *
1960 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1961 {
1962 	struct stripe_head *sh;
1963 
1964 	list_for_each_entry(sh, list, lru)
1965 		if (sh->sector == sect)
1966 			return sh;
1967 	return NULL;
1968 }
1969 
1970 static void
1971 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1972 			  struct r5l_recovery_ctx *ctx)
1973 {
1974 	struct stripe_head *sh, *next;
1975 
1976 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1977 		r5l_recovery_reset_stripe(sh);
1978 		list_del_init(&sh->lru);
1979 		raid5_release_stripe(sh);
1980 	}
1981 }
1982 
1983 static void
1984 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1985 			    struct r5l_recovery_ctx *ctx)
1986 {
1987 	struct stripe_head *sh, *next;
1988 
1989 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1990 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1991 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1992 			list_del_init(&sh->lru);
1993 			raid5_release_stripe(sh);
1994 		}
1995 }
1996 
1997 /* if matches return 0; otherwise return -EINVAL */
1998 static int
1999 r5l_recovery_verify_data_checksum(struct r5l_log *log,
2000 				  struct r5l_recovery_ctx *ctx,
2001 				  struct page *page,
2002 				  sector_t log_offset, __le32 log_checksum)
2003 {
2004 	void *addr;
2005 	u32 checksum;
2006 
2007 	r5l_recovery_read_page(log, ctx, page, log_offset);
2008 	addr = kmap_atomic(page);
2009 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
2010 	kunmap_atomic(addr);
2011 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
2012 }
2013 
2014 /*
2015  * before loading data to stripe cache, we need verify checksum for all data,
2016  * if there is mismatch for any data page, we drop all data in the mata block
2017  */
2018 static int
2019 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2020 					 struct r5l_recovery_ctx *ctx)
2021 {
2022 	struct mddev *mddev = log->rdev->mddev;
2023 	struct r5conf *conf = mddev->private;
2024 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
2025 	sector_t mb_offset = sizeof(struct r5l_meta_block);
2026 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2027 	struct page *page;
2028 	struct r5l_payload_data_parity *payload;
2029 	struct r5l_payload_flush *payload_flush;
2030 
2031 	page = alloc_page(GFP_KERNEL);
2032 	if (!page)
2033 		return -ENOMEM;
2034 
2035 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2036 		payload = (void *)mb + mb_offset;
2037 		payload_flush = (void *)mb + mb_offset;
2038 
2039 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2040 			if (r5l_recovery_verify_data_checksum(
2041 				    log, ctx, page, log_offset,
2042 				    payload->checksum[0]) < 0)
2043 				goto mismatch;
2044 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2045 			if (r5l_recovery_verify_data_checksum(
2046 				    log, ctx, page, log_offset,
2047 				    payload->checksum[0]) < 0)
2048 				goto mismatch;
2049 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2050 			    r5l_recovery_verify_data_checksum(
2051 				    log, ctx, page,
2052 				    r5l_ring_add(log, log_offset,
2053 						 BLOCK_SECTORS),
2054 				    payload->checksum[1]) < 0)
2055 				goto mismatch;
2056 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2057 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2058 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2059 			goto mismatch;
2060 
2061 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2062 			mb_offset += sizeof(struct r5l_payload_flush) +
2063 				le32_to_cpu(payload_flush->size);
2064 		} else {
2065 			/* DATA or PARITY payload */
2066 			log_offset = r5l_ring_add(log, log_offset,
2067 						  le32_to_cpu(payload->size));
2068 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2069 				sizeof(__le32) *
2070 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2071 		}
2072 
2073 	}
2074 
2075 	put_page(page);
2076 	return 0;
2077 
2078 mismatch:
2079 	put_page(page);
2080 	return -EINVAL;
2081 }
2082 
2083 /*
2084  * Analyze all data/parity pages in one meta block
2085  * Returns:
2086  * 0 for success
2087  * -EINVAL for unknown playload type
2088  * -EAGAIN for checksum mismatch of data page
2089  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2090  */
2091 static int
2092 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2093 				struct r5l_recovery_ctx *ctx,
2094 				struct list_head *cached_stripe_list)
2095 {
2096 	struct mddev *mddev = log->rdev->mddev;
2097 	struct r5conf *conf = mddev->private;
2098 	struct r5l_meta_block *mb;
2099 	struct r5l_payload_data_parity *payload;
2100 	struct r5l_payload_flush *payload_flush;
2101 	int mb_offset;
2102 	sector_t log_offset;
2103 	sector_t stripe_sect;
2104 	struct stripe_head *sh;
2105 	int ret;
2106 
2107 	/*
2108 	 * for mismatch in data blocks, we will drop all data in this mb, but
2109 	 * we will still read next mb for other data with FLUSH flag, as
2110 	 * io_unit could finish out of order.
