1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 5 */ 6 #include <linux/kernel.h> 7 #include <linux/wait.h> 8 #include <linux/blkdev.h> 9 #include <linux/slab.h> 10 #include <linux/raid/md_p.h> 11 #include <linux/crc32c.h> 12 #include <linux/random.h> 13 #include <linux/kthread.h> 14 #include <linux/types.h> 15 #include "md.h" 16 #include "raid5.h" 17 #include "md-bitmap.h" 18 #include "raid5-log.h" 19 20 /* 21 * metadata/data stored in disk with 4k size unit (a block) regardless 22 * underneath hardware sector size. only works with PAGE_SIZE == 4096 23 */ 24 #define BLOCK_SECTORS (8) 25 #define BLOCK_SECTOR_SHIFT (3) 26 27 /* 28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 29 * 30 * In write through mode, the reclaim runs every log->max_free_space. 31 * This can prevent the recovery scans for too long 32 */ 33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 35 36 /* wake up reclaim thread periodically */ 37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 38 /* start flush with these full stripes */ 39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 40 /* reclaim stripes in groups */ 41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 42 43 /* 44 * We only need 2 bios per I/O unit to make progress, but ensure we 45 * have a few more available to not get too tight. 46 */ 47 #define R5L_POOL_SIZE 4 48 49 static char *r5c_journal_mode_str[] = {"write-through", 50 "write-back"}; 51 /* 52 * raid5 cache state machine 53 * 54 * With the RAID cache, each stripe works in two phases: 55 * - caching phase 56 * - writing-out phase 57 * 58 * These two phases are controlled by bit STRIPE_R5C_CACHING: 59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 61 * 62 * When there is no journal, or the journal is in write-through mode, 63 * the stripe is always in writing-out phase. 64 * 65 * For write-back journal, the stripe is sent to caching phase on write 66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 67 * the write-out phase by clearing STRIPE_R5C_CACHING. 68 * 69 * Stripes in caching phase do not write the raid disks. Instead, all 70 * writes are committed from the log device. Therefore, a stripe in 71 * caching phase handles writes as: 72 * - write to log device 73 * - return IO 74 * 75 * Stripes in writing-out phase handle writes as: 76 * - calculate parity 77 * - write pending data and parity to journal 78 * - write data and parity to raid disks 79 * - return IO for pending writes 80 */ 81 82 struct r5l_log { 83 struct md_rdev *rdev; 84 85 u32 uuid_checksum; 86 87 sector_t device_size; /* log device size, round to 88 * BLOCK_SECTORS */ 89 sector_t max_free_space; /* reclaim run if free space is at 90 * this size */ 91 92 sector_t last_checkpoint; /* log tail. where recovery scan 93 * starts from */ 94 u64 last_cp_seq; /* log tail sequence */ 95 96 sector_t log_start; /* log head. where new data appends */ 97 u64 seq; /* log head sequence */ 98 99 sector_t next_checkpoint; 100 101 struct mutex io_mutex; 102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 103 104 spinlock_t io_list_lock; 105 struct list_head running_ios; /* io_units which are still running, 106 * and have not yet been completely 107 * written to the log */ 108 struct list_head io_end_ios; /* io_units which have been completely 109 * written to the log but not yet written 110 * to the RAID */ 111 struct list_head flushing_ios; /* io_units which are waiting for log 112 * cache flush */ 113 struct list_head finished_ios; /* io_units which settle down in log disk */ 114 struct bio flush_bio; 115 116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 117 118 struct kmem_cache *io_kc; 119 mempool_t io_pool; 120 struct bio_set bs; 121 mempool_t meta_pool; 122 123 struct md_thread __rcu *reclaim_thread; 124 unsigned long reclaim_target; /* number of space that need to be 125 * reclaimed. if it's 0, reclaim spaces 126 * used by io_units which are in 127 * IO_UNIT_STRIPE_END state (eg, reclaim 128 * doesn't wait for specific io_unit 129 * switching to IO_UNIT_STRIPE_END 130 * state) */ 131 wait_queue_head_t iounit_wait; 132 133 struct list_head no_space_stripes; /* pending stripes, log has no space */ 134 spinlock_t no_space_stripes_lock; 135 136 bool need_cache_flush; 137 138 /* for r5c_cache */ 139 enum r5c_journal_mode r5c_journal_mode; 140 141 /* all stripes in r5cache, in the order of seq at sh->log_start */ 142 struct list_head stripe_in_journal_list; 143 144 spinlock_t stripe_in_journal_lock; 145 atomic_t stripe_in_journal_count; 146 147 /* to submit async io_units, to fulfill ordering of flush */ 148 struct work_struct deferred_io_work; 149 /* to disable write back during in degraded mode */ 150 struct work_struct disable_writeback_work; 151 152 /* to for chunk_aligned_read in writeback mode, details below */ 153 spinlock_t tree_lock; 154 struct radix_tree_root big_stripe_tree; 155 }; 156 157 /* 158 * Enable chunk_aligned_read() with write back cache. 159 * 160 * Each chunk may contain more than one stripe (for example, a 256kB 161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 162 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 163 * For each big_stripe, we count how many stripes of this big_stripe 164 * are in the write back cache. These data are tracked in a radix tree 165 * (big_stripe_tree). We use radix_tree item pointer as the counter. 166 * r5c_tree_index() is used to calculate keys for the radix tree. 167 * 168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 169 * big_stripe of each chunk in the tree. If this big_stripe is in the 170 * tree, chunk_aligned_read() aborts. This look up is protected by 171 * rcu_read_lock(). 172 * 173 * It is necessary to remember whether a stripe is counted in 174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 176 * two flags are set, the stripe is counted in big_stripe_tree. This 177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 178 * r5c_try_caching_write(); and moving clear_bit of 179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 180 * r5c_finish_stripe_write_out(). 181 */ 182 183 /* 184 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 185 * So it is necessary to left shift the counter by 2 bits before using it 186 * as data pointer of the tree. 187 */ 188 #define R5C_RADIX_COUNT_SHIFT 2 189 190 /* 191 * calculate key for big_stripe_tree 192 * 193 * sect: align_bi->bi_iter.bi_sector or sh->sector 194 */ 195 static inline sector_t r5c_tree_index(struct r5conf *conf, 196 sector_t sect) 197 { 198 sector_div(sect, conf->chunk_sectors); 199 return sect; 200 } 201 202 /* 203 * an IO range starts from a meta data block and end at the next meta data 204 * block. The io unit's the meta data block tracks data/parity followed it. io 205 * unit is written to log disk with normal write, as we always flush log disk 206 * first and then start move data to raid disks, there is no requirement to 207 * write io unit with FLUSH/FUA 208 */ 209 struct r5l_io_unit { 210 struct r5l_log *log; 211 212 struct page *meta_page; /* store meta block */ 213 int meta_offset; /* current offset in meta_page */ 214 215 struct bio *current_bio;/* current_bio accepting new data */ 216 217 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 218 u64 seq; /* seq number of the metablock */ 219 sector_t log_start; /* where the io_unit starts */ 220 sector_t log_end; /* where the io_unit ends */ 221 struct list_head log_sibling; /* log->running_ios */ 222 struct list_head stripe_list; /* stripes added to the io_unit */ 223 224 int state; 225 bool need_split_bio; 226 struct bio *split_bio; 227 228 unsigned int has_flush:1; /* include flush request */ 229 unsigned int has_fua:1; /* include fua request */ 230 unsigned int has_null_flush:1; /* include null flush request */ 231 unsigned int has_flush_payload:1; /* include flush payload */ 232 /* 233 * io isn't sent yet, flush/fua request can only be submitted till it's 234 * the first IO in running_ios list 235 */ 236 unsigned int io_deferred:1; 237 238 struct bio_list flush_barriers; /* size == 0 flush bios */ 239 }; 240 241 /* r5l_io_unit state */ 242 enum r5l_io_unit_state { 243 IO_UNIT_RUNNING = 0, /* accepting new IO */ 244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 245 * don't accepting new bio */ 246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 248 }; 249 250 bool r5c_is_writeback(struct r5l_log *log) 251 { 252 return (log != NULL && 253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 254 } 255 256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 257 { 258 start += inc; 259 if (start >= log->device_size) 260 start = start - log->device_size; 261 return start; 262 } 263 264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 265 sector_t end) 266 { 267 if (end >= start) 268 return end - start; 269 else 270 return end + log->device_size - start; 271 } 272 273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 274 { 275 sector_t used_size; 276 277 used_size = r5l_ring_distance(log, log->last_checkpoint, 278 log->log_start); 279 280 return log->device_size > used_size + size; 281 } 282 283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 284 enum r5l_io_unit_state state) 285 { 286 if (WARN_ON(io->state >= state)) 287 return; 288 io->state = state; 289 } 290 291 static void 292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 293 { 294 struct bio *wbi, *wbi2; 295 296 wbi = dev->written; 297 dev->written = NULL; 298 while (wbi && wbi->bi_iter.bi_sector < 299 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 300 wbi2 = r5_next_bio(conf, wbi, dev->sector); 301 md_write_end(conf->mddev); 302 bio_endio(wbi); 303 wbi = wbi2; 304 } 305 } 306 307 void r5c_handle_cached_data_endio(struct r5conf *conf, 308 struct stripe_head *sh, int disks) 309 { 310 int i; 311 312 for (i = sh->disks; i--; ) { 313 if (sh->dev[i].written) { 314 set_bit(R5_UPTODATE, &sh->dev[i].flags); 315 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 317 RAID5_STRIPE_SECTORS(conf), 318 !test_bit(STRIPE_DEGRADED, &sh->state), 319 0); 320 } 321 } 322 } 323 324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 325 326 /* Check whether we should flush some stripes to free up stripe cache */ 327 void r5c_check_stripe_cache_usage(struct r5conf *conf) 328 { 329 int total_cached; 330 struct r5l_log *log = READ_ONCE(conf->log); 331 332 if (!r5c_is_writeback(log)) 333 return; 334 335 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 336 atomic_read(&conf->r5c_cached_full_stripes); 337 338 /* 339 * The following condition is true for either of the following: 340 * - stripe cache pressure high: 341 * total_cached > 3/4 min_nr_stripes || 342 * empty_inactive_list_nr > 0 343 * - stripe cache pressure moderate: 344 * total_cached > 1/2 min_nr_stripes 345 */ 346 if (total_cached > conf->min_nr_stripes * 1 / 2 || 347 atomic_read(&conf->empty_inactive_list_nr) > 0) 348 r5l_wake_reclaim(log, 0); 349 } 350 351 /* 352 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 353 * stripes in the cache 354 */ 355 void r5c_check_cached_full_stripe(struct r5conf *conf) 356 { 357 struct r5l_log *log = READ_ONCE(conf->log); 358 359 if (!r5c_is_writeback(log)) 360 return; 361 362 /* 363 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 364 * or a full stripe (chunk size / 4k stripes). 365 */ 366 if (atomic_read(&conf->r5c_cached_full_stripes) >= 367 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 368 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf))) 369 r5l_wake_reclaim(log, 0); 370 } 371 372 /* 373 * Total log space (in sectors) needed to flush all data in cache 374 * 375 * To avoid deadlock due to log space, it is necessary to reserve log 376 * space to flush critical stripes (stripes that occupying log space near 377 * last_checkpoint). This function helps check how much log space is 378 * required to flush all cached stripes. 379 * 380 * To reduce log space requirements, two mechanisms are used to give cache 381 * flush higher priorities: 382 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 383 * stripes ALREADY in journal can be flushed w/o pending writes; 384 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 385 * can be delayed (r5l_add_no_space_stripe). 386 * 387 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 388 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 389 * pages of journal space. For stripes that has not passed 1, flushing it 390 * requires (conf->raid_disks + 1) pages of journal space. There are at 391 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 392 * required to flush all cached stripes (in pages) is: 393 * 394 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 395 * (group_cnt + 1) * (raid_disks + 1) 396 * or 397 * (stripe_in_journal_count) * (max_degraded + 1) + 398 * (group_cnt + 1) * (raid_disks - max_degraded) 399 */ 400 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 401 { 402 struct r5l_log *log = READ_ONCE(conf->log); 403 404 if (!r5c_is_writeback(log)) 405 return 0; 406 407 return BLOCK_SECTORS * 408 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 409 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 410 } 411 412 /* 413 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 414 * 415 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 416 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 417 * device is less than 2x of reclaim_required_space. 418 */ 419 static inline void r5c_update_log_state(struct r5l_log *log) 420 { 421 struct r5conf *conf = log->rdev->mddev->private; 422 sector_t free_space; 423 sector_t reclaim_space; 424 bool wake_reclaim = false; 425 426 if (!r5c_is_writeback(log)) 427 return; 428 429 free_space = r5l_ring_distance(log, log->log_start, 430 log->last_checkpoint); 431 reclaim_space = r5c_log_required_to_flush_cache(conf); 432 if (free_space < 2 * reclaim_space) 433 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 434 else { 435 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 436 wake_reclaim = true; 437 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 438 } 439 if (free_space < 3 * reclaim_space) 440 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 441 else 442 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 443 444 if (wake_reclaim) 445 r5l_wake_reclaim(log, 0); 446 } 447 448 /* 449 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 450 * This function should only be called in write-back mode. 451 */ 452 void r5c_make_stripe_write_out(struct stripe_head *sh) 453 { 454 struct r5conf *conf = sh->raid_conf; 455 struct r5l_log *log = READ_ONCE(conf->log); 456 457 BUG_ON(!r5c_is_writeback(log)); 458 459 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 460 clear_bit(STRIPE_R5C_CACHING, &sh->state); 461 462 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 463 atomic_inc(&conf->preread_active_stripes); 464 } 465 466 static void r5c_handle_data_cached(struct stripe_head *sh) 467 { 468 int i; 469 470 for (i = sh->disks; i--; ) 471 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 472 set_bit(R5_InJournal, &sh->dev[i].flags); 473 clear_bit(R5_LOCKED, &sh->dev[i].flags); 474 } 475 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 476 } 477 478 /* 479 * this journal write must contain full parity, 480 * it may also contain some data pages 481 */ 482 static void r5c_handle_parity_cached(struct stripe_head *sh) 483 { 484 int i; 485 486 for (i = sh->disks; i--; ) 487 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 488 set_bit(R5_Wantwrite, &sh->dev[i].flags); 489 } 490 491 /* 492 * Setting proper flags after writing (or flushing) data and/or parity to the 493 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 494 */ 495 static void r5c_finish_cache_stripe(struct stripe_head *sh) 496 { 497 struct r5l_log *log = READ_ONCE(sh->raid_conf->log); 498 499 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 500 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 501 /* 502 * Set R5_InJournal for parity dev[pd_idx]. This means 503 * all data AND parity in the journal. For RAID 6, it is 504 * NOT necessary to set the flag for dev[qd_idx], as the 505 * two parities are written out together. 506 */ 507 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 508 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 509 r5c_handle_data_cached(sh); 510 } else { 511 r5c_handle_parity_cached(sh); 512 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 513 } 514 } 515 516 static void r5l_io_run_stripes(struct r5l_io_unit *io) 517 { 518 struct stripe_head *sh, *next; 519 520 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 521 list_del_init(&sh->log_list); 522 523 r5c_finish_cache_stripe(sh); 524 525 set_bit(STRIPE_HANDLE, &sh->state); 526 raid5_release_stripe(sh); 527 } 528 } 529 530 static void r5l_log_run_stripes(struct r5l_log *log) 531 { 532 struct r5l_io_unit *io, *next; 533 534 lockdep_assert_held(&log->io_list_lock); 535 536 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 537 /* don't change list order */ 538 if (io->state < IO_UNIT_IO_END) 539 break; 540 541 list_move_tail(&io->log_sibling, &log->finished_ios); 542 r5l_io_run_stripes(io); 543 } 544 } 545 546 static void r5l_move_to_end_ios(struct r5l_log *log) 547 { 548 struct r5l_io_unit *io, *next; 549 550 lockdep_assert_held(&log->io_list_lock); 551 552 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 553 /* don't change list order */ 554 if (io->state < IO_UNIT_IO_END) 555 break; 556 list_move_tail(&io->log_sibling, &log->io_end_ios); 557 } 558 } 559 560 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 561 static void r5l_log_endio(struct bio *bio) 562 { 563 struct r5l_io_unit *io = bio->bi_private; 564 struct r5l_io_unit *io_deferred; 565 struct r5l_log *log = io->log; 566 unsigned long flags; 567 bool has_null_flush; 568 bool has_flush_payload; 569 570 if (bio->bi_status) 571 md_error(log->rdev->mddev, log->rdev); 572 573 bio_put(bio); 574 mempool_free(io->meta_page, &log->meta_pool); 575 576 spin_lock_irqsave(&log->io_list_lock, flags); 577 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 578 579 /* 580 * if the io doesn't not have null_flush or flush payload, 581 * it is not safe to access it after releasing io_list_lock. 582 * Therefore, it is necessary to check the condition with 583 * the lock held. 584 */ 585 has_null_flush = io->has_null_flush; 586 has_flush_payload = io->has_flush_payload; 587 588 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 589 r5l_move_to_end_ios(log); 590 else 591 r5l_log_run_stripes(log); 592 if (!list_empty(&log->running_ios)) { 593 /* 594 * FLUSH/FUA io_unit is deferred because of ordering, now we 595 * can dispatch it 596 */ 597 io_deferred = list_first_entry(&log->running_ios, 598 struct r5l_io_unit, log_sibling); 599 if (io_deferred->io_deferred) 600 schedule_work(&log->deferred_io_work); 601 } 602 603 spin_unlock_irqrestore(&log->io_list_lock, flags); 604 605 if (log->need_cache_flush) 606 md_wakeup_thread(log->rdev->mddev->thread); 607 608 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 609 if (has_null_flush) { 610 struct bio *bi; 611 612 WARN_ON(bio_list_empty(&io->flush_barriers)); 613 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 614 bio_endio(bi); 615 if (atomic_dec_and_test(&io->pending_stripe)) { 616 __r5l_stripe_write_finished(io); 617 return; 618 } 619 } 620 } 621 /* decrease pending_stripe for flush payload */ 622 if (has_flush_payload) 623 if (atomic_dec_and_test(&io->pending_stripe)) 624 __r5l_stripe_write_finished(io); 625 } 626 627 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 628 { 629 unsigned long flags; 630 631 spin_lock_irqsave(&log->io_list_lock, flags); 632 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 633 spin_unlock_irqrestore(&log->io_list_lock, flags); 634 635 /* 636 * In case of journal device failures, submit_bio will get error 637 * and calls endio, then active stripes will continue write 638 * process. Therefore, it is not necessary to check Faulty bit 639 * of journal device here. 640 * 641 * We can't check split_bio after current_bio is submitted. If 642 * io->split_bio is null, after current_bio is submitted, current_bio 643 * might already be completed and the io_unit is freed. We submit 644 * split_bio first to avoid the issue. 645 */ 646 if (io->split_bio) { 647 if (io->has_flush) 648 io->split_bio->bi_opf |= REQ_PREFLUSH; 649 if (io->has_fua) 650 io->split_bio->bi_opf |= REQ_FUA; 651 submit_bio(io->split_bio); 652 } 653 654 if (io->has_flush) 655 io->current_bio->bi_opf |= REQ_PREFLUSH; 656 if (io->has_fua) 657 io->current_bio->bi_opf |= REQ_FUA; 658 submit_bio(io->current_bio); 659 } 660 661 /* deferred io_unit will be dispatched here */ 662 static void r5l_submit_io_async(struct work_struct *work) 663 { 664 struct r5l_log *log = container_of(work, struct r5l_log, 665 deferred_io_work); 666 struct r5l_io_unit *io = NULL; 667 unsigned long flags; 668 669 spin_lock_irqsave(&log->io_list_lock, flags); 670 if (!list_empty(&log->running_ios)) { 671 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 672 log_sibling); 673 if (!io->io_deferred) 674 io = NULL; 675 else 676 io->io_deferred = 0; 677 } 678 spin_unlock_irqrestore(&log->io_list_lock, flags); 679 if (io) 680 r5l_do_submit_io(log, io); 681 } 682 683 static void r5c_disable_writeback_async(struct work_struct *work) 684 { 685 struct r5l_log *log = container_of(work, struct r5l_log, 686 disable_writeback_work); 687 struct mddev *mddev = log->rdev->mddev; 688 struct r5conf *conf = mddev->private; 689 int locked = 0; 690 691 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 692 return; 693 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 694 mdname(mddev)); 695 696 /* wait superblock change before suspend */ 697 wait_event(mddev->sb_wait, 698 !READ_ONCE(conf->log) || 699 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) && 700 (locked = mddev_trylock(mddev)))); 701 if (locked) { 702 mddev_suspend(mddev); 703 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 704 mddev_resume(mddev); 705 mddev_unlock(mddev); 706 } 707 } 708 709 static void r5l_submit_current_io(struct r5l_log *log) 710 { 711 struct r5l_io_unit *io = log->current_io; 712 struct r5l_meta_block *block; 713 unsigned long flags; 714 u32 crc; 715 bool do_submit = true; 716 717 if (!io) 718 return; 719 720 block = page_address(io->meta_page); 721 block->meta_size = cpu_to_le32(io->meta_offset); 722 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 723 block->checksum = cpu_to_le32(crc); 724 725 log->current_io = NULL; 726 spin_lock_irqsave(&log->io_list_lock, flags); 727 if (io->has_flush || io->has_fua) { 728 if (io != list_first_entry(&log->running_ios, 729 struct r5l_io_unit, log_sibling)) { 730 io->io_deferred = 1; 731 do_submit = false; 732 } 733 } 734 spin_unlock_irqrestore(&log->io_list_lock, flags); 735 if (do_submit) 736 r5l_do_submit_io(log, io); 737 } 738 739 static struct bio *r5l_bio_alloc(struct r5l_log *log) 740 { 741 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS, 742 REQ_OP_WRITE, GFP_NOIO, &log->bs); 743 744 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 745 746 return bio; 747 } 748 749 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 750 { 751 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 752 753 r5c_update_log_state(log); 754 /* 755 * If we filled up the log device start from the beginning again, 756 * which will require a new bio. 757 * 758 * Note: for this to work properly the log size needs to me a multiple 759 * of BLOCK_SECTORS. 