xref: /openbmc/linux/drivers/md/raid5-cache.c (revision 70fd7614)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23 
24 /*
25  * metadata/data stored in disk with 4k size unit (a block) regardless
26  * underneath hardware sector size. only works with PAGE_SIZE == 4096
27  */
28 #define BLOCK_SECTORS (8)
29 
30 /*
31  * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32  * recovery scans a very long log
33  */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36 
37 /*
38  * We only need 2 bios per I/O unit to make progress, but ensure we
39  * have a few more available to not get too tight.
40  */
41 #define R5L_POOL_SIZE	4
42 
43 struct r5l_log {
44 	struct md_rdev *rdev;
45 
46 	u32 uuid_checksum;
47 
48 	sector_t device_size;		/* log device size, round to
49 					 * BLOCK_SECTORS */
50 	sector_t max_free_space;	/* reclaim run if free space is at
51 					 * this size */
52 
53 	sector_t last_checkpoint;	/* log tail. where recovery scan
54 					 * starts from */
55 	u64 last_cp_seq;		/* log tail sequence */
56 
57 	sector_t log_start;		/* log head. where new data appends */
58 	u64 seq;			/* log head sequence */
59 
60 	sector_t next_checkpoint;
61 	u64 next_cp_seq;
62 
63 	struct mutex io_mutex;
64 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
65 
66 	spinlock_t io_list_lock;
67 	struct list_head running_ios;	/* io_units which are still running,
68 					 * and have not yet been completely
69 					 * written to the log */
70 	struct list_head io_end_ios;	/* io_units which have been completely
71 					 * written to the log but not yet written
72 					 * to the RAID */
73 	struct list_head flushing_ios;	/* io_units which are waiting for log
74 					 * cache flush */
75 	struct list_head finished_ios;	/* io_units which settle down in log disk */
76 	struct bio flush_bio;
77 
78 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
79 
80 	struct kmem_cache *io_kc;
81 	mempool_t *io_pool;
82 	struct bio_set *bs;
83 	mempool_t *meta_pool;
84 
85 	struct md_thread *reclaim_thread;
86 	unsigned long reclaim_target;	/* number of space that need to be
87 					 * reclaimed.  if it's 0, reclaim spaces
88 					 * used by io_units which are in
89 					 * IO_UNIT_STRIPE_END state (eg, reclaim
90 					 * dones't wait for specific io_unit
91 					 * switching to IO_UNIT_STRIPE_END
92 					 * state) */
93 	wait_queue_head_t iounit_wait;
94 
95 	struct list_head no_space_stripes; /* pending stripes, log has no space */
96 	spinlock_t no_space_stripes_lock;
97 
98 	bool need_cache_flush;
99 };
100 
101 /*
102  * an IO range starts from a meta data block and end at the next meta data
103  * block. The io unit's the meta data block tracks data/parity followed it. io
104  * unit is written to log disk with normal write, as we always flush log disk
105  * first and then start move data to raid disks, there is no requirement to
106  * write io unit with FLUSH/FUA
107  */
108 struct r5l_io_unit {
109 	struct r5l_log *log;
110 
111 	struct page *meta_page;	/* store meta block */
112 	int meta_offset;	/* current offset in meta_page */
113 
114 	struct bio *current_bio;/* current_bio accepting new data */
115 
116 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
117 	u64 seq;		/* seq number of the metablock */
118 	sector_t log_start;	/* where the io_unit starts */
119 	sector_t log_end;	/* where the io_unit ends */
120 	struct list_head log_sibling; /* log->running_ios */
121 	struct list_head stripe_list; /* stripes added to the io_unit */
122 
123 	int state;
124 	bool need_split_bio;
125 };
126 
127 /* r5l_io_unit state */
128 enum r5l_io_unit_state {
129 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
130 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
131 				 * don't accepting new bio */
132 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
133 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
134 };
135 
136 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
137 {
138 	start += inc;
139 	if (start >= log->device_size)
140 		start = start - log->device_size;
141 	return start;
142 }
143 
144 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
145 				  sector_t end)
146 {
147 	if (end >= start)
148 		return end - start;
149 	else
150 		return end + log->device_size - start;
151 }
152 
153 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
154 {
155 	sector_t used_size;
156 
157 	used_size = r5l_ring_distance(log, log->last_checkpoint,
158 					log->log_start);
159 
160 	return log->device_size > used_size + size;
161 }
162 
163 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
164 				    enum r5l_io_unit_state state)
165 {
166 	if (WARN_ON(io->state >= state))
167 		return;
168 	io->state = state;
169 }
170 
171 static void r5l_io_run_stripes(struct r5l_io_unit *io)
172 {
173 	struct stripe_head *sh, *next;
174 
175 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
176 		list_del_init(&sh->log_list);
177 		set_bit(STRIPE_HANDLE, &sh->state);
178 		raid5_release_stripe(sh);
179 	}
180 }
181 
182 static void r5l_log_run_stripes(struct r5l_log *log)
183 {
