xref: /openbmc/linux/drivers/md/raid5-cache.c (revision 6fa24b41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5  */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19 
20 /*
21  * metadata/data stored in disk with 4k size unit (a block) regardless
22  * underneath hardware sector size. only works with PAGE_SIZE == 4096
23  */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26 
27 /*
28  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29  *
30  * In write through mode, the reclaim runs every log->max_free_space.
31  * This can prevent the recovery scans for too long
32  */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35 
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42 
43 /*
44  * We only need 2 bios per I/O unit to make progress, but ensure we
45  * have a few more available to not get too tight.
46  */
47 #define R5L_POOL_SIZE	4
48 
49 static char *r5c_journal_mode_str[] = {"write-through",
50 				       "write-back"};
51 /*
52  * raid5 cache state machine
53  *
54  * With the RAID cache, each stripe works in two phases:
55  *	- caching phase
56  *	- writing-out phase
57  *
58  * These two phases are controlled by bit STRIPE_R5C_CACHING:
59  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61  *
62  * When there is no journal, or the journal is in write-through mode,
63  * the stripe is always in writing-out phase.
64  *
65  * For write-back journal, the stripe is sent to caching phase on write
66  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67  * the write-out phase by clearing STRIPE_R5C_CACHING.
68  *
69  * Stripes in caching phase do not write the raid disks. Instead, all
70  * writes are committed from the log device. Therefore, a stripe in
71  * caching phase handles writes as:
72  *	- write to log device
73  *	- return IO
74  *
75  * Stripes in writing-out phase handle writes as:
76  *	- calculate parity
77  *	- write pending data and parity to journal
78  *	- write data and parity to raid disks
79  *	- return IO for pending writes
80  */
81 
82 struct r5l_log {
83 	struct md_rdev *rdev;
84 
85 	u32 uuid_checksum;
86 
87 	sector_t device_size;		/* log device size, round to
88 					 * BLOCK_SECTORS */
89 	sector_t max_free_space;	/* reclaim run if free space is at
90 					 * this size */
91 
92 	sector_t last_checkpoint;	/* log tail. where recovery scan
93 					 * starts from */
94 	u64 last_cp_seq;		/* log tail sequence */
95 
96 	sector_t log_start;		/* log head. where new data appends */
97 	u64 seq;			/* log head sequence */
98 
99 	sector_t next_checkpoint;
100 
101 	struct mutex io_mutex;
102 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
103 
104 	spinlock_t io_list_lock;
105 	struct list_head running_ios;	/* io_units which are still running,
106 					 * and have not yet been completely
107 					 * written to the log */
108 	struct list_head io_end_ios;	/* io_units which have been completely
109 					 * written to the log but not yet written
110 					 * to the RAID */
111 	struct list_head flushing_ios;	/* io_units which are waiting for log
112 					 * cache flush */
113 	struct list_head finished_ios;	/* io_units which settle down in log disk */
114 	struct bio flush_bio;
115 
116 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
117 
118 	struct kmem_cache *io_kc;
119 	mempool_t io_pool;
120 	struct bio_set bs;
121 	mempool_t meta_pool;
122 
123 	struct md_thread __rcu *reclaim_thread;
124 	unsigned long reclaim_target;	/* number of space that need to be
125 					 * reclaimed.  if it's 0, reclaim spaces
126 					 * used by io_units which are in
127 					 * IO_UNIT_STRIPE_END state (eg, reclaim
128 					 * doesn't wait for specific io_unit
129 					 * switching to IO_UNIT_STRIPE_END
130 					 * state) */
131 	wait_queue_head_t iounit_wait;
132 
133 	struct list_head no_space_stripes; /* pending stripes, log has no space */
134 	spinlock_t no_space_stripes_lock;
135 
136 	bool need_cache_flush;
137 
138 	/* for r5c_cache */
139 	enum r5c_journal_mode r5c_journal_mode;
140 
141 	/* all stripes in r5cache, in the order of seq at sh->log_start */
142 	struct list_head stripe_in_journal_list;
143 
144 	spinlock_t stripe_in_journal_lock;
145 	atomic_t stripe_in_journal_count;
146 
147 	/* to submit async io_units, to fulfill ordering of flush */
148 	struct work_struct deferred_io_work;
149 	/* to disable write back during in degraded mode */
150 	struct work_struct disable_writeback_work;
151 
152 	/* to for chunk_aligned_read in writeback mode, details below */
153 	spinlock_t tree_lock;
154 	struct radix_tree_root big_stripe_tree;
155 };
156 
157 /*
158  * Enable chunk_aligned_read() with write back cache.
159  *
160  * Each chunk may contain more than one stripe (for example, a 256kB
161  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163  * For each big_stripe, we count how many stripes of this big_stripe
164  * are in the write back cache. These data are tracked in a radix tree
165  * (big_stripe_tree). We use radix_tree item pointer as the counter.
166  * r5c_tree_index() is used to calculate keys for the radix tree.
167  *
168  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169  * big_stripe of each chunk in the tree. If this big_stripe is in the
170  * tree, chunk_aligned_read() aborts. This look up is protected by
171  * rcu_read_lock().
172  *
173  * It is necessary to remember whether a stripe is counted in
174  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176  * two flags are set, the stripe is counted in big_stripe_tree. This
177  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178  * r5c_try_caching_write(); and moving clear_bit of
179  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180  * r5c_finish_stripe_write_out().
181  */
182 
183 /*
184  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185  * So it is necessary to left shift the counter by 2 bits before using it
186  * as data pointer of the tree.
187  */
188 #define R5C_RADIX_COUNT_SHIFT 2
189 
190 /*
191  * calculate key for big_stripe_tree
192  *
193  * sect: align_bi->bi_iter.bi_sector or sh->sector
194  */
195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196 				      sector_t sect)
197 {
198 	sector_div(sect, conf->chunk_sectors);
199 	return sect;
200 }
201 
202 /*
203  * an IO range starts from a meta data block and end at the next meta data
204  * block. The io unit's the meta data block tracks data/parity followed it. io
205  * unit is written to log disk with normal write, as we always flush log disk
206  * first and then start move data to raid disks, there is no requirement to
207  * write io unit with FLUSH/FUA
208  */
209 struct r5l_io_unit {
210 	struct r5l_log *log;
211 
212 	struct page *meta_page;	/* store meta block */
213 	int meta_offset;	/* current offset in meta_page */
214 
215 	struct bio *current_bio;/* current_bio accepting new data */
216 
217 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
218 	u64 seq;		/* seq number of the metablock */
219 	sector_t log_start;	/* where the io_unit starts */
220 	sector_t log_end;	/* where the io_unit ends */
221 	struct list_head log_sibling; /* log->running_ios */
222 	struct list_head stripe_list; /* stripes added to the io_unit */
223 
224 	int state;
225 	bool need_split_bio;
226 	struct bio *split_bio;
227 
228 	unsigned int has_flush:1;		/* include flush request */
229 	unsigned int has_fua:1;			/* include fua request */
230 	unsigned int has_null_flush:1;		/* include null flush request */
231 	unsigned int has_flush_payload:1;	/* include flush payload  */
232 	/*
233 	 * io isn't sent yet, flush/fua request can only be submitted till it's
234 	 * the first IO in running_ios list
235 	 */
236 	unsigned int io_deferred:1;
237 
238 	struct bio_list flush_barriers;   /* size == 0 flush bios */
239 };
240 
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state {
243 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
244 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
245 				 * don't accepting new bio */
246 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
247 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
248 };
249 
250 bool r5c_is_writeback(struct r5l_log *log)
251 {
252 	return (log != NULL &&
253 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254 }
255 
256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257 {
258 	start += inc;
259 	if (start >= log->device_size)
260 		start = start - log->device_size;
261 	return start;
262 }
263 
264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265 				  sector_t end)
266 {
267 	if (end >= start)
268 		return end - start;
269 	else
270 		return end + log->device_size - start;
271 }
272 
273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274 {
275 	sector_t used_size;
276 
277 	used_size = r5l_ring_distance(log, log->last_checkpoint,
278 					log->log_start);
279 
280 	return log->device_size > used_size + size;
281 }
282 
283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284 				    enum r5l_io_unit_state state)
285 {
286 	if (WARN_ON(io->state >= state))
287 		return;
288 	io->state = state;
289 }
290 
291 static void
292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293 {
294 	struct bio *wbi, *wbi2;
295 
296 	wbi = dev->written;
297 	dev->written = NULL;
298 	while (wbi && wbi->bi_iter.bi_sector <
299 	       dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300 		wbi2 = r5_next_bio(conf, wbi, dev->sector);
301 		md_write_end(conf->mddev);
302 		bio_endio(wbi);
303 		wbi = wbi2;
304 	}
305 }
306 
307 void r5c_handle_cached_data_endio(struct r5conf *conf,
308 				  struct stripe_head *sh, int disks)
309 {
310 	int i;
311 
312 	for (i = sh->disks; i--; ) {
313 		if (sh->dev[i].written) {
314 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
315 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317 					   RAID5_STRIPE_SECTORS(conf),
318 					   !test_bit(STRIPE_DEGRADED, &sh->state),
319 					   0);
320 		}
321 	}
322 }
323 
324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325 
326 /* Check whether we should flush some stripes to free up stripe cache */
327 void r5c_check_stripe_cache_usage(struct r5conf *conf)
328 {
329 	int total_cached;
330 	struct r5l_log *log = READ_ONCE(conf->log);
331 
332 	if (!r5c_is_writeback(log))
333 		return;
334 
335 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
336 		atomic_read(&conf->r5c_cached_full_stripes);
337 
338 	/*
339 	 * The following condition is true for either of the following:
340 	 *   - stripe cache pressure high:
341 	 *          total_cached > 3/4 min_nr_stripes ||
342 	 *          empty_inactive_list_nr > 0
343 	 *   - stripe cache pressure moderate:
344 	 *          total_cached > 1/2 min_nr_stripes
345 	 */
346 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
347 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
348 		r5l_wake_reclaim(log, 0);
349 }
350 
351 /*
352  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
353  * stripes in the cache
354  */
355 void r5c_check_cached_full_stripe(struct r5conf *conf)
356 {
357 	struct r5l_log *log = READ_ONCE(conf->log);
358 
359 	if (!r5c_is_writeback(log))
360 		return;
361 
362 	/*
363 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
364 	 * or a full stripe (chunk size / 4k stripes).
365 	 */
366 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
367 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
368 		conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
369 		r5l_wake_reclaim(log, 0);
370 }
371 
372 /*
373  * Total log space (in sectors) needed to flush all data in cache
374  *
375  * To avoid deadlock due to log space, it is necessary to reserve log
376  * space to flush critical stripes (stripes that occupying log space near
377  * last_checkpoint). This function helps check how much log space is
378  * required to flush all cached stripes.
379  *
380  * To reduce log space requirements, two mechanisms are used to give cache
381  * flush higher priorities:
382  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
383  *       stripes ALREADY in journal can be flushed w/o pending writes;
384  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
385  *       can be delayed (r5l_add_no_space_stripe).
386  *
387  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
388  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
389  * pages of journal space. For stripes that has not passed 1, flushing it
390  * requires (conf->raid_disks + 1) pages of journal space. There are at
391  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
392  * required to flush all cached stripes (in pages) is:
393  *
394  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
395  *     (group_cnt + 1) * (raid_disks + 1)
396  * or
397  *     (stripe_in_journal_count) * (max_degraded + 1) +
398  *     (group_cnt + 1) * (raid_disks - max_degraded)
399  */
400 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
401 {
402 	struct r5l_log *log = READ_ONCE(conf->log);
403 
404 	if (!r5c_is_writeback(log))
405 		return 0;
406 
407 	return BLOCK_SECTORS *
408 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
409 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
410 }
411 
412 /*
413  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
414  *
415  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
416  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
417  * device is less than 2x of reclaim_required_space.