2111 	 */
2112 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2113 	if (ret == -EINVAL)
2114 		return -EAGAIN;
2115 	else if (ret)
2116 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2117 
2118 	mb = page_address(ctx->meta_page);
2119 	mb_offset = sizeof(struct r5l_meta_block);
2120 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2121 
2122 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2123 		int dd;
2124 
2125 		payload = (void *)mb + mb_offset;
2126 		payload_flush = (void *)mb + mb_offset;
2127 
2128 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2129 			int i, count;
2130 
2131 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2132 			for (i = 0; i < count; ++i) {
2133 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2134 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2135 								stripe_sect);
2136 				if (sh) {
2137 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2138 					r5l_recovery_reset_stripe(sh);
2139 					list_del_init(&sh->lru);
2140 					raid5_release_stripe(sh);
2141 				}
2142 			}
2143 
2144 			mb_offset += sizeof(struct r5l_payload_flush) +
2145 				le32_to_cpu(payload_flush->size);
2146 			continue;
2147 		}
2148 
2149 		/* DATA or PARITY payload */
2150 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2151 			raid5_compute_sector(
2152 				conf, le64_to_cpu(payload->location), 0, &dd,
2153 				NULL)
2154 			: le64_to_cpu(payload->location);
2155 
2156 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2157 						stripe_sect);
2158 
2159 		if (!sh) {
2160 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2161 			/*
2162 			 * cannot get stripe from raid5_get_active_stripe
2163 			 * try replay some stripes
2164 			 */
2165 			if (!sh) {
2166 				r5c_recovery_replay_stripes(
2167 					cached_stripe_list, ctx);
2168 				sh = r5c_recovery_alloc_stripe(
2169 					conf, stripe_sect);
2170 			}
2171 			if (!sh) {
2172 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2173 					mdname(mddev),
2174 					conf->min_nr_stripes * 2);
2175 				raid5_set_cache_size(mddev,
2176 						     conf->min_nr_stripes * 2);
2177 				sh = r5c_recovery_alloc_stripe(conf,
2178 							       stripe_sect);
2179 			}
2180 			if (!sh) {
2181 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2182 				       mdname(mddev));
2183 				return -ENOMEM;
2184 			}
2185 			list_add_tail(&sh->lru, cached_stripe_list);
2186 		}
2187 
2188 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2189 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2190 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2191 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2192 				list_move_tail(&sh->lru, cached_stripe_list);
2193 			}
2194 			r5l_recovery_load_data(log, sh, ctx, payload,
2195 					       log_offset);
2196 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2197 			r5l_recovery_load_parity(log, sh, ctx, payload,
2198 						 log_offset);
2199 		else
2200 			return -EINVAL;
2201 
2202 		log_offset = r5l_ring_add(log, log_offset,
2203 					  le32_to_cpu(payload->size));
2204 
2205 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2206 			sizeof(__le32) *
2207 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 /*
2214  * Load the stripe into cache. The stripe will be written out later by
2215  * the stripe cache state machine.
2216  */
2217 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2218 					 struct stripe_head *sh)
2219 {
2220 	struct r5dev *dev;
2221 	int i;
2222 
2223 	for (i = sh->disks; i--; ) {
2224 		dev = sh->dev + i;
2225 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2226 			set_bit(R5_InJournal, &dev->flags);
2227 			set_bit(R5_UPTODATE, &dev->flags);
2228 		}
2229 	}
2230 }
2231 
2232 /*
2233  * Scan through the log for all to-be-flushed data
2234  *
2235  * For stripes with data and parity, namely Data-Parity stripe
2236  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2237  *
2238  * For stripes with only data, namely Data-Only stripe
2239  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2240  *
2241  * For a stripe, if we see data after parity, we should discard all previous
2242  * data and parity for this stripe, as these data are already flushed to
2243  * the array.
2244  *
2245  * At the end of the scan, we return the new journal_tail, which points to
2246  * first data-only stripe on the journal device, or next invalid meta block.
2247  */
2248 static int r5c_recovery_flush_log(struct r5l_log *log,
2249 				  struct r5l_recovery_ctx *ctx)
2250 {
2251 	struct stripe_head *sh;
2252 	int ret = 0;
2253 
2254 	/* scan through the log */
2255 	while (1) {
2256 		if (r5l_recovery_read_meta_block(log, ctx))
2257 			break;
2258 
2259 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2260 						      &ctx->cached_list);
2261 		/*
2262 		 * -EAGAIN means mismatch in data block, in this case, we still
2263 		 * try scan the next metablock
2264 		 */
2265 		if (ret && ret != -EAGAIN)
2266 			break;   /* ret == -EINVAL or -ENOMEM */
2267 		ctx->seq++;
2268 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2269 	}
2270 
2271 	if (ret == -ENOMEM) {
2272 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2273 		return ret;
2274 	}
2275 
2276 	/* replay data-parity stripes */
2277 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2278 
2279 	/* load data-only stripes to stripe cache */
2280 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2281 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2282 		r5c_recovery_load_one_stripe(log, sh);
2283 		ctx->data_only_stripes++;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 /*
2290  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2291  * log will start here. but we can't let superblock point to last valid
2292  * meta block. The log might looks like:
2293  * | meta 1| meta 2| meta 3|
2294  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2295  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2296  * happens again, new recovery will start from meta 1. Since meta 2n is
2297  * valid now, recovery will think meta 3 is valid, which is wrong.
