1 /* 2 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 #include <linux/kernel.h> 16 #include <linux/wait.h> 17 #include <linux/blkdev.h> 18 #include <linux/slab.h> 19 #include <linux/raid/md_p.h> 20 #include <linux/crc32c.h> 21 #include <linux/random.h> 22 #include <linux/kthread.h> 23 #include <linux/types.h> 24 #include "md.h" 25 #include "raid5.h" 26 #include "bitmap.h" 27 #include "raid5-log.h" 28 29 /* 30 * metadata/data stored in disk with 4k size unit (a block) regardless 31 * underneath hardware sector size. only works with PAGE_SIZE == 4096 32 */ 33 #define BLOCK_SECTORS (8) 34 #define BLOCK_SECTOR_SHIFT (3) 35 36 /* 37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 38 * 39 * In write through mode, the reclaim runs every log->max_free_space. 40 * This can prevent the recovery scans for too long 41 */ 42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 44 45 /* wake up reclaim thread periodically */ 46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 47 /* start flush with these full stripes */ 48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 49 /* reclaim stripes in groups */ 50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 51 52 /* 53 * We only need 2 bios per I/O unit to make progress, but ensure we 54 * have a few more available to not get too tight. 55 */ 56 #define R5L_POOL_SIZE 4 57 58 static char *r5c_journal_mode_str[] = {"write-through", 59 "write-back"}; 60 /* 61 * raid5 cache state machine 62 * 63 * With the RAID cache, each stripe works in two phases: 64 * - caching phase 65 * - writing-out phase 66 * 67 * These two phases are controlled by bit STRIPE_R5C_CACHING: 68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 70 * 71 * When there is no journal, or the journal is in write-through mode, 72 * the stripe is always in writing-out phase. 73 * 74 * For write-back journal, the stripe is sent to caching phase on write 75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 76 * the write-out phase by clearing STRIPE_R5C_CACHING. 77 * 78 * Stripes in caching phase do not write the raid disks. Instead, all 79 * writes are committed from the log device. Therefore, a stripe in 80 * caching phase handles writes as: 81 * - write to log device 82 * - return IO 83 * 84 * Stripes in writing-out phase handle writes as: 85 * - calculate parity 86 * - write pending data and parity to journal 87 * - write data and parity to raid disks 88 * - return IO for pending writes 89 */ 90 91 struct r5l_log { 92 struct md_rdev *rdev; 93 94 u32 uuid_checksum; 95 96 sector_t device_size; /* log device size, round to 97 * BLOCK_SECTORS */ 98 sector_t max_free_space; /* reclaim run if free space is at 99 * this size */ 100 101 sector_t last_checkpoint; /* log tail. where recovery scan 102 * starts from */ 103 u64 last_cp_seq; /* log tail sequence */ 104 105 sector_t log_start; /* log head. where new data appends */ 106 u64 seq; /* log head sequence */ 107 108 sector_t next_checkpoint; 109 110 struct mutex io_mutex; 111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 112 113 spinlock_t io_list_lock; 114 struct list_head running_ios; /* io_units which are still running, 115 * and have not yet been completely 116 * written to the log */ 117 struct list_head io_end_ios; /* io_units which have been completely 118 * written to the log but not yet written 119 * to the RAID */ 120 struct list_head flushing_ios; /* io_units which are waiting for log 121 * cache flush */ 122 struct list_head finished_ios; /* io_units which settle down in log disk */ 123 struct bio flush_bio; 124 125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 126 127 struct kmem_cache *io_kc; 128 mempool_t *io_pool; 129 struct bio_set *bs; 130 mempool_t *meta_pool; 131 132 struct md_thread *reclaim_thread; 133 unsigned long reclaim_target; /* number of space that need to be 134 * reclaimed. if it's 0, reclaim spaces 135 * used by io_units which are in 136 * IO_UNIT_STRIPE_END state (eg, reclaim 137 * dones't wait for specific io_unit 138 * switching to IO_UNIT_STRIPE_END 139 * state) */ 140 wait_queue_head_t iounit_wait; 141 142 struct list_head no_space_stripes; /* pending stripes, log has no space */ 143 spinlock_t no_space_stripes_lock; 144 145 bool need_cache_flush; 146 147 /* for r5c_cache */ 148 enum r5c_journal_mode r5c_journal_mode; 149 150 /* all stripes in r5cache, in the order of seq at sh->log_start */ 151 struct list_head stripe_in_journal_list; 152 153 spinlock_t stripe_in_journal_lock; 154 atomic_t stripe_in_journal_count; 155 156 /* to submit async io_units, to fulfill ordering of flush */ 157 struct work_struct deferred_io_work; 158 /* to disable write back during in degraded mode */ 159 struct work_struct disable_writeback_work; 160 161 /* to for chunk_aligned_read in writeback mode, details below */ 162 spinlock_t tree_lock; 163 struct radix_tree_root big_stripe_tree; 164 }; 165 166 /* 167 * Enable chunk_aligned_read() with write back cache. 168 * 169 * Each chunk may contain more than one stripe (for example, a 256kB 170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 171 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 172 * For each big_stripe, we count how many stripes of this big_stripe 173 * are in the write back cache. These data are tracked in a radix tree 174 * (big_stripe_tree). We use radix_tree item pointer as the counter. 175 * r5c_tree_index() is used to calculate keys for the radix tree. 176 * 177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 178 * big_stripe of each chunk in the tree. If this big_stripe is in the 179 * tree, chunk_aligned_read() aborts. This look up is protected by 180 * rcu_read_lock(). 181 * 182 * It is necessary to remember whether a stripe is counted in 183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 185 * two flags are set, the stripe is counted in big_stripe_tree. This 186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 187 * r5c_try_caching_write(); and moving clear_bit of 188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 189 * r5c_finish_stripe_write_out(). 190 */ 191 192 /* 193 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 194 * So it is necessary to left shift the counter by 2 bits before using it 195 * as data pointer of the tree. 196 */ 197 #define R5C_RADIX_COUNT_SHIFT 2 198 199 /* 200 * calculate key for big_stripe_tree 201 * 202 * sect: align_bi->bi_iter.bi_sector or sh->sector 203 */ 204 static inline sector_t r5c_tree_index(struct r5conf *conf, 205 sector_t sect) 206 { 207 sector_t offset; 208 209 offset = sector_div(sect, conf->chunk_sectors); 210 return sect; 211 } 212 213 /* 214 * an IO range starts from a meta data block and end at the next meta data 215 * block. The io unit's the meta data block tracks data/parity followed it. io 216 * unit is written to log disk with normal write, as we always flush log disk 217 * first and then start move data to raid disks, there is no requirement to 218 * write io unit with FLUSH/FUA 219 */ 220 struct r5l_io_unit { 221 struct r5l_log *log; 222 223 struct page *meta_page; /* store meta block */ 224 int meta_offset; /* current offset in meta_page */ 225 226 struct bio *current_bio;/* current_bio accepting new data */ 227 228 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 229 u64 seq; /* seq number of the metablock */ 230 sector_t log_start; /* where the io_unit starts */ 231 sector_t log_end; /* where the io_unit ends */ 232 struct list_head log_sibling; /* log->running_ios */ 233 struct list_head stripe_list; /* stripes added to the io_unit */ 234 235 int state; 236 bool need_split_bio; 237 struct bio *split_bio; 238 239 unsigned int has_flush:1; /* include flush request */ 240 unsigned int has_fua:1; /* include fua request */ 241 unsigned int has_null_flush:1; /* include null flush request */ 242 unsigned int has_flush_payload:1; /* include flush payload */ 243 /* 244 * io isn't sent yet, flush/fua request can only be submitted till it's 245 * the first IO in running_ios list 246 */ 247 unsigned int io_deferred:1; 248 249 struct bio_list flush_barriers; /* size == 0 flush bios */ 250 }; 251 252 /* r5l_io_unit state */ 253 enum r5l_io_unit_state { 254 IO_UNIT_RUNNING = 0, /* accepting new IO */ 255 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 256 * don't accepting new bio */ 257 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 258 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 259 }; 260 261 bool r5c_is_writeback(struct r5l_log *log) 262 { 263 return (log != NULL && 264 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 265 } 266 267 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 268 { 269 start += inc; 270 if (start >= log->device_size) 271 start = start - log->device_size; 272 return start; 273 } 274 275 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 276 sector_t end) 277 { 278 if (end >= start) 279 return end - start; 280 else 281 return end + log->device_size - start; 282 } 283 284 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 285 { 286 sector_t used_size; 287 288 used_size = r5l_ring_distance(log, log->last_checkpoint, 289 log->log_start); 290 291 return log->device_size > used_size + size; 292 } 293 294 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 295 enum r5l_io_unit_state state) 296 { 297 if (WARN_ON(io->state >= state)) 298 return; 299 io->state = state; 300 } 301 302 static void 303 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 304 { 305 struct bio *wbi, *wbi2; 306 307 wbi = dev->written; 308 dev->written = NULL; 309 while (wbi && wbi->bi_iter.bi_sector < 310 dev->sector + STRIPE_SECTORS) { 311 wbi2 = r5_next_bio(wbi, dev->sector); 312 md_write_end(conf->mddev); 313 bio_endio(wbi); 314 wbi = wbi2; 315 } 316 } 317 318 void r5c_handle_cached_data_endio(struct r5conf *conf, 319 struct stripe_head *sh, int disks) 320 { 321 int i; 322 323 for (i = sh->disks; i--; ) { 324 if (sh->dev[i].written) { 325 set_bit(R5_UPTODATE, &sh->dev[i].flags); 326 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 327 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 328 STRIPE_SECTORS, 329 !test_bit(STRIPE_DEGRADED, &sh->state), 330 0); 331 } 332 } 333 } 334 335 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 336 337 /* Check whether we should flush some stripes to free up stripe cache */ 338 void r5c_check_stripe_cache_usage(struct r5conf *conf) 339 { 340 int total_cached; 341 342 if (!r5c_is_writeback(conf->log)) 343 return; 344 345 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 346 atomic_read(&conf->r5c_cached_full_stripes); 347 348 /* 349 * The following condition is true for either of the following: 350 * - stripe cache pressure high: 351 * total_cached > 3/4 min_nr_stripes || 352 * empty_inactive_list_nr > 0 353 * - stripe cache pressure moderate: 354 * total_cached > 1/2 min_nr_stripes 355 */ 356 if (total_cached > conf->min_nr_stripes * 1 / 2 || 357 atomic_read(&conf->empty_inactive_list_nr) > 0) 358 r5l_wake_reclaim(conf->log, 0); 359 } 360 361 /* 362 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 363 * stripes in the cache 364 */ 365 void r5c_check_cached_full_stripe(struct r5conf *conf) 366 { 367 if (!r5c_is_writeback(conf->log)) 368 return; 369 370 /* 371 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 372 * or a full stripe (chunk size / 4k stripes). 373 */ 374 if (atomic_read(&conf->r5c_cached_full_stripes) >= 375 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 376 conf->chunk_sectors >> STRIPE_SHIFT)) 377 r5l_wake_reclaim(conf->log, 0); 378 } 379 380 /* 381 * Total log space (in sectors) needed to flush all data in cache 382 * 383 * To avoid deadlock due to log space, it is necessary to reserve log 384 * space to flush critical stripes (stripes that occupying log space near 385 * last_checkpoint). This function helps check how much log space is 386 * required to flush all cached stripes. 