760 */ 761 if (log->log_start == 0) 762 io->need_split_bio = true; 763 764 io->log_end = log->log_start; 765 } 766 767 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 768 { 769 struct r5l_io_unit *io; 770 struct r5l_meta_block *block; 771 772 io = mempool_alloc(&log->io_pool, GFP_ATOMIC); 773 if (!io) 774 return NULL; 775 memset(io, 0, sizeof(*io)); 776 777 io->log = log; 778 INIT_LIST_HEAD(&io->log_sibling); 779 INIT_LIST_HEAD(&io->stripe_list); 780 bio_list_init(&io->flush_barriers); 781 io->state = IO_UNIT_RUNNING; 782 783 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO); 784 block = page_address(io->meta_page); 785 clear_page(block); 786 block->magic = cpu_to_le32(R5LOG_MAGIC); 787 block->version = R5LOG_VERSION; 788 block->seq = cpu_to_le64(log->seq); 789 block->position = cpu_to_le64(log->log_start); 790 791 io->log_start = log->log_start; 792 io->meta_offset = sizeof(struct r5l_meta_block); 793 io->seq = log->seq++; 794 795 io->current_bio = r5l_bio_alloc(log); 796 io->current_bio->bi_end_io = r5l_log_endio; 797 io->current_bio->bi_private = io; 798 __bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 799 800 r5_reserve_log_entry(log, io); 801 802 spin_lock_irq(&log->io_list_lock); 803 list_add_tail(&io->log_sibling, &log->running_ios); 804 spin_unlock_irq(&log->io_list_lock); 805 806 return io; 807 } 808 809 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 810 { 811 if (log->current_io && 812 log->current_io->meta_offset + payload_size > PAGE_SIZE) 813 r5l_submit_current_io(log); 814 815 if (!log->current_io) { 816 log->current_io = r5l_new_meta(log); 817 if (!log->current_io) 818 return -ENOMEM; 819 } 820 821 return 0; 822 } 823 824 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 825 sector_t location, 826 u32 checksum1, u32 checksum2, 827 bool checksum2_valid) 828 { 829 struct r5l_io_unit *io = log->current_io; 830 struct r5l_payload_data_parity *payload; 831 832 payload = page_address(io->meta_page) + io->meta_offset; 833 payload->header.type = cpu_to_le16(type); 834 payload->header.flags = cpu_to_le16(0); 835 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 836 (PAGE_SHIFT - 9)); 837 payload->location = cpu_to_le64(location); 838 payload->checksum[0] = cpu_to_le32(checksum1); 839 if (checksum2_valid) 840 payload->checksum[1] = cpu_to_le32(checksum2); 841 842 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 843 sizeof(__le32) * (1 + !!checksum2_valid); 844 } 845 846 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 847 { 848 struct r5l_io_unit *io = log->current_io; 849 850 if (io->need_split_bio) { 851 BUG_ON(io->split_bio); 852 io->split_bio = io->current_bio; 853 io->current_bio = r5l_bio_alloc(log); 854 bio_chain(io->current_bio, io->split_bio); 855 io->need_split_bio = false; 856 } 857 858 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 859 BUG(); 860 861 r5_reserve_log_entry(log, io); 862 } 863 864 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 865 { 866 struct mddev *mddev = log->rdev->mddev; 867 struct r5conf *conf = mddev->private; 868 struct r5l_io_unit *io; 869 struct r5l_payload_flush *payload; 870 int meta_size; 871 872 /* 873 * payload_flush requires extra writes to the journal. 874 * To avoid handling the extra IO in quiesce, just skip 875 * flush_payload 876 */ 877 if (conf->quiesce) 878 return; 879 880 mutex_lock(&log->io_mutex); 881 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 882 883 if (r5l_get_meta(log, meta_size)) { 884 mutex_unlock(&log->io_mutex); 885 return; 886 } 887 888 /* current implementation is one stripe per flush payload */ 889 io = log->current_io; 890 payload = page_address(io->meta_page) + io->meta_offset; 891 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 892 payload->header.flags = cpu_to_le16(0); 893 payload->size = cpu_to_le32(sizeof(__le64)); 894 payload->flush_stripes[0] = cpu_to_le64(sect); 895 io->meta_offset += meta_size; 896 /* multiple flush payloads count as one pending_stripe */ 897 if (!io->has_flush_payload) { 898 io->has_flush_payload = 1; 899 atomic_inc(&io->pending_stripe); 900 } 901 mutex_unlock(&log->io_mutex); 902 } 903 904 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 905 int data_pages, int parity_pages) 906 { 907 int i; 908 int meta_size; 909 int ret; 910 struct r5l_io_unit *io; 911 912 meta_size = 913 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 914 * data_pages) + 915 sizeof(struct r5l_payload_data_parity) + 916 sizeof(__le32) * parity_pages; 917 918 ret = r5l_get_meta(log, meta_size); 919 if (ret) 920 return ret; 921 922 io = log->current_io; 923 924 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 925 io->has_flush = 1; 926 927 for (i = 0; i < sh->disks; i++) { 928 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 929 test_bit(R5_InJournal, &sh->dev[i].flags)) 930 continue; 931 if (i == sh->pd_idx || i == sh->qd_idx) 932 continue; 933 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 934 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 935 io->has_fua = 1; 936 /* 937 * we need to flush journal to make sure recovery can 938 * reach the data with fua flag 939 */ 940 io->has_flush = 1; 941 } 942 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 943 raid5_compute_blocknr(sh, i, 0), 944 sh->dev[i].log_checksum, 0, false); 945 r5l_append_payload_page(log, sh->dev[i].page); 946 } 947 948 if (parity_pages == 2) { 949 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 950 sh->sector, sh->dev[sh->pd_idx].log_checksum, 951 sh->dev[sh->qd_idx].log_checksum, true); 952 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 953 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 954 } else if (parity_pages == 1) { 955 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 956 sh->sector, sh->dev[sh->pd_idx].log_checksum, 957 0, false); 958 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 959 } else /* Just writing data, not parity, in caching phase */ 960 BUG_ON(parity_pages != 0); 961 962 list_add_tail(&sh->log_list, &io->stripe_list); 963 atomic_inc(&io->pending_stripe); 964 sh->log_io = io; 965 966 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 967 return 0; 968 969 if (sh->log_start == MaxSector) { 970 BUG_ON(!list_empty(&sh->r5c)); 971 sh->log_start = io->log_start; 972 spin_lock_irq(&log->stripe_in_journal_lock); 973 list_add_tail(&sh->r5c, 974 &log->stripe_in_journal_list); 975 spin_unlock_irq(&log->stripe_in_journal_lock); 976 atomic_inc(&log->stripe_in_journal_count); 977 } 978 return 0; 979 } 980 981 /* add stripe to no_space_stripes, and then wake up reclaim */ 982 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 983 struct stripe_head *sh) 984 { 985 spin_lock(&log->no_space_stripes_lock); 986 list_add_tail(&sh->log_list, &log->no_space_stripes); 987 spin_unlock(&log->no_space_stripes_lock); 988 } 989 990 /* 991 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 992 * data from log to raid disks), so we shouldn't wait for reclaim here 993 */ 994 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 995 { 996 struct r5conf *conf = sh->raid_conf; 997 int write_disks = 0; 998 int data_pages, parity_pages; 999 int reserve; 1000 int i; 1001 int ret = 0; 1002 bool wake_reclaim = false; 1003 1004 if (!log) 1005 return -EAGAIN; 1006 /* Don't support stripe batch */ 1007 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1008 test_bit(STRIPE_SYNCING, &sh->state)) { 1009 /* the stripe is written to log, we start writing it to raid */ 1010 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1011 return -EAGAIN; 1012 } 1013 1014 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1015 1016 for (i = 0; i < sh->disks; i++) { 1017 void *addr; 1018 1019 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1020 test_bit(R5_InJournal, &sh->dev[i].flags)) 1021 continue; 1022 1023 write_disks++; 1024 /* checksum is already calculated in last run */ 1025 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1026 continue; 1027 addr = kmap_atomic(sh->dev[i].page); 1028 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1029 addr, PAGE_SIZE); 1030 kunmap_atomic(addr); 1031 } 1032 parity_pages = 1 + !!(sh->qd_idx >= 0); 1033 data_pages = write_disks - parity_pages; 1034 1035 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1036 /* 1037 * The stripe must enter state machine again to finish the write, so 1038 * don't delay. 1039 */ 1040 clear_bit(STRIPE_DELAYED, &sh->state); 1041 atomic_inc(&sh->count); 1042 1043 mutex_lock(&log->io_mutex); 1044 /* meta + data */ 1045 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1046 1047 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1048 if (!r5l_has_free_space(log, reserve)) { 1049 r5l_add_no_space_stripe(log, sh); 1050 wake_reclaim = true; 1051 } else { 1052 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1053 if (ret) { 1054 spin_lock_irq(&log->io_list_lock); 1055 list_add_tail(&sh->log_list, 1056 &log->no_mem_stripes); 1057 spin_unlock_irq(&log->io_list_lock); 1058 } 1059 } 1060 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1061 /* 1062 * log space critical, do not process stripes that are 1063 * not in cache yet (sh->log_start == MaxSector). 1064 */ 1065 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1066 sh->log_start == MaxSector) { 1067 r5l_add_no_space_stripe(log, sh); 1068 wake_reclaim = true; 1069 reserve = 0; 1070 } else if (!r5l_has_free_space(log, reserve)) { 1071 if (sh->log_start == log->last_checkpoint) 1072 BUG(); 1073 else 1074 r5l_add_no_space_stripe(log, sh); 1075 } else { 1076 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1077 if (ret) { 1078 spin_lock_irq(&log->io_list_lock); 1079 list_add_tail(&sh->log_list, 1080 &log->no_mem_stripes); 1081 spin_unlock_irq(&log->io_list_lock); 1082 } 1083 } 1084 } 1085 1086 mutex_unlock(&log->io_mutex); 1087 if (wake_reclaim) 1088 r5l_wake_reclaim(log, reserve); 1089 return 0; 1090 } 1091 1092 void r5l_write_stripe_run(struct r5l_log *log) 1093 { 1094 if (!log) 1095 return; 1096 mutex_lock(&log->io_mutex); 1097 r5l_submit_current_io(log); 1098 mutex_unlock(&log->io_mutex); 1099 } 1100 1101 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1102 { 1103 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1104 /* 1105 * in write through (journal only) 1106 * we flush log disk cache first, then write stripe data to 1107 * raid disks. So if bio is finished, the log disk cache is 1108 * flushed already. The recovery guarantees we can recovery 1109 * the bio from log disk, so we don't need to flush again 1110 */ 1111 if (bio->bi_iter.bi_size == 0) { 1112 bio_endio(bio); 1113 return 0; 1114 } 1115 bio->bi_opf &= ~REQ_PREFLUSH; 1116 } else { 1117 /* write back (with cache) */ 1118 if (bio->bi_iter.bi_size == 0) { 1119 mutex_lock(&log->io_mutex); 1120 r5l_get_meta(log, 0); 1121 bio_list_add(&log->current_io->flush_barriers, bio); 1122 log->current_io->has_flush = 1; 1123 log->current_io->has_null_flush = 1; 1124 atomic_inc(&log->current_io->pending_stripe); 1125 r5l_submit_current_io(log); 1126 mutex_unlock(&log->io_mutex); 1127 return 0; 1128 } 1129 } 1130 return -EAGAIN; 1131 } 1132 1133 /* This will run after log space is reclaimed */ 1134 static void r5l_run_no_space_stripes(struct r5l_log *log) 1135 { 1136 struct stripe_head *sh; 1137 1138 spin_lock(&log->no_space_stripes_lock); 1139 while (!list_empty(&log->no_space_stripes)) { 1140 sh = list_first_entry(&log->no_space_stripes, 1141 struct stripe_head, log_list); 1142 list_del_init(&sh->log_list); 1143 set_bit(STRIPE_HANDLE, &sh->state); 1144 raid5_release_stripe(sh); 1145 } 1146 spin_unlock(&log->no_space_stripes_lock); 1147 } 1148 1149 /* 1150 * calculate new last_checkpoint 1151 * for write through mode, returns log->next_checkpoint 1152 * for write back, returns log_start of first sh in stripe_in_journal_list 1153 */ 1154 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1155 { 1156 struct stripe_head *sh; 1157 struct r5l_log *log = READ_ONCE(conf->log); 1158 sector_t new_cp; 1159 unsigned long flags; 1160 1161 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1162 return log->next_checkpoint; 1163 1164 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1165 if (list_empty(&log->stripe_in_journal_list)) { 1166 /* all stripes flushed */ 1167 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1168 return log->next_checkpoint; 1169 } 1170 sh = list_first_entry(&log->stripe_in_journal_list, 1171 struct stripe_head, r5c); 1172 new_cp = sh->log_start; 1173 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1174 return new_cp; 1175 } 1176 1177 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1178 { 1179 struct r5conf *conf = log->rdev->mddev->private; 1180 1181 return r5l_ring_distance(log, log->last_checkpoint, 1182 r5c_calculate_new_cp(conf)); 1183 } 1184 1185 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1186 { 1187 struct stripe_head *sh; 1188 1189 lockdep_assert_held(&log->io_list_lock); 1190 1191 if (!list_empty(&log->no_mem_stripes)) { 1192 sh = list_first_entry(&log->no_mem_stripes, 1193 struct stripe_head, log_list); 1194 list_del_init(&sh->log_list); 1195 set_bit(STRIPE_HANDLE, &sh->state); 1196 raid5_release_stripe(sh); 1197 } 1198 } 1199 1200 static bool r5l_complete_finished_ios(struct r5l_log *log) 1201 { 1202 struct r5l_io_unit *io, *next; 1203 bool found = false; 1204 1205 lockdep_assert_held(&log->io_list_lock); 1206 1207 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1208 /* don't change list order */ 1209 if (io->state < IO_UNIT_STRIPE_END) 1210 break; 1211 1212 log->next_checkpoint = io->log_start; 1213 1214 list_del(&io->log_sibling); 1215 mempool_free(io, &log->io_pool); 1216 r5l_run_no_mem_stripe(log); 1217 1218 found = true; 1219 } 1220 1221 return found; 1222 } 1223 1224 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1225 { 1226 struct r5l_log *log = io->log; 1227 struct r5conf *conf = log->rdev->mddev->private; 1228 unsigned long flags; 1229 1230 spin_lock_irqsave(&log->io_list_lock, flags); 1231 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1232 1233 if (!r5l_complete_finished_ios(log)) { 1234 spin_unlock_irqrestore(&log->io_list_lock, flags); 1235 return; 1236 } 1237 1238 if (r5l_reclaimable_space(log) > log->max_free_space || 1239 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1240 r5l_wake_reclaim(log, 0); 1241 1242 spin_unlock_irqrestore(&log->io_list_lock, flags); 1243 wake_up(&log->iounit_wait); 1244 } 1245 1246 void r5l_stripe_write_finished(struct stripe_head *sh) 1247 { 1248 struct r5l_io_unit *io; 1249 1250 io = sh->log_io; 1251 sh->log_io = NULL; 1252 1253 if (io && atomic_dec_and_test(&io->pending_stripe)) 1254 __r5l_stripe_write_finished(io); 1255 } 1256 1257 static void r5l_log_flush_endio(struct bio *bio) 1258 { 1259 struct r5l_log *log = container_of(bio, struct r5l_log, 1260 flush_bio); 1261 unsigned long flags; 1262 struct r5l_io_unit *io; 1263 1264 if (bio->bi_status) 1265 md_error(log->rdev->mddev, log->rdev); 1266 bio_uninit(bio); 1267 1268 spin_lock_irqsave(&log->io_list_lock, flags); 1269 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1270 r5l_io_run_stripes(io); 1271 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1272 spin_unlock_irqrestore(&log->io_list_lock, flags); 1273 } 1274 1275 /* 1276 * Starting dispatch IO to raid. 1277 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1278 * broken meta in the middle of a log causes recovery can't find meta at the 1279 * head of log. If operations require meta at the head persistent in log, we 1280 * must make sure meta before it persistent in log too. A case is: 1281 * 1282 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1283 * data/parity must be persistent in log before we do the write to raid disks. 1284 * 1285 * The solution is we restrictly maintain io_unit list order. In this case, we 1286 * only write stripes of an io_unit to raid disks till the io_unit is the first 1287 * one whose data/parity is in log. 1288 */ 1289 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1290 { 1291 bool do_flush; 1292 1293 if (!log || !log->need_cache_flush) 1294 return; 1295 1296 spin_lock_irq(&log->io_list_lock); 1297 /* flush bio is running */ 1298 if (!list_empty(&log->flushing_ios)) { 1299 spin_unlock_irq(&log->io_list_lock); 1300 return; 1301 } 1302 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1303 do_flush = !list_empty(&log->flushing_ios); 1304 spin_unlock_irq(&log->io_list_lock); 1305 1306 if (!do_flush) 1307 return; 1308 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0, 1309 REQ_OP_WRITE | REQ_PREFLUSH); 1310 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1311 submit_bio(&log->flush_bio); 1312 } 1313 1314 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1315 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1316 sector_t end) 1317 { 1318 struct block_device *bdev = log->rdev->bdev; 1319 struct mddev *mddev; 1320 1321 r5l_write_super(log, end); 1322 1323 if (!bdev_max_discard_sectors(bdev)) 1324 return; 1325 1326 mddev = log->rdev->mddev; 1327 /* 1328 * Discard could zero data, so before discard we must make sure 1329 * superblock is updated to new log tail. Updating superblock (either 1330 * directly call md_update_sb() or depend on md thread) must hold 1331 * reconfig mutex. On the other hand, raid5_quiesce is called with 1332 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting 1333 * for all IO finish, hence waiting for reclaim thread, while reclaim 1334 * thread is calling this function and waiting for reconfig mutex. So 1335 * there is a deadlock. We workaround this issue with a trylock. 1336 * FIXME: we could miss discard if we can't take reconfig mutex 1337 */ 1338 set_mask_bits(&mddev->sb_flags, 0, 1339 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1340 if (!mddev_trylock(mddev)) 1341 return; 1342 md_update_sb(mddev, 1); 1343 mddev_unlock(mddev); 1344 1345 /* discard IO error really doesn't matter, ignore it */ 1346 if (log->last_checkpoint < end) { 1347 blkdev_issue_discard(bdev, 1348 log->last_checkpoint + log->rdev->data_offset, 1349 end - log->last_checkpoint, GFP_NOIO); 1350 } else { 1351 blkdev_issue_discard(bdev, 1352 log->last_checkpoint + log->rdev->data_offset, 1353 log->device_size - log->last_checkpoint, 1354 GFP_NOIO); 1355 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1356 GFP_NOIO); 1357 } 1358 } 1359 1360 /* 1361 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1362 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1363 * 1364 * must hold conf->device_lock 1365 */ 1366 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1367 { 1368 BUG_ON(list_empty(&sh->lru)); 1369 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1370 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1371 1372 /* 1373 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1374 * raid5_release_stripe() while holding conf->device_lock 1375 */ 1376 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1377 lockdep_assert_held(&conf->device_lock); 1378 1379 list_del_init(&sh->lru); 1380 atomic_inc(&sh->count); 1381 1382 set_bit(STRIPE_HANDLE, &sh->state); 1383 atomic_inc(&conf->active_stripes); 1384 r5c_make_stripe_write_out(sh); 1385 1386 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1387 atomic_inc(&conf->r5c_flushing_partial_stripes); 1388 else 1389 atomic_inc(&conf->r5c_flushing_full_stripes); 1390 raid5_release_stripe(sh); 1391 } 1392 1393 /* 1394 * if num == 0, flush all full stripes 1395 * if num > 0, flush all full stripes. If less than num full stripes are 1396 * flushed, flush some partial stripes until totally num stripes are 1397 * flushed or there is no more cached stripes. 1398 */ 1399 void r5c_flush_cache(struct r5conf *conf, int num) 1400 { 1401 int count; 1402 struct stripe_head *sh, *next; 1403 1404 lockdep_assert_held(&conf->device_lock); 1405 if (!READ_ONCE(conf->log)) 1406 return; 1407 1408 count = 0; 1409 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1410 r5c_flush_stripe(conf, sh); 1411 count++; 1412 } 1413 1414 if (count >= num) 1415 return; 1416 list_for_each_entry_safe(sh, next, 1417 &conf->r5c_partial_stripe_list, lru) { 1418 r5c_flush_stripe(conf, sh); 1419 if (++count >= num) 1420 break; 1421 } 1422 } 1423 1424 static void r5c_do_reclaim(struct r5conf *conf) 1425 { 1426 struct r5l_log *log = READ_ONCE(conf->log); 1427 struct stripe_head *sh; 1428 int count = 0; 1429 unsigned long flags; 1430 int total_cached; 1431 int stripes_to_flush; 1432 int flushing_partial, flushing_full; 1433 1434 if (!r5c_is_writeback(log)) 1435 return; 1436 1437 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1438 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1439 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1440 atomic_read(&conf->r5c_cached_full_stripes) - 1441 flushing_full - flushing_partial; 1442 1443 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1444 atomic_read(&conf->empty_inactive_list_nr) > 0) 1445 /* 1446 * if stripe cache pressure high, flush all full stripes and 1447 * some partial stripes 1448 */ 1449 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1450 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1451 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1452 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1453 /* 1454 * if stripe cache pressure moderate, or if there is many full 1455 * stripes,flush all full stripes 1456 */ 1457 stripes_to_flush = 0; 1458 else 1459 /* no need to flush */ 1460 stripes_to_flush = -1; 1461 1462 if (stripes_to_flush >= 0) { 1463 spin_lock_irqsave(&conf->device_lock, flags); 1464 r5c_flush_cache(conf, stripes_to_flush); 1465 spin_unlock_irqrestore(&conf->device_lock, flags); 1466 } 1467 1468 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1469 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1470 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1471 spin_lock(&conf->device_lock); 1472 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1473 /* 1474 * stripes on stripe_in_journal_list could be in any 1475 * state of the stripe_cache state machine. In this 1476 * case, we only want to flush stripe on 1477 * r5c_cached_full/partial_stripes. The following 1478 * condition makes sure the stripe is on one of the 1479 * two lists. 1480 */ 1481 if (!list_empty(&sh->lru) && 1482 !test_bit(STRIPE_HANDLE, &sh->state) && 1483 atomic_read(&sh->count) == 0) { 1484 r5c_flush_stripe(conf, sh); 1485 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1486 break; 1487 } 1488 } 1489 spin_unlock(&conf->device_lock); 1490 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1491 } 1492 1493 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1494 r5l_run_no_space_stripes(log); 1495 1496 md_wakeup_thread(conf->mddev->thread); 1497 } 1498 1499 static void r5l_do_reclaim(struct r5l_log *log) 1500 { 1501 struct r5conf *conf = log->rdev->mddev->private; 1502 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1503 sector_t reclaimable; 1504 sector_t next_checkpoint; 1505 bool write_super; 1506 1507 spin_lock_irq(&log->io_list_lock); 1508 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1509 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1510 /* 1511 * move proper io_unit to reclaim list. We should not change the order. 