xref: /openbmc/linux/drivers/md/raid5-cache.c (revision 7e6f7d24)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "md-bitmap.h"
27 #include "raid5-log.h"
28 
29 /*
30  * metadata/data stored in disk with 4k size unit (a block) regardless
31  * underneath hardware sector size. only works with PAGE_SIZE == 4096
32  */
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
35 
36 /*
37  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
38  *
39  * In write through mode, the reclaim runs every log->max_free_space.
40  * This can prevent the recovery scans for too long
41  */
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
44 
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51 
52 /*
53  * We only need 2 bios per I/O unit to make progress, but ensure we
54  * have a few more available to not get too tight.
55  */
56 #define R5L_POOL_SIZE	4
57 
58 static char *r5c_journal_mode_str[] = {"write-through",
59 				       "write-back"};
60 /*
61  * raid5 cache state machine
62  *
63  * With the RAID cache, each stripe works in two phases:
64  *	- caching phase
65  *	- writing-out phase
66  *
67  * These two phases are controlled by bit STRIPE_R5C_CACHING:
68  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
70  *
71  * When there is no journal, or the journal is in write-through mode,
72  * the stripe is always in writing-out phase.
73  *
74  * For write-back journal, the stripe is sent to caching phase on write
75  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76  * the write-out phase by clearing STRIPE_R5C_CACHING.
77  *
78  * Stripes in caching phase do not write the raid disks. Instead, all
79  * writes are committed from the log device. Therefore, a stripe in
80  * caching phase handles writes as:
81  *	- write to log device
82  *	- return IO
83  *
84  * Stripes in writing-out phase handle writes as:
85  *	- calculate parity
86  *	- write pending data and parity to journal
87  *	- write data and parity to raid disks
88  *	- return IO for pending writes
89  */
90 
91 struct r5l_log {
92 	struct md_rdev *rdev;
93 
94 	u32 uuid_checksum;
95 
96 	sector_t device_size;		/* log device size, round to
97 					 * BLOCK_SECTORS */
98 	sector_t max_free_space;	/* reclaim run if free space is at
99 					 * this size */
100 
101 	sector_t last_checkpoint;	/* log tail. where recovery scan
102 					 * starts from */
103 	u64 last_cp_seq;		/* log tail sequence */
104 
105 	sector_t log_start;		/* log head. where new data appends */
106 	u64 seq;			/* log head sequence */
107 
108 	sector_t next_checkpoint;
109 
110 	struct mutex io_mutex;
111 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
112 
113 	spinlock_t io_list_lock;
114 	struct list_head running_ios;	/* io_units which are still running,
115 					 * and have not yet been completely
116 					 * written to the log */
117 	struct list_head io_end_ios;	/* io_units which have been completely
118 					 * written to the log but not yet written
119 					 * to the RAID */
120 	struct list_head flushing_ios;	/* io_units which are waiting for log
121 					 * cache flush */
122 	struct list_head finished_ios;	/* io_units which settle down in log disk */
123 	struct bio flush_bio;
124 
125 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
126 
127 	struct kmem_cache *io_kc;
128 	mempool_t io_pool;
129 	struct bio_set bs;
130 	mempool_t meta_pool;
131 
132 	struct md_thread *reclaim_thread;
133 	unsigned long reclaim_target;	/* number of space that need to be
134 					 * reclaimed.  if it's 0, reclaim spaces
135 					 * used by io_units which are in
136 					 * IO_UNIT_STRIPE_END state (eg, reclaim
137 					 * dones't wait for specific io_unit
138 					 * switching to IO_UNIT_STRIPE_END
139 					 * state) */
140 	wait_queue_head_t iounit_wait;
141 
142 	struct list_head no_space_stripes; /* pending stripes, log has no space */
143 	spinlock_t no_space_stripes_lock;
144 
145 	bool need_cache_flush;
146 
147 	/* for r5c_cache */
148 	enum r5c_journal_mode r5c_journal_mode;
149 
150 	/* all stripes in r5cache, in the order of seq at sh->log_start */
151 	struct list_head stripe_in_journal_list;
152 
153 	spinlock_t stripe_in_journal_lock;
154 	atomic_t stripe_in_journal_count;
155 
156 	/* to submit async io_units, to fulfill ordering of flush */
157 	struct work_struct deferred_io_work;
158 	/* to disable write back during in degraded mode */
159 	struct work_struct disable_writeback_work;
160 
161 	/* to for chunk_aligned_read in writeback mode, details below */
162 	spinlock_t tree_lock;
163 	struct radix_tree_root big_stripe_tree;
164 };
165 
166 /*
167  * Enable chunk_aligned_read() with write back cache.
168  *
169  * Each chunk may contain more than one stripe (for example, a 256kB
170  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172  * For each big_stripe, we count how many stripes of this big_stripe
173  * are in the write back cache. These data are tracked in a radix tree
174  * (big_stripe_tree). We use radix_tree item pointer as the counter.
175  * r5c_tree_index() is used to calculate keys for the radix tree.
176  *
177  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178  * big_stripe of each chunk in the tree. If this big_stripe is in the
179  * tree, chunk_aligned_read() aborts. This look up is protected by
180  * rcu_read_lock().
181  *
182  * It is necessary to remember whether a stripe is counted in
183  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185  * two flags are set, the stripe is counted in big_stripe_tree. This
186  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187  * r5c_try_caching_write(); and moving clear_bit of
188  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189  * r5c_finish_stripe_write_out().
190  */
191 
192 /*
193  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194  * So it is necessary to left shift the counter by 2 bits before using it
195  * as data pointer of the tree.
196  */
197 #define R5C_RADIX_COUNT_SHIFT 2
198 
199 /*
200  * calculate key for big_stripe_tree
201  *
202  * sect: align_bi->bi_iter.bi_sector or sh->sector
203  */
204 static inline sector_t r5c_tree_index(struct r5conf *conf,
205 				      sector_t sect)
206 {
207 	sector_t offset;
208 
209 	offset = sector_div(sect, conf->chunk_sectors);
210 	return sect;
211 }
212 
213 /*
214  * an IO range starts from a meta data block and end at the next meta data
215  * block. The io unit's the meta data block tracks data/parity followed it. io
216  * unit is written to log disk with normal write, as we always flush log disk
217  * first and then start move data to raid disks, there is no requirement to
218  * write io unit with FLUSH/FUA
219  */
220 struct r5l_io_unit {
221 	struct r5l_log *log;
222 
223 	struct page *meta_page;	/* store meta block */
224 	int meta_offset;	/* current offset in meta_page */
225 
226 	struct bio *current_bio;/* current_bio accepting new data */
227 
228 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
229 	u64 seq;		/* seq number of the metablock */
230 	sector_t log_start;	/* where the io_unit starts */
231 	sector_t log_end;	/* where the io_unit ends */
232 	struct list_head log_sibling; /* log->running_ios */
233 	struct list_head stripe_list; /* stripes added to the io_unit */
234 
235 	int state;
236 	bool need_split_bio;
237 	struct bio *split_bio;
238 
239 	unsigned int has_flush:1;		/* include flush request */
240 	unsigned int has_fua:1;			/* include fua request */
241 	unsigned int has_null_flush:1;		/* include null flush request */
242 	unsigned int has_flush_payload:1;	/* include flush payload  */
243 	/*
244 	 * io isn't sent yet, flush/fua request can only be submitted till it's
245 	 * the first IO in running_ios list
246 	 */
247 	unsigned int io_deferred:1;
248 
249 	struct bio_list flush_barriers;   /* size == 0 flush bios */
250 };
251 
252 /* r5l_io_unit state */
253 enum r5l_io_unit_state {
254 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
255 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
256 				 * don't accepting new bio */
257 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
258 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
259 };
260 
261 bool r5c_is_writeback(struct r5l_log *log)
262 {
263 	return (log != NULL &&
264 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
265 }
266 
267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
268 {
269 	start += inc;
270 	if (start >= log->device_size)
271 		start = start - log->device_size;
272 	return start;
273 }
274 
275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
276 				  sector_t end)
277 {
278 	if (end >= start)
279 		return end - start;
280 	else
281 		return end + log->device_size - start;
282 }
283 
284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
285 {
286 	sector_t used_size;
287 
288 	used_size = r5l_ring_distance(log, log->last_checkpoint,
289 					log->log_start);
290 
291 	return log->device_size > used_size + size;
292 }
293 
294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
295 				    enum r5l_io_unit_state state)
296 {
297 	if (WARN_ON(io->state >= state))
298 		return;
299 	io->state = state;
300 }
301 
302 static void
303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
304 {
305 	struct bio *wbi, *wbi2;
306 
307 	wbi = dev->written;
308 	dev->written = NULL;
309 	while (wbi && wbi->bi_iter.bi_sector <
310 	       dev->sector + STRIPE_SECTORS) {
311 		wbi2 = r5_next_bio(wbi, dev->sector);
312 		md_write_end(conf->mddev);
313 		bio_endio(wbi);
314 		wbi = wbi2;
315 	}
316 }
317 
318 void r5c_handle_cached_data_endio(struct r5conf *conf,
319 				  struct stripe_head *sh, int disks)
320 {
321 	int i;
322 
323 	for (i = sh->disks; i--; ) {
324 		if (sh->dev[i].written) {
325 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
326 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
327 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
328 					STRIPE_SECTORS,
329 					!test_bit(STRIPE_DEGRADED, &sh->state),
330 					0);
331 		}
332 	}
333 }
334 
335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
336 
337 /* Check whether we should flush some stripes to free up stripe cache */
338 void r5c_check_stripe_cache_usage(struct r5conf *conf)
339 {
340 	int total_cached;
341 
342 	if (!r5c_is_writeback(conf->log))
343 		return;
344 
345 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
346 		atomic_read(&conf->r5c_cached_full_stripes);
347 
348 	/*
349 	 * The following condition is true for either of the following:
350 	 *   - stripe cache pressure high:
351 	 *          total_cached > 3/4 min_nr_stripes ||
352 	 *          empty_inactive_list_nr > 0
353 	 *   - stripe cache pressure moderate:
354 	 *          total_cached > 1/2 min_nr_stripes
355 	 */
356 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
357 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
358 		r5l_wake_reclaim(conf->log, 0);
359 }
360 
361 /*
362  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
363  * stripes in the cache
364  */
365 void r5c_check_cached_full_stripe(struct r5conf *conf)
366 {
367 	if (!r5c_is_writeback(conf->log))
368 		return;
369 
370 	/*
371 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
372 	 * or a full stripe (chunk size / 4k stripes).
373 	 */
374 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
375 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
376 		conf->chunk_sectors >> STRIPE_SHIFT))
377 		r5l_wake_reclaim(conf->log, 0);
378 }
379 
380 /*
381  * Total log space (in sectors) needed to flush all data in cache
382  *
383  * To avoid deadlock due to log space, it is necessary to reserve log
384  * space to flush critical stripes (stripes that occupying log space near
385  * last_checkpoint). This function helps check how much log space is
386  * required to flush all cached stripes.
387  *
388  * To reduce log space requirements, two mechanisms are used to give cache
389  * flush higher priorities:
390  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
391  *       stripes ALREADY in journal can be flushed w/o pending writes;
392  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
393  *       can be delayed (r5l_add_no_space_stripe).
394  *
395  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
396  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
397  * pages of journal space. For stripes that has not passed 1, flushing it
398  * requires (conf->raid_disks + 1) pages of journal space. There are at
399  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
400  * required to flush all cached stripes (in pages) is:
401  *
402  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
403  *     (group_cnt + 1) * (raid_disks + 1)
404  * or
405  *     (stripe_in_journal_count) * (max_degraded + 1) +
406  *     (group_cnt + 1) * (raid_disks - max_degraded)
407  */
408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
409 {
410 	struct r5l_log *log = conf->log;
411 
412 	if (!r5c_is_writeback(log))
413 		return 0;
414 
415 	return BLOCK_SECTORS *
416 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
417 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
418 }
419 
420 /*
421  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
422  *
423  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
424  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
425  * device is less than 2x of reclaim_required_space.
