1 /* 2 * Copyright (C) 2015 Shaohua Li <shli@fb.com> 3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 #include <linux/kernel.h> 16 #include <linux/wait.h> 17 #include <linux/blkdev.h> 18 #include <linux/slab.h> 19 #include <linux/raid/md_p.h> 20 #include <linux/crc32c.h> 21 #include <linux/random.h> 22 #include <linux/kthread.h> 23 #include <linux/types.h> 24 #include "md.h" 25 #include "raid5.h" 26 #include "bitmap.h" 27 #include "raid5-log.h" 28 29 /* 30 * metadata/data stored in disk with 4k size unit (a block) regardless 31 * underneath hardware sector size. only works with PAGE_SIZE == 4096 32 */ 33 #define BLOCK_SECTORS (8) 34 #define BLOCK_SECTOR_SHIFT (3) 35 36 /* 37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space). 38 * 39 * In write through mode, the reclaim runs every log->max_free_space. 40 * This can prevent the recovery scans for too long 41 */ 42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */ 43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2) 44 45 /* wake up reclaim thread periodically */ 46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ) 47 /* start flush with these full stripes */ 48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4) 49 /* reclaim stripes in groups */ 50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) 51 52 /* 53 * We only need 2 bios per I/O unit to make progress, but ensure we 54 * have a few more available to not get too tight. 55 */ 56 #define R5L_POOL_SIZE 4 57 58 static char *r5c_journal_mode_str[] = {"write-through", 59 "write-back"}; 60 /* 61 * raid5 cache state machine 62 * 63 * With the RAID cache, each stripe works in two phases: 64 * - caching phase 65 * - writing-out phase 66 * 67 * These two phases are controlled by bit STRIPE_R5C_CACHING: 68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase 69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase 70 * 71 * When there is no journal, or the journal is in write-through mode, 72 * the stripe is always in writing-out phase. 73 * 74 * For write-back journal, the stripe is sent to caching phase on write 75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off 76 * the write-out phase by clearing STRIPE_R5C_CACHING. 77 * 78 * Stripes in caching phase do not write the raid disks. Instead, all 79 * writes are committed from the log device. Therefore, a stripe in 80 * caching phase handles writes as: 81 * - write to log device 82 * - return IO 83 * 84 * Stripes in writing-out phase handle writes as: 85 * - calculate parity 86 * - write pending data and parity to journal 87 * - write data and parity to raid disks 88 * - return IO for pending writes 89 */ 90 91 struct r5l_log { 92 struct md_rdev *rdev; 93 94 u32 uuid_checksum; 95 96 sector_t device_size; /* log device size, round to 97 * BLOCK_SECTORS */ 98 sector_t max_free_space; /* reclaim run if free space is at 99 * this size */ 100 101 sector_t last_checkpoint; /* log tail. where recovery scan 102 * starts from */ 103 u64 last_cp_seq; /* log tail sequence */ 104 105 sector_t log_start; /* log head. where new data appends */ 106 u64 seq; /* log head sequence */ 107 108 sector_t next_checkpoint; 109 110 struct mutex io_mutex; 111 struct r5l_io_unit *current_io; /* current io_unit accepting new data */ 112 113 spinlock_t io_list_lock; 114 struct list_head running_ios; /* io_units which are still running, 115 * and have not yet been completely 116 * written to the log */ 117 struct list_head io_end_ios; /* io_units which have been completely 118 * written to the log but not yet written 119 * to the RAID */ 120 struct list_head flushing_ios; /* io_units which are waiting for log 121 * cache flush */ 122 struct list_head finished_ios; /* io_units which settle down in log disk */ 123 struct bio flush_bio; 124 125 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */ 126 127 struct kmem_cache *io_kc; 128 mempool_t *io_pool; 129 struct bio_set *bs; 130 mempool_t *meta_pool; 131 132 struct md_thread *reclaim_thread; 133 unsigned long reclaim_target; /* number of space that need to be 134 * reclaimed. if it's 0, reclaim spaces 135 * used by io_units which are in 136 * IO_UNIT_STRIPE_END state (eg, reclaim 137 * dones't wait for specific io_unit 138 * switching to IO_UNIT_STRIPE_END 139 * state) */ 140 wait_queue_head_t iounit_wait; 141 142 struct list_head no_space_stripes; /* pending stripes, log has no space */ 143 spinlock_t no_space_stripes_lock; 144 145 bool need_cache_flush; 146 147 /* for r5c_cache */ 148 enum r5c_journal_mode r5c_journal_mode; 149 150 /* all stripes in r5cache, in the order of seq at sh->log_start */ 151 struct list_head stripe_in_journal_list; 152 153 spinlock_t stripe_in_journal_lock; 154 atomic_t stripe_in_journal_count; 155 156 /* to submit async io_units, to fulfill ordering of flush */ 157 struct work_struct deferred_io_work; 158 /* to disable write back during in degraded mode */ 159 struct work_struct disable_writeback_work; 160 161 /* to for chunk_aligned_read in writeback mode, details below */ 162 spinlock_t tree_lock; 163 struct radix_tree_root big_stripe_tree; 164 }; 165 166 /* 167 * Enable chunk_aligned_read() with write back cache. 168 * 169 * Each chunk may contain more than one stripe (for example, a 256kB 170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For 171 * chunk_aligned_read, these stripes are grouped into one "big_stripe". 172 * For each big_stripe, we count how many stripes of this big_stripe 173 * are in the write back cache. These data are tracked in a radