xref: /openbmc/linux/drivers/md/raid5-cache.c (revision 5c88f403)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include "md.h"
24 #include "raid5.h"
25 #include "bitmap.h"
26 
27 /*
28  * metadata/data stored in disk with 4k size unit (a block) regardless
29  * underneath hardware sector size. only works with PAGE_SIZE == 4096
30  */
31 #define BLOCK_SECTORS (8)
32 
33 /*
34  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
35  *
36  * In write through mode, the reclaim runs every log->max_free_space.
37  * This can prevent the recovery scans for too long
38  */
39 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
40 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
41 
42 /* wake up reclaim thread periodically */
43 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
44 /* start flush with these full stripes */
45 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
46 /* reclaim stripes in groups */
47 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
48 
49 /*
50  * We only need 2 bios per I/O unit to make progress, but ensure we
51  * have a few more available to not get too tight.
52  */
53 #define R5L_POOL_SIZE	4
54 
55 /*
56  * r5c journal modes of the array: write-back or write-through.
57  * write-through mode has identical behavior as existing log only
58  * implementation.
59  */
60 enum r5c_journal_mode {
61 	R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
62 	R5C_JOURNAL_MODE_WRITE_BACK = 1,
63 };
64 
65 static char *r5c_journal_mode_str[] = {"write-through",
66 				       "write-back"};
67 /*
68  * raid5 cache state machine
69  *
70  * With the RAID cache, each stripe works in two phases:
71  *	- caching phase
72  *	- writing-out phase
73  *
74  * These two phases are controlled by bit STRIPE_R5C_CACHING:
75  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
76  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
77  *
78  * When there is no journal, or the journal is in write-through mode,
79  * the stripe is always in writing-out phase.
80  *
81  * For write-back journal, the stripe is sent to caching phase on write
82  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
83  * the write-out phase by clearing STRIPE_R5C_CACHING.
84  *
85  * Stripes in caching phase do not write the raid disks. Instead, all
86  * writes are committed from the log device. Therefore, a stripe in
87  * caching phase handles writes as:
88  *	- write to log device
89  *	- return IO
90  *
91  * Stripes in writing-out phase handle writes as:
92  *	- calculate parity
93  *	- write pending data and parity to journal
94  *	- write data and parity to raid disks
95  *	- return IO for pending writes
96  */
97 
98 struct r5l_log {
99 	struct md_rdev *rdev;
100 
101 	u32 uuid_checksum;
102 
103 	sector_t device_size;		/* log device size, round to
104 					 * BLOCK_SECTORS */
105 	sector_t max_free_space;	/* reclaim run if free space is at
106 					 * this size */
107 
108 	sector_t last_checkpoint;	/* log tail. where recovery scan
109 					 * starts from */
110 	u64 last_cp_seq;		/* log tail sequence */
111 
112 	sector_t log_start;		/* log head. where new data appends */
113 	u64 seq;			/* log head sequence */
114 
115 	sector_t next_checkpoint;
116 
117 	struct mutex io_mutex;
118 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
119 
120 	spinlock_t io_list_lock;
121 	struct list_head running_ios;	/* io_units which are still running,
122 					 * and have not yet been completely
123 					 * written to the log */
124 	struct list_head io_end_ios;	/* io_units which have been completely
125 					 * written to the log but not yet written
126 					 * to the RAID */
127 	struct list_head flushing_ios;	/* io_units which are waiting for log
128 					 * cache flush */
129 	struct list_head finished_ios;	/* io_units which settle down in log disk */
130 	struct bio flush_bio;
131 
132 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
133 
134 	struct kmem_cache *io_kc;
135 	mempool_t *io_pool;
136 	struct bio_set *bs;
137 	mempool_t *meta_pool;
138 
139 	struct md_thread *reclaim_thread;
140 	unsigned long reclaim_target;	/* number of space that need to be
141 					 * reclaimed.  if it's 0, reclaim spaces
142 					 * used by io_units which are in
143 					 * IO_UNIT_STRIPE_END state (eg, reclaim
144 					 * dones't wait for specific io_unit
145 					 * switching to IO_UNIT_STRIPE_END
146 					 * state) */
147 	wait_queue_head_t iounit_wait;
148 
149 	struct list_head no_space_stripes; /* pending stripes, log has no space */
150 	spinlock_t no_space_stripes_lock;
151 
152 	bool need_cache_flush;
153 
154 	/* for r5c_cache */
155 	enum r5c_journal_mode r5c_journal_mode;
156 
157 	/* all stripes in r5cache, in the order of seq at sh->log_start */
158 	struct list_head stripe_in_journal_list;
159 
160 	spinlock_t stripe_in_journal_lock;
161 	atomic_t stripe_in_journal_count;
162 
163 	/* to submit async io_units, to fulfill ordering of flush */
164 	struct work_struct deferred_io_work;
165 };
166 
167 /*
168  * an IO range starts from a meta data block and end at the next meta data
169  * block. The io unit's the meta data block tracks data/parity followed it. io
170  * unit is written to log disk with normal write, as we always flush log disk
171  * first and then start move data to raid disks, there is no requirement to
172  * write io unit with FLUSH/FUA
173  */
174 struct r5l_io_unit {
175 	struct r5l_log *log;
176 
177 	struct page *meta_page;	/* store meta block */
178 	int meta_offset;	/* current offset in meta_page */
179 
180 	struct bio *current_bio;/* current_bio accepting new data */
181 
182 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
183 	u64 seq;		/* seq number of the metablock */
184 	sector_t log_start;	/* where the io_unit starts */
185 	sector_t log_end;	/* where the io_unit ends */
186 	struct list_head log_sibling; /* log->running_ios */
187 	struct list_head stripe_list; /* stripes added to the io_unit */
188 
189 	int state;
190 	bool need_split_bio;
191 	struct bio *split_bio;
192 
193 	unsigned int has_flush:1;      /* include flush request */
194 	unsigned int has_fua:1;        /* include fua request */
195 	unsigned int has_null_flush:1; /* include empty flush request */
196 	/*
197 	 * io isn't sent yet, flush/fua request can only be submitted till it's
198 	 * the first IO in running_ios list
199 	 */
200 	unsigned int io_deferred:1;
201 
202 	struct bio_list flush_barriers;   /* size == 0 flush bios */
203 };
204 
205 /* r5l_io_unit state */
206 enum r5l_io_unit_state {
207 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
208 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
209 				 * don't accepting new bio */
210 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
211 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
212 };
213 
214 bool r5c_is_writeback(struct r5l_log *log)
215 {
216 	return (log != NULL &&
217 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
218 }
219 
220 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
221 {
222 	start += inc;
223 	if (start >= log->device_size)
224 		start = start - log->device_size;
225 	return start;
226 }
227 
228 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
229 				  sector_t end)
230 {
231 	if (end >= start)
232 		return end - start;
233 	else
234 		return end + log->device_size - start;
235 }
236 
237 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
238 {
239 	sector_t used_size;
240 
241 	used_size = r5l_ring_distance(log, log->last_checkpoint,
242 					log->log_start);
243 
244 	return log->device_size > used_size + size;
245 }
246 
247 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
248 				    enum r5l_io_unit_state state)
249 {
250 	if (WARN_ON(io->state >= state))
251 		return;
252 	io->state = state;
253 }
254 
255 static void
256 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
257 			      struct bio_list *return_bi)
258 {
259 	struct bio *wbi, *wbi2;
260 
261 	wbi = dev->written;
262 	dev->written = NULL;
263 	while (wbi && wbi->bi_iter.bi_sector <
264 	       dev->sector + STRIPE_SECTORS) {
265 		wbi2 = r5_next_bio(wbi, dev->sector);
266 		if (!raid5_dec_bi_active_stripes(wbi)) {
267 			md_write_end(conf->mddev);
268 			bio_list_add(return_bi, wbi);
269 		}
270 		wbi = wbi2;
271 	}
272 }
273 
274 void r5c_handle_cached_data_endio(struct r5conf *conf,
275 	  struct stripe_head *sh, int disks, struct bio_list *return_bi)
276 {
277 	int i;
278 
279 	for (i = sh->disks; i--; ) {
280 		if (sh->dev[i].written) {
281 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
282 			r5c_return_dev_pending_writes(conf, &sh->dev[i],
283 						      return_bi);
284 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
285 					STRIPE_SECTORS,
286 					!test_bit(STRIPE_DEGRADED, &sh->state),
287 					0);
288 		}
289 	}
290 }
291 
292 /* Check whether we should flush some stripes to free up stripe cache */
293 void r5c_check_stripe_cache_usage(struct r5conf *conf)
294 {
295 	int total_cached;
296 
297 	if (!r5c_is_writeback(conf->log))
298 		return;
299 
300 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
301 		atomic_read(&conf->r5c_cached_full_stripes);
302 
303 	/*
304 	 * The following condition is true for either of the following:
305 	 *   - stripe cache pressure high:
306 	 *          total_cached > 3/4 min_nr_stripes ||
307 	 *          empty_inactive_list_nr > 0
308 	 *   - stripe cache pressure moderate:
309 	 *          total_cached > 1/2 min_nr_stripes
310 	 */
311 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
312 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
313 		r5l_wake_reclaim(conf->log, 0);
314 }
315 
316 /*
317  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
318  * stripes in the cache
319  */
320 void r5c_check_cached_full_stripe(struct r5conf *conf)
321 {
322 	if (!r5c_is_writeback(conf->log))
323 		return;
324 
325 	/*
326 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
327 	 * or a full stripe (chunk size / 4k stripes).
328 	 */
329 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
330 	    min(R5C_FULL_STRIPE_FLUSH_BATCH,
331 		conf->chunk_sectors >> STRIPE_SHIFT))
332 		r5l_wake_reclaim(conf->log, 0);
333 }
334 
335 /*
336  * Total log space (in sectors) needed to flush all data in cache
337  *
338  * Currently, writing-out phase automatically includes all pending writes
339  * to the same sector. So the reclaim of each stripe takes up to
340  * (conf->raid_disks + 1) pages of log space.
341  *
342  * To totally avoid deadlock due to log space, the code reserves
343  * (conf->raid_disks + 1) pages for each stripe in cache, which is not
344  * necessary in most cases.
345  *
346  * To improve this, we will need writing-out phase to be able to NOT include
347  * pending writes, which will reduce the requirement to
348  * (conf->max_degraded + 1) pages per stripe in cache.
