1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 5 */ 6 #include <linux/kernel.h> 7 #include <linux/wait.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/raid/md_p.h> 11 #include <linux/crc32c.h> 12 #include <linux/random.h> 13 #include <linux/kthread.h> 14 #include <linux/types.h> 15 #include "md.h" 16 #include "raid5.h" 17 #include "md-bitmap.h" 18 #include "raid5-log.h" 19 20 /* 21 * metadata/data stored in disk with 4k size unit (a block) regardless 22 * underneath hardware sector size. only works with PAGE_SIZE == 4096 23 */ 24 #define BLOCK_SECTORS (8) 25 #define BLOCK_SECTOR_SHIFT (3) 26 27 /* 28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 29 * 30 * In write through mode, the reclaim runs every log->max_free_space. 31 * This can prevent the recovery scans for too long 32 */ 33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 35 36 /* wake up reclaim thread periodically */ 37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 38 /* start flush with these full stripes */ 39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 40 /* reclaim stripes in groups */ 41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 42 43 /* 44 * We only need 2 bios per I/O unit to make progress, but ensure we 45 * have a few more available to not get too tight. 46 */ 47 #define R5L_POOL_SIZE 4 48 49 static char *r5c_journal_mode_str[] = {"write-through", 50 "write-back"}; 51 /* 52 * raid5 cache state machine 53 * 54 * With the RAID cache, each stripe works in two phases: 55 * - caching phase 56 * - writing-out phase 57 * 58 * These two phases are controlled by bit STRIPE_R5C_CACHING: 59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 61 * 62 * When there is no journal, or the journal is in write-through mode, 63 * the stripe is always in writing-out phase. 64 * 65 * For write-back journal, the stripe is sent to caching phase on write 66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 67 * the write-out phase by clearing STRIPE_R5C_CACHING. 68 * 69 * Stripes in caching phase do not write the raid disks. Instead, all 70 * writes are committed from the log device. Therefore, a stripe in 71 * caching phase handles writes as: 72 * - write to log device 73 * - return IO 74 * 75 * Stripes in writing-out phase handle writes as: 76 * - calculate parity 77 * - write pending data and parity to journal 78 * - write data and parity to raid disks 79 * - return IO for pending writes 80 */ 81 82 struct r5l_log { 83 struct md_rdev *rdev; 84 85 u32 uuid_checksum; 86 87 sector_t device_size; /* log device size, round to 88 * BLOCK_SECTORS */ 89 sector_t max_free_space; /* reclaim run if free space is at 90 * this size */ 91 92 sector_t last_checkpoint; /* log tail. where recovery scan 93 * starts from */ 94 u64 last_cp_seq; /* log tail sequence */ 95 96 sector_t log_start; /* log head. where new data appends */ 97 u64 seq; /* log head sequence */ 98 99 sector_t next_checkpoint; 100 101 struct mutex io_mutex; 102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 103 104 spinlock_t io_list_lock; 105 struct list_head running_ios; /* io_units which are still running, 106 * and have not yet been completely 107 * written to the log */ 108 struct list_head io_end_ios; /* io_units which have been completely 109 * written to the log but not yet written 110 * to the RAID */ 111 struct list_head flushing_ios; /* io_units which are waiting for log 112 * cache flush */ 113 struct list_head finished_ios; /* io_units which settle down in log disk */ 114 struct bio flush_bio; 115 116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 117 118 struct kmem_cache *io_kc; 119 mempool_t io_pool; 120 struct bio_set bs; 121 mempool_t meta_pool; 122 123 struct md_thread *reclaim_thread; 124 unsigned long reclaim_target; /* number of space that need to be 125 * reclaimed. if it's 0, reclaim spaces 126 * used by io_units which are in 127 * IO_UNIT_STRIPE_END state (eg, reclaim 128 * dones't wait for specific io_unit 129 * switching to IO_UNIT_STRIPE_END 130 * state) */ 131 wait_queue_head_t iounit_wait; 132 133 struct list_head no_space_stripes; /* pending stripes, log has no space */ 134 spinlock_t no_space_stripes_lock; 135 136 bool need_cache_flush; 137 138 /* for r5c_cache */ 139 enum r5c_journal_mode r5c_journal_mode; 140 141 /* all stripes in r5cache, in the order of seq at sh->log_start */ 142 struct list_head stripe_in_journal_list; 143 144 spinlock_t stripe_in_journal_lock; 145 atomic_t stripe_in_journal_count; 146 147 /* to submit async io_units, to fulfill ordering of flush */ 148 struct work_struct deferred_io_work; 149 /* to disable write back during in degraded mode */ 150 struct work_struct disable_writeback_work; 151 152 /* to for chunk_aligned_read in writeback mode, details below */ 153 spinlock_t tree_lock; 154 struct radix_tree_root big_stripe_tree; 155 }; 156 157 /* 158 * Enable chunk_aligned_read() with write back cache. 159 * 160 * Each chunk may contain more than one stripe (for example, a 256kB 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 163 * For each big_stripe, we count how many stripes of this big_stripe 164 * are in the write back cache. These data are tracked in a radix tree 165 * (big_stripe_tree). We use radix_tree item pointer as the counter. 166 * r5c_tree_index() is used to calculate keys for the radix tree. 167 * 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 169 * big_stripe of each chunk in the tree. If this big_stripe is in the 170 * tree, chunk_aligned_read() aborts. This look up is protected by 171 * rcu_read_lock(). 172 * 173 * It is necessary to remember whether a stripe is counted in 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 176 * two flags are set, the stripe is counted in big_stripe_tree. This 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 178 * r5c_try_caching_write(); and moving clear_bit of 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 180 * r5c_finish_stripe_write_out(). 181 */ 182 183 /* 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 185 * So it is necessary to left shift the counter by 2 bits before using it 186 * as data pointer of the tree. 187 */ 188 #define R5C_RADIX_COUNT_SHIFT 2 189 190 /* 191 * calculate key for big_stripe_tree 192 * 193 * sect: align_bi->bi_iter.bi_sector or sh->sector 194 */ 195 static inline sector_t r5c_tree_index(struct r5conf *conf, 196 sector_t sect) 197 { 198 sector_t offset; 199 200 offset = sector_div(sect, conf->chunk_sectors); 201 return sect; 202 } 203 204 /* 205 * an IO range starts from a meta data block and end at the next meta data 206 * block. The io unit's the meta data block tracks data/parity followed it. io 207 * unit is written to log disk with normal write, as we always flush log disk 208 * first and then start move data to raid disks, there is no requirement to 209 * write io unit with FLUSH/FUA 210 */ 211 struct r5l_io_unit { 212 struct r5l_log *log; 213 214 struct page *meta_page; /* store meta block */ 215 int meta_offset; /* current offset in meta_page */ 216 217 struct bio *current_bio;/* current_bio accepting new data */ 218 219 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 220 u64 seq; /* seq number of the metablock */ 221 sector_t log_start; /* where the io_unit starts */ 222 sector_t log_end; /* where the io_unit ends */ 223 struct list_head log_sibling; /* log->running_ios */ 224 struct list_head stripe_list; /* stripes added to the io_unit */ 225 226 int state; 227 bool need_split_bio; 228 struct bio *split_bio; 229 230 unsigned int has_flush:1; /* include flush request */ 231 unsigned int has_fua:1; /* include fua request */ 232 unsigned int has_null_flush:1; /* include null flush request */ 233 unsigned int has_flush_payload:1; /* include flush payload */ 234 /* 235 * io isn't sent yet, flush/fua request can only be submitted till it's 236 * the first IO in running_ios list 237 */ 238 unsigned int io_deferred:1; 239 240 struct bio_list flush_barriers; /* size == 0 flush bios */ 241 }; 242 243 /* r5l_io_unit state */ 244 enum r5l_io_unit_state { 245 IO_UNIT_RUNNING = 0, /* accepting new IO */ 246 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 247 * don't accepting new bio */ 248 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 249 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 250 }; 251 252 bool r5c_is_writeback(struct r5l_log *log) 253 { 254 return (log != NULL && 255 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 256 } 257 258 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 259 { 260 start += inc; 261 if (start >= log->device_size) 262 start = start - log->device_size; 263 return start; 264 } 265 266 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 267 sector_t end) 268 { 269 if (end >= start) 270 return end - start; 271 else 272 return end + log->device_size - start; 273 } 274 275 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 276 { 277 sector_t used_size; 278 279 used_size = r5l_ring_distance(log, log->last_checkpoint, 280 log->log_start); 281 282 return log->device_size > used_size + size; 283 } 284 285 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 286 enum r5l_io_unit_state state) 287 { 288 if (WARN_ON(io->state >= state)) 289 return; 290 io->state = state; 291 } 292 293 static void 294 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 295 { 296 struct bio *wbi, *wbi2; 297 298 wbi = dev->written; 299 dev->written = NULL; 300 while (wbi && wbi->bi_iter.bi_sector < 301 dev->sector + STRIPE_SECTORS) { 302 wbi2 = r5_next_bio(wbi, dev->sector); 303 md_write_end(conf->mddev); 304 bio_endio(wbi); 305 wbi = wbi2; 306 } 307 } 308 309 void r5c_handle_cached_data_endio(struct r5conf *conf, 310 struct stripe_head *sh, int disks) 311 { 312 int i; 313 314 for (i = sh->disks; i--; ) { 315 if (sh->dev[i].written) { 316 set_bit(R5_UPTODATE, &sh->dev[i].flags); 317 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 318 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 319 STRIPE_SECTORS, 320 !test_bit(STRIPE_DEGRADED, &sh->state), 321 0); 322 } 323 } 324 } 325 326 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 327 328 /* Check whether we should flush some stripes to free up stripe cache */ 329 void r5c_check_stripe_cache_usage(struct r5conf *conf) 330 { 331 int total_cached; 332 333 if (!r5c_is_writeback(conf->log)) 334 return; 335 336 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 337 atomic_read(&conf->r5c_cached_full_stripes); 338 339 /* 340 * The following condition is true for either of the following: 341 * - stripe cache pressure high: 342 * total_cached > 3/4 min_nr_stripes || 343 * empty_inactive_list_nr > 0 344 * - stripe cache pressure moderate: 345 * total_cached > 1/2 min_nr_stripes 346 */ 347 if (total_cached > conf->min_nr_stripes * 1 / 2 || 348 atomic_read(&conf->empty_inactive_list_nr) > 0) 349 r5l_wake_reclaim(conf->log, 0); 350 } 351 352 /* 353 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 354 * stripes in the cache 355 */ 356 void r5c_check_cached_full_stripe(struct r5conf *conf) 357 { 358 if (!r5c_is_writeback(conf->log)) 359 return; 360 361 /* 362 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 363 * or a full stripe (chunk size / 4k stripes). 364 */ 365 if (atomic_read(&conf->r5c_cached_full_stripes) >= 366 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 367 conf->chunk_sectors >> STRIPE_SHIFT)) 368 r5l_wake_reclaim(conf->log, 0); 369 } 370 371 /* 372 * Total log space (in sectors) needed to flush all data in cache 373 * 374 * To avoid deadlock due to log space, it is necessary to reserve log 375 * space to flush critical stripes (stripes that occupying log space near 376 * last_checkpoint). This function helps check how much log space is 377 * required to flush all cached stripes. 378 * 379 * To reduce log space requirements, two mechanisms are used to give cache 380 * flush higher priorities: 381 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 382 * stripes ALREADY in journal can be flushed w/o pending writes; 383 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 384 * can be delayed (r5l_add_no_space_stripe). 