418  */
419 static inline void r5c_update_log_state(struct r5l_log *log)
420 {
421 	struct r5conf *conf = log->rdev->mddev->private;
422 	sector_t free_space;
423 	sector_t reclaim_space;
424 	bool wake_reclaim = false;
425 
426 	if (!r5c_is_writeback(log))
427 		return;
428 
429 	free_space = r5l_ring_distance(log, log->log_start,
430 				       log->last_checkpoint);
431 	reclaim_space = r5c_log_required_to_flush_cache(conf);
432 	if (free_space < 2 * reclaim_space)
433 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
434 	else {
435 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
436 			wake_reclaim = true;
437 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
438 	}
439 	if (free_space < 3 * reclaim_space)
440 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
441 	else
442 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
443 
444 	if (wake_reclaim)
445 		r5l_wake_reclaim(log, 0);
446 }
447 
448 /*
449  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
450  * This function should only be called in write-back mode.
451  */
452 void r5c_make_stripe_write_out(struct stripe_head *sh)
453 {
454 	struct r5conf *conf = sh->raid_conf;
455 	struct r5l_log *log = READ_ONCE(conf->log);
456 
457 	BUG_ON(!r5c_is_writeback(log));
458 
459 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
460 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
461 
462 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
463 		atomic_inc(&conf->preread_active_stripes);
464 }
465 
466 static void r5c_handle_data_cached(struct stripe_head *sh)
467 {
468 	int i;
469 
470 	for (i = sh->disks; i--; )
471 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
472 			set_bit(R5_InJournal, &sh->dev[i].flags);
473 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
474 		}
475 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
476 }
477 
478 /*
479  * this journal write must contain full parity,
480  * it may also contain some data pages
481  */
482 static void r5c_handle_parity_cached(struct stripe_head *sh)
483 {
484 	int i;
485 
486 	for (i = sh->disks; i--; )
487 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
488 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
489 }
490 
491 /*
492  * Setting proper flags after writing (or flushing) data and/or parity to the
493  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
494  */
495 static void r5c_finish_cache_stripe(struct stripe_head *sh)
496 {
497 	struct r5l_log *log = READ_ONCE(sh->raid_conf->log);
498 
499 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
500 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
501 		/*
502 		 * Set R5_InJournal for parity dev[pd_idx]. This means
503 		 * all data AND parity in the journal. For RAID 6, it is
504 		 * NOT necessary to set the flag for dev[qd_idx], as the
505 		 * two parities are written out together.
506 		 */
507 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
508 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
509 		r5c_handle_data_cached(sh);
510 	} else {
511 		r5c_handle_parity_cached(sh);
512 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
513 	}
514 }
515 
516 static void r5l_io_run_stripes(struct r5l_io_unit *io)
517 {
518 	struct stripe_head *sh, *next;
519 
520 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
521 		list_del_init(&sh->log_list);
522 
523 		r5c_finish_cache_stripe(sh);
524 
525 		set_bit(STRIPE_HANDLE, &sh->state);
526 		raid5_release_stripe(sh);
527 	}
528 }
529 
530 static void r5l_log_run_stripes(struct r5l_log *log)
531 {
532 	struct r5l_io_unit *io, *next;
533 
534 	lockdep_assert_held(&log->io_list_lock);
535 
536 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
537 		/* don't change list order */
538 		if (io->state < IO_UNIT_IO_END)
539 			break;
540 
541 		list_move_tail(&io->log_sibling, &log->finished_ios);
542 		r5l_io_run_stripes(io);
543 	}
544 }
545 
546 static void r5l_move_to_end_ios(struct r5l_log *log)
547 {
548 	struct r5l_io_unit *io, *next;
549 
550 	lockdep_assert_held(&log->io_list_lock);
551 
552 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
553 		/* don't change list order */
554 		if (io->state < IO_UNIT_IO_END)
555 			break;
556 		list_move_tail(&io->log_sibling, &log->io_end_ios);
557 	}
558 }
559 
560 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
561 static void r5l_log_endio(struct bio *bio)
562 {
563 	struct r5l_io_unit *io = bio->bi_private;
564 	struct r5l_io_unit *io_deferred;
565 	struct r5l_log *log = io->log;
566 	unsigned long flags;
567 	bool has_null_flush;
568 	bool has_flush_payload;
569 
570 	if (bio->bi_status)
571 		md_error(log->rdev->mddev, log->rdev);
572 
573 	bio_put(bio);
574 	mempool_free(io->meta_page, &log->meta_pool);
575 
576 	spin_lock_irqsave(&log->io_list_lock, flags);
577 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
578 
579 	/*
580 	 * if the io doesn't not have null_flush or flush payload,
581 	 * it is not safe to access it after releasing io_list_lock.
582 	 * Therefore, it is necessary to check the condition with
583 	 * the lock held.
584 	 */
585 	has_null_flush = io->has_null_flush;
586 	has_flush_payload = io->has_flush_payload;
587 
588 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
589 		r5l_move_to_end_ios(log);
590 	else
591 		r5l_log_run_stripes(log);
592 	if (!list_empty(&log->running_ios)) {
593 		/*
594 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
595 		 * can dispatch it
596 		 */
597 		io_deferred = list_first_entry(&log->running_ios,
598 					       struct r5l_io_unit, log_sibling);
599 		if (io_deferred->io_deferred)
600 			schedule_work(&log->deferred_io_work);
601 	}
602 
603 	spin_unlock_irqrestore(&log->io_list_lock, flags);
604 
605 	if (log->need_cache_flush)
606 		md_wakeup_thread(log->rdev->mddev->thread);
607 
608 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
609 	if (has_null_flush) {
610 		struct bio *bi;
611 
612 		WARN_ON(bio_list_empty(&io->flush_barriers));
613 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
614 			bio_endio(bi);
615 			if (atomic_dec_and_test(&io->pending_stripe)) {
616 				__r5l_stripe_write_finished(io);
617 				return;
618 			}
619 		}
620 	}
621 	/* decrease pending_stripe for flush payload */
622 	if (has_flush_payload)
623 		if (atomic_dec_and_test(&io->pending_stripe))
624 			__r5l_stripe_write_finished(io);
625 }
626 
627 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
628 {
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&log->io_list_lock, flags);
632 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
633 	spin_unlock_irqrestore(&log->io_list_lock, flags);
634 
635 	/*
636 	 * In case of journal device failures, submit_bio will get error
637 	 * and calls endio, then active stripes will continue write
638 	 * process. Therefore, it is not necessary to check Faulty bit
639 	 * of journal device here.
640 	 *
641 	 * We can't check split_bio after current_bio is submitted. If
642 	 * io->split_bio is null, after current_bio is submitted, current_bio
643 	 * might already be completed and the io_unit is freed. We submit
644 	 * split_bio first to avoid the issue.
645 	 */
646 	if (io->split_bio) {
647 		if (io->has_flush)
648 			io->split_bio->bi_opf |= REQ_PREFLUSH;
649 		if (io->has_fua)
650 			io->split_bio->bi_opf |= REQ_FUA;
651 		submit_bio(io->split_bio);
652 	}
653 
654 	if (io->has_flush)
655 		io->current_bio->bi_opf |= REQ_PREFLUSH;
656 	if (io->has_fua)
657 		io->current_bio->bi_opf |= REQ_FUA;
658 	submit_bio(io->current_bio);
659 }
660 
661 /* deferred io_unit will be dispatched here */
662 static void r5l_submit_io_async(struct work_struct *work)
663 {
664 	struct r5l_log *log = container_of(work, struct r5l_log,
665 					   deferred_io_work);
666 	struct r5l_io_unit *io = NULL;
667 	unsigned long flags;
668 
669 	spin_lock_irqsave(&log->io_list_lock, flags);
670 	if (!list_empty(&log->running_ios)) {
671 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
672 				      log_sibling);
673 		if (!io->io_deferred)
674 			io = NULL;
675 		else
676 			io->io_deferred = 0;
677 	}
678 	spin_unlock_irqrestore(&log->io_list_lock, flags);
679 	if (io)
680 		r5l_do_submit_io(log, io);
681 }
682 
683 static void r5c_disable_writeback_async(struct work_struct *work)
684 {
685 	struct r5l_log *log = container_of(work, struct r5l_log,
686 					   disable_writeback_work);
687 	struct mddev *mddev = log->rdev->mddev;
688 	struct r5conf *conf = mddev->private;
689 	int locked = 0;
690 
691 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
692 		return;
693 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
694 		mdname(mddev));
695 
696 	/* wait superblock change before suspend */
697 	wait_event(mddev->sb_wait,
698 		   !READ_ONCE(conf->log) ||
699 		   (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
700 		    (locked = mddev_trylock(mddev))));
701 	if (locked) {
702 		mddev_suspend(mddev);
703 		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
704 		mddev_resume(mddev);
705 		mddev_unlock(mddev);
706 	}
707 }
708 
709 static void r5l_submit_current_io(struct r5l_log *log)
710 {
711 	struct r5l_io_unit *io = log->current_io;
712 	struct r5l_meta_block *block;
713 	unsigned long flags;
714 	u32 crc;
715 	bool do_submit = true;
716 
717 	if (!io)
718 		return;
719 
720 	block = page_address(io->meta_page);
721 	block->meta_size = cpu_to_le32(io->meta_offset);
722 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
723 	block->checksum = cpu_to_le32(crc);
724 
725 	log->current_io = NULL;
726 	spin_lock_irqsave(&log->io_list_lock, flags);
727 	if (io->has_flush || io->has_fua) {
728 		if (io != list_first_entry(&log->running_ios,
729 					   struct r5l_io_unit, log_sibling)) {
730 			io->io_deferred = 1;
731 			do_submit = false;
732 		}
733 	}
734 	spin_unlock_irqrestore(&log->io_list_lock, flags);
735 	if (do_submit)
736 		r5l_do_submit_io(log, io);
737 }
738 
739 static struct bio *r5l_bio_alloc(struct r5l_log *log)
740 {
741 	struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
742 					   REQ_OP_WRITE, GFP_NOIO, &log->bs);
743 
744 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
745 
746 	return bio;
747 }
748 
749 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
750 {
751 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
752 
753 	r5c_update_log_state(log);
754 	/*
755 	 * If we filled up the log device start from the beginning again,
756 	 * which will require a new bio.
757 	 *
758 	 * Note: for this to work properly the log size needs to me a multiple
759 	 * of BLOCK_SECTORS.
760 	 */
761 	if (log->log_start == 0)
762 		io->need_split_bio = true;
763 
764 	io->log_end = log->log_start;
765 }
766 
767 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
768 {
769 	struct r5l_io_unit *io;
770 	struct r5l_meta_block *block;
771 
772 	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
773 	if (!io)
774 		return NULL;
775 	memset(io, 0, sizeof(*io));
776 
777 	io->log = log;
778 	INIT_LIST_HEAD(&io->log_sibling);
779 	INIT_LIST_HEAD(&io->stripe_list);
780 	bio_list_init(&io->flush_barriers);
781 	io->state = IO_UNIT_RUNNING;
782 
783 	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
784 	block = page_address(io->meta_page);
785 	clear_page(block);
786 	block->magic = cpu_to_le32(R5LOG_MAGIC);
787 	block->version = R5LOG_VERSION;
788 	block->seq = cpu_to_le64(log->seq);
789 	block->position = cpu_to_le64(log->log_start);
790 
791 	io->log_start = log->log_start;
792 	io->meta_offset = sizeof(struct r5l_meta_block);
793 	io->seq = log->seq++;
794 
795 	io->current_bio = r5l_bio_alloc(log);
796 	io->current_bio->bi_end_io = r5l_log_endio;
797 	io->current_bio->bi_private = io;
798 	__bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
799 
800 	r5_reserve_log_entry(log, io);
801 
802 	spin_lock_irq(&log->io_list_lock);
803 	list_add_tail(&io->log_sibling, &log->running_ios);
804 	spin_unlock_irq(&log->io_list_lock);
805 
806 	return io;
807 }
808 
809 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
810 {
811 	if (log->current_io &&
812 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
813 		r5l_submit_current_io(log);
814 
815 	if (!log->current_io) {
816 		log->current_io = r5l_new_meta(log);
817 		if (!log->current_io)
818 			return -ENOMEM;
819 	}
820 
821 	return 0;
822 }
823 
824 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
825 				    sector_t location,
826 				    u32 checksum1, u32 checksum2,
827 				    bool checksum2_valid)
828 {
829 	struct r5l_io_unit *io = log->current_io;
830 	struct r5l_payload_data_parity *payload;
831 
832 	payload = page_address(io->meta_page) + io->meta_offset;
833 	payload->header.type = cpu_to_le16(type);
834 	payload->header.flags = cpu_to_le16(0);
835 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
836 				    (PAGE_SHIFT - 9));
837 	payload->location = cpu_to_le64(location);
838 	payload->checksum[0] = cpu_to_le32(checksum1);
839 	if (checksum2_valid)
840 		payload->checksum[1] = cpu_to_le32(checksum2);
841 
842 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
843 		sizeof(__le32) * (1 + !!checksum2_valid);
844 }
845 
846 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
847 {
848 	struct r5l_io_unit *io = log->current_io;
849 
850 	if (io->need_split_bio) {
851 		BUG_ON(io->split_bio);
852 		io->split_bio = io->current_bio;
853 		io->current_bio = r5l_bio_alloc(log);
854 		bio_chain(io->current_bio, io->split_bio);
855 		io->need_split_bio = false;
856 	}
857 
858 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
859 		BUG();
860 
861 	r5_reserve_log_entry(log, io);
862 }
863 
864 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
865 {
866 	struct mddev *mddev = log->rdev->mddev;
867 	struct r5conf *conf = mddev->private;
868 	struct r5l_io_unit *io;
869 	struct r5l_payload_flush *payload;
870 	int meta_size;
871 
872 	/*
873 	 * payload_flush requires extra writes to the journal.