1512 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1513 * shouldn't reuse space of an unreclaimable io_unit 1514 */ 1515 while (1) { 1516 reclaimable = r5l_reclaimable_space(log); 1517 if (reclaimable >= reclaim_target || 1518 (list_empty(&log->running_ios) && 1519 list_empty(&log->io_end_ios) && 1520 list_empty(&log->flushing_ios) && 1521 list_empty(&log->finished_ios))) 1522 break; 1523 1524 md_wakeup_thread(log->rdev->mddev->thread); 1525 wait_event_lock_irq(log->iounit_wait, 1526 r5l_reclaimable_space(log) > reclaimable, 1527 log->io_list_lock); 1528 } 1529 1530 next_checkpoint = r5c_calculate_new_cp(conf); 1531 spin_unlock_irq(&log->io_list_lock); 1532 1533 if (reclaimable == 0 || !write_super) 1534 return; 1535 1536 /* 1537 * write_super will flush cache of each raid disk. We must write super 1538 * here, because the log area might be reused soon and we don't want to 1539 * confuse recovery 1540 */ 1541 r5l_write_super_and_discard_space(log, next_checkpoint); 1542 1543 mutex_lock(&log->io_mutex); 1544 log->last_checkpoint = next_checkpoint; 1545 r5c_update_log_state(log); 1546 mutex_unlock(&log->io_mutex); 1547 1548 r5l_run_no_space_stripes(log); 1549 } 1550 1551 static void r5l_reclaim_thread(struct md_thread *thread) 1552 { 1553 struct mddev *mddev = thread->mddev; 1554 struct r5conf *conf = mddev->private; 1555 struct r5l_log *log = READ_ONCE(conf->log); 1556 1557 if (!log) 1558 return; 1559 r5c_do_reclaim(conf); 1560 r5l_do_reclaim(log); 1561 } 1562 1563 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1564 { 1565 unsigned long target; 1566 unsigned long new = (unsigned long)space; /* overflow in theory */ 1567 1568 if (!log) 1569 return; 1570 1571 target = READ_ONCE(log->reclaim_target); 1572 do { 1573 if (new < target) 1574 return; 1575 } while (!try_cmpxchg(&log->reclaim_target, &target, new)); 1576 md_wakeup_thread(log->reclaim_thread); 1577 } 1578 1579 void r5l_quiesce(struct r5l_log *log, int quiesce) 1580 { 1581 struct mddev *mddev = log->rdev->mddev; 1582 struct md_thread *thread = rcu_dereference_protected( 1583 log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex)); 1584 1585 if (quiesce) { 1586 /* make sure r5l_write_super_and_discard_space exits */ 1587 wake_up(&mddev->sb_wait); 1588 kthread_park(thread->tsk); 1589 r5l_wake_reclaim(log, MaxSector); 1590 r5l_do_reclaim(log); 1591 } else 1592 kthread_unpark(thread->tsk); 1593 } 1594 1595 bool r5l_log_disk_error(struct r5conf *conf) 1596 { 1597 struct r5l_log *log = READ_ONCE(conf->log); 1598 1599 /* don't allow write if journal disk is missing */ 1600 if (!log) 1601 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1602 else 1603 return test_bit(Faulty, &log->rdev->flags); 1604 } 1605 1606 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1607 1608 struct r5l_recovery_ctx { 1609 struct page *meta_page; /* current meta */ 1610 sector_t meta_total_blocks; /* total size of current meta and data */ 1611 sector_t pos; /* recovery position */ 1612 u64 seq; /* recovery position seq */ 1613 int data_parity_stripes; /* number of data_parity stripes */ 1614 int data_only_stripes; /* number of data_only stripes */ 1615 struct list_head cached_list; 1616 1617 /* 1618 * read ahead page pool (ra_pool) 1619 * in recovery, log is read sequentially. It is not efficient to 1620 * read every page with sync_page_io(). The read ahead page pool 1621 * reads multiple pages with one IO, so further log read can 1622 * just copy data from the pool. 1623 */ 1624 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1625 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE]; 1626 sector_t pool_offset; /* offset of first page in the pool */ 1627 int total_pages; /* total allocated pages */ 1628 int valid_pages; /* pages with valid data */ 1629 }; 1630 1631 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1632 struct r5l_recovery_ctx *ctx) 1633 { 1634 struct page *page; 1635 1636 ctx->valid_pages = 0; 1637 ctx->total_pages = 0; 1638 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1639 page = alloc_page(GFP_KERNEL); 1640 1641 if (!page) 1642 break; 1643 ctx->ra_pool[ctx->total_pages] = page; 1644 ctx->total_pages += 1; 1645 } 1646 1647 if (ctx->total_pages == 0) 1648 return -ENOMEM; 1649 1650 ctx->pool_offset = 0; 1651 return 0; 1652 } 1653 1654 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1655 struct r5l_recovery_ctx *ctx) 1656 { 1657 int i; 1658 1659 for (i = 0; i < ctx->total_pages; ++i) 1660 put_page(ctx->ra_pool[i]); 1661 } 1662 1663 /* 1664 * fetch ctx->valid_pages pages from offset 1665 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1666 * However, if the offset is close to the end of the journal device, 1667 * ctx->valid_pages could be smaller than ctx->total_pages 1668 */ 1669 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1670 struct r5l_recovery_ctx *ctx, 1671 sector_t offset) 1672 { 1673 struct bio bio; 1674 int ret; 1675 1676 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec, 1677 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ); 1678 bio.bi_iter.bi_sector = log->rdev->data_offset + offset; 1679 1680 ctx->valid_pages = 0; 1681 ctx->pool_offset = offset; 1682 1683 while (ctx->valid_pages < ctx->total_pages) { 1684 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 1685 0); 1686 ctx->valid_pages += 1; 1687 1688 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1689 1690 if (offset == 0) /* reached end of the device */ 1691 break; 1692 } 1693 1694 ret = submit_bio_wait(&bio); 1695 bio_uninit(&bio); 1696 return ret; 1697 } 1698 1699 /* 1700 * try read a page from the read ahead page pool, if the page is not in the 1701 * pool, call r5l_recovery_fetch_ra_pool 1702 */ 1703 static int r5l_recovery_read_page(struct r5l_log *log, 1704 struct r5l_recovery_ctx *ctx, 1705 struct page *page, 1706 sector_t offset) 1707 { 1708 int ret; 1709 1710 if (offset < ctx->pool_offset || 1711 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1712 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1713 if (ret) 1714 return ret; 1715 } 1716 1717 BUG_ON(offset < ctx->pool_offset || 1718 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1719 1720 memcpy(page_address(page), 1721 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1722 BLOCK_SECTOR_SHIFT]), 1723 PAGE_SIZE); 1724 return 0; 1725 } 1726 1727 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1728 struct r5l_recovery_ctx *ctx) 1729 { 1730 struct page *page = ctx->meta_page; 1731 struct r5l_meta_block *mb; 1732 u32 crc, stored_crc; 1733 int ret; 1734 1735 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1736 if (ret != 0) 1737 return ret; 1738 1739 mb = page_address(page); 1740 stored_crc = le32_to_cpu(mb->checksum); 1741 mb->checksum = 0; 1742 1743 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1744 le64_to_cpu(mb->seq) != ctx->seq || 1745 mb->version != R5LOG_VERSION || 1746 le64_to_cpu(mb->position) != ctx->pos) 1747 return -EINVAL; 1748 1749 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1750 if (stored_crc != crc) 1751 return -EINVAL; 1752 1753 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1754 return -EINVAL; 1755 1756 ctx->meta_total_blocks = BLOCK_SECTORS; 1757 1758 return 0; 1759 } 1760 1761 static void 1762 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1763 struct page *page, 1764 sector_t pos, u64 seq) 1765 { 1766 struct r5l_meta_block *mb; 1767 1768 mb = page_address(page); 1769 clear_page(mb); 1770 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1771 mb->version = R5LOG_VERSION; 1772 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1773 mb->seq = cpu_to_le64(seq); 1774 mb->position = cpu_to_le64(pos); 1775 } 1776 1777 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1778 u64 seq) 1779 { 1780 struct page *page; 1781 struct r5l_meta_block *mb; 1782 1783 page = alloc_page(GFP_KERNEL); 1784 if (!page) 1785 return -ENOMEM; 1786 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1787 mb = page_address(page); 1788 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1789 mb, PAGE_SIZE)); 1790 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE | 1791 REQ_SYNC | REQ_FUA, false)) { 1792 __free_page(page); 1793 return -EIO; 1794 } 1795 __free_page(page); 1796 return 0; 1797 } 1798 1799 /* 1800 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1801 * to mark valid (potentially not flushed) data in the journal. 1802 * 1803 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1804 * so there should not be any mismatch here. 1805 */ 1806 static void r5l_recovery_load_data(struct r5l_log *log, 1807 struct stripe_head *sh, 1808 struct r5l_recovery_ctx *ctx, 1809 struct r5l_payload_data_parity *payload, 1810 sector_t log_offset) 1811 { 1812 struct mddev *mddev = log->rdev->mddev; 1813 struct r5conf *conf = mddev->private; 1814 int dd_idx; 1815 1816 raid5_compute_sector(conf, 1817 le64_to_cpu(payload->location), 0, 1818 &dd_idx, sh); 1819 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1820 sh->dev[dd_idx].log_checksum = 1821 le32_to_cpu(payload->checksum[0]); 1822 ctx->meta_total_blocks += BLOCK_SECTORS; 1823 1824 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1825 set_bit(STRIPE_R5C_CACHING, &sh->state); 1826 } 1827 1828 static void r5l_recovery_load_parity(struct r5l_log *log, 1829 struct stripe_head *sh, 1830 struct r5l_recovery_ctx *ctx, 1831 struct r5l_payload_data_parity *payload, 1832 sector_t log_offset) 1833 { 1834 struct mddev *mddev = log->rdev->mddev; 1835 struct r5conf *conf = mddev->private; 1836 1837 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1838 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1839 sh->dev[sh->pd_idx].log_checksum = 1840 le32_to_cpu(payload->checksum[0]); 1841 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1842 1843 if (sh->qd_idx >= 0) { 1844 r5l_recovery_read_page( 1845 log, ctx, sh->dev[sh->qd_idx].page, 1846 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1847 sh->dev[sh->qd_idx].log_checksum = 1848 le32_to_cpu(payload->checksum[1]); 1849 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1850 } 1851 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1852 } 1853 1854 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1855 { 1856 int i; 1857 1858 sh->state = 0; 1859 sh->log_start = MaxSector; 1860 for (i = sh->disks; i--; ) 1861 sh->dev[i].flags = 0; 1862 } 1863 1864 static void 1865 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1866 struct stripe_head *sh, 1867 struct r5l_recovery_ctx *ctx) 1868 { 1869 struct md_rdev *rdev, *rrdev; 1870 int disk_index; 1871 int data_count = 0; 1872 1873 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1874 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1875 continue; 1876 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1877 continue; 1878 data_count++; 1879 } 1880 1881 /* 1882 * stripes that only have parity must have been flushed 1883 * before the crash that we are now recovering from, so 1884 * there is nothing more to recovery. 1885 */ 1886 if (data_count == 0) 1887 goto out; 1888 1889 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1890 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1891 continue; 1892 1893 /* in case device is broken */ 1894 rcu_read_lock(); 1895 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1896 if (rdev) { 1897 atomic_inc(&rdev->nr_pending); 1898 rcu_read_unlock(); 1899 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1900 sh->dev[disk_index].page, REQ_OP_WRITE, 1901 false); 1902 rdev_dec_pending(rdev, rdev->mddev); 1903 rcu_read_lock(); 1904 } 1905 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1906 if (rrdev) { 1907 atomic_inc(&rrdev->nr_pending); 1908 rcu_read_unlock(); 1909 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1910 sh->dev[disk_index].page, REQ_OP_WRITE, 1911 false); 1912 rdev_dec_pending(rrdev, rrdev->mddev); 1913 rcu_read_lock(); 1914 } 1915 rcu_read_unlock(); 1916 } 1917 ctx->data_parity_stripes++; 1918 out: 1919 r5l_recovery_reset_stripe(sh); 1920 } 1921 1922 static struct stripe_head * 1923 r5c_recovery_alloc_stripe( 1924 struct r5conf *conf, 1925 sector_t stripe_sect, 1926 int noblock) 1927 { 1928 struct stripe_head *sh; 1929 1930 sh = raid5_get_active_stripe(conf, NULL, stripe_sect, 1931 noblock ? R5_GAS_NOBLOCK : 0); 1932 if (!sh) 1933 return NULL; /* no more stripe available */ 1934 1935 r5l_recovery_reset_stripe(sh); 1936 1937 return sh; 1938 } 1939 1940 static struct stripe_head * 1941 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1942 { 1943 struct stripe_head *sh; 1944 1945 list_for_each_entry(sh, list, lru) 1946 if (sh->sector == sect) 1947 return sh; 1948 return NULL; 1949 } 1950 1951 static void 1952 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1953 struct r5l_recovery_ctx *ctx) 1954 { 1955 struct stripe_head *sh, *next; 1956 1957 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1958 r5l_recovery_reset_stripe(sh); 1959 list_del_init(&sh->lru); 1960 raid5_release_stripe(sh); 1961 } 1962 } 1963 1964 static void 1965 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1966 struct r5l_recovery_ctx *ctx) 1967 { 1968 struct stripe_head *sh, *next; 1969 1970 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1971 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1972 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1973 list_del_init(&sh->lru); 1974 raid5_release_stripe(sh); 1975 } 1976 } 1977 1978 /* if matches return 0; otherwise