385 * 386 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 387 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 388 * pages of journal space. For stripes that has not passed 1, flushing it 389 * requires (conf->raid_disks + 1) pages of journal space. There are at 390 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 391 * required to flush all cached stripes (in pages) is: 392 * 393 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 394 * (group_cnt + 1) * (raid_disks + 1) 395 * or 396 * (stripe_in_journal_count) * (max_degraded + 1) + 397 * (group_cnt + 1) * (raid_disks - max_degraded) 398 */ 399 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 400 { 401 struct r5l_log *log = conf->log; 402 403 if (!r5c_is_writeback(log)) 404 return 0; 405 406 return BLOCK_SECTORS * 407 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 408 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 409 } 410 411 /* 412 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 413 * 414 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 415 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 416 * device is less than 2x of reclaim_required_space. 417 */ 418 static inline void r5c_update_log_state(struct r5l_log *log) 419 { 420 struct r5conf *conf = log->rdev->mddev->private; 421 sector_t free_space; 422 sector_t reclaim_space; 423 bool wake_reclaim = false; 424 425 if (!r5c_is_writeback(log)) 426 return; 427 428 free_space = r5l_ring_distance(log, log->log_start, 429 log->last_checkpoint); 430 reclaim_space = r5c_log_required_to_flush_cache(conf); 431 if (free_space < 2 * reclaim_space) 432 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 433 else { 434 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 435 wake_reclaim = true; 436 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 437 } 438 if (free_space < 3 * reclaim_space) 439 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 440 else 441 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 442 443 if (wake_reclaim) 444 r5l_wake_reclaim(log, 0); 445 } 446 447 /* 448 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 449 * This function should only be called in write-back mode. 450 */ 451 void r5c_make_stripe_write_out(struct stripe_head *sh) 452 { 453 struct r5conf *conf = sh->raid_conf; 454 struct r5l_log *log = conf->log; 455 456 BUG_ON(!r5c_is_writeback(log)); 457 458 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 459 clear_bit(STRIPE_R5C_CACHING, &sh->state); 460 461 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 462 atomic_inc(&conf->preread_active_stripes); 463 } 464 465 static void r5c_handle_data_cached(struct stripe_head *sh) 466 { 467 int i; 468 469 for (i = sh->disks; i--; ) 470 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 471 set_bit(R5_InJournal, &sh->dev[i].flags); 472 clear_bit(R5_LOCKED, &sh->dev[i].flags); 473 } 474 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 475 } 476 477 /* 478 * this journal write must contain full parity, 479 * it may also contain some data pages 480 */ 481 static void r5c_handle_parity_cached(struct stripe_head *sh) 482 { 483 int i; 484 485 for (i = sh->disks; i--; ) 486 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 487 set_bit(R5_Wantwrite, &sh->dev[i].flags); 488 } 489 490 /* 491 * Setting proper flags after writing (or flushing) data and/or parity to the 492 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 493 */ 494 static void r5c_finish_cache_stripe(struct stripe_head *sh) 495 { 496 struct r5l_log *log = sh->raid_conf->log; 497 498 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 499 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 500 /* 501 * Set R5_InJournal for parity dev[pd_idx]. This means 502 * all data AND parity in the journal. For RAID 6, it is 503 * NOT necessary to set the flag for dev[qd_idx], as the 504 * two parities are written out together. 505 */ 506 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 507 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 508 r5c_handle_data_cached(sh); 509 } else { 510 r5c_handle_parity_cached(sh); 511 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 512 } 513 } 514 515 static void r5l_io_run_stripes(struct r5l_io_unit *io) 516 { 517 struct stripe_head *sh, *next; 518 519 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 520 list_del_init(&sh->log_list); 521 522 r5c_finish_cache_stripe(sh); 523 524 set_bit(STRIPE_HANDLE, &sh->state); 525 raid5_release_stripe(sh); 526 } 527 } 528 529 static void r5l_log_run_stripes(struct r5l_log *log) 530 { 531 struct r5l_io_unit *io, *next; 532 533 lockdep_assert_held(&log->io_list_lock); 534 535 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 536 /* don't change list order */ 537 if (io->state < IO_UNIT_IO_END) 538 break; 539 540 list_move_tail(&io->log_sibling, &log->finished_ios); 541 r5l_io_run_stripes(io); 542 } 543 } 544 545 static void r5l_move_to_end_ios(struct r5l_log *log) 546 { 547 struct r5l_io_unit *io, *next; 548 549 lockdep_assert_held(&log->io_list_lock); 550 551 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 552 /* don't change list order */ 553 if (io->state < IO_UNIT_IO_END) 554 break; 555 list_move_tail(&io->log_sibling, &log->io_end_ios); 556 } 557 } 558 559 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 560 static void r5l_log_endio(struct bio *bio) 561 { 562 struct r5l_io_unit *io = bio->bi_private; 563 struct r5l_io_unit *io_deferred; 564 struct r5l_log *log = io->log; 565 unsigned long flags; 566 bool has_null_flush; 567 bool has_flush_payload; 568 569 if (bio->bi_status) 570 md_error(log->rdev->mddev, log->rdev); 571 572 bio_put(bio); 573 mempool_free(io->meta_page, &log->meta_pool); 574 575 spin_lock_irqsave(&log->io_list_lock, flags); 576 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 577 578 /* 579 * if the io doesn't not have null_flush or flush payload, 580 * it is not safe to access it after releasing io_list_lock. 581 * Therefore, it is necessary to check the condition with 582 * the lock held. 583 */ 584 has_null_flush = io->has_null_flush; 585 has_flush_payload = io->has_flush_payload; 586 587 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 588 r5l_move_to_end_ios(log); 589 else 590 r5l_log_run_stripes(log); 591 if (!list_empty(&log->running_ios)) { 592 /* 593 * FLUSH/FUA io_unit is deferred because of ordering, now we 594 * can dispatch it 595 */ 596 io_deferred = list_first_entry(&log->running_ios, 597 struct r5l_io_unit, log_sibling); 598 if (io_deferred->io_deferred) 599 schedule_work(&log->deferred_io_work); 600 } 601 602 spin_unlock_irqrestore(&log->io_list_lock, flags); 603 604 if (log->need_cache_flush) 605 md_wakeup_thread(log->rdev->mddev->thread); 606 607 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 608 if (has_null_flush) { 609 struct bio *bi; 610 611 WARN_ON(bio_list_empty(&io->flush_barriers)); 612 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 613 bio_endio(bi); 614 if (atomic_dec_and_test(&io->pending_stripe)) { 615 __r5l_stripe_write_finished(io); 616 return; 617 } 618 } 619 } 620 /* decrease pending_stripe for flush payload */ 621 if (has_flush_payload) 622 if (atomic_dec_and_test(&io->pending_stripe)) 623 __r5l_stripe_write_finished(io); 624 } 625 626 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 627 { 628 unsigned long flags; 629 630 spin_lock_irqsave(&log->io_list_lock, flags); 631 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 632 spin_unlock_irqrestore(&log->io_list_lock, flags); 633 634 /* 635 * In case of journal device failures, submit_bio will get error 636 * and calls endio, then active stripes will continue write 637 * process. Therefore, it is not necessary to check Faulty bit 638 * of journal device here. 639 * 640 * We can't check split_bio after current_bio is submitted. If 641 * io->split_bio is null, after current_bio is submitted, current_bio 642 * might already be completed and the io_unit is freed. We submit 643 * split_bio first to avoid the issue. 644 */ 645 if (io->split_bio) { 646 if (io->has_flush) 647 io->split_bio->bi_opf |= REQ_PREFLUSH; 648 if (io->has_fua) 649 io->split_bio->bi_opf |= REQ_FUA; 650 submit_bio(io->split_bio); 651 } 652 653 if (io->has_flush) 654 io->current_bio->bi_opf |= REQ_PREFLUSH; 655 if (io->has_fua) 656 io->current_bio->bi_opf |= REQ_FUA; 657 submit_bio(io->current_bio); 658 } 659 660 /* deferred io_unit will be dispatched here */ 661 static void r5l_submit_io_async(struct work_struct *work) 662 { 663 struct r5l_log *log = container_of(work, struct r5l_log, 664 deferred_io_work); 665 struct r5l_io_unit *io = NULL; 666 unsigned long flags; 667 668 spin_lock_irqsave(&log->io_list_lock, flags); 669 if (!list_empty(&log->running_ios)) { 670 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 671 log_sibling); 672 if (!io->io_deferred) 673 io = NULL; 674 else 675 io->io_deferred = 0; 676 } 677 spin_unlock_irqrestore(&log->io_list_lock, flags); 678 if (io) 679 r5l_do_submit_io(log, io); 680 } 681 682 static void r5c_disable_writeback_async(struct work_struct *work) 683 { 684 struct r5l_log *log = container_of(work, struct r5l_log, 685 disable_writeback_work); 686 struct mddev *mddev = log->rdev->mddev; 687 struct r5conf *conf = mddev->private; 688 int locked = 0; 689 690 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 691 return; 692 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 693 mdname(mddev)); 694 695 /* wait superblock change before suspend */ 696 wait_event(mddev->sb_wait, 697 conf->log == NULL || 698 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && 699 (locked = mddev_trylock(mddev)))); 700 if (locked) { 701 mddev_suspend(mddev); 702 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 703 mddev_resume(mddev); 704 mddev_unlock(mddev); 705 } 706 } 707 708 static void r5l_submit_current_io(struct r5l_log *log) 709 { 710 struct r5l_io_unit *io = log->current_io; 711 struct r5l_meta_block *block; 712 unsigned long flags; 713 u32 crc; 714 bool do_submit = true; 715 716 if (!io) 717 return; 718 719 block = page_address(io->meta_page); 720 block->meta_size = cpu_to_le32(io->meta_offset); 721 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 722 block->checksum = cpu_to_le32(crc); 723 724 log->current_io = NULL; 725 spin_lock_irqsave(&log->io_list_lock, flags); 726 if (io->has_flush || io->has_fua) { 727 if (io != list_first_entry(&log->running_ios, 728 struct r5l_io_unit, log_sibling)) { 729 io->io_deferred = 1; 730 do_submit = false; 731 } 732 } 733 spin_unlock_irqrestore(&log->io_list_lock, flags); 734 if (do_submit) 735 r5l_do_submit_io(log, io); 736 } 737 738 static struct bio *r5l_bio_alloc(struct r5l_log *log) 739 { 740 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs); 741 742 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 743 bio_set_dev(bio, log->rdev->bdev); 744 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 745 746 return bio; 747 } 748 749 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 750 { 751 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 752 753 r5c_update_log_state(log); 754 /* 755 * If we filled up the log device start from the beginning again, 756 * which will require a new bio. 757 * 758 * Note: for this to work properly the log size needs to me a multiple 759 * of BLOCK_SECTORS. 