426  */
427 static inline void r5c_update_log_state(struct r5l_log *log)
428 {
429 	struct r5conf *conf = log->rdev->mddev->private;
430 	sector_t free_space;
431 	sector_t reclaim_space;
432 	bool wake_reclaim = false;
433 
434 	if (!r5c_is_writeback(log))
435 		return;
436 
437 	free_space = r5l_ring_distance(log, log->log_start,
438 				       log->last_checkpoint);
439 	reclaim_space = r5c_log_required_to_flush_cache(conf);
440 	if (free_space < 2 * reclaim_space)
441 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
442 	else {
443 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
444 			wake_reclaim = true;
445 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
446 	}
447 	if (free_space < 3 * reclaim_space)
448 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
449 	else
450 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
451 
452 	if (wake_reclaim)
453 		r5l_wake_reclaim(log, 0);
454 }
455 
456 /*
457  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
458  * This function should only be called in write-back mode.
459  */
460 void r5c_make_stripe_write_out(struct stripe_head *sh)
461 {
462 	struct r5conf *conf = sh->raid_conf;
463 	struct r5l_log *log = conf->log;
464 
465 	BUG_ON(!r5c_is_writeback(log));
466 
467 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
468 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
469 
470 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
471 		atomic_inc(&conf->preread_active_stripes);
472 }
473 
474 static void r5c_handle_data_cached(struct stripe_head *sh)
475 {
476 	int i;
477 
478 	for (i = sh->disks; i--; )
479 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
480 			set_bit(R5_InJournal, &sh->dev[i].flags);
481 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
482 		}
483 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
484 }
485 
486 /*
487  * this journal write must contain full parity,
488  * it may also contain some data pages
489  */
490 static void r5c_handle_parity_cached(struct stripe_head *sh)
491 {
492 	int i;
493 
494 	for (i = sh->disks; i--; )
495 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
496 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
497 }
498 
499 /*
500  * Setting proper flags after writing (or flushing) data and/or parity to the
501  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
502  */
503 static void r5c_finish_cache_stripe(struct stripe_head *sh)
504 {
505 	struct r5l_log *log = sh->raid_conf->log;
506 
507 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
508 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
509 		/*
510 		 * Set R5_InJournal for parity dev[pd_idx]. This means
511 		 * all data AND parity in the journal. For RAID 6, it is
512 		 * NOT necessary to set the flag for dev[qd_idx], as the
513 		 * two parities are written out together.
514 		 */
515 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
516 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
517 		r5c_handle_data_cached(sh);
518 	} else {
519 		r5c_handle_parity_cached(sh);
520 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
521 	}
522 }
523 
524 static void r5l_io_run_stripes(struct r5l_io_unit *io)
525 {
526 	struct stripe_head *sh, *next;
527 
528 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
529 		list_del_init(&sh->log_list);
530 
531 		r5c_finish_cache_stripe(sh);
532 
533 		set_bit(STRIPE_HANDLE, &sh->state);
534 		raid5_release_stripe(sh);
535 	}
536 }
537 
538 static void r5l_log_run_stripes(struct r5l_log *log)
539 {
540 	struct r5l_io_unit *io, *next;
541 
542 	lockdep_assert_held(&log->io_list_lock);
543 
544 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
545 		/* don't change list order */
546 		if (io->state < IO_UNIT_IO_END)
547 			break;
548 
549 		list_move_tail(&io->log_sibling, &log->finished_ios);
550 		r5l_io_run_stripes(io);
551 	}
552 }
553 
554 static void r5l_move_to_end_ios(struct r5l_log *log)
555 {
556 	struct r5l_io_unit *io, *next;
557 
558 	lockdep_assert_held(&log->io_list_lock);
559 
560 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
561 		/* don't change list order */
562 		if (io->state < IO_UNIT_IO_END)
563 			break;
564 		list_move_tail(&io->log_sibling, &log->io_end_ios);
565 	}
566 }
567 
568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
569 static void r5l_log_endio(struct bio *bio)
570 {
571 	struct r5l_io_unit *io = bio->bi_private;
572 	struct r5l_io_unit *io_deferred;
573 	struct r5l_log *log = io->log;
574 	unsigned long flags;
575 	bool has_null_flush;
576 	bool has_flush_payload;
577 
578 	if (bio->bi_status)
579 		md_error(log->rdev->mddev, log->rdev);
580 
581 	bio_put(bio);
582 	mempool_free(io->meta_page, &log->meta_pool);
583 
584 	spin_lock_irqsave(&log->io_list_lock, flags);
585 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
586 
587 	/*
588 	 * if the io doesn't not have null_flush or flush payload,
589 	 * it is not safe to access it after releasing io_list_lock.
590 	 * Therefore, it is necessary to check the condition with
591 	 * the lock held.
592 	 */
593 	has_null_flush = io->has_null_flush;
594 	has_flush_payload = io->has_flush_payload;
595 
596 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
597 		r5l_move_to_end_ios(log);
598 	else
599 		r5l_log_run_stripes(log);
600 	if (!list_empty(&log->running_ios)) {
601 		/*
602 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
603 		 * can dispatch it
604 		 */
605 		io_deferred = list_first_entry(&log->running_ios,
606 					       struct r5l_io_unit, log_sibling);
607 		if (io_deferred->io_deferred)
608 			schedule_work(&log->deferred_io_work);
609 	}
610 
611 	spin_unlock_irqrestore(&log->io_list_lock, flags);
612 
613 	if (log->need_cache_flush)
614 		md_wakeup_thread(log->rdev->mddev->thread);
615 
616 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
617 	if (has_null_flush) {
618 		struct bio *bi;
619 
620 		WARN_ON(bio_list_empty(&io->flush_barriers));
621 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
622 			bio_endio(bi);
623 			if (atomic_dec_and_test(&io->pending_stripe)) {
624 				__r5l_stripe_write_finished(io);
625 				return;
626 			}
627 		}
628 	}
629 	/* decrease pending_stripe for flush payload */
630 	if (has_flush_payload)
631 		if (atomic_dec_and_test(&io->pending_stripe))
632 			__r5l_stripe_write_finished(io);
633 }
634 
635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
636 {
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&log->io_list_lock, flags);
640 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
641 	spin_unlock_irqrestore(&log->io_list_lock, flags);
642 
643 	/*
644 	 * In case of journal device failures, submit_bio will get error
645 	 * and calls endio, then active stripes will continue write
646 	 * process. Therefore, it is not necessary to check Faulty bit
647 	 * of journal device here.
648 	 *
649 	 * We can't check split_bio after current_bio is submitted. If
650 	 * io->split_bio is null, after current_bio is submitted, current_bio
651 	 * might already be completed and the io_unit is freed. We submit
652 	 * split_bio first to avoid the issue.
653 	 */
654 	if (io->split_bio) {
655 		if (io->has_flush)
656 			io->split_bio->bi_opf |= REQ_PREFLUSH;
657 		if (io->has_fua)
658 			io->split_bio->bi_opf |= REQ_FUA;
659 		submit_bio(io->split_bio);
660 	}
661 
662 	if (io->has_flush)
663 		io->current_bio->bi_opf |= REQ_PREFLUSH;
664 	if (io->has_fua)
665 		io->current_bio->bi_opf |= REQ_FUA;
666 	submit_bio(io->current_bio);
667 }
668 
669 /* deferred io_unit will be dispatched here */
670 static void r5l_submit_io_async(struct work_struct *work)
671 {
672 	struct r5l_log *log = container_of(work, struct r5l_log,
673 					   deferred_io_work);
674 	struct r5l_io_unit *io = NULL;
675 	unsigned long flags;
676 
677 	spin_lock_irqsave(&log->io_list_lock, flags);
678 	if (!list_empty(&log->running_ios)) {
679 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
680 				      log_sibling);
681 		if (!io->io_deferred)
682 			io = NULL;
683 		else
684 			io->io_deferred = 0;
685 	}
686 	spin_unlock_irqrestore(&log->io_list_lock, flags);
687 	if (io)
688 		r5l_do_submit_io(log, io);
689 }
690 
691 static void r5c_disable_writeback_async(struct work_struct *work)
692 {
693 	struct r5l_log *log = container_of(work, struct r5l_log,
694 					   disable_writeback_work);
695 	struct mddev *mddev = log->rdev->mddev;
696 	struct r5conf *conf = mddev->private;
697 	int locked = 0;
698 
699 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
700 		return;
701 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
702 		mdname(mddev));
703 
704 	/* wait superblock change before suspend */
705 	wait_event(mddev->sb_wait,
706 		   conf->log == NULL ||
707 		   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
708 		    (locked = mddev_trylock(mddev))));
709 	if (locked) {
710 		mddev_suspend(mddev);
711 		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
712 		mddev_resume(mddev);
713 		mddev_unlock(mddev);
714 	}
715 }
716 
717 static void r5l_submit_current_io(struct r5l_log *log)
718 {
719 	struct r5l_io_unit *io = log->current_io;
720 	struct bio *bio;
721 	struct r5l_meta_block *block;
722 	unsigned long flags;
723 	u32 crc;
724 	bool do_submit = true;
725 
726 	if (!io)
727 		return;
728 
729 	block = page_address(io->meta_page);
730 	block->meta_size = cpu_to_le32(io->meta_offset);
731 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
732 	block->checksum = cpu_to_le32(crc);
733 	bio = io->current_bio;
734 
735 	log->current_io = NULL;
736 	spin_lock_irqsave(&log->io_list_lock, flags);
737 	if (io->has_flush || io->has_fua) {
738 		if (io != list_first_entry(&log->running_ios,
739 					   struct r5l_io_unit, log_sibling)) {
740 			io->io_deferred = 1;
741 			do_submit = false;
742 		}
743 	}
744 	spin_unlock_irqrestore(&log->io_list_lock, flags);
745 	if (do_submit)
746 		r5l_do_submit_io(log, io);
747 }
748 
749 static struct bio *r5l_bio_alloc(struct r5l_log *log)
750 {
751 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, &log->bs);
752 
753 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
754 	bio_set_dev(bio, log->rdev->bdev);
755 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
756 
757 	return bio;
758 }
759 
760 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
761 {
762 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
763 
764 	r5c_update_log_state(log);
765 	/*
766 	 * If we filled up the log device start from the beginning again,
767 	 * which will require a new bio.
768 	 *
769 	 * Note: for this to work properly the log size needs to me a multiple
770 	 * of BLOCK_SECTORS.
771 	 */
772 	if (log->log_start == 0)
773 		io->need_split_bio = true;
774 
775 	io->log_end = log->log_start;
776 }
777 
778 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
779 {
780 	struct r5l_io_unit *io;
781 	struct r5l_meta_block *block;
782 
783 	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
784 	if (!io)
785 		return NULL;
786 	memset(io, 0, sizeof(*io));
787 
788 	io->log = log;
789 	INIT_LIST_HEAD(&io->log_sibling);
790 	INIT_LIST_HEAD(&io->stripe_list);
791 	bio_list_init(&io->flush_barriers);
792 	io->state = IO_UNIT_RUNNING;
793 
794 	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
795 	block = page_address(io->meta_page);
796 	clear_page(block);
797 	block->magic = cpu_to_le32(R5LOG_MAGIC);
798 	block->version = R5LOG_VERSION;
799 	block->seq = cpu_to_le64(log->seq);
800 	block->position = cpu_to_le64(log->log_start);
801 
802 	io->log_start = log->log_start;
803 	io->meta_offset = sizeof(struct r5l_meta_block);
804 	io->seq = log->seq++;
805 
806 	io->current_bio = r5l_bio_alloc(log);
807 	io->current_bio->bi_end_io = r5l_log_endio;
808 	io->current_bio->bi_private = io;
809 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
810 
811 	r5_reserve_log_entry(log, io);
812 
813 	spin_lock_irq(&log->io_list_lock);
814 	list_add_tail(&io->log_sibling, &log->running_ios);
815 	spin_unlock_irq(&log->io_list_lock);
816 
817 	return io;
818 }
819 
820 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
821 {
822 	if (log->current_io &&
823 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
824 		r5l_submit_current_io(log);
825 
826 	if (!log->current_io) {
827 		log->current_io = r5l_new_meta(log);
828 		if (!log->current_io)
829 			return -ENOMEM;
830 	}
831 
832 	return 0;
833 }
834 
835 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
836 				    sector_t location,
837 				    u32 checksum1, u32 checksum2,
838 				    bool checksum2_valid)
839 {
840 	struct r5l_io_unit *io = log->current_io;
841 	struct r5l_payload_data_parity *payload;
842 
843 	payload = page_address(io->meta_page) + io->meta_offset;
844 	payload->header.type = cpu_to_le16(type);
845 	payload->header.flags = cpu_to_le16(0);
846 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
847 				    (PAGE_SHIFT - 9));
848 	payload->location = cpu_to_le64(location);
849 	payload->checksum[0] = cpu_to_le32(checksum1);
850 	if (checksum2_valid)
851 		payload->checksum[1] = cpu_to_le32(checksum2);
852 
853 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
854 		sizeof(__le32) * (1 + !!checksum2_valid);
855 }
856 
857 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
858 {
859 	struct r5l_io_unit *io = log->current_io;
860 
861 	if (io->need_split_bio) {
862 		BUG_ON(io->split_bio);
863 		io->split_bio = io->current_bio;
864 		io->current_bio = r5l_bio_alloc(log);
865 		bio_chain(io->current_bio, io->split_bio);
866 		io->need_split_bio = false;
867 	}
868 
869 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
870 		BUG();
871 
872 	r5_reserve_log_entry(log, io);
873 }
874 
875 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
876 {
877 	struct mddev *mddev = log->rdev->mddev;
878 	struct r5conf *conf = mddev->private;
879 	struct r5l_io_unit *io;
880 	struct r5l_payload_flush *payload;
881 	int meta_size;
882 
883 	/*
884 	 * payload_flush requires extra writes to the journal.