2298  * The solution is we create a new meta in meta2 with its seq == meta
2299  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2300  * will not think meta 3 is a valid meta, because its seq doesn't match
2301  */
2302 
2303 /*
2304  * Before recovery, the log looks like the following
2305  *
2306  *   ---------------------------------------------
2307  *   |           valid log        | invalid log  |
2308  *   ---------------------------------------------
2309  *   ^
2310  *   |- log->last_checkpoint
2311  *   |- log->last_cp_seq
2312  *
2313  * Now we scan through the log until we see invalid entry
2314  *
2315  *   ---------------------------------------------
2316  *   |           valid log        | invalid log  |
2317  *   ---------------------------------------------
2318  *   ^                            ^
2319  *   |- log->last_checkpoint      |- ctx->pos
2320  *   |- log->last_cp_seq          |- ctx->seq
2321  *
2322  * From this point, we need to increase seq number by 10 to avoid
2323  * confusing next recovery.
2324  *
2325  *   ---------------------------------------------
2326  *   |           valid log        | invalid log  |
2327  *   ---------------------------------------------
2328  *   ^                              ^
2329  *   |- log->last_checkpoint        |- ctx->pos+1
2330  *   |- log->last_cp_seq            |- ctx->seq+10001
2331  *
2332  * However, it is not safe to start the state machine yet, because data only
2333  * parities are not yet secured in RAID. To save these data only parities, we
2334  * rewrite them from seq+11.
2335  *
2336  *   -----------------------------------------------------------------
2337  *   |           valid log        | data only stripes | invalid log  |
2338  *   -----------------------------------------------------------------
2339  *   ^                                                ^
2340  *   |- log->last_checkpoint                          |- ctx->pos+n
2341  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2342  *
2343  * If failure happens again during this process, the recovery can safe start
2344  * again from log->last_checkpoint.
2345  *
2346  * Once data only stripes are rewritten to journal, we move log_tail
2347  *
2348  *   -----------------------------------------------------------------
2349  *   |     old log        |    data only stripes    | invalid log  |
2350  *   -----------------------------------------------------------------
2351  *                        ^                         ^
2352  *                        |- log->last_checkpoint   |- ctx->pos+n
2353  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2354  *
2355  * Then we can safely start the state machine. If failure happens from this
2356  * point on, the recovery will start from new log->last_checkpoint.
2357  */
2358 static int
2359 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2360 				       struct r5l_recovery_ctx *ctx)
2361 {
2362 	struct stripe_head *sh;
2363 	struct mddev *mddev = log->rdev->mddev;
2364 	struct page *page;
2365 	sector_t next_checkpoint = MaxSector;
2366 
2367 	page = alloc_page(GFP_KERNEL);
2368 	if (!page) {
2369 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2370 		       mdname(mddev));
2371 		return -ENOMEM;
2372 	}
2373 
2374 	WARN_ON(list_empty(&ctx->cached_list));
2375 
2376 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2377 		struct r5l_meta_block *mb;
2378 		int i;
2379 		int offset;
2380 		sector_t write_pos;
2381 
2382 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2383 		r5l_recovery_create_empty_meta_block(log, page,
2384 						     ctx->pos, ctx->seq);
2385 		mb = page_address(page);
2386 		offset = le32_to_cpu(mb->meta_size);
2387 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2388 
2389 		for (i = sh->disks; i--; ) {
2390 			struct r5dev *dev = &sh->dev[i];
2391 			struct r5l_payload_data_parity *payload;
2392 			void *addr;
2393 
2394 			if (test_bit(R5_InJournal, &dev->flags)) {
2395 				payload = (void *)mb + offset;
2396 				payload->header.type = cpu_to_le16(
2397 					R5LOG_PAYLOAD_DATA);
2398 				payload->size = cpu_to_le32(BLOCK_SECTORS);
2399 				payload->location = cpu_to_le64(
2400 					raid5_compute_blocknr(sh, i, 0));
2401 				addr = kmap_atomic(dev->page);
2402 				payload->checksum[0] = cpu_to_le32(
2403 					crc32c_le(log->uuid_checksum, addr,
2404 						  PAGE_SIZE));
2405 				kunmap_atomic(addr);
2406 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2407 					     dev->page, REQ_OP_WRITE, 0, false);
2408 				write_pos = r5l_ring_add(log, write_pos,
2409 							 BLOCK_SECTORS);
2410 				offset += sizeof(__le32) +