760 */ 761 if (log->log_start == 0) 762 io->need_split_bio = true; 763 764 io->log_end = log->log_start; 765 } 766 767 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 768 { 769 struct r5l_io_unit *io; 770 struct r5l_meta_block *block; 771 772 io = mempool_alloc(&log->io_pool, GFP_ATOMIC); 773 if (!io) 774 return NULL; 775 memset(io, 0, sizeof(*io)); 776 777 io->log = log; 778 INIT_LIST_HEAD(&io->log_sibling); 779 INIT_LIST_HEAD(&io->stripe_list); 780 bio_list_init(&io->flush_barriers); 781 io->state = IO_UNIT_RUNNING; 782 783 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); 784 block = page_address(io->meta_page); 785 clear_page(block); 786 block->magic = cpu_to_le32(R5LOG_MAGIC); 787 block->version = R5LOG_VERSION; 788 block->seq = cpu_to_le64(log->seq); 789 block->position = cpu_to_le64(log->log_start); 790 791 io->log_start = log->log_start; 792 io->meta_offset = sizeof(struct r5l_meta_block); 793 io->seq = log->seq++; 794 795 io->current_bio = r5l_bio_alloc(log); 796 io->current_bio->bi_end_io = r5l_log_endio; 797 io->current_bio->bi_private = io; 798 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 799 800 r5_reserve_log_entry(log, io); 801 802 spin_lock_irq(&log->io_list_lock); 803 list_add_tail(&io->log_sibling, &log->running_ios); 804 spin_unlock_irq(&log->io_list_lock); 805 806 return io; 807 } 808 809 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 810 { 811 if (log->current_io && 812 log->current_io->meta_offset + payload_size > PAGE_SIZE) 813 r5l_submit_current_io(log); 814 815 if (!log->current_io) { 816 log->current_io = r5l_new_meta(log); 817 if (!log->current_io) 818 return -ENOMEM; 819 } 820 821 return 0; 822 } 823 824 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 825 sector_t location, 826 u32 checksum1, u32 checksum2, 827 bool checksum2_valid) 828 { 829 struct r5l_io_unit *io = log->current_io; 830 struct r5l_payload_data_parity *payload; 831 832 payload = page_address(io->meta_page) + io->meta_offset; 833 payload->header.type = cpu_to_le16(type); 834 payload->header.flags = cpu_to_le16(0); 835 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 836 (PAGE_SHIFT - 9)); 837 payload->location = cpu_to_le64(location); 838 payload->checksum[0] = cpu_to_le32(checksum1); 839 if (checksum2_valid) 840 payload->checksum[1] = cpu_to_le32(checksum2); 841 842 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 843 sizeof(__le32) * (1 + !!checksum2_valid); 844 } 845 846 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 847 { 848 struct r5l_io_unit *io = log->current_io; 849 850 if (io->need_split_bio) { 851 BUG_ON(io->split_bio); 852 io->split_bio = io->current_bio; 853 io->current_bio = r5l_bio_alloc(log); 854 bio_chain(io->current_bio, io->split_bio); 855 io->need_split_bio = false; 856 } 857 858 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 859 BUG(); 860 861 r5_reserve_log_entry(log, io); 862 } 863 864 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 865 { 866 struct mddev *mddev = log->rdev->mddev; 867 struct r5conf *conf = mddev->private; 868 struct r5l_io_unit *io; 869 struct r5l_payload_flush *payload; 870 int meta_size; 871 872 /* 873 * payload_flush requires extra writes to the journal. 874 * To avoid handling the extra IO in quiesce, just skip 875 * flush_payload 876 */ 877 if (conf->quiesce) 878 return; 879 880 mutex_lock(&log->io_mutex); 881 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 882 883 if (r5l_get_meta(log, meta_size)) { 884 mutex_unlock(&log->io_mutex); 885 return; 886 } 887 888 /* current implementation is one stripe per flush payload */ 889 io = log->current_io; 890 payload = page_address(io->meta_page) + io->meta_offset; 891 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 892 payload->header.flags = cpu_to_le16(0); 893 payload->size = cpu_to_le32(sizeof(__le64)); 894 payload->flush_stripes[0] = cpu_to_le64(sect); 895 io->meta_offset += meta_size; 896 /* multiple flush payloads count as one pending_stripe */ 897 if (!io->has_flush_payload) { 898 io->has_flush_payload = 1; 899 atomic_inc(&io->pending_stripe); 900 } 901 mutex_unlock(&log->io_mutex); 902 } 903 904 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 905 int data_pages, int parity_pages) 906 { 907 int i; 908 int meta_size; 909 int ret; 910 struct r5l_io_unit *io; 911 912 meta_size = 913 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 914 * data_pages) + 915 sizeof(struct r5l_payload_data_parity) + 916 sizeof(__le32) * parity_pages; 917 918 ret = r5l_get_meta(log, meta_size); 919 if (ret) 920 return ret; 921 922 io = log->current_io; 923 924 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 925 io->has_flush = 1; 926 927 for (i = 0; i < sh->disks; i++) { 928 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 929 test_bit(R5_InJournal, &sh->dev[i].flags)) 930 continue; 931 if (i == sh->pd_idx || i == sh->qd_idx) 932 continue; 933 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 934 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 935 io->has_fua = 1; 936 /* 937 * we need to flush journal to make sure recovery can 938 * reach the data with fua flag 939 */ 940 io->has_flush = 1; 941 } 942 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 943 raid5_compute_blocknr(sh, i, 0), 944 sh->dev[i].log_checksum, 0, false); 945 r5l_append_payload_page(log, sh->dev[i].page); 946 } 947 948 if (parity_pages == 2) { 949 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 950 sh->sector, sh->dev[sh->pd_idx].log_checksum, 951 sh->dev[sh->qd_idx].log_checksum, true); 952 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 953 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 954 } else if (parity_pages == 1) { 955 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 956 sh->sector, sh->dev[sh->pd_idx].log_checksum, 957 0, false); 958 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 959 } else /* Just writing data, not parity, in caching phase */ 960 BUG_ON(parity_pages != 0); 961 962 list_add_tail(&sh->log_list, &io->stripe_list); 963 atomic_inc(&io->pending_stripe); 964 sh->log_io = io; 965 966 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 967 return 0; 968 969 if (sh->log_start == MaxSector) { 970 BUG_ON(!list_empty(&sh->r5c)); 971 sh->log_start = io->log_start; 972 spin_lock_irq(&log->stripe_in_journal_lock); 973 list_add_tail(&sh->r5c, 974 &log->stripe_in_journal_list); 975 spin_unlock_irq(&log->stripe_in_journal_lock); 976 atomic_inc(&log->stripe_in_journal_count); 977 } 978 return 0; 979 } 980 981 /* add stripe to no_space_stripes, and then wake up reclaim */ 982 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 983 struct stripe_head *sh) 984 { 985 spin_lock(&log->no_space_stripes_lock); 986 list_add_tail(&sh->log_list, &log->no_space_stripes); 987 spin_unlock(&log->no_space_stripes_lock); 988 } 989 990 /* 991 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 992 * data from log to raid disks), so we shouldn't wait for reclaim here 993 */ 994 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 995 { 996 struct r5conf *conf = sh->raid_conf; 997 int write_disks = 0; 998 int data_pages, parity_pages; 999 int reserve; 1000 int i; 1001 int ret = 0; 1002 bool wake_reclaim = false; 1003 1004 if (!log) 1005 return -EAGAIN; 1006 /* Don't support stripe batch */ 1007 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1008 test_bit(STRIPE_SYNCING, &sh->state)) { 1009 /* the stripe is written to log, we start writing it to raid */ 1010 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1011 return -EAGAIN; 1012 } 1013 1014 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1015 1016 for (i = 0; i < sh->disks; i++) { 1017 void *addr; 1018 1019 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1020 test_bit(R5_InJournal, &sh->dev[i].flags)) 1021 continue; 1022 1023 write_disks++; 1024 /* checksum is already calculated in last run */ 1025 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1026 continue; 1027 addr = kmap_atomic(sh->dev[i].page); 1028 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1029 addr, PAGE_SIZE); 1030 kunmap_atomic(addr); 1031 } 1032 parity_pages = 1 + !!(sh->qd_idx >= 0); 1033 data_pages = write_disks - parity_pages; 1034 1035 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1036 /* 1037 * The stripe must enter state machine again to finish the write, so 1038 * don't delay. 1039 */ 1040 clear_bit(STRIPE_DELAYED, &sh->state); 1041 atomic_inc(&sh->count); 1042 1043 mutex_lock(&log->io_mutex); 1044 /* meta + data */ 1045 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1046 1047 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1048 if (!r5l_has_free_space(log, reserve)) { 1049 r5l_add_no_space_stripe(log, sh); 1050 wake_reclaim = true; 1051 } else { 1052 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1053 if (ret) { 1054 spin_lock_irq(&log->io_list_lock); 1055 list_add_tail(&sh->log_list, 1056 &log->no_mem_stripes); 1057 spin_unlock_irq(&log->io_list_lock); 1058 } 1059 } 1060 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1061 /* 1062 * log space critical, do not process stripes that are 1063 * not in cache yet (sh->log_start == MaxSector). 1064 */ 1065 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1066 sh->log_start == MaxSector) { 1067 r5l_add_no_space_stripe(log, sh); 1068 wake_reclaim = true; 1069 reserve = 0; 1070 } else if (!r5l_has_free_space(log, reserve)) { 1071 if (sh->log_start == log->last_checkpoint) 1072 BUG(); 1073 else 1074 r5l_add_no_space_stripe(log, sh); 1075 } else { 1076 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1077 if (ret) { 1078 spin_lock_irq(&log->io_list_lock); 1079 list_add_tail(&sh->log_list, 1080 &log->no_mem_stripes); 1081 spin_unlock_irq(&log->io_list_lock); 1082 } 1083 } 1084 } 1085 1086 mutex_unlock(&log->io_mutex); 1087 if (wake_reclaim) 1088 r5l_wake_reclaim(log, reserve); 1089 return 0; 1090 } 1091 1092 void r5l_write_stripe_run(struct r5l_log *log) 1093 { 1094 if (!log) 1095 return; 1096 mutex_lock(&log->io_mutex); 1097 r5l_submit_current_io(log); 1098 mutex_unlock(&log->io_mutex); 1099 } 1100 1101 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1102 { 1103 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1104 /* 1105 * in write through (journal only) 1106 * we flush log disk cache first, then write stripe data to 1107 * raid disks. So if bio is finished, the log disk cache is 1108 * flushed already. The recovery guarantees we can recovery 1109 * the bio from log disk, so we don't need to flush again 1110 */ 1111 if (bio->bi_iter.bi_size == 0) { 1112 bio_endio(bio); 1113 return 0; 1114 } 1115 bio->bi_opf &= ~REQ_PREFLUSH; 1116 } else { 1117 /* write back (with cache) */ 1118 if (bio->bi_iter.bi_size == 0) { 1119 mutex_lock(&log->io_mutex); 1120 r5l_get_meta(log, 0); 1121 bio_list_add(&log->current_io->flush_barriers, bio); 1122 log->current_io->has_flush = 1; 1123 log->current_io->has_null_flush = 1; 1124 atomic_inc(&log->current_io->pending_stripe); 1125 r5l_submit_current_io(log); 1126 mutex_unlock(&log->io_mutex); 1127 return 0; 1128 } 1129 } 1130 return -EAGAIN; 1131 } 1132 1133 /* This will run after log space is reclaimed */ 1134 static void r5l_run_no_space_stripes(struct r5l_log *log) 1135 { 1136 struct stripe_head *sh; 1137 1138 spin_lock(&log->no_space_stripes_lock); 1139 while (!list_empty(&log->no_space_stripes)) { 1140 sh = list_first_entry(&log->no_space_stripes, 1141 struct stripe_head, log_list); 1142 list_del_init(&sh->log_list); 1143 set_bit(STRIPE_HANDLE, &sh->state); 1144 raid5_release_stripe(sh); 1145 } 1146 spin_unlock(&log->no_space_stripes_lock); 1147 } 1148 1149 /* 1150 * calculate new last_checkpoint 1151 * for write through mode, returns log->next_checkpoint 1152 * for write back, returns log_start of first sh in stripe_in_journal_list 1153 */ 1154 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1155 { 1156 struct stripe_head *sh; 1157 struct r5l_log *log = conf->log; 1158 sector_t new_cp; 1159 unsigned long flags; 1160 1161 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1162 return log->next_checkpoint; 1163 1164 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1165 if (list_empty(&conf->log->stripe_in_journal_list)) { 1166 /* all stripes flushed */ 1167 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1168 return log->next_checkpoint; 1169 } 1170 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1171 struct stripe_head, r5c); 1172 new_cp = sh->log_start; 1173 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1174 return new_cp; 1175 } 1176 1177 