184 	struct r5l_io_unit *io, *next;
185 
186 	assert_spin_locked(&log->io_list_lock);
187 
188 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
189 		/* don't change list order */
190 		if (io->state < IO_UNIT_IO_END)
191 			break;
192 
193 		list_move_tail(&io->log_sibling, &log->finished_ios);
194 		r5l_io_run_stripes(io);
195 	}
196 }
197 
198 static void r5l_move_to_end_ios(struct r5l_log *log)
199 {
200 	struct r5l_io_unit *io, *next;
201 
202 	assert_spin_locked(&log->io_list_lock);
203 
204 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
205 		/* don't change list order */
206 		if (io->state < IO_UNIT_IO_END)
207 			break;
208 		list_move_tail(&io->log_sibling, &log->io_end_ios);
209 	}
210 }
211 
212 static void r5l_log_endio(struct bio *bio)
213 {
214 	struct r5l_io_unit *io = bio->bi_private;
215 	struct r5l_log *log = io->log;
216 	unsigned long flags;
217 
218 	if (bio->bi_error)
219 		md_error(log->rdev->mddev, log->rdev);
220 
221 	bio_put(bio);
222 	mempool_free(io->meta_page, log->meta_pool);
223 
224 	spin_lock_irqsave(&log->io_list_lock, flags);
225 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
226 	if (log->need_cache_flush)
227 		r5l_move_to_end_ios(log);
228 	else
229 		r5l_log_run_stripes(log);
230 	spin_unlock_irqrestore(&log->io_list_lock, flags);
231 
232 	if (log->need_cache_flush)
233 		md_wakeup_thread(log->rdev->mddev->thread);
234 }
235 
236 static void r5l_submit_current_io(struct r5l_log *log)
237 {
238 	struct r5l_io_unit *io = log->current_io;
239 	struct r5l_meta_block *block;
240 	unsigned long flags;
241 	u32 crc;
242 
243 	if (!io)
244 		return;
245 
246 	block = page_address(io->meta_page);
247 	block->meta_size = cpu_to_le32(io->meta_offset);
248 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
249 	block->checksum = cpu_to_le32(crc);
250 
251 	log->current_io = NULL;
252 	spin_lock_irqsave(&log->io_list_lock, flags);
253 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
254 	spin_unlock_irqrestore(&log->io_list_lock, flags);
255 
256 	submit_bio(io->current_bio);
257 }
258 
259 static struct bio *r5l_bio_alloc(struct r5l_log *log)
260 {
261 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
262 
263 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
264 	bio->bi_bdev = log->rdev->bdev;
265 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
266 
267 	return bio;
268 }
269 
270 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
271 {
272 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
273 
274 	/*
275 	 * If we filled up the log device start from the beginning again,
276 	 * which will require a new bio.
277 	 *
278 	 * Note: for this to work properly the log size needs to me a multiple
279 	 * of BLOCK_SECTORS.
280 	 */
281 	if (log->log_start == 0)
282 		io->need_split_bio = true;
283 
284 	io->log_end = log->log_start;
285 }
286 
287 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
288 {
289 	struct r5l_io_unit *io;
290 	struct r5l_meta_block *block;
291 
292 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
293 	if (!io)
294 		return NULL;
295 	memset(io, 0, sizeof(*io));
296 
297 	io->log = log;
298 	INIT_LIST_HEAD(&io->log_sibling);
299 	INIT_LIST_HEAD(&io->stripe_list);
300 	io->state = IO_UNIT_RUNNING;
301 
302 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
303 	block = page_address(io->meta_page);
304 	clear_page(block);
305 	block->magic = cpu_to_le32(R5LOG_MAGIC);
306 	block->version = R5LOG_VERSION;
307 	block->seq = cpu_to_le64(log->seq);
308 	block->position = cpu_to_le64(log->log_start);
309 
310 	io->log_start = log->log_start;
311 	io->meta_offset = sizeof(struct r5l_meta_block);
312 	io->seq = log->seq++;
313 
314 	io->current_bio = r5l_bio_alloc(log);
315 	io->current_bio->bi_end_io = r5l_log_endio;
316 	io->current_bio->bi_private = io;
317 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
318 
319 	r5_reserve_log_entry(log, io);
320 
321 	spin_lock_irq(&log->io_list_lock);
322 	list_add_tail(&io->log_sibling, &log->running_ios);
323 	spin_unlock_irq(&log->io_list_lock);
324 
325 	return io;
326 }
327 
328 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
329 {
330 	if (log->current_io &&
331 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
332 		r5l_submit_current_io(log);
333 
334 	if (!log->current_io) {
335 		log->current_io = r5l_new_meta(log);
336 		if (!log->current_io)
337 			return -ENOMEM;
338 	}
339 
340 	return 0;
341 }
342 
343 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
344 				    sector_t location,
345 				    u32 checksum1, u32 checksum2,
346 				    bool checksum2_valid)
347 {
348 	struct r5l_io_unit *io = log->current_io;
349 	struct r5l_payload_data_parity *payload;
350 
351 	payload = page_address(io->meta_page) + io->meta_offset;
352 	payload->header.type = cpu_to_le16(type);
353 	payload->header.flags = cpu_to_le16(0);
354 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
355 				    (PAGE_SHIFT - 9));
356 	payload->location = cpu_to_le64(location);
357 	payload->checksum[0] = cpu_to_le32(checksum1);
358 	if (checksum2_valid)