2411 					sizeof(struct r5l_payload_data_parity);
2412 
2413 			}
2414 		}
2415 		mb->meta_size = cpu_to_le32(offset);
2416 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2417 						     mb, PAGE_SIZE));
2418 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2419 			     REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2420 		sh->log_start = ctx->pos;
2421 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2422 		atomic_inc(&log->stripe_in_journal_count);
2423 		ctx->pos = write_pos;
2424 		ctx->seq += 1;
2425 		next_checkpoint = sh->log_start;
2426 	}
2427 	log->next_checkpoint = next_checkpoint;
2428 	__free_page(page);
2429 	return 0;
2430 }
2431 
2432 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2433 						 struct r5l_recovery_ctx *ctx)
2434 {
2435 	struct mddev *mddev = log->rdev->mddev;
2436 	struct r5conf *conf = mddev->private;
2437 	struct stripe_head *sh, *next;
2438 
2439 	if (ctx->data_only_stripes == 0)
2440 		return;
2441 
2442 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2443 
2444 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2445 		r5c_make_stripe_write_out(sh);
2446 		set_bit(STRIPE_HANDLE, &sh->state);
2447 		list_del_init(&sh->lru);
2448 		raid5_release_stripe(sh);
2449 	}
2450 
2451 	md_wakeup_thread(conf->mddev->thread);
2452 	/* reuse conf->wait_for_quiescent in recovery */
2453 	wait_event(conf->wait_for_quiescent,
2454 		   atomic_read(&conf->active_stripes) == 0);
2455 
2456 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2457 }
2458 
2459 static int r5l_recovery_log(struct r5l_log *log)
2460 {
2461 	struct mddev *mddev = log->rdev->mddev;
2462 	struct r5l_recovery_ctx *ctx;
2463 	int ret;
2464 	sector_t pos;
2465 
2466 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2467 	if (!ctx)
2468 		return -ENOMEM;
2469 
2470 	ctx->pos = log->last_checkpoint;
2471 	ctx->seq = log->last_cp_seq;
2472 	INIT_LIST_HEAD(&ctx->cached_list);
2473 	ctx->meta_page = alloc_page(GFP_KERNEL);
2474 
2475 	if (!ctx->meta_page) {
2476 		ret =  -ENOMEM;
2477 		goto meta_page;
2478 	}
2479 
2480 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2481 		ret = -ENOMEM;
2482 		goto ra_pool;
2483 	}
2484 
2485 	ret = r5c_recovery_flush_log(log, ctx);
2486 
2487 	if (ret)
2488 		goto error;
2489 
2490 	pos = ctx->pos;
2491 	ctx->seq += 10000;
2492 
2493 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2494 		pr_debug("md/raid:%s: starting from clean shutdown\n",
2495 			 mdname(mddev));
2496 	else
2497 		pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2498 			 mdname(mddev), ctx->data_only_stripes,
2499 			 ctx->data_parity_stripes);
2500 
2501 	if (ctx->data_only_stripes == 0) {
2502 		log->next_checkpoint = ctx->pos;
2503 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2504 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2505 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2506 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2507 		       mdname(mddev));
2508 		ret =  -EIO;
2509 		goto error;
2510 	}
2511 
2512 	log->log_start = ctx->pos;
2513 	log->seq = ctx->seq;
2514 	log->last_checkpoint = pos;
2515 	r5l_write_super(log, pos);
2516 
2517 	r5c_recovery_flush_data_only_stripes(log, ctx);
2518 	ret = 0;
2519 error:
2520 	r5l_recovery_free_ra_pool(log, ctx);
2521 ra_pool:
2522 	__free_page(ctx->meta_page);
2523 meta_page:
2524 	kfree(ctx);
2525 	return ret;
2526 }
2527 
2528 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2529 {
2530 	struct mddev *mddev = log->rdev->mddev;
2531 
2532 	log->rdev->journal_tail = cp;
2533 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2534 }
2535 
2536 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2537 {
2538 	struct r5conf *conf;
2539 	int ret;
2540 
2541 	ret = mddev_lock(mddev);
2542 	if (ret)
2543 		return ret;
2544 
2545 	conf = mddev->private;
2546 	if (!conf || !conf->log) {
2547 		mddev_unlock(mddev);
2548 		return 0;
2549 	}
2550 
2551 	switch (conf->log->r5c_journal_mode) {
2552 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2553 		ret = snprintf(
2554 			page, PAGE_SIZE, "[%s] %s\n",
2555 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557 		break;
2558 	case R5C_JOURNAL_MODE_WRITE_BACK:
2559 		ret = snprintf(
2560 			page, PAGE_SIZE, "%s [%s]\n",
2561 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2562 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2563 		break;
2564 	default:
2565 		ret = 0;
2566 	}
2567 	mddev_unlock(mddev);
2568 	return ret;
2569 }
2570 
2571 /*
2572  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2573  *
2574  * @mode as defined in 'enum r5c_journal_mode'.