349  */
350 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
351 {
352 	struct r5l_log *log = conf->log;
353 
354 	if (!r5c_is_writeback(log))
355 		return 0;
356 
357 	return BLOCK_SECTORS * (conf->raid_disks + 1) *
358 		atomic_read(&log->stripe_in_journal_count);
359 }
360 
361 /*
362  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
363  *
364  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
365  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
366  * device is less than 2x of reclaim_required_space.
367  */
368 static inline void r5c_update_log_state(struct r5l_log *log)
369 {
370 	struct r5conf *conf = log->rdev->mddev->private;
371 	sector_t free_space;
372 	sector_t reclaim_space;
373 	bool wake_reclaim = false;
374 
375 	if (!r5c_is_writeback(log))
376 		return;
377 
378 	free_space = r5l_ring_distance(log, log->log_start,
379 				       log->last_checkpoint);
380 	reclaim_space = r5c_log_required_to_flush_cache(conf);
381 	if (free_space < 2 * reclaim_space)
382 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
383 	else {
384 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
385 			wake_reclaim = true;
386 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
387 	}
388 	if (free_space < 3 * reclaim_space)
389 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
390 	else
391 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
392 
393 	if (wake_reclaim)
394 		r5l_wake_reclaim(log, 0);
395 }
396 
397 /*
398  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
399  * This function should only be called in write-back mode.
400  */
401 void r5c_make_stripe_write_out(struct stripe_head *sh)
402 {
403 	struct r5conf *conf = sh->raid_conf;
404 	struct r5l_log *log = conf->log;
405 
406 	BUG_ON(!r5c_is_writeback(log));
407 
408 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
409 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
410 
411 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
412 		atomic_inc(&conf->preread_active_stripes);
413 
414 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
415 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
416 		atomic_dec(&conf->r5c_cached_partial_stripes);
417 	}
418 
419 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
420 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
421 		atomic_dec(&conf->r5c_cached_full_stripes);
422 	}
423 }
424 
425 static void r5c_handle_data_cached(struct stripe_head *sh)
426 {
427 	int i;
428 
429 	for (i = sh->disks; i--; )
430 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
431 			set_bit(R5_InJournal, &sh->dev[i].flags);
432 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
433 		}
434 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
435 }
436 
437 /*
438  * this journal write must contain full parity,
439  * it may also contain some data pages
440  */
441 static void r5c_handle_parity_cached(struct stripe_head *sh)
442 {
443 	int i;
444 
445 	for (i = sh->disks; i--; )
446 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
447 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
448 }
449 
450 /*
451  * Setting proper flags after writing (or flushing) data and/or parity to the
452  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
453  */
454 static void r5c_finish_cache_stripe(struct stripe_head *sh)
455 {
456 	struct r5l_log *log = sh->raid_conf->log;
457 
458 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
459 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
460 		/*
461 		 * Set R5_InJournal for parity dev[pd_idx]. This means
462 		 * all data AND parity in the journal. For RAID 6, it is
463 		 * NOT necessary to set the flag for dev[qd_idx], as the
464 		 * two parities are written out together.
465 		 */
466 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
467 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
468 		r5c_handle_data_cached(sh);
469 	} else {
470 		r5c_handle_parity_cached(sh);
471 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
472 	}
473 }
474 
475 static void r5l_io_run_stripes(struct r5l_io_unit *io)
476 {
477 	struct stripe_head *sh, *next;
478 
479 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
480 		list_del_init(&sh->log_list);
481 
482 		r5c_finish_cache_stripe(sh);
483 
484 		set_bit(STRIPE_HANDLE, &sh->state);
485 		raid5_release_stripe(sh);
486 	}
487 }
488 
489 static void r5l_log_run_stripes(struct r5l_log *log)
490 {
491 	struct r5l_io_unit *io, *next;
492 
493 	assert_spin_locked(&log->io_list_lock);
494 
495 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
496 		/* don't change list order */
497 		if (io->state < IO_UNIT_IO_END)
498 			break;
499 
500 		list_move_tail(&io->log_sibling, &log->finished_ios);
501 		r5l_io_run_stripes(io);
502 	}
503 }
504 
505 static void r5l_move_to_end_ios(struct r5l_log *log)
506 {
507 	struct r5l_io_unit *io, *next;
508 
509 	assert_spin_locked(&log->io_list_lock);
510 
511 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
512 		/* don't change list order */
513 		if (io->state < IO_UNIT_IO_END)
514 			break;
515 		list_move_tail(&io->log_sibling, &log->io_end_ios);
516 	}
517 }
518 
519 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
520 static void r5l_log_endio(struct bio *bio)
521 {
522 	struct r5l_io_unit *io = bio->bi_private;
523 	struct r5l_io_unit *io_deferred;
524 	struct r5l_log *log = io->log;
525 	unsigned long flags;
526 
527 	if (bio->bi_error)
528 		md_error(log->rdev->mddev, log->rdev);
529 
530 	bio_put(bio);
531 	mempool_free(io->meta_page, log->meta_pool);
532 
533 	spin_lock_irqsave(&log->io_list_lock, flags);
534 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
535 	if (log->need_cache_flush)
536 		r5l_move_to_end_ios(log);
537 	else
538 		r5l_log_run_stripes(log);
539 	if (!list_empty(&log->running_ios)) {
540 		/*
541 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
542 		 * can dispatch it
543 		 */
544 		io_deferred = list_first_entry(&log->running_ios,
545 					       struct r5l_io_unit, log_sibling);
546 		if (io_deferred->io_deferred)
547 			schedule_work(&log->deferred_io_work);
548 	}
549 
550 	spin_unlock_irqrestore(&log->io_list_lock, flags);
551 
552 	if (log->need_cache_flush)
553 		md_wakeup_thread(log->rdev->mddev->thread);
554 
555 	if (io->has_null_flush) {
556 		struct bio *bi;
557 
558 		WARN_ON(bio_list_empty(&io->flush_barriers));
559 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
560 			bio_endio(bi);
561 			atomic_dec(&io->pending_stripe);
562 		}
563 		if (atomic_read(&io->pending_stripe) == 0)
564 			__r5l_stripe_write_finished(io);
565 	}
566 }
567 
568 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&log->io_list_lock, flags);
573 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
574 	spin_unlock_irqrestore(&log->io_list_lock, flags);
575 
576 	if (io->has_flush)
577 		bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FLUSH);
578 	if (io->has_fua)
579 		bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FUA);
580 	submit_bio(io->current_bio);
581 
582 	if (!io->split_bio)
583 		return;
584 
585 	if (io->has_flush)
586 		bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FLUSH);
587 	if (io->has_fua)
588 		bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FUA);
589 	submit_bio(io->split_bio);
590 }
591 
592 /* deferred io_unit will be dispatched here */
593 static void r5l_submit_io_async(struct work_struct *work)
594 {
595 	struct r5l_log *log = container_of(work, struct r5l_log,
596 					   deferred_io_work);
597 	struct r5l_io_unit *io = NULL;
598 	unsigned long flags;
599 
600 	spin_lock_irqsave(&log->io_list_lock, flags);
601 	if (!list_empty(&log->running_ios)) {
602 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
603 				      log_sibling);
604 		if (!io->io_deferred)
605 			io = NULL;
606 		else
607 			io->io_deferred = 0;
608 	}
609 	spin_unlock_irqrestore(&log->io_list_lock, flags);
610 	if (io)
611 		r5l_do_submit_io(log, io);
612 }
613 
614 static void r5l_submit_current_io(struct r5l_log *log)
615 {
616 	struct r5l_io_unit *io = log->current_io;
617 	struct bio *bio;
618 	struct r5l_meta_block *block;
619 	unsigned long flags;
620 	u32 crc;
621 	bool do_submit = true;
622 
623 	if (!io)
624 		return;
625 
626 	block = page_address(io->meta_page);
627 	block->meta_size = cpu_to_le32(io->meta_offset);
628 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
629 	block->checksum = cpu_to_le32(crc);
630 	bio = io->current_bio;
631 
632 	log->current_io = NULL;
633 	spin_lock_irqsave(&log->io_list_lock, flags);
634 	if (io->has_flush || io->has_fua) {
635 		if (io != list_first_entry(&log->running_ios,
636 					   struct r5l_io_unit, log_sibling)) {
637 			io->io_deferred = 1;
638 			do_submit = false;
639 		}
640 	}
641 	spin_unlock_irqrestore(&log->io_list_lock, flags);
642 	if (do_submit)
643 		r5l_do_submit_io(log, io);
644 }
645 
646 static struct bio *r5l_bio_alloc(struct r5l_log *log)
647 {
648 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
649 
650 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
651 	bio->bi_bdev = log->rdev->bdev;
652 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
653 
654 	return bio;
655 }
656 
657 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
658 {
659 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
660 
661 	r5c_update_log_state(log);
662 	/*
663 	 * If we filled up the log device start from the beginning again,
664 	 * which will require a new bio.
665 	 *
666 	 * Note: for this to work properly the log size needs to me a multiple
667 	 * of BLOCK_SECTORS.