359 		payload->checksum[1] = cpu_to_le32(checksum2);
360 
361 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
362 		sizeof(__le32) * (1 + !!checksum2_valid);
363 }
364 
365 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
366 {
367 	struct r5l_io_unit *io = log->current_io;
368 
369 	if (io->need_split_bio) {
370 		struct bio *prev = io->current_bio;
371 
372 		io->current_bio = r5l_bio_alloc(log);
373 		bio_chain(io->current_bio, prev);
374 
375 		submit_bio(prev);
376 	}
377 
378 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
379 		BUG();
380 
381 	r5_reserve_log_entry(log, io);
382 }
383 
384 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
385 			   int data_pages, int parity_pages)
386 {
387 	int i;
388 	int meta_size;
389 	int ret;
390 	struct r5l_io_unit *io;
391 
392 	meta_size =
393 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
394 		 * data_pages) +
395 		sizeof(struct r5l_payload_data_parity) +
396 		sizeof(__le32) * parity_pages;
397 
398 	ret = r5l_get_meta(log, meta_size);
399 	if (ret)
400 		return ret;
401 
402 	io = log->current_io;
403 
404 	for (i = 0; i < sh->disks; i++) {
405 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
406 			continue;
407 		if (i == sh->pd_idx || i == sh->qd_idx)
408 			continue;
409 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
410 					raid5_compute_blocknr(sh, i, 0),
411 					sh->dev[i].log_checksum, 0, false);
412 		r5l_append_payload_page(log, sh->dev[i].page);
413 	}
414 
415 	if (sh->qd_idx >= 0) {
416 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
417 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
418 					sh->dev[sh->qd_idx].log_checksum, true);
419 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
420 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
421 	} else {
422 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
423 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
424 					0, false);
425 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
426 	}
427 
428 	list_add_tail(&sh->log_list, &io->stripe_list);
429 	atomic_inc(&io->pending_stripe);
430 	sh->log_io = io;
431 
432 	return 0;
433 }
434 
435 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
436 /*
437  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
438  * data from log to raid disks), so we shouldn't wait for reclaim here
439  */
440 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
441 {
442 	int write_disks = 0;
443 	int data_pages, parity_pages;
444 	int meta_size;
445 	int reserve;
446 	int i;
447 	int ret = 0;
448 
449 	if (!log)
450 		return -EAGAIN;
451 	/* Don't support stripe batch */
452 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
453 	    test_bit(STRIPE_SYNCING, &sh->state)) {
454 		/* the stripe is written to log, we start writing it to raid */
455 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
456 		return -EAGAIN;
457 	}
458 
459 	for (i = 0; i < sh->disks; i++) {
460 		void *addr;
461 
462 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
463 			continue;
464 		write_disks++;
465 		/* checksum is already calculated in last run */
466 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
467 			continue;
468 		addr = kmap_atomic(sh->dev[i].page);
469 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
470 						    addr, PAGE_SIZE);
471 		kunmap_atomic(addr);
472 	}
473 	parity_pages = 1 + !!(sh->qd_idx >= 0);
474 	data_pages = write_disks - parity_pages;
475 
476 	meta_size =
477 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
478 		 * data_pages) +
479 		sizeof(struct r5l_payload_data_parity) +
480 		sizeof(__le32) * parity_pages;
481 	/* Doesn't work with very big raid array */
482 	if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
483 		return -EINVAL;
484 
485 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
486 	/*
487 	 * The stripe must enter state machine again to finish the write, so
488 	 * don't delay.
489 	 */
490 	clear_bit(STRIPE_DELAYED, &sh->state);
491 	atomic_inc(&sh->count);
492 
493 	mutex_lock(&log->io_mutex);
494 	/* meta + data */
495 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
496 	if (!r5l_has_free_space(log, reserve)) {
497 		spin_lock(&log->no_space_stripes_lock);
498 		list_add_tail(&sh->log_list, &log->no_space_stripes);
499 		spin_unlock(&log->no_space_stripes_lock);
500 
501 		r5l_wake_reclaim(log, reserve);
502 	} else {
503 		ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
504 		if (ret) {
505 			spin_lock_irq(&log->io_list_lock);
506 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
507 			spin_unlock_irq(&log->io_list_lock);
508 		}
509 	}
510 
511 	mutex_unlock(&log->io_mutex);
512 	return 0;
513 }
514 
515 void r5l_write_stripe_run(struct r5l_log *log)
516 {
517 	if (!log)
518 		return;
519 	mutex_lock(&log->io_mutex);
520 	r5l_submit_current_io(log);
521 	mutex_unlock(&log->io_mutex);
522 }
523 
524 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
525 {
526 	if (!log)
527 		return -ENODEV;
528 	/*
529 	 * we flush log disk cache first, then write stripe data to raid disks.
530 	 * So if bio is finished, the log disk cache is flushed already. The
531 	 * recovery guarantees we can recovery the bio from log disk, so we
532 	 * don't need to flush again
533 	 */
534 	if (bio->bi_iter.bi_size == 0) {
535 		bio_endio(bio);
536 		return 0;
537 	}
538 	bio->bi_opf &= ~REQ_PREFLUSH;
539 	return -EAGAIN;
540 }
541 
542 /* This will run after log space is reclaimed */
543 static void r5l_run_no_space_stripes(struct r5l_log *log)
544 {
545 	struct stripe_head *sh;
546 
547 	spin_lock(&log->no_space_stripes_lock);
548 	while (!list_empty(&log->no_space_stripes)) {
549 		sh = list_first_entry(&log->no_space_stripes,
550 				      struct stripe_head, log_list);
551 		list_del_init(&sh->log_list);
552 		set_bit(STRIPE_HANDLE, &sh->state);
553 		raid5_release_stripe(sh);
554 	}
555 	spin_unlock(&log->no_space_stripes_lock);
556 }
557 
558 static sector_t r5l_reclaimable_space(struct r5l_log *log)
559 {
560 	return r5l_ring_distance(log, log->last_checkpoint,
561 				 log->next_checkpoint);
562 }
563 
564 static void r5l_run_no_mem_stripe(struct r5l_log *log)
565 {
566 	struct stripe_head *sh;
567 
568 	assert_spin_locked(&log->io_list_lock);
569 
570 	if (!list_empty(&log->no_mem_stripes)) {
571 		sh = list_first_entry(&log->no_mem_stripes,
572 				      struct stripe_head, log_list);
573 		list_del_init(&sh->log_list);
574 		set_bit(STRIPE_HANDLE, &sh->state);
575 		raid5_release_stripe(sh);
576 	}
577 }
578 
579 static bool r5l_complete_finished_ios(struct r5l_log *log)
580 {
581 	struct r5l_io_unit *io, *next;
582 	bool found = false;
583 
584 	assert_spin_locked(&log->io_list_lock);
585 
586 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
587 		/* don't change list order */
588 		if (io->state < IO_UNIT_STRIPE_END)
589 			break;
590 
591 		log->next_checkpoint = io->log_start;
592 		log->next_cp_seq = io->seq;
593 
594 		list_del(&io->log_sibling);
595 		mempool_free(io, log->io_pool);
596 		r5l_run_no_mem_stripe(log);
597 
598 		found = true;
599 	}
600 
601 	return found;
602 }
603 
604 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
605 {
606 	struct r5l_log *log = io->log;
607 	unsigned long flags;
608 
609 	spin_lock_irqsave(&log->io_list_lock, flags);
610 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
611 
612 	if (!r5l_complete_finished_ios(log)) {
613 		spin_unlock_irqrestore(&log->io_list_lock, flags);
614 		return;
615 	}
616 
617 	if (r5l_reclaimable_space(log) > log->max_free_space)
618 		r5l_wake_reclaim(log, 0);
619 
620 	spin_unlock_irqrestore(&log->io_list_lock, flags);
621 	wake_up(&log->iounit_wait);
622 }
623 
624 void r5l_stripe_write_finished(struct stripe_head *sh)
625 {
626 	struct r5l_io_unit *io;
627 
628 	io = sh->log_io;
629 	sh->log_io = NULL;
630 
631 	if (io && atomic_dec_and_test(&io->pending_stripe))
632 		__r5l_stripe_write_finished(io);
633 }
634 
635 static void r5l_log_flush_endio(struct bio *bio)
636 {
637 	struct r5l_log *log = container_of(bio, struct r5l_log,
638 		flush_bio);
639 	unsigned long flags;
640 	struct r5l_io_unit *io;
641 
642 	if (bio->bi_error)
643 		md_error(log->rdev->mddev, log->rdev);
644 
645 	spin_lock_irqsave(&log->io_list_lock, flags);
646 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
647 		r5l_io_run_stripes(io);
648 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
649 	spin_unlock_irqrestore(&log->io_list_lock, flags);
650 }
651 
652 /*
653  * Starting dispatch IO to raid.
654  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
655  * broken meta in the middle of a log causes recovery can't find meta at the
656  * head of log. If operations require meta at the head persistent in log, we
657  * must make sure meta before it persistent in log too. A case is:
658  *
659  * stripe data/parity is in log, we start write stripe to raid disks. stripe
660  * data/parity must be persistent in log before we do the write to raid disks.