return -EINVAL */ 1979 static int 1980 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1981 struct r5l_recovery_ctx *ctx, 1982 struct page *page, 1983 sector_t log_offset, __le32 log_checksum) 1984 { 1985 void *addr; 1986 u32 checksum; 1987 1988 r5l_recovery_read_page(log, ctx, page, log_offset); 1989 addr = kmap_atomic(page); 1990 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1991 kunmap_atomic(addr); 1992 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1993 } 1994 1995 /* 1996 * before loading data to stripe cache, we need verify checksum for all data, 1997 * if there is mismatch for any data page, we drop all data in the mata block 1998 */ 1999 static int 2000 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 2001 struct r5l_recovery_ctx *ctx) 2002 { 2003 struct mddev *mddev = log->rdev->mddev; 2004 struct r5conf *conf = mddev->private; 2005 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2006 sector_t mb_offset = sizeof(struct r5l_meta_block); 2007 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2008 struct page *page; 2009 struct r5l_payload_data_parity *payload; 2010 struct r5l_payload_flush *payload_flush; 2011 2012 page = alloc_page(GFP_KERNEL); 2013 if (!page) 2014 return -ENOMEM; 2015 2016 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2017 payload = (void *)mb + mb_offset; 2018 payload_flush = (void *)mb + mb_offset; 2019 2020 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2021 if (r5l_recovery_verify_data_checksum( 2022 log, ctx, page, log_offset, 2023 payload->checksum[0]) < 0) 2024 goto mismatch; 2025 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2026 if (r5l_recovery_verify_data_checksum( 2027 log, ctx, page, log_offset, 2028 payload->checksum[0]) < 0) 2029 goto mismatch; 2030 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2031 r5l_recovery_verify_data_checksum( 2032 log, ctx, page, 2033 r5l_ring_add(log, log_offset, 2034 BLOCK_SECTORS), 2035 payload->checksum[1]) < 0) 2036 goto mismatch; 2037 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2038 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2039 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2040 goto mismatch; 2041 2042 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2043 mb_offset += sizeof(struct r5l_payload_flush) + 2044 le32_to_cpu(payload_flush->size); 2045 } else { 2046 /* DATA or PARITY payload */ 2047 log_offset = r5l_ring_add(log, log_offset, 2048 le32_to_cpu(payload->size)); 2049 mb_offset += sizeof(struct r5l_payload_data_parity) + 2050 sizeof(__le32) * 2051 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2052 } 2053 2054 } 2055 2056 put_page(page); 2057 return 0; 2058 2059 mismatch: 2060 put_page(page); 2061 return -EINVAL; 2062 } 2063 2064 /* 2065 * Analyze all data/parity pages in one meta block 2066 * Returns: 2067 * 0 for success 2068 * -EINVAL for unknown playload type 2069 * -EAGAIN for checksum mismatch of data page 2070 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2071 */ 2072 static int 2073 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2074 struct r5l_recovery_ctx *ctx, 2075 struct list_head *cached_stripe_list) 2076 { 2077 struct mddev *mddev = log->rdev->mddev; 2078 struct r5conf *conf = mddev->private; 2079 struct r5l_meta_block *mb; 2080 struct r5l_payload_data_parity *payload; 2081 struct r5l_payload_flush *payload_flush; 2082 int mb_offset; 2083 sector_t log_offset; 2084 sector_t stripe_sect; 2085 struct stripe_head *sh; 2086 int ret; 2087 2088 /* 2089 * for mismatch in data blocks, we will drop all data in this mb, but 2090 * we will still read next mb for other data with FLUSH flag, as 2091 * io_unit could finish out of order. 2092 */ 2093 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2094 if (ret == -EINVAL) 2095 return -EAGAIN; 2096 else if (ret) 2097 return ret; /* -ENOMEM duo to alloc_page() failed */ 2098 2099 mb = page_address(ctx->meta_page); 2100 mb_offset = sizeof(struct r5l_meta_block); 2101 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2102 2103 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2104 int dd; 2105 2106 payload = (void *)mb + mb_offset; 2107 payload_flush = (void *)mb + mb_offset; 2108 2109 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2110 int i, count; 2111 2112 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2113 for (i = 0; i < count; ++i) { 2114 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2115 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2116 stripe_sect); 2117 if (sh) { 2118 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2119 r5l_recovery_reset_stripe(sh); 2120 list_del_init(&sh->lru); 2121 raid5_release_stripe(sh); 2122 } 2123 } 2124 2125 mb_offset += sizeof(struct r5l_payload_flush) + 2126 le32_to_cpu(payload_flush->size); 2127 continue; 2128 } 2129 2130 /* DATA or PARITY payload */ 2131 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2132 raid5_compute_sector( 2133 conf, le64_to_cpu(payload->location), 0, &dd, 2134 NULL) 2135 : le64_to_cpu(payload->location); 2136 2137 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2138 stripe_sect); 2139 2140 if (!sh) { 2141 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1); 2142 /* 2143 * cannot get stripe from raid5_get_active_stripe 2144 * try replay some stripes 2145 */ 2146 if (!sh) { 2147 r5c_recovery_replay_stripes( 2148 cached_stripe_list, ctx); 2149 sh = r5c_recovery_alloc_stripe( 2150 conf, stripe_sect, 1); 2151 } 2152 if (!sh) { 2153 int new_size = conf->min_nr_stripes * 2; 2154 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2155 mdname(mddev), 2156 new_size); 2157 ret = raid5_set_cache_size(mddev, new_size); 2158 if (conf->min_nr_stripes <= new_size / 2) { 2159 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n", 2160 mdname(mddev), 2161 ret, 2162 new_size, 2163 conf->min_nr_stripes, 2164 conf->max_nr_stripes); 2165 return -ENOMEM; 2166 } 2167 sh = r5c_recovery_alloc_stripe( 2168 conf, stripe_sect, 0); 2169 } 2170 if (!sh) { 2171 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2172 mdname(mddev)); 2173 return -ENOMEM; 2174 } 2175 list_add_tail(&sh->lru, cached_stripe_list); 2176 } 2177 2178 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2179 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2180 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2181 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2182 list_move_tail(&sh->lru, cached_stripe_list); 2183 } 2184 r5l_recovery_load_data(log, sh, ctx, payload, 2185 log_offset); 2186 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2187 r5l_recovery_load_parity(log, sh, ctx, payload, 2188 log_offset); 2189 else 2190 return -EINVAL; 2191 2192 log_offset = r5l_ring_add(log, log_offset, 2193 le32_to_cpu(payload->size)); 2194 2195 mb_offset += sizeof(struct r5l_payload_data_parity) + 2196 sizeof(__le32) * 2197 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2198 } 2199 2200 return 0; 2201 } 2202 2203 /* 2204 * Load the stripe into cache. The stripe will be written out later by 2205 * the stripe cache state machine. 2206 */ 2207 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2208 struct stripe_head *sh) 2209 { 2210 struct r5dev *dev; 2211 int i; 2212 2213 for (i = sh->disks; i--; ) { 2214 dev = sh->dev + i; 2215 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2216 set_bit(R5_InJournal, &dev->flags); 2217 set_bit(R5_UPTODATE, &dev->flags); 2218 } 2219 } 2220 } 2221 2222 /* 2223 * Scan through the log for all to-be-flushed data 2224 * 2225 * For stripes with data and parity, namely Data-Parity stripe 2226 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2227 * 2228 * For stripes with only data, namely Data-Only stripe 2229 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2230 * 2231 * For a stripe, if we see data after parity, we should discard all previous 2232 * data and parity for this stripe, as these data are already flushed to 2233 * the array. 2234 * 2235 * At the end of the scan, we return the new journal_tail, which points to 2236 * first data-only stripe on the journal device, or next invalid meta block. 2237 */ 2238 static int r5c_recovery_flush_log(struct r5l_log *log, 2239 struct r5l_recovery_ctx *ctx) 2240 { 2241 struct stripe_head *sh; 2242 int ret = 0; 2243 2244 /* scan through the log */ 2245 while (1) { 2246 if (r5l_recovery_read_meta_block(log, ctx)) 2247 break; 2248 2249 ret = r5c_recovery_analyze_meta_block(log, ctx, 2250 &ctx->cached_list); 2251 /* 2252 * -EAGAIN means mismatch in data block, in this case, we still 2253 * try scan the next metablock 2254 */ 2255 if (ret && ret != -EAGAIN) 2256 break; /* ret == -EINVAL or -ENOMEM */ 2257 ctx->seq++; 2258 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2259 } 2260 2261 if (ret == -ENOMEM) { 2262 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2263 return ret; 2264 } 2265 2266 /* replay data-parity stripes */ 2267 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2268 2269 /* load data-only stripes to stripe cache */ 2270 list_for_each_entry(sh, &ctx->cached_list, lru) { 2271 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2272 r5c_recovery_load_one_stripe(log, sh); 2273 ctx->data_only_stripes++; 2274 } 2275 2276 return 0; 2277 } 2278 2279 /* 2280 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2281 * log will start here. but we can't let superblock point to last valid 2282 * meta block. The log might looks like: 2283 * | meta 1| meta 2| meta 3| 2284 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2285 * superblock points to meta 1, we write a new valid meta 2n. if crash 2286 * happens again, new recovery will start from meta 1. Since meta 2n is 2287 * valid now, recovery will think meta 3 is valid, which is wrong. 2288 * The solution is we create a new meta in meta2 with its seq == meta 2289 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2290 * will not think meta 3 is a valid meta, because its seq doesn't match 2291 */ 2292 2293 /* 2294 * Before recovery, the log looks like the following 2295 * 2296 * --------------------------------------------- 2297 * | valid log | invalid log | 2298 * --------------------------------------------- 2299 * ^ 2300 * |- log->last_checkpoint 2301 * |- log->last_cp_seq 2302 * 2303 * Now we scan through the log until we see invalid entry 2304 * 2305 * --------------------------------------------- 2306 * | valid log | invalid log | 2307 * --------------------------------------------- 2308 * ^ ^ 2309 * |- log->last_checkpoint |- ctx->pos 2310 * |- log->last_cp_seq |- ctx->seq 2311 * 2312 * From this point, we need to increase seq number by 10 to avoid 2313 * confusing next recovery. 2314 * 2315 * --------------------------------------------- 2316 * | valid log | invalid log | 2317 * --------------------------------------------- 2318 * ^ ^ 2319 * |- log->last_checkpoint |- ctx->pos+1 2320 * |- log->last_cp_seq |- ctx->seq+10001 2321 * 2322 * However, it is not safe to start the state machine yet, because data only 2323 * parities are not yet secured in RAID. To save these data only parities, we 2324 * rewrite them from seq+11. 2325 * 2326 * ----------------------------------------------------------------- 2327 * | valid log | data only stripes | invalid log | 2328 * ----------------------------------------------------------------- 2329 * ^ ^ 2330 * |- log->last_checkpoint |- ctx->pos+n 2331 * |- log->last_cp_seq |- ctx->seq+10000+n 2332 * 2333 * If failure happens again during this process, the recovery can safe start 2334 * again from log->last_checkpoint. 2335 * 2336 * Once data only stripes are rewritten to journal, we move log_tail 2337 * 2338 * ----------------------------------------------------------------- 2339 * | old log | data only stripes | invalid log | 2340 * ----------------------------------------------------------------- 2341 * ^ ^ 2342 * |- log->last_checkpoint |- ctx->pos+n 2343 * |- log->last_cp_seq |- ctx->seq+10000+n 2344 * 2345 * Then we can safely start the state machine. If failure happens from this 2346 * point on, the recovery will start from new log->last_checkpoint. 