668 	 */
669 	if (log->log_start == 0)
670 		io->need_split_bio = true;
671 
672 	io->log_end = log->log_start;
673 }
674 
675 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
676 {
677 	struct r5l_io_unit *io;
678 	struct r5l_meta_block *block;
679 
680 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
681 	if (!io)
682 		return NULL;
683 	memset(io, 0, sizeof(*io));
684 
685 	io->log = log;
686 	INIT_LIST_HEAD(&io->log_sibling);
687 	INIT_LIST_HEAD(&io->stripe_list);
688 	bio_list_init(&io->flush_barriers);
689 	io->state = IO_UNIT_RUNNING;
690 
691 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
692 	block = page_address(io->meta_page);
693 	clear_page(block);
694 	block->magic = cpu_to_le32(R5LOG_MAGIC);
695 	block->version = R5LOG_VERSION;
696 	block->seq = cpu_to_le64(log->seq);
697 	block->position = cpu_to_le64(log->log_start);
698 
699 	io->log_start = log->log_start;
700 	io->meta_offset = sizeof(struct r5l_meta_block);
701 	io->seq = log->seq++;
702 
703 	io->current_bio = r5l_bio_alloc(log);
704 	io->current_bio->bi_end_io = r5l_log_endio;
705 	io->current_bio->bi_private = io;
706 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
707 
708 	r5_reserve_log_entry(log, io);
709 
710 	spin_lock_irq(&log->io_list_lock);
711 	list_add_tail(&io->log_sibling, &log->running_ios);
712 	spin_unlock_irq(&log->io_list_lock);
713 
714 	return io;
715 }
716 
717 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
718 {
719 	if (log->current_io &&
720 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
721 		r5l_submit_current_io(log);
722 
723 	if (!log->current_io) {
724 		log->current_io = r5l_new_meta(log);
725 		if (!log->current_io)
726 			return -ENOMEM;
727 	}
728 
729 	return 0;
730 }
731 
732 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
733 				    sector_t location,
734 				    u32 checksum1, u32 checksum2,
735 				    bool checksum2_valid)
736 {
737 	struct r5l_io_unit *io = log->current_io;
738 	struct r5l_payload_data_parity *payload;
739 
740 	payload = page_address(io->meta_page) + io->meta_offset;
741 	payload->header.type = cpu_to_le16(type);
742 	payload->header.flags = cpu_to_le16(0);
743 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
744 				    (PAGE_SHIFT - 9));
745 	payload->location = cpu_to_le64(location);
746 	payload->checksum[0] = cpu_to_le32(checksum1);
747 	if (checksum2_valid)
748 		payload->checksum[1] = cpu_to_le32(checksum2);
749 
750 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
751 		sizeof(__le32) * (1 + !!checksum2_valid);
752 }
753 
754 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
755 {
756 	struct r5l_io_unit *io = log->current_io;
757 
758 	if (io->need_split_bio) {
759 		BUG_ON(io->split_bio);
760 		io->split_bio = io->current_bio;
761 		io->current_bio = r5l_bio_alloc(log);
762 		bio_chain(io->current_bio, io->split_bio);
763 		io->need_split_bio = false;
764 	}
765 
766 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
767 		BUG();
768 
769 	r5_reserve_log_entry(log, io);
770 }
771 
772 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
773 			   int data_pages, int parity_pages)
774 {
775 	int i;
776 	int meta_size;
777 	int ret;
778 	struct r5l_io_unit *io;
779 
780 	meta_size =
781 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
782 		 * data_pages) +
783 		sizeof(struct r5l_payload_data_parity) +
784 		sizeof(__le32) * parity_pages;
785 
786 	ret = r5l_get_meta(log, meta_size);
787 	if (ret)
788 		return ret;
789 
790 	io = log->current_io;
791 
792 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
793 		io->has_flush = 1;
794 
795 	for (i = 0; i < sh->disks; i++) {
796 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
797 		    test_bit(R5_InJournal, &sh->dev[i].flags))
798 			continue;
799 		if (i == sh->pd_idx || i == sh->qd_idx)
800 			continue;
801 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
802 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
803 			io->has_fua = 1;
804 			/*
805 			 * we need to flush journal to make sure recovery can
806 			 * reach the data with fua flag
807 			 */
808 			io->has_flush = 1;
809 		}
810 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
811 					raid5_compute_blocknr(sh, i, 0),
812 					sh->dev[i].log_checksum, 0, false);
813 		r5l_append_payload_page(log, sh->dev[i].page);
814 	}
815 
816 	if (parity_pages == 2) {
817 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
818 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
819 					sh->dev[sh->qd_idx].log_checksum, true);
820 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
821 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
822 	} else if (parity_pages == 1) {
823 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
824 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
825 					0, false);
826 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
827 	} else  /* Just writing data, not parity, in caching phase */
828 		BUG_ON(parity_pages != 0);
829 
830 	list_add_tail(&sh->log_list, &io->stripe_list);
831 	atomic_inc(&io->pending_stripe);
832 	sh->log_io = io;
833 
834 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
835 		return 0;
836 
837 	if (sh->log_start == MaxSector) {
838 		BUG_ON(!list_empty(&sh->r5c));
839 		sh->log_start = io->log_start;
840 		spin_lock_irq(&log->stripe_in_journal_lock);
841 		list_add_tail(&sh->r5c,
842 			      &log->stripe_in_journal_list);
843 		spin_unlock_irq(&log->stripe_in_journal_lock);
844 		atomic_inc(&log->stripe_in_journal_count);
845 	}
846 	return 0;
847 }
848 
849 /* add stripe to no_space_stripes, and then wake up reclaim */
850 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
851 					   struct stripe_head *sh)
852 {
853 	spin_lock(&log->no_space_stripes_lock);
854 	list_add_tail(&sh->log_list, &log->no_space_stripes);
855 	spin_unlock(&log->no_space_stripes_lock);
856 }
857 
858 /*
859  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
860  * data from log to raid disks), so we shouldn't wait for reclaim here
861  */
862 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
863 {
864 	struct r5conf *conf = sh->raid_conf;
865 	int write_disks = 0;
866 	int data_pages, parity_pages;
867 	int reserve;
868 	int i;
869 	int ret = 0;
870 	bool wake_reclaim = false;
871 
872 	if (!log)
873 		return -EAGAIN;
874 	/* Don't support stripe batch */
875 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
876 	    test_bit(STRIPE_SYNCING, &sh->state)) {
877 		/* the stripe is written to log, we start writing it to raid */
878 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
879 		return -EAGAIN;
880 	}
881 
882 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
883 
884 	for (i = 0; i < sh->disks; i++) {
885 		void *addr;
886 
887 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
888 		    test_bit(R5_InJournal, &sh->dev[i].flags))
889 			continue;
890 
891 		write_disks++;
892 		/* checksum is already calculated in last run */
893 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
894 			continue;
895 		addr = kmap_atomic(sh->dev[i].page);
896 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
897 						    addr, PAGE_SIZE);
898 		kunmap_atomic(addr);
899 	}
900 	parity_pages = 1 + !!(sh->qd_idx >= 0);
901 	data_pages = write_disks - parity_pages;
902 
903 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
904 	/*
905 	 * The stripe must enter state machine again to finish the write, so
906 	 * don't delay.
907 	 */
908 	clear_bit(STRIPE_DELAYED, &sh->state);
909 	atomic_inc(&sh->count);
910 
911 	mutex_lock(&log->io_mutex);
912 	/* meta + data */
913 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
914 
915 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
916 		if (!r5l_has_free_space(log, reserve)) {
917 			r5l_add_no_space_stripe(log, sh);
918 			wake_reclaim = true;
919 		} else {
920 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
921 			if (ret) {
922 				spin_lock_irq(&log->io_list_lock);
923 				list_add_tail(&sh->log_list,
924 					      &log->no_mem_stripes);
925 				spin_unlock_irq(&log->io_list_lock);
926 			}
927 		}
928 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
929 		/*
930 		 * log space critical, do not process stripes that are
931 		 * not in cache yet (sh->log_start == MaxSector).
932 		 */
933 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
934 		    sh->log_start == MaxSector) {
935 			r5l_add_no_space_stripe(log, sh);
936 			wake_reclaim = true;
937 			reserve = 0;
938 		} else if (!r5l_has_free_space(log, reserve)) {
939 			if (sh->log_start == log->last_checkpoint)
940 				BUG();
941 			else
942 				r5l_add_no_space_stripe(log, sh);
943 		} else {
944 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
945 			if (ret) {
946 				spin_lock_irq(&log->io_list_lock);
947 				list_add_tail(&sh->log_list,
948 					      &log->no_mem_stripes);
949 				spin_unlock_irq(&log->io_list_lock);
950 			}
951 		}
952 	}
953 
954 	mutex_unlock(&log->io_mutex);
955 	if (wake_reclaim)
956 		r5l_wake_reclaim(log, reserve);
957 	return 0;
958 }
959 
960 void r5l_write_stripe_run(struct r5l_log *log)
961 {
962 	if (!log)
963 		return;
964 	mutex_lock(&log->io_mutex);
965 	r5l_submit_current_io(log);
966 	mutex_unlock(&log->io_mutex);
967 }
968 
969 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
970 {
971 	if (!log)
972 		return -ENODEV;
973 
974 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
975 		/*
976 		 * in write through (journal only)
977 		 * we flush log disk cache first, then write stripe data to
978 		 * raid disks. So if bio is finished, the log disk cache is
979 		 * flushed already. The recovery guarantees we can recovery
980 		 * the bio from log disk, so we don't need to flush again
981 		 */
982 		if (bio->bi_iter.bi_size == 0) {
983 			bio_endio(bio);
984 			return 0;
985 		}
986 		bio->bi_opf &= ~REQ_PREFLUSH;
987 	} else {
988 		/* write back (with cache) */
989 		if (bio->bi_iter.bi_size == 0) {
990 			mutex_lock(&log->io_mutex);
991 			r5l_get_meta(log, 0);
992 			bio_list_add(&log->current_io->flush_barriers, bio);
993 			log->current_io->has_flush = 1;
994 			log->current_io->has_null_flush = 1;
995 			atomic_inc(&log->current_io->pending_stripe);
996 			r5l_submit_current_io(log);
997 			mutex_unlock(&log->io_mutex);
998 			return 0;
999 		}
1000 	}
1001 	return -EAGAIN;
1002 }
1003 
1004 /* This will run after log space is reclaimed */
1005 static void r5l_run_no_space_stripes(struct r5l_log *log)
1006 {
1007 	struct stripe_head *sh;
1008 
1009 	spin_lock(&log->no_space_stripes_lock);
1010 	while (!list_empty(&log->no_space_stripes)) {
1011 		sh = list_first_entry(&log->no_space_stripes,
1012 				      struct stripe_head, log_list);
1013 		list_del_init(&sh->log_list);
1014 		set_bit(STRIPE_HANDLE, &sh->state);
1015 		raid5_release_stripe(sh);
1016 	}
1017 	spin_unlock(&log->no_space_stripes_lock);
1018 }
1019 
1020 /*
1021  * calculate new last_checkpoint
1022  * for write through mode, returns log->next_checkpoint
1023  * for write back, returns log_start of first sh in stripe_in_journal_list
1024  */
1025 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1026 {
1027 	struct stripe_head *sh;
1028 	struct r5l_log *log = conf->log;
1029 	sector_t new_cp;
1030 	unsigned long flags;
1031 
1032 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1033 		return log->next_checkpoint;
1034 
1035 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1036 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1037 		/* all stripes flushed */
1038 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1039 		return log->next_checkpoint;
1040 	}
1041 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1042 			      struct stripe_head, r5c);
1043 	new_cp = sh->log_start;
1044 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1045 	return new_cp;
1046 }
1047 
1048 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1049 {
1050 	struct r5conf *conf = log->rdev->mddev->private;
1051 
1052 	return r5l_ring_distance(log, log->last_checkpoint,
1053 				 r5c_calculate_new_cp(conf));
1054 }
1055 
1056 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1057 {
1058 	struct stripe_head *sh;
1059 
1060 	assert_spin_locked(&log->io_list_lock);
1061 
1062 	if (!list_empty(&log->no_mem_stripes)) {
1063 		sh = list_first_entry(&log->no_mem_stripes,
1064 				      struct stripe_head, log_list);
1065 		list_del_init(&sh->log_list);
1066 		set_bit(STRIPE_HANDLE, &sh->state);
1067 		raid5_release_stripe(sh);
1068 	}
1069 }
1070 
1071 static bool r5l_complete_finished_ios(struct r5l_log *log)
1072 {
1073 	struct r5l_io_unit *io, *next;
1074 	bool found = false;
1075 
1076 	assert_spin_locked(&log->io_list_lock);
1077 
1078 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1079 		/* don't change list order */
1080 		if (io->state < IO_UNIT_STRIPE_END)
1081 			break;
1082 
1083 		log->next_checkpoint = io->log_start;
1084 
1085 		list_del(&io->log_sibling);
1086 		mempool_free(io, log->io_pool);
1087 		r5l_run_no_mem_stripe(log);
1088 
1089 		found = true;
1090 	}
1091 
1092 	return found;
1093 }
1094 
1095 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1096 {
1097 	struct r5l_log *log = io->log;
1098 	struct r5conf *conf = log->rdev->mddev->private;
1099 	unsigned long flags;
1100 
1101 	spin_lock_irqsave(&log->io_list_lock, flags);
1102 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1103 
1104 	if (!r5l_complete_finished_ios(log)) {
1105 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1106 		return;
1107 	}
1108 
1109 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1110 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1111 		r5l_wake_reclaim(log, 0);
1112 
1113 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1114 	wake_up(&log->iounit_wait);
1115 }
1116 
1117 void r5l_stripe_write_finished(struct stripe_head *sh)
1118 {
1119 	struct r5l_io_unit *io;
1120 
1121 	io = sh->log_io;
1122 	sh->log_io = NULL;
1123 
1124 	if (io && atomic_dec_and_test(&io->pending_stripe))
1125 		__r5l_stripe_write_finished(io);
1126 }
1127 
1128 static void r5l_log_flush_endio(struct bio *bio)
1129 {
1130 	struct r5l_log *log = container_of(bio, struct r5l_log,
1131 		flush_bio);
1132 	unsigned long flags;
1133 	struct r5l_io_unit *io;
1134 
1135 	if (bio->bi_error)
1136 		md_error(log->rdev->mddev, log->rdev);
1137 
1138 	spin_lock_irqsave(&log->io_list_lock, flags);
1139 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1140 		r5l_io_run_stripes(io);
1141 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1142 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1143 }
1144 
1145 /*
1146  * Starting dispatch IO to raid.