661  *
662  * The solution is we restrictly maintain io_unit list order. In this case, we
663  * only write stripes of an io_unit to raid disks till the io_unit is the first
664  * one whose data/parity is in log.
665  */
666 void r5l_flush_stripe_to_raid(struct r5l_log *log)
667 {
668 	bool do_flush;
669 
670 	if (!log || !log->need_cache_flush)
671 		return;
672 
673 	spin_lock_irq(&log->io_list_lock);
674 	/* flush bio is running */
675 	if (!list_empty(&log->flushing_ios)) {
676 		spin_unlock_irq(&log->io_list_lock);
677 		return;
678 	}
679 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
680 	do_flush = !list_empty(&log->flushing_ios);
681 	spin_unlock_irq(&log->io_list_lock);
682 
683 	if (!do_flush)
684 		return;
685 	bio_reset(&log->flush_bio);
686 	log->flush_bio.bi_bdev = log->rdev->bdev;
687 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
688 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
689 	submit_bio(&log->flush_bio);
690 }
691 
692 static void r5l_write_super(struct r5l_log *log, sector_t cp);
693 static void r5l_write_super_and_discard_space(struct r5l_log *log,
694 	sector_t end)
695 {
696 	struct block_device *bdev = log->rdev->bdev;
697 	struct mddev *mddev;
698 
699 	r5l_write_super(log, end);
700 
701 	if (!blk_queue_discard(bdev_get_queue(bdev)))
702 		return;
703 
704 	mddev = log->rdev->mddev;
705 	/*
706 	 * Discard could zero data, so before discard we must make sure
707 	 * superblock is updated to new log tail. Updating superblock (either
708 	 * directly call md_update_sb() or depend on md thread) must hold
709 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
710 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
711 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
712 	 * thread is calling this function and waitting for reconfig mutex. So
713 	 * there is a deadlock. We workaround this issue with a trylock.
714 	 * FIXME: we could miss discard if we can't take reconfig mutex
715 	 */
716 	set_mask_bits(&mddev->flags, 0,
717 		BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
718 	if (!mddev_trylock(mddev))
719 		return;
720 	md_update_sb(mddev, 1);
721 	mddev_unlock(mddev);
722 
723 	/* discard IO error really doesn't matter, ignore it */
724 	if (log->last_checkpoint < end) {
725 		blkdev_issue_discard(bdev,
726 				log->last_checkpoint + log->rdev->data_offset,
727 				end - log->last_checkpoint, GFP_NOIO, 0);
728 	} else {
729 		blkdev_issue_discard(bdev,
730 				log->last_checkpoint + log->rdev->data_offset,
731 				log->device_size - log->last_checkpoint,
732 				GFP_NOIO, 0);
733 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
734 				GFP_NOIO, 0);
735 	}
736 }
737 
738 
739 static void r5l_do_reclaim(struct r5l_log *log)
740 {
741 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
742 	sector_t reclaimable;
743 	sector_t next_checkpoint;
744 	u64 next_cp_seq;
745 
746 	spin_lock_irq(&log->io_list_lock);
747 	/*
748 	 * move proper io_unit to reclaim list. We should not change the order.
749 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
750 	 * shouldn't reuse space of an unreclaimable io_unit
751 	 */
752 	while (1) {
753 		reclaimable = r5l_reclaimable_space(log);
754 		if (reclaimable >= reclaim_target ||
755 		    (list_empty(&log->running_ios) &&
756 		     list_empty(&log->io_end_ios) &&
757 		     list_empty(&log->flushing_ios) &&
758 		     list_empty(&log->finished_ios)))
759 			break;
760 
761 		md_wakeup_thread(log->rdev->mddev->thread);
762 		wait_event_lock_irq(log->iounit_wait,
763 				    r5l_reclaimable_space(log) > reclaimable,
764 				    log->io_list_lock);
765 	}
766 
767 	next_checkpoint = log->next_checkpoint;
768 	next_cp_seq = log->next_cp_seq;
769 	spin_unlock_irq(&log->io_list_lock);
770 
771 	BUG_ON(reclaimable < 0);
772 	if (reclaimable == 0)
773 		return;
774 
775 	/*
776 	 * write_super will flush cache of each raid disk. We must write super
777 	 * here, because the log area might be reused soon and we don't want to
778 	 * confuse recovery
779 	 */
780 	r5l_write_super_and_discard_space(log, next_checkpoint);
781 
782 	mutex_lock(&log->io_mutex);
783 	log->last_checkpoint = next_checkpoint;
784 	log->last_cp_seq = next_cp_seq;
785 	mutex_unlock(&log->io_mutex);
786 
787 	r5l_run_no_space_stripes(log);
788 }
789 
790 static void r5l_reclaim_thread(struct md_thread *thread)
791 {
792 	struct mddev *mddev = thread->mddev;
793 	struct r5conf *conf = mddev->private;
794 	struct r5l_log *log = conf->log;
795 
796 	if (!log)
797 		return;
798 	r5l_do_reclaim(log);
799 }
800 
801 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
802 {
803 	unsigned long target;
804 	unsigned long new = (unsigned long)space; /* overflow in theory */
805 
806 	do {
807 		target = log->reclaim_target;
808 		if (new < target)
809 			return;
810 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
811 	md_wakeup_thread(log->reclaim_thread);
812 }
813 
814 void r5l_quiesce(struct r5l_log *log, int state)
815 {
816 	struct mddev *mddev;
817 	if (!log || state == 2)
818 		return;
819 	if (state == 0) {
820 		/*
821 		 * This is a special case for hotadd. In suspend, the array has
822 		 * no journal. In resume, journal is initialized as well as the
823 		 * reclaim thread.
824 		 */
825 		if (log->reclaim_thread)
826 			return;
827 		log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
828 					log->rdev->mddev, "reclaim");
829 	} else if (state == 1) {
830 		/* make sure r5l_write_super_and_discard_space exits */
831 		mddev = log->rdev->mddev;
832 		wake_up(&mddev->sb_wait);
833 		r5l_wake_reclaim(log, -1L);
834 		md_unregister_thread(&log->reclaim_thread);
835 		r5l_do_reclaim(log);
836 	}
837 }
838 
839 bool r5l_log_disk_error(struct r5conf *conf)
840 {
841 	struct r5l_log *log;
842 	bool ret;
843 	/* don't allow write if journal disk is missing */
844 	rcu_read_lock();
845 	log = rcu_dereference(conf->log);
846 
847 	if (!log)
848 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
849 	else
850 		ret = test_bit(Faulty, &log->rdev->flags);
851 	rcu_read_unlock();
852 	return ret;
853 }
854 
855 struct r5l_recovery_ctx {
856 	struct page *meta_page;		/* current meta */
857 	sector_t meta_total_blocks;	/* total size of current meta and data */
858 	sector_t pos;			/* recovery position */
859 	u64 seq;			/* recovery position seq */
860 };
861 
862 static int r5l_read_meta_block(struct r5l_log *log,
863 			       struct r5l_recovery_ctx *ctx)
864 {
865 	struct page *page = ctx->meta_page;
866 	struct r5l_meta_block *mb;
867 	u32 crc, stored_crc;
868 
869 	if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
870 			  false))
871 		return -EIO;
872 
873 	mb = page_address(page);
874 	stored_crc = le32_to_cpu(mb->checksum);
875 	mb->checksum = 0;
876 
877 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
878 	    le64_to_cpu(mb->seq) != ctx->seq ||
879 	    mb->version != R5LOG_VERSION ||
880 	    le64_to_cpu(mb->position) != ctx->pos)
881 		return -EINVAL;
882 
883 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
884 	if (stored_crc != crc)
885 		return -EINVAL;
886 
887 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
888 		return -EINVAL;
889 
890 	ctx->meta_total_blocks = BLOCK_SECTORS;
891 
892 	return 0;
893 }
894 
895 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
896 					 struct r5l_recovery_ctx *ctx,
897 					 sector_t stripe_sect,
898 					 int *offset, sector_t *log_offset)
899 {
900 	struct r5conf *conf = log->rdev->mddev->private;
901 	struct stripe_head *sh;
902 	struct r5l_payload_data_parity *payload;
903 	int disk_index;
904 
905 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
906 	while (1) {
907 		payload = page_address(ctx->meta_page) + *offset;
908 
909 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
910 			raid5_compute_sector(conf,
911 					     le64_to_cpu(payload->location), 0,
912 					     &disk_index, sh);
913 
914 			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
915 				     sh->dev[disk_index].page, REQ_OP_READ, 0,
916 				     false);
917 			sh->dev[disk_index].log_checksum =
918 				le32_to_cpu(payload->checksum[0]);
919 			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
920 			ctx->meta_total_blocks += BLOCK_SECTORS;
921 		} else {
922 			disk_index = sh->pd_idx;
923 			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
924 				     sh->dev[disk_index].page, REQ_OP_READ, 0,
925 				     false);
926 			sh->dev[disk_index].log_checksum =
927 				le32_to_cpu(payload->checksum[0]);
928 			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
929 
930 			if (sh->qd_idx >= 0) {
931 				disk_index = sh->qd_idx;
932 				sync_page_io(log->rdev,
933 					     r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
934 					     PAGE_SIZE, sh->dev[disk_index].page,
935 					     REQ_OP_READ, 0, false);
936 				sh->dev[disk_index].log_checksum =
937 					le32_to_cpu(payload->checksum[1]);
938 				set_bit(R5_Wantwrite,
939 					&sh->dev[disk_index].flags);
940 			}
941 			ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
942 		}
943 
944 		*log_offset = r5l_ring_add(log, *log_offset,
945 					   le32_to_cpu(payload->size));
946 		*offset += sizeof(struct r5l_payload_data_parity) +
947 			sizeof(__le32) *
948 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
949 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
950 			break;
951 	}
952 
953 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