885 	 * To avoid handling the extra IO in quiesce, just skip
886 	 * flush_payload
887 	 */
888 	if (conf->quiesce)
889 		return;
890 
891 	mutex_lock(&log->io_mutex);
892 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
893 
894 	if (r5l_get_meta(log, meta_size)) {
895 		mutex_unlock(&log->io_mutex);
896 		return;
897 	}
898 
899 	/* current implementation is one stripe per flush payload */
900 	io = log->current_io;
901 	payload = page_address(io->meta_page) + io->meta_offset;
902 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
903 	payload->header.flags = cpu_to_le16(0);
904 	payload->size = cpu_to_le32(sizeof(__le64));
905 	payload->flush_stripes[0] = cpu_to_le64(sect);
906 	io->meta_offset += meta_size;
907 	/* multiple flush payloads count as one pending_stripe */
908 	if (!io->has_flush_payload) {
909 		io->has_flush_payload = 1;
910 		atomic_inc(&io->pending_stripe);
911 	}
912 	mutex_unlock(&log->io_mutex);
913 }
914 
915 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
916 			   int data_pages, int parity_pages)
917 {
918 	int i;
919 	int meta_size;
920 	int ret;
921 	struct r5l_io_unit *io;
922 
923 	meta_size =
924 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
925 		 * data_pages) +
926 		sizeof(struct r5l_payload_data_parity) +
927 		sizeof(__le32) * parity_pages;
928 
929 	ret = r5l_get_meta(log, meta_size);
930 	if (ret)
931 		return ret;
932 
933 	io = log->current_io;
934 
935 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
936 		io->has_flush = 1;
937 
938 	for (i = 0; i < sh->disks; i++) {
939 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
940 		    test_bit(R5_InJournal, &sh->dev[i].flags))
941 			continue;
942 		if (i == sh->pd_idx || i == sh->qd_idx)
943 			continue;
944 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
945 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
946 			io->has_fua = 1;
947 			/*
948 			 * we need to flush journal to make sure recovery can
949 			 * reach the data with fua flag
950 			 */
951 			io->has_flush = 1;
952 		}
953 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
954 					raid5_compute_blocknr(sh, i, 0),
955 					sh->dev[i].log_checksum, 0, false);
956 		r5l_append_payload_page(log, sh->dev[i].page);
957 	}
958 
959 	if (parity_pages == 2) {
960 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
961 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
962 					sh->dev[sh->qd_idx].log_checksum, true);
963 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
964 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
965 	} else if (parity_pages == 1) {
966 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
967 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
968 					0, false);
969 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
970 	} else  /* Just writing data, not parity, in caching phase */
971 		BUG_ON(parity_pages != 0);
972 
973 	list_add_tail(&sh->log_list, &io->stripe_list);
974 	atomic_inc(&io->pending_stripe);
975 	sh->log_io = io;
976 
977 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
978 		return 0;
979 
980 	if (sh->log_start == MaxSector) {
981 		BUG_ON(!list_empty(&sh->r5c));
982 		sh->log_start = io->log_start;
983 		spin_lock_irq(&log->stripe_in_journal_lock);
984 		list_add_tail(&sh->r5c,
985 			      &log->stripe_in_journal_list);
986 		spin_unlock_irq(&log->stripe_in_journal_lock);
987 		atomic_inc(&log->stripe_in_journal_count);
988 	}
989 	return 0;
990 }
991 
992 /* add stripe to no_space_stripes, and then wake up reclaim */
993 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
994 					   struct stripe_head *sh)
995 {
996 	spin_lock(&log->no_space_stripes_lock);
997 	list_add_tail(&sh->log_list, &log->no_space_stripes);
998 	spin_unlock(&log->no_space_stripes_lock);
999 }
1000 
1001 /*
1002  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
1003  * data from log to raid disks), so we shouldn't wait for reclaim here
1004  */
1005 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
1006 {
1007 	struct r5conf *conf = sh->raid_conf;
1008 	int write_disks = 0;
1009 	int data_pages, parity_pages;
1010 	int reserve;
1011 	int i;
1012 	int ret = 0;
1013 	bool wake_reclaim = false;
1014 
1015 	if (!log)
1016 		return -EAGAIN;
1017 	/* Don't support stripe batch */
1018 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1019 	    test_bit(STRIPE_SYNCING, &sh->state)) {
1020 		/* the stripe is written to log, we start writing it to raid */
1021 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1022 		return -EAGAIN;
1023 	}
1024 
1025 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1026 
1027 	for (i = 0; i < sh->disks; i++) {
1028 		void *addr;
1029 
1030 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1031 		    test_bit(R5_InJournal, &sh->dev[i].flags))
1032 			continue;
1033 
1034 		write_disks++;
1035 		/* checksum is already calculated in last run */
1036 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1037 			continue;
1038 		addr = kmap_atomic(sh->dev[i].page);
1039 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1040 						    addr, PAGE_SIZE);
1041 		kunmap_atomic(addr);
1042 	}
1043 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1044 	data_pages = write_disks - parity_pages;
1045 
1046 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1047 	/*
1048 	 * The stripe must enter state machine again to finish the write, so
1049 	 * don't delay.
1050 	 */
1051 	clear_bit(STRIPE_DELAYED, &sh->state);
1052 	atomic_inc(&sh->count);
1053 
1054 	mutex_lock(&log->io_mutex);
1055 	/* meta + data */
1056 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1057 
1058 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1059 		if (!r5l_has_free_space(log, reserve)) {
1060 			r5l_add_no_space_stripe(log, sh);
1061 			wake_reclaim = true;
1062 		} else {
1063 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1064 			if (ret) {
1065 				spin_lock_irq(&log->io_list_lock);
1066 				list_add_tail(&sh->log_list,
1067 					      &log->no_mem_stripes);
1068 				spin_unlock_irq(&log->io_list_lock);
1069 			}
1070 		}
1071 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1072 		/*
1073 		 * log space critical, do not process stripes that are
1074 		 * not in cache yet (sh->log_start == MaxSector).
1075 		 */
1076 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1077 		    sh->log_start == MaxSector) {
1078 			r5l_add_no_space_stripe(log, sh);
1079 			wake_reclaim = true;
1080 			reserve = 0;
1081 		} else if (!r5l_has_free_space(log, reserve)) {
1082 			if (sh->log_start == log->last_checkpoint)
1083 				BUG();
1084 			else
1085 				r5l_add_no_space_stripe(log, sh);
1086 		} else {
1087 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1088 			if (ret) {
1089 				spin_lock_irq(&log->io_list_lock);
1090 				list_add_tail(&sh->log_list,
1091 					      &log->no_mem_stripes);
1092 				spin_unlock_irq(&log->io_list_lock);
1093 			}
1094 		}
1095 	}
1096 
1097 	mutex_unlock(&log->io_mutex);
1098 	if (wake_reclaim)
1099 		r5l_wake_reclaim(log, reserve);
1100 	return 0;
1101 }
1102 
1103 void r5l_write_stripe_run(struct r5l_log *log)
1104 {
1105 	if (!log)
1106 		return;
1107 	mutex_lock(&log->io_mutex);
1108 	r5l_submit_current_io(log);
1109 	mutex_unlock(&log->io_mutex);
1110 }
1111 
1112 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1113 {
1114 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1115 		/*
1116 		 * in write through (journal only)
1117 		 * we flush log disk cache first, then write stripe data to
1118 		 * raid disks. So if bio is finished, the log disk cache is
1119 		 * flushed already. The recovery guarantees we can recovery
1120 		 * the bio from log disk, so we don't need to flush again
1121 		 */
1122 		if (bio->bi_iter.bi_size == 0) {
1123 			bio_endio(bio);
1124 			return 0;
1125 		}
1126 		bio->bi_opf &= ~REQ_PREFLUSH;
1127 	} else {
1128 		/* write back (with cache) */
1129 		if (bio->bi_iter.bi_size == 0) {
1130 			mutex_lock(&log->io_mutex);
1131 			r5l_get_meta(log, 0);
1132 			bio_list_add(&log->current_io->flush_barriers, bio);
1133 			log->current_io->has_flush = 1;
1134 			log->current_io->has_null_flush = 1;
1135 			atomic_inc(&log->current_io->pending_stripe);
1136 			r5l_submit_current_io(log);
1137 			mutex_unlock(&log->io_mutex);
1138 			return 0;
1139 		}
1140 	}
1141 	return -EAGAIN;
1142 }
1143 
1144 /* This will run after log space is reclaimed */
1145 static void r5l_run_no_space_stripes(struct r5l_log *log)
1146 {
1147 	struct stripe_head *sh;
1148 
1149 	spin_lock(&log->no_space_stripes_lock);
1150 	while (!list_empty(&log->no_space_stripes)) {
1151 		sh = list_first_entry(&log->no_space_stripes,
1152 				      struct stripe_head, log_list);
1153 		list_del_init(&sh->log_list);
1154 		set_bit(STRIPE_HANDLE, &sh->state);
1155 		raid5_release_stripe(sh);
1156 	}
1157 	spin_unlock(&log->no_space_stripes_lock);
1158 }
1159 
1160 /*
1161  * calculate new last_checkpoint
1162  * for write through mode, returns log->next_checkpoint
1163  * for write back, returns log_start of first sh in stripe_in_journal_list
1164  */
1165 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1166 {
1167 	struct stripe_head *sh;
1168 	struct r5l_log *log = conf->log;
1169 	sector_t new_cp;
1170 	unsigned long flags;
1171 
1172 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1173 		return log->next_checkpoint;
1174 
1175 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1176 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1177 		/* all stripes flushed */
1178 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1179 		return log->next_checkpoint;
1180 	}
1181 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1182 			      struct stripe_head, r5c);
1183 	new_cp = sh->log_start;
1184 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1185 	return new_cp;
1186 }
1187 
1188 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1189 {
1190 	struct r5conf *conf = log->rdev->mddev->private;
1191 
1192 	return r5l_ring_distance(log, log->last_checkpoint,
1193 				 r5c_calculate_new_cp(conf));
1194 }
1195 
1196 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1197 {
1198 	struct stripe_head *sh;
1199 
1200 	lockdep_assert_held(&log->io_list_lock);
1201 
1202 	if (!list_empty(&log->no_mem_stripes)) {
1203 		sh = list_first_entry(&log->no_mem_stripes,
1204 				      struct stripe_head, log_list);
1205 		list_del_init(&sh->log_list);
1206 		set_bit(STRIPE_HANDLE, &sh->state);
1207 		raid5_release_stripe(sh);
1208 	}
1209 }
1210 
1211 static bool r5l_complete_finished_ios(struct r5l_log *log)
1212 {
1213 	struct r5l_io_unit *io, *next;
1214 	bool found = false;
1215 
1216 	lockdep_assert_held(&log->io_list_lock);
1217 
1218 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1219 		/* don't change list order */
1220 		if (io->state < IO_UNIT_STRIPE_END)
1221 			break;
1222 
1223 		log->next_checkpoint = io->log_start;
1224 
1225 		list_del(&io->log_sibling);
1226 		mempool_free(io, &log->io_pool);
1227 		r5l_run_no_mem_stripe(log);
1228 
1229 		found = true;
1230 	}
1231 
1232 	return found;
1233 }
1234 
1235 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1236 {
1237 	struct r5l_log *log = io->log;
1238 	struct r5conf *conf = log->rdev->mddev->private;
1239 	unsigned long flags;
1240 
1241 	spin_lock_irqsave(&log->io_list_lock, flags);
1242 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1243 
1244 	if (!r5l_complete_finished_ios(log)) {
1245 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1246 		return;
1247 	}
1248 
1249 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1250 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1251 		r5l_wake_reclaim(log, 0);
1252 
1253 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1254 	wake_up(&log->iounit_wait);
1255 }
1256 
1257 void r5l_stripe_write_finished(struct stripe_head *sh)
1258 {
1259 	struct r5l_io_unit *io;
1260 
1261 	io = sh->log_io;
1262 	sh->log_io = NULL;
1263 
1264 	if (io && atomic_dec_and_test(&io->pending_stripe))
1265 		__r5l_stripe_write_finished(io);
1266 }
1267 
1268 static void r5l_log_flush_endio(struct bio *bio)
1269 {
1270 	struct r5l_log *log = container_of(bio, struct r5l_log,
1271 		flush_bio);
1272 	unsigned long flags;
1273 	struct r5l_io_unit *io;
1274 
1275 	if (bio->bi_status)
1276 		md_error(log->rdev->mddev, log->rdev);
1277 
1278 	spin_lock_irqsave(&log->io_list_lock, flags);
1279 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1280 		r5l_io_run_stripes(io);
1281 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1282 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1283 }
1284 
1285 /*
1286  * Starting dispatch IO to raid.
1287  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1288  * broken meta in the middle of a log causes recovery can't find meta at the
1289  * head of log. If operations require meta at the head persistent in log, we
1290  * must make sure meta before it persistent in log too. A case is:
1291  *
1292  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1293  * data/parity must be persistent in log before we do the write to raid disks.
1294  *
1295  * The solution is we restrictly maintain io_unit list order. In this case, we
1296  * only write stripes of an io_unit to raid disks till the io_unit is the first
1297  * one whose data/parity is in log.
1298  */
1299 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1300 {
1301 	bool do_flush;
1302 
1303 	if (!log || !log->need_cache_flush)
1304 		return;
1305 
1306 	spin_lock_irq(&log->io_list_lock);
1307 	/* flush bio is running */
1308 	if (!list_empty(&log->flushing_ios)) {
1309 		spin_unlock_irq(&log->io_list_lock);
1310 		return;
1311 	}
1312 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1313 	do_flush = !list_empty(&log->flushing_ios);
1314 	spin_unlock_irq(&log->io_list_lock);
1315 
1316 	if (!do_flush)
1317 		return;
1318 	bio_reset(&log->flush_bio);
1319 	bio_set_dev(&log->flush_bio, log->rdev->bdev);
1320 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1321 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1322 	submit_bio(&log->flush_bio);
1323 }
1324 
1325 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1326 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1327 	sector_t end)
1328 {
1329 	struct block_device *bdev = log->rdev->bdev;
1330 	struct mddev *mddev;
1331 
1332 	r5l_write_super(log, end);
1333 
1334 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1335 		return;
1336 
1337 	mddev = log->rdev->mddev;
1338 	/*
1339 	 * Discard could zero data, so before discard we must make sure
1340 	 * superblock is updated to new log tail. Updating superblock (either
1341 	 * directly call md_update_sb() or depend on md thread) must hold
1342 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1343 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1344 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1345 	 * thread is calling this function and waitting for reconfig mutex. So
1346 	 * there is a deadlock. We workaround this issue with a trylock.
1347 	 * FIXME: we could miss discard if we can't take reconfig mutex
1348 	 */
1349 	set_mask_bits(&mddev->sb_flags, 0,
1350 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1351 	if (!mddev_trylock(mddev))
1352 		return;
1353 	md_update_sb(mddev, 1);
1354 	mddev_unlock(mddev);
1355 
1356 	/* discard IO error really doesn't matter, ignore it */
1357 	if (log->last_checkpoint < end) {
1358 		blkdev_issue_discard(bdev,
1359 				log->last_checkpoint + log->rdev->data_offset,
1360 				end - log->last_checkpoint, GFP_NOIO, 0);
1361 	} else {
1362 		blkdev_issue_discard(bdev,
1363 				log->last_checkpoint + log->rdev->data_offset,
1364 				log->device_size - log->last_checkpoint,
1365 				GFP_NOIO, 0);
1366 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1367 				GFP_NOIO, 0);
1368 	}
1369 }
1370 
1371 /*
1372  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1373  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1374  *
1375  * must hold conf->device_lock
1376  */
1377 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1378 {
1379 	BUG_ON(list_empty(&sh->lru));
1380 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1381 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1382 
1383 	/*
1384 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1385 	 * raid5_release_stripe() while holding conf->device_lock
1386 	 */
1387 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1388 	lockdep_assert_held(&conf->device_lock);
1389 
1390 	list_del_init(&sh->lru);
1391 	atomic_inc(&sh->count);
1392 
1393 	set_bit(STRIPE_HANDLE, &sh->state);
1394 	atomic_inc(&conf->active_stripes);
1395 	r5c_make_stripe_write_out(sh);
1396 
1397 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1398 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1399 	else
1400 		atomic_inc(&conf->r5c_flushing_full_stripes);
1401 	raid5_release_stripe(sh);
1402 }
1403 
1404 /*
1405  * if num == 0, flush all full stripes
1406  * if num > 0, flush all full stripes. If less than num full stripes are
1407  *             flushed, flush some partial stripes until totally num stripes are
1408  *             flushed or there is no more cached stripes.
1409  */
1410 void r5c_flush_cache(struct r5conf *conf, int num)
1411 {
1412 	int count;
1413 	struct stripe_head *sh, *next;
1414 
1415 	lockdep_assert_held(&conf->device_lock);
1416 	if (!conf->log)
1417 		return;
1418 
1419 	count = 0;
1420 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1421 		r5c_flush_stripe(conf, sh);
1422 		count++;
1423 	}
1424 
1425 	if (count >= num)
1426 		return;
1427 	list_for_each_entry_safe(sh, next,
1428 				 &conf->r5c_partial_stripe_list, lru) {
1429 		r5c_flush_stripe(conf, sh);
1430 		if (++count >= num)
1431 			break;
1432 	}
1433 }
1434 
1435 static void r5c_do_reclaim(struct r5conf *conf)
1436 {
1437 	struct r5l_log *log = conf->log;
1438 	struct stripe_head *sh;
1439 	int count = 0;
1440 	unsigned long flags;
1441 	int total_cached;
1442 	int stripes_to_flush;
1443 	int flushing_partial, flushing_full;
1444 
1445 	if (!r5c_is_writeback(log))
1446 		return;
1447 
1448 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1449 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1450 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1451 		atomic_read(&conf->r5c_cached_full_stripes) -
1452 		flushing_full - flushing_partial;
1453 
1454 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1455 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1456 		/*
1457 		 * if stripe cache pressure high, flush all full stripes and
1458 		 * some partial stripes
1459 		 */
1460 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1461 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1462 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1463 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1464 		/*
1465 		 * if stripe cache pressure moderate, or if there is many full
1466 		 * stripes,flush all full stripes
1467 		 */
1468 		stripes_to_flush = 0;
1469 	else
1470 		/* no need to flush */
1471 		stripes_to_flush = -1;
1472 
1473 	if (stripes_to_flush >= 0) {
1474 		spin_lock_irqsave(&conf->device_lock, flags);
1475 		r5c_flush_cache(conf, stripes_to_flush);
1476 		spin_unlock_irqrestore(&conf->device_lock, flags);
1477 	}
1478 
1479 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1480 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1481 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1482 		spin_lock(&conf->device_lock);
1483 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1484 			/*
1485 			 * stripes on stripe_in_journal_list could be in any
1486 			 * state of the stripe_cache state machine. In this
1487 			 * case, we only want to flush stripe on
1488 			 * r5c_cached_full/partial_stripes. The following
1489 			 * condition makes sure the stripe is on one of the
1490 			 * two lists.
1491 			 */
1492 			if (!list_empty(&sh->lru) &&
1493 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1494 			    atomic_read(&sh->count) == 0) {
1495 				r5c_flush_stripe(conf, sh);
1496 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1497 					break;
1498 			}
1499 		}
1500 		spin_unlock(&conf->device_lock);
1501 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1502 	}
1503 
1504 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1505 		r5l_run_no_space_stripes(log);
1506 
1507 	md_wakeup_thread(conf->mddev->thread);
1508 }
1509 
1510 static void r5l_do_reclaim(struct r5l_log *log)
1511 {
1512 	struct r5conf *conf = log->rdev->mddev->private;
1513 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1514 	sector_t reclaimable;
1515 	sector_t next_checkpoint;
1516 	bool write_super;
1517 
1518 	spin_lock_irq(&log->io_list_lock);
1519 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1520 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1521 	/*
1522 	 * move proper io_unit to reclaim list. We should not change the order.
1523 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1524 	 * shouldn't reuse space of an unreclaimable io_unit
1525 	 */
1526 	while (1) {
1527 		reclaimable = r5l_reclaimable_space(log);
1528 		if (reclaimable >= reclaim_target ||
1529 		    (list_empty(&log->running_ios) &&
1530 		     list_empty(&log->io_end_ios) &&
1531 		     list_empty(&log->flushing_ios) &&
1532 		     list_empty(&log->finished_ios)))
1533 			break;
1534 
1535 		md_wakeup_thread(log->rdev->mddev->thread);
1536 		wait_event_lock_irq(log->iounit_wait,
1537 				    r5l_reclaimable_space(log) > reclaimable,
1538 				    log->io_list_lock);
1539 	}
1540 
1541 	next_checkpoint = r5c_calculate_new_cp(conf);
1542 	spin_unlock_irq(&log->io_list_lock);
1543 
1544 	if (reclaimable == 0 || !write_super)
1545 		return;
1546 
1547 	/*
1548 	 * write_super will flush cache of each raid disk. We must write super
1549 	 * here, because the log area might be reused soon and we don't want to
1550 	 * confuse recovery
1551 	 */
1552 	r5l_write_super_and_discard_space(log, next_checkpoint);
1553 
1554 	mutex_lock(&log->io_mutex);
1555 	log->last_checkpoint = next_checkpoint;
1556 	r5c_update_log_state(log);
1557 	mutex_unlock(&log->io_mutex);
1558 
1559 	r5l_run_no_space_stripes(log);
1560 }
1561 
1562 static void r5l_reclaim_thread(struct md_thread *thread)
1563 {
1564 	struct mddev *mddev = thread->mddev;
1565 	struct r5conf *conf = mddev->private;
1566 	struct r5l_log *log = conf->log;
1567 
1568 	if (!log)
1569 		return;
1570 	r5c_do_reclaim(conf);
1571 	r5l_do_reclaim(log);
1572 }
1573 
1574 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1575 {
1576 	unsigned long target;
1577 	unsigned long new = (unsigned long)space; /* overflow in theory */
1578 
1579 	if (!log)
1580 		return;
1581 	do {
1582 		target = log->reclaim_target;
1583 		if (new < target)
1584 			return;
1585 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1586 	md_wakeup_thread(log->reclaim_thread);
1587 }
1588 
1589 void r5l_quiesce(struct r5l_log *log, int quiesce)
1590 {
1591 	struct mddev *mddev;
1592 
1593 	if (quiesce) {
1594 		/* make sure r5l_write_super_and_discard_space exits */
1595 		mddev = log->rdev->mddev;
1596 		wake_up(&mddev->sb_wait);
1597 		kthread_park(log->reclaim_thread->tsk);
1598 		r5l_wake_reclaim(log, MaxSector);
1599 		r5l_do_reclaim(log);
1600 	} else
1601 		kthread_unpark(log->reclaim_thread->tsk);
1602 }
1603 
1604 bool r5l_log_disk_error(struct r5conf *conf)
1605 {
1606 	struct r5l_log *log;
1607 	bool ret;
1608 	/* don't allow write if journal disk is missing */
1609 	rcu_read_lock();
1610 	log = rcu_dereference(conf->log);
1611 
1612 	if (!log)
1613 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1614 	else
1615 		ret = test_bit(Faulty, &log->rdev->flags);
1616 	rcu_read_unlock();
1617 	return ret;
1618 }
1619 
1620 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1621 
1622 struct r5l_recovery_ctx {
1623 	struct page *meta_page;		/* current meta */
1624 	sector_t meta_total_blocks;	/* total size of current meta and data */
1625 	sector_t pos;			/* recovery position */
1626 	u64 seq;			/* recovery position seq */
1627 	int data_parity_stripes;	/* number of data_parity stripes */
1628 	int data_only_stripes;		/* number of data_only stripes */
1629 	struct list_head cached_list;
1630 
1631 	/*
1632 	 * read ahead page pool (ra_pool)
1633 	 * in recovery, log is read sequentially. It is not efficient to
1634 	 * read every page with sync_page_io(). The read ahead page pool
1635 	 * reads multiple pages with one IO, so further log read can
1636 	 * just copy data from the pool.