874 	 * To avoid handling the extra IO in quiesce, just skip
875 	 * flush_payload
876 	 */
877 	if (conf->quiesce)
878 		return;
879 
880 	mutex_lock(&log->io_mutex);
881 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
882 
883 	if (r5l_get_meta(log, meta_size)) {
884 		mutex_unlock(&log->io_mutex);
885 		return;
886 	}
887 
888 	/* current implementation is one stripe per flush payload */
889 	io = log->current_io;
890 	payload = page_address(io->meta_page) + io->meta_offset;
891 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
892 	payload->header.flags = cpu_to_le16(0);
893 	payload->size = cpu_to_le32(sizeof(__le64));
894 	payload->flush_stripes[0] = cpu_to_le64(sect);
895 	io->meta_offset += meta_size;
896 	/* multiple flush payloads count as one pending_stripe */
897 	if (!io->has_flush_payload) {
898 		io->has_flush_payload = 1;
899 		atomic_inc(&io->pending_stripe);
900 	}
901 	mutex_unlock(&log->io_mutex);
902 }
903 
904 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
905 			   int data_pages, int parity_pages)
906 {
907 	int i;
908 	int meta_size;
909 	int ret;
910 	struct r5l_io_unit *io;
911 
912 	meta_size =
913 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
914 		 * data_pages) +
915 		sizeof(struct r5l_payload_data_parity) +
916 		sizeof(__le32) * parity_pages;
917 
918 	ret = r5l_get_meta(log, meta_size);
919 	if (ret)
920 		return ret;
921 
922 	io = log->current_io;
923 
924 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
925 		io->has_flush = 1;
926 
927 	for (i = 0; i < sh->disks; i++) {
928 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
929 		    test_bit(R5_InJournal, &sh->dev[i].flags))
930 			continue;
931 		if (i == sh->pd_idx || i == sh->qd_idx)
932 			continue;
933 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
934 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
935 			io->has_fua = 1;
936 			/*
937 			 * we need to flush journal to make sure recovery can
938 			 * reach the data with fua flag
939 			 */
940 			io->has_flush = 1;
941 		}
942 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
943 					raid5_compute_blocknr(sh, i, 0),
944 					sh->dev[i].log_checksum, 0, false);
945 		r5l_append_payload_page(log, sh->dev[i].page);
946 	}
947 
948 	if (parity_pages == 2) {
949 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
950 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
951 					sh->dev[sh->qd_idx].log_checksum, true);
952 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
953 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
954 	} else if (parity_pages == 1) {
955 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
956 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
957 					0, false);
958 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
959 	} else  /* Just writing data, not parity, in caching phase */
960 		BUG_ON(parity_pages != 0);
961 
962 	list_add_tail(&sh->log_list, &io->stripe_list);
963 	atomic_inc(&io->pending_stripe);
964 	sh->log_io = io;
965 
966 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
967 		return 0;
968 
969 	if (sh->log_start == MaxSector) {
970 		BUG_ON(!list_empty(&sh->r5c));
971 		sh->log_start = io->log_start;
972 		spin_lock_irq(&log->stripe_in_journal_lock);
973 		list_add_tail(&sh->r5c,
974 			      &log->stripe_in_journal_list);
975 		spin_unlock_irq(&log->stripe_in_journal_lock);
976 		atomic_inc(&log->stripe_in_journal_count);
977 	}
978 	return 0;
979 }
980 
981 /* add stripe to no_space_stripes, and then wake up reclaim */
982 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
983 					   struct stripe_head *sh)
984 {
985 	spin_lock(&log->no_space_stripes_lock);
986 	list_add_tail(&sh->log_list, &log->no_space_stripes);
987 	spin_unlock(&log->no_space_stripes_lock);
988 }
989 
990 /*
991  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
992  * data from log to raid disks), so we shouldn't wait for reclaim here
993  */
994 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
995 {
996 	struct r5conf *conf = sh->raid_conf;
997 	int write_disks = 0;
998 	int data_pages, parity_pages;
999 	int reserve;
1000 	int i;
1001 	int ret = 0;
1002 	bool wake_reclaim = false;
1003 
1004 	if (!log)
1005 		return -EAGAIN;
1006 	/* Don't support stripe batch */
1007 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1008 	    test_bit(STRIPE_SYNCING, &sh->state)) {
1009 		/* the stripe is written to log, we start writing it to raid */
1010 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1011 		return -EAGAIN;
1012 	}
1013 
1014 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1015 
1016 	for (i = 0; i < sh->disks; i++) {
1017 		void *addr;
1018 
1019 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1020 		    test_bit(R5_InJournal, &sh->dev[i].flags))
1021 			continue;
1022 
1023 		write_disks++;
1024 		/* checksum is already calculated in last run */
1025 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1026 			continue;
1027 		addr = kmap_atomic(sh->dev[i].page);
1028 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1029 						    addr, PAGE_SIZE);
1030 		kunmap_atomic(addr);
1031 	}
1032 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1033 	data_pages = write_disks - parity_pages;
1034 
1035 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1036 	/*
1037 	 * The stripe must enter state machine again to finish the write, so
1038 	 * don't delay.
1039 	 */
1040 	clear_bit(STRIPE_DELAYED, &sh->state);
1041 	atomic_inc(&sh->count);
1042 
1043 	mutex_lock(&log->io_mutex);
1044 	/* meta + data */
1045 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1046 
1047 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1048 		if (!r5l_has_free_space(log, reserve)) {
1049 			r5l_add_no_space_stripe(log, sh);
1050 			wake_reclaim = true;
1051 		} else {
1052 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1053 			if (ret) {
1054 				spin_lock_irq(&log->io_list_lock);
1055 				list_add_tail(&sh->log_list,
1056 					      &log->no_mem_stripes);
1057 				spin_unlock_irq(&log->io_list_lock);
1058 			}
1059 		}
1060 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1061 		/*
1062 		 * log space critical, do not process stripes that are
1063 		 * not in cache yet (sh->log_start == MaxSector).
1064 		 */
1065 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1066 		    sh->log_start == MaxSector) {
1067 			r5l_add_no_space_stripe(log, sh);
1068 			wake_reclaim = true;
1069 			reserve = 0;
1070 		} else if (!r5l_has_free_space(log, reserve)) {
1071 			if (sh->log_start == log->last_checkpoint)
1072 				BUG();
1073 			else
1074 				r5l_add_no_space_stripe(log, sh);
1075 		} else {
1076 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1077 			if (ret) {
1078 				spin_lock_irq(&log->io_list_lock);
1079 				list_add_tail(&sh->log_list,
1080 					      &log->no_mem_stripes);
1081 				spin_unlock_irq(&log->io_list_lock);
1082 			}
1083 		}
1084 	}
1085 
1086 	mutex_unlock(&log->io_mutex);
1087 	if (wake_reclaim)
1088 		r5l_wake_reclaim(log, reserve);
1089 	return 0;
1090 }
1091 
1092 void r5l_write_stripe_run(struct r5l_log *log)
1093 {
1094 	if (!log)
1095 		return;
1096 	mutex_lock(&log->io_mutex);
1097 	r5l_submit_current_io(log);
1098 	mutex_unlock(&log->io_mutex);
1099 }
1100 
1101 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1102 {
1103 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1104 		/*
1105 		 * in write through (journal only)
1106 		 * we flush log disk cache first, then write stripe data to
1107 		 * raid disks. So if bio is finished, the log disk cache is
1108 		 * flushed already. The recovery guarantees we can recovery
1109 		 * the bio from log disk, so we don't need to flush again
1110 		 */
1111 		if (bio->bi_iter.bi_size == 0) {
1112 			bio_endio(bio);
1113 			return 0;
1114 		}
1115 		bio->bi_opf &= ~REQ_PREFLUSH;
1116 	} else {
1117 		/* write back (with cache) */
1118 		if (bio->bi_iter.bi_size == 0) {
1119 			mutex_lock(&log->io_mutex);
1120 			r5l_get_meta(log, 0);
1121 			bio_list_add(&log->current_io->flush_barriers, bio);
1122 			log->current_io->has_flush = 1;
1123 			log->current_io->has_null_flush = 1;
1124 			atomic_inc(&log->current_io->pending_stripe);
1125 			r5l_submit_current_io(log);
1126 			mutex_unlock(&log->io_mutex);
1127 			return 0;
1128 		}
1129 	}
1130 	return -EAGAIN;
1131 }
1132 
1133 /* This will run after log space is reclaimed */
1134 static void r5l_run_no_space_stripes(struct r5l_log *log)
1135 {
1136 	struct stripe_head *sh;
1137 
1138 	spin_lock(&log->no_space_stripes_lock);
1139 	while (!list_empty(&log->no_space_stripes)) {
1140 		sh = list_first_entry(&log->no_space_stripes,
1141 				      struct stripe_head, log_list);
1142 		list_del_init(&sh->log_list);
1143 		set_bit(STRIPE_HANDLE, &sh->state);
1144 		raid5_release_stripe(sh);
1145 	}
1146 	spin_unlock(&log->no_space_stripes_lock);
1147 }
1148 
1149 /*
1150  * calculate new last_checkpoint
1151  * for write through mode, returns log->next_checkpoint
1152  * for write back, returns log_start of first sh in stripe_in_journal_list
1153  */
1154 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1155 {
1156 	struct stripe_head *sh;
1157 	struct r5l_log *log = READ_ONCE(conf->log);
1158 	sector_t new_cp;
1159 	unsigned long flags;
1160 
1161 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1162 		return log->next_checkpoint;
1163 
1164 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1165 	if (list_empty(&log->stripe_in_journal_list)) {
1166 		/* all stripes flushed */
1167 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1168 		return log->next_checkpoint;
1169 	}
1170 	sh = list_first_entry(&log->stripe_in_journal_list,
1171 			      struct stripe_head, r5c);
1172 	new_cp = sh->log_start;
1173 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1174 	return new_cp;
1175 }
1176 
1177 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1178 {
1179 	struct r5conf *conf = log->rdev->mddev->private;
1180 
1181 	return r5l_ring_distance(log, log->last_checkpoint,
1182 				 r5c_calculate_new_cp(conf));
1183 }
1184 
1185 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1186 {
1187 	struct stripe_head *sh;
1188 
1189 	lockdep_assert_held(&log->io_list_lock);
1190 
1191 	if (!list_empty(&log->no_mem_stripes)) {
1192 		sh = list_first_entry(&log->no_mem_stripes,
1193 				      struct stripe_head, log_list);
1194 		list_del_init(&sh->log_list);
1195 		set_bit(STRIPE_HANDLE, &sh->state);
1196 		raid5_release_stripe(sh);
1197 	}
1198 }
1199 
1200 static bool r5l_complete_finished_ios(struct r5l_log *log)
1201 {
1202 	struct r5l_io_unit *io, *next;
1203 	bool found = false;
1204 
1205 	lockdep_assert_held(&log->io_list_lock);
1206 
1207 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1208 		/* don't change list order */
1209 		if (io->state < IO_UNIT_STRIPE_END)
1210 			break;
1211 
1212 		log->next_checkpoint = io->log_start;
1213 
1214 		list_del(&io->log_sibling);
1215 		mempool_free(io, &log->io_pool);
1216 		r5l_run_no_mem_stripe(log);
1217 
1218 		found = true;
1219 	}
1220 
1221 	return found;
1222 }
1223 
1224 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1225 {
1226 	struct r5l_log *log = io->log;
1227 	struct r5conf *conf = log->rdev->mddev->private;
1228 	unsigned long flags;
1229 
1230 	spin_lock_irqsave(&log->io_list_lock, flags);
1231 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1232 
1233 	if (!r5l_complete_finished_ios(log)) {
1234 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1235 		return;
1236 	}
1237 
1238 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1239 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1240 		r5l_wake_reclaim(log, 0);
1241 
1242 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1243 	wake_up(&log->iounit_wait);
1244 }
1245 
1246 void r5l_stripe_write_finished(struct stripe_head *sh)
1247 {
1248 	struct r5l_io_unit *io;
1249 
1250 	io = sh->log_io;
1251 	sh->log_io = NULL;
1252 
1253 	if (io && atomic_dec_and_test(&io->pending_stripe))
1254 		__r5l_stripe_write_finished(io);
1255 }
1256 
1257 static void r5l_log_flush_endio(struct bio *bio)
1258 {
1259 	struct r5l_log *log = container_of(bio, struct r5l_log,
1260 		flush_bio);
1261 	unsigned long flags;
1262 	struct r5l_io_unit *io;
1263 
1264 	if (bio->bi_status)
1265 		md_error(log->rdev->mddev, log->rdev);
1266 	bio_uninit(bio);
1267 
1268 	spin_lock_irqsave(&log->io_list_lock, flags);
1269 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1270 		r5l_io_run_stripes(io);
1271 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1272 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1273 }
1274 
1275 /*
1276  * Starting dispatch IO to raid.