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1178 { 1179 struct r5conf *conf = log->rdev->mddev->private; 1180 1181 return r5l_ring_distance(log, log->last_checkpoint, 1182 r5c_calculate_new_cp(conf)); 1183 } 1184 1185 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1186 { 1187 struct stripe_head *sh; 1188 1189 lockdep_assert_held(&log->io_list_lock); 1190 1191 if (!list_empty(&log->no_mem_stripes)) { 1192 sh = list_first_entry(&log->no_mem_stripes, 1193 struct stripe_head, log_list); 1194 list_del_init(&sh->log_list); 1195 set_bit(STRIPE_HANDLE, &sh->state); 1196 raid5_release_stripe(sh); 1197 } 1198 } 1199 1200 static bool r5l_complete_finished_ios(struct r5l_log *log) 1201 { 1202 struct r5l_io_unit *io, *next; 1203 bool found = false; 1204 1205 lockdep_assert_held(&log->io_list_lock); 1206 1207 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1208 /* don't change list order */ 1209 if (io->state < IO_UNIT_STRIPE_END) 1210 break; 1211 1212 log->next_checkpoint = io->log_start; 1213 1214 list_del(&io->log_sibling); 1215 mempool_free(io, &log->io_pool); 1216 r5l_run_no_mem_stripe(log); 1217 1218 found = true; 1219 } 1220 1221 return found; 1222 } 1223 1224 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1225 { 1226 struct r5l_log *log = io->log; 1227 struct r5conf *conf = log->rdev->mddev->private; 1228 unsigned long flags; 1229 1230 spin_lock_irqsave(&log->io_list_lock, flags); 1231 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1232 1233 if (!r5l_complete_finished_ios(log)) { 1234 spin_unlock_irqrestore(&log->io_list_lock, flags); 1235 return; 1236 } 1237 1238 if (r5l_reclaimable_space(log) > log->max_free_space || 1239 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1240 r5l_wake_reclaim(log, 0); 1241 1242 spin_unlock_irqrestore(&log->io_list_lock, flags); 1243 wake_up(&log->iounit_wait); 1244 } 1245 1246 void r5l_stripe_write_finished(struct stripe_head *sh) 1247 { 1248 struct r5l_io_unit *io; 1249 1250 io = sh->log_io; 1251 sh->log_io = NULL; 1252 1253 if (io && atomic_dec_and_test(&io->pending_stripe)) 1254 __r5l_stripe_write_finished(io); 1255 } 1256 1257 static void r5l_log_flush_endio(struct bio *bio) 1258 { 1259 struct r5l_log *log = container_of(bio, struct r5l_log, 1260 flush_bio); 1261 unsigned long flags; 1262 struct r5l_io_unit *io; 1263 1264 if (bio->bi_status) 1265 md_error(log->rdev->mddev, log->rdev); 1266 1267 spin_lock_irqsave(&log->io_list_lock, flags); 1268 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1269 r5l_io_run_stripes(io); 1270 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1271 spin_unlock_irqrestore(&log->io_list_lock, flags); 1272 } 1273 1274 /* 1275 * Starting dispatch IO to raid. 1276 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1277 * broken meta in the middle of a log causes recovery can't find meta at the 1278 * head of log. If operations require meta at the head persistent in log, we 1279 * must make sure meta before it persistent in log too. A case is: 1280 * 1281 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1282 * data/parity must be persistent in log before we do the write to raid disks. 1283 * 1284 * The solution is we restrictly maintain io_unit list order. In this case, we 1285 * only write stripes of an io_unit to raid disks till the io_unit is the first 1286 * one whose data/parity is in log. 1287 */ 1288 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1289 { 1290 bool do_flush; 1291 1292 if (!log || !log->need_cache_flush) 1293 return; 1294 1295 spin_lock_irq(&log->io_list_lock); 1296 /* flush bio is running */ 1297 if (!list_empty(&log->flushing_ios)) { 1298 spin_unlock_irq(&log->io_list_lock); 1299 return; 1300 } 1301 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1302 do_flush = !list_empty(&log->flushing_ios); 1303 spin_unlock_irq(&log->io_list_lock); 1304 1305 if (!do_flush) 1306 return; 1307 bio_reset(&log->flush_bio); 1308 bio_set_dev(&log->flush_bio, log->rdev->bdev); 1309 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1310 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1311 submit_bio(&log->flush_bio); 1312 } 1313 1314 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1315 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1316 sector_t end) 1317 { 1318 struct block_device *bdev = log->rdev->bdev; 1319 struct mddev *mddev; 1320 1321 r5l_write_super(log, end); 1322 1323 if (!blk_queue_discard(bdev_get_queue(bdev))) 1324 return; 1325 1326 mddev = log->rdev->mddev; 1327 /* 1328 * Discard could zero data, so before discard we must make sure 1329 * superblock is updated to new log tail. Updating superblock (either 1330 * directly call md_update_sb() or depend on md thread) must hold 1331 * reconfig mutex. On the other hand, raid5_quiesce is called with 1332 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1333 * for all IO finish, hence waitting for reclaim thread, while reclaim 1334 * thread is calling this function and waitting for reconfig mutex. So 1335 * there is a deadlock. We workaround this issue with a trylock. 1336 * FIXME: we could miss discard if we can't take reconfig mutex 1337 */ 1338 set_mask_bits(&mddev->sb_flags, 0, 1339 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1340 if (!mddev_trylock(mddev)) 1341 return; 1342 md_update_sb(mddev, 1); 1343 mddev_unlock(mddev); 1344 1345 /* discard IO error really doesn't matter, ignore it */ 1346 if (log->last_checkpoint < end) { 1347 blkdev_issue_discard(bdev, 1348 log->last_checkpoint + log->rdev->data_offset, 1349 end - log->last_checkpoint, GFP_NOIO, 0); 1350 } else { 1351 blkdev_issue_discard(bdev, 1352 log->last_checkpoint + log->rdev->data_offset, 1353 log->device_size - log->last_checkpoint, 1354 GFP_NOIO, 0); 1355 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1356 GFP_NOIO, 0); 1357 } 1358 } 1359 1360 /* 1361 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1362 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1363 * 1364 * must hold conf->device_lock 1365 */ 1366 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1367 { 1368 BUG_ON(list_empty(&sh->lru)); 1369 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1370 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1371 1372 /* 1373 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1374 * raid5_release_stripe() while holding conf->device_lock 1375 */ 1376 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1377 lockdep_assert_held(&conf->device_lock); 1378 1379 list_del_init(&sh->lru); 1380 atomic_inc(&sh->count); 1381 1382 set_bit(STRIPE_HANDLE, &sh->state); 1383 atomic_inc(&conf->active_stripes); 1384 r5c_make_stripe_write_out(sh); 1385 1386 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1387 atomic_inc(&conf->r5c_flushing_partial_stripes); 1388 else 1389 atomic_inc(&conf->r5c_flushing_full_stripes); 1390 raid5_release_stripe(sh); 1391 } 1392 1393 /* 1394 * if num == 0, flush all full stripes 1395 * if num > 0, flush all full stripes. If less than num full stripes are 1396 * flushed, flush some partial stripes until totally num stripes are 1397 * flushed or there is no more cached stripes. 1398 */ 1399 void r5c_flush_cache(struct r5conf *conf, int num) 1400 { 1401 int count; 1402 struct stripe_head *sh, *next; 1403 1404 lockdep_assert_held(&conf->device_lock); 1405 if (!conf->log) 1406 return; 1407 1408 count = 0; 1409 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1410 r5c_flush_stripe(conf, sh); 1411 count++; 1412 } 1413 1414 if (count >= num) 1415 return; 1416 list_for_each_entry_safe(sh, next, 1417 &conf->r5c_partial_stripe_list, lru) { 1418 r5c_flush_stripe(conf, sh); 1419 if (++count >= num) 1420 break; 1421 } 1422 } 1423 1424 static void r5c_do_reclaim(struct r5conf *conf) 1425 { 1426 struct r5l_log *log = conf->log; 1427 struct stripe_head *sh; 1428 int count = 0; 1429 unsigned long flags; 1430 int total_cached; 1431 int stripes_to_flush; 1432 int flushing_partial, flushing_full; 1433 1434 if (!r5c_is_writeback(log)) 1435 return; 1436 1437 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1438 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1439 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1440 atomic_read(&conf->r5c_cached_full_stripes) - 1441 flushing_full - flushing_partial; 1442 1443 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1444 atomic_read(&conf->empty_inactive_list_nr) > 0) 1445 /* 1446 * if stripe cache pressure high, flush all full stripes and 1447 * some partial stripes 1448 */ 1449 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1450 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1451 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1452 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1453 /* 1454 * if stripe cache pressure moderate, or if there is many full 1455 * stripes,flush all full stripes 1456 */ 1457 stripes_to_flush = 0; 1458 else 1459 /* no need to flush */ 1460 stripes_to_flush = -1; 1461 1462 if (stripes_to_flush >= 0) { 1463 spin_lock_irqsave(&conf->device_lock, flags); 1464 r5c_flush_cache(conf, stripes_to_flush); 1465 spin_unlock_irqrestore(&conf->device_lock, flags); 1466 } 1467 1468 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1469 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1470 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1471 spin_lock(&conf->device_lock); 1472 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1473 /* 1474 * stripes on stripe_in_journal_list could be in any 1475 * state of the stripe_cache state machine. In this 1476 * case, we only want to flush stripe on 1477 * r5c_cached_full/partial_stripes. The following 1478 * condition makes sure the stripe is on one of the 1479 * two lists. 1480 */ 1481 if (!list_empty(&sh->lru) && 1482 !test_bit(STRIPE_HANDLE, &sh->state) && 1483 atomic_read(&sh->count) == 0) { 1484 r5c_flush_stripe(conf, sh); 1485 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1486 break; 1487 } 1488 } 1489 spin_unlock(&conf->device_lock); 1490 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1491 } 1492 1493 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1494 r5l_run_no_space_stripes(log); 1495 1496 md_wakeup_thread(conf->mddev->thread); 1497 } 1498 1499 static void r5l_do_reclaim(struct r5l_log *log) 1500 { 1501 struct r5conf *conf = log->rdev->mddev->private; 1502 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1503 sector_t reclaimable; 1504 sector_t next_checkpoint; 1505 bool write_super; 1506 1507 spin_lock_irq(&log->io_list_lock); 1508 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1509 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1510 /* 1511 * move proper io_unit to reclaim list. We should not change the order. 