387 * 388 * To reduce log space requirements, two mechanisms are used to give cache 389 * flush higher priorities: 390 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 391 * stripes ALREADY in journal can be flushed w/o pending writes; 392 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 393 * can be delayed (r5l_add_no_space_stripe). 394 * 395 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 396 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 397 * pages of journal space. For stripes that has not passed 1, flushing it 398 * requires (conf->raid_disks + 1) pages of journal space. There are at 399 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 400 * required to flush all cached stripes (in pages) is: 401 * 402 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 403 * (group_cnt + 1) * (raid_disks + 1) 404 * or 405 * (stripe_in_journal_count) * (max_degraded + 1) + 406 * (group_cnt + 1) * (raid_disks - max_degraded) 407 */ 408 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 409 { 410 struct r5l_log *log = conf->log; 411 412 if (!r5c_is_writeback(log)) 413 return 0; 414 415 return BLOCK_SECTORS * 416 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 417 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 418 } 419 420 /* 421 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 422 * 423 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 424 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 425 * device is less than 2x of reclaim_required_space. 426 */ 427 static inline void r5c_update_log_state(struct r5l_log *log) 428 { 429 struct r5conf *conf = log->rdev->mddev->private; 430 sector_t free_space; 431 sector_t reclaim_space; 432 bool wake_reclaim = false; 433 434 if (!r5c_is_writeback(log)) 435 return; 436 437 free_space = r5l_ring_distance(log, log->log_start, 438 log->last_checkpoint); 439 reclaim_space = r5c_log_required_to_flush_cache(conf); 440 if (free_space < 2 * reclaim_space) 441 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 442 else { 443 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 444 wake_reclaim = true; 445 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 446 } 447 if (free_space < 3 * reclaim_space) 448 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 449 else 450 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 451 452 if (wake_reclaim) 453 r5l_wake_reclaim(log, 0); 454 } 455 456 /* 457 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 458 * This function should only be called in write-back mode. 459 */ 460 void r5c_make_stripe_write_out(struct stripe_head *sh) 461 { 462 struct r5conf *conf = sh->raid_conf; 463 struct r5l_log *log = conf->log; 464 465 BUG_ON(!r5c_is_writeback(log)); 466 467 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 468 clear_bit(STRIPE_R5C_CACHING, &sh->state); 469 470 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 471 atomic_inc(&conf->preread_active_stripes); 472 } 473 474 static void r5c_handle_data_cached(struct stripe_head *sh) 475 { 476 int i; 477 478 for (i = sh->disks; i--; ) 479 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 480 set_bit(R5_InJournal, &sh->dev[i].flags); 481 clear_bit(R5_LOCKED, &sh->dev[i].flags); 482 } 483 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 484 } 485 486 /* 487 * this journal write must contain full parity, 488 * it may also contain some data pages 489 */ 490 static void r5c_handle_parity_cached(struct stripe_head *sh) 491 { 492 int i; 493 494 for (i = sh->disks; i--; ) 495 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 496 set_bit(R5_Wantwrite, &sh->dev[i].flags); 497 } 498 499 /* 500 * Setting proper flags after writing (or flushing) data and/or parity to the 501 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 502 */ 503 static void r5c_finish_cache_stripe(struct stripe_head *sh) 504 { 505 struct r5l_log *log = sh->raid_conf->log; 506 507 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 508 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 509 /* 510 * Set R5_InJournal for parity dev[pd_idx]. This means 511 * all data AND parity in the journal. For RAID 6, it is 512 * NOT necessary to set the flag for dev[qd_idx], as the 513 * two parities are written out together. 514 */ 515 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 516 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 517 r5c_handle_data_cached(sh); 518 } else { 519 r5c_handle_parity_cached(sh); 520 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 521 } 522 } 523 524 static void r5l_io_run_stripes(struct r5l_io_unit *io) 525 { 526 struct stripe_head *sh, *next; 527 528 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 529 list_del_init(&sh->log_list); 530 531 r5c_finish_cache_stripe(sh); 532 533 set_bit(STRIPE_HANDLE, &sh->state); 534 raid5_release_stripe(sh); 535 } 536 } 537 538 static void r5l_log_run_stripes(struct r5l_log *log) 539 { 540 struct r5l_io_unit *io, *next; 541 542 assert_spin_locked(&log->io_list_lock); 543 544 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 545 /* don't change list order */ 546 if (io->state < IO_UNIT_IO_END) 547 break; 548 549 list_move_tail(&io->log_sibling, &log->finished_ios); 550 r5l_io_run_stripes(io); 551 } 552 } 553 554 static void r5l_move_to_end_ios(struct r5l_log *log) 555 { 556 struct r5l_io_unit *io, *next; 557 558 assert_spin_locked(&log->io_list_lock); 559 560 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 561 /* don't change list order */ 562 if (io->state < IO_UNIT_IO_END) 563 break; 564 list_move_tail(&io->log_sibling, &log->io_end_ios); 565 } 566 } 567 568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 569 static void r5l_log_endio(struct bio *bio) 570 { 571 struct r5l_io_unit *io = bio->bi_private; 572 struct r5l_io_unit *io_deferred; 573 struct r5l_log *log = io->log; 574 unsigned long flags; 575 bool has_null_flush; 576 bool has_flush_payload; 577 578 if (bio->bi_status) 579 md_error(log->rdev->mddev, log->rdev); 580 581 bio_put(bio); 582 mempool_free(io->meta_page, log->meta_pool); 583 584 spin_lock_irqsave(&log->io_list_lock, flags); 585 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 586 587 /* 588 * if the io doesn't not have null_flush or flush payload, 589 * it is not safe to access it after releasing io_list_lock. 590 * Therefore, it is necessary to check the condition with 591 * the lock held. 592 */ 593 has_null_flush = io->has_null_flush; 594 has_flush_payload = io->has_flush_payload; 595 596 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 597 r5l_move_to_end_ios(log); 598 else 599 r5l_log_run_stripes(log); 600 if (!list_empty(&log->running_ios)) { 601 /* 602 * FLUSH/FUA io_unit is deferred because of ordering, now we 603 * can dispatch it 604 */ 605 io_deferred = list_first_entry(&log->running_ios, 606 struct r5l_io_unit, log_sibling); 607 if (io_deferred->io_deferred) 608 schedule_work(&log->deferred_io_work); 609 } 610 611 spin_unlock_irqrestore(&log->io_list_lock, flags); 612 613 if (log->need_cache_flush) 614 md_wakeup_thread(log->rdev->mddev->thread); 615 616 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 617 if (has_null_flush) { 618 struct bio *bi; 619 620 WARN_ON(bio_list_empty(&io->flush_barriers)); 621 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 622 bio_endio(bi); 623 if (atomic_dec_and_test(&io->pending_stripe)) { 624 __r5l_stripe_write_finished(io); 625 return; 626 } 627 } 628 } 629 /* decrease pending_stripe for flush payload */ 630 if (has_flush_payload) 631 if (atomic_dec_and_test(&io->pending_stripe)) 632 __r5l_stripe_write_finished(io); 633 } 634 635 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 636 { 637 unsigned long flags; 638 639 spin_lock_irqsave(&log->io_list_lock, flags); 640 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 641 spin_unlock_irqrestore(&log->io_list_lock, flags); 642 643 /* 644 * In case of journal device failures, submit_bio will get error 645 * and calls endio, then active stripes will continue write 646 * process. Therefore, it is not necessary to check Faulty bit 647 * of journal device here. 648 * 649 * We can't check split_bio after current_bio is submitted. If 650 * io->split_bio is null, after current_bio is submitted, current_bio 651 * might already be completed and the io_unit is freed. We submit 652 * split_bio first to avoid the issue. 653 */ 654 if (io->split_bio) { 655 if (io->has_flush) 656 io->split_bio->bi_opf |= REQ_PREFLUSH; 657 if (io->has_fua) 658 io->split_bio->bi_opf |= REQ_FUA; 659 submit_bio(io->split_bio); 660 } 661 662 if (io->has_flush) 663 io->current_bio->bi_opf |= REQ_PREFLUSH; 664 if (io->has_fua) 665 io->current_bio->bi_opf |= REQ_FUA; 666 submit_bio(io->current_bio); 667 } 668 669 /* deferred io_unit will be dispatched here */ 670 static void r5l_submit_io_async(struct work_struct *work) 671 { 672 struct r5l_log *log = container_of(work, struct r5l_log, 673 deferred_io_work); 674 struct r5l_io_unit *io = NULL; 675 unsigned long flags; 676 677 spin_lock_irqsave(&log->io_list_lock, flags); 678 if (!list_empty(&log->running_ios)) { 679 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 680 log_sibling); 681 if (!io->io_deferred) 682 io = NULL; 683 else 684 io->io_deferred = 0; 685 } 686 spin_unlock_irqrestore(&log->io_list_lock, flags); 687 if (io) 688 r5l_do_submit_io(log, io); 689 } 690 691 static void r5c_disable_writeback_async(struct work_struct *work) 692 { 693 struct r5l_log *log = container_of(work, struct r5l_log, 694 disable_writeback_work); 695 struct mddev *mddev = log->rdev->mddev; 696 697 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 698 return; 699 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 700 mdname(mddev)); 701 702 /* wait superblock change before suspend */ 703 wait_event(mddev->sb_wait, 704 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 705 706 mddev_suspend(mddev); 707 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 708 mddev_resume(mddev); 709 } 710 711 static void r5l_submit_current_io(struct r5l_log *log) 712 { 713 struct r5l_io_unit *io = log->current_io; 714 struct bio *bio; 715 struct r5l_meta_block *block; 716 unsigned long flags; 717 u32 crc; 718 bool do_submit = true; 719 720 if (!io) 721 return; 722 723 block = page_address(io->meta_page); 724 block->meta_size = cpu_to_le32(io->meta_offset); 725 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 726 block->checksum = cpu_to_le32(crc); 727 bio = io->current_bio; 728 729 log->current_io = NULL; 730 spin_lock_irqsave(&log->io_list_lock, flags); 731 if (io->has_flush || io->has_fua) { 732 if (io != list_first_entry(&log->running_ios, 733 struct r5l_io_unit, log_sibling)) { 734 io->io_deferred = 1; 735 do_submit = false; 736 } 737 } 738 spin_unlock_irqrestore(&log->io_list_lock, flags); 739 if (do_submit) 740 r5l_do_submit_io(log, io); 741 } 742 743 static struct bio *r5l_bio_alloc(struct r5l_log *log) 744 { 745 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs); 746 747 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 748 bio_set_dev(bio, log->rdev->bdev); 749 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 750 751 return bio; 752 } 753 754 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 755 { 756 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 757 758 r5c_update_log_state(log); 759 /* 760 * If we filled up the log device start from the beginning again, 761 * which will require a new bio. 762 * 763 * Note: for this to work properly the log size needs to me a multiple 764 * of BLOCK_SECTORS. 