1637 	 */
1638 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1639 	sector_t pool_offset;	/* offset of first page in the pool */
1640 	int total_pages;	/* total allocated pages */
1641 	int valid_pages;	/* pages with valid data */
1642 	struct bio *ra_bio;	/* bio to do the read ahead */
1643 };
1644 
1645 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1646 					    struct r5l_recovery_ctx *ctx)
1647 {
1648 	struct page *page;
1649 
1650 	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, &log->bs);
1651 	if (!ctx->ra_bio)
1652 		return -ENOMEM;
1653 
1654 	ctx->valid_pages = 0;
1655 	ctx->total_pages = 0;
1656 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1657 		page = alloc_page(GFP_KERNEL);
1658 
1659 		if (!page)
1660 			break;
1661 		ctx->ra_pool[ctx->total_pages] = page;
1662 		ctx->total_pages += 1;
1663 	}
1664 
1665 	if (ctx->total_pages == 0) {
1666 		bio_put(ctx->ra_bio);
1667 		return -ENOMEM;
1668 	}
1669 
1670 	ctx->pool_offset = 0;
1671 	return 0;
1672 }
1673 
1674 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1675 					struct r5l_recovery_ctx *ctx)
1676 {
1677 	int i;
1678 
1679 	for (i = 0; i < ctx->total_pages; ++i)
1680 		put_page(ctx->ra_pool[i]);
1681 	bio_put(ctx->ra_bio);
1682 }
1683 
1684 /*
1685  * fetch ctx->valid_pages pages from offset
1686  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1687  * However, if the offset is close to the end of the journal device,
1688  * ctx->valid_pages could be smaller than ctx->total_pages
1689  */
1690 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1691 				      struct r5l_recovery_ctx *ctx,
1692 				      sector_t offset)
1693 {
1694 	bio_reset(ctx->ra_bio);
1695 	bio_set_dev(ctx->ra_bio, log->rdev->bdev);
1696 	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1697 	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1698 
1699 	ctx->valid_pages = 0;
1700 	ctx->pool_offset = offset;
1701 
1702 	while (ctx->valid_pages < ctx->total_pages) {
1703 		bio_add_page(ctx->ra_bio,
1704 			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1705 		ctx->valid_pages += 1;
1706 
1707 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1708 
1709 		if (offset == 0)  /* reached end of the device */
1710 			break;
1711 	}
1712 
1713 	return submit_bio_wait(ctx->ra_bio);
1714 }
1715 
1716 /*
1717  * try read a page from the read ahead page pool, if the page is not in the
1718  * pool, call r5l_recovery_fetch_ra_pool
1719  */
1720 static int r5l_recovery_read_page(struct r5l_log *log,
1721 				  struct r5l_recovery_ctx *ctx,
1722 				  struct page *page,
1723 				  sector_t offset)
1724 {
1725 	int ret;
1726 
1727 	if (offset < ctx->pool_offset ||
1728 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1729 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1730 		if (ret)
1731 			return ret;
1732 	}
1733 
1734 	BUG_ON(offset < ctx->pool_offset ||
1735 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1736 
1737 	memcpy(page_address(page),
1738 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1739 					 BLOCK_SECTOR_SHIFT]),
1740 	       PAGE_SIZE);
1741 	return 0;
1742 }
1743 
1744 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1745 					struct r5l_recovery_ctx *ctx)
1746 {
1747 	struct page *page = ctx->meta_page;
1748 	struct r5l_meta_block *mb;
1749 	u32 crc, stored_crc;
1750 	int ret;
1751 
1752 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1753 	if (ret != 0)
1754 		return ret;
1755 
1756 	mb = page_address(page);
1757 	stored_crc = le32_to_cpu(mb->checksum);
1758 	mb->checksum = 0;
1759 
1760 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1761 	    le64_to_cpu(mb->seq) != ctx->seq ||
1762 	    mb->version != R5LOG_VERSION ||
1763 	    le64_to_cpu(mb->position) != ctx->pos)
1764 		return -EINVAL;
1765 
1766 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1767 	if (stored_crc != crc)
1768 		return -EINVAL;
1769 
1770 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1771 		return -EINVAL;
1772 
1773 	ctx->meta_total_blocks = BLOCK_SECTORS;
1774 
1775 	return 0;
1776 }
1777 
1778 static void
1779 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1780 				     struct page *page,
1781 				     sector_t pos, u64 seq)
1782 {
1783 	struct r5l_meta_block *mb;
1784 
1785 	mb = page_address(page);
1786 	clear_page(mb);
1787 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1788 	mb->version = R5LOG_VERSION;
1789 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1790 	mb->seq = cpu_to_le64(seq);
1791 	mb->position = cpu_to_le64(pos);
1792 }
1793 
1794 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1795 					  u64 seq)
1796 {
1797 	struct page *page;
1798 	struct r5l_meta_block *mb;
1799 
1800 	page = alloc_page(GFP_KERNEL);
1801 	if (!page)
1802 		return -ENOMEM;
1803 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1804 	mb = page_address(page);
1805 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1806 					     mb, PAGE_SIZE));
1807 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1808 			  REQ_SYNC | REQ_FUA, false)) {
1809 		__free_page(page);
1810 		return -EIO;
1811 	}
1812 	__free_page(page);
1813 	return 0;
1814 }
1815 
1816 /*
1817  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1818  * to mark valid (potentially not flushed) data in the journal.
1819  *
1820  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1821  * so there should not be any mismatch here.
1822  */
1823 static void r5l_recovery_load_data(struct r5l_log *log,
1824 				   struct stripe_head *sh,
1825 				   struct r5l_recovery_ctx *ctx,
1826 				   struct r5l_payload_data_parity *payload,
1827 				   sector_t log_offset)
1828 {
1829 	struct mddev *mddev = log->rdev->mddev;
1830 	struct r5conf *conf = mddev->private;
1831 	int dd_idx;
1832 
1833 	raid5_compute_sector(conf,
1834 			     le64_to_cpu(payload->location), 0,
1835 			     &dd_idx, sh);
1836 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1837 	sh->dev[dd_idx].log_checksum =
1838 		le32_to_cpu(payload->checksum[0]);
1839 	ctx->meta_total_blocks += BLOCK_SECTORS;
1840 
1841 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1842 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1843 }
1844 
1845 static void r5l_recovery_load_parity(struct r5l_log *log,
1846 				     struct stripe_head *sh,
1847 				     struct r5l_recovery_ctx *ctx,
1848 				     struct r5l_payload_data_parity *payload,
1849 				     sector_t log_offset)
1850 {
1851 	struct mddev *mddev = log->rdev->mddev;
1852 	struct r5conf *conf = mddev->private;
1853 
1854 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1855 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1856 	sh->dev[sh->pd_idx].log_checksum =
1857 		le32_to_cpu(payload->checksum[0]);
1858 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1859 
1860 	if (sh->qd_idx >= 0) {
1861 		r5l_recovery_read_page(
1862 			log, ctx, sh->dev[sh->qd_idx].page,
1863 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1864 		sh->dev[sh->qd_idx].log_checksum =
1865 			le32_to_cpu(payload->checksum[1]);
1866 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1867 	}
1868 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1869 }
1870 
1871 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1872 {
1873 	int i;
1874 
1875 	sh->state = 0;
1876 	sh->log_start = MaxSector;
1877 	for (i = sh->disks; i--; )
1878 		sh->dev[i].flags = 0;
1879 }
1880 
1881 static void
1882 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1883 			       struct stripe_head *sh,
1884 			       struct r5l_recovery_ctx *ctx)
1885 {
1886 	struct md_rdev *rdev, *rrdev;
1887 	int disk_index;
1888 	int data_count = 0;
1889 
1890 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1891 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1892 			continue;
1893 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1894 			continue;
1895 		data_count++;
1896 	}
1897 
1898 	/*
1899 	 * stripes that only have parity must have been flushed
1900 	 * before the crash that we are now recovering from, so
1901 	 * there is nothing more to recovery.