2575  *
2576  */
2577 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2578 {
2579 	struct r5conf *conf;
2580 
2581 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2582 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2583 		return -EINVAL;
2584 
2585 	conf = mddev->private;
2586 	if (!conf || !conf->log)
2587 		return -ENODEV;
2588 
2589 	if (raid5_calc_degraded(conf) > 0 &&
2590 	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2591 		return -EINVAL;
2592 
2593 	mddev_suspend(mddev);
2594 	conf->log->r5c_journal_mode = mode;
2595 	mddev_resume(mddev);
2596 
2597 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2598 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2599 	return 0;
2600 }
2601 EXPORT_SYMBOL(r5c_journal_mode_set);
2602 
2603 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2604 				      const char *page, size_t length)
2605 {
2606 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2607 	size_t len = length;
2608 	int ret;
2609 
2610 	if (len < 2)
2611 		return -EINVAL;
2612 
2613 	if (page[len - 1] == '\n')
2614 		len--;
2615 
2616 	while (mode--)
2617 		if (strlen(r5c_journal_mode_str[mode]) == len &&
2618 		    !strncmp(page, r5c_journal_mode_str[mode], len))
2619 			break;
2620 	ret = mddev_lock(mddev);
2621 	if (ret)
2622 		return ret;
2623 	ret = r5c_journal_mode_set(mddev, mode);
2624 	mddev_unlock(mddev);
2625 	return ret ?: length;
2626 }
2627 
2628 struct md_sysfs_entry
2629 r5c_journal_mode = __ATTR(journal_mode, 0644,
2630 			  r5c_journal_mode_show, r5c_journal_mode_store);
2631 
2632 /*
2633  * Try handle write operation in caching phase. This function should only
2634  * be called in write-back mode.
2635  *
2636  * If all outstanding writes can be handled in caching phase, returns 0
2637  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2638  * and returns -EAGAIN
2639  */
2640 int r5c_try_caching_write(struct r5conf *conf,
2641 			  struct stripe_head *sh,
2642 			  struct stripe_head_state *s,
2643 			  int disks)
2644 {
2645 	struct r5l_log *log = conf->log;
2646 	int i;
2647 	struct r5dev *dev;
2648 	int to_cache = 0;
2649 	void **pslot;
2650 	sector_t tree_index;
2651 	int ret;
2652 	uintptr_t refcount;
2653 
2654 	BUG_ON(!r5c_is_writeback(log));
2655 
2656 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2657 		/*
2658 		 * There are two different scenarios here:
2659 		 *  1. The stripe has some data cached, and it is sent to
2660 		 *     write-out phase for reclaim
2661 		 *  2. The stripe is clean, and this is the first write
2662 		 *
2663 		 * For 1, return -EAGAIN, so we continue with
2664 		 * handle_stripe_dirtying().
2665 		 *
2666 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2667 		 * write.
2668 		 */
2669 
2670 		/* case 1: anything injournal or anything in written */
2671 		if (s->injournal > 0 || s->written > 0)
2672 			return -EAGAIN;
2673 		/* case 2 */
2674 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2675 	}
2676 
2677 	/*
2678 	 * When run in degraded mode, array is set to write-through mode.
2679 	 * This check helps drain pending write safely in the transition to
2680 	 * write-through mode.
2681 	 *
2682 	 * When a stripe is syncing, the write is also handled in write
2683 	 * through mode.