1277  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1278  * broken meta in the middle of a log causes recovery can't find meta at the
1279  * head of log. If operations require meta at the head persistent in log, we
1280  * must make sure meta before it persistent in log too. A case is:
1281  *
1282  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1283  * data/parity must be persistent in log before we do the write to raid disks.
1284  *
1285  * The solution is we restrictly maintain io_unit list order. In this case, we
1286  * only write stripes of an io_unit to raid disks till the io_unit is the first
1287  * one whose data/parity is in log.
1288  */
1289 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1290 {
1291 	bool do_flush;
1292 
1293 	if (!log || !log->need_cache_flush)
1294 		return;
1295 
1296 	spin_lock_irq(&log->io_list_lock);
1297 	/* flush bio is running */
1298 	if (!list_empty(&log->flushing_ios)) {
1299 		spin_unlock_irq(&log->io_list_lock);
1300 		return;
1301 	}
1302 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1303 	do_flush = !list_empty(&log->flushing_ios);
1304 	spin_unlock_irq(&log->io_list_lock);
1305 
1306 	if (!do_flush)
1307 		return;
1308 	bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1309 		  REQ_OP_WRITE | REQ_PREFLUSH);
1310 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1311 	submit_bio(&log->flush_bio);
1312 }
1313 
1314 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1315 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1316 	sector_t end)
1317 {
1318 	struct block_device *bdev = log->rdev->bdev;
1319 	struct mddev *mddev;
1320 
1321 	r5l_write_super(log, end);
1322 
1323 	if (!bdev_max_discard_sectors(bdev))
1324 		return;
1325 
1326 	mddev = log->rdev->mddev;
1327 	/*
1328 	 * Discard could zero data, so before discard we must make sure
1329 	 * superblock is updated to new log tail. Updating superblock (either
1330 	 * directly call md_update_sb() or depend on md thread) must hold
1331 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1332 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1333 	 * for all IO finish, hence waiting for reclaim thread, while reclaim
1334 	 * thread is calling this function and waiting for reconfig mutex. So
1335 	 * there is a deadlock. We workaround this issue with a trylock.
1336 	 * FIXME: we could miss discard if we can't take reconfig mutex
1337 	 */
1338 	set_mask_bits(&mddev->sb_flags, 0,
1339 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1340 	if (!mddev_trylock(mddev))
1341 		return;
1342 	md_update_sb(mddev, 1);
1343 	mddev_unlock(mddev);
1344 
1345 	/* discard IO error really doesn't matter, ignore it */
1346 	if (log->last_checkpoint < end) {
1347 		blkdev_issue_discard(bdev,
1348 				log->last_checkpoint + log->rdev->data_offset,
1349 				end - log->last_checkpoint, GFP_NOIO);
1350 	} else {
1351 		blkdev_issue_discard(bdev,
1352 				log->last_checkpoint + log->rdev->data_offset,
1353 				log->device_size - log->last_checkpoint,
1354 				GFP_NOIO);
1355 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1356 				GFP_NOIO);
1357 	}
1358 }
1359 
1360 /*
1361  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1362  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1363  *
1364  * must hold conf->device_lock
1365  */
1366 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1367 {
1368 	BUG_ON(list_empty(&sh->lru));
1369 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1370 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1371 
1372 	/*
1373 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1374 	 * raid5_release_stripe() while holding conf->device_lock
1375 	 */
1376 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1377 	lockdep_assert_held(&conf->device_lock);
1378 
1379 	list_del_init(&sh->lru);
1380 	atomic_inc(&sh->count);
1381 
1382 	set_bit(STRIPE_HANDLE, &sh->state);
1383 	atomic_inc(&conf->active_stripes);
1384 	r5c_make_stripe_write_out(sh);
1385 
1386 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1387 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1388 	else
1389 		atomic_inc(&conf->r5c_flushing_full_stripes);
1390 	raid5_release_stripe(sh);
1391 }
1392 
1393 /*
1394  * if num == 0, flush all full stripes
1395  * if num > 0, flush all full stripes. If less than num full stripes are
1396  *             flushed, flush some partial stripes until totally num stripes are
1397  *             flushed or there is no more cached stripes.
1398  */
1399 void r5c_flush_cache(struct r5conf *conf, int num)
1400 {
1401 	int count;
1402 	struct stripe_head *sh, *next;
1403 
1404 	lockdep_assert_held(&conf->device_lock);
1405 	if (!READ_ONCE(conf->log))
1406 		return;
1407 
1408 	count = 0;
1409 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1410 		r5c_flush_stripe(conf, sh);
1411 		count++;
1412 	}
1413 
1414 	if (count >= num)
1415 		return;
1416 	list_for_each_entry_safe(sh, next,
1417 				 &conf->r5c_partial_stripe_list, lru) {
1418 		r5c_flush_stripe(conf, sh);
1419 		if (++count >= num)
1420 			break;
1421 	}
1422 }
1423 
1424 static void r5c_do_reclaim(struct r5conf *conf)
1425 {
1426 	struct r5l_log *log = READ_ONCE(conf->log);
1427 	struct stripe_head *sh;
1428 	int count = 0;
1429 	unsigned long flags;
1430 	int total_cached;
1431 	int stripes_to_flush;
1432 	int flushing_partial, flushing_full;
1433 
1434 	if (!r5c_is_writeback(log))
1435 		return;
1436 
1437 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1438 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1439 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1440 		atomic_read(&conf->r5c_cached_full_stripes) -
1441 		flushing_full - flushing_partial;
1442 
1443 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1444 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1445 		/*
1446 		 * if stripe cache pressure high, flush all full stripes and
1447 		 * some partial stripes
1448 		 */
1449 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1450 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1451 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1452 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1453 		/*
1454 		 * if stripe cache pressure moderate, or if there is many full
1455 		 * stripes,flush all full stripes
1456 		 */
1457 		stripes_to_flush = 0;
1458 	else
1459 		/* no need to flush */
1460 		stripes_to_flush = -1;
1461 
1462 	if (stripes_to_flush >= 0) {
1463 		spin_lock_irqsave(&conf->device_lock, flags);
1464 		r5c_flush_cache(conf, stripes_to_flush);
1465 		spin_unlock_irqrestore(&conf->device_lock, flags);
1466 	}
1467 
1468 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1469 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1470 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1471 		spin_lock(&conf->device_lock);
1472 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1473 			/*
1474 			 * stripes on stripe_in_journal_list could be in any
1475 			 * state of the stripe_cache state machine. In this
1476 			 * case, we only want to flush stripe on
1477 			 * r5c_cached_full/partial_stripes. The following
1478 			 * condition makes sure the stripe is on one of the
1479 			 * two lists.
1480 			 */
1481 			if (!list_empty(&sh->lru) &&
1482 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1483 			    atomic_read(&sh->count) == 0) {
1484 				r5c_flush_stripe(conf, sh);
1485 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1486 					break;
1487 			}
1488 		}
1489 		spin_unlock(&conf->device_lock);
1490 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1491 	}
1492 
1493 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1494 		r5l_run_no_space_stripes(log);
1495 
1496 	md_wakeup_thread(conf->mddev->thread);
1497 }
1498 
1499 static void r5l_do_reclaim(struct r5l_log *log)
1500 {
1501 	struct r5conf *conf = log->rdev->mddev->private;
1502 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1503 	sector_t reclaimable;
1504 	sector_t next_checkpoint;
1505 	bool write_super;
1506 
1507 	spin_lock_irq(&log->io_list_lock);
1508 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1509 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1510 	/*
1511 	 * move proper io_unit to reclaim list. We should not change the order.
1512 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1513 	 * shouldn't reuse space of an unreclaimable io_unit
1514 	 */
1515 	while (1) {
1516 		reclaimable = r5l_reclaimable_space(log);
1517 		if (reclaimable >= reclaim_target ||
1518 		    (list_empty(&log->running_ios) &&
1519 		     list_empty(&log->io_end_ios) &&
1520 		     list_empty(&log->flushing_ios) &&
1521 		     list_empty(&log->finished_ios)))
1522 			break;
1523 
1524 		md_wakeup_thread(log->rdev->mddev->thread);
1525 		wait_event_lock_irq(log->iounit_wait,
1526 				    r5l_reclaimable_space(log) > reclaimable,
1527 				    log->io_list_lock);
1528 	}
1529 
1530 	next_checkpoint = r5c_calculate_new_cp(conf);
1531 	spin_unlock_irq(&log->io_list_lock);
1532 
1533 	if (reclaimable == 0 || !write_super)
1534 		return;
1535 
1536 	/*
1537 	 * write_super will flush cache of each raid disk. We must write super
1538 	 * here, because the log area might be reused soon and we don't want to
1539 	 * confuse recovery
1540 	 */
1541 	r5l_write_super_and_discard_space(log, next_checkpoint);
1542 
1543 	mutex_lock(&log->io_mutex);
1544 	log->last_checkpoint = next_checkpoint;
1545 	r5c_update_log_state(log);
1546 	mutex_unlock(&log->io_mutex);
1547 
1548 	r5l_run_no_space_stripes(log);
1549 }
1550 
1551 static void r5l_reclaim_thread(struct md_thread *thread)
1552 {
1553 	struct mddev *mddev = thread->mddev;
1554 	struct r5conf *conf = mddev->private;
1555 	struct r5l_log *log = READ_ONCE(conf->log);
1556 
1557 	if (!log)
1558 		return;
1559 	r5c_do_reclaim(conf);
1560 	r5l_do_reclaim(log);
1561 }
1562 
1563 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1564 {
1565 	unsigned long target;
1566 	unsigned long new = (unsigned long)space; /* overflow in theory */
1567 
1568 	if (!log)
1569 		return;
1570 
1571 	target = READ_ONCE(log->reclaim_target);
1572 	do {
1573 		if (new < target)
1574 			return;
1575 	} while (!try_cmpxchg(&log->reclaim_target, &target, new));
1576 	md_wakeup_thread(log->reclaim_thread);
1577 }
1578 
1579 void r5l_quiesce(struct r5l_log *log, int quiesce)
1580 {
1581 	struct mddev *mddev = log->rdev->mddev;
1582 	struct md_thread *thread = rcu_dereference_protected(
1583 		log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex));
1584 
1585 	if (quiesce) {
1586 		/* make sure r5l_write_super_and_discard_space exits */
1587 		wake_up(&mddev->sb_wait);
1588 		kthread_park(thread->tsk);
1589 		r5l_wake_reclaim(log, MaxSector);
1590 		r5l_do_reclaim(log);
1591 	} else
1592 		kthread_unpark(thread->tsk);
1593 }
1594 
1595 bool r5l_log_disk_error(struct r5conf *conf)
1596 {
1597 	struct r5l_log *log = READ_ONCE(conf->log);
1598 
1599 	/* don't allow write if journal disk is missing */
1600 	if (!log)
1601 		return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1602 	else
1603 		return test_bit(Faulty, &log->rdev->flags);
1604 }
1605 
1606 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1607 
1608 struct r5l_recovery_ctx {
1609 	struct page *meta_page;		/* current meta */
1610 	sector_t meta_total_blocks;	/* total size of current meta and data */
1611 	sector_t pos;			/* recovery position */
1612 	u64 seq;			/* recovery position seq */
1613 	int data_parity_stripes;	/* number of data_parity stripes */
1614 	int data_only_stripes;		/* number of data_only stripes */
1615 	struct list_head cached_list;
1616 
1617 	/*
1618 	 * read ahead page pool (ra_pool)
1619 	 * in recovery, log is read sequentially. It is not efficient to
1620 	 * read every page with sync_page_io(). The read ahead page pool
1621 	 * reads multiple pages with one IO, so further log read can
1622 	 * just copy data from the pool.