1147  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1148  * broken meta in the middle of a log causes recovery can't find meta at the
1149  * head of log. If operations require meta at the head persistent in log, we
1150  * must make sure meta before it persistent in log too. A case is:
1151  *
1152  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1153  * data/parity must be persistent in log before we do the write to raid disks.
1154  *
1155  * The solution is we restrictly maintain io_unit list order. In this case, we
1156  * only write stripes of an io_unit to raid disks till the io_unit is the first
1157  * one whose data/parity is in log.
1158  */
1159 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1160 {
1161 	bool do_flush;
1162 
1163 	if (!log || !log->need_cache_flush)
1164 		return;
1165 
1166 	spin_lock_irq(&log->io_list_lock);
1167 	/* flush bio is running */
1168 	if (!list_empty(&log->flushing_ios)) {
1169 		spin_unlock_irq(&log->io_list_lock);
1170 		return;
1171 	}
1172 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1173 	do_flush = !list_empty(&log->flushing_ios);
1174 	spin_unlock_irq(&log->io_list_lock);
1175 
1176 	if (!do_flush)
1177 		return;
1178 	bio_reset(&log->flush_bio);
1179 	log->flush_bio.bi_bdev = log->rdev->bdev;
1180 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1181 	bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
1182 	submit_bio(&log->flush_bio);
1183 }
1184 
1185 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1186 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1187 	sector_t end)
1188 {
1189 	struct block_device *bdev = log->rdev->bdev;
1190 	struct mddev *mddev;
1191 
1192 	r5l_write_super(log, end);
1193 
1194 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1195 		return;
1196 
1197 	mddev = log->rdev->mddev;
1198 	/*
1199 	 * Discard could zero data, so before discard we must make sure
1200 	 * superblock is updated to new log tail. Updating superblock (either
1201 	 * directly call md_update_sb() or depend on md thread) must hold
1202 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1203 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1204 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1205 	 * thread is calling this function and waitting for reconfig mutex. So
1206 	 * there is a deadlock. We workaround this issue with a trylock.
1207 	 * FIXME: we could miss discard if we can't take reconfig mutex
1208 	 */
1209 	set_mask_bits(&mddev->flags, 0,
1210 		BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1211 	if (!mddev_trylock(mddev))
1212 		return;
1213 	md_update_sb(mddev, 1);
1214 	mddev_unlock(mddev);
1215 
1216 	/* discard IO error really doesn't matter, ignore it */
1217 	if (log->last_checkpoint < end) {
1218 		blkdev_issue_discard(bdev,
1219 				log->last_checkpoint + log->rdev->data_offset,
1220 				end - log->last_checkpoint, GFP_NOIO, 0);
1221 	} else {
1222 		blkdev_issue_discard(bdev,
1223 				log->last_checkpoint + log->rdev->data_offset,
1224 				log->device_size - log->last_checkpoint,
1225 				GFP_NOIO, 0);
1226 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1227 				GFP_NOIO, 0);
1228 	}
1229 }
1230 
1231 /*
1232  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1233  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1234  *
1235  * must hold conf->device_lock
1236  */
1237 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1238 {
1239 	BUG_ON(list_empty(&sh->lru));
1240 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1241 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1242 
1243 	/*
1244 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1245 	 * raid5_release_stripe() while holding conf->device_lock
1246 	 */
1247 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1248 	assert_spin_locked(&conf->device_lock);
1249 
1250 	list_del_init(&sh->lru);
1251 	atomic_inc(&sh->count);
1252 
1253 	set_bit(STRIPE_HANDLE, &sh->state);
1254 	atomic_inc(&conf->active_stripes);
1255 	r5c_make_stripe_write_out(sh);
1256 
1257 	raid5_release_stripe(sh);
1258 }
1259 
1260 /*
1261  * if num == 0, flush all full stripes
1262  * if num > 0, flush all full stripes. If less than num full stripes are
1263  *             flushed, flush some partial stripes until totally num stripes are
1264  *             flushed or there is no more cached stripes.
1265  */
1266 void r5c_flush_cache(struct r5conf *conf, int num)
1267 {
1268 	int count;
1269 	struct stripe_head *sh, *next;
1270 
1271 	assert_spin_locked(&conf->device_lock);
1272 	if (!conf->log)
1273 		return;
1274 
1275 	count = 0;
1276 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1277 		r5c_flush_stripe(conf, sh);
1278 		count++;
1279 	}
1280 
1281 	if (count >= num)
1282 		return;
1283 	list_for_each_entry_safe(sh, next,
1284 				 &conf->r5c_partial_stripe_list, lru) {
1285 		r5c_flush_stripe(conf, sh);
1286 		if (++count >= num)
1287 			break;
1288 	}
1289 }
1290 
1291 static void r5c_do_reclaim(struct r5conf *conf)
1292 {
1293 	struct r5l_log *log = conf->log;
1294 	struct stripe_head *sh;
1295 	int count = 0;
1296 	unsigned long flags;
1297 	int total_cached;
1298 	int stripes_to_flush;
1299 
1300 	if (!r5c_is_writeback(log))
1301 		return;
1302 
1303 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1304 		atomic_read(&conf->r5c_cached_full_stripes);
1305 
1306 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1307 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1308 		/*
1309 		 * if stripe cache pressure high, flush all full stripes and
1310 		 * some partial stripes
1311 		 */
1312 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1313 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1314 		 atomic_read(&conf->r5c_cached_full_stripes) >
1315 		 R5C_FULL_STRIPE_FLUSH_BATCH)
1316 		/*
1317 		 * if stripe cache pressure moderate, or if there is many full
1318 		 * stripes,flush all full stripes
1319 		 */
1320 		stripes_to_flush = 0;
1321 	else
1322 		/* no need to flush */
1323 		stripes_to_flush = -1;
1324 
1325 	if (stripes_to_flush >= 0) {
1326 		spin_lock_irqsave(&conf->device_lock, flags);
1327 		r5c_flush_cache(conf, stripes_to_flush);
1328 		spin_unlock_irqrestore(&conf->device_lock, flags);
1329 	}
1330 
1331 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1332 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1333 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1334 		spin_lock(&conf->device_lock);
1335 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1336 			/*
1337 			 * stripes on stripe_in_journal_list could be in any
1338 			 * state of the stripe_cache state machine. In this
1339 			 * case, we only want to flush stripe on
1340 			 * r5c_cached_full/partial_stripes. The following
1341 			 * condition makes sure the stripe is on one of the
1342 			 * two lists.
1343 			 */
1344 			if (!list_empty(&sh->lru) &&
1345 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1346 			    atomic_read(&sh->count) == 0) {
1347 				r5c_flush_stripe(conf, sh);
1348 			}
1349 			if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1350 				break;
1351 		}
1352 		spin_unlock(&conf->device_lock);
1353 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1354 	}
1355 
1356 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1357 		r5l_run_no_space_stripes(log);
1358 
1359 	md_wakeup_thread(conf->mddev->thread);
1360 }
1361 
1362 static void r5l_do_reclaim(struct r5l_log *log)
1363 {
1364 	struct r5conf *conf = log->rdev->mddev->private;
1365 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1366 	sector_t reclaimable;
1367 	sector_t next_checkpoint;
1368 	bool write_super;
1369 
1370 	spin_lock_irq(&log->io_list_lock);
1371 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1372 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1373 	/*
1374 	 * move proper io_unit to reclaim list. We should not change the order.