765 */ 766 if (log->log_start == 0) 767 io->need_split_bio = true; 768 769 io->log_end = log->log_start; 770 } 771 772 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 773 { 774 struct r5l_io_unit *io; 775 struct r5l_meta_block *block; 776 777 io = mempool_alloc(log->io_pool, GFP_ATOMIC); 778 if (!io) 779 return NULL; 780 memset(io, 0, sizeof(*io)); 781 782 io->log = log; 783 INIT_LIST_HEAD(&io->log_sibling); 784 INIT_LIST_HEAD(&io->stripe_list); 785 bio_list_init(&io->flush_barriers); 786 io->state = IO_UNIT_RUNNING; 787 788 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO); 789 block = page_address(io->meta_page); 790 clear_page(block); 791 block->magic = cpu_to_le32(R5LOG_MAGIC); 792 block->version = R5LOG_VERSION; 793 block->seq = cpu_to_le64(log->seq); 794 block->position = cpu_to_le64(log->log_start); 795 796 io->log_start = log->log_start; 797 io->meta_offset = sizeof(struct r5l_meta_block); 798 io->seq = log->seq++; 799 800 io->current_bio = r5l_bio_alloc(log); 801 io->current_bio->bi_end_io = r5l_log_endio; 802 io->current_bio->bi_private = io; 803 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 804 805 r5_reserve_log_entry(log, io); 806 807 spin_lock_irq(&log->io_list_lock); 808 list_add_tail(&io->log_sibling, &log->running_ios); 809 spin_unlock_irq(&log->io_list_lock); 810 811 return io; 812 } 813 814 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 815 { 816 if (log->current_io && 817 log->current_io->meta_offset + payload_size > PAGE_SIZE) 818 r5l_submit_current_io(log); 819 820 if (!log->current_io) { 821 log->current_io = r5l_new_meta(log); 822 if (!log->current_io) 823 return -ENOMEM; 824 } 825 826 return 0; 827 } 828 829 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 830 sector_t location, 831 u32 checksum1, u32 checksum2, 832 bool checksum2_valid) 833 { 834 struct r5l_io_unit *io = log->current_io; 835 struct r5l_payload_data_parity *payload; 836 837 payload = page_address(io->meta_page) + io->meta_offset; 838 payload->header.type = cpu_to_le16(type); 839 payload->header.flags = cpu_to_le16(0); 840 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 841 (PAGE_SHIFT - 9)); 842 payload->location = cpu_to_le64(location); 843 payload->checksum[0] = cpu_to_le32(checksum1); 844 if (checksum2_valid) 845 payload->checksum[1] = cpu_to_le32(checksum2); 846 847 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 848 sizeof(__le32) * (1 + !!checksum2_valid); 849 } 850 851 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 852 { 853 struct r5l_io_unit *io = log->current_io; 854 855 if (io->need_split_bio) { 856 BUG_ON(io->split_bio); 857 io->split_bio = io->current_bio; 858 io->current_bio = r5l_bio_alloc(log); 859 bio_chain(io->current_bio, io->split_bio); 860 io->need_split_bio = false; 861 } 862 863 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 864 BUG(); 865 866 r5_reserve_log_entry(log, io); 867 } 868 869 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 870 { 871 struct mddev *mddev = log->rdev->mddev; 872 struct r5conf *conf = mddev->private; 873 struct r5l_io_unit *io; 874 struct r5l_payload_flush *payload; 875 int meta_size; 876 877 /* 878 * payload_flush requires extra writes to the journal. 879 * To avoid handling the extra IO in quiesce, just skip 880 * flush_payload 881 */ 882 if (conf->quiesce) 883 return; 884 885 mutex_lock(&log->io_mutex); 886 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 887 888 if (r5l_get_meta(log, meta_size)) { 889 mutex_unlock(&log->io_mutex); 890 return; 891 } 892 893 /* current implementation is one stripe per flush payload */ 894 io = log->current_io; 895 payload = page_address(io->meta_page) + io->meta_offset; 896 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 897 payload->header.flags = cpu_to_le16(0); 898 payload->size = cpu_to_le32(sizeof(__le64)); 899 payload->flush_stripes[0] = cpu_to_le64(sect); 900 io->meta_offset += meta_size; 901 /* multiple flush payloads count as one pending_stripe */ 902 if (!io->has_flush_payload) { 903 io->has_flush_payload = 1; 904 atomic_inc(&io->pending_stripe); 905 } 906 mutex_unlock(&log->io_mutex); 907 } 908 909 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 910 int data_pages, int parity_pages) 911 { 912 int i; 913 int meta_size; 914 int ret; 915 struct r5l_io_unit *io; 916 917 meta_size = 918 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 919 * data_pages) + 920 sizeof(struct r5l_payload_data_parity) + 921 sizeof(__le32) * parity_pages; 922 923 ret = r5l_get_meta(log, meta_size); 924 if (ret) 925 return ret; 926 927 io = log->current_io; 928 929 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 930 io->has_flush = 1; 931 932 for (i = 0; i < sh->disks; i++) { 933 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 934 test_bit(R5_InJournal, &sh->dev[i].flags)) 935 continue; 936 if (i == sh->pd_idx || i == sh->qd_idx) 937 continue; 938 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 939 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 940 io->has_fua = 1; 941 /* 942 * we need to flush journal to make sure recovery can 943 * reach the data with fua flag 944 */ 945 io->has_flush = 1; 946 } 947 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 948 raid5_compute_blocknr(sh, i, 0), 949 sh->dev[i].log_checksum, 0, false); 950 r5l_append_payload_page(log, sh->dev[i].page); 951 } 952 953 if (parity_pages == 2) { 954 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 955 sh->sector, sh->dev[sh->pd_idx].log_checksum, 956 sh->dev[sh->qd_idx].log_checksum, true); 957 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 958 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 959 } else if (parity_pages == 1) { 960 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 961 sh->sector, sh->dev[sh->pd_idx].log_checksum, 962 0, false); 963 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 964 } else /* Just writing data, not parity, in caching phase */ 965 BUG_ON(parity_pages != 0); 966 967 list_add_tail(&sh->log_list, &io->stripe_list); 968 atomic_inc(&io->pending_stripe); 969 sh->log_io = io; 970 971 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 972 return 0; 973 974 if (sh->log_start == MaxSector) { 975 BUG_ON(!list_empty(&sh->r5c)); 976 sh->log_start = io->log_start; 977 spin_lock_irq(&log->stripe_in_journal_lock); 978 list_add_tail(&sh->r5c, 979 &log->stripe_in_journal_list); 980 spin_unlock_irq(&log->stripe_in_journal_lock); 981 atomic_inc(&log->stripe_in_journal_count); 982 } 983 return 0; 984 } 985 986 /* add stripe to no_space_stripes, and then wake up reclaim */ 987 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 988 struct stripe_head *sh) 989 { 990 spin_lock(&log->no_space_stripes_lock); 991 list_add_tail(&sh->log_list, &log->no_space_stripes); 992 spin_unlock(&log->no_space_stripes_lock); 993 } 994 995 /* 996 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 997 * data from log to raid disks), so we shouldn't wait for reclaim here 998 */ 999 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 1000 { 1001 struct r5conf *conf = sh->raid_conf; 1002 int write_disks = 0; 1003 int data_pages, parity_pages; 1004 int reserve; 1005 int i; 1006 int ret = 0; 1007 bool wake_reclaim = false; 1008 1009 if (!log) 1010 return -EAGAIN; 1011 /* Don't support stripe batch */ 1012 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 1013 test_bit(STRIPE_SYNCING, &sh->state)) { 1014 /* the stripe is written to log, we start writing it to raid */ 1015 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 1016 return -EAGAIN; 1017 } 1018 1019 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 1020 1021 for (i = 0; i < sh->disks; i++) { 1022 void *addr; 1023 1024 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1025 test_bit(R5_InJournal, &sh->dev[i].flags)) 1026 continue; 1027 1028 write_disks++; 1029 /* checksum is already calculated in last run */ 1030 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1031 continue; 1032 addr = kmap_atomic(sh->dev[i].page); 1033 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1034 addr, PAGE_SIZE); 1035 kunmap_atomic(addr); 1036 } 1037 parity_pages = 1 + !!(sh->qd_idx >= 0); 1038 data_pages = write_disks - parity_pages; 1039 1040 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1041 /* 1042 * The stripe must enter state machine again to finish the write, so 1043 * don't delay. 1044 */ 1045 clear_bit(STRIPE_DELAYED, &sh->state); 1046 atomic_inc(&sh->count); 1047 1048 mutex_lock(&log->io_mutex); 1049 /* meta + data */ 1050 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1051 1052 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1053 if (!r5l_has_free_space(log, reserve)) { 1054 r5l_add_no_space_stripe(log, sh); 1055 wake_reclaim = true; 1056 } else { 1057 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1058 if (ret) { 1059 spin_lock_irq(&log->io_list_lock); 1060 list_add_tail(&sh->log_list, 1061 &log->no_mem_stripes); 1062 spin_unlock_irq(&log->io_list_lock); 1063 } 1064 } 1065 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1066 /* 1067 * log space critical, do not process stripes that are 1068 * not in cache yet (sh->log_start == MaxSector). 1069 */ 1070 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1071 sh->log_start == MaxSector) { 1072 r5l_add_no_space_stripe(log, sh); 1073 wake_reclaim = true; 1074 reserve = 0; 1075 } else if (!r5l_has_free_space(log, reserve)) { 1076 if (sh->log_start == log->last_checkpoint) 1077 BUG(); 1078 else 1079 r5l_add_no_space_stripe(log, sh); 1080 } else { 1081 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1082 if (ret) { 1083 spin_lock_irq(&log->io_list_lock); 1084 list_add_tail(&sh->log_list, 1085 &log->no_mem_stripes); 1086 spin_unlock_irq(&log->io_list_lock); 1087 } 1088 } 1089 } 1090 1091 mutex_unlock(&log->io_mutex); 1092 if (wake_reclaim) 1093 r5l_wake_reclaim(log, reserve); 1094 return 0; 1095 } 1096 1097 void r5l_write_stripe_run(struct r5l_log *log) 1098 { 1099 if (!log) 1100 return; 1101 mutex_lock(&log->io_mutex); 1102 r5l_submit_current_io(log); 1103 mutex_unlock(&log->io_mutex); 1104 } 1105 1106 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1107 { 1108 if (!log) 1109 return -ENODEV; 1110 1111 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1112 /* 1113 * in write through (journal only) 1114 * we flush log disk cache first, then write stripe data to 1115 * raid disks. So if bio is finished, the log disk cache is 1116 * flushed already. The recovery guarantees we can recovery 1117 * the bio from log disk, so we don't need to flush again 1118 */ 1119 if (bio->bi_iter.bi_size == 0) { 1120 bio_endio(bio); 1121 return 0; 1122 } 1123 bio->bi_opf &= ~REQ_PREFLUSH; 1124 } else { 1125 /* write back (with cache) */ 1126 if (bio->bi_iter.bi_size == 0) { 1127 mutex_lock(&log->io_mutex); 1128 r5l_get_meta(log, 0); 1129 bio_list_add(&log->current_io->flush_barriers, bio); 1130 log->current_io->has_flush = 1; 1131 log->current_io->has_null_flush = 1; 1132 atomic_inc(&log->current_io->pending_stripe); 1133 r5l_submit_current_io(log); 1134 mutex_unlock(&log->io_mutex); 1135 return 0; 1136 } 1137 } 1138 return -EAGAIN; 1139 } 1140 1141 /* This will run after log space is reclaimed */ 1142 static void r5l_run_no_space_stripes(struct r5l_log *log) 1143 { 1144 struct stripe_head *sh; 1145 1146 spin_lock(&log->no_space_stripes_lock); 1147 while (!list_empty(&log->no_space_stripes)) { 1148 sh = list_first_entry(&log->no_space_stripes, 1149 struct stripe_head, log_list); 1150 list_del_init(&sh->log_list); 1151 set_bit(STRIPE_HANDLE, &sh->state); 1152 raid5_release_stripe(sh); 1153 } 1154 spin_unlock(&log->no_space_stripes_lock); 1155 } 1156 1157 /* 1158 * calculate new last_checkpoint 1159 * for write through mode, returns log->next_checkpoint 1160 * for write back, returns log_start of first sh in stripe_in_journal_list 1161 */ 1162 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1163 { 1164 struct stripe_head *sh; 1165 struct r5l_log *log = conf->log; 1166 sector_t new_cp; 1167 unsigned long flags; 1168 1169 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1170 return log->next_checkpoint; 1171 1172 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1173 if (list_empty(&conf->log->stripe_in_journal_list)) { 1174 /* all stripes flushed */ 1175 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1176 return log->next_checkpoint; 1177 } 1178 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1179 struct