1902 	 */
1903 	if (data_count == 0)
1904 		goto out;
1905 
1906 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1907 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1908 			continue;
1909 
1910 		/* in case device is broken */
1911 		rcu_read_lock();
1912 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1913 		if (rdev) {
1914 			atomic_inc(&rdev->nr_pending);
1915 			rcu_read_unlock();
1916 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1917 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1918 				     false);
1919 			rdev_dec_pending(rdev, rdev->mddev);
1920 			rcu_read_lock();
1921 		}
1922 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1923 		if (rrdev) {
1924 			atomic_inc(&rrdev->nr_pending);
1925 			rcu_read_unlock();
1926 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1927 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1928 				     false);
1929 			rdev_dec_pending(rrdev, rrdev->mddev);
1930 			rcu_read_lock();
1931 		}
1932 		rcu_read_unlock();
1933 	}
1934 	ctx->data_parity_stripes++;
1935 out:
1936 	r5l_recovery_reset_stripe(sh);
1937 }
1938 
1939 static struct stripe_head *
1940 r5c_recovery_alloc_stripe(struct r5conf *conf,
1941 			  sector_t stripe_sect)
1942 {
1943 	struct stripe_head *sh;
1944 
1945 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1946 	if (!sh)
1947 		return NULL;  /* no more stripe available */
1948 
1949 	r5l_recovery_reset_stripe(sh);
1950 
1951 	return sh;
1952 }
1953 
1954 static struct stripe_head *
1955 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1956 {
1957 	struct stripe_head *sh;
1958 
1959 	list_for_each_entry(sh, list, lru)
1960 		if (sh->sector == sect)
1961 			return sh;
1962 	return NULL;
1963 }
1964 
1965 static void
1966 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1967 			  struct r5l_recovery_ctx *ctx)
1968 {
1969 	struct stripe_head *sh, *next;
1970 
1971 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1972 		r5l_recovery_reset_stripe(sh);
1973 		list_del_init(&sh->lru);
1974 		raid5_release_stripe(sh);
1975 	}
1976 }
1977 
1978 static void
1979 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1980 			    struct r5l_recovery_ctx *ctx)
1981 {
1982 	struct stripe_head *sh, *next;
1983 
1984 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1985 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1986 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1987 			list_del_init(&sh->lru);
1988 			raid5_release_stripe(sh);
1989 		}
1990 }
1991 
1992 /* if matches return 0; otherwise return -EINVAL */
1993 static int
1994 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1995 				  struct r5l_recovery_ctx *ctx,
1996 				  struct page *page,
1997 				  sector_t log_offset, __le32 log_checksum)
1998 {
1999 	void *addr;
2000 	u32 checksum;
2001 
2002 	r5l_recovery_read_page(log, ctx, page, log_offset);
2003 	addr = kmap_atomic(page);
2004 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
2005 	kunmap_atomic(addr);
2006 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
2007 }
2008 
2009 /*
2010  * before loading data to stripe cache, we need verify checksum for all data,
2011  * if there is mismatch for any data page, we drop all data in the mata block
2012  */
2013 static int
2014 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2015 					 struct r5l_recovery_ctx *ctx)
2016 {
2017 	struct mddev *mddev = log->rdev->mddev;
2018 	struct r5conf *conf = mddev->private;
2019 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
2020 	sector_t mb_offset = sizeof(struct r5l_meta_block);
2021 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2022 	struct page *page;
2023 	struct r5l_payload_data_parity *payload;
2024 	struct r5l_payload_flush *payload_flush;
2025 
2026 	page = alloc_page(GFP_KERNEL);
2027 	if (!page)
2028 		return -ENOMEM;
2029 
2030 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2031 		payload = (void *)mb + mb_offset;
2032 		payload_flush = (void *)mb + mb_offset;
2033 
2034 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2035 			if (r5l_recovery_verify_data_checksum(
2036 				    log, ctx, page, log_offset,
2037 				    payload->checksum[0]) < 0)
2038 				goto mismatch;
2039 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2040 			if (r5l_recovery_verify_data_checksum(
2041 				    log, ctx, page, log_offset,
2042 				    payload->checksum[0]) < 0)
2043 				goto mismatch;
2044 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2045 			    r5l_recovery_verify_data_checksum(
2046 				    log, ctx, page,
2047 				    r5l_ring_add(log, log_offset,
2048 						 BLOCK_SECTORS),
2049 				    payload->checksum[1]) < 0)
2050 				goto mismatch;
2051 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2052 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2053 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2054 			goto mismatch;
2055 
2056 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2057 			mb_offset += sizeof(struct r5l_payload_flush) +
2058 				le32_to_cpu(payload_flush->size);
2059 		} else {
2060 			/* DATA or PARITY payload */
2061 			log_offset = r5l_ring_add(log, log_offset,
2062 						  le32_to_cpu(payload->size));
2063 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2064 				sizeof(__le32) *
2065 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2066 		}
2067 
2068 	}
2069 
2070 	put_page(page);
2071 	return 0;
2072 
2073 mismatch:
2074 	put_page(page);
2075 	return -EINVAL;
2076 }
2077 
2078 /*
2079  * Analyze all data/parity pages in one meta block
2080  * Returns:
2081  * 0 for success
2082  * -EINVAL for unknown playload type
2083  * -EAGAIN for checksum mismatch of data page
2084  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2085  */
2086 static int
2087 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2088 				struct r5l_recovery_ctx *ctx,
2089 				struct list_head *cached_stripe_list)
2090 {
2091 	struct mddev *mddev = log->rdev->mddev;
2092 	struct r5conf *conf = mddev->private;
2093 	struct r5l_meta_block *mb;
2094 	struct r5l_payload_data_parity *payload;
2095 	struct r5l_payload_flush *payload_flush;
2096 	int mb_offset;
2097 	sector_t log_offset;
2098 	sector_t stripe_sect;
2099 	struct stripe_head *sh;
2100 	int ret;
2101 
2102 	/*
2103 	 * for mismatch in data blocks, we will drop all data in this mb, but
2104 	 * we will still read next mb for other data with FLUSH flag, as
2105 	 * io_unit could finish out of order.
2106 	 */
2107 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2108 	if (ret == -EINVAL)
2109 		return -EAGAIN;
2110 	else if (ret)
2111 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2112 
2113 	mb = page_address(ctx->meta_page);
2114 	mb_offset = sizeof(struct r5l_meta_block);
2115 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2116 
2117 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2118 		int dd;
2119 
2120 		payload = (void *)mb + mb_offset;
2121 		payload_flush = (void *)mb + mb_offset;
2122 
2123 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2124 			int i, count;
2125 
2126 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2127 			for (i = 0; i < count; ++i) {
2128 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2129 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2130 								stripe_sect);
2131 				if (sh) {
2132 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2133 					r5l_recovery_reset_stripe(sh);
2134 					list_del_init(&sh->lru);
2135 					raid5_release_stripe(sh);
2136 				}
2137 			}
2138 
2139 			mb_offset += sizeof(struct r5l_payload_flush) +
2140 				le32_to_cpu(payload_flush->size);
2141 			continue;
2142 		}
2143 
2144 		/* DATA or PARITY payload */
2145 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2146 			raid5_compute_sector(
2147 				conf, le64_to_cpu(payload->location), 0, &dd,
2148 				NULL)
2149 			: le64_to_cpu(payload->location);
2150 
2151 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2152 						stripe_sect);
2153 
2154 		if (!sh) {
2155 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2156 			/*
2157 			 * cannot get stripe from raid5_get_active_stripe
2158 			 * try replay some stripes
2159 			 */
2160 			if (!sh) {
2161 				r5c_recovery_replay_stripes(
2162 					cached_stripe_list, ctx);
2163 				sh = r5c_recovery_alloc_stripe(
2164 					conf, stripe_sect);
2165 			}
2166 			if (!sh) {
2167 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2168 					mdname(mddev),
2169 					conf->min_nr_stripes * 2);
2170 				raid5_set_cache_size(mddev,
2171 						     conf->min_nr_stripes * 2);
2172 				sh = r5c_recovery_alloc_stripe(conf,
2173 							       stripe_sect);
2174 			}
2175 			if (!sh) {
2176 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2177 				       mdname(mddev));
2178 				return -ENOMEM;
2179 			}
2180 			list_add_tail(&sh->lru, cached_stripe_list);
2181 		}
2182 
2183 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2184 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2185 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2186 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2187 				list_move_tail(&sh->lru, cached_stripe_list);
2188 			}
2189 			r5l_recovery_load_data(log, sh, ctx, payload,
2190 					       log_offset);
2191 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2192 			r5l_recovery_load_parity(log, sh, ctx, payload,
2193 						 log_offset);
2194 		else
2195 			return -EINVAL;
2196 
2197 		log_offset = r5l_ring_add(log, log_offset,
2198 					  le32_to_cpu(payload->size));
2199 
2200 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2201 			sizeof(__le32) *
2202 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 /*
2209  * Load the stripe into cache. The stripe will be written out later by
2210  * the stripe cache state machine.
2211  */
2212 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2213 					 struct stripe_head *sh)
2214 {
2215 	struct r5dev *dev;
2216 	int i;
2217 
2218 	for (i = sh->disks; i--; ) {
2219 		dev = sh->dev + i;
2220 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2221 			set_bit(R5_InJournal, &dev->flags);
2222 			set_bit(R5_UPTODATE, &dev->flags);
2223 		}
2224 	}
2225 }
2226 
2227 /*
2228  * Scan through the log for all to-be-flushed data
2229  *
2230  * For stripes with data and parity, namely Data-Parity stripe
2231  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2232  *
2233  * For stripes with only data, namely Data-Only stripe
2234  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2235  *
2236  * For a stripe, if we see data after parity, we should discard all previous
2237  * data and parity for this stripe, as these data are already flushed to
2238  * the array.
2239  *
2240  * At the end of the scan, we return the new journal_tail, which points to
2241  * first data-only stripe on the journal device, or next invalid meta block.
2242  */
2243 static int r5c_recovery_flush_log(struct r5l_log *log,
2244 				  struct r5l_recovery_ctx *ctx)
2245 {
2246 	struct stripe_head *sh;
2247 	int ret = 0;
2248 
2249 	/* scan through the log */
2250 	while (1) {
2251 		if (r5l_recovery_read_meta_block(log, ctx))
2252 			break;
2253 
2254 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2255 						      &ctx->cached_list);
2256 		/*
2257 		 * -EAGAIN means mismatch in data block, in this case, we still
2258 		 * try scan the next metablock
2259 		 */
2260 		if (ret && ret != -EAGAIN)
2261 			break;   /* ret == -EINVAL or -ENOMEM */
2262 		ctx->seq++;
2263 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2264 	}
2265 
2266 	if (ret == -ENOMEM) {
2267 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2268 		return ret;
2269 	}
2270 
2271 	/* replay data-parity stripes */
2272 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2273 
2274 	/* load data-only stripes to stripe cache */
2275 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2276 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2277 		r5c_recovery_load_one_stripe(log, sh);
2278 		ctx->data_only_stripes++;
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /*
2285  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2286  * log will start here. but we can't let superblock point to last valid
2287  * meta block. The log might looks like:
2288  * | meta 1| meta 2| meta 3|
2289  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2290  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2291  * happens again, new recovery will start from meta 1. Since meta 2n is
2292  * valid now, recovery will think meta 3 is valid, which is wrong.
2293  * The solution is we create a new meta in meta2 with its seq == meta
2294  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2295  * will not think meta 3 is a valid meta, because its seq doesn't match
2296  */
2297 
2298 /*
2299  * Before recovery, the log looks like the following
2300  *
2301  *   ---------------------------------------------
2302  *   |           valid log        | invalid log  |
2303  *   ---------------------------------------------
2304  *   ^
2305  *   |- log->last_checkpoint
2306  *   |- log->last_cp_seq
2307  *
2308  * Now we scan through the log until we see invalid entry
2309  *
2310  *   ---------------------------------------------
2311  *   |           valid log        | invalid log  |
2312  *   ---------------------------------------------
2313  *   ^                            ^
2314  *   |- log->last_checkpoint      |- ctx->pos
2315  *   |- log->last_cp_seq          |- ctx->seq
2316  *
2317  * From this point, we need to increase seq number by 10 to avoid
2318  * confusing next recovery.
2319  *
2320  *   ---------------------------------------------
2321  *   |           valid log        | invalid log  |
2322  *   ---------------------------------------------
2323  *   ^                              ^
2324  *   |- log->last_checkpoint        |- ctx->pos+1
2325  *   |- log->last_cp_seq            |- ctx->seq+10001
2326  *
2327  * However, it is not safe to start the state machine yet, because data only
2328  * parities are not yet secured in RAID. To save these data only parities, we
2329  * rewrite them from seq+11.
2330  *
2331  *   -----------------------------------------------------------------
2332  *   |           valid log        | data only stripes | invalid log  |
2333  *   -----------------------------------------------------------------
2334  *   ^                                                ^
2335  *   |- log->last_checkpoint                          |- ctx->pos+n
2336  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2337  *
2338  * If failure happens again during this process, the recovery can safe start
2339  * again from log->last_checkpoint.
2340  *
2341  * Once data only stripes are rewritten to journal, we move log_tail
2342  *
2343  *   -----------------------------------------------------------------
2344  *   |     old log        |    data only stripes    | invalid log  |
2345  *   -----------------------------------------------------------------
2346  *                        ^                         ^
2347  *                        |- log->last_checkpoint   |- ctx->pos+n
2348  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2349  *
2350  * Then we can safely start the state machine. If failure happens from this
2351  * point on, the recovery will start from new log->last_checkpoint.
2352  */
2353 static int
2354 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2355 				       struct r5l_recovery_ctx *ctx)
2356 {
2357 	struct stripe_head *sh;
2358 	struct mddev *mddev = log->rdev->mddev;
2359 	struct page *page;
2360 	sector_t next_checkpoint = MaxSector;
2361 
2362 	page = alloc_page(GFP_KERNEL);
2363 	if (!page) {
2364 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2365 		       mdname(mddev));
2366 		return -ENOMEM;
2367 	}
2368 
2369 	WARN_ON(list_empty(&ctx->cached_list));
2370 
2371 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2372 		struct r5l_meta_block *mb;
2373 		int i;
2374 		int offset;
2375 		sector_t write_pos;
2376 
2377 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2378 		r5l_recovery_create_empty_meta_block(log, page,
2379 						     ctx->pos, ctx->seq);
2380 		mb = page_address(page);
2381 		offset = le32_to_cpu(mb->meta_size);
2382 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2383 
2384 		for (i = sh->disks; i--; ) {
2385 			struct r5dev *dev = &sh->dev[i];
2386 			struct r5l_payload_data_parity *payload;
2387 			void *addr;
2388 
2389 			if (test_bit(R5_InJournal, &dev->flags)) {
2390 				payload = (void *)mb + offset;
2391 				payload->header.type = cpu_to_le16(
2392 					R5LOG_PAYLOAD_DATA);
2393 				payload->size = cpu_to_le32(BLOCK_SECTORS);
2394 				payload->location = cpu_to_le64(
2395 					raid5_compute_blocknr(sh, i, 0));
2396 				addr = kmap_atomic(dev->page);
2397 				payload->checksum[0] = cpu_to_le32(
2398 					crc32c_le(log->uuid_checksum, addr,
2399 						  PAGE_SIZE));
2400 				kunmap_atomic(addr);
2401 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2402 					     dev->page, REQ_OP_WRITE, 0, false);
2403 				write_pos = r5l_ring_add(log, write_pos,
2404 							 BLOCK_SECTORS);
2405 				offset += sizeof(__le32) +
2406 					sizeof(struct r5l_payload_data_parity);
2407 
2408 			}
2409 		}
2410 		mb->meta_size = cpu_to_le32(offset);
2411 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2412 						     mb, PAGE_SIZE));
2413 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2414 			     REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2415 		sh->log_start = ctx->pos;
2416 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2417 		atomic_inc(&log->stripe_in_journal_count);
2418 		ctx->pos = write_pos;
2419 		ctx->seq += 1;
2420 		next_checkpoint = sh->log_start;
2421 	}
2422 	log->next_checkpoint = next_checkpoint;
2423 	__free_page(page);
2424 	return 0;
2425 }
2426 
2427 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2428 						 struct r5l_recovery_ctx *ctx)
2429 {
2430 	struct mddev *mddev = log->rdev->mddev;
2431 	struct r5conf *conf = mddev->private;
2432 	struct stripe_head *sh, *next;
2433 
2434 	if (ctx->data_only_stripes == 0)
2435 		return;
2436 
2437 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2438 
2439 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2440 		r5c_make_stripe_write_out(sh);
2441 		set_bit(STRIPE_HANDLE, &sh->state);
2442 		list_del_init(&sh->lru);
2443 		raid5_release_stripe(sh);
2444 	}
2445 
2446 	/* reuse conf->wait_for_quiescent in recovery */
2447 	wait_event(conf->wait_for_quiescent,
2448 		   atomic_read(&conf->active_stripes) == 0);
2449 
2450 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2451 }
2452 
2453 static int r5l_recovery_log(struct r5l_log *log)
2454 {
2455 	struct mddev *mddev = log->rdev->mddev;
2456 	struct r5l_recovery_ctx *ctx;
2457 	int ret;
2458 	sector_t pos;
2459 
2460 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2461 	if (!ctx)
2462 		return -ENOMEM;
2463 
2464 	ctx->pos = log->last_checkpoint;
2465 	ctx->seq = log->last_cp_seq;
2466 	INIT_LIST_HEAD(&ctx->cached_list);
2467 	ctx->meta_page = alloc_page(GFP_KERNEL);
2468 
2469 	if (!ctx->meta_page) {
2470 		ret =  -ENOMEM;
2471 		goto meta_page;
2472 	}
2473 
2474 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2475 		ret = -ENOMEM;
2476 		goto ra_pool;
2477 	}
2478 
2479 	ret = r5c_recovery_flush_log(log, ctx);
2480 
2481 	if (ret)
2482 		goto error;
2483 
2484 	pos = ctx->pos;
2485 	ctx->seq += 10000;
2486 
2487 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2488 		pr_info("md/raid:%s: starting from clean shutdown\n",
2489 			 mdname(mddev));
2490 	else
2491 		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2492 			 mdname(mddev), ctx->data_only_stripes,
2493 			 ctx->data_parity_stripes);
2494 
2495 	if (ctx->data_only_stripes == 0) {
2496 		log->next_checkpoint = ctx->pos;
2497 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2498 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2499 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2500 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2501 		       mdname(mddev));
2502 		ret =  -EIO;
2503 		goto error;
2504 	}
2505 
2506 	log->log_start = ctx->pos;
2507 	log->seq = ctx->seq;
2508 	log->last_checkpoint = pos;
2509 	r5l_write_super(log, pos);
2510 
2511 	r5c_recovery_flush_data_only_stripes(log, ctx);
2512 	ret = 0;
2513 error:
2514 	r5l_recovery_free_ra_pool(log, ctx);
2515 ra_pool:
2516 	__free_page(ctx->meta_page);
2517 meta_page:
2518 	kfree(ctx);
2519 	return ret;
2520 }
2521 
2522 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2523 {
2524 	struct mddev *mddev = log->rdev->mddev;
2525 
2526 	log->rdev->journal_tail = cp;
2527 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2528 }
2529 
2530 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2531 {
2532 	struct r5conf *conf;
2533 	int ret;
2534 
2535 	ret = mddev_lock(mddev);
2536 	if (ret)
2537 		return ret;
2538 
2539 	conf = mddev->private;
2540 	if (!conf || !conf->log) {
2541 		mddev_unlock(mddev);
2542 		return 0;
2543 	}
2544 
2545 	switch (conf->log->r5c_journal_mode) {
2546 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2547 		ret = snprintf(
2548 			page, PAGE_SIZE, "[%s] %s\n",
2549 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2550 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2551 		break;
2552 	case R5C_JOURNAL_MODE_WRITE_BACK:
2553 		ret = snprintf(
2554 			page, PAGE_SIZE, "%s [%s]\n",
2555 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557 		break;
2558 	default:
2559 		ret = 0;
2560 	}
2561 	mddev_unlock(mddev);
2562 	return ret;
2563 }
2564 
2565 /*
2566  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2567  *
2568  * @mode as defined in 'enum r5c_journal_mode'.
2569  *
2570  */
2571 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2572 {
2573 	struct r5conf *conf;
2574 
2575 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2576 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2577 		return -EINVAL;
2578 
2579 	conf = mddev->private;
2580 	if (!conf || !conf->log)
2581 		return -ENODEV;
2582 
2583 	if (raid5_calc_degraded(conf) > 0 &&
2584 	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2585 		return -EINVAL;
2586 
2587 	mddev_suspend(mddev);
2588 	conf->log->r5c_journal_mode = mode;
2589 	mddev_resume(mddev);
2590 
2591 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2592 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2593 	return 0;
2594 }
2595 EXPORT_SYMBOL(r5c_journal_mode_set);
2596 
2597 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2598 				      const char *page, size_t length)
2599 {
2600 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2601 	size_t len = length;
2602 	int ret;
2603 
2604 	if (len < 2)
2605 		return -EINVAL;
2606 
2607 	if (page[len - 1] == '\n')
2608 		len--;
2609 
2610 	while (mode--)
2611 		if (strlen(r5c_journal_mode_str[mode]) == len &&
2612 		    !strncmp(page, r5c_journal_mode_str[mode], len))
2613 			break;
2614 	ret = mddev_lock(mddev);
2615 	if (ret)
2616 		return ret;
2617 	ret = r5c_journal_mode_set(mddev, mode);
2618 	mddev_unlock(mddev);
2619 	return ret ?: length;
2620 }
2621 
2622 struct md_sysfs_entry
2623 r5c_journal_mode = __ATTR(journal_mode, 0644,
2624 			  r5c_journal_mode_show, r5c_journal_mode_store);
2625 
2626 /*
2627  * Try handle write operation in caching phase. This function should only
2628  * be called in write-back mode.
2629  *
2630  * If all outstanding writes can be handled in caching phase, returns 0
2631  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2632  * and returns -EAGAIN
2633  */
2634 int r5c_try_caching_write(struct r5conf *conf,
2635 			  struct stripe_head *sh,
2636 			  struct stripe_head_state *s,
2637 			  int disks)
2638 {
2639 	struct r5l_log *log = conf->log;
2640 	int i;
2641 	struct r5dev *dev;
2642 	int to_cache = 0;
2643 	void **pslot;
2644 	sector_t tree_index;
2645 	int ret;
2646 	uintptr_t refcount;
2647 
2648 	BUG_ON(!r5c_is_writeback(log));
2649 
2650 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2651 		/*
2652 		 * There are two different scenarios here:
2653 		 *  1. The stripe has some data cached, and it is sent to
2654 		 *     write-out phase for reclaim
2655 		 *  2. The stripe is clean, and this is the first write
2656 		 *
2657 		 * For 1, return -EAGAIN, so we continue with
2658 		 * handle_stripe_dirtying().
2659 		 *
2660 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2661 		 * write.
2662 		 */
2663 
2664 		/* case 1: anything injournal or anything in written */
2665 		if (s->injournal > 0 || s->written > 0)
2666 			return -EAGAIN;
2667 		/* case 2 */
2668 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2669 	}
2670 
2671 	/*
2672 	 * When run in degraded mode, array is set to write-through mode.
2673 	 * This check helps drain pending write safely in the transition to
2674 	 * write-through mode.
2675 	 *
2676 	 * When a stripe is syncing, the write is also handled in write
2677 	 * through mode.
2678 	 */
2679 	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2680 		r5c_make_stripe_write_out(sh);
2681 		return -EAGAIN;
2682 	}
2683 
2684 	for (i = disks; i--; ) {
2685 		dev = &sh->dev[i];
2686 		/* if non-overwrite, use writing-out phase */
2687 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2688 		    !test_bit(R5_InJournal, &dev->flags)) {
2689 			r5c_make_stripe_write_out(sh);
2690 			return -EAGAIN;
2691 		}
2692 	}
2693 
2694 	/* if the stripe is not counted in big_stripe_tree, add it now */
2695 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2696 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2697 		tree_index = r5c_tree_index(conf, sh->sector);
2698 		spin_lock(&log->tree_lock);
2699 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2700 					       tree_index);
2701 		if (pslot) {
2702 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2703 				pslot, &log->tree_lock) >>
2704 				R5C_RADIX_COUNT_SHIFT;
2705 			radix_tree_replace_slot(
2706 				&log->big_stripe_tree, pslot,
2707 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2708 		} else {
2709 			/*
2710 			 * this radix_tree_insert can fail safely, so no
2711 			 * need to call radix_tree_preload()
2712 			 */
2713 			ret = radix_tree_insert(
2714 				&log->big_stripe_tree, tree_index,
2715 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2716 			if (ret) {
2717 				spin_unlock(&log->tree_lock);
2718 				r5c_make_stripe_write_out(sh);
2719 				return -EAGAIN;
2720 			}
2721 		}
2722 		spin_unlock(&log->tree_lock);
2723 
2724 		/*
2725 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2726 		 * counted in the radix tree
2727 		 */
2728 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2729 		atomic_inc(&conf->r5c_cached_partial_stripes);
2730 	}
2731 
2732 	for (i = disks; i--; ) {
2733 		dev = &sh->dev[i];
2734 		if (dev->towrite) {
2735 			set_bit(R5_Wantwrite, &dev->flags);
2736 			set_bit(R5_Wantdrain, &dev->flags);
2737 			set_bit(R5_LOCKED, &dev->flags);
2738 			to_cache++;
2739 		}
2740 	}
2741 
2742 	if (to_cache) {
2743 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2744 		/*
2745 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2746 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2747 		 * r5c_handle_data_cached()
2748 		 */
2749 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 /*
2756  * free extra pages (orig_page) we allocated for prexor
2757  */
2758 void r5c_release_extra_page(struct stripe_head *sh)
2759 {
2760 	struct r5conf *conf = sh->raid_conf;
2761 	int i;
2762 	bool using_disk_info_extra_page;
2763 
2764 	using_disk_info_extra_page =
2765 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2766 
2767 	for (i = sh->disks; i--; )
2768 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2769 			struct page *p = sh->dev[i].orig_page;
2770 
2771 			sh->dev[i].orig_page = sh->dev[i].page;
2772 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2773 
2774 			if (!using_disk_info_extra_page)
2775 				put_page(p);
2776 		}
2777 
2778 	if (using_disk_info_extra_page) {
2779 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2780 		md_wakeup_thread(conf->mddev->thread);
2781 	}
2782 }
2783 
2784 void r5c_use_extra_page(struct stripe_head *sh)
2785 {
2786 	struct r5conf *conf = sh->raid_conf;
2787 	int i;
2788 	struct r5dev *dev;
2789 
2790 	for (i = sh->disks; i--; ) {
2791 		dev = &sh->dev[i];
2792 		if (dev->orig_page != dev->page)
2793 			put_page(dev->orig_page);
2794 		dev->orig_page = conf->disks[i].extra_page;
2795 	}
2796 }
2797 
2798 /*
2799  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2800  * stripe is committed to RAID disks.