2347 */ 2348 static int 2349 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2350 struct r5l_recovery_ctx *ctx) 2351 { 2352 struct stripe_head *sh; 2353 struct mddev *mddev = log->rdev->mddev; 2354 struct page *page; 2355 sector_t next_checkpoint = MaxSector; 2356 2357 page = alloc_page(GFP_KERNEL); 2358 if (!page) { 2359 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2360 mdname(mddev)); 2361 return -ENOMEM; 2362 } 2363 2364 WARN_ON(list_empty(&ctx->cached_list)); 2365 2366 list_for_each_entry(sh, &ctx->cached_list, lru) { 2367 struct r5l_meta_block *mb; 2368 int i; 2369 int offset; 2370 sector_t write_pos; 2371 2372 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2373 r5l_recovery_create_empty_meta_block(log, page, 2374 ctx->pos, ctx->seq); 2375 mb = page_address(page); 2376 offset = le32_to_cpu(mb->meta_size); 2377 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2378 2379 for (i = sh->disks; i--; ) { 2380 struct r5dev *dev = &sh->dev[i]; 2381 struct r5l_payload_data_parity *payload; 2382 void *addr; 2383 2384 if (test_bit(R5_InJournal, &dev->flags)) { 2385 payload = (void *)mb + offset; 2386 payload->header.type = cpu_to_le16( 2387 R5LOG_PAYLOAD_DATA); 2388 payload->size = cpu_to_le32(BLOCK_SECTORS); 2389 payload->location = cpu_to_le64( 2390 raid5_compute_blocknr(sh, i, 0)); 2391 addr = kmap_atomic(dev->page); 2392 payload->checksum[0] = cpu_to_le32( 2393 crc32c_le(log->uuid_checksum, addr, 2394 PAGE_SIZE)); 2395 kunmap_atomic(addr); 2396 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2397 dev->page, REQ_OP_WRITE, false); 2398 write_pos = r5l_ring_add(log, write_pos, 2399 BLOCK_SECTORS); 2400 offset += sizeof(__le32) + 2401 sizeof(struct r5l_payload_data_parity); 2402 2403 } 2404 } 2405 mb->meta_size = cpu_to_le32(offset); 2406 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2407 mb, PAGE_SIZE)); 2408 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2409 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false); 2410 sh->log_start = ctx->pos; 2411 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2412 atomic_inc(&log->stripe_in_journal_count); 2413 ctx->pos = write_pos; 2414 ctx->seq += 1; 2415 next_checkpoint = sh->log_start; 2416 } 2417 log->next_checkpoint = next_checkpoint; 2418 __free_page(page); 2419 return 0; 2420 } 2421 2422 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2423 struct r5l_recovery_ctx *ctx) 2424 { 2425 struct mddev *mddev = log->rdev->mddev; 2426 struct r5conf *conf = mddev->private; 2427 struct stripe_head *sh, *next; 2428 bool cleared_pending = false; 2429 2430 if (ctx->data_only_stripes == 0) 2431 return; 2432 2433 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2434 cleared_pending = true; 2435 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2436 } 2437 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2438 2439 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2440 r5c_make_stripe_write_out(sh); 2441 set_bit(STRIPE_HANDLE, &sh->state); 2442 list_del_init(&sh->lru); 2443 raid5_release_stripe(sh); 2444 } 2445 2446 /* reuse conf->wait_for_quiescent in recovery */ 2447 wait_event(conf->wait_for_quiescent, 2448 atomic_read(&conf->active_stripes) == 0); 2449 2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2451 if (cleared_pending) 2452 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2453 } 2454 2455 static int r5l_recovery_log(struct r5l_log *log) 2456 { 2457 struct mddev *mddev = log->rdev->mddev; 2458 struct r5l_recovery_ctx *ctx; 2459 int ret; 2460 sector_t pos; 2461 2462 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2463 if (!ctx) 2464 return -ENOMEM; 2465 2466 ctx->pos = log->last_checkpoint; 2467 ctx->seq = log->last_cp_seq; 2468 INIT_LIST_HEAD(&ctx->cached_list); 2469 ctx->meta_page = alloc_page(GFP_KERNEL); 2470 2471 if (!ctx->meta_page) { 2472 ret = -ENOMEM; 2473 goto meta_page; 2474 } 2475 2476 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2477 ret = -ENOMEM; 2478 goto ra_pool; 2479 } 2480 2481 ret = r5c_recovery_flush_log(log, ctx); 2482 2483 if (ret) 2484 goto error; 2485 2486 pos = ctx->pos; 2487 ctx->seq += 10000; 2488 2489 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2490 pr_info("md/raid:%s: starting from clean shutdown\n", 2491 mdname(mddev)); 2492 else 2493 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2494 mdname(mddev), ctx->data_only_stripes, 2495 ctx->data_parity_stripes); 2496 2497 if (ctx->data_only_stripes == 0) { 2498 log->next_checkpoint = ctx->pos; 2499 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2500 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2501 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2502 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2503 mdname(mddev)); 2504 ret = -EIO; 2505 goto error; 2506 } 2507 2508 log->log_start = ctx->pos; 2509 log->seq = ctx->seq; 2510 log->last_checkpoint = pos; 2511 r5l_write_super(log, pos); 2512 2513 r5c_recovery_flush_data_only_stripes(log, ctx); 2514 ret = 0; 2515 error: 2516 r5l_recovery_free_ra_pool(log, ctx); 2517 ra_pool: 2518 __free_page(ctx->meta_page); 2519 meta_page: 2520 kfree(ctx); 2521 return ret; 2522 } 2523 2524 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2525 { 2526 struct mddev *mddev = log->rdev->mddev; 2527 2528 log->rdev->journal_tail = cp; 2529 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2530 } 2531 2532 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2533 { 2534 struct r5conf *conf; 2535 int ret; 2536 2537 ret = mddev_lock(mddev); 2538 if (ret) 2539 return ret; 2540 2541 conf = mddev->private; 2542 if (!conf || !conf->log) 2543 goto out_unlock; 2544 2545 switch (conf->log->r5c_journal_mode) { 2546 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2547 ret = snprintf( 2548 page, PAGE_SIZE, "[%s] %s\n", 2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2550 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2551 break; 2552 case R5C_JOURNAL_MODE_WRITE_BACK: 2553 ret = snprintf( 2554 page, PAGE_SIZE, "%s [%s]\n", 2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2556 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2557 break; 2558 default: 2559 ret = 0; 2560 } 2561 2562 out_unlock: 2563 mddev_unlock(mddev); 2564 return ret; 2565 } 2566 2567 /* 2568 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2569 * 2570 * @mode as defined in 'enum r5c_journal_mode'. 2571 * 2572 */ 2573 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2574 { 2575 struct r5conf *conf; 2576 2577 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2578 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2579 return -EINVAL; 2580 2581 conf = mddev->private; 2582 if (!conf || !conf->log) 2583 return -ENODEV; 2584 2585 if (raid5_calc_degraded(conf) > 0 && 2586 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2587 return -EINVAL; 2588 2589 mddev_suspend(mddev); 2590 conf->log->r5c_journal_mode = mode; 2591 mddev_resume(mddev); 2592 2593 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2594 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2595 return 0; 2596 } 2597 EXPORT_SYMBOL(r5c_journal_mode_set); 2598 2599 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2600 const char *page, size_t length) 2601 { 2602 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2603 size_t len = length; 2604 int ret; 2605 2606 if (len < 2) 2607 return -EINVAL; 2608 2609 if (page[len - 1] == '\n') 2610 len--; 2611 2612 while (mode--) 2613 if (strlen(r5c_journal_mode_str[mode]) == len && 2614 !strncmp(page, r5c_journal_mode_str[mode], len)) 2615 break; 2616 ret = mddev_lock(mddev); 2617 if (ret) 2618 return ret; 2619 ret = r5c_journal_mode_set(mddev, mode); 2620 mddev_unlock(mddev); 2621 return ret ?: length; 2622 } 2623 2624 struct md_sysfs_entry 2625 r5c_journal_mode = __ATTR(journal_mode, 0644, 2626 r5c_journal_mode_show, r5c_journal_mode_store); 2627 2628 /* 2629 * Try handle write operation in caching phase. This function should only 2630 * be called in write-back mode. 2631 * 2632 * If all outstanding writes can be handled in caching phase, returns 0 2633 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2634 * and returns -EAGAIN 2635 */ 2636 int r5c_try_caching_write(struct r5conf *conf, 2637 struct stripe_head *sh, 2638 struct stripe_head_state *s, 2639 int disks) 2640 { 2641 struct r5l_log *log = READ_ONCE(conf->log); 2642 int i; 2643 struct r5dev *dev; 2644 int to_cache = 0; 2645 void __rcu **pslot; 2646 sector_t tree_index; 2647 int ret; 2648 uintptr_t refcount; 2649 2650 BUG_ON(!r5c_is_writeback(log)); 2651 2652 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2653 /* 2654 * There are two different scenarios here: 2655 * 1. The stripe has some data cached, and it is sent to 2656 * write-out phase for reclaim 2657 * 2. The stripe is clean, and this is the first write 2658 * 2659 * For 1, return -EAGAIN, so we continue with 2660 * handle_stripe_dirtying(). 2661 * 2662 * For 2, set STRIPE_R5C_CACHING and continue with caching 2663 * write. 2664 */ 2665 2666 /* case 1: anything injournal or anything in written */ 2667 if (s->injournal > 0 || s->written > 0) 2668 return -EAGAIN; 2669 /* case 2 */ 2670 set_bit(STRIPE_R5C_CACHING, &sh->state); 2671 } 2672 2673 /* 2674 * When run in degraded mode, array is set to write-through mode. 2675 * This check helps drain pending write safely in the transition to 2676 * write-through mode. 2677 * 2678 * When a stripe is syncing, the write is also handled in write 2679 * through mode. 2680 */ 2681 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2682 r5c_make_stripe_write_out(sh); 2683 return -EAGAIN; 2684 } 2685 2686 for (i = disks; i--; ) { 2687 dev = &sh->dev[i]; 2688 /* if non-overwrite, use writing-out phase */ 2689 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2690 !test_bit(R5_InJournal, &dev->flags)) { 2691 r5c_make_stripe_write_out(sh); 2692 return -EAGAIN; 2693 } 2694 } 2695 2696 /* if the stripe is not counted in big_stripe_tree, add it now */ 2697 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2698 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2699 tree_index = r5c_tree_index(conf, sh->sector); 2700 spin_lock(&log->tree_lock); 2701 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2702 tree_index); 2703 if (pslot) { 2704 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2705 pslot, &log->tree_lock) >> 2706 R5C_RADIX_COUNT_SHIFT; 2707 radix_tree_replace_slot( 2708 &log->big_stripe_tree, pslot, 2709 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2710 } else { 2711 /* 2712 * this radix_tree_insert can fail safely, so no 2713 * need to call radix_tree_preload() 2714 */ 2715 ret = radix_tree_insert( 2716 &log->big_stripe_tree, tree_index, 2717 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2718 if (ret) { 2719 spin_unlock(&log->tree_lock); 2720 r5c_make_stripe_write_out(sh); 2721 return -EAGAIN; 2722 } 2723 } 2724 spin_unlock(&log->tree_lock); 2725 2726 /* 2727 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2728 * counted in the radix tree 2729 */ 2730 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2731 atomic_inc(&conf->r5c_cached_partial_stripes); 2732 } 2733 2734 for (i = disks; i--; ) { 2735 dev = &sh->dev[i]; 2736 if (dev->towrite) { 2737 set_bit(R5_Wantwrite, &dev->flags); 2738 set_bit(R5_Wantdrain, &dev->flags); 2739 set_bit(R5_LOCKED, &dev->flags); 2740 to_cache++; 2741 } 2742 } 2743 2744 if (to_cache) { 2745 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2746 /* 2747 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2748 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2749 * r5c_handle_data_cached() 2750 */ 2751 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2752 } 2753 2754 return 0; 2755 } 2756 2757 /* 2758 * free extra pages (orig_page) we allocated for prexor 2759 */ 2760 void r5c_release_extra_page(struct stripe_head *sh) 2761 { 2762 struct r5conf *conf = sh->raid_conf; 2763 int i; 2764 bool using_disk_info_extra_page; 2765 2766 using_disk_info_extra_page = 2767 sh->dev[0].orig_page == conf->disks[0].extra_page; 2768 2769 for (i = sh->disks; i--; ) 2770 if (sh->dev[i].page != sh->dev[i].orig_page) { 2771 struct page *p = sh->dev[i].orig_page; 2772 2773 sh->dev[i].orig_page = sh->dev[i].page; 2774 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2775 2776 if (!using_disk_info_extra_page) 2777 put_page(p); 2778 } 2779 2780 if (using_disk_info_extra_page) { 2781 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2782 md_wakeup_thread(conf->mddev->thread); 2783 } 2784 } 2785 2786 void r5c_use_extra_page(struct stripe_head *sh) 2787 { 2788 struct r5conf *conf = sh->raid_conf; 2789 int i; 2790 struct r5dev *dev; 2791 2792 for (i = sh->disks; i--; ) { 2793 dev = &sh->dev[i]; 2794 if (dev->orig_page != dev->page) 2795 put_page(dev->orig_page); 2796 dev->orig_page = conf->disks[i].extra_page; 2797 } 2798 } 2799 2800 /* 2801 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2802 * stripe is committed to RAID disks. 