stripe_head, r5c); 1180 new_cp = sh->log_start; 1181 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1182 return new_cp; 1183 } 1184 1185 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1186 { 1187 struct r5conf *conf = log->rdev->mddev->private; 1188 1189 return r5l_ring_distance(log, log->last_checkpoint, 1190 r5c_calculate_new_cp(conf)); 1191 } 1192 1193 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1194 { 1195 struct stripe_head *sh; 1196 1197 assert_spin_locked(&log->io_list_lock); 1198 1199 if (!list_empty(&log->no_mem_stripes)) { 1200 sh = list_first_entry(&log->no_mem_stripes, 1201 struct stripe_head, log_list); 1202 list_del_init(&sh->log_list); 1203 set_bit(STRIPE_HANDLE, &sh->state); 1204 raid5_release_stripe(sh); 1205 } 1206 } 1207 1208 static bool r5l_complete_finished_ios(struct r5l_log *log) 1209 { 1210 struct r5l_io_unit *io, *next; 1211 bool found = false; 1212 1213 assert_spin_locked(&log->io_list_lock); 1214 1215 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1216 /* don't change list order */ 1217 if (io->state < IO_UNIT_STRIPE_END) 1218 break; 1219 1220 log->next_checkpoint = io->log_start; 1221 1222 list_del(&io->log_sibling); 1223 mempool_free(io, log->io_pool); 1224 r5l_run_no_mem_stripe(log); 1225 1226 found = true; 1227 } 1228 1229 return found; 1230 } 1231 1232 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1233 { 1234 struct r5l_log *log = io->log; 1235 struct r5conf *conf = log->rdev->mddev->private; 1236 unsigned long flags; 1237 1238 spin_lock_irqsave(&log->io_list_lock, flags); 1239 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1240 1241 if (!r5l_complete_finished_ios(log)) { 1242 spin_unlock_irqrestore(&log->io_list_lock, flags); 1243 return; 1244 } 1245 1246 if (r5l_reclaimable_space(log) > log->max_free_space || 1247 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1248 r5l_wake_reclaim(log, 0); 1249 1250 spin_unlock_irqrestore(&log->io_list_lock, flags); 1251 wake_up(&log->iounit_wait); 1252 } 1253 1254 void r5l_stripe_write_finished(struct stripe_head *sh) 1255 { 1256 struct r5l_io_unit *io; 1257 1258 io = sh->log_io; 1259 sh->log_io = NULL; 1260 1261 if (io && atomic_dec_and_test(&io->pending_stripe)) 1262 __r5l_stripe_write_finished(io); 1263 } 1264 1265 static void r5l_log_flush_endio(struct bio *bio) 1266 { 1267 struct r5l_log *log = container_of(bio, struct r5l_log, 1268 flush_bio); 1269 unsigned long flags; 1270 struct r5l_io_unit *io; 1271 1272 if (bio->bi_status) 1273 md_error(log->rdev->mddev, log->rdev); 1274 1275 spin_lock_irqsave(&log->io_list_lock, flags); 1276 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1277 r5l_io_run_stripes(io); 1278 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1279 spin_unlock_irqrestore(&log->io_list_lock, flags); 1280 } 1281 1282 /* 1283 * Starting dispatch IO to raid. 1284 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1285 * broken meta in the middle of a log causes recovery can't find meta at the 1286 * head of log. If operations require meta at the head persistent in log, we 1287 * must make sure meta before it persistent in log too. A case is: 1288 * 1289 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1290 * data/parity must be persistent in log before we do the write to raid disks. 1291 * 1292 * The solution is we restrictly maintain io_unit list order. In this case, we 1293 * only write stripes of an io_unit to raid disks till the io_unit is the first 1294 * one whose data/parity is in log. 1295 */ 1296 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1297 { 1298 bool do_flush; 1299 1300 if (!log || !log->need_cache_flush) 1301 return; 1302 1303 spin_lock_irq(&log->io_list_lock); 1304 /* flush bio is running */ 1305 if (!list_empty(&log->flushing_ios)) { 1306 spin_unlock_irq(&log->io_list_lock); 1307 return; 1308 } 1309 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1310 do_flush = !list_empty(&log->flushing_ios); 1311 spin_unlock_irq(&log->io_list_lock); 1312 1313 if (!do_flush) 1314 return; 1315 bio_reset(&log->flush_bio); 1316 bio_set_dev(&log->flush_bio, log->rdev->bdev); 1317 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1318 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1319 submit_bio(&log->flush_bio); 1320 } 1321 1322 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1323 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1324 sector_t end) 1325 { 1326 struct block_device *bdev = log->rdev->bdev; 1327 struct mddev *mddev; 1328 1329 r5l_write_super(log, end); 1330 1331 if (!blk_queue_discard(bdev_get_queue(bdev))) 1332 return; 1333 1334 mddev = log->rdev->mddev; 1335 /* 1336 * Discard could zero data, so before discard we must make sure 1337 * superblock is updated to new log tail. Updating superblock (either 1338 * directly call md_update_sb() or depend on md thread) must hold 1339 * reconfig mutex. On the other hand, raid5_quiesce is called with 1340 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1341 * for all IO finish, hence waitting for reclaim thread, while reclaim 1342 * thread is calling this function and waitting for reconfig mutex. So 1343 * there is a deadlock. We workaround this issue with a trylock. 1344 * FIXME: we could miss discard if we can't take reconfig mutex 1345 */ 1346 set_mask_bits(&mddev->sb_flags, 0, 1347 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1348 if (!mddev_trylock(mddev)) 1349 return; 1350 md_update_sb(mddev, 1); 1351 mddev_unlock(mddev); 1352 1353 /* discard IO error really doesn't matter, ignore it */ 1354 if (log->last_checkpoint < end) { 1355 blkdev_issue_discard(bdev, 1356 log->last_checkpoint + log->rdev->data_offset, 1357 end - log->last_checkpoint, GFP_NOIO, 0); 1358 } else { 1359 blkdev_issue_discard(bdev, 1360 log->last_checkpoint + log->rdev->data_offset, 1361 log->device_size - log->last_checkpoint, 1362 GFP_NOIO, 0); 1363 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1364 GFP_NOIO, 0); 1365 } 1366 } 1367 1368 /* 1369 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1370 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1371 * 1372 * must hold conf->device_lock 1373 */ 1374 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1375 { 1376 BUG_ON(list_empty(&sh->lru)); 1377 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1378 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1379 1380 /* 1381 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1382 * raid5_release_stripe() while holding conf->device_lock 1383 */ 1384 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1385 assert_spin_locked(&conf->device_lock); 1386 1387 list_del_init(&sh->lru); 1388 atomic_inc(&sh->count); 1389 1390 set_bit(STRIPE_HANDLE, &sh->state); 1391 atomic_inc(&conf->active_stripes); 1392 r5c_make_stripe_write_out(sh); 1393 1394 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1395 atomic_inc(&conf->r5c_flushing_partial_stripes); 1396 else 1397 atomic_inc(&conf->r5c_flushing_full_stripes); 1398 raid5_release_stripe(sh); 1399 } 1400 1401 /* 1402 * if num == 0, flush all full stripes 1403 * if num > 0, flush all full stripes. If less than num full stripes are 1404 * flushed, flush some partial stripes until totally num stripes are 1405 * flushed or there is no more cached stripes. 1406 */ 1407 void r5c_flush_cache(struct r5conf *conf, int num) 1408 { 1409 int count; 1410 struct stripe_head *sh, *next; 1411 1412 assert_spin_locked(&conf->device_lock); 1413 if (!conf->log) 1414 return; 1415 1416 count = 0; 1417 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1418 r5c_flush_stripe(conf, sh); 1419 count++; 1420 } 1421 1422 if (count >= num) 1423 return; 1424 list_for_each_entry_safe(sh, next, 1425 &conf->r5c_partial_stripe_list, lru) { 1426 r5c_flush_stripe(conf, sh); 1427 if (++count >= num) 1428 break; 1429 } 1430 } 1431 1432 static void r5c_do_reclaim(struct r5conf *conf) 1433 { 1434 struct r5l_log *log = conf->log; 1435 struct stripe_head *sh; 1436 int count = 0; 1437 unsigned long flags; 1438 int total_cached; 1439 int stripes_to_flush; 1440 int flushing_partial, flushing_full; 1441 1442 if (!r5c_is_writeback(log)) 1443 return; 1444 1445 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1446 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1447 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1448 atomic_read(&conf->r5c_cached_full_stripes) - 1449 flushing_full - flushing_partial; 1450 1451 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1452 atomic_read(&conf->empty_inactive_list_nr) > 0) 1453 /* 1454 * if stripe cache pressure high, flush all full stripes and 1455 * some partial stripes 1456 */ 1457 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1458 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1459 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1460 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1461 /* 1462 * if stripe cache pressure moderate, or if there is many full 1463 * stripes,flush all full stripes 1464 */ 1465 stripes_to_flush = 0; 1466 else 1467 /* no need to flush */ 1468 stripes_to_flush = -1; 1469 1470 if (stripes_to_flush >= 0) { 1471 spin_lock_irqsave(&conf->device_lock, flags); 1472 r5c_flush_cache(conf, stripes_to_flush); 1473 spin_unlock_irqrestore(&conf->device_lock, flags); 1474 } 1475 1476 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1477 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1478 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1479 spin_lock(&conf->device_lock); 1480 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1481 /* 1482 * stripes on stripe_in_journal_list could be in any 1483 * state of the stripe_cache state machine. In this 1484 * case, we only want to flush stripe on 1485 * r5c_cached_full/partial_stripes. The following 1486 * condition makes sure the stripe is on one of the 1487 * two lists. 1488 */ 1489 if (!list_empty(&sh->lru) && 1490 !test_bit(STRIPE_HANDLE, &sh->state) && 1491 atomic_read(&sh->count) == 0) { 1492 r5c_flush_stripe(conf, sh); 1493 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1494 break; 1495 } 1496 } 1497 spin_unlock(&conf->device_lock); 1498 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1499 } 1500 1501 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1502 r5l_run_no_space_stripes(log); 1503 1504 md_wakeup_thread(conf->mddev->thread); 1505 } 1506 1507 static void r5l_do_reclaim(struct r5l_log *log) 1508 { 1509 struct r5conf *conf = log->rdev->mddev->private; 1510 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1511 sector_t reclaimable; 1512 sector_t next_checkpoint; 1513 bool write_super; 1514 1515 spin_lock_irq(&log->io_list_lock); 1516 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1517 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1518 /* 1519 * move proper io_unit to reclaim list. We should not change the order. 1520 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1521 * shouldn't reuse space of an unreclaimable io_unit 1522 */ 1523 while (1) { 1524 reclaimable = r5l_reclaimable_space(log); 1525 if (reclaimable >= reclaim_target || 1526 (list_empty(&log->running_ios) && 1527 list_empty(&log->io_end_ios) && 1528 list_empty(&log->flushing_ios) && 1529 list_empty(&log->finished_ios))) 1530 break; 1531 1532 md_wakeup_thread(log->rdev->mddev->thread); 1533 wait_event_lock_irq(log->iounit_wait, 1534 r5l_reclaimable_space(log) > reclaimable, 1535 log->io_list_lock); 1536 } 1537 1538 next_checkpoint = r5c_calculate_new_cp(conf); 1539 spin_unlock_irq(&log->io_list_lock); 1540 1541 if (reclaimable == 0 || !write_super) 1542 return; 1543 1544 /* 1545 * write_super will flush cache of each raid disk. We must write super 1546 * here, because the log area might be reused soon and we don't want to 1547 * confuse recovery 1548 */ 1549 r5l_write_super_and_discard_space(log, next_checkpoint); 1550 1551 mutex_lock(&log->io_mutex); 1552 log->last_checkpoint = next_checkpoint; 1553 r5c_update_log_state(log); 1554 mutex_unlock(&log->io_mutex); 1555 1556 r5l_run_no_space_stripes(log); 1557 } 1558 1559 static void r5l_reclaim_thread(struct md_thread *thread) 1560 { 1561 struct mddev *mddev = thread->mddev; 1562 struct r5conf *conf = mddev->private; 1563 struct r5l_log *log = conf->log; 1564 1565 if (!log) 1566 return; 1567 r5c_do_reclaim(conf); 1568 r5l_do_reclaim(log); 1569 } 1570 1571 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1572 { 1573 unsigned long target; 1574 unsigned long new = (unsigned long)space; /* overflow in theory */ 1575 1576 if (!log) 1577 return; 1578 do { 1579 target = log->reclaim_target; 1580 if (new < target) 1581 return; 1582 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1583 md_wakeup_thread(log->reclaim_thread); 1584 } 1585 1586 void r5l_quiesce(struct r5l_log *log, int state) 1587 { 1588 struct mddev *mddev; 1589 if (!log || state == 2) 1590 return; 1591 if (state == 0) 1592 kthread_unpark(log->reclaim_thread->tsk); 1593 else if (state == 1) { 1594 /* make sure r5l_write_super_and_discard_space exits */ 1595 mddev = log->rdev->mddev; 1596 wake_up(&mddev->sb_wait); 1597 kthread_park(log->reclaim_thread->tsk); 1598 r5l_wake_reclaim(log, MaxSector); 1599 r5l_do_reclaim(log); 1600 } 1601 } 1602 1603 bool r5l_log_disk_error(struct r5conf *conf) 1604 { 1605 struct r5l_log *log; 1606 bool ret; 1607 /* don't allow write if journal disk is missing */ 1608 rcu_read_lock(); 1609 log = rcu_dereference(conf->log); 1610 1611 if (!log) 1612 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1613 else 1614 ret = test_bit(Faulty, &log->rdev->flags); 1615 rcu_read_unlock(); 1616 return ret; 1617 } 1618 1619 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1620 1621 struct r5l_recovery_ctx { 1622 struct page *meta_page; /* current meta */ 1623 sector_t meta_total_blocks; /* total size of current meta and data */ 1624 sector_t pos; /* recovery position */ 1625 u64 seq; /* recovery position seq */ 1626 int data_parity_stripes; /* number of data_parity stripes */ 1627 int data_only_stripes; /* number of data_only stripes */ 1628 struct list_head cached_list; 1629 1630 /* 1631 * read ahead page pool (ra_pool) 1632 * in recovery, log is read sequentially. It is not efficient to 1633 * read every page with sync_page_io(). The read ahead page pool 1634 * reads multiple pages with one IO, so further log read can 1635 * just copy data from the pool. 1636 */ 1637 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1638 sector_t pool_offset; /* offset of first page in the pool */ 1639 int total_pages; /* total allocated pages */ 1640 int valid_pages; /* pages with valid data */ 1641 struct bio *ra_bio; /* bio to do the read ahead */ 1642 }; 1643 1644 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1645 struct r5l_recovery_ctx *ctx) 1646 { 1647 struct page *page; 1648 1649 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs); 1650 if (!ctx->ra_bio) 1651 return -ENOMEM; 1652 1653 ctx->valid_pages = 0; 1654 ctx->total_pages = 0; 1655 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1656 page = alloc_page(GFP_KERNEL); 1657 1658 if (!page) 1659 break; 1660 ctx->ra_pool[ctx->total_pages] = page; 1661 ctx->total_pages += 1; 1662 } 1663 1664 if (ctx->total_pages == 0) { 1665 bio_put(ctx->ra_bio); 1666 return -ENOMEM; 1667 } 1668 1669 ctx->pool_offset = 0; 1670 return 0; 1671 } 1672 1673 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1674 struct r5l_recovery_ctx *ctx) 1675 { 1676 int i; 1677 1678 for (i = 0; i < ctx->total_pages; ++i) 1679 put_page(ctx->ra_pool[i]); 1680 bio_put(ctx->ra_bio); 1681 } 1682 1683 /* 1684 * fetch ctx->valid_pages pages from offset 1685 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1686 * However, if the offset is close to the end of the journal device, 1687 * ctx->valid_pages could be smaller than ctx->total_pages 1688 */ 1689 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1690 struct r5l_recovery_ctx *ctx, 1691 sector_t offset) 1692 { 1693 bio_reset(ctx->ra_bio); 1694 bio_set_dev(ctx->ra_bio, log->rdev->bdev); 1695 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); 1696 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; 1697 1698 ctx->valid_pages = 0; 1699 ctx->pool_offset = offset; 1700 1701 while (ctx->valid_pages < ctx->total_pages) { 1702 bio_add_page(ctx->ra_bio, 1703 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); 1704 ctx->valid_pages += 1; 1705 1706 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1707 1708 if (offset == 0) /* reached end of the device */ 1709 break; 1710 } 1711 1712 return submit_bio_wait(ctx->ra_bio); 1713 } 1714 1715 /* 1716 * try read a page from the read ahead page pool, if the page is not in the 1717 * pool, call r5l_recovery_fetch_ra_pool 1718 */ 1719 static int r5l_recovery_read_page(struct r5l_log *log, 1720 struct r5l_recovery_ctx *ctx, 1721 struct page *page, 1722 sector_t offset) 1723 { 1724 int ret; 1725 1726 if (offset < ctx->pool_offset || 1727 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1728 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1729 if (ret) 1730 return ret; 1731 } 1732 1733 BUG_ON(offset < ctx->pool_offset || 1734 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1735 1736 memcpy(page_address(page), 1737 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1738 BLOCK_SECTOR_SHIFT]), 1739 PAGE_SIZE); 1740 return 0; 1741 } 1742 1743 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1744 struct r5l_recovery_ctx *ctx) 1745 { 1746 struct page *page = ctx->meta_page; 1747 struct r5l_meta_block *mb; 1748 u32 crc, stored_crc; 1749 int ret; 1750 1751 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1752 if (ret != 0) 1753 return ret; 1754 1755 mb = page_address(page); 1756 stored_crc = le32_to_cpu(mb->checksum); 1757 mb->checksum = 0; 1758 1759 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1760 le64_to_cpu(mb->seq) != ctx->seq || 1761 mb->version != R5LOG_VERSION || 1762 le64_to_cpu(mb->position) != ctx->pos) 1763 return -EINVAL; 1764 1765 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1766 if (stored_crc != crc) 1767 return -EINVAL; 1768 1769 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1770 return -EINVAL; 1771 1772 ctx->meta_total_blocks = BLOCK_SECTORS; 1773 1774 return 0; 1775 } 1776 1777 static void 1778 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1779 struct page *page, 1780 sector_t pos, u64 seq) 1781 { 1782 struct r5l_meta_block *mb; 1783 1784 mb = page_address(page); 1785 clear_page(mb); 1786 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1787 mb->version = R5LOG_VERSION; 1788 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1789 mb->seq = cpu_to_le64(seq); 1790 mb->position = cpu_to_le64(pos); 1791 } 1792 1793 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1794 u64 seq) 1795 { 1796 struct page *page; 1797 struct r5l_meta_block *mb; 1798 1799 page = alloc_page(GFP_KERNEL); 1800 if (!page) 1801 return -ENOMEM; 1802 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1803 mb = page_address(page); 1804 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1805 mb, PAGE_SIZE)); 1806 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1807 REQ_SYNC | REQ_FUA, false)) { 1808 __free_page(page); 1809 return -EIO; 1810 } 1811 __free_page(page); 1812 return 0; 1813 } 1814 1815 /* 1816 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1817 * to mark valid (potentially not flushed) data in the journal. 1818 * 1819 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1820 * so there should not be any mismatch here. 1821 */ 1822 static void r5l_recovery_load_data(struct r5l_log *log, 1823 struct stripe_head *sh, 1824 struct r5l_recovery_ctx *ctx, 1825 struct r5l_payload_data_parity *payload, 1826 sector_t log_offset) 1827 { 1828 struct mddev *mddev = log->rdev->mddev; 1829 struct r5conf *conf = mddev->private; 1830 int dd_idx; 1831 1832 raid5_compute_sector(conf, 1833 le64_to_cpu(payload->location), 0, 1834 &dd_idx, sh); 1835 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1836 sh->dev[dd_idx].log_checksum = 1837 le32_to_cpu(payload->checksum[0]); 1838 ctx->meta_total_blocks += BLOCK_SECTORS; 1839 1840 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1841 set_bit(STRIPE_R5C_CACHING, &sh->state); 1842 } 1843 1844 static void r5l_recovery_load_parity(struct r5l_log *log, 1845 struct stripe_head *sh, 1846 struct r5l_recovery_ctx *ctx, 1847 struct r5l_payload_data_parity *payload, 1848 sector_t log_offset) 1849 { 1850 struct mddev *mddev = log->rdev->mddev; 1851 struct r5conf *conf = mddev->private; 1852 1853 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1854 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1855 sh->dev[sh->pd_idx].log_checksum = 1856 le32_to_cpu(payload->checksum[0]); 1857 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1858 1859 if (sh->qd_idx >= 0) { 1860 r5l_recovery_read_page( 1861 log, ctx, sh->dev[sh->qd_idx].page, 1862 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1863 sh->dev[sh->qd_idx].log_checksum = 1864 le32_to_cpu(payload->checksum[1]); 1865 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1866 } 1867 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1868 } 1869 1870 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1871 { 1872 int i; 1873 1874 sh->state = 0; 1875 sh->log_start = MaxSector; 1876 for (i = sh->disks; i--; ) 1877 sh->dev[i].flags = 0; 1878 } 1879 1880 static void 1881 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1882 struct stripe_head *sh, 1883 struct r5l_recovery_ctx *ctx) 1884 { 1885 struct md_rdev *rdev, *rrdev; 1886 int disk_index; 1887 int data_count = 0; 1888 1889 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1890 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1891 continue; 1892 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1893 continue; 1894 data_count++; 1895 } 1896 1897 /* 1898 * stripes that only have parity must have been flushed 1899 * before the crash that we are now recovering from, so 1900 * there is nothing more to recovery. 1901 */ 1902 if (data_count == 0) 1903 goto out; 1904 1905 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1906 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1907 continue; 1908 1909 /* in case device is broken */ 1910 rcu_read_lock(); 1911 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1912 if (rdev) { 1913 atomic_inc(&rdev->nr_pending); 1914 rcu_read_unlock(); 1915 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1916 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1917 false); 1918 rdev_dec_pending(rdev, rdev->mddev); 1919 rcu_read_lock(); 1920 } 1921 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1922 if (rrdev) { 1923 atomic_inc(&rrdev->nr_pending); 1924 rcu_read_unlock(); 1925 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1926 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1927 false); 1928 rdev_dec_pending(rrdev, rrdev->mddev); 1929 rcu_read_lock(); 1930 } 1931 rcu_read_unlock(); 1932 } 1933 ctx->data_parity_stripes++; 1934 out: 1935 r5l_recovery_reset_stripe(sh); 1936 } 1937 1938 static struct stripe_head * 1939 r5c_recovery_alloc_stripe(struct r5conf *conf, 1940 sector_t stripe_sect) 1941 { 1942 struct stripe_head *sh; 1943 1944 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0); 1945 if (!sh) 1946 return NULL; /* no more stripe available */ 1947 1948 r5l_recovery_reset_stripe(sh); 1949 1950 return sh; 1951 } 1952 1953 static struct stripe_head * 1954 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1955 { 1956 struct stripe_head *sh; 1957 1958 list_for_each_entry(sh, list, lru) 1959 if (sh->sector == sect) 1960 return sh; 1961 return NULL; 1962 } 1963 1964 static void 1965 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1966 struct r5l_recovery_ctx *ctx) 1967 { 1968 struct stripe_head *sh, *next; 1969 1970 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1971 r5l_recovery_reset_stripe(sh); 1972 list_del_init(&sh->lru); 1973 