954 		void *addr;
955 		u32 checksum;
956 
957 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
958 			continue;
959 		addr = kmap_atomic(sh->dev[disk_index].page);
960 		checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
961 		kunmap_atomic(addr);
962 		if (checksum != sh->dev[disk_index].log_checksum)
963 			goto error;
964 	}
965 
966 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
967 		struct md_rdev *rdev, *rrdev;
968 
969 		if (!test_and_clear_bit(R5_Wantwrite,
970 					&sh->dev[disk_index].flags))
971 			continue;
972 
973 		/* in case device is broken */
974 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
975 		if (rdev)
976 			sync_page_io(rdev, stripe_sect, PAGE_SIZE,
977 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
978 				     false);
979 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
980 		if (rrdev)
981 			sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
982 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
983 				     false);
984 	}
985 	raid5_release_stripe(sh);
986 	return 0;
987 
988 error:
989 	for (disk_index = 0; disk_index < sh->disks; disk_index++)
990 		sh->dev[disk_index].flags = 0;
991 	raid5_release_stripe(sh);
992 	return -EINVAL;
993 }
994 
995 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
996 				       struct r5l_recovery_ctx *ctx)
997 {
998 	struct r5conf *conf = log->rdev->mddev->private;
999 	struct r5l_payload_data_parity *payload;
1000 	struct r5l_meta_block *mb;
1001 	int offset;
1002 	sector_t log_offset;
1003 	sector_t stripe_sector;
1004 
1005 	mb = page_address(ctx->meta_page);
1006 	offset = sizeof(struct r5l_meta_block);
1007 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1008 
1009 	while (offset < le32_to_cpu(mb->meta_size)) {
1010 		int dd;
1011 
1012 		payload = (void *)mb + offset;
1013 		stripe_sector = raid5_compute_sector(conf,
1014 						     le64_to_cpu(payload->location), 0, &dd, NULL);
1015 		if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1016 						  &offset, &log_offset))
1017 			return -EINVAL;
1018 	}
1019 	return 0;
1020 }
1021 
1022 /* copy data/parity from log to raid disks */
1023 static void r5l_recovery_flush_log(struct r5l_log *log,
1024 				   struct r5l_recovery_ctx *ctx)
1025 {
1026 	while (1) {
1027 		if (r5l_read_meta_block(log, ctx))
1028 			return;
1029 		if (r5l_recovery_flush_one_meta(log, ctx))
1030 			return;
1031 		ctx->seq++;
1032 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1033 	}
1034 }
1035 
1036 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1037 					  u64 seq)
1038 {
1039 	struct page *page;
1040 	struct r5l_meta_block *mb;
1041 	u32 crc;
1042 
1043 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1044 	if (!page)
1045 		return -ENOMEM;
1046 	mb = page_address(page);
1047 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1048 	mb->version = R5LOG_VERSION;
1049 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1050 	mb->seq = cpu_to_le64(seq);
1051 	mb->position = cpu_to_le64(pos);
1052 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1053 	mb->checksum = cpu_to_le32(crc);
1054 
1055 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1056 			  REQ_FUA, false)) {
1057 		__free_page(page);
1058 		return -EIO;
1059 	}
1060 	__free_page(page);
1061 	return 0;
1062 }
1063 
1064 static int r5l_recovery_log(struct r5l_log *log)
1065 {
1066 	struct r5l_recovery_ctx ctx;
1067 
1068 	ctx.pos = log->last_checkpoint;
1069 	ctx.seq = log->last_cp_seq;
1070 	ctx.meta_page = alloc_page(GFP_KERNEL);
1071 	if (!ctx.meta_page)
1072 		return -ENOMEM;
1073 
1074 	r5l_recovery_flush_log(log, &ctx);
1075 	__free_page(ctx.meta_page);
1076 
1077 	/*
1078 	 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1079 	 * log will start here. but we can't let superblock point to last valid
1080 	 * meta block. The log might looks like:
1081 	 * | meta 1| meta 2| meta 3|
1082 	 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1083 	 * superblock points to meta 1, we write a new valid meta 2n.  if crash
1084 	 * happens again, new recovery will start from meta 1. Since meta 2n is
1085 	 * valid now, recovery will think meta 3 is valid, which is wrong.