2803 */ 2804 void r5c_finish_stripe_write_out(struct r5conf *conf, 2805 struct stripe_head *sh, 2806 struct stripe_head_state *s) 2807 { 2808 struct r5l_log *log = READ_ONCE(conf->log); 2809 int i; 2810 int do_wakeup = 0; 2811 sector_t tree_index; 2812 void __rcu **pslot; 2813 uintptr_t refcount; 2814 2815 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2816 return; 2817 2818 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2819 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2820 2821 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2822 return; 2823 2824 for (i = sh->disks; i--; ) { 2825 clear_bit(R5_InJournal, &sh->dev[i].flags); 2826 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2827 do_wakeup = 1; 2828 } 2829 2830 /* 2831 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2832 * We updated R5_InJournal, so we also update s->injournal. 2833 */ 2834 s->injournal = 0; 2835 2836 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2837 if (atomic_dec_and_test(&conf->pending_full_writes)) 2838 md_wakeup_thread(conf->mddev->thread); 2839 2840 if (do_wakeup) 2841 wake_up(&conf->wait_for_overlap); 2842 2843 spin_lock_irq(&log->stripe_in_journal_lock); 2844 list_del_init(&sh->r5c); 2845 spin_unlock_irq(&log->stripe_in_journal_lock); 2846 sh->log_start = MaxSector; 2847 2848 atomic_dec(&log->stripe_in_journal_count); 2849 r5c_update_log_state(log); 2850 2851 /* stop counting this stripe in big_stripe_tree */ 2852 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2853 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2854 tree_index = r5c_tree_index(conf, sh->sector); 2855 spin_lock(&log->tree_lock); 2856 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2857 tree_index); 2858 BUG_ON(pslot == NULL); 2859 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2860 pslot, &log->tree_lock) >> 2861 R5C_RADIX_COUNT_SHIFT; 2862 if (refcount == 1) 2863 radix_tree_delete(&log->big_stripe_tree, tree_index); 2864 else 2865 radix_tree_replace_slot( 2866 &log->big_stripe_tree, pslot, 2867 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2868 spin_unlock(&log->tree_lock); 2869 } 2870 2871 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2872 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2873 atomic_dec(&conf->r5c_flushing_partial_stripes); 2874 atomic_dec(&conf->r5c_cached_partial_stripes); 2875 } 2876 2877 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2878 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2879 atomic_dec(&conf->r5c_flushing_full_stripes); 2880 atomic_dec(&conf->r5c_cached_full_stripes); 2881 } 2882 2883 r5l_append_flush_payload(log, sh->sector); 2884 /* stripe is flused to raid disks, we can do resync now */ 2885 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2886 set_bit(STRIPE_HANDLE, &sh->state); 2887 } 2888 2889 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2890 { 2891 struct r5conf *conf = sh->raid_conf; 2892 int pages = 0; 2893 int reserve; 2894 int i; 2895 int ret = 0; 2896 2897 BUG_ON(!log); 2898 2899 for (i = 0; i < sh->disks; i++) { 2900 void *addr; 2901 2902 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2903 continue; 2904 addr = kmap_atomic(sh->dev[i].page); 2905 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2906 addr, PAGE_SIZE); 2907 kunmap_atomic(addr); 2908 pages++; 2909 } 2910 WARN_ON(pages == 0); 2911 2912 /* 2913 * The stripe must enter state machine again to call endio, so 2914 * don't delay. 2915 */ 2916 clear_bit(STRIPE_DELAYED, &sh->state); 2917 atomic_inc(&sh->count); 2918 2919 mutex_lock(&log->io_mutex); 2920 /* meta + data */ 2921 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2922 2923 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2924 sh->log_start == MaxSector) 2925 r5l_add_no_space_stripe(log, sh); 2926 else if (!r5l_has_free_space(log, reserve)) { 2927 if (sh->log_start == log->last_checkpoint) 2928 BUG(); 2929 else 2930 r5l_add_no_space_stripe(log, sh); 2931 } else { 2932 ret = r5l_log_stripe(log, sh, pages, 0); 2933 if (ret) { 2934 spin_lock_irq(&log->io_list_lock); 2935 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2936 spin_unlock_irq(&log->io_list_lock); 2937 } 2938 } 2939 2940 mutex_unlock(&log->io_mutex); 2941 return 0; 2942 } 2943 2944 /* check whether this big stripe is in write back cache. */ 2945 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2946 { 2947 struct r5l_log *log = READ_ONCE(conf->log); 2948 sector_t tree_index; 2949 void *slot; 2950 2951 if (!log) 2952 return false; 2953 2954 WARN_ON_ONCE(!rcu_read_lock_held()); 2955 tree_index = r5c_tree_index(conf, sect); 2956 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2957 return slot != NULL; 2958 } 2959 2960 static int r5l_load_log(struct r5l_log *log) 2961 { 2962 struct md_rdev *rdev = log->rdev; 2963 struct page *page; 2964 struct r5l_meta_block *mb; 2965 sector_t cp = log->rdev->journal_tail; 2966 u32 stored_crc, expected_crc; 2967 bool create_super = false; 2968 int ret = 0; 2969 2970 /* Make sure it's valid */ 2971 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2972 cp = 0; 2973 page = alloc_page(GFP_KERNEL); 2974 if (!page) 2975 return -ENOMEM; 2976 2977 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) { 2978 ret = -EIO; 2979 goto ioerr; 2980 } 2981 mb = page_address(page); 2982 2983 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2984 mb->version != R5LOG_VERSION) { 2985 create_super = true; 2986 goto create; 2987 } 2988 stored_crc = le32_to_cpu(mb->checksum); 2989 mb->checksum = 0; 2990 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2991 if (stored_crc != expected_crc) { 2992 create_super = true; 2993 goto create; 2994 } 2995 if (le64_to_cpu(mb->position) != cp) { 2996 create_super = true; 2997 goto create; 2998 } 2999 create: 3000 if (create_super) { 3001 log->last_cp_seq = get_random_u32(); 3002 cp = 0; 3003 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3004 /* 3005 * Make sure super points to correct address. Log might have 3006 * data very soon. If super hasn't correct log tail address, 3007 * recovery can't find the log 3008 */ 3009 r5l_write_super(log, cp); 3010 } else 3011 log->last_cp_seq = le64_to_cpu(mb->seq); 3012 3013 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3014 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3015 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3016 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3017 log->last_checkpoint = cp; 3018 3019 __free_page(page); 3020 3021 if (create_super) { 3022 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3023 log->seq = log->last_cp_seq + 1; 3024 log->next_checkpoint = cp; 3025 } else 3026 ret = r5l_recovery_log(log); 3027 3028 r5c_update_log_state(log); 3029 return ret; 3030 ioerr: 3031 __free_page(page); 3032 return ret; 3033 } 3034 3035 int r5l_start(struct r5l_log *log) 3036 { 3037 int ret; 3038 3039 if (!log) 3040 return 0; 3041 3042 ret = r5l_load_log(log); 3043 if (ret) { 3044 struct mddev *mddev = log->rdev->mddev; 3045 struct r5conf *conf = mddev->private; 3046 3047 r5l_exit_log(conf); 3048 } 3049 return ret; 3050 } 3051 3052 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3053 { 3054 struct r5conf *conf = mddev->private; 3055 struct r5l_log *log = READ_ONCE(conf->log); 3056 3057 if (!log) 3058 return; 3059 3060 if ((raid5_calc_degraded(conf) > 0 || 3061 test_bit(Journal, &rdev->flags)) && 3062 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3063 schedule_work(&log->disable_writeback_work); 3064 } 3065 3066 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3067 { 3068 struct r5l_log *log; 3069 struct md_thread *thread; 3070 int ret; 3071 3072 pr_debug("md/raid:%s: using device %pg as journal\n", 3073 mdname(conf->mddev), rdev->bdev); 3074 3075 if (PAGE_SIZE != 4096) 3076 return -EINVAL; 3077 3078 /* 3079 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3080 * raid_disks r5l_payload_data_parity. 3081 * 3082 * Write journal and cache does not work for very big array 3083 * (raid_disks > 203) 3084 */ 3085 if (sizeof(struct r5l_meta_block) + 3086 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3087 conf->raid_disks) > PAGE_SIZE) { 3088 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3089 mdname(conf->mddev), conf->raid_disks); 3090 return -EINVAL; 3091 } 3092 3093 log = kzalloc(sizeof(*log), GFP_KERNEL); 3094 if (!log) 3095 return -ENOMEM; 3096 log->rdev = rdev; 3097 log->need_cache_flush = bdev_write_cache(rdev->bdev); 3098 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3099 sizeof(rdev->mddev->uuid)); 3100 3101 mutex_init(&log->io_mutex); 3102 3103 spin_lock_init(&log->io_list_lock); 3104 INIT_LIST_HEAD(&log->running_ios); 3105 INIT_LIST_HEAD(&log->io_end_ios); 3106 INIT_LIST_HEAD(&log->flushing_ios); 3107 INIT_LIST_HEAD(&log->finished_ios); 3108 3109 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3110 if (!log->io_kc) 3111 goto io_kc; 3112 3113 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc); 3114 if (ret) 3115 goto io_pool; 3116 3117 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3118 if (ret) 3119 goto io_bs; 3120 3121 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0); 3122 if (ret) 3123 goto out_mempool; 3124 3125 spin_lock_init(&log->tree_lock); 3126 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3127 3128 thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev, 3129 "reclaim"); 3130 if (!thread) 3131 goto reclaim_thread; 3132 3133 thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3134 rcu_assign_pointer(log->reclaim_thread, thread); 3135 3136 init_waitqueue_head(&log->iounit_wait); 3137 3138 INIT_LIST_HEAD(&log->no_mem_stripes); 3139 3140 INIT_LIST_HEAD(&log->no_space_stripes); 3141 spin_lock_init(&log->no_space_stripes_lock); 3142 3143 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3144 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3145 3146 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3147 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3148 spin_lock_init(&log->stripe_in_journal_lock); 3149 atomic_set(&log->stripe_in_journal_count, 0); 3150 3151 WRITE_ONCE(conf->log, log); 3152 3153 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3154 return 0; 3155 3156 reclaim_thread: 3157 mempool_exit(&log->meta_pool); 3158 out_mempool: 3159 bioset_exit(&log->bs); 3160 io_bs: 3161 mempool_exit(&log->io_pool); 3162 io_pool: 3163 kmem_cache_destroy(log->io_kc); 3164 io_kc: 3165 kfree(log); 3166 return -EINVAL; 3167 } 3168 3169 void r5l_exit_log(struct r5conf *conf) 3170 { 3171 struct r5l_log *log = conf->log; 3172 3173 md_unregister_thread(conf->mddev, &log->reclaim_thread); 3174 3175 /* 3176 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to 3177 * ensure disable_writeback_work wakes up and exits. 3178 */ 3179 WRITE_ONCE(conf->log, NULL); 3180 wake_up(&conf->mddev->sb_wait); 3181 flush_work(&log->disable_writeback_work); 3182 3183 mempool_exit(&log->meta_pool); 3184 bioset_exit(&log->bs); 3185 mempool_exit(&log->io_pool); 3186 kmem_cache_destroy(log->io_kc); 3187 kfree(log); 3188 } 3189