1623 	 */
1624 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1625 	struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1626 	sector_t pool_offset;	/* offset of first page in the pool */
1627 	int total_pages;	/* total allocated pages */
1628 	int valid_pages;	/* pages with valid data */
1629 };
1630 
1631 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1632 					    struct r5l_recovery_ctx *ctx)
1633 {
1634 	struct page *page;
1635 
1636 	ctx->valid_pages = 0;
1637 	ctx->total_pages = 0;
1638 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1639 		page = alloc_page(GFP_KERNEL);
1640 
1641 		if (!page)
1642 			break;
1643 		ctx->ra_pool[ctx->total_pages] = page;
1644 		ctx->total_pages += 1;
1645 	}
1646 
1647 	if (ctx->total_pages == 0)
1648 		return -ENOMEM;
1649 
1650 	ctx->pool_offset = 0;
1651 	return 0;
1652 }
1653 
1654 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1655 					struct r5l_recovery_ctx *ctx)
1656 {
1657 	int i;
1658 
1659 	for (i = 0; i < ctx->total_pages; ++i)
1660 		put_page(ctx->ra_pool[i]);
1661 }
1662 
1663 /*
1664  * fetch ctx->valid_pages pages from offset
1665  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1666  * However, if the offset is close to the end of the journal device,
1667  * ctx->valid_pages could be smaller than ctx->total_pages
1668  */
1669 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1670 				      struct r5l_recovery_ctx *ctx,
1671 				      sector_t offset)
1672 {
1673 	struct bio bio;
1674 	int ret;
1675 
1676 	bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1677 		 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1678 	bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1679 
1680 	ctx->valid_pages = 0;
1681 	ctx->pool_offset = offset;
1682 
1683 	while (ctx->valid_pages < ctx->total_pages) {
1684 		__bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1685 			       0);
1686 		ctx->valid_pages += 1;
1687 
1688 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1689 
1690 		if (offset == 0)  /* reached end of the device */
1691 			break;
1692 	}
1693 
1694 	ret = submit_bio_wait(&bio);
1695 	bio_uninit(&bio);
1696 	return ret;
1697 }
1698 
1699 /*
1700  * try read a page from the read ahead page pool, if the page is not in the
1701  * pool, call r5l_recovery_fetch_ra_pool
1702  */
1703 static int r5l_recovery_read_page(struct r5l_log *log,
1704 				  struct r5l_recovery_ctx *ctx,
1705 				  struct page *page,
1706 				  sector_t offset)
1707 {
1708 	int ret;
1709 
1710 	if (offset < ctx->pool_offset ||
1711 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1712 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1713 		if (ret)
1714 			return ret;
1715 	}
1716 
1717 	BUG_ON(offset < ctx->pool_offset ||
1718 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1719 
1720 	memcpy(page_address(page),
1721 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1722 					 BLOCK_SECTOR_SHIFT]),
1723 	       PAGE_SIZE);
1724 	return 0;
1725 }
1726 
1727 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1728 					struct r5l_recovery_ctx *ctx)
1729 {
1730 	struct page *page = ctx->meta_page;
1731 	struct r5l_meta_block *mb;
1732 	u32 crc, stored_crc;
1733 	int ret;
1734 
1735 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1736 	if (ret != 0)
1737 		return ret;
1738 
1739 	mb = page_address(page);
1740 	stored_crc = le32_to_cpu(mb->checksum);
1741 	mb->checksum = 0;
1742 
1743 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1744 	    le64_to_cpu(mb->seq) != ctx->seq ||
1745 	    mb->version != R5LOG_VERSION ||
1746 	    le64_to_cpu(mb->position) != ctx->pos)
1747 		return -EINVAL;
1748 
1749 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1750 	if (stored_crc != crc)
1751 		return -EINVAL;
1752 
1753 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1754 		return -EINVAL;
1755 
1756 	ctx->meta_total_blocks = BLOCK_SECTORS;
1757 
1758 	return 0;
1759 }
1760 
1761 static void
1762 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1763 				     struct page *page,
1764 				     sector_t pos, u64 seq)
1765 {
1766 	struct r5l_meta_block *mb;
1767 
1768 	mb = page_address(page);
1769 	clear_page(mb);
1770 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1771 	mb->version = R5LOG_VERSION;
1772 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1773 	mb->seq = cpu_to_le64(seq);
1774 	mb->position = cpu_to_le64(pos);
1775 }
1776 
1777 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1778 					  u64 seq)
1779 {
1780 	struct page *page;
1781 	struct r5l_meta_block *mb;
1782 
1783 	page = alloc_page(GFP_KERNEL);
1784 	if (!page)
1785 		return -ENOMEM;
1786 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1787 	mb = page_address(page);
1788 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1789 					     mb, PAGE_SIZE));
1790 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1791 			  REQ_SYNC | REQ_FUA, false)) {
1792 		__free_page(page);
1793 		return -EIO;
1794 	}
1795 	__free_page(page);
1796 	return 0;
1797 }
1798 
1799 /*
1800  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1801  * to mark valid (potentially not flushed) data in the journal.
1802  *
1803  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1804  * so there should not be any mismatch here.
1805  */
1806 static void r5l_recovery_load_data(struct r5l_log *log,
1807 				   struct stripe_head *sh,
1808 				   struct r5l_recovery_ctx *ctx,
1809 				   struct r5l_payload_data_parity *payload,
1810 				   sector_t log_offset)
1811 {
1812 	struct mddev *mddev = log->rdev->mddev;
1813 	struct r5conf *conf = mddev->private;
1814 	int dd_idx;
1815 
1816 	raid5_compute_sector(conf,
1817 			     le64_to_cpu(payload->location), 0,
1818 			     &dd_idx, sh);
1819 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1820 	sh->dev[dd_idx].log_checksum =
1821 		le32_to_cpu(payload->checksum[0]);
1822 	ctx->meta_total_blocks += BLOCK_SECTORS;
1823 
1824 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1825 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1826 }
1827 
1828 static void r5l_recovery_load_parity(struct r5l_log *log,
1829 				     struct stripe_head *sh,
1830 				     struct r5l_recovery_ctx *ctx,
1831 				     struct r5l_payload_data_parity *payload,
1832 				     sector_t log_offset)
1833 {
1834 	struct mddev *mddev = log->rdev->mddev;
1835 	struct r5conf *conf = mddev->private;
1836 
1837 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1838 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1839 	sh->dev[sh->pd_idx].log_checksum =
1840 		le32_to_cpu(payload->checksum[0]);
1841 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1842 
1843 	if (sh->qd_idx >= 0) {
1844 		r5l_recovery_read_page(
1845 			log, ctx, sh->dev[sh->qd_idx].page,
1846 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1847 		sh->dev[sh->qd_idx].log_checksum =
1848 			le32_to_cpu(payload->checksum[1]);
1849 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1850 	}
1851 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1852 }
1853 
1854 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1855 {
1856 	int i;
1857 
1858 	sh->state = 0;
1859 	sh->log_start = MaxSector;
1860 	for (i = sh->disks; i--; )
1861 		sh->dev[i].flags = 0;
1862 }
1863 
1864 static void
1865 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1866 			       struct stripe_head *sh,
1867 			       struct r5l_recovery_ctx *ctx)
1868 {
1869 	struct md_rdev *rdev, *rrdev;
1870 	int disk_index;
1871 	int data_count = 0;
1872 
1873 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1874 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1875 			continue;
1876 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1877 			continue;
1878 		data_count++;
1879 	}
1880 
1881 	/*
1882 	 * stripes that only have parity must have been flushed
1883 	 * before the crash that we are now recovering from, so
1884 	 * there is nothing more to recovery.
1885 	 */
1886 	if (data_count == 0)
1887 		goto out;
1888 
1889 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1890 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1891 			continue;
1892 
1893 		/* in case device is broken */
1894 		rcu_read_lock();
1895 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1896 		if (rdev) {
1897 			atomic_inc(&rdev->nr_pending);
1898 			rcu_read_unlock();
1899 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1900 				     sh->dev[disk_index].page, REQ_OP_WRITE,
1901 				     false);
1902 			rdev_dec_pending(rdev, rdev->mddev);
1903 			rcu_read_lock();
1904 		}
1905 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1906 		if (rrdev) {
1907 			atomic_inc(&rrdev->nr_pending);
1908 			rcu_read_unlock();
1909 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1910 				     sh->dev[disk_index].page, REQ_OP_WRITE,
1911 				     false);
1912 			rdev_dec_pending(rrdev, rrdev->mddev);
1913 			rcu_read_lock();
1914 		}
1915 		rcu_read_unlock();
1916 	}
1917 	ctx->data_parity_stripes++;
1918 out:
1919 	r5l_recovery_reset_stripe(sh);
1920 }
1921 
1922 static struct stripe_head *
1923 r5c_recovery_alloc_stripe(
1924 		struct r5conf *conf,
1925 		sector_t stripe_sect,
1926 		int noblock)
1927 {
1928 	struct stripe_head *sh;
1929 
1930 	sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1931 				     noblock ? R5_GAS_NOBLOCK : 0);
1932 	if (!sh)
1933 		return NULL;  /* no more stripe available */
1934 
1935 	r5l_recovery_reset_stripe(sh);
1936 
1937 	return sh;
1938 }
1939 
1940 static struct stripe_head *
1941 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1942 {
1943 	struct stripe_head *sh;
1944 
1945 	list_for_each_entry(sh, list, lru)
1946 		if (sh->sector == sect)
1947 			return sh;
1948 	return NULL;
1949 }
1950 
1951 static void
1952 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1953 			  struct r5l_recovery_ctx *ctx)
1954 {
1955 	struct stripe_head *sh, *next;
1956 
1957 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1958 		r5l_recovery_reset_stripe(sh);
1959 		list_del_init(&sh->lru);
1960 		raid5_release_stripe(sh);
1961 	}
1962 }
1963 
1964 static void
1965 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1966 			    struct r5l_recovery_ctx *ctx)
1967 {
1968 	struct stripe_head *sh, *next;
1969 
1970 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1971 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1972 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1973 			list_del_init(&sh->lru);
1974 			raid5_release_stripe(sh);
1975 		}
1976 }
1977 
1978 /* if matches return 0; otherwise return -EINVAL */
1979 static int
1980 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1981 				  struct r5l_recovery_ctx *ctx,
1982 				  struct page *page,
1983 				  sector_t log_offset, __le32 log_checksum)
1984 {
1985 	void *addr;
1986 	u32 checksum;
1987 
1988 	r5l_recovery_read_page(log, ctx, page, log_offset);
1989 	addr = kmap_atomic(page);
1990 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1991 	kunmap_atomic(addr);
1992 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1993 }
1994 
1995 /*
1996  * before loading data to stripe cache, we need verify checksum for all data,
1997  * if there is mismatch for any data page, we drop all data in the mata block
1998  */
1999 static int
2000 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2001 					 struct r5l_recovery_ctx *ctx)
2002 {
2003 	struct mddev *mddev = log->rdev->mddev;
2004 	struct r5conf *conf = mddev->private;
2005 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
2006 	sector_t mb_offset = sizeof(struct r5l_meta_block);
2007 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2008 	struct page *page;
2009 	struct r5l_payload_data_parity *payload;
2010 	struct r5l_payload_flush *payload_flush;
2011 
2012 	page = alloc_page(GFP_KERNEL);
2013 	if (!page)
2014 		return -ENOMEM;
2015 
2016 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2017 		payload = (void *)mb + mb_offset;
2018 		payload_flush = (void *)mb + mb_offset;
2019 
2020 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2021 			if (r5l_recovery_verify_data_checksum(
2022 				    log, ctx, page, log_offset,
2023 				    payload->checksum[0]) < 0)
2024 				goto mismatch;
2025 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2026 			if (r5l_recovery_verify_data_checksum(
2027 				    log, ctx, page, log_offset,
2028 				    payload->checksum[0]) < 0)
2029 				goto mismatch;
2030 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2031 			    r5l_recovery_verify_data_checksum(
2032 				    log, ctx, page,
2033 				    r5l_ring_add(log, log_offset,
2034 						 BLOCK_SECTORS),
2035 				    payload->checksum[1]) < 0)
2036 				goto mismatch;
2037 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2038 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2039 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2040 			goto mismatch;
2041 
2042 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2043 			mb_offset += sizeof(struct r5l_payload_flush) +
2044 				le32_to_cpu(payload_flush->size);
2045 		} else {
2046 			/* DATA or PARITY payload */
2047 			log_offset = r5l_ring_add(log, log_offset,
2048 						  le32_to_cpu(payload->size));
2049 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2050 				sizeof(__le32) *
2051 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2052 		}
2053 
2054 	}
2055 
2056 	put_page(page);
2057 	return 0;
2058 
2059 mismatch:
2060 	put_page(page);
2061 	return -EINVAL;
2062 }
2063 
2064 /*
2065  * Analyze all data/parity pages in one meta block
2066  * Returns:
2067  * 0 for success
2068  * -EINVAL for unknown playload type
2069  * -EAGAIN for checksum mismatch of data page
2070  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2071  */
2072 static int
2073 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2074 				struct r5l_recovery_ctx *ctx,
2075 				struct list_head *cached_stripe_list)
2076 {
2077 	struct mddev *mddev = log->rdev->mddev;
2078 	struct r5conf *conf = mddev->private;
2079 	struct r5l_meta_block *mb;
2080 	struct r5l_payload_data_parity *payload;
2081 	struct r5l_payload_flush *payload_flush;
2082 	int mb_offset;
2083 	sector_t log_offset;
2084 	sector_t stripe_sect;
2085 	struct stripe_head *sh;
2086 	int ret;
2087 
2088 	/*
2089 	 * for mismatch in data blocks, we will drop all data in this mb, but
2090 	 * we will still read next mb for other data with FLUSH flag, as
2091 	 * io_unit could finish out of order.
2092 	 */
2093 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2094 	if (ret == -EINVAL)
2095 		return -EAGAIN;
2096 	else if (ret)
2097 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2098 
2099 	mb = page_address(ctx->meta_page);
2100 	mb_offset = sizeof(struct r5l_meta_block);
2101 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2102 
2103 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2104 		int dd;
2105 
2106 		payload = (void *)mb + mb_offset;
2107 		payload_flush = (void *)mb + mb_offset;
2108 
2109 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2110 			int i, count;
2111 
2112 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2113 			for (i = 0; i < count; ++i) {
2114 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2115 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2116 								stripe_sect);
2117 				if (sh) {
2118 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2119 					r5l_recovery_reset_stripe(sh);
2120 					list_del_init(&sh->lru);
2121 					raid5_release_stripe(sh);
2122 				}
2123 			}
2124 
2125 			mb_offset += sizeof(struct r5l_payload_flush) +
2126 				le32_to_cpu(payload_flush->size);
2127 			continue;
2128 		}
2129 
2130 		/* DATA or PARITY payload */
2131 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2132 			raid5_compute_sector(
2133 				conf, le64_to_cpu(payload->location), 0, &dd,
2134 				NULL)
2135 			: le64_to_cpu(payload->location);
2136 
2137 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2138 						stripe_sect);
2139 
2140 		if (!sh) {
2141 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2142 			/*
2143 			 * cannot get stripe from raid5_get_active_stripe
2144 			 * try replay some stripes
2145 			 */
2146 			if (!sh) {
2147 				r5c_recovery_replay_stripes(
2148 					cached_stripe_list, ctx);
2149 				sh = r5c_recovery_alloc_stripe(
2150 					conf, stripe_sect, 1);
2151 			}
2152 			if (!sh) {
2153 				int new_size = conf->min_nr_stripes * 2;
2154 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2155 					mdname(mddev),
2156 					new_size);
2157 				ret = raid5_set_cache_size(mddev, new_size);
2158 				if (conf->min_nr_stripes <= new_size / 2) {
2159 					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2160 						mdname(mddev),
2161 						ret,
2162 						new_size,
2163 						conf->min_nr_stripes,
2164 						conf->max_nr_stripes);
2165 					return -ENOMEM;
2166 				}
2167 				sh = r5c_recovery_alloc_stripe(
2168 					conf, stripe_sect, 0);
2169 			}
2170 			if (!sh) {
2171 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2172 					mdname(mddev));
2173 				return -ENOMEM;
2174 			}
2175 			list_add_tail(&sh->lru, cached_stripe_list);
2176 		}
2177 
2178 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2179 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2180 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2181 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2182 				list_move_tail(&sh->lru, cached_stripe_list);
2183 			}
2184 			r5l_recovery_load_data(log, sh, ctx, payload,
2185 					       log_offset);
2186 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2187 			r5l_recovery_load_parity(log, sh, ctx, payload,
2188 						 log_offset);
2189 		else
2190 			return -EINVAL;
2191 
2192 		log_offset = r5l_ring_add(log, log_offset,
2193 					  le32_to_cpu(payload->size));
2194 
2195 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2196 			sizeof(__le32) *
2197 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 /*
2204  * Load the stripe into cache. The stripe will be written out later by
2205  * the stripe cache state machine.
2206  */
2207 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2208 					 struct stripe_head *sh)
2209 {
2210 	struct r5dev *dev;
2211 	int i;
2212 
2213 	for (i = sh->disks; i--; ) {
2214 		dev = sh->dev + i;
2215 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2216 			set_bit(R5_InJournal, &dev->flags);
2217 			set_bit(R5_UPTODATE, &dev->flags);
2218 		}
2219 	}
2220 }
2221 
2222 /*
2223  * Scan through the log for all to-be-flushed data
2224  *
2225  * For stripes with data and parity, namely Data-Parity stripe
2226  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2227  *
2228  * For stripes with only data, namely Data-Only stripe
2229  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2230  *
2231  * For a stripe, if we see data after parity, we should discard all previous
2232  * data and parity for this stripe, as these data are already flushed to
2233  * the array.
2234  *
2235  * At the end of the scan, we return the new journal_tail, which points to
2236  * first data-only stripe on the journal device, or next invalid meta block.
2237  */
2238 static int r5c_recovery_flush_log(struct r5l_log *log,
2239 				  struct r5l_recovery_ctx *ctx)
2240 {
2241 	struct stripe_head *sh;
2242 	int ret = 0;
2243 
2244 	/* scan through the log */
2245 	while (1) {
2246 		if (r5l_recovery_read_meta_block(log, ctx))
2247 			break;
2248 
2249 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2250 						      &ctx->cached_list);
2251 		/*
2252 		 * -EAGAIN means mismatch in data block, in this case, we still
2253 		 * try scan the next metablock
2254 		 */
2255 		if (ret && ret != -EAGAIN)
2256 			break;   /* ret == -EINVAL or -ENOMEM */
2257 		ctx->seq++;
2258 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2259 	}
2260 
2261 	if (ret == -ENOMEM) {
2262 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2263 		return ret;
2264 	}
2265 
2266 	/* replay data-parity stripes */
2267 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2268 
2269 	/* load data-only stripes to stripe cache */
2270 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2271 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2272 		r5c_recovery_load_one_stripe(log, sh);
2273 		ctx->data_only_stripes++;
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 /*
2280  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2281  * log will start here. but we can't let superblock point to last valid
2282  * meta block. The log might looks like:
2283  * | meta 1| meta 2| meta 3|
2284  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2285  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2286  * happens again, new recovery will start from meta 1. Since meta 2n is
2287  * valid now, recovery will think meta 3 is valid, which is wrong.
2288  * The solution is we create a new meta in meta2 with its seq == meta
2289  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2290  * will not think meta 3 is a valid meta, because its seq doesn't match
2291  */
2292 
2293 /*
2294  * Before recovery, the log looks like the following
2295  *
2296  *   ---------------------------------------------
2297  *   |           valid log        | invalid log  |
2298  *   ---------------------------------------------
2299  *   ^
2300  *   |- log->last_checkpoint
2301  *   |- log->last_cp_seq
2302  *
2303  * Now we scan through the log until we see invalid entry
2304  *
2305  *   ---------------------------------------------
2306  *   |           valid log        | invalid log  |
2307  *   ---------------------------------------------
2308  *   ^                            ^
2309  *   |- log->last_checkpoint      |- ctx->pos
2310  *   |- log->last_cp_seq          |- ctx->seq
2311  *
2312  * From this point, we need to increase seq number by 10 to avoid
2313  * confusing next recovery.
2314  *
2315  *   ---------------------------------------------
2316  *   |           valid log        | invalid log  |
2317  *   ---------------------------------------------
2318  *   ^                              ^
2319  *   |- log->last_checkpoint        |- ctx->pos+1
2320  *   |- log->last_cp_seq            |- ctx->seq+10001
2321  *
2322  * However, it is not safe to start the state machine yet, because data only
2323  * parities are not yet secured in RAID. To save these data only parities, we
2324  * rewrite them from seq+11.
2325  *
2326  *   -----------------------------------------------------------------
2327  *   |           valid log        | data only stripes | invalid log  |
2328  *   -----------------------------------------------------------------
2329  *   ^                                                ^
2330  *   |- log->last_checkpoint                          |- ctx->pos+n
2331  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2332  *
2333  * If failure happens again during this process, the recovery can safe start
2334  * again from log->last_checkpoint.
2335  *
2336  * Once data only stripes are rewritten to journal, we move log_tail
2337  *
2338  *   -----------------------------------------------------------------
2339  *   |     old log        |    data only stripes    | invalid log  |
2340  *   -----------------------------------------------------------------
2341  *                        ^                         ^
2342  *                        |- log->last_checkpoint   |- ctx->pos+n
2343  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2344  *
2345  * Then we can safely start the state machine. If failure happens from this
2346  * point on, the recovery will start from new log->last_checkpoint.