raid5_release_stripe(sh); 1974 } 1975 } 1976 1977 static void 1978 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1979 struct r5l_recovery_ctx *ctx) 1980 { 1981 struct stripe_head *sh, *next; 1982 1983 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1984 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1985 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1986 list_del_init(&sh->lru); 1987 raid5_release_stripe(sh); 1988 } 1989 } 1990 1991 /* if matches return 0; otherwise return -EINVAL */ 1992 static int 1993 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1994 struct r5l_recovery_ctx *ctx, 1995 struct page *page, 1996 sector_t log_offset, __le32 log_checksum) 1997 { 1998 void *addr; 1999 u32 checksum; 2000 2001 r5l_recovery_read_page(log, ctx, page, log_offset); 2002 addr = kmap_atomic(page); 2003 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 2004 kunmap_atomic(addr); 2005 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 2006 } 2007 2008 /* 2009 * before loading data to stripe cache, we need verify checksum for all data, 2010 * if there is mismatch for any data page, we drop all data in the mata block 2011 */ 2012 static int 2013 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 2014 struct r5l_recovery_ctx *ctx) 2015 { 2016 struct mddev *mddev = log->rdev->mddev; 2017 struct r5conf *conf = mddev->private; 2018 struct r5l_meta_block *mb = page_address(ctx->meta_page); 2019 sector_t mb_offset = sizeof(struct r5l_meta_block); 2020 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2021 struct page *page; 2022 struct r5l_payload_data_parity *payload; 2023 struct r5l_payload_flush *payload_flush; 2024 2025 page = alloc_page(GFP_KERNEL); 2026 if (!page) 2027 return -ENOMEM; 2028 2029 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2030 payload = (void *)mb + mb_offset; 2031 payload_flush = (void *)mb + mb_offset; 2032 2033 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2034 if (r5l_recovery_verify_data_checksum( 2035 log, ctx, page, log_offset, 2036 payload->checksum[0]) < 0) 2037 goto mismatch; 2038 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2039 if (r5l_recovery_verify_data_checksum( 2040 log, ctx, page, log_offset, 2041 payload->checksum[0]) < 0) 2042 goto mismatch; 2043 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2044 r5l_recovery_verify_data_checksum( 2045 log, ctx, page, 2046 r5l_ring_add(log, log_offset, 2047 BLOCK_SECTORS), 2048 payload->checksum[1]) < 0) 2049 goto mismatch; 2050 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2051 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2052 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2053 goto mismatch; 2054 2055 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2056 mb_offset += sizeof(struct r5l_payload_flush) + 2057 le32_to_cpu(payload_flush->size); 2058 } else { 2059 /* DATA or PARITY payload */ 2060 log_offset = r5l_ring_add(log, log_offset, 2061 le32_to_cpu(payload->size)); 2062 mb_offset += sizeof(struct r5l_payload_data_parity) + 2063 sizeof(__le32) * 2064 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2065 } 2066 2067 } 2068 2069 put_page(page); 2070 return 0; 2071 2072 mismatch: 2073 put_page(page); 2074 return -EINVAL; 2075 } 2076 2077 /* 2078 * Analyze all data/parity pages in one meta block 2079 * Returns: 2080 * 0 for success 2081 * -EINVAL for unknown playload type 2082 * -EAGAIN for checksum mismatch of data page 2083 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2084 */ 2085 static int 2086 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2087 struct r5l_recovery_ctx *ctx, 2088 struct list_head *cached_stripe_list) 2089 { 2090 struct mddev *mddev = log->rdev->mddev; 2091 struct r5conf *conf = mddev->private; 2092 struct r5l_meta_block *mb; 2093 struct r5l_payload_data_parity *payload; 2094 struct r5l_payload_flush *payload_flush; 2095 int mb_offset; 2096 sector_t log_offset; 2097 sector_t stripe_sect; 2098 struct stripe_head *sh; 2099 int ret; 2100 2101 /* 2102 * for mismatch in data blocks, we will drop all data in this mb, but 2103 * we will still read next mb for other data with FLUSH flag, as 2104 * io_unit could finish out of order. 2105 */ 2106 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2107 if (ret == -EINVAL) 2108 return -EAGAIN; 2109 else if (ret) 2110 return ret; /* -ENOMEM duo to alloc_page() failed */ 2111 2112 mb = page_address(ctx->meta_page); 2113 mb_offset = sizeof(struct r5l_meta_block); 2114 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2115 2116 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2117 int dd; 2118 2119 payload = (void *)mb + mb_offset; 2120 payload_flush = (void *)mb + mb_offset; 2121 2122 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2123 int i, count; 2124 2125 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2126 for (i = 0; i < count; ++i) { 2127 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2128 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2129 stripe_sect); 2130 if (sh) { 2131 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2132 r5l_recovery_reset_stripe(sh); 2133 list_del_init(&sh->lru); 2134 raid5_release_stripe(sh); 2135 } 2136 } 2137 2138 mb_offset += sizeof(struct r5l_payload_flush) + 2139 le32_to_cpu(payload_flush->size); 2140 continue; 2141 } 2142 2143 /* DATA or PARITY payload */ 2144 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2145 raid5_compute_sector( 2146 conf, le64_to_cpu(payload->location), 0, &dd, 2147 NULL) 2148 : le64_to_cpu(payload->location); 2149 2150 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2151 stripe_sect); 2152 2153 if (!sh) { 2154 sh = r5c_recovery_alloc_stripe(conf, stripe_sect); 2155 /* 2156 * cannot get stripe from raid5_get_active_stripe 2157 * try replay some stripes 2158 */ 2159 if (!sh) { 2160 r5c_recovery_replay_stripes( 2161 cached_stripe_list, ctx); 2162 sh = r5c_recovery_alloc_stripe( 2163 conf, stripe_sect); 2164 } 2165 if (!sh) { 2166 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2167 mdname(mddev), 2168 conf->min_nr_stripes * 2); 2169 raid5_set_cache_size(mddev, 2170 conf->min_nr_stripes * 2); 2171 sh = r5c_recovery_alloc_stripe(conf, 2172 stripe_sect); 2173 } 2174 if (!sh) { 2175 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2176 mdname(mddev)); 2177 return -ENOMEM; 2178 } 2179 list_add_tail(&sh->lru, cached_stripe_list); 2180 } 2181 2182 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2183 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2184 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2185 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2186 list_move_tail(&sh->lru, cached_stripe_list); 2187 } 2188 r5l_recovery_load_data(log, sh, ctx, payload, 2189 log_offset); 2190 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2191 r5l_recovery_load_parity(log, sh, ctx, payload, 2192 log_offset); 2193 else 2194 return -EINVAL; 2195 2196 log_offset = r5l_ring_add(log, log_offset, 2197 le32_to_cpu(payload->size)); 2198 2199 mb_offset += sizeof(struct r5l_payload_data_parity) + 2200 sizeof(__le32) * 2201 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2202 } 2203 2204 return 0; 2205 } 2206 2207 /* 2208 * Load the stripe into cache. The stripe will be written out later by 2209 * the stripe cache state machine. 2210 */ 2211 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2212 struct stripe_head *sh) 2213 { 2214 struct r5dev *dev; 2215 int i; 2216 2217 for (i = sh->disks; i--; ) { 2218 dev = sh->dev + i; 2219 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2220 set_bit(R5_InJournal, &dev->flags); 2221 set_bit(R5_UPTODATE, &dev->flags); 2222 } 2223 } 2224 } 2225 2226 /* 2227 * Scan through the log for all to-be-flushed data 2228 * 2229 * For stripes with data and parity, namely Data-Parity stripe 2230 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2231 * 2232 * For stripes with only data, namely Data-Only stripe 2233 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2234 * 2235 * For a stripe, if we see data after parity, we should discard all previous 2236 * data and parity for this stripe, as these data are already flushed to 2237 * the array. 2238 * 2239 * At the end of the scan, we return the new journal_tail, which points to 2240 * first data-only stripe on the journal device, or next invalid meta block. 2241 */ 2242 static int r5c_recovery_flush_log(struct r5l_log *log, 2243 struct r5l_recovery_ctx *ctx) 2244 { 2245 struct stripe_head *sh; 2246 int ret = 0; 2247 2248 /* scan through the log */ 2249 while (1) { 2250 if (r5l_recovery_read_meta_block(log, ctx)) 2251 break; 2252 2253 ret = r5c_recovery_analyze_meta_block(log, ctx, 2254 &ctx->cached_list); 2255 /* 2256 * -EAGAIN means mismatch in data block, in this case, we still 2257 * try scan the next metablock 2258 */ 2259 if (ret && ret != -EAGAIN) 2260 break; /* ret == -EINVAL or -ENOMEM */ 2261 ctx->seq++; 2262 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2263 } 2264 2265 if (ret == -ENOMEM) { 2266 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2267 return ret; 2268 } 2269 2270 /* replay data-parity stripes */ 2271 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2272 2273 /* load data-only stripes to stripe cache */ 2274 list_for_each_entry(sh, &ctx->cached_list, lru) { 2275 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2276 r5c_recovery_load_one_stripe(log, sh); 2277 ctx->data_only_stripes++; 2278 } 2279 2280 return 0; 2281 } 2282 2283 /* 2284 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2285 * log will start here. but we can't let superblock point to last valid 2286 * meta block. The log might looks like: 2287 * | meta 1| meta 2| meta 3| 2288 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2289 * superblock points to meta 1, we write a new valid meta 2n. if crash 2290 * happens again, new recovery will start from meta 1. Since meta 2n is 2291 * valid now, recovery will think meta 3 is valid, which is wrong. 2292 * The solution is we create a new meta in meta2 with its seq == meta 2293 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2294 * will not think meta 3 is a valid meta, because its seq doesn't match 2295 */ 2296 2297 /* 2298 * Before recovery, the log looks like the following 2299 * 2300 * --------------------------------------------- 2301 * | valid log | invalid log | 2302 * --------------------------------------------- 2303 * ^ 2304 * |- log->last_checkpoint 2305 * |- log->last_cp_seq 2306 * 2307 * Now we scan through the log until we see invalid entry 2308 * 2309 * --------------------------------------------- 2310 * | valid log | invalid log | 2311 * --------------------------------------------- 2312 * ^ ^ 2313 * |- log->last_checkpoint |- ctx->pos 2314 * |- log->last_cp_seq |- ctx->seq 2315 * 2316 * From this point, we need to increase seq number by 10 to avoid 2317 * confusing next recovery. 2318 * 2319 * --------------------------------------------- 2320 * | valid log | invalid log | 2321 * --------------------------------------------- 2322 * ^ ^ 2323 * |- log->last_checkpoint |- ctx->pos+1 2324 * |- log->last_cp_seq |- ctx->seq+10001 2325 * 2326 * However, it is not safe to start the state machine yet, because data only 2327 * parities are not yet secured in RAID. To save these data only parities, we 2328 * rewrite them from seq+11. 2329 * 2330 * ----------------------------------------------------------------- 2331 * | valid log | data only stripes | invalid log | 2332 * ----------------------------------------------------------------- 2333 * ^ ^ 2334 * |- log->last_checkpoint |- ctx->pos+n 2335 * |- log->last_cp_seq |- ctx->seq+10000+n 2336 * 2337 * If failure happens again during this process, the recovery can safe start 2338 * again from log->last_checkpoint. 2339 * 2340 * Once data only stripes are rewritten to journal, we move log_tail 2341 * 2342 * ----------------------------------------------------------------- 2343 * | old log | data only stripes | invalid log | 2344 * ----------------------------------------------------------------- 2345 * ^ ^ 2346 * |- log->last_checkpoint |- ctx->pos+n 2347 * |- log->last_cp_seq |- ctx->seq+10000+n 2348 * 2349 * Then we can safely start the state machine. If failure happens from this 2350 * point on, the recovery will start from new log->last_checkpoint. 2351 */ 2352 static int 2353 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2354 struct r5l_recovery_ctx *ctx) 2355 { 2356 struct stripe_head *sh; 2357 struct mddev *mddev = log->rdev->mddev; 2358 struct page *page; 2359 sector_t next_checkpoint = MaxSector; 2360 2361 page = alloc_page(GFP_KERNEL); 2362 if (!page) { 2363 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2364 mdname(mddev)); 2365 return -ENOMEM; 2366 } 2367 2368 WARN_ON(list_empty(&ctx->cached_list)); 2369 2370 list_for_each_entry(sh, &ctx->cached_list, lru) { 2371 struct r5l_meta_block *mb; 2372 int i; 2373 int offset; 2374 sector_t write_pos; 2375 2376 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2377 r5l_recovery_create_empty_meta_block(log, page, 2378 ctx->pos, ctx->seq); 2379 mb = page_address(page); 2380 offset = le32_to_cpu(mb->meta_size); 2381 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2382 2383 for (i = sh->disks; i--; ) { 2384 struct r5dev *dev = &sh->dev[i]; 2385 struct r5l_payload_data_parity *payload; 2386 void *addr; 2387 2388 if (test_bit(R5_InJournal, &dev->flags)) { 2389 payload = (void *)mb + offset; 2390 payload->header.type = cpu_to_le16( 2391 R5LOG_PAYLOAD_DATA); 2392 payload->size = cpu_to_le32(BLOCK_SECTORS); 2393 payload->location = cpu_to_le64( 2394 raid5_compute_blocknr(sh, i, 0)); 2395 addr = kmap_atomic(dev->page); 2396 payload->checksum[0] = cpu_to_le32( 2397 crc32c_le(log->uuid_checksum, addr, 2398 PAGE_SIZE)); 2399 kunmap_atomic(addr); 2400 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2401 dev->page, REQ_OP_WRITE, 0, false); 2402 write_pos = r5l_ring_add(log, write_pos, 2403 BLOCK_SECTORS); 2404 offset += sizeof(__le32) + 2405 sizeof(struct r5l_payload_data_parity); 2406 2407 } 2408 } 2409 mb->meta_size = cpu_to_le32(offset); 2410 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2411 mb, PAGE_SIZE)); 2412 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2413 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); 2414 sh->log_start = ctx->pos; 2415 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2416 atomic_inc(&log->stripe_in_journal_count); 2417 ctx->pos = write_pos; 2418 ctx->seq += 1; 2419 next_checkpoint = sh->log_start; 2420 } 2421 log->next_checkpoint = next_checkpoint; 2422 __free_page(page); 2423 return 0; 2424 } 2425 2426 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2427 struct r5l_recovery_ctx *ctx) 2428 { 2429 struct mddev *mddev = log->rdev->mddev; 2430 struct r5conf *conf = mddev->private; 2431 struct stripe_head *sh, *next; 2432 2433 if (ctx->data_only_stripes == 0) 2434 return; 2435 2436 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2437 2438 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2439 r5c_make_stripe_write_out(sh); 2440 set_bit(STRIPE_HANDLE, &sh->state); 2441 list_del_init(&sh->lru); 2442 raid5_release_stripe(sh); 2443 } 2444 2445 md_wakeup_thread(conf->mddev->thread); 2446 /* reuse conf->wait_for_quiescent in recovery */ 2447 wait_event(conf->wait_for_quiescent, 2448 atomic_read(&conf->active_stripes) == 0); 2449 2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2451 } 2452 2453 static int r5l_recovery_log(struct r5l_log *log) 2454 { 2455 struct mddev *mddev = log->rdev->mddev; 2456 struct r5l_recovery_ctx *ctx; 2457 int ret; 2458 sector_t pos; 2459 2460 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2461 if (!ctx) 2462 return -ENOMEM; 2463 2464 ctx->pos = log->last_checkpoint; 2465 ctx->seq = log->last_cp_seq; 2466 INIT_LIST_HEAD(&ctx->cached_list); 2467 ctx->meta_page = alloc_page(GFP_KERNEL); 2468 2469 if (!ctx->meta_page) { 2470 ret = -ENOMEM; 2471 goto meta_page; 2472 } 2473 2474 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2475 ret = -ENOMEM; 2476 goto ra_pool; 2477 } 2478 2479 ret = r5c_recovery_flush_log(log, ctx); 2480 2481 if (ret) 2482 goto error; 2483 2484 pos = ctx->pos; 2485 ctx->seq += 10000; 2486 2487 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2488 pr_debug("md/raid:%s: starting from clean shutdown\n", 2489 mdname(mddev)); 2490 else 2491 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2492 mdname(mddev), ctx->data_only_stripes, 2493 ctx->data_parity_stripes); 2494 2495 if (ctx->data_only_stripes == 0) { 2496 log->next_checkpoint = ctx->pos; 2497 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2498 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2499 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2500 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2501 mdname(mddev)); 2502 ret = -EIO; 2503 goto error; 2504 } 2505 2506 log->log_start = ctx->pos; 2507 log->seq = ctx->seq; 2508 log->last_checkpoint = pos; 2509 r5l_write_super(log, pos); 2510 2511 r5c_recovery_flush_data_only_stripes(log, ctx); 2512 ret = 0; 2513 error: 2514 r5l_recovery_free_ra_pool(log, ctx); 2515 ra_pool: 2516 __free_page(ctx->meta_page); 2517 meta_page: 2518 kfree(ctx); 2519 return ret; 2520 } 2521 2522 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2523 { 2524 struct mddev *mddev = log->rdev->mddev; 2525 2526 log->rdev->journal_tail = cp; 2527 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2528 } 2529 2530 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2531 { 2532 struct r5conf *conf; 2533 int ret; 2534 2535 ret = mddev_lock(mddev); 2536 if (ret) 2537 return ret; 2538 2539 conf = mddev->private; 2540 if (!conf || !conf->log) { 2541 mddev_unlock(mddev); 2542 return 0; 2543 } 2544 2545 switch (conf->log->r5c_journal_mode) { 2546 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2547 ret = snprintf( 2548 page, PAGE_SIZE, "[%s] %s\n", 2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2550 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2551 break; 2552 case R5C_JOURNAL_MODE_WRITE_BACK: 2553 ret = snprintf( 2554 page, PAGE_SIZE, "%s [%s]\n", 2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2556 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2557 break; 2558 default: 2559 ret = 0; 2560 } 2561 mddev_unlock(mddev); 2562 return ret; 2563 } 2564 2565 /* 2566 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2567 * 2568 * @mode as defined in 'enum r5c_journal_mode'. 2569 * 2570 */ 2571 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2572 { 2573 struct r5conf *conf; 2574 int err; 2575 2576 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2577 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2578 return -EINVAL; 2579 2580 err = mddev_lock(mddev); 2581 if (err) 2582 return err; 2583 conf = mddev->private; 2584 if (!conf || !conf->log) { 2585 mddev_unlock(mddev); 2586 return -ENODEV; 2587 } 2588 2589 if (raid5_calc_degraded(conf) > 0 && 2590 mode == R5C_JOURNAL_MODE_WRITE_BACK) { 2591 mddev_unlock(mddev); 2592 return -EINVAL; 2593 } 2594 2595 mddev_suspend(mddev); 2596 conf->log->r5c_journal_mode = mode; 2597 mddev_resume(mddev); 2598 mddev_unlock(mddev); 2599 2600 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2601 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2602 return 0; 2603 } 2604 EXPORT_SYMBOL(r5c_journal_mode_set); 2605 2606 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2607 const char *page, size_t length) 2608 { 2609 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2610 size_t len = length; 2611 2612 if (len < 2) 2613 return -EINVAL; 2614 2615 if (page[len - 1] == '\n') 2616 len--; 2617 2618 while (mode--) 2619 if (strlen(r5c_journal_mode_str[mode]) == len && 2620 !strncmp(page, r5c_journal_mode_str[mode], len)) 2621 break; 2622 2623 return r5c_journal_mode_set(mddev, mode) ?: length; 2624 } 2625 2626 struct md_sysfs_entry 2627 r5c_journal_mode = __ATTR(journal_mode, 0644, 2628 r5c_journal_mode_show, r5c_journal_mode_store); 2629 2630 /* 2631 * Try handle write operation in caching phase. This function should only 2632 * be called in write-back mode. 2633 * 2634 * If all outstanding writes can be handled in caching phase, returns 0 2635 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2636 * and returns -EAGAIN 2637 */ 2638 int r5c_try_caching_write(struct r5conf *conf, 2639 struct stripe_head *sh, 2640 struct stripe_head_state *s, 2641 int disks) 2642 { 2643 struct r5l_log *log = conf->log; 2644 int i; 2645 struct r5dev *dev; 2646 int to_cache = 0; 2647 void **pslot; 2648 sector_t tree_index; 2649 int ret; 2650 uintptr_t refcount; 2651 2652 BUG_ON(!r5c_is_writeback(log)); 2653 2654 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2655 /* 2656 * There are two different scenarios here: 2657 * 1. The stripe has some data cached, and it is sent to 2658 * write-out phase for reclaim 2659 * 2. The stripe is clean, and this is the first write 2660 * 2661 * For 1, return -EAGAIN, so we continue with 2662 * handle_stripe_dirtying(). 2663 * 2664 * For 2, set STRIPE_R5C_CACHING and continue with caching 2665 * write. 2666 */ 2667 2668 /* case 1: anything injournal or anything in written */ 2669 if (s->injournal > 0 || s->written > 0) 2670 return -EAGAIN; 2671 /* case 2 */ 2672 set_bit(STRIPE_R5C_CACHING, &sh->state); 2673 } 2674 2675 /* 2676 * When run in degraded mode, array is set to write-through mode. 2677 * This check helps drain pending write safely in the transition to 2678 * write-through mode. 2679 * 2680 * When a stripe is syncing, the write is also handled in write 2681 * through mode. 2682 */ 2683 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2684 r5c_make_stripe_write_out(sh); 2685 return -EAGAIN; 2686 } 2687 2688 for (i = disks; i--; ) { 2689 dev = &sh->dev[i]; 2690 /* if non-overwrite, use writing-out phase */ 2691 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2692 !test_bit(R5_InJournal, &dev->flags)) { 2693 r5c_make_stripe_write_out(sh); 2694 return -EAGAIN; 2695 } 2696 } 2697 2698 /* if the stripe is not counted in big_stripe_tree, add it now */ 2699 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2700 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2701 tree_index = r5c_tree_index(conf, sh->sector); 2702 spin_lock(&log->tree_lock); 2703 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2704 tree_index); 2705 if (pslot) { 2706 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2707 pslot, &log->tree_lock) >> 2708 R5C_RADIX_COUNT_SHIFT; 2709 radix_tree_replace_slot( 2710 &log->big_stripe_tree, pslot, 2711 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2712 } else { 2713 /* 2714 * this radix_tree_insert can fail safely, so no 2715 * need to call radix_tree_preload() 2716 */ 2717 ret = radix_tree_insert( 2718 &log->big_stripe_tree, tree_index, 2719 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2720 if (ret) { 2721 spin_unlock(&log->tree_lock); 2722 r5c_make_stripe_write_out(sh); 2723 return -EAGAIN; 2724 } 2725 } 2726 spin_unlock(&log->tree_lock); 2727 2728 /* 2729 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2730 * counted in the radix tree 2731 */ 2732 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2733 atomic_inc(&conf->r5c_cached_partial_stripes); 2734 } 2735 2736 for (i = disks; i--; ) { 2737 dev = &sh->dev[i]; 2738 if (dev->towrite) { 2739 set_bit(R5_Wantwrite, &dev->flags); 2740 set_bit(R5_Wantdrain, &dev->flags); 2741 set_bit(R5_LOCKED, &dev->flags); 2742 to_cache++; 2743 } 2744 } 2745 2746 if (to_cache) { 2747 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2748 /* 2749 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2750 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2751 * r5c_handle_data_cached() 2752 */ 2753 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2754 } 2755 2756 return 0; 2757 } 2758 2759 /* 2760 * free extra pages (orig_page) we allocated for prexor 2761 */ 2762 void r5c_release_extra_page(struct stripe_head *sh) 2763 { 2764 struct r5conf *conf = sh->raid_conf; 2765 int i; 2766 bool using_disk_info_extra_page; 2767 2768 using_disk_info_extra_page = 2769 sh->dev[0].orig_page == conf->disks[0].extra_page; 2770 2771 for (i = sh->disks; i--; ) 2772 if (sh->dev[i].page != sh->dev[i].orig_page) { 2773 struct page *p = sh->dev[i].orig_page; 2774 2775 sh->dev[i].orig_page = sh->dev[i].page; 2776 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2777 2778 if (!using_disk_info_extra_page) 2779 put_page(p); 2780 } 2781 2782 if (using_disk_info_extra_page) { 2783 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2784 md_wakeup_thread(conf->mddev->thread); 2785 } 2786 } 2787 2788 void r5c_use_extra_page(struct stripe_head *sh) 2789 { 2790 struct r5conf *conf = sh->raid_conf; 2791 int i; 2792 struct r5dev *dev; 2793 2794 for (i = sh->disks; i--; ) { 2795 dev = &sh->dev[i]; 2796 if (dev->orig_page != dev->page) 2797 put_page(dev->orig_page); 2798 dev->orig_page = conf->disks[i].extra_page; 2799 } 2800 } 2801 2802 /* 2803 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2804 * stripe is committed to RAID disks. 