1375 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1376 	 * shouldn't reuse space of an unreclaimable io_unit
1377 	 */
1378 	while (1) {
1379 		reclaimable = r5l_reclaimable_space(log);
1380 		if (reclaimable >= reclaim_target ||
1381 		    (list_empty(&log->running_ios) &&
1382 		     list_empty(&log->io_end_ios) &&
1383 		     list_empty(&log->flushing_ios) &&
1384 		     list_empty(&log->finished_ios)))
1385 			break;
1386 
1387 		md_wakeup_thread(log->rdev->mddev->thread);
1388 		wait_event_lock_irq(log->iounit_wait,
1389 				    r5l_reclaimable_space(log) > reclaimable,
1390 				    log->io_list_lock);
1391 	}
1392 
1393 	next_checkpoint = r5c_calculate_new_cp(conf);
1394 	spin_unlock_irq(&log->io_list_lock);
1395 
1396 	BUG_ON(reclaimable < 0);
1397 
1398 	if (reclaimable == 0 || !write_super)
1399 		return;
1400 
1401 	/*
1402 	 * write_super will flush cache of each raid disk. We must write super
1403 	 * here, because the log area might be reused soon and we don't want to
1404 	 * confuse recovery
1405 	 */
1406 	r5l_write_super_and_discard_space(log, next_checkpoint);
1407 
1408 	mutex_lock(&log->io_mutex);
1409 	log->last_checkpoint = next_checkpoint;
1410 	r5c_update_log_state(log);
1411 	mutex_unlock(&log->io_mutex);
1412 
1413 	r5l_run_no_space_stripes(log);
1414 }
1415 
1416 static void r5l_reclaim_thread(struct md_thread *thread)
1417 {
1418 	struct mddev *mddev = thread->mddev;
1419 	struct r5conf *conf = mddev->private;
1420 	struct r5l_log *log = conf->log;
1421 
1422 	if (!log)
1423 		return;
1424 	r5c_do_reclaim(conf);
1425 	r5l_do_reclaim(log);
1426 }
1427 
1428 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1429 {
1430 	unsigned long target;
1431 	unsigned long new = (unsigned long)space; /* overflow in theory */
1432 
1433 	if (!log)
1434 		return;
1435 	do {
1436 		target = log->reclaim_target;
1437 		if (new < target)
1438 			return;
1439 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1440 	md_wakeup_thread(log->reclaim_thread);
1441 }
1442 
1443 void r5l_quiesce(struct r5l_log *log, int state)
1444 {
1445 	struct mddev *mddev;
1446 	if (!log || state == 2)
1447 		return;
1448 	if (state == 0)
1449 		kthread_unpark(log->reclaim_thread->tsk);
1450 	else if (state == 1) {
1451 		/* make sure r5l_write_super_and_discard_space exits */
1452 		mddev = log->rdev->mddev;
1453 		wake_up(&mddev->sb_wait);
1454 		kthread_park(log->reclaim_thread->tsk);
1455 		r5l_wake_reclaim(log, MaxSector);
1456 		r5l_do_reclaim(log);
1457 	}
1458 }
1459 
1460 bool r5l_log_disk_error(struct r5conf *conf)
1461 {
1462 	struct r5l_log *log;
1463 	bool ret;
1464 	/* don't allow write if journal disk is missing */
1465 	rcu_read_lock();
1466 	log = rcu_dereference(conf->log);
1467 
1468 	if (!log)
1469 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1470 	else
1471 		ret = test_bit(Faulty, &log->rdev->flags);
1472 	rcu_read_unlock();
1473 	return ret;
1474 }
1475 
1476 struct r5l_recovery_ctx {
1477 	struct page *meta_page;		/* current meta */
1478 	sector_t meta_total_blocks;	/* total size of current meta and data */
1479 	sector_t pos;			/* recovery position */
1480 	u64 seq;			/* recovery position seq */
1481 	int data_parity_stripes;	/* number of data_parity stripes */
1482 	int data_only_stripes;		/* number of data_only stripes */
1483 	struct list_head cached_list;
1484 };
1485 
1486 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1487 					struct r5l_recovery_ctx *ctx)
1488 {
1489 	struct page *page = ctx->meta_page;
1490 	struct r5l_meta_block *mb;
1491 	u32 crc, stored_crc;
1492 
1493 	if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1494 			  false))
1495 		return -EIO;
1496 
1497 	mb = page_address(page);
1498 	stored_crc = le32_to_cpu(mb->checksum);
1499 	mb->checksum = 0;
1500 
1501 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1502 	    le64_to_cpu(mb->seq) != ctx->seq ||
1503 	    mb->version != R5LOG_VERSION ||
1504 	    le64_to_cpu(mb->position) != ctx->pos)
1505 		return -EINVAL;
1506 
1507 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1508 	if (stored_crc != crc)
1509 		return -EINVAL;
1510 
1511 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1512 		return -EINVAL;
1513 
1514 	ctx->meta_total_blocks = BLOCK_SECTORS;
1515 
1516 	return 0;
1517 }
1518 
1519 static void
1520 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1521 				     struct page *page,
1522 				     sector_t pos, u64 seq)
1523 {
1524 	struct r5l_meta_block *mb;
1525 
1526 	mb = page_address(page);
1527 	clear_page(mb);
1528 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1529 	mb->version = R5LOG_VERSION;
1530 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1531 	mb->seq = cpu_to_le64(seq);
1532 	mb->position = cpu_to_le64(pos);
1533 }
1534 
1535 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1536 					  u64 seq)
1537 {
1538 	struct page *page;
1539 	struct r5l_meta_block *mb;
1540 
1541 	page = alloc_page(GFP_KERNEL);
1542 	if (!page)
1543 		return -ENOMEM;
1544 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1545 	mb = page_address(page);
1546 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1547 					     mb, PAGE_SIZE));
1548 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1549 			  WRITE_FUA, false)) {
1550 		__free_page(page);
1551 		return -EIO;
1552 	}
1553 	__free_page(page);
1554 	return 0;
1555 }
1556 
1557 /*
1558  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1559  * to mark valid (potentially not flushed) data in the journal.
1560  *
1561  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1562  * so there should not be any mismatch here.
1563  */
1564 static void r5l_recovery_load_data(struct r5l_log *log,
1565 				   struct stripe_head *sh,
1566 				   struct r5l_recovery_ctx *ctx,
1567 				   struct r5l_payload_data_parity *payload,
1568 				   sector_t log_offset)
1569 {
1570 	struct mddev *mddev = log->rdev->mddev;
1571 	struct r5conf *conf = mddev->private;
1572 	int dd_idx;
1573 
1574 	raid5_compute_sector(conf,
1575 			     le64_to_cpu(payload->location), 0,
1576 			     &dd_idx, sh);
1577 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1578 		     sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1579 	sh->dev[dd_idx].log_checksum =
1580 		le32_to_cpu(payload->checksum[0]);
1581 	ctx->meta_total_blocks += BLOCK_SECTORS;
1582 
1583 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1584 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1585 }
1586 
1587 static void r5l_recovery_load_parity(struct r5l_log *log,
1588 				     struct stripe_head *sh,
1589 				     struct r5l_recovery_ctx *ctx,
1590 				     struct r5l_payload_data_parity *payload,
1591 				     sector_t log_offset)
1592 {
1593 	struct mddev *mddev = log->rdev->mddev;
1594 	struct r5conf *conf = mddev->private;
1595 
1596 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1597 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1598 		     sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1599 	sh->dev[sh->pd_idx].log_checksum =
1600 		le32_to_cpu(payload->checksum[0]);
1601 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1602 
1603 	if (sh->qd_idx >= 0) {
1604 		sync_page_io(log->rdev,
1605 			     r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1606 			     PAGE_SIZE, sh->dev[sh->qd_idx].page,
1607 			     REQ_OP_READ, 0, false);
1608 		sh->dev[sh->qd_idx].log_checksum =
1609 			le32_to_cpu(payload->checksum[1]);
1610 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1611 	}
1612 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1613 }
1614 
1615 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1616 {
1617 	int i;
1618 
1619 	sh->state = 0;
1620 	sh->log_start = MaxSector;
1621 	for (i = sh->disks; i--; )
1622 		sh->dev[i].flags = 0;
1623 }
1624 
1625 static void
1626 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1627 			       struct stripe_head *sh,
1628 			       struct r5l_recovery_ctx *ctx)
1629 {
1630 	struct md_rdev *rdev, *rrdev;
1631 	int disk_index;
1632 	int data_count = 0;
1633 
1634 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1635 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1636 			continue;
1637 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1638 			continue;
1639 		data_count++;
1640 	}
1641 
1642 	/*
1643 	 * stripes that only have parity must have been flushed
1644 	 * before the crash that we are now recovering from, so
1645 	 * there is nothing more to recovery.