1512 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1513 * shouldn't reuse space of an unreclaimable io_unit 1514 */ 1515 while (1) { 1516 reclaimable = r5l_reclaimable_space(log); 1517 if (reclaimable >= reclaim_target || 1518 (list_empty(&log->running_ios) && 1519 list_empty(&log->io_end_ios) && 1520 list_empty(&log->flushing_ios) && 1521 list_empty(&log->finished_ios))) 1522 break; 1523 1524 md_wakeup_thread(log->rdev->mddev->thread); 1525 wait_event_lock_irq(log->iounit_wait, 1526 r5l_reclaimable_space(log) > reclaimable, 1527 log->io_list_lock); 1528 } 1529 1530 next_checkpoint = r5c_calculate_new_cp(conf); 1531 spin_unlock_irq(&log->io_list_lock); 1532 1533 if (reclaimable == 0 || !write_super) 1534 return; 1535 1536 /* 1537 * write_super will flush cache of each raid disk. We must write super 1538 * here, because the log area might be reused soon and we don't want to 1539 * confuse recovery 1540 */ 1541 r5l_write_super_and_discard_space(log, next_checkpoint); 1542 1543 mutex_lock(&log->io_mutex); 1544 log->last_checkpoint = next_checkpoint; 1545 r5c_update_log_state(log); 1546 mutex_unlock(&log->io_mutex); 1547 1548 r5l_run_no_space_stripes(log); 1549 } 1550 1551 static void r5l_reclaim_thread(struct md_thread *thread) 1552 { 1553 struct mddev *mddev = thread->mddev; 1554 struct r5conf *conf = mddev->private; 1555 struct r5l_log *log = conf->log; 1556 1557 if (!log) 1558 return; 1559 r5c_do_reclaim(conf); 1560 r5l_do_reclaim(log); 1561 } 1562 1563 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1564 { 1565 unsigned long target; 1566 unsigned long new = (unsigned long)space; /* overflow in theory */ 1567 1568 if (!log) 1569 return; 1570 do { 1571 target = log->reclaim_target; 1572 if (new < target) 1573 return; 1574 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1575 md_wakeup_thread(log->reclaim_thread); 1576 } 1577 1578 void r5l_quiesce(struct r5l_log *log, int quiesce) 1579 { 1580 struct mddev *mddev; 1581 1582 if (quiesce) { 1583 /* make sure r5l_write_super_and_discard_space exits */ 1584 mddev = log->rdev->mddev; 1585 wake_up(&mddev->sb_wait); 1586 kthread_park(log->reclaim_thread->tsk); 1587 r5l_wake_reclaim(log, MaxSector); 1588 r5l_do_reclaim(log); 1589 } else 1590 kthread_unpark(log->reclaim_thread->tsk); 1591 } 1592 1593 bool r5l_log_disk_error(struct r5conf *conf) 1594 { 1595 struct r5l_log *log; 1596 bool ret; 1597 /* don't allow write if journal disk is missing */ 1598 rcu_read_lock(); 1599 log = rcu_dereference(conf->log); 1600 1601 if (!log) 1602 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1603 else 1604 ret = test_bit(Faulty, &log->rdev->flags); 1605 rcu_read_unlock(); 1606 return ret; 1607 } 1608 1609 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1610 1611 struct r5l_recovery_ctx { 1612 struct page *meta_page; /* current meta */ 1613 sector_t meta_total_blocks; /* total size of current meta and data */ 1614 sector_t pos; /* recovery position */ 1615 u64 seq; /* recovery position seq */ 1616 int data_parity_stripes; /* number of data_parity stripes */ 1617 int data_only_stripes; /* number of data_only stripes */ 1618 struct list_head cached_list; 1619 1620 /* 1621 * read ahead page pool (ra_pool) 1622 * in recovery, log is read sequentially. It is not efficient to 1623 * read every page with sync_page_io(). The read ahead page pool 1624 * reads multiple pages with one IO, so further log read can 1625 * just copy data from the pool. 1626 */ 1627 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1628 sector_t pool_offset; /* offset of first page in the pool */ 1629 int total_pages; /* total allocated pages */ 1630 int valid_pages; /* pages with valid data */ 1631 struct bio *ra_bio; /* bio to do the read ahead */ 1632 }; 1633 1634 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1635 struct r5l_recovery_ctx *ctx) 1636 { 1637 struct page *page; 1638 1639 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs); 1640 if (!ctx->ra_bio) 1641 return -ENOMEM; 1642 1643 ctx->valid_pages = 0; 1644 ctx->total_pages = 0; 1645 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1646 page = alloc_page(GFP_KERNEL); 1647 1648 if (!page) 1649 break; 1650 ctx->ra_pool[ctx->total_pages] = page; 1651 ctx->total_pages += 1; 1652 } 1653 1654 if (ctx->total_pages == 0) { 1655 bio_put(ctx->ra_bio); 1656 return -ENOMEM; 1657 } 1658 1659 ctx->pool_offset = 0; 1660 return 0; 1661 } 1662 1663 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1664 struct r5l_recovery_ctx *ctx) 1665 { 1666 int i; 1667 1668 for (i = 0; i < ctx->total_pages; ++i) 1669 put_page(ctx->ra_pool[i]); 1670 bio_put(ctx->ra_bio); 1671 } 1672 1673 /* 1674 * fetch ctx->valid_pages pages from offset 1675 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1676 * However, if the offset is close to the end of the journal device, 1677 * ctx->valid_pages could be smaller than ctx->total_pages 1678 */ 1679 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1680 struct r5l_recovery_ctx *ctx, 1681 sector_t offset) 1682 { 1683 bio_reset(ctx->ra_bio); 1684 bio_set_dev(ctx->ra_bio, log->rdev->bdev); 1685 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); 1686 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; 1687 1688 ctx->valid_pages = 0; 1689 ctx->pool_offset = offset; 1690 1691 while (ctx->valid_pages < ctx->total_pages) { 1692 bio_add_page(ctx->ra_bio, 1693 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); 1694 ctx->valid_pages += 1; 1695 1696 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1697 1698 if (offset == 0) /* reached end of the device */ 1699 break; 1700 } 1701 1702 return submit_bio_wait(ctx->ra_bio); 1703 } 1704 1705 /* 1706 * try read a page from the read ahead page pool, if the page is not in the 1707 * pool, call r5l_recovery_fetch_ra_pool 1708 */ 1709 static int r5l_recovery_read_page(struct r5l_log *log, 1710 struct r5l_recovery_ctx *ctx, 1711 struct page *page, 1712 sector_t offset) 1713 { 1714 int ret; 1715 1716 if (offset < ctx->pool_offset || 1717 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1718 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1719 if (ret) 1720 return ret; 1721 } 1722 1723 BUG_ON(offset < ctx->pool_offset || 1724 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1725 1726 memcpy(page_address(page), 1727 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1728 BLOCK_SECTOR_SHIFT]), 1729 PAGE_SIZE); 1730 return 0; 1731 } 1732 1733 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1734 struct r5l_recovery_ctx *ctx) 1735 { 1736 struct page *page = ctx->meta_page; 1737 struct r5l_meta_block *mb; 1738 u32 crc, stored_crc; 1739 int ret; 1740 1741 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1742 if (ret != 0) 1743 return ret; 1744 1745 mb = page_address(page); 1746 stored_crc = le32_to_cpu(mb->checksum); 1747 mb->checksum = 0; 1748 1749 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1750 le64_to_cpu(mb->seq) != ctx->seq || 1751 mb->version != R5LOG_VERSION || 1752 le64_to_cpu(mb->position) != ctx->pos) 1753 return -EINVAL; 1754 1755 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1756 if (stored_crc != crc) 1757 return -EINVAL; 1758 1759 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1760 return -EINVAL; 1761 1762 ctx->meta_total_blocks = BLOCK_SECTORS; 1763 1764 return 0; 1765 } 1766 1767 static void 1768 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1769 struct page *page, 1770 sector_t pos, u64 seq) 1771 { 1772 struct r5l_meta_block *mb; 1773 1774 mb = page_address(page); 1775 clear_page(mb); 1776 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1777 mb->version = R5LOG_VERSION; 1778 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1779 mb->seq = cpu_to_le64(seq); 1780 mb->position = cpu_to_le64(pos); 1781 } 1782 1783 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1784 u64 seq) 1785 { 1786 struct page *page; 1787 struct r5l_meta_block *mb; 1788 1789 page = alloc_page(GFP_KERNEL); 1790 if (!page) 1791 return -ENOMEM; 1792 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1793 mb = page_address(page); 1794 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1795 mb, PAGE_SIZE)); 1796 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1797 REQ_SYNC | REQ_FUA, false)) { 1798 __free_page(page); 1799 return -EIO; 1800 } 1801 __free_page(page); 1802 return 0; 1803 } 1804 1805 /* 1806 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1807 * to mark valid (potentially not flushed) data in the journal. 1808 * 1809 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1810 * so there should not be any mismatch here. 1811 */ 1812 static void r5l_recovery_load_data(struct r5l_log *log, 1813 struct stripe_head *sh, 1814 struct r5l_recovery_ctx *ctx, 1815 struct r5l_payload_data_parity *payload, 1816 sector_t log_offset) 1817 { 1818 struct mddev *mddev = log->rdev->mddev; 1819 struct r5conf *conf = mddev->private; 1820 int dd_idx; 1821 1822 raid5_compute_sector(conf, 1823 le64_to_cpu(payload->location), 0, 1824 &dd_idx, sh); 1825 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1826 sh->dev[dd_idx].log_checksum = 1827 le32_to_cpu(payload->checksum[0]); 1828 ctx->meta_total_blocks += BLOCK_SECTORS; 1829 1830 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1831 set_bit(STRIPE_R5C_CACHING, &sh->state); 1832 } 1833 1834 static void r5l_recovery_load_parity(struct r5l_log *log, 1835 struct stripe_head *sh, 1836 struct r5l_recovery_ctx *ctx, 1837 struct r5l_payload_data_parity *payload, 1838 sector_t log_offset) 1839 { 1840 struct mddev *mddev = log->rdev->mddev; 1841 struct r5conf *conf = mddev->private; 1842 1843 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1844 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1845 sh->dev[sh->pd_idx].log_checksum = 1846 le32_to_cpu(payload->checksum[0]); 1847 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1848 1849 if (sh->qd_idx >= 0) { 1850 r5l_recovery_read_page( 1851 log, ctx, sh->dev[sh->qd_idx].page, 1852 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1853 sh->dev[sh->qd_idx].log_checksum = 1854 le32_to_cpu(payload->checksum[1]); 1855 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1856 } 1857 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1858 } 1859 1860 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1861 { 1862 int i; 1863 1864 sh->state = 0; 1865 sh->log_start = MaxSector; 1866 for (i = sh->disks; i--; ) 1867 sh->dev[i].flags = 0; 1868 } 1869 1870 static void 1871 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1872 struct stripe_head *sh, 1873 struct r5l_recovery_ctx *ctx) 1874 { 1875 struct md_rdev *rdev, *rrdev; 1876 int disk_index; 1877 int data_count = 0; 1878 1879 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1880 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1881 continue; 1882 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1883 continue; 1884 data_count++; 1885 } 1886 1887 /* 1888 * stripes that only have parity must have been flushed 1889 * before the crash that we are now recovering from, so 1890 * there is nothing more to recovery. 1891 */ 1892 if (data_count == 0) 1893 goto out; 1894 1895 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1896 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1897 continue; 1898 1899 /* in case device is broken */ 1900 rcu_read_lock(); 1901 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1902 if (rdev) { 1903 atomic_inc(&rdev->nr_pending); 1904 rcu_read_unlock(); 1905 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1906 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1907 false); 1908 rdev_dec_pending(rdev, rdev->mddev); 1909 rcu_read_lock(); 1910 } 1911 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1912 if (rrdev) { 1913 atomic_inc(&rrdev->nr_pending); 1914 rcu_read_unlock(); 1915 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1916 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1917 false); 1918 rdev_dec_pending(rrdev, rrdev->mddev); 1919 rcu_read_lock(); 1920 } 1921 rcu_read_unlock(); 1922 } 1923 ctx->data_parity_stripes++; 1924 out: 1925 r5l_recovery_reset_stripe(sh); 1926 } 1927 1928 static struct stripe_head * 1929 r5c_recovery_alloc_stripe( 1930 struct r5conf *conf, 1931 sector_t stripe_sect, 1932 int noblock) 1933 { 1934 struct stripe_head *sh; 1935 1936 sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0); 1937 if (!sh) 1938 return NULL; /* no more stripe available */ 1939 1940 r5l_recovery_reset_stripe(sh); 1941 1942 return sh; 1943 } 1944 1945 static struct stripe_head * 1946 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1947 { 1948 struct stripe_head *sh; 1949 1950 list_for_each_entry(sh, list, lru) 1951 if (sh->sector == sect) 1952 return sh; 1953 return NULL; 1954 } 1955 1956 static void 1957 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1958 struct r5l_recovery_ctx *ctx) 1959 { 1960 struct stripe_head *sh, *next; 1961 1962 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1963 r5l_recovery_reset_stripe(sh); 1964 list_del_init(&sh->lru); 1965 raid5_release_stripe(sh); 1966 } 1967 } 1968 1969 static void 1970 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1971 struct r5l_recovery_ctx *ctx) 1972 { 1973 struct stripe_head *sh, *next; 1974 1975 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1976 