2801  */
2802 void r5c_finish_stripe_write_out(struct r5conf *conf,
2803 				 struct stripe_head *sh,
2804 				 struct stripe_head_state *s)
2805 {
2806 	struct r5l_log *log = conf->log;
2807 	int i;
2808 	int do_wakeup = 0;
2809 	sector_t tree_index;
2810 	void **pslot;
2811 	uintptr_t refcount;
2812 
2813 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2814 		return;
2815 
2816 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2817 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2818 
2819 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2820 		return;
2821 
2822 	for (i = sh->disks; i--; ) {
2823 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2824 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2825 			do_wakeup = 1;
2826 	}
2827 
2828 	/*
2829 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2830 	 * We updated R5_InJournal, so we also update s->injournal.
2831 	 */
2832 	s->injournal = 0;
2833 
2834 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2835 		if (atomic_dec_and_test(&conf->pending_full_writes))
2836 			md_wakeup_thread(conf->mddev->thread);
2837 
2838 	if (do_wakeup)
2839 		wake_up(&conf->wait_for_overlap);
2840 
2841 	spin_lock_irq(&log->stripe_in_journal_lock);
2842 	list_del_init(&sh->r5c);
2843 	spin_unlock_irq(&log->stripe_in_journal_lock);
2844 	sh->log_start = MaxSector;
2845 
2846 	atomic_dec(&log->stripe_in_journal_count);
2847 	r5c_update_log_state(log);
2848 
2849 	/* stop counting this stripe in big_stripe_tree */
2850 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2851 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2852 		tree_index = r5c_tree_index(conf, sh->sector);
2853 		spin_lock(&log->tree_lock);
2854 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2855 					       tree_index);
2856 		BUG_ON(pslot == NULL);
2857 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2858 			pslot, &log->tree_lock) >>
2859 			R5C_RADIX_COUNT_SHIFT;
2860 		if (refcount == 1)
2861 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2862 		else
2863 			radix_tree_replace_slot(
2864 				&log->big_stripe_tree, pslot,
2865 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2866 		spin_unlock(&log->tree_lock);
2867 	}
2868 
2869 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2870 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2871 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2872 		atomic_dec(&conf->r5c_cached_partial_stripes);
2873 	}
2874 
2875 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2876 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2877 		atomic_dec(&conf->r5c_flushing_full_stripes);
2878 		atomic_dec(&conf->r5c_cached_full_stripes);
2879 	}
2880 
2881 	r5l_append_flush_payload(log, sh->sector);
2882 	/* stripe is flused to raid disks, we can do resync now */
2883 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2884 		set_bit(STRIPE_HANDLE, &sh->state);
2885 }
2886 
2887 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2888 {
2889 	struct r5conf *conf = sh->raid_conf;
2890 	int pages = 0;
2891 	int reserve;
2892 	int i;
2893 	int ret = 0;
2894 
2895 	BUG_ON(!log);
2896 
2897 	for (i = 0; i < sh->disks; i++) {
2898 		void *addr;
2899 
2900 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2901 			continue;
2902 		addr = kmap_atomic(sh->dev[i].page);
2903 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2904 						    addr, PAGE_SIZE);
2905 		kunmap_atomic(addr);
2906 		pages++;
2907 	}
2908 	WARN_ON(pages == 0);
2909 
2910 	/*
2911 	 * The stripe must enter state machine again to call endio, so
2912 	 * don't delay.
2913 	 */
2914 	clear_bit(STRIPE_DELAYED, &sh->state);
2915 	atomic_inc(&sh->count);
2916 
2917 	mutex_lock(&log->io_mutex);
2918 	/* meta + data */
2919 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2920 
2921 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2922 	    sh->log_start == MaxSector)
2923 		r5l_add_no_space_stripe(log, sh);
2924 	else if (!r5l_has_free_space(log, reserve)) {
2925 		if (sh->log_start == log->last_checkpoint)
2926 			BUG();
2927 		else
2928 			r5l_add_no_space_stripe(log, sh);
2929 	} else {
2930 		ret = r5l_log_stripe(log, sh, pages, 0);
2931 		if (ret) {
2932 			spin_lock_irq(&log->io_list_lock);
2933 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2934 			spin_unlock_irq(&log->io_list_lock);
2935 		}
2936 	}
2937 
2938 	mutex_unlock(&log->io_mutex);
2939 	return 0;
2940 }
2941 
2942 /* check whether this big stripe is in write back cache. */
2943 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2944 {
2945 	struct r5l_log *log = conf->log;
2946 	sector_t tree_index;
2947 	void *slot;
2948 
2949 	if (!log)
2950 		return false;
2951 
2952 	WARN_ON_ONCE(!rcu_read_lock_held());
2953 	tree_index = r5c_tree_index(conf, sect);
2954 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2955 	return slot != NULL;
2956 }
2957 
2958 static int r5l_load_log(struct r5l_log *log)
2959 {
2960 	struct md_rdev *rdev = log->rdev;
2961 	struct page *page;
2962 	struct r5l_meta_block *mb;
2963 	sector_t cp = log->rdev->journal_tail;
2964 	u32 stored_crc, expected_crc;
2965 	bool create_super = false;
2966 	int ret = 0;
2967 
2968 	/* Make sure it's valid */
2969 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2970 		cp = 0;
2971 	page = alloc_page(GFP_KERNEL);
2972 	if (!page)
2973 		return -ENOMEM;
2974 
2975 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2976 		ret = -EIO;
2977 		goto ioerr;
2978 	}
2979 	mb = page_address(page);
2980 
2981 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2982 	    mb->version != R5LOG_VERSION) {
2983 		create_super = true;
2984 		goto create;
2985 	}
2986 	stored_crc = le32_to_cpu(mb->checksum);
2987 	mb->checksum = 0;
2988 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2989 	if (stored_crc != expected_crc) {
2990 		create_super = true;
2991 		goto create;
2992 	}
2993 	if (le64_to_cpu(mb->position) != cp) {
2994 		create_super = true;
2995 		goto create;
2996 	}
2997 create:
2998 	if (create_super) {
2999 		log->last_cp_seq = prandom_u32();
3000 		cp = 0;
3001 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3002 		/*
3003 		 * Make sure super points to correct address. Log might have
3004 		 * data very soon. If super hasn't correct log tail address,
3005 		 * recovery can't find the log
3006 		 */
3007 		r5l_write_super(log, cp);
3008 	} else
3009 		log->last_cp_seq = le64_to_cpu(mb->seq);
3010 
3011 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3012 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3013 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3014 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3015 	log->last_checkpoint = cp;
3016 
3017 	__free_page(page);
3018 
3019 	if (create_super) {
3020 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3021 		log->seq = log->last_cp_seq + 1;
3022 		log->next_checkpoint = cp;
3023 	} else
3024 		ret = r5l_recovery_log(log);
3025 
3026 	r5c_update_log_state(log);
3027 	return ret;
3028 ioerr:
3029 	__free_page(page);
3030 	return ret;
3031 }
3032 
3033 int r5l_start(struct r5l_log *log)
3034 {
3035 	int ret;
3036 
3037 	if (!log)
3038 		return 0;
3039 
3040 	ret = r5l_load_log(log);
3041 	if (ret) {
3042 		struct mddev *mddev = log->rdev->mddev;
3043 		struct r5conf *conf = mddev->private;
3044 
3045 		r5l_exit_log(conf);
3046 	}
3047 	return ret;
3048 }
3049 
3050 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3051 {
3052 	struct r5conf *conf = mddev->private;
3053 	struct r5l_log *log = conf->log;
3054 
3055 	if (!log)
3056 		return;
3057 
3058 	if ((raid5_calc_degraded(conf) > 0 ||
3059 	     test_bit(Journal, &rdev->flags)) &&
3060 	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3061 		schedule_work(&log->disable_writeback_work);
3062 }
3063 
3064 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3065 {
3066 	struct request_queue *q = bdev_get_queue(rdev->bdev);
3067 	struct r5l_log *log;
3068 	char b[BDEVNAME_SIZE];
3069 	int ret;
3070 
3071 	pr_debug("md/raid:%s: using device %s as journal\n",
3072 		 mdname(conf->mddev), bdevname(rdev->bdev, b));
3073 
3074 	if (PAGE_SIZE != 4096)
3075 		return -EINVAL;
3076 
3077 	/*
3078 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3079 	 * raid_disks r5l_payload_data_parity.
3080 	 *
3081 	 * Write journal and cache does not work for very big array
3082 	 * (raid_disks > 203)
3083 	 */
3084 	if (sizeof(struct r5l_meta_block) +
3085 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3086 	     conf->raid_disks) > PAGE_SIZE) {
3087 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3088 		       mdname(conf->mddev), conf->raid_disks);
3089 		return -EINVAL;
3090 	}
3091 
3092 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3093 	if (!log)
3094 		return -ENOMEM;
3095 	log->rdev = rdev;
3096 
3097 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3098 
3099 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3100 				       sizeof(rdev->mddev->uuid));
3101 
3102 	mutex_init(&log->io_mutex);
3103 
3104 	spin_lock_init(&log->io_list_lock);
3105 	INIT_LIST_HEAD(&log->running_ios);
3106 	INIT_LIST_HEAD(&log->io_end_ios);
3107 	INIT_LIST_HEAD(&log->flushing_ios);
3108 	INIT_LIST_HEAD(&log->finished_ios);
3109 	bio_init(&log->flush_bio, NULL, 0);
3110 
3111 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3112 	if (!log->io_kc)
3113 		goto io_kc;
3114 
3115 	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3116 	if (ret)
3117 		goto io_pool;
3118 
3119 	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3120 	if (ret)
3121 		goto io_bs;
3122 
3123 	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3124 	if (ret)
3125 		goto out_mempool;
3126 
3127 	spin_lock_init(&log->tree_lock);
3128 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3129 
3130 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3131 						 log->rdev->mddev, "reclaim");
3132 	if (!log->reclaim_thread)
3133 		goto reclaim_thread;
3134 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3135 
3136 	init_waitqueue_head(&log->iounit_wait);
3137 
3138 	INIT_LIST_HEAD(&log->no_mem_stripes);
3139 
3140 	INIT_LIST_HEAD(&log->no_space_stripes);
3141 	spin_lock_init(&log->no_space_stripes_lock);
3142 
3143 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3144 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3145 
3146 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3147 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3148 	spin_lock_init(&log->stripe_in_journal_lock);
3149 	atomic_set(&log->stripe_in_journal_count, 0);
3150 
3151 	rcu_assign_pointer(conf->log, log);
3152 
3153 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3154 	return 0;
3155 
3156 	rcu_assign_pointer(conf->log, NULL);
3157 	md_unregister_thread(&log->reclaim_thread);
3158 reclaim_thread:
3159 	mempool_exit(&log->meta_pool);
3160 out_mempool:
3161 	bioset_exit(&log->bs);
3162 io_bs:
3163 	mempool_exit(&log->io_pool);
3164 io_pool:
3165 	kmem_cache_destroy(log->io_kc);
3166 io_kc:
3167 	kfree(log);
3168 	return -EINVAL;
3169 }
3170 
3171 void r5l_exit_log(struct r5conf *conf)
3172 {
3173 	struct r5l_log *log = conf->log;
3174 
3175 	conf->log = NULL;
3176 	synchronize_rcu();
3177 
3178 	/* Ensure disable_writeback_work wakes up and exits */
3179 	wake_up(&conf->mddev->sb_wait);
3180 	flush_work(&log->disable_writeback_work);
3181 	md_unregister_thread(&log->reclaim_thread);
3182 	mempool_exit(&log->meta_pool);
3183 	bioset_exit(&log->bs);
3184 	mempool_exit(&log->io_pool);
3185 	kmem_cache_destroy(log->io_kc);
3186 	kfree(log);
3187 }
3188