2347  */
2348 static int
2349 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2350 				       struct r5l_recovery_ctx *ctx)
2351 {
2352 	struct stripe_head *sh;
2353 	struct mddev *mddev = log->rdev->mddev;
2354 	struct page *page;
2355 	sector_t next_checkpoint = MaxSector;
2356 
2357 	page = alloc_page(GFP_KERNEL);
2358 	if (!page) {
2359 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2360 		       mdname(mddev));
2361 		return -ENOMEM;
2362 	}
2363 
2364 	WARN_ON(list_empty(&ctx->cached_list));
2365 
2366 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2367 		struct r5l_meta_block *mb;
2368 		int i;
2369 		int offset;
2370 		sector_t write_pos;
2371 
2372 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2373 		r5l_recovery_create_empty_meta_block(log, page,
2374 						     ctx->pos, ctx->seq);
2375 		mb = page_address(page);
2376 		offset = le32_to_cpu(mb->meta_size);
2377 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2378 
2379 		for (i = sh->disks; i--; ) {
2380 			struct r5dev *dev = &sh->dev[i];
2381 			struct r5l_payload_data_parity *payload;
2382 			void *addr;
2383 
2384 			if (test_bit(R5_InJournal, &dev->flags)) {
2385 				payload = (void *)mb + offset;
2386 				payload->header.type = cpu_to_le16(
2387 					R5LOG_PAYLOAD_DATA);
2388 				payload->size = cpu_to_le32(BLOCK_SECTORS);
2389 				payload->location = cpu_to_le64(
2390 					raid5_compute_blocknr(sh, i, 0));
2391 				addr = kmap_atomic(dev->page);
2392 				payload->checksum[0] = cpu_to_le32(
2393 					crc32c_le(log->uuid_checksum, addr,
2394 						  PAGE_SIZE));
2395 				kunmap_atomic(addr);
2396 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2397 					     dev->page, REQ_OP_WRITE, false);
2398 				write_pos = r5l_ring_add(log, write_pos,
2399 							 BLOCK_SECTORS);
2400 				offset += sizeof(__le32) +
2401 					sizeof(struct r5l_payload_data_parity);
2402 
2403 			}
2404 		}
2405 		mb->meta_size = cpu_to_le32(offset);
2406 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2407 						     mb, PAGE_SIZE));
2408 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2409 			     REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2410 		sh->log_start = ctx->pos;
2411 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2412 		atomic_inc(&log->stripe_in_journal_count);
2413 		ctx->pos = write_pos;
2414 		ctx->seq += 1;
2415 		next_checkpoint = sh->log_start;
2416 	}
2417 	log->next_checkpoint = next_checkpoint;
2418 	__free_page(page);
2419 	return 0;
2420 }
2421 
2422 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2423 						 struct r5l_recovery_ctx *ctx)
2424 {
2425 	struct mddev *mddev = log->rdev->mddev;
2426 	struct r5conf *conf = mddev->private;
2427 	struct stripe_head *sh, *next;
2428 	bool cleared_pending = false;
2429 
2430 	if (ctx->data_only_stripes == 0)
2431 		return;
2432 
2433 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2434 		cleared_pending = true;
2435 		clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2436 	}
2437 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2438 
2439 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2440 		r5c_make_stripe_write_out(sh);
2441 		set_bit(STRIPE_HANDLE, &sh->state);
2442 		list_del_init(&sh->lru);
2443 		raid5_release_stripe(sh);
2444 	}
2445 
2446 	/* reuse conf->wait_for_quiescent in recovery */
2447 	wait_event(conf->wait_for_quiescent,
2448 		   atomic_read(&conf->active_stripes) == 0);
2449 
2450 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2451 	if (cleared_pending)
2452 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2453 }
2454 
2455 static int r5l_recovery_log(struct r5l_log *log)
2456 {
2457 	struct mddev *mddev = log->rdev->mddev;
2458 	struct r5l_recovery_ctx *ctx;
2459 	int ret;
2460 	sector_t pos;
2461 
2462 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2463 	if (!ctx)
2464 		return -ENOMEM;
2465 
2466 	ctx->pos = log->last_checkpoint;
2467 	ctx->seq = log->last_cp_seq;
2468 	INIT_LIST_HEAD(&ctx->cached_list);
2469 	ctx->meta_page = alloc_page(GFP_KERNEL);
2470 
2471 	if (!ctx->meta_page) {
2472 		ret =  -ENOMEM;
2473 		goto meta_page;
2474 	}
2475 
2476 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2477 		ret = -ENOMEM;
2478 		goto ra_pool;
2479 	}
2480 
2481 	ret = r5c_recovery_flush_log(log, ctx);
2482 
2483 	if (ret)
2484 		goto error;
2485 
2486 	pos = ctx->pos;
2487 	ctx->seq += 10000;
2488 
2489 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2490 		pr_info("md/raid:%s: starting from clean shutdown\n",
2491 			 mdname(mddev));
2492 	else
2493 		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2494 			 mdname(mddev), ctx->data_only_stripes,
2495 			 ctx->data_parity_stripes);
2496 
2497 	if (ctx->data_only_stripes == 0) {
2498 		log->next_checkpoint = ctx->pos;
2499 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2500 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2501 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2502 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2503 		       mdname(mddev));
2504 		ret =  -EIO;
2505 		goto error;
2506 	}
2507 
2508 	log->log_start = ctx->pos;
2509 	log->seq = ctx->seq;
2510 	log->last_checkpoint = pos;
2511 	r5l_write_super(log, pos);
2512 
2513 	r5c_recovery_flush_data_only_stripes(log, ctx);
2514 	ret = 0;
2515 error:
2516 	r5l_recovery_free_ra_pool(log, ctx);
2517 ra_pool:
2518 	__free_page(ctx->meta_page);
2519 meta_page:
2520 	kfree(ctx);
2521 	return ret;
2522 }
2523 
2524 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2525 {
2526 	struct mddev *mddev = log->rdev->mddev;
2527 
2528 	log->rdev->journal_tail = cp;
2529 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2530 }
2531 
2532 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2533 {
2534 	struct r5conf *conf;
2535 	int ret;
2536 
2537 	ret = mddev_lock(mddev);
2538 	if (ret)
2539 		return ret;
2540 
2541 	conf = mddev->private;
2542 	if (!conf || !conf->log)
2543 		goto out_unlock;
2544 
2545 	switch (conf->log->r5c_journal_mode) {
2546 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2547 		ret = snprintf(
2548 			page, PAGE_SIZE, "[%s] %s\n",
2549 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2550 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2551 		break;
2552 	case R5C_JOURNAL_MODE_WRITE_BACK:
2553 		ret = snprintf(
2554 			page, PAGE_SIZE, "%s [%s]\n",
2555 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557 		break;
2558 	default:
2559 		ret = 0;
2560 	}
2561 
2562 out_unlock:
2563 	mddev_unlock(mddev);
2564 	return ret;
2565 }
2566 
2567 /*
2568  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2569  *
2570  * @mode as defined in 'enum r5c_journal_mode'.
2571  *
2572  */
2573 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2574 {
2575 	struct r5conf *conf;
2576 
2577 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2578 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2579 		return -EINVAL;
2580 
2581 	conf = mddev->private;
2582 	if (!conf || !conf->log)
2583 		return -ENODEV;
2584 
2585 	if (raid5_calc_degraded(conf) > 0 &&
2586 	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2587 		return -EINVAL;
2588 
2589 	mddev_suspend(mddev);
2590 	conf->log->r5c_journal_mode = mode;
2591 	mddev_resume(mddev);
2592 
2593 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2594 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2595 	return 0;
2596 }
2597 EXPORT_SYMBOL(r5c_journal_mode_set);
2598 
2599 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2600 				      const char *page, size_t length)
2601 {
2602 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2603 	size_t len = length;
2604 	int ret;
2605 
2606 	if (len < 2)
2607 		return -EINVAL;
2608 
2609 	if (page[len - 1] == '\n')
2610 		len--;
2611 
2612 	while (mode--)
2613 		if (strlen(r5c_journal_mode_str[mode]) == len &&
2614 		    !strncmp(page, r5c_journal_mode_str[mode], len))
2615 			break;
2616 	ret = mddev_lock(mddev);
2617 	if (ret)
2618 		return ret;
2619 	ret = r5c_journal_mode_set(mddev, mode);
2620 	mddev_unlock(mddev);
2621 	return ret ?: length;
2622 }
2623 
2624 struct md_sysfs_entry
2625 r5c_journal_mode = __ATTR(journal_mode, 0644,
2626 			  r5c_journal_mode_show, r5c_journal_mode_store);
2627 
2628 /*
2629  * Try handle write operation in caching phase. This function should only
2630  * be called in write-back mode.
2631  *
2632  * If all outstanding writes can be handled in caching phase, returns 0
2633  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2634  * and returns -EAGAIN
2635  */
2636 int r5c_try_caching_write(struct r5conf *conf,
2637 			  struct stripe_head *sh,
2638 			  struct stripe_head_state *s,
2639 			  int disks)
2640 {
2641 	struct r5l_log *log = READ_ONCE(conf->log);
2642 	int i;
2643 	struct r5dev *dev;
2644 	int to_cache = 0;
2645 	void __rcu **pslot;
2646 	sector_t tree_index;
2647 	int ret;
2648 	uintptr_t refcount;
2649 
2650 	BUG_ON(!r5c_is_writeback(log));
2651 
2652 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2653 		/*
2654 		 * There are two different scenarios here:
2655 		 *  1. The stripe has some data cached, and it is sent to
2656 		 *     write-out phase for reclaim
2657 		 *  2. The stripe is clean, and this is the first write
2658 		 *
2659 		 * For 1, return -EAGAIN, so we continue with
2660 		 * handle_stripe_dirtying().
2661 		 *
2662 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2663 		 * write.
2664 		 */
2665 
2666 		/* case 1: anything injournal or anything in written */
2667 		if (s->injournal > 0 || s->written > 0)
2668 			return -EAGAIN;
2669 		/* case 2 */
2670 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2671 	}
2672 
2673 	/*
2674 	 * When run in degraded mode, array is set to write-through mode.
2675 	 * This check helps drain pending write safely in the transition to
2676 	 * write-through mode.
2677 	 *
2678 	 * When a stripe is syncing, the write is also handled in write
2679 	 * through mode.
2680 	 */
2681 	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2682 		r5c_make_stripe_write_out(sh);
2683 		return -EAGAIN;
2684 	}
2685 
2686 	for (i = disks; i--; ) {
2687 		dev = &sh->dev[i];
2688 		/* if non-overwrite, use writing-out phase */
2689 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2690 		    !test_bit(R5_InJournal, &dev->flags)) {
2691 			r5c_make_stripe_write_out(sh);
2692 			return -EAGAIN;
2693 		}
2694 	}
2695 
2696 	/* if the stripe is not counted in big_stripe_tree, add it now */
2697 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2698 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2699 		tree_index = r5c_tree_index(conf, sh->sector);
2700 		spin_lock(&log->tree_lock);
2701 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2702 					       tree_index);
2703 		if (pslot) {
2704 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2705 				pslot, &log->tree_lock) >>
2706 				R5C_RADIX_COUNT_SHIFT;
2707 			radix_tree_replace_slot(
2708 				&log->big_stripe_tree, pslot,
2709 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2710 		} else {
2711 			/*
2712 			 * this radix_tree_insert can fail safely, so no
2713 			 * need to call radix_tree_preload()
2714 			 */
2715 			ret = radix_tree_insert(
2716 				&log->big_stripe_tree, tree_index,
2717 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2718 			if (ret) {
2719 				spin_unlock(&log->tree_lock);
2720 				r5c_make_stripe_write_out(sh);
2721 				return -EAGAIN;
2722 			}
2723 		}
2724 		spin_unlock(&log->tree_lock);
2725 
2726 		/*
2727 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2728 		 * counted in the radix tree
2729 		 */
2730 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2731 		atomic_inc(&conf->r5c_cached_partial_stripes);
2732 	}
2733 
2734 	for (i = disks; i--; ) {
2735 		dev = &sh->dev[i];
2736 		if (dev->towrite) {
2737 			set_bit(R5_Wantwrite, &dev->flags);
2738 			set_bit(R5_Wantdrain, &dev->flags);
2739 			set_bit(R5_LOCKED, &dev->flags);
2740 			to_cache++;
2741 		}
2742 	}
2743 
2744 	if (to_cache) {
2745 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2746 		/*
2747 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2748 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2749 		 * r5c_handle_data_cached()
2750 		 */
2751 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2752 	}
2753 
2754 	return 0;
2755 }
2756 
2757 /*
2758  * free extra pages (orig_page) we allocated for prexor
2759  */
2760 void r5c_release_extra_page(struct stripe_head *sh)
2761 {
2762 	struct r5conf *conf = sh->raid_conf;
2763 	int i;
2764 	bool using_disk_info_extra_page;
2765 
2766 	using_disk_info_extra_page =
2767 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2768 
2769 	for (i = sh->disks; i--; )
2770 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2771 			struct page *p = sh->dev[i].orig_page;
2772 
2773 			sh->dev[i].orig_page = sh->dev[i].page;
2774 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2775 
2776 			if (!using_disk_info_extra_page)
2777 				put_page(p);
2778 		}
2779 
2780 	if (using_disk_info_extra_page) {
2781 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2782 		md_wakeup_thread(conf->mddev->thread);
2783 	}
2784 }
2785 
2786 void r5c_use_extra_page(struct stripe_head *sh)
2787 {
2788 	struct r5conf *conf = sh->raid_conf;
2789 	int i;
2790 	struct r5dev *dev;
2791 
2792 	for (i = sh->disks; i--; ) {
2793 		dev = &sh->dev[i];
2794 		if (dev->orig_page != dev->page)
2795 			put_page(dev->orig_page);
2796 		dev->orig_page = conf->disks[i].extra_page;
2797 	}
2798 }
2799 
2800 /*
2801  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2802  * stripe is committed to RAID disks.