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1977 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1978 list_del_init(&sh->lru); 1979 raid5_release_stripe(sh); 1980 } 1981 } 1982 1983 /* if matches return 0; otherwise return -EINVAL */ 1984 static int 1985 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1986 struct r5l_recovery_ctx *ctx, 1987 struct page *page, 1988 sector_t log_offset, __le32 log_checksum) 1989 { 1990 void *addr; 1991 u32 checksum; 1992 1993 r5l_recovery_read_page(log, ctx, page, log_offset); 1994 addr = kmap_atomic(page); 1995 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1996 kunmap_atomic(addr); 1997 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1998 } 1999 2000 /* 2001 * before loading data to stripe cache, we need verify checksum for all data, 2002 * if there is mismatch for any data page, we drop all data in the mata block 2003 */ 2004 static int 2005 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 2006 struct r5l_recovery_ctx *ctx) 2007 { 2008 struct mddev *mddev = log->rdev->mddev; 2009 struct r5conf *conf = mddev->private; 2010 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2011 sector_t mb_offset = sizeof(struct r5l_meta_block); 2012 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2013 struct page *page; 2014 struct r5l_payload_data_parity *payload; 2015 struct r5l_payload_flush *payload_flush; 2016 2017 page = alloc_page(GFP_KERNEL); 2018 if (!page) 2019 return -ENOMEM; 2020 2021 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2022 payload = (void *)mb + mb_offset; 2023 payload_flush = (void *)mb + mb_offset; 2024 2025 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2026 if (r5l_recovery_verify_data_checksum( 2027 log, ctx, page, log_offset, 2028 payload->checksum[0]) < 0) 2029 goto mismatch; 2030 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2031 if (r5l_recovery_verify_data_checksum( 2032 log, ctx, page, log_offset, 2033 payload->checksum[0]) < 0) 2034 goto mismatch; 2035 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2036 r5l_recovery_verify_data_checksum( 2037 log, ctx, page, 2038 r5l_ring_add(log, log_offset, 2039 BLOCK_SECTORS), 2040 payload->checksum[1]) < 0) 2041 goto mismatch; 2042 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2043 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2044 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2045 goto mismatch; 2046 2047 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2048 mb_offset += sizeof(struct r5l_payload_flush) + 2049 le32_to_cpu(payload_flush->size); 2050 } else { 2051 /* DATA or PARITY payload */ 2052 log_offset = r5l_ring_add(log, log_offset, 2053 le32_to_cpu(payload->size)); 2054 mb_offset += sizeof(struct r5l_payload_data_parity) + 2055 sizeof(__le32) * 2056 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2057 } 2058 2059 } 2060 2061 put_page(page); 2062 return 0; 2063 2064 mismatch: 2065 put_page(page); 2066 return -EINVAL; 2067 } 2068 2069 /* 2070 * Analyze all data/parity pages in one meta block 2071 * Returns: 2072 * 0 for success 2073 * -EINVAL for unknown playload type 2074 * -EAGAIN for checksum mismatch of data page 2075 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2076 */ 2077 static int 2078 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2079 struct r5l_recovery_ctx *ctx, 2080 struct list_head *cached_stripe_list) 2081 { 2082 struct mddev *mddev = log->rdev->mddev; 2083 struct r5conf *conf = mddev->private; 2084 struct r5l_meta_block *mb; 2085 struct r5l_payload_data_parity *payload; 2086 struct r5l_payload_flush *payload_flush; 2087 int mb_offset; 2088 sector_t log_offset; 2089 sector_t stripe_sect; 2090 struct stripe_head *sh; 2091 int ret; 2092 2093 /* 2094 * for mismatch in data blocks, we will drop all data in this mb, but 2095 * we will still read next mb for other data with FLUSH flag, as 2096 * io_unit could finish out of order. 2097 */ 2098 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2099 if (ret == -EINVAL) 2100 return -EAGAIN; 2101 else if (ret) 2102 return ret; /* -ENOMEM duo to alloc_page() failed */ 2103 2104 mb = page_address(ctx->meta_page); 2105 mb_offset = sizeof(struct r5l_meta_block); 2106 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2107 2108 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2109 int dd; 2110 2111 payload = (void *)mb + mb_offset; 2112 payload_flush = (void *)mb + mb_offset; 2113 2114 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2115 int i, count; 2116 2117 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2118 for (i = 0; i < count; ++i) { 2119 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2120 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2121 stripe_sect); 2122 if (sh) { 2123 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2124 r5l_recovery_reset_stripe(sh); 2125 list_del_init(&sh->lru); 2126 raid5_release_stripe(sh); 2127 } 2128 } 2129 2130 mb_offset += sizeof(struct r5l_payload_flush) + 2131 le32_to_cpu(payload_flush->size); 2132 continue; 2133 } 2134 2135 /* DATA or PARITY payload */ 2136 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2137 raid5_compute_sector( 2138 conf, le64_to_cpu(payload->location), 0, &dd, 2139 NULL) 2140 : le64_to_cpu(payload->location); 2141 2142 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2143 stripe_sect); 2144 2145 if (!sh) { 2146 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); 2147 /* 2148 * cannot get stripe from raid5_get_active_stripe 2149 * try replay some stripes 2150 */ 2151 if (!sh) { 2152 r5c_recovery_replay_stripes( 2153 cached_stripe_list, ctx); 2154 sh = r5c_recovery_alloc_stripe( 2155 conf, stripe_sect, 1); 2156 } 2157 if (!sh) { 2158 int new_size = conf->min_nr_stripes * 2; 2159 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2160 mdname(mddev), 2161 new_size); 2162 ret = raid5_set_cache_size(mddev, new_size); 2163 if (conf->min_nr_stripes <= new_size / 2) { 2164 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", 2165 mdname(mddev), 2166 ret, 2167 new_size, 2168 conf->min_nr_stripes, 2169 conf->max_nr_stripes); 2170 return -ENOMEM; 2171 } 2172 sh = r5c_recovery_alloc_stripe( 2173 conf, stripe_sect, 0); 2174 } 2175 if (!sh) { 2176 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2177 mdname(mddev)); 2178 return -ENOMEM; 2179 } 2180 list_add_tail(&sh->lru, cached_stripe_list); 2181 } 2182 2183 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2184 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2185 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2186 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2187 list_move_tail(&sh->lru, cached_stripe_list); 2188 } 2189 r5l_recovery_load_data(log, sh, ctx, payload, 2190 log_offset); 2191 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2192 r5l_recovery_load_parity(log, sh, ctx, payload, 2193 log_offset); 2194 else 2195 return -EINVAL; 2196 2197 log_offset = r5l_ring_add(log, log_offset, 2198 le32_to_cpu(payload->size)); 2199 2200 mb_offset += sizeof(struct r5l_payload_data_parity) + 2201 sizeof(__le32) * 2202 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2203 } 2204 2205 return 0; 2206 } 2207 2208 /* 2209 * Load the stripe into cache. The stripe will be written out later by 2210 * the stripe cache state machine. 2211 */ 2212 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2213 struct stripe_head *sh) 2214 { 2215 struct r5dev *dev; 2216 int i; 2217 2218 for (i = sh->disks; i--; ) { 2219 dev = sh->dev + i; 2220 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2221 set_bit(R5_InJournal, &dev->flags); 2222 set_bit(R5_UPTODATE, &dev->flags); 2223 } 2224 } 2225 } 2226 2227 /* 2228 * Scan through the log for all to-be-flushed data 2229 * 2230 * For stripes with data and parity, namely Data-Parity stripe 2231 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2232 * 2233 * For stripes with only data, namely Data-Only stripe 2234 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2235 * 2236 * For a stripe, if we see data after parity, we should discard all previous 2237 * data and parity for this stripe, as these data are already flushed to 2238 * the array. 2239 * 2240 * At the end of the scan, we return the new journal_tail, which points to 2241 * first data-only stripe on the journal device, or next invalid meta block. 2242 */ 2243 static int r5c_recovery_flush_log(struct r5l_log *log, 2244 struct r5l_recovery_ctx *ctx) 2245 { 2246 struct stripe_head *sh; 2247 int ret = 0; 2248 2249 /* scan through the log */ 2250 while (1) { 2251 if (r5l_recovery_read_meta_block(log, ctx)) 2252 break; 2253 2254 ret = r5c_recovery_analyze_meta_block(log, ctx, 2255 &ctx->cached_list); 2256 /* 2257 * -EAGAIN means mismatch in data block, in this case, we still 2258 * try scan the next metablock 2259 */ 2260 if (ret && ret != -EAGAIN) 2261 break; /* ret == -EINVAL or -ENOMEM */ 2262 ctx->seq++; 2263 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2264 } 2265 2266 if (ret == -ENOMEM) { 2267 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2268 return ret; 2269 } 2270 2271 /* replay data-parity stripes */ 2272 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2273 2274 /* load data-only stripes to stripe cache */ 2275 list_for_each_entry(sh, &ctx->cached_list, lru) { 2276 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2277 r5c_recovery_load_one_stripe(log, sh); 2278 ctx->data_only_stripes++; 2279 } 2280 2281 return 0; 2282 } 2283 2284 /* 2285 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2286 * log will start here. but we can't let superblock point to last valid 2287 * meta block. The log might looks like: 2288 * | meta 1| meta 2| meta 3| 2289 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2290 * superblock points to meta 1, we write a new valid meta 2n. if crash 2291 * happens again, new recovery will start from meta 1. Since meta 2n is 2292 * valid now, recovery will think meta 3 is valid, which is wrong. 2293 * The solution is we create a new meta in meta2 with its seq == meta 2294 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2295 * will not think meta 3 is a valid meta, because its seq doesn't match 2296 */ 2297 2298 /* 2299 * Before recovery, the log looks like the following 2300 * 2301 * --------------------------------------------- 2302 * | valid log | invalid log | 2303 * --------------------------------------------- 2304 * ^ 2305 * |- log->last_checkpoint 2306 * |- log->last_cp_seq 2307 * 2308 * Now we scan through the log until we see invalid entry 2309 * 2310 * --------------------------------------------- 2311 * | valid log | invalid log | 2312 * --------------------------------------------- 2313 * ^ ^ 2314 * |- log->last_checkpoint |- ctx->pos 2315 * |- log->last_cp_seq |- ctx->seq 2316 * 2317 * From this point, we need to increase seq number by 10 to avoid 2318 * confusing next recovery. 2319 * 2320 * --------------------------------------------- 2321 * | valid log | invalid log | 2322 * --------------------------------------------- 2323 * ^ ^ 2324 * |- log->last_checkpoint |- ctx->pos+1 2325 * |- log->last_cp_seq |- ctx->seq+10001 2326 * 2327 * However, it is not safe to start the state machine yet, because data only 2328 * parities are not yet secured in RAID. To save these data only parities, we 2329 * rewrite them from seq+11. 2330 * 2331 * ----------------------------------------------------------------- 2332 * | valid log | data only stripes | invalid log | 2333 * ----------------------------------------------------------------- 2334 * ^ ^ 2335 * |- log->last_checkpoint |- ctx->pos+n 2336 * |- log->last_cp_seq |- ctx->seq+10000+n 2337 * 2338 * If failure happens again during this process, the recovery can safe start 2339 * again from log->last_checkpoint. 