1086 	 * The solution is we create a new meta in meta2 with its seq == meta
1087 	 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1088 	 * not think meta 3 is a valid meta, because its seq doesn't match
1089 	 */
1090 	if (ctx.seq > log->last_cp_seq + 1) {
1091 		int ret;
1092 
1093 		ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1094 		if (ret)
1095 			return ret;
1096 		log->seq = ctx.seq + 11;
1097 		log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1098 		r5l_write_super(log, ctx.pos);
1099 	} else {
1100 		log->log_start = ctx.pos;
1101 		log->seq = ctx.seq;
1102 	}
1103 	return 0;
1104 }
1105 
1106 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1107 {
1108 	struct mddev *mddev = log->rdev->mddev;
1109 
1110 	log->rdev->journal_tail = cp;
1111 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1112 }
1113 
1114 static int r5l_load_log(struct r5l_log *log)
1115 {
1116 	struct md_rdev *rdev = log->rdev;
1117 	struct page *page;
1118 	struct r5l_meta_block *mb;
1119 	sector_t cp = log->rdev->journal_tail;
1120 	u32 stored_crc, expected_crc;
1121 	bool create_super = false;
1122 	int ret;
1123 
1124 	/* Make sure it's valid */
1125 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1126 		cp = 0;
1127 	page = alloc_page(GFP_KERNEL);
1128 	if (!page)
1129 		return -ENOMEM;
1130 
1131 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
1132 		ret = -EIO;
1133 		goto ioerr;
1134 	}
1135 	mb = page_address(page);
1136 
1137 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1138 	    mb->version != R5LOG_VERSION) {
1139 		create_super = true;
1140 		goto create;
1141 	}
1142 	stored_crc = le32_to_cpu(mb->checksum);
1143 	mb->checksum = 0;
1144 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1145 	if (stored_crc != expected_crc) {
1146 		create_super = true;
1147 		goto create;
1148 	}
1149 	if (le64_to_cpu(mb->position) != cp) {
1150 		create_super = true;
1151 		goto create;
1152 	}
1153 create:
1154 	if (create_super) {
1155 		log->last_cp_seq = prandom_u32();
1156 		cp = 0;
1157 		/*
1158 		 * Make sure super points to correct address. Log might have
1159 		 * data very soon. If super hasn't correct log tail address,
1160 		 * recovery can't find the log
1161 		 */
1162 		r5l_write_super(log, cp);
1163 	} else
1164 		log->last_cp_seq = le64_to_cpu(mb->seq);
1165 
1166 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1167 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1168 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1169 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1170 	log->last_checkpoint = cp;
1171 
1172 	__free_page(page);
1173 
1174 	return r5l_recovery_log(log);
1175 ioerr:
1176 	__free_page(page);
1177 	return ret;
1178 }
1179 
1180 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1181 {
1182 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1183 	struct r5l_log *log;
1184 
1185 	if (PAGE_SIZE != 4096)
1186 		return -EINVAL;
1187 	log = kzalloc(sizeof(*log), GFP_KERNEL);
1188 	if (!log)
1189 		return -ENOMEM;
1190 	log->rdev = rdev;
1191 
1192 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
1193 
1194 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1195 				       sizeof(rdev->mddev->uuid));
1196 
1197 	mutex_init(&log->io_mutex);
1198 
1199 	spin_lock_init(&log->io_list_lock);
1200 	INIT_LIST_HEAD(&log->running_ios);
1201 	INIT_LIST_HEAD(&log->io_end_ios);
1202 	INIT_LIST_HEAD(&log->flushing_ios);
1203 	INIT_LIST_HEAD(&log->finished_ios);
1204 	bio_init(&log->flush_bio);
1205 
1206 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1207 	if (!log->io_kc)
1208 		goto io_kc;
1209 
1210 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1211 	if (!log->io_pool)
1212 		goto io_pool;
1213 
1214 	log->bs = bioset_create(R5L_POOL_SIZE, 0);
1215 	if (!log->bs)
1216 		goto io_bs;
1217 
1218 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1219 	if (!log->meta_pool)
1220 		goto out_mempool;
1221 
1222 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1223 						 log->rdev->mddev, "reclaim");
1224 	if (!log->reclaim_thread)
1225 		goto reclaim_thread;
1226 	init_waitqueue_head(&log->iounit_wait);
1227 
1228 	INIT_LIST_HEAD(&log->no_mem_stripes);
1229 
1230 	INIT_LIST_HEAD(&log->no_space_stripes);
1231 	spin_lock_init(&log->no_space_stripes_lock);
1232 
1233 	if (r5l_load_log(log))
1234 		goto error;
1235 
1236 	rcu_assign_pointer(conf->log, log);
1237 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1238 	return 0;
1239 
1240 error:
1241 	md_unregister_thread(&log->reclaim_thread);
1242 reclaim_thread:
1243 	mempool_destroy(log->meta_pool);
1244 out_mempool:
1245 	bioset_free(log->bs);
1246 io_bs:
1247 	mempool_destroy(log->io_pool);
1248 io_pool:
1249 	kmem_cache_destroy(log->io_kc);
1250 io_kc:
1251 	kfree(log);
1252 	return -EINVAL;
1253 }
1254 
1255 void r5l_exit_log(struct r5l_log *log)
1256 {
1257 	md_unregister_thread(&log->reclaim_thread);
1258 	mempool_destroy(log->meta_pool);
1259 	bioset_free(log->bs);
1260 	mempool_destroy(log->io_pool);
1261 	kmem_cache_destroy(log->io_kc);
1262 	kfree(log);
1263 }
1264