2684 	 */
2685 	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2686 		r5c_make_stripe_write_out(sh);
2687 		return -EAGAIN;
2688 	}
2689 
2690 	for (i = disks; i--; ) {
2691 		dev = &sh->dev[i];
2692 		/* if non-overwrite, use writing-out phase */
2693 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2694 		    !test_bit(R5_InJournal, &dev->flags)) {
2695 			r5c_make_stripe_write_out(sh);
2696 			return -EAGAIN;
2697 		}
2698 	}
2699 
2700 	/* if the stripe is not counted in big_stripe_tree, add it now */
2701 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2702 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2703 		tree_index = r5c_tree_index(conf, sh->sector);
2704 		spin_lock(&log->tree_lock);
2705 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2706 					       tree_index);
2707 		if (pslot) {
2708 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2709 				pslot, &log->tree_lock) >>
2710 				R5C_RADIX_COUNT_SHIFT;
2711 			radix_tree_replace_slot(
2712 				&log->big_stripe_tree, pslot,
2713 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2714 		} else {
2715 			/*
2716 			 * this radix_tree_insert can fail safely, so no
2717 			 * need to call radix_tree_preload()
2718 			 */
2719 			ret = radix_tree_insert(
2720 				&log->big_stripe_tree, tree_index,
2721 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2722 			if (ret) {
2723 				spin_unlock(&log->tree_lock);
2724 				r5c_make_stripe_write_out(sh);
2725 				return -EAGAIN;
2726 			}
2727 		}
2728 		spin_unlock(&log->tree_lock);
2729 
2730 		/*
2731 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2732 		 * counted in the radix tree
2733 		 */
2734 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2735 		atomic_inc(&conf->r5c_cached_partial_stripes);
2736 	}
2737 
2738 	for (i = disks; i--; ) {
2739 		dev = &sh->dev[i];
2740 		if (dev->towrite) {
2741 			set_bit(R5_Wantwrite, &dev->flags);
2742 			set_bit(R5_Wantdrain, &dev->flags);
2743 			set_bit(R5_LOCKED, &dev->flags);
2744 			to_cache++;
2745 		}
2746 	}
2747 
2748 	if (to_cache) {
2749 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2750 		/*
2751 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2752 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2753 		 * r5c_handle_data_cached()
2754 		 */
2755 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 /*
2762  * free extra pages (orig_page) we allocated for prexor
2763  */
2764 void r5c_release_extra_page(struct stripe_head *sh)
2765 {
2766 	struct r5conf *conf = sh->raid_conf;
2767 	int i;
2768 	bool using_disk_info_extra_page;
2769 
2770 	using_disk_info_extra_page =
2771 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2772 
2773 	for (i = sh->disks; i--; )
2774 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2775 			struct page *p = sh->dev[i].orig_page;
2776 
2777 			sh->dev[i].orig_page = sh->dev[i].page;
2778 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2779 
2780 			if (!using_disk_info_extra_page)
2781 				put_page(p);
2782 		}
2783 
2784 	if (using_disk_info_extra_page) {
2785 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2786 		md_wakeup_thread(conf->mddev->thread);
2787 	}
2788 }
2789 
2790 void r5c_use_extra_page(struct stripe_head *sh)
2791 {
2792 	struct r5conf *conf = sh->raid_conf;
2793 	int i;
2794 	struct r5dev *dev;
2795 
2796 	for (i = sh->disks; i--; ) {
2797 		dev = &sh->dev[i];
2798 		if (dev->orig_page != dev->page)
2799 			put_page(dev->orig_page);
2800 		dev->orig_page = conf->disks[i].extra_page;
2801 	}
2802 }
2803 
2804 /*
2805  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2806  * stripe is committed to RAID disks.
2807  */
2808 void r5c_finish_stripe_write_out(struct r5conf *conf,
2809 				 struct stripe_head *sh,
2810 				 struct stripe_head_state *s)
2811 {
2812 	struct r5l_log *log = conf->log;
2813 	int i;
2814 	int do_wakeup = 0;
2815 	sector_t tree_index;
2816 	void **pslot;
2817 	uintptr_t refcount;
2818 
2819 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2820 		return;
2821 
2822 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2823 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2824 
2825 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2826 		return;
2827 
2828 	for (i = sh->disks; i--; ) {
2829 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2830 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2831 			do_wakeup = 1;
2832 	}
2833 
2834 	/*
2835 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2836 	 * We updated R5_InJournal, so we also update s->injournal.
2837 	 */
2838 	s->injournal = 0;
2839 
2840 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2841 		if (atomic_dec_and_test(&conf->pending_full_writes))
2842 			md_wakeup_thread(conf->mddev->thread);
2843 
2844 	if (do_wakeup)
2845 		wake_up(&conf->wait_for_overlap);
2846 
2847 	spin_lock_irq(&log->stripe_in_journal_lock);
2848 	list_del_init(&sh->r5c);
2849 	spin_unlock_irq(&log->stripe_in_journal_lock);
2850 	sh->log_start = MaxSector;
2851 
2852 	atomic_dec(&log->stripe_in_journal_count);
2853 	r5c_update_log_state(log);
2854 
2855 	/* stop counting this stripe in big_stripe_tree */
2856 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2857 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2858 		tree_index = r5c_tree_index(conf, sh->sector);
2859 		spin_lock(&log->tree_lock);
2860 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2861 					       tree_index);
2862 		BUG_ON(pslot == NULL);
2863 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2864 			pslot, &log->tree_lock) >>
2865 			R5C_RADIX_COUNT_SHIFT;
2866 		if (refcount == 1)
2867 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2868 		else
2869 			radix_tree_replace_slot(
2870 				&log->big_stripe_tree, pslot,
2871 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2872 		spin_unlock(&log->tree_lock);
2873 	}
2874 
2875 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2876 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2877 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2878 		atomic_dec(&conf->r5c_cached_partial_stripes);
2879 	}
2880 
2881 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2882 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2883 		atomic_dec(&conf->r5c_flushing_full_stripes);
2884 		atomic_dec(&conf->r5c_cached_full_stripes);
2885 	}
2886 
2887 	r5l_append_flush_payload(log, sh->sector);
2888 	/* stripe is flused to raid disks, we can do resync now */
2889 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2890 		set_bit(STRIPE_HANDLE, &sh->state);
2891 }
2892 
2893 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2894 {
2895 	struct r5conf *conf = sh->raid_conf;
2896 	int pages = 0;
2897 	int reserve;
2898 	int i;
2899 	int ret = 0;
2900 
2901 	BUG_ON(!log);
2902 
2903 	for (i = 0; i < sh->disks; i++) {
2904 		void *addr;
2905 
2906 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2907 			continue;
2908 		addr = kmap_atomic(sh->dev[i].page);
2909 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2910 						    addr, PAGE_SIZE);
2911 		kunmap_atomic(addr);
2912 		pages++;
2913 	}
2914 	WARN_ON(pages == 0);
2915 
2916 	/*
2917 	 * The stripe must enter state machine again to call endio, so
2918 	 * don't delay.