2340 * 2341 * Once data only stripes are rewritten to journal, we move log_tail 2342 * 2343 * ----------------------------------------------------------------- 2344 * | old log | data only stripes | invalid log | 2345 * ----------------------------------------------------------------- 2346 * ^ ^ 2347 * |- log->last_checkpoint |- ctx->pos+n 2348 * |- log->last_cp_seq |- ctx->seq+10000+n 2349 * 2350 * Then we can safely start the state machine. If failure happens from this 2351 * point on, the recovery will start from new log->last_checkpoint. 2352 */ 2353 static int 2354 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2355 struct r5l_recovery_ctx *ctx) 2356 { 2357 struct stripe_head *sh; 2358 struct mddev *mddev = log->rdev->mddev; 2359 struct page *page; 2360 sector_t next_checkpoint = MaxSector; 2361 2362 page = alloc_page(GFP_KERNEL); 2363 if (!page) { 2364 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2365 mdname(mddev)); 2366 return -ENOMEM; 2367 } 2368 2369 WARN_ON(list_empty(&ctx->cached_list)); 2370 2371 list_for_each_entry(sh, &ctx->cached_list, lru) { 2372 struct r5l_meta_block *mb; 2373 int i; 2374 int offset; 2375 sector_t write_pos; 2376 2377 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2378 r5l_recovery_create_empty_meta_block(log, page, 2379 ctx->pos, ctx->seq); 2380 mb = page_address(page); 2381 offset = le32_to_cpu(mb->meta_size); 2382 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2383 2384 for (i = sh->disks; i--; ) { 2385 struct r5dev *dev = &sh->dev[i]; 2386 struct r5l_payload_data_parity *payload; 2387 void *addr; 2388 2389 if (test_bit(R5_InJournal, &dev->flags)) { 2390 payload = (void *)mb + offset; 2391 payload->header.type = cpu_to_le16( 2392 R5LOG_PAYLOAD_DATA); 2393 payload->size = cpu_to_le32(BLOCK_SECTORS); 2394 payload->location = cpu_to_le64( 2395 raid5_compute_blocknr(sh, i, 0)); 2396 addr = kmap_atomic(dev->page); 2397 payload->checksum[0] = cpu_to_le32( 2398 crc32c_le(log->uuid_checksum, addr, 2399 PAGE_SIZE)); 2400 kunmap_atomic(addr); 2401 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2402 dev->page, REQ_OP_WRITE, 0, false); 2403 write_pos = r5l_ring_add(log, write_pos, 2404 BLOCK_SECTORS); 2405 offset += sizeof(__le32) + 2406 sizeof(struct r5l_payload_data_parity); 2407 2408 } 2409 } 2410 mb->meta_size = cpu_to_le32(offset); 2411 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2412 mb, PAGE_SIZE)); 2413 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2414 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); 2415 sh->log_start = ctx->pos; 2416 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2417 atomic_inc(&log->stripe_in_journal_count); 2418 ctx->pos = write_pos; 2419 ctx->seq += 1; 2420 next_checkpoint = sh->log_start; 2421 } 2422 log->next_checkpoint = next_checkpoint; 2423 __free_page(page); 2424 return 0; 2425 } 2426 2427 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2428 struct r5l_recovery_ctx *ctx) 2429 { 2430 struct mddev *mddev = log->rdev->mddev; 2431 struct r5conf *conf = mddev->private; 2432 struct stripe_head *sh, *next; 2433 2434 if (ctx->data_only_stripes == 0) 2435 return; 2436 2437 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2438 2439 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2440 r5c_make_stripe_write_out(sh); 2441 set_bit(STRIPE_HANDLE, &sh->state); 2442 list_del_init(&sh->lru); 2443 raid5_release_stripe(sh); 2444 } 2445 2446 /* reuse conf->wait_for_quiescent in recovery */ 2447 wait_event(conf->wait_for_quiescent, 2448 atomic_read(&conf->active_stripes) == 0); 2449 2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2451 } 2452 2453 static int r5l_recovery_log(struct r5l_log *log) 2454 { 2455 struct mddev *mddev = log->rdev->mddev; 2456 struct r5l_recovery_ctx *ctx; 2457 int ret; 2458 sector_t pos; 2459 2460 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2461 if (!ctx) 2462 return -ENOMEM; 2463 2464 ctx->pos = log->last_checkpoint; 2465 ctx->seq = log->last_cp_seq; 2466 INIT_LIST_HEAD(&ctx->cached_list); 2467 ctx->meta_page = alloc_page(GFP_KERNEL); 2468 2469 if (!ctx->meta_page) { 2470 ret = -ENOMEM; 2471 goto meta_page; 2472 } 2473 2474 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2475 ret = -ENOMEM; 2476 goto ra_pool; 2477 } 2478 2479 ret = r5c_recovery_flush_log(log, ctx); 2480 2481 if (ret) 2482 goto error; 2483 2484 pos = ctx->pos; 2485 ctx->seq += 10000; 2486 2487 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2488 pr_info("md/raid:%s: starting from clean shutdown\n", 2489 mdname(mddev)); 2490 else 2491 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2492 mdname(mddev), ctx->data_only_stripes, 2493 ctx->data_parity_stripes); 2494 2495 if (ctx->data_only_stripes == 0) { 2496 log->next_checkpoint = ctx->pos; 2497 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2498 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2499 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2500 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2501 mdname(mddev)); 2502 ret = -EIO; 2503 goto error; 2504 } 2505 2506 log->log_start = ctx->pos; 2507 log->seq = ctx->seq; 2508 log->last_checkpoint = pos; 2509 r5l_write_super(log, pos); 2510 2511 r5c_recovery_flush_data_only_stripes(log, ctx); 2512 ret = 0; 2513 error: 2514 r5l_recovery_free_ra_pool(log, ctx); 2515 ra_pool: 2516 __free_page(ctx->meta_page); 2517 meta_page: 2518 kfree(ctx); 2519 return ret; 2520 } 2521 2522 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2523 { 2524 struct mddev *mddev = log->rdev->mddev; 2525 2526 log->rdev->journal_tail = cp; 2527 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2528 } 2529 2530 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2531 { 2532 struct r5conf *conf; 2533 int ret; 2534 2535 ret = mddev_lock(mddev); 2536 if (ret) 2537 return ret; 2538 2539 conf = mddev->private; 2540 if (!conf || !conf->log) { 2541 mddev_unlock(mddev); 2542 return 0; 2543 } 2544 2545 switch (conf->log->r5c_journal_mode) { 2546 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2547 ret = snprintf( 2548 page, PAGE_SIZE, "[%s] %s\n", 2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2550 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2551 break; 2552 case R5C_JOURNAL_MODE_WRITE_BACK: 2553 ret = snprintf( 2554 page, PAGE_SIZE, "%s [%s]\n", 2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2556 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2557 break; 2558 default: 2559 ret = 0; 2560 } 2561 mddev_unlock(mddev); 2562 return ret; 2563 } 2564 2565 /* 2566 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2567 * 2568 * @mode as defined in 'enum r5c_journal_mode'. 2569 * 2570 */ 2571 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2572 { 2573 struct r5conf *conf; 2574 2575 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2576 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2577 return -EINVAL; 2578 2579 conf = mddev->private; 2580 if (!conf || !conf->log) 2581 return -ENODEV; 2582 2583 if (raid5_calc_degraded(conf) > 0 && 2584 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2585 return -EINVAL; 2586 2587 mddev_suspend(mddev); 2588 conf->log->r5c_journal_mode = mode; 2589 mddev_resume(mddev); 2590 2591 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2592 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2593 return 0; 2594 } 2595 EXPORT_SYMBOL(r5c_journal_mode_set); 2596 2597 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2598 const char *page, size_t length) 2599 { 2600 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2601 size_t len = length; 2602 int ret; 2603 2604 if (len < 2) 2605 return -EINVAL; 2606 2607 if (page[len - 1] == '\n') 2608 len--; 2609 2610 while (mode--) 2611 if (strlen(r5c_journal_mode_str[mode]) == len && 2612 !strncmp(page, r5c_journal_mode_str[mode], len)) 2613 break; 2614 ret = mddev_lock(mddev); 2615 if (ret) 2616 return ret; 2617 ret = r5c_journal_mode_set(mddev, mode); 2618 mddev_unlock(mddev); 2619 return ret ?: length; 2620 } 2621 2622 struct md_sysfs_entry 2623 r5c_journal_mode = __ATTR(journal_mode, 0644, 2624 r5c_journal_mode_show, r5c_journal_mode_store); 2625 2626 /* 2627 * Try handle write operation in caching phase. This function should only 2628 * be called in write-back mode. 2629 * 2630 * If all outstanding writes can be handled in caching phase, returns 0 2631 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2632 * and returns -EAGAIN 2633 */ 2634 int r5c_try_caching_write(struct r5conf *conf, 2635 struct stripe_head *sh, 2636 struct stripe_head_state *s, 2637 int disks) 2638 { 2639 struct r5l_log *log = conf->log; 2640 int i; 2641 struct r5dev *dev; 2642 int to_cache = 0; 2643 void **pslot; 2644 sector_t tree_index; 2645 int ret; 2646 uintptr_t refcount; 2647 2648 BUG_ON(!r5c_is_writeback(log)); 2649 2650 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2651 /* 2652 * There are two different scenarios here: 2653 * 1. The stripe has some data cached, and it is sent to 2654 * write-out phase for reclaim 2655 * 2. The stripe is clean, and this is the first write 2656 * 2657 * For 1, return -EAGAIN, so we continue with 2658 * handle_stripe_dirtying(). 2659 * 2660 * For 2, set STRIPE_R5C_CACHING and continue with caching 2661 * write. 2662 */ 2663 2664 /* case 1: anything injournal or anything in written */ 2665 if (s->injournal > 0 || s->written > 0) 2666 return -EAGAIN; 2667 /* case 2 */ 2668 set_bit(STRIPE_R5C_CACHING, &sh->state); 2669 } 2670 2671 /* 2672 * When run in degraded mode, array is set to write-through mode. 2673 * This check helps drain pending write safely in the transition to 2674 * write-through mode. 2675 * 2676 * When a stripe is syncing, the write is also handled in write 2677 * through mode. 2678 */ 2679 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2680 r5c_make_stripe_write_out(sh); 2681 return -EAGAIN; 2682 } 2683 2684 for (i = disks; i--; ) { 2685 dev = &sh->dev[i]; 2686 /* if non-overwrite, use writing-out phase */ 2687 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2688 !test_bit(R5_InJournal, &dev->flags)) { 2689 r5c_make_stripe_write_out(sh); 2690 return -EAGAIN; 2691 } 2692 } 2693 2694 /* if the stripe is not counted in big_stripe_tree, add it now */ 2695 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2696 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2697 tree_index = r5c_tree_index(conf, sh->sector); 2698 spin_lock(&log->tree_lock); 2699 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2700 tree_index); 2701 if (pslot) { 2702 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2703 pslot, &log->tree_lock) >> 2704 R5C_RADIX_COUNT_SHIFT; 2705 radix_tree_replace_slot( 2706 &log->big_stripe_tree, pslot, 2707 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2708 } else { 2709 /* 2710 * this radix_tree_insert can fail safely, so no 2711 * need to call radix_tree_preload() 2712 */ 2713 ret = radix_tree_insert( 2714 &log->big_stripe_tree, tree_index, 2715 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2716 if (ret) { 2717 spin_unlock(&log->tree_lock); 2718 r5c_make_stripe_write_out(sh); 2719 return -EAGAIN; 2720 } 2721 } 2722 spin_unlock(&log->tree_lock); 2723 2724 /* 2725 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2726 * counted in the radix tree 2727 */ 2728 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2729 atomic_inc(&conf->r5c_cached_partial_stripes); 2730 } 2731 2732 for (i = disks; i--; ) { 2733 dev = &sh->dev[i]; 2734 if (dev->towrite) { 2735 set_bit(R5_Wantwrite, &dev->flags); 2736 set_bit(R5_Wantdrain, &dev->flags); 2737 set_bit(R5_LOCKED, &dev->flags); 2738 to_cache++; 2739 } 2740 } 2741 2742 if (to_cache) { 2743 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2744 /* 2745 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2746 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2747 * r5c_handle_data_cached() 2748 */ 2749 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2750 } 2751 2752 return 0; 2753 } 2754 2755 /* 2756 * free extra pages (orig_page) we allocated for prexor 2757 */ 2758 void r5c_release_extra_page(struct stripe_head *sh) 2759 { 2760 struct r5conf *conf = sh->raid_conf; 2761 int i; 2762 bool using_disk_info_extra_page; 2763 2764 using_disk_info_extra_page = 2765 sh->dev[0].orig_page == conf->disks[0].extra_page; 2766 2767 for (i = sh->disks; i--; ) 2768 if (sh->dev[i].page != sh->dev[i].orig_page) { 2769 struct page *p = sh->dev[i].orig_page; 2770 2771 sh->dev[i].orig_page = sh->dev[i].page; 2772 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2773 2774 if (!using_disk_info_extra_page) 2775 put_page(p); 2776 } 2777 2778 if (using_disk_info_extra_page) { 2779 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2780 md_wakeup_thread(conf->mddev->thread); 2781 } 2782 } 2783 2784 void r5c_use_extra_page(struct stripe_head *sh) 2785 { 2786 struct r5conf *conf = sh->raid_conf; 2787 int i; 2788 struct r5dev *dev; 2789 2790 for (i = sh->disks; i--; ) { 2791 dev = &sh->dev[i]; 2792 if (dev->orig_page != dev->page) 2793 put_page(dev->orig_page); 2794 dev->orig_page = conf->disks[i].extra_page; 2795 } 2796 } 2797 2798 /* 2799 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2800 * stripe is committed to RAID disks. 