2805 */ 2806 void r5c_finish_stripe_write_out(struct r5conf *conf, 2807 struct stripe_head *sh, 2808 struct stripe_head_state *s) 2809 { 2810 struct r5l_log *log = conf->log; 2811 int i; 2812 int do_wakeup = 0; 2813 sector_t tree_index; 2814 void **pslot; 2815 uintptr_t refcount; 2816 2817 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2818 return; 2819 2820 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2821 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2822 2823 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2824 return; 2825 2826 for (i = sh->disks; i--; ) { 2827 clear_bit(R5_InJournal, &sh->dev[i].flags); 2828 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2829 do_wakeup = 1; 2830 } 2831 2832 /* 2833 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2834 * We updated R5_InJournal, so we also update s->injournal. 2835 */ 2836 s->injournal = 0; 2837 2838 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2839 if (atomic_dec_and_test(&conf->pending_full_writes)) 2840 md_wakeup_thread(conf->mddev->thread); 2841 2842 if (do_wakeup) 2843 wake_up(&conf->wait_for_overlap); 2844 2845 spin_lock_irq(&log->stripe_in_journal_lock); 2846 list_del_init(&sh->r5c); 2847 spin_unlock_irq(&log->stripe_in_journal_lock); 2848 sh->log_start = MaxSector; 2849 2850 atomic_dec(&log->stripe_in_journal_count); 2851 r5c_update_log_state(log); 2852 2853 /* stop counting this stripe in big_stripe_tree */ 2854 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2855 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2856 tree_index = r5c_tree_index(conf, sh->sector); 2857 spin_lock(&log->tree_lock); 2858 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2859 tree_index); 2860 BUG_ON(pslot == NULL); 2861 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2862 pslot, &log->tree_lock) >> 2863 R5C_RADIX_COUNT_SHIFT; 2864 if (refcount == 1) 2865 radix_tree_delete(&log->big_stripe_tree, tree_index); 2866 else 2867 radix_tree_replace_slot( 2868 &log->big_stripe_tree, pslot, 2869 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2870 spin_unlock(&log->tree_lock); 2871 } 2872 2873 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2874 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2875 atomic_dec(&conf->r5c_flushing_partial_stripes); 2876 atomic_dec(&conf->r5c_cached_partial_stripes); 2877 } 2878 2879 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2880 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2881 atomic_dec(&conf->r5c_flushing_full_stripes); 2882 atomic_dec(&conf->r5c_cached_full_stripes); 2883 } 2884 2885 r5l_append_flush_payload(log, sh->sector); 2886 /* stripe is flused to raid disks, we can do resync now */ 2887 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2888 set_bit(STRIPE_HANDLE, &sh->state); 2889 } 2890 2891 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2892 { 2893 struct r5conf *conf = sh->raid_conf; 2894 int pages = 0; 2895 int reserve; 2896 int i; 2897 int ret = 0; 2898 2899 BUG_ON(!log); 2900 2901 for (i = 0; i < sh->disks; i++) { 2902 void *addr; 2903 2904 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2905 continue; 2906 addr = kmap_atomic(sh->dev[i].page); 2907 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2908 addr, PAGE_SIZE); 2909 kunmap_atomic(addr); 2910 pages++; 2911 } 2912 WARN_ON(pages == 0); 2913 2914 /* 2915 * The stripe must enter state machine again to call endio, so 2916 * don't delay. 2917 */ 2918 clear_bit(STRIPE_DELAYED, &sh->state); 2919 atomic_inc(&sh->count); 2920 2921 mutex_lock(&log->io_mutex); 2922 /* meta + data */ 2923 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2924 2925 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2926 sh->log_start == MaxSector) 2927 r5l_add_no_space_stripe(log, sh); 2928 else if (!r5l_has_free_space(log, reserve)) { 2929 if (sh->log_start == log->last_checkpoint) 2930 BUG(); 2931 else 2932 r5l_add_no_space_stripe(log, sh); 2933 } else { 2934 ret = r5l_log_stripe(log, sh, pages, 0); 2935 if (ret) { 2936 spin_lock_irq(&log->io_list_lock); 2937 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2938 spin_unlock_irq(&log->io_list_lock); 2939 } 2940 } 2941 2942 mutex_unlock(&log->io_mutex); 2943 return 0; 2944 } 2945 2946 /* check whether this big stripe is in write back cache. */ 2947 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2948 { 2949 struct r5l_log *log = conf->log; 2950 sector_t tree_index; 2951 void *slot; 2952 2953 if (!log) 2954 return false; 2955 2956 WARN_ON_ONCE(!rcu_read_lock_held()); 2957 tree_index = r5c_tree_index(conf, sect); 2958 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2959 return slot != NULL; 2960 } 2961 2962 static int r5l_load_log(struct r5l_log *log) 2963 { 2964 struct md_rdev *rdev = log->rdev; 2965 struct page *page; 2966 struct r5l_meta_block *mb; 2967 sector_t cp = log->rdev->journal_tail; 2968 u32 stored_crc, expected_crc; 2969 bool create_super = false; 2970 int ret = 0; 2971 2972 /* Make sure it's valid */ 2973 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2974 cp = 0; 2975 page = alloc_page(GFP_KERNEL); 2976 if (!page) 2977 return -ENOMEM; 2978 2979 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2980 ret = -EIO; 2981 goto ioerr; 2982 } 2983 mb = page_address(page); 2984 2985 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2986 mb->version != R5LOG_VERSION) { 2987 create_super = true; 2988 goto create; 2989 } 2990 stored_crc = le32_to_cpu(mb->checksum); 2991 mb->checksum = 0; 2992 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2993 if (stored_crc != expected_crc) { 2994 create_super = true; 2995 goto create; 2996 } 2997 if (le64_to_cpu(mb->position) != cp) { 2998 create_super = true; 2999 goto create; 3000 } 3001 create: 3002 if (create_super) { 3003 log->last_cp_seq = prandom_u32(); 3004 cp = 0; 3005 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 3006 /* 3007 * Make sure super points to correct address. Log might have 3008 * data very soon. If super hasn't correct log tail address, 3009 * recovery can't find the log 3010 */ 3011 r5l_write_super(log, cp); 3012 } else 3013 log->last_cp_seq = le64_to_cpu(mb->seq); 3014 3015 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 3016 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 3017 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 3018 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 3019 log->last_checkpoint = cp; 3020 3021 __free_page(page); 3022 3023 if (create_super) { 3024 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 3025 log->seq = log->last_cp_seq + 1; 3026 log->next_checkpoint = cp; 3027 } else 3028 ret = r5l_recovery_log(log); 3029 3030 r5c_update_log_state(log); 3031 return ret; 3032 ioerr: 3033 __free_page(page); 3034 return ret; 3035 } 3036 3037 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 3038 { 3039 struct r5conf *conf = mddev->private; 3040 struct r5l_log *log = conf->log; 3041 3042 if (!log) 3043 return; 3044 3045 if ((raid5_calc_degraded(conf) > 0 || 3046 test_bit(Journal, &rdev->flags)) && 3047 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3048 schedule_work(&log->disable_writeback_work); 3049 } 3050 3051 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3052 { 3053 struct request_queue *q = bdev_get_queue(rdev->bdev); 3054 struct r5l_log *log; 3055 char b[BDEVNAME_SIZE]; 3056 3057 pr_debug("md/raid:%s: using device %s as journal\n", 3058 mdname(conf->mddev), bdevname(rdev->bdev, b)); 3059 3060 if (PAGE_SIZE != 4096) 3061 return -EINVAL; 3062 3063 /* 3064 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3065 * raid_disks r5l_payload_data_parity. 3066 * 3067 * Write journal and cache does not work for very big array 3068 * (raid_disks > 203) 3069 */ 3070 if (sizeof(struct r5l_meta_block) + 3071 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3072 conf->raid_disks) > PAGE_SIZE) { 3073 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3074 mdname(conf->mddev), conf->raid_disks); 3075 return -EINVAL; 3076 } 3077 3078 log = kzalloc(sizeof(*log), GFP_KERNEL); 3079 if (!log) 3080 return -ENOMEM; 3081 log->rdev = rdev; 3082 3083 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3084 3085 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3086 sizeof(rdev->mddev->uuid)); 3087 3088 mutex_init(&log->io_mutex); 3089 3090 spin_lock_init(&log->io_list_lock); 3091 INIT_LIST_HEAD(&log->running_ios); 3092 INIT_LIST_HEAD(&log->io_end_ios); 3093 INIT_LIST_HEAD(&log->flushing_ios); 3094 INIT_LIST_HEAD(&log->finished_ios); 3095 bio_init(&log->flush_bio, NULL, 0); 3096 3097 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3098 if (!log->io_kc) 3099 goto io_kc; 3100 3101 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc); 3102 if (!log->io_pool) 3103 goto io_pool; 3104 3105 log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3106 if (!log->bs) 3107 goto io_bs; 3108 3109 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0); 3110 if (!log->meta_pool) 3111 goto out_mempool; 3112 3113 spin_lock_init(&log->tree_lock); 3114 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3115 3116 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3117 log->rdev->mddev, "reclaim"); 3118 if (!log->reclaim_thread) 3119 goto reclaim_thread; 3120 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3121 3122 init_waitqueue_head(&log->iounit_wait); 3123 3124 INIT_LIST_HEAD(&log->no_mem_stripes); 3125 3126 INIT_LIST_HEAD(&log->no_space_stripes); 3127 spin_lock_init(&log->no_space_stripes_lock); 3128 3129 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3130 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3131 3132 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3133 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3134 spin_lock_init(&log->stripe_in_journal_lock); 3135 atomic_set(&log->stripe_in_journal_count, 0); 3136 3137 rcu_assign_pointer(conf->log, log); 3138 3139 if (r5l_load_log(log)) 3140 goto error; 3141 3142 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3143 return 0; 3144 3145 error: 3146 rcu_assign_pointer(conf->log, NULL); 3147 md_unregister_thread(&log->reclaim_thread); 3148 reclaim_thread: 3149 mempool_destroy(log->meta_pool); 3150 out_mempool: 3151 bioset_free(log->bs); 3152 io_bs: 3153 mempool_destroy(log->io_pool); 3154 io_pool: 3155 kmem_cache_destroy(log->io_kc); 3156 io_kc: 3157 kfree(log); 3158 return -EINVAL; 3159 } 3160 3161 void r5l_exit_log(struct r5conf *conf) 3162 { 3163 struct r5l_log *log = conf->log; 3164 3165 conf->log = NULL; 3166 synchronize_rcu(); 3167 3168 flush_work(&log->disable_writeback_work); 3169 md_unregister_thread(&log->reclaim_thread); 3170 mempool_destroy(log->meta_pool); 3171 bioset_free(log->bs); 3172 mempool_destroy(log->io_pool); 3173 kmem_cache_destroy(log->io_kc); 3174 kfree(log); 3175 } 3176