2919 	 */
2920 	clear_bit(STRIPE_DELAYED, &sh->state);
2921 	atomic_inc(&sh->count);
2922 
2923 	mutex_lock(&log->io_mutex);
2924 	/* meta + data */
2925 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2926 
2927 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2928 	    sh->log_start == MaxSector)
2929 		r5l_add_no_space_stripe(log, sh);
2930 	else if (!r5l_has_free_space(log, reserve)) {
2931 		if (sh->log_start == log->last_checkpoint)
2932 			BUG();
2933 		else
2934 			r5l_add_no_space_stripe(log, sh);
2935 	} else {
2936 		ret = r5l_log_stripe(log, sh, pages, 0);
2937 		if (ret) {
2938 			spin_lock_irq(&log->io_list_lock);
2939 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2940 			spin_unlock_irq(&log->io_list_lock);
2941 		}
2942 	}
2943 
2944 	mutex_unlock(&log->io_mutex);
2945 	return 0;
2946 }
2947 
2948 /* check whether this big stripe is in write back cache. */
2949 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2950 {
2951 	struct r5l_log *log = conf->log;
2952 	sector_t tree_index;
2953 	void *slot;
2954 
2955 	if (!log)
2956 		return false;
2957 
2958 	WARN_ON_ONCE(!rcu_read_lock_held());
2959 	tree_index = r5c_tree_index(conf, sect);
2960 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2961 	return slot != NULL;
2962 }
2963 
2964 static int r5l_load_log(struct r5l_log *log)
2965 {
2966 	struct md_rdev *rdev = log->rdev;
2967 	struct page *page;
2968 	struct r5l_meta_block *mb;
2969 	sector_t cp = log->rdev->journal_tail;
2970 	u32 stored_crc, expected_crc;
2971 	bool create_super = false;
2972 	int ret = 0;
2973 
2974 	/* Make sure it's valid */
2975 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2976 		cp = 0;
2977 	page = alloc_page(GFP_KERNEL);
2978 	if (!page)
2979 		return -ENOMEM;
2980 
2981 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2982 		ret = -EIO;
2983 		goto ioerr;
2984 	}
2985 	mb = page_address(page);
2986 
2987 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2988 	    mb->version != R5LOG_VERSION) {
2989 		create_super = true;
2990 		goto create;
2991 	}
2992 	stored_crc = le32_to_cpu(mb->checksum);
2993 	mb->checksum = 0;
2994 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2995 	if (stored_crc != expected_crc) {
2996 		create_super = true;
2997 		goto create;
2998 	}
2999 	if (le64_to_cpu(mb->position) != cp) {
3000 		create_super = true;
3001 		goto create;
3002 	}
3003 create:
3004 	if (create_super) {
3005 		log->last_cp_seq = prandom_u32();
3006 		cp = 0;
3007 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3008 		/*
3009 		 * Make sure super points to correct address. Log might have
3010 		 * data very soon. If super hasn't correct log tail address,
3011 		 * recovery can't find the log
3012 		 */
3013 		r5l_write_super(log, cp);
3014 	} else
3015 		log->last_cp_seq = le64_to_cpu(mb->seq);
3016 
3017 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3018 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3019 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3020 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3021 	log->last_checkpoint = cp;
3022 
3023 	__free_page(page);
3024 
3025 	if (create_super) {
3026 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3027 		log->seq = log->last_cp_seq + 1;
3028 		log->next_checkpoint = cp;
3029 	} else
3030 		ret = r5l_recovery_log(log);
3031 
3032 	r5c_update_log_state(log);
3033 	return ret;
3034 ioerr:
3035 	__free_page(page);
3036 	return ret;
3037 }
3038 
3039 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3040 {
3041 	struct r5conf *conf = mddev->private;
3042 	struct r5l_log *log = conf->log;
3043 
3044 	if (!log)
3045 		return;
3046 
3047 	if ((raid5_calc_degraded(conf) > 0 ||
3048 	     test_bit(Journal, &rdev->flags)) &&
3049 	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3050 		schedule_work(&log->disable_writeback_work);
3051 }
3052 
3053 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3054 {
3055 	struct request_queue *q = bdev_get_queue(rdev->bdev);
3056 	struct r5l_log *log;
3057 	char b[BDEVNAME_SIZE];
3058 
3059 	pr_debug("md/raid:%s: using device %s as journal\n",
3060 		 mdname(conf->mddev), bdevname(rdev->bdev, b));
3061 
3062 	if (PAGE_SIZE != 4096)
3063 		return -EINVAL;
3064 
3065 	/*
3066 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3067 	 * raid_disks r5l_payload_data_parity.