1646 	 */
1647 	if (data_count == 0)
1648 		goto out;
1649 
1650 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1651 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1652 			continue;
1653 
1654 		/* in case device is broken */
1655 		rcu_read_lock();
1656 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1657 		if (rdev) {
1658 			atomic_inc(&rdev->nr_pending);
1659 			rcu_read_unlock();
1660 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1661 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1662 				     false);
1663 			rdev_dec_pending(rdev, rdev->mddev);
1664 			rcu_read_lock();
1665 		}
1666 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1667 		if (rrdev) {
1668 			atomic_inc(&rrdev->nr_pending);
1669 			rcu_read_unlock();
1670 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1671 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1672 				     false);
1673 			rdev_dec_pending(rrdev, rrdev->mddev);
1674 			rcu_read_lock();
1675 		}
1676 		rcu_read_unlock();
1677 	}
1678 	ctx->data_parity_stripes++;
1679 out:
1680 	r5l_recovery_reset_stripe(sh);
1681 }
1682 
1683 static struct stripe_head *
1684 r5c_recovery_alloc_stripe(struct r5conf *conf,
1685 			  sector_t stripe_sect,
1686 			  sector_t log_start)
1687 {
1688 	struct stripe_head *sh;
1689 
1690 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1691 	if (!sh)
1692 		return NULL;  /* no more stripe available */
1693 
1694 	r5l_recovery_reset_stripe(sh);
1695 	sh->log_start = log_start;
1696 
1697 	return sh;
1698 }
1699 
1700 static struct stripe_head *
1701 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1702 {
1703 	struct stripe_head *sh;
1704 
1705 	list_for_each_entry(sh, list, lru)
1706 		if (sh->sector == sect)
1707 			return sh;
1708 	return NULL;
1709 }
1710 
1711 static void
1712 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1713 			  struct r5l_recovery_ctx *ctx)
1714 {
1715 	struct stripe_head *sh, *next;
1716 
1717 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1718 		r5l_recovery_reset_stripe(sh);
1719 		list_del_init(&sh->lru);
1720 		raid5_release_stripe(sh);
1721 	}
1722 }
1723 
1724 static void
1725 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1726 			    struct r5l_recovery_ctx *ctx)
1727 {
1728 	struct stripe_head *sh, *next;
1729 
1730 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1731 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1732 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1733 			list_del_init(&sh->lru);
1734 			raid5_release_stripe(sh);
1735 		}
1736 }
1737 
1738 /* if matches return 0; otherwise return -EINVAL */
1739 static int
1740 r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1741 				  sector_t log_offset, __le32 log_checksum)
1742 {
1743 	void *addr;
1744 	u32 checksum;
1745 
1746 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1747 		     page, REQ_OP_READ, 0, false);
1748 	addr = kmap_atomic(page);
1749 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1750 	kunmap_atomic(addr);
1751 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1752 }
1753 
1754 /*
1755  * before loading data to stripe cache, we need verify checksum for all data,
1756  * if there is mismatch for any data page, we drop all data in the mata block
1757  */
1758 static int
1759 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1760 					 struct r5l_recovery_ctx *ctx)
1761 {
1762 	struct mddev *mddev = log->rdev->mddev;
1763 	struct r5conf *conf = mddev->private;
1764 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1765 	sector_t mb_offset = sizeof(struct r5l_meta_block);
1766 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1767 	struct page *page;
1768 	struct r5l_payload_data_parity *payload;
1769 
1770 	page = alloc_page(GFP_KERNEL);
1771 	if (!page)
1772 		return -ENOMEM;
1773 
1774 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
1775 		payload = (void *)mb + mb_offset;
1776 
1777 		if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1778 			if (r5l_recovery_verify_data_checksum(
1779 				    log, page, log_offset,
1780 				    payload->checksum[0]) < 0)
1781 				goto mismatch;
1782 		} else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1783 			if (r5l_recovery_verify_data_checksum(
1784 				    log, page, log_offset,
1785 				    payload->checksum[0]) < 0)
1786 				goto mismatch;
1787 			if (conf->max_degraded == 2 && /* q for RAID 6 */
1788 			    r5l_recovery_verify_data_checksum(
1789 				    log, page,
1790 				    r5l_ring_add(log, log_offset,
1791 						 BLOCK_SECTORS),
1792 				    payload->checksum[1]) < 0)
1793 				goto mismatch;
1794 		} else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1795 			goto mismatch;
1796 
1797 		log_offset = r5l_ring_add(log, log_offset,
1798 					  le32_to_cpu(payload->size));
1799 
1800 		mb_offset += sizeof(struct r5l_payload_data_parity) +
1801 			sizeof(__le32) *
1802 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1803 	}
1804 
1805 	put_page(page);
1806 	return 0;
1807 
1808 mismatch:
1809 	put_page(page);
1810 	return -EINVAL;
1811 }
1812 
1813 /*
1814  * Analyze all data/parity pages in one meta block
1815  * Returns:
1816  * 0 for success
1817  * -EINVAL for unknown playload type
1818  * -EAGAIN for checksum mismatch of data page
1819  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1820  */
1821 static int
1822 r5c_recovery_analyze_meta_block(struct r5l_log *log,
1823 				struct r5l_recovery_ctx *ctx,
1824 				struct list_head *cached_stripe_list)
1825 {
1826 	struct mddev *mddev = log->rdev->mddev;
1827 	struct r5conf *conf = mddev->private;
1828 	struct r5l_meta_block *mb;
1829 	struct r5l_payload_data_parity *payload;
1830 	int mb_offset;
1831 	sector_t log_offset;
1832 	sector_t stripe_sect;
1833 	struct stripe_head *sh;
1834 	int ret;
1835 
1836 	/*
1837 	 * for mismatch in data blocks, we will drop all data in this mb, but
1838 	 * we will still read next mb for other data with FLUSH flag, as
1839 	 * io_unit could finish out of order.
1840 	 */
1841 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1842 	if (ret == -EINVAL)
1843 		return -EAGAIN;
1844 	else if (ret)
1845 		return ret;   /* -ENOMEM duo to alloc_page() failed */
1846 
1847 	mb = page_address(ctx->meta_page);
1848 	mb_offset = sizeof(struct r5l_meta_block);
1849 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1850 
1851 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
1852 		int dd;
1853 
1854 		payload = (void *)mb + mb_offset;
1855 		stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1856 			raid5_compute_sector(
1857 				conf, le64_to_cpu(payload->location), 0, &dd,
1858 				NULL)
1859 			: le64_to_cpu(payload->location);
1860 
1861 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1862 						stripe_sect);
1863 
1864 		if (!sh) {
1865 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, ctx->pos);
1866 			/*
1867 			 * cannot get stripe from raid5_get_active_stripe
1868 			 * try replay some stripes
1869 			 */
1870 			if (!sh) {
1871 				r5c_recovery_replay_stripes(
1872 					cached_stripe_list, ctx);
1873 				sh = r5c_recovery_alloc_stripe(
1874 					conf, stripe_sect, ctx->pos);
1875 			}
1876 			if (!sh) {
1877 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1878 					mdname(mddev),
1879 					conf->min_nr_stripes * 2);
1880 				raid5_set_cache_size(mddev,
1881 						     conf->min_nr_stripes * 2);
1882 				sh = r5c_recovery_alloc_stripe(
1883 					conf, stripe_sect, ctx->pos);
1884 			}
1885 			if (!sh) {
1886 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1887 				       mdname(mddev));
1888 				return -ENOMEM;
1889 			}
1890 			list_add_tail(&sh->lru, cached_stripe_list);
1891 		}
1892 
1893 		if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1894 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
1895 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
1896 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
1897 				sh->log_start = ctx->pos;
1898 				list_move_tail(&sh->lru, cached_stripe_list);
1899 			}
1900 			r5l_recovery_load_data(log, sh, ctx, payload,
1901 					       log_offset);
1902 		} else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1903 			r5l_recovery_load_parity(log, sh, ctx, payload,
1904 						 log_offset);
1905 		else
1906 			return -EINVAL;
1907 
1908 		log_offset = r5l_ring_add(log, log_offset,
1909 					  le32_to_cpu(payload->size));
1910 
1911 		mb_offset += sizeof(struct r5l_payload_data_parity) +
1912 			sizeof(__le32) *
1913 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 /*
1920  * Load the stripe into cache. The stripe will be written out later by
1921  * the stripe cache state machine.
1922  */
1923 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
1924 					 struct stripe_head *sh)
1925 {
1926 	struct r5dev *dev;
1927 	int i;
1928 
1929 	for (i = sh->disks; i--; ) {
1930 		dev = sh->dev + i;
1931 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
1932 			set_bit(R5_InJournal, &dev->flags);
1933 			set_bit(R5_UPTODATE, &dev->flags);
1934 		}
1935 	}
1936 	list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
1937 	atomic_inc(&log->stripe_in_journal_count);
1938 }
1939 
1940 /*
1941  * Scan through the log for all to-be-flushed data
1942  *
1943  * For stripes with data and parity, namely Data-Parity stripe
1944  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1945  *
1946  * For stripes with only data, namely Data-Only stripe
1947  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1948  *
1949  * For a stripe, if we see data after parity, we should discard all previous
1950  * data and parity for this stripe, as these data are already flushed to
1951  * the array.
1952  *
1953  * At the end of the scan, we return the new journal_tail, which points to
1954  * first data-only stripe on the journal device, or next invalid meta block.
1955  */
1956 static int r5c_recovery_flush_log(struct r5l_log *log,
1957 				  struct r5l_recovery_ctx *ctx)
1958 {
1959 	struct stripe_head *sh;
1960 	int ret = 0;
1961 
1962 	/* scan through the log */
1963 	while (1) {
1964 		if (r5l_recovery_read_meta_block(log, ctx))
1965 			break;
1966 
1967 		ret = r5c_recovery_analyze_meta_block(log, ctx,
1968 						      &ctx->cached_list);
1969 		/*
1970 		 * -EAGAIN means mismatch in data block, in this case, we still
1971 		 * try scan the next metablock
1972 		 */
1973 		if (ret && ret != -EAGAIN)
1974 			break;   /* ret == -EINVAL or -ENOMEM */
1975 		ctx->seq++;
1976 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1977 	}
1978 
1979 	if (ret == -ENOMEM) {
1980 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
1981 		return ret;
1982 	}
1983 
1984 	/* replay data-parity stripes */
1985 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
1986 
1987 	/* load data-only stripes to stripe cache */
1988 	list_for_each_entry(sh, &ctx->cached_list, lru) {
1989 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1990 		r5c_recovery_load_one_stripe(log, sh);
1991 		ctx->data_only_stripes++;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 /*
1998  * we did a recovery. Now ctx.pos points to an invalid meta block. New
1999  * log will start here. but we can't let superblock point to last valid
2000  * meta block. The log might looks like:
2001  * | meta 1| meta 2| meta 3|
2002  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2003  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2004  * happens again, new recovery will start from meta 1. Since meta 2n is
2005  * valid now, recovery will think meta 3 is valid, which is wrong.
2006  * The solution is we create a new meta in meta2 with its seq == meta
2007  * 1's seq + 10 and let superblock points to meta2. The same recovery will
2008  * not think meta 3 is a valid meta, because its seq doesn't match
2009  */
2010 
2011 /*
2012  * Before recovery, the log looks like the following
2013  *
2014  *   ---------------------------------------------
2015  *   |           valid log        | invalid log  |
2016  *   ---------------------------------------------
2017  *   ^
2018  *   |- log->last_checkpoint
2019  *   |- log->last_cp_seq
2020  *
2021  * Now we scan through the log until we see invalid entry
2022  *
2023  *   ---------------------------------------------
2024  *   |           valid log        | invalid log  |
2025  *   ---------------------------------------------
2026  *   ^                            ^
2027  *   |- log->last_checkpoint      |- ctx->pos
2028  *   |- log->last_cp_seq          |- ctx->seq
2029  *
2030  * From this point, we need to increase seq number by 10 to avoid
2031  * confusing next recovery.