2803  */
2804 void r5c_finish_stripe_write_out(struct r5conf *conf,
2805 				 struct stripe_head *sh,
2806 				 struct stripe_head_state *s)
2807 {
2808 	struct r5l_log *log = READ_ONCE(conf->log);
2809 	int i;
2810 	int do_wakeup = 0;
2811 	sector_t tree_index;
2812 	void __rcu **pslot;
2813 	uintptr_t refcount;
2814 
2815 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2816 		return;
2817 
2818 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2819 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2820 
2821 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2822 		return;
2823 
2824 	for (i = sh->disks; i--; ) {
2825 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2826 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2827 			do_wakeup = 1;
2828 	}
2829 
2830 	/*
2831 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2832 	 * We updated R5_InJournal, so we also update s->injournal.
2833 	 */
2834 	s->injournal = 0;
2835 
2836 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2837 		if (atomic_dec_and_test(&conf->pending_full_writes))
2838 			md_wakeup_thread(conf->mddev->thread);
2839 
2840 	if (do_wakeup)
2841 		wake_up(&conf->wait_for_overlap);
2842 
2843 	spin_lock_irq(&log->stripe_in_journal_lock);
2844 	list_del_init(&sh->r5c);
2845 	spin_unlock_irq(&log->stripe_in_journal_lock);
2846 	sh->log_start = MaxSector;
2847 
2848 	atomic_dec(&log->stripe_in_journal_count);
2849 	r5c_update_log_state(log);
2850 
2851 	/* stop counting this stripe in big_stripe_tree */
2852 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2853 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2854 		tree_index = r5c_tree_index(conf, sh->sector);
2855 		spin_lock(&log->tree_lock);
2856 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2857 					       tree_index);
2858 		BUG_ON(pslot == NULL);
2859 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2860 			pslot, &log->tree_lock) >>
2861 			R5C_RADIX_COUNT_SHIFT;
2862 		if (refcount == 1)
2863 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2864 		else
2865 			radix_tree_replace_slot(
2866 				&log->big_stripe_tree, pslot,
2867 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2868 		spin_unlock(&log->tree_lock);
2869 	}
2870 
2871 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2872 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2873 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2874 		atomic_dec(&conf->r5c_cached_partial_stripes);
2875 	}
2876 
2877 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2878 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2879 		atomic_dec(&conf->r5c_flushing_full_stripes);
2880 		atomic_dec(&conf->r5c_cached_full_stripes);
2881 	}
2882 
2883 	r5l_append_flush_payload(log, sh->sector);
2884 	/* stripe is flused to raid disks, we can do resync now */
2885 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2886 		set_bit(STRIPE_HANDLE, &sh->state);
2887 }
2888 
2889 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2890 {
2891 	struct r5conf *conf = sh->raid_conf;
2892 	int pages = 0;
2893 	int reserve;
2894 	int i;
2895 	int ret = 0;
2896 
2897 	BUG_ON(!log);
2898 
2899 	for (i = 0; i < sh->disks; i++) {
2900 		void *addr;
2901 
2902 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2903 			continue;
2904 		addr = kmap_atomic(sh->dev[i].page);
2905 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2906 						    addr, PAGE_SIZE);
2907 		kunmap_atomic(addr);
2908 		pages++;
2909 	}
2910 	WARN_ON(pages == 0);
2911 
2912 	/*
2913 	 * The stripe must enter state machine again to call endio, so
2914 	 * don't delay.
2915 	 */
2916 	clear_bit(STRIPE_DELAYED, &sh->state);
2917 	atomic_inc(&sh->count);
2918 
2919 	mutex_lock(&log->io_mutex);
2920 	/* meta + data */
2921 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2922 
2923 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2924 	    sh->log_start == MaxSector)
2925 		r5l_add_no_space_stripe(log, sh);
2926 	else if (!r5l_has_free_space(log, reserve)) {
2927 		if (sh->log_start == log->last_checkpoint)
2928 			BUG();
2929 		else
2930 			r5l_add_no_space_stripe(log, sh);
2931 	} else {
2932 		ret = r5l_log_stripe(log, sh, pages, 0);
2933 		if (ret) {
2934 			spin_lock_irq(&log->io_list_lock);
2935 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2936 			spin_unlock_irq(&log->io_list_lock);
2937 		}
2938 	}
2939 
2940 	mutex_unlock(&log->io_mutex);
2941 	return 0;
2942 }
2943 
2944 /* check whether this big stripe is in write back cache. */
2945 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2946 {
2947 	struct r5l_log *log = READ_ONCE(conf->log);
2948 	sector_t tree_index;
2949 	void *slot;
2950 
2951 	if (!log)
2952 		return false;
2953 
2954 	WARN_ON_ONCE(!rcu_read_lock_held());
2955 	tree_index = r5c_tree_index(conf, sect);
2956 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2957 	return slot != NULL;
2958 }
2959 
2960 static int r5l_load_log(struct r5l_log *log)
2961 {
2962 	struct md_rdev *rdev = log->rdev;
2963 	struct page *page;
2964 	struct r5l_meta_block *mb;
2965 	sector_t cp = log->rdev->journal_tail;
2966 	u32 stored_crc, expected_crc;
2967 	bool create_super = false;
2968 	int ret = 0;
2969 
2970 	/* Make sure it's valid */
2971 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2972 		cp = 0;
2973 	page = alloc_page(GFP_KERNEL);
2974 	if (!page)
2975 		return -ENOMEM;
2976 
2977 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2978 		ret = -EIO;
2979 		goto ioerr;
2980 	}
2981 	mb = page_address(page);
2982 
2983 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2984 	    mb->version != R5LOG_VERSION) {
2985 		create_super = true;
2986 		goto create;
2987 	}
2988 	stored_crc = le32_to_cpu(mb->checksum);
2989 	mb->checksum = 0;
2990 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2991 	if (stored_crc != expected_crc) {
2992 		create_super = true;
2993 		goto create;
2994 	}
2995 	if (le64_to_cpu(mb->position) != cp) {
2996 		create_super = true;
2997 		goto create;
2998 	}
2999 create:
3000 	if (create_super) {
3001 		log->last_cp_seq = get_random_u32();
3002 		cp = 0;
3003 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3004 		/*
3005 		 * Make sure super points to correct address. Log might have
3006 		 * data very soon. If super hasn't correct log tail address,
3007 		 * recovery can't find the log
3008 		 */
3009 		r5l_write_super(log, cp);
3010 	} else
3011 		log->last_cp_seq = le64_to_cpu(mb->seq);
3012 
3013 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3014 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3015 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3016 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3017 	log->last_checkpoint = cp;
3018 
3019 	__free_page(page);
3020 
3021 	if (create_super) {
3022 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3023 		log->seq = log->last_cp_seq + 1;
3024 		log->next_checkpoint = cp;
3025 	} else
3026 		ret = r5l_recovery_log(log);
3027 
3028 	r5c_update_log_state(log);
3029 	return ret;
3030 ioerr:
3031 	__free_page(page);
3032 	return ret;
3033 }
3034 
3035 int r5l_start(struct r5l_log *log)
3036 {
3037 	int ret;
3038 
3039 	if (!log)
3040 		return 0;
3041 
3042 	ret = r5l_load_log(log);
3043 	if (ret) {
3044 		struct mddev *mddev = log->rdev->mddev;
3045 		struct r5conf *conf = mddev->private;
3046 
3047 		r5l_exit_log(conf);
3048 	}
3049 	return ret;
3050 }
3051 
3052 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3053 {
3054 	struct r5conf *conf = mddev->private;
3055 	struct r5l_log *log = READ_ONCE(conf->log);
3056 
3057 	if (!log)
3058 		return;
3059 
3060 	if ((raid5_calc_degraded(conf) > 0 ||
3061 	     test_bit(Journal, &rdev->flags)) &&
3062 	    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3063 		schedule_work(&log->disable_writeback_work);
3064 }
3065 
3066 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3067 {
3068 	struct r5l_log *log;
3069 	struct md_thread *thread;
3070 	int ret;
3071 
3072 	pr_debug("md/raid:%s: using device %pg as journal\n",
3073 		 mdname(conf->mddev), rdev->bdev);
3074 
3075 	if (PAGE_SIZE != 4096)
3076 		return -EINVAL;
3077 
3078 	/*
3079 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3080 	 * raid_disks r5l_payload_data_parity.
3081 	 *
3082 	 * Write journal and cache does not work for very big array
3083 	 * (raid_disks > 203)
3084 	 */
3085 	if (sizeof(struct r5l_meta_block) +
3086 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3087 	     conf->raid_disks) > PAGE_SIZE) {
3088 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3089 		       mdname(conf->mddev), conf->raid_disks);
3090 		return -EINVAL;
3091 	}
3092 
3093 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3094 	if (!log)
3095 		return -ENOMEM;
3096 	log->rdev = rdev;
3097 	log->need_cache_flush = bdev_write_cache(rdev->bdev);
3098 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3099 				       sizeof(rdev->mddev->uuid));
3100 
3101 	mutex_init(&log->io_mutex);
3102 
3103 	spin_lock_init(&log->io_list_lock);
3104 	INIT_LIST_HEAD(&log->running_ios);
3105 	INIT_LIST_HEAD(&log->io_end_ios);
3106 	INIT_LIST_HEAD(&log->flushing_ios);
3107 	INIT_LIST_HEAD(&log->finished_ios);
3108 
3109 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3110 	if (!log->io_kc)
3111 		goto io_kc;
3112 
3113 	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3114 	if (ret)
3115 		goto io_pool;
3116 
3117 	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3118 	if (ret)
3119 		goto io_bs;
3120 
3121 	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3122 	if (ret)
3123 		goto out_mempool;
3124 
3125 	spin_lock_init(&log->tree_lock);
3126 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3127 
3128 	thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev,
3129 				    "reclaim");
3130 	if (!thread)
3131 		goto reclaim_thread;
3132 
3133 	thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3134 	rcu_assign_pointer(log->reclaim_thread, thread);
3135 
3136 	init_waitqueue_head(&log->iounit_wait);
3137 
3138 	INIT_LIST_HEAD(&log->no_mem_stripes);
3139 
3140 	INIT_LIST_HEAD(&log->no_space_stripes);
3141 	spin_lock_init(&log->no_space_stripes_lock);
3142 
3143 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3144 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3145 
3146 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3147 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3148 	spin_lock_init(&log->stripe_in_journal_lock);
3149 	atomic_set(&log->stripe_in_journal_count, 0);
3150 
3151 	WRITE_ONCE(conf->log, log);
3152 
3153 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3154 	return 0;
3155 
3156 reclaim_thread:
3157 	mempool_exit(&log->meta_pool);
3158 out_mempool:
3159 	bioset_exit(&log->bs);
3160 io_bs:
3161 	mempool_exit(&log->io_pool);
3162 io_pool:
3163 	kmem_cache_destroy(log->io_kc);
3164 io_kc:
3165 	kfree(log);
3166 	return -EINVAL;
3167 }
3168 
3169 void r5l_exit_log(struct r5conf *conf)
3170 {
3171 	struct r5l_log *log = conf->log;
3172 
3173 	md_unregister_thread(conf->mddev, &log->reclaim_thread);
3174 
3175 	/*
3176 	 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
3177 	 * ensure disable_writeback_work wakes up and exits.
3178 	 */
3179 	WRITE_ONCE(conf->log, NULL);
3180 	wake_up(&conf->mddev->sb_wait);
3181 	flush_work(&log->disable_writeback_work);
3182 
3183 	mempool_exit(&log->meta_pool);
3184 	bioset_exit(&log->bs);
3185 	mempool_exit(&log->io_pool);
3186 	kmem_cache_destroy(log->io_kc);
3187 	kfree(log);
3188 }
3189