3068 	 *
3069 	 * Write journal and cache does not work for very big array
3070 	 * (raid_disks > 203)
3071 	 */
3072 	if (sizeof(struct r5l_meta_block) +
3073 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3074 	     conf->raid_disks) > PAGE_SIZE) {
3075 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3076 		       mdname(conf->mddev), conf->raid_disks);
3077 		return -EINVAL;
3078 	}
3079 
3080 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3081 	if (!log)
3082 		return -ENOMEM;
3083 	log->rdev = rdev;
3084 
3085 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3086 
3087 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3088 				       sizeof(rdev->mddev->uuid));
3089 
3090 	mutex_init(&log->io_mutex);
3091 
3092 	spin_lock_init(&log->io_list_lock);
3093 	INIT_LIST_HEAD(&log->running_ios);
3094 	INIT_LIST_HEAD(&log->io_end_ios);
3095 	INIT_LIST_HEAD(&log->flushing_ios);
3096 	INIT_LIST_HEAD(&log->finished_ios);
3097 	bio_init(&log->flush_bio, NULL, 0);
3098 
3099 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3100 	if (!log->io_kc)
3101 		goto io_kc;
3102 
3103 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3104 	if (!log->io_pool)
3105 		goto io_pool;
3106 
3107 	log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3108 	if (!log->bs)
3109 		goto io_bs;
3110 
3111 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3112 	if (!log->meta_pool)
3113 		goto out_mempool;
3114 
3115 	spin_lock_init(&log->tree_lock);
3116 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3117 
3118 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3119 						 log->rdev->mddev, "reclaim");
3120 	if (!log->reclaim_thread)
3121 		goto reclaim_thread;
3122 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3123 
3124 	init_waitqueue_head(&log->iounit_wait);
3125 
3126 	INIT_LIST_HEAD(&log->no_mem_stripes);
3127 
3128 	INIT_LIST_HEAD(&log->no_space_stripes);
3129 	spin_lock_init(&log->no_space_stripes_lock);
3130 
3131 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3132 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3133 
3134 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3135 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3136 	spin_lock_init(&log->stripe_in_journal_lock);
3137 	atomic_set(&log->stripe_in_journal_count, 0);
3138 
3139 	rcu_assign_pointer(conf->log, log);
3140 
3141 	if (r5l_load_log(log))
3142 		goto error;
3143 
3144 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3145 	return 0;
3146 
3147 error:
3148 	rcu_assign_pointer(conf->log, NULL);
3149 	md_unregister_thread(&log->reclaim_thread);
3150 reclaim_thread:
3151 	mempool_destroy(log->meta_pool);
3152 out_mempool:
3153 	bioset_free(log->bs);
3154 io_bs:
3155 	mempool_destroy(log->io_pool);
3156 io_pool:
3157 	kmem_cache_destroy(log->io_kc);
3158 io_kc:
3159 	kfree(log);
3160 	return -EINVAL;
3161 }
3162 
3163 void r5l_exit_log(struct r5conf *conf)
3164 {
3165 	struct r5l_log *log = conf->log;
3166 
3167 	conf->log = NULL;
3168 	synchronize_rcu();
3169 
3170 	/* Ensure disable_writeback_work wakes up and exits */
3171 	wake_up(&conf->mddev->sb_wait);
3172 	flush_work(&log->disable_writeback_work);
3173 	md_unregister_thread(&log->reclaim_thread);
3174 	mempool_destroy(log->meta_pool);
3175 	bioset_free(log->bs);
3176 	mempool_destroy(log->io_pool);
3177 	kmem_cache_destroy(log->io_kc);
3178 	kfree(log);
3179 }
3180