2032  *
2033  *   ---------------------------------------------
2034  *   |           valid log        | invalid log  |
2035  *   ---------------------------------------------
2036  *   ^                              ^
2037  *   |- log->last_checkpoint        |- ctx->pos+1
2038  *   |- log->last_cp_seq            |- ctx->seq+11
2039  *
2040  * However, it is not safe to start the state machine yet, because data only
2041  * parities are not yet secured in RAID. To save these data only parities, we
2042  * rewrite them from seq+11.
2043  *
2044  *   -----------------------------------------------------------------
2045  *   |           valid log        | data only stripes | invalid log  |
2046  *   -----------------------------------------------------------------
2047  *   ^                                                ^
2048  *   |- log->last_checkpoint                          |- ctx->pos+n
2049  *   |- log->last_cp_seq                              |- ctx->seq+10+n
2050  *
2051  * If failure happens again during this process, the recovery can safe start
2052  * again from log->last_checkpoint.
2053  *
2054  * Once data only stripes are rewritten to journal, we move log_tail
2055  *
2056  *   -----------------------------------------------------------------
2057  *   |     old log        |    data only stripes    | invalid log  |
2058  *   -----------------------------------------------------------------
2059  *                        ^                         ^
2060  *                        |- log->last_checkpoint   |- ctx->pos+n
2061  *                        |- log->last_cp_seq       |- ctx->seq+10+n
2062  *
2063  * Then we can safely start the state machine. If failure happens from this
2064  * point on, the recovery will start from new log->last_checkpoint.
2065  */
2066 static int
2067 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2068 				       struct r5l_recovery_ctx *ctx)
2069 {
2070 	struct stripe_head *sh, *next;
2071 	struct mddev *mddev = log->rdev->mddev;
2072 	struct page *page;
2073 
2074 	page = alloc_page(GFP_KERNEL);
2075 	if (!page) {
2076 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2077 		       mdname(mddev));
2078 		return -ENOMEM;
2079 	}
2080 
2081 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2082 		struct r5l_meta_block *mb;
2083 		int i;
2084 		int offset;
2085 		sector_t write_pos;
2086 
2087 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2088 		r5l_recovery_create_empty_meta_block(log, page,
2089 						     ctx->pos, ctx->seq);
2090 		mb = page_address(page);
2091 		offset = le32_to_cpu(mb->meta_size);
2092 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2093 
2094 		for (i = sh->disks; i--; ) {
2095 			struct r5dev *dev = &sh->dev[i];
2096 			struct r5l_payload_data_parity *payload;
2097 			void *addr;
2098 
2099 			if (test_bit(R5_InJournal, &dev->flags)) {
2100 				payload = (void *)mb + offset;
2101 				payload->header.type = cpu_to_le16(
2102 					R5LOG_PAYLOAD_DATA);
2103 				payload->size = BLOCK_SECTORS;
2104 				payload->location = cpu_to_le64(
2105 					raid5_compute_blocknr(sh, i, 0));
2106 				addr = kmap_atomic(dev->page);
2107 				payload->checksum[0] = cpu_to_le32(
2108 					crc32c_le(log->uuid_checksum, addr,
2109 						  PAGE_SIZE));
2110 				kunmap_atomic(addr);
2111 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2112 					     dev->page, REQ_OP_WRITE, 0, false);
2113 				write_pos = r5l_ring_add(log, write_pos,
2114 							 BLOCK_SECTORS);
2115 				offset += sizeof(__le32) +
2116 					sizeof(struct r5l_payload_data_parity);
2117 
2118 			}
2119 		}
2120 		mb->meta_size = cpu_to_le32(offset);
2121 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2122 						     mb, PAGE_SIZE));
2123 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2124 			     REQ_OP_WRITE, WRITE_FUA, false);
2125 		sh->log_start = ctx->pos;
2126 		ctx->pos = write_pos;
2127 		ctx->seq += 1;
2128 
2129 		list_del_init(&sh->lru);
2130 		raid5_release_stripe(sh);
2131 	}
2132 	__free_page(page);
2133 	return 0;
2134 }
2135 
2136 static int r5l_recovery_log(struct r5l_log *log)
2137 {
2138 	struct mddev *mddev = log->rdev->mddev;
2139 	struct r5l_recovery_ctx ctx;
2140 	int ret;
2141 	sector_t pos;
2142 	struct stripe_head *sh;
2143 
2144 	ctx.pos = log->last_checkpoint;
2145 	ctx.seq = log->last_cp_seq;
2146 	ctx.meta_page = alloc_page(GFP_KERNEL);
2147 	ctx.data_only_stripes = 0;
2148 	ctx.data_parity_stripes = 0;
2149 	INIT_LIST_HEAD(&ctx.cached_list);
2150 
2151 	if (!ctx.meta_page)
2152 		return -ENOMEM;
2153 
2154 	ret = r5c_recovery_flush_log(log, &ctx);
2155 	__free_page(ctx.meta_page);
2156 
2157 	if (ret)
2158 		return ret;
2159 
2160        pos = ctx.pos;
2161        ctx.seq += 10;
2162 
2163 	if (ctx.data_only_stripes == 0) {
2164 		log->next_checkpoint = ctx.pos;
2165 		r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq++);
2166 		ctx.pos = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
2167 	} else {
2168 		sh = list_last_entry(&ctx.cached_list, struct stripe_head, lru);
2169 		log->next_checkpoint = sh->log_start;
2170 	}
2171 
2172 	if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2173 		pr_debug("md/raid:%s: starting from clean shutdown\n",
2174 			 mdname(mddev));
2175 	else {
2176 		pr_debug("md/raid:%s: recoverying %d data-only stripes and %d data-parity stripes\n",
2177 			 mdname(mddev), ctx.data_only_stripes,
2178 			 ctx.data_parity_stripes);
2179 
2180 		if (ctx.data_only_stripes > 0)
2181 			if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2182 				pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2183 				       mdname(mddev));
2184 				return -EIO;
2185 			}
2186 	}
2187 
2188 	log->log_start = ctx.pos;
2189 	log->seq = ctx.seq;
2190 	log->last_checkpoint = pos;
2191 	r5l_write_super(log, pos);
2192 	return 0;
2193 }
2194 
2195 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2196 {
2197 	struct mddev *mddev = log->rdev->mddev;
2198 
2199 	log->rdev->journal_tail = cp;
2200 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2201 }
2202 
2203 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2204 {
2205 	struct r5conf *conf = mddev->private;
2206 	int ret;
2207 
2208 	if (!conf->log)
2209 		return 0;
2210 
2211 	switch (conf->log->r5c_journal_mode) {
2212 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2213 		ret = snprintf(
2214 			page, PAGE_SIZE, "[%s] %s\n",
2215 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2216 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2217 		break;
2218 	case R5C_JOURNAL_MODE_WRITE_BACK:
2219 		ret = snprintf(
2220 			page, PAGE_SIZE, "%s [%s]\n",
2221 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2222 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2223 		break;
2224 	default:
2225 		ret = 0;
2226 	}
2227 	return ret;
2228 }
2229 
2230 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2231 				      const char *page, size_t length)
2232 {
2233 	struct r5conf *conf = mddev->private;
2234 	struct r5l_log *log = conf->log;
2235 	int val = -1, i;
2236 	int len = length;
2237 
2238 	if (!log)
2239 		return -ENODEV;
2240 
2241 	if (len && page[len - 1] == '\n')
2242 		len -= 1;
2243 	for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2244 		if (strlen(r5c_journal_mode_str[i]) == len &&
2245 		    strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2246 			val = i;
2247 			break;
2248 		}
2249 	if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2250 	    val > R5C_JOURNAL_MODE_WRITE_BACK)
2251 		return -EINVAL;
2252 
2253 	mddev_suspend(mddev);
2254 	conf->log->r5c_journal_mode = val;
2255 	mddev_resume(mddev);
2256 
2257 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2258 		 mdname(mddev), val, r5c_journal_mode_str[val]);
2259 	return length;
2260 }
2261 
2262 struct md_sysfs_entry
2263 r5c_journal_mode = __ATTR(journal_mode, 0644,
2264 			  r5c_journal_mode_show, r5c_journal_mode_store);
2265 
2266 /*
2267  * Try handle write operation in caching phase. This function should only
2268  * be called in write-back mode.
2269  *
2270  * If all outstanding writes can be handled in caching phase, returns 0
2271  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2272  * and returns -EAGAIN
2273  */
2274 int r5c_try_caching_write(struct r5conf *conf,
2275 			  struct stripe_head *sh,
2276 			  struct stripe_head_state *s,
2277 			  int disks)
2278 {
2279 	struct r5l_log *log = conf->log;
2280 	int i;
2281 	struct r5dev *dev;
2282 	int to_cache = 0;
2283 
2284 	BUG_ON(!r5c_is_writeback(log));
2285 
2286 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2287 		/*
2288 		 * There are two different scenarios here:
2289 		 *  1. The stripe has some data cached, and it is sent to
2290 		 *     write-out phase for reclaim
2291 		 *  2. The stripe is clean, and this is the first write
2292 		 *
2293 		 * For 1, return -EAGAIN, so we continue with
2294 		 * handle_stripe_dirtying().
2295 		 *
2296 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2297 		 * write.