2801 */ 2802 void r5c_finish_stripe_write_out(struct r5conf *conf, 2803 struct stripe_head *sh, 2804 struct stripe_head_state *s) 2805 { 2806 struct r5l_log *log = conf->log; 2807 int i; 2808 int do_wakeup = 0; 2809 sector_t tree_index; 2810 void **pslot; 2811 uintptr_t refcount; 2812 2813 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2814 return; 2815 2816 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2817 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2818 2819 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2820 return; 2821 2822 for (i = sh->disks; i--; ) { 2823 clear_bit(R5_InJournal, &sh->dev[i].flags); 2824 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2825 do_wakeup = 1; 2826 } 2827 2828 /* 2829 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2830 * We updated R5_InJournal, so we also update s->injournal. 2831 */ 2832 s->injournal = 0; 2833 2834 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2835 if (atomic_dec_and_test(&conf->pending_full_writes)) 2836 md_wakeup_thread(conf->mddev->thread); 2837 2838 if (do_wakeup) 2839 wake_up(&conf->wait_for_overlap); 2840 2841 spin_lock_irq(&log->stripe_in_journal_lock); 2842 list_del_init(&sh->r5c); 2843 spin_unlock_irq(&log->stripe_in_journal_lock); 2844 sh->log_start = MaxSector; 2845 2846 atomic_dec(&log->stripe_in_journal_count); 2847 r5c_update_log_state(log); 2848 2849 /* stop counting this stripe in big_stripe_tree */ 2850 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2851 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2852 tree_index = r5c_tree_index(conf, sh->sector); 2853 spin_lock(&log->tree_lock); 2854 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2855 tree_index); 2856 BUG_ON(pslot == NULL); 2857 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2858 pslot, &log->tree_lock) >> 2859 R5C_RADIX_COUNT_SHIFT; 2860 if (refcount == 1) 2861 radix_tree_delete(&log->big_stripe_tree, tree_index); 2862 else 2863 radix_tree_replace_slot( 2864 &log->big_stripe_tree, pslot, 2865 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2866 spin_unlock(&log->tree_lock); 2867 } 2868 2869 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2870 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2871 atomic_dec(&conf->r5c_flushing_partial_stripes); 2872 atomic_dec(&conf->r5c_cached_partial_stripes); 2873 } 2874 2875 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2876 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2877 atomic_dec(&conf->r5c_flushing_full_stripes); 2878 atomic_dec(&conf->r5c_cached_full_stripes); 2879 } 2880 2881 r5l_append_flush_payload(log, sh->sector); 2882 /* stripe is flused to raid disks, we can do resync now */ 2883 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2884 set_bit(STRIPE_HANDLE, &sh->state); 2885 } 2886 2887 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2888 { 2889 struct r5conf *conf = sh->raid_conf; 2890 int pages = 0; 2891 int reserve; 2892 int i; 2893 int ret = 0; 2894 2895 BUG_ON(!log); 2896 2897 for (i = 0; i < sh->disks; i++) { 2898 void *addr; 2899 2900 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2901 continue; 2902 addr = kmap_atomic(sh->dev[i].page); 2903 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2904 addr, PAGE_SIZE); 2905 kunmap_atomic(addr); 2906 pages++; 2907 } 2908 WARN_ON(pages == 0); 2909 2910 /* 2911 * The stripe must enter state machine again to call endio, so 2912 * don't delay. 2913 */ 2914 clear_bit(STRIPE_DELAYED, &sh->state); 2915 atomic_inc(&sh->count); 2916 2917 mutex_lock(&log->io_mutex); 2918 /* meta + data */ 2919 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2920 2921 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2922 sh->log_start == MaxSector) 2923 r5l_add_no_space_stripe(log, sh); 2924 else if (!r5l_has_free_space(log, reserve)) { 2925 if (sh->log_start == log->last_checkpoint) 2926 BUG(); 2927 else 2928 r5l_add_no_space_stripe(log, sh); 2929 } else { 2930 ret = r5l_log_stripe(log, sh, pages, 0); 2931 if (ret) { 2932 spin_lock_irq(&log->io_list_lock); 2933 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2934 spin_unlock_irq(&log->io_list_lock); 2935 } 2936 } 2937 2938 mutex_unlock(&log->io_mutex); 2939 return 0; 2940 } 2941 2942 /* check whether this big stripe is in write back cache. */ 2943 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2944 { 2945 struct r5l_log *log = conf->log; 2946 sector_t tree_index; 2947 void *slot; 2948 2949 if (!log) 2950 return false; 2951 2952 WARN_ON_ONCE(!rcu_read_lock_held()); 2953 tree_index = r5c_tree_index(conf, sect); 2954 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2955 return slot != NULL; 2956 } 2957 2958 static int r5l_load_log(struct r5l_log *log) 2959 { 2960 struct md_rdev *rdev = log->rdev; 2961 struct page *page; 2962 struct r5l_meta_block *mb; 2963 sector_t cp = log->rdev->journal_tail; 2964 u32 stored_crc, expected_crc; 2965 bool create_super = false; 2966 int ret = 0; 2967 2968 /* Make sure it's valid */ 2969 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2970 cp = 0; 2971 page = alloc_page(GFP_KERNEL); 2972 if (!page) 2973 return -ENOMEM; 2974 2975 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2976 ret = -EIO; 2977 goto ioerr; 2978 } 2979 mb = page_address(page); 2980 2981 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2982 mb->version != R5LOG_VERSION) { 2983 create_super = true; 2984 goto create; 2985 } 2986 stored_crc = le32_to_cpu(mb->checksum); 2987 mb->checksum = 0; 2988 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2989 if (stored_crc != expected_crc) { 2990 create_super = true; 2991 goto create; 2992 } 2993 if (le64_to_cpu(mb->position) != cp) { 2994 create_super = true; 2995 goto create; 2996 } 2997 create: 2998 if (create_super) { 2999 log->last_cp_seq = prandom_u32(); 3000 cp = 0; 3001 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3002 /* 3003 * Make sure super points to correct address. Log might have 3004 * data very soon. If super hasn't correct log tail address, 3005 * recovery can't find the log 3006 */ 3007 r5l_write_super(log, cp); 3008 } else 3009 log->last_cp_seq = le64_to_cpu(mb->seq); 3010 3011 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3012 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3013 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3014 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3015 log->last_checkpoint = cp; 3016 3017 __free_page(page); 3018 3019 if (create_super) { 3020 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3021 log->seq = log->last_cp_seq + 1; 3022 log->next_checkpoint = cp; 3023 } else 3024 ret = r5l_recovery_log(log); 3025 3026 r5c_update_log_state(log); 3027 return ret; 3028 ioerr: 3029 __free_page(page); 3030 return ret; 3031 } 3032 3033 int r5l_start(struct r5l_log *log) 3034 { 3035 int ret; 3036 3037 if (!log) 3038 return 0; 3039 3040 ret = r5l_load_log(log); 3041 if (ret) { 3042 struct mddev *mddev = log->rdev->mddev; 3043 struct r5conf *conf = mddev->private; 3044 3045 r5l_exit_log(conf); 3046 } 3047 return ret; 3048 } 3049 3050 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3051 { 3052 struct r5conf *conf = mddev->private; 3053 struct r5l_log *log = conf->log; 3054 3055 if (!log) 3056 return; 3057 3058 if ((raid5_calc_degraded(conf) > 0 || 3059 test_bit(Journal, &rdev->flags)) && 3060 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3061 schedule_work(&log->disable_writeback_work); 3062 } 3063 3064 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3065 { 3066 struct request_queue *q = bdev_get_queue(rdev->bdev); 3067 struct r5l_log *log; 3068 char b[BDEVNAME_SIZE]; 3069 int ret; 3070 3071 pr_debug("md/raid:%s: using device %s as journal\n", 3072 mdname(conf->mddev), bdevname(rdev->bdev, b)); 3073 3074 if (PAGE_SIZE != 4096) 3075 return -EINVAL; 3076 3077 /* 3078 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3079 * raid_disks r5l_payload_data_parity. 3080 * 3081 * Write journal and cache does not work for very big array 3082 * (raid_disks > 203) 3083 */ 3084 if (sizeof(struct r5l_meta_block) + 3085 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3086 conf->raid_disks) > PAGE_SIZE) { 3087 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3088 mdname(conf->mddev), conf->raid_disks); 3089 return -EINVAL; 3090 } 3091 3092 log = kzalloc(sizeof(*log), GFP_KERNEL); 3093 if (!log) 3094 return -ENOMEM; 3095 log->rdev = rdev; 3096 3097 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3098 3099 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3100 sizeof(rdev->mddev->uuid)); 3101 3102 mutex_init(&log->io_mutex); 3103 3104 spin_lock_init(&log->io_list_lock); 3105 INIT_LIST_HEAD(&log->running_ios); 3106 INIT_LIST_HEAD(&log->io_end_ios); 3107 INIT_LIST_HEAD(&log->flushing_ios); 3108 INIT_LIST_HEAD(&log->finished_ios); 3109 bio_init(&log->flush_bio, NULL, 0); 3110 3111 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3112 if (!log->io_kc) 3113 goto io_kc; 3114 3115 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); 3116 if (ret) 3117 goto io_pool; 3118 3119 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3120 if (ret) 3121 goto io_bs; 3122 3123 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); 3124 if (ret) 3125 goto out_mempool; 3126 3127 spin_lock_init(&log->tree_lock); 3128 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3129 3130 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3131 log->rdev->mddev, "reclaim"); 3132 if (!log->reclaim_thread) 3133 goto reclaim_thread; 3134 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3135 3136 init_waitqueue_head(&log->iounit_wait); 3137 3138 INIT_LIST_HEAD(&log->no_mem_stripes); 3139 3140 INIT_LIST_HEAD(&log->no_space_stripes); 3141 spin_lock_init(&log->no_space_stripes_lock); 3142 3143 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3144 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3145 3146 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3147 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3148 spin_lock_init(&log->stripe_in_journal_lock); 3149 atomic_set(&log->stripe_in_journal_count, 0); 3150 3151 rcu_assign_pointer(conf->log, log); 3152 3153 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3154 return 0; 3155 3156 reclaim_thread: 3157 mempool_exit(&log->meta_pool); 3158 out_mempool: 3159 bioset_exit(&log->bs); 3160 io_bs: 3161 mempool_exit(&log->io_pool); 3162 io_pool: 3163 kmem_cache_destroy(log->io_kc); 3164 io_kc: 3165 kfree(log); 3166 return -EINVAL; 3167 } 3168 3169 void r5l_exit_log(struct r5conf *conf) 3170 { 3171 struct r5l_log *log = conf->log; 3172 3173 conf->log = NULL; 3174 synchronize_rcu(); 3175 3176 /* Ensure disable_writeback_work wakes up and exits */ 3177 wake_up(&conf->mddev->sb_wait); 3178 flush_work(&log->disable_writeback_work); 3179 md_unregister_thread(&log->reclaim_thread); 3180 mempool_exit(&log->meta_pool); 3181 bioset_exit(&log->bs); 3182 mempool_exit(&log->io_pool); 3183 kmem_cache_destroy(log->io_kc); 3184 kfree(log); 3185 } 3186