2298 		 */
2299 
2300 		/* case 1: anything injournal or anything in written */
2301 		if (s->injournal > 0 || s->written > 0)
2302 			return -EAGAIN;
2303 		/* case 2 */
2304 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2305 	}
2306 
2307 	for (i = disks; i--; ) {
2308 		dev = &sh->dev[i];
2309 		/* if non-overwrite, use writing-out phase */
2310 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2311 		    !test_bit(R5_InJournal, &dev->flags)) {
2312 			r5c_make_stripe_write_out(sh);
2313 			return -EAGAIN;
2314 		}
2315 	}
2316 
2317 	for (i = disks; i--; ) {
2318 		dev = &sh->dev[i];
2319 		if (dev->towrite) {
2320 			set_bit(R5_Wantwrite, &dev->flags);
2321 			set_bit(R5_Wantdrain, &dev->flags);
2322 			set_bit(R5_LOCKED, &dev->flags);
2323 			to_cache++;
2324 		}
2325 	}
2326 
2327 	if (to_cache) {
2328 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2329 		/*
2330 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2331 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2332 		 * r5c_handle_data_cached()
2333 		 */
2334 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 /*
2341  * free extra pages (orig_page) we allocated for prexor
2342  */
2343 void r5c_release_extra_page(struct stripe_head *sh)
2344 {
2345 	struct r5conf *conf = sh->raid_conf;
2346 	int i;
2347 	bool using_disk_info_extra_page;
2348 
2349 	using_disk_info_extra_page =
2350 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2351 
2352 	for (i = sh->disks; i--; )
2353 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2354 			struct page *p = sh->dev[i].orig_page;
2355 
2356 			sh->dev[i].orig_page = sh->dev[i].page;
2357 			if (!using_disk_info_extra_page)
2358 				put_page(p);
2359 		}
2360 
2361 	if (using_disk_info_extra_page) {
2362 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2363 		md_wakeup_thread(conf->mddev->thread);
2364 	}
2365 }
2366 
2367 void r5c_use_extra_page(struct stripe_head *sh)
2368 {
2369 	struct r5conf *conf = sh->raid_conf;
2370 	int i;
2371 	struct r5dev *dev;
2372 
2373 	for (i = sh->disks; i--; ) {
2374 		dev = &sh->dev[i];
2375 		if (dev->orig_page != dev->page)
2376 			put_page(dev->orig_page);
2377 		dev->orig_page = conf->disks[i].extra_page;
2378 	}
2379 }
2380 
2381 /*
2382  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2383  * stripe is committed to RAID disks.
2384  */
2385 void r5c_finish_stripe_write_out(struct r5conf *conf,
2386 				 struct stripe_head *sh,
2387 				 struct stripe_head_state *s)
2388 {
2389 	int i;
2390 	int do_wakeup = 0;
2391 
2392 	if (!conf->log ||
2393 	    !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2394 		return;
2395 
2396 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2397 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2398 
2399 	if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2400 		return;
2401 
2402 	for (i = sh->disks; i--; ) {
2403 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2404 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2405 			do_wakeup = 1;
2406 	}
2407 
2408 	/*
2409 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2410 	 * We updated R5_InJournal, so we also update s->injournal.
2411 	 */
2412 	s->injournal = 0;
2413 
2414 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2415 		if (atomic_dec_and_test(&conf->pending_full_writes))
2416 			md_wakeup_thread(conf->mddev->thread);
2417 
2418 	if (do_wakeup)
2419 		wake_up(&conf->wait_for_overlap);
2420 
2421 	if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2422 		return;
2423 
2424 	spin_lock_irq(&conf->log->stripe_in_journal_lock);
2425 	list_del_init(&sh->r5c);
2426 	spin_unlock_irq(&conf->log->stripe_in_journal_lock);
2427 	sh->log_start = MaxSector;
2428 	atomic_dec(&conf->log->stripe_in_journal_count);
2429 	r5c_update_log_state(conf->log);
2430 }
2431 
2432 int
2433 r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2434 	       struct stripe_head_state *s)
2435 {
2436 	struct r5conf *conf = sh->raid_conf;
2437 	int pages = 0;
2438 	int reserve;
2439 	int i;
2440 	int ret = 0;
2441 
2442 	BUG_ON(!log);
2443 
2444 	for (i = 0; i < sh->disks; i++) {
2445 		void *addr;
2446 
2447 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2448 			continue;
2449 		addr = kmap_atomic(sh->dev[i].page);
2450 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2451 						    addr, PAGE_SIZE);
2452 		kunmap_atomic(addr);
2453 		pages++;
2454 	}
2455 	WARN_ON(pages == 0);
2456 
2457 	/*
2458 	 * The stripe must enter state machine again to call endio, so
2459 	 * don't delay.
2460 	 */
2461 	clear_bit(STRIPE_DELAYED, &sh->state);
2462 	atomic_inc(&sh->count);
2463 
2464 	mutex_lock(&log->io_mutex);
2465 	/* meta + data */
2466 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2467 
2468 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2469 	    sh->log_start == MaxSector)
2470 		r5l_add_no_space_stripe(log, sh);
2471 	else if (!r5l_has_free_space(log, reserve)) {
2472 		if (sh->log_start == log->last_checkpoint)
2473 			BUG();
2474 		else
2475 			r5l_add_no_space_stripe(log, sh);
2476 	} else {
2477 		ret = r5l_log_stripe(log, sh, pages, 0);
2478 		if (ret) {
2479 			spin_lock_irq(&log->io_list_lock);
2480 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2481 			spin_unlock_irq(&log->io_list_lock);
2482 		}
2483 	}
2484 
2485 	mutex_unlock(&log->io_mutex);
2486 	return 0;
2487 }
2488 
2489 static int r5l_load_log(struct r5l_log *log)
2490 {
2491 	struct md_rdev *rdev = log->rdev;
2492 	struct page *page;
2493 	struct r5l_meta_block *mb;
2494 	sector_t cp = log->rdev->journal_tail;
2495 	u32 stored_crc, expected_crc;
2496 	bool create_super = false;
2497 	int ret = 0;
2498 
2499 	/* Make sure it's valid */
2500 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2501 		cp = 0;
2502 	page = alloc_page(GFP_KERNEL);
2503 	if (!page)
2504 		return -ENOMEM;
2505 
2506 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2507 		ret = -EIO;
2508 		goto ioerr;
2509 	}
2510 	mb = page_address(page);
2511 
2512 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2513 	    mb->version != R5LOG_VERSION) {
2514 		create_super = true;
2515 		goto create;
2516 	}
2517 	stored_crc = le32_to_cpu(mb->checksum);
2518 	mb->checksum = 0;
2519 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2520 	if (stored_crc != expected_crc) {
2521 		create_super = true;
2522 		goto create;
2523 	}
2524 	if (le64_to_cpu(mb->position) != cp) {
2525 		create_super = true;
2526 		goto create;
2527 	}
2528 create:
2529 	if (create_super) {
2530 		log->last_cp_seq = prandom_u32();
2531 		cp = 0;
2532 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2533 		/*
2534 		 * Make sure super points to correct address. Log might have
2535 		 * data very soon. If super hasn't correct log tail address,
2536 		 * recovery can't find the log
2537 		 */
2538 		r5l_write_super(log, cp);
2539 	} else
2540 		log->last_cp_seq = le64_to_cpu(mb->seq);
2541 
2542 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2543 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2544 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2545 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2546 	log->last_checkpoint = cp;
2547 
2548 	__free_page(page);
2549 
2550 	if (create_super) {
2551 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2552 		log->seq = log->last_cp_seq + 1;
2553 		log->next_checkpoint = cp;
2554 	} else
2555 		ret = r5l_recovery_log(log);
2556 
2557 	r5c_update_log_state(log);
2558 	return ret;
2559 ioerr:
2560 	__free_page(page);
2561 	return ret;
2562 }
2563 
2564 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2565 {
2566 	struct request_queue *q = bdev_get_queue(rdev->bdev);
2567 	struct r5l_log *log;
2568 
2569 	if (PAGE_SIZE != 4096)
2570 		return -EINVAL;
2571 
2572 	/*
2573 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2574 	 * raid_disks r5l_payload_data_parity.
2575 	 *
2576 	 * Write journal and cache does not work for very big array
2577 	 * (raid_disks > 203)
2578 	 */
2579 	if (sizeof(struct r5l_meta_block) +
2580 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2581 	     conf->raid_disks) > PAGE_SIZE) {
2582 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2583 		       mdname(conf->mddev), conf->raid_disks);
2584 		return -EINVAL;
2585 	}
2586 
2587 	log = kzalloc(sizeof(*log), GFP_KERNEL);
2588 	if (!log)
2589 		return -ENOMEM;
2590 	log->rdev = rdev;
2591 
2592 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
2593 
2594 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2595 				       sizeof(rdev->mddev->uuid));
2596 
2597 	mutex_init(&log->io_mutex);
2598 
2599 	spin_lock_init(&log->io_list_lock);
2600 	INIT_LIST_HEAD(&log->running_ios);
2601 	INIT_LIST_HEAD(&log->io_end_ios);
2602 	INIT_LIST_HEAD(&log->flushing_ios);
2603 	INIT_LIST_HEAD(&log->finished_ios);
2604 	bio_init(&log->flush_bio);
2605 
2606 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2607 	if (!log->io_kc)
2608 		goto io_kc;
2609 
2610 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2611 	if (!log->io_pool)
2612 		goto io_pool;
2613 
2614 	log->bs = bioset_create(R5L_POOL_SIZE, 0);
2615 	if (!log->bs)
2616 		goto io_bs;
2617 
2618 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2619 	if (!log->meta_pool)
2620 		goto out_mempool;
2621 
2622 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2623 						 log->rdev->mddev, "reclaim");
2624 	if (!log->reclaim_thread)
2625 		goto reclaim_thread;
2626 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2627 
2628 	init_waitqueue_head(&log->iounit_wait);
2629 
2630 	INIT_LIST_HEAD(&log->no_mem_stripes);
2631 
2632 	INIT_LIST_HEAD(&log->no_space_stripes);
2633 	spin_lock_init(&log->no_space_stripes_lock);
2634 
2635 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2636 
2637 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2638 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
2639 	spin_lock_init(&log->stripe_in_journal_lock);
2640 	atomic_set(&log->stripe_in_journal_count, 0);
2641 
2642 	if (r5l_load_log(log))
2643 		goto error;
2644 
2645 	rcu_assign_pointer(conf->log, log);
2646 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
2647 	return 0;
2648 
2649 error:
2650 	md_unregister_thread(&log->reclaim_thread);
2651 reclaim_thread:
2652 	mempool_destroy(log->meta_pool);
2653 out_mempool:
2654 	bioset_free(log->bs);
2655 io_bs:
2656 	mempool_destroy(log->io_pool);
2657 io_pool:
2658 	kmem_cache_destroy(log->io_kc);
2659 io_kc:
2660 	kfree(log);
2661 	return -EINVAL;
2662 }
2663 
2664 void r5l_exit_log(struct r5l_log *log)
2665 {
2666 	md_unregister_thread(&log->reclaim_thread);
2667 	mempool_destroy(log->meta_pool);
2668 	bioset_free(log->bs);
2669 	mempool_destroy(log->io_pool);
2670 	kmem_cache_destroy(log->io_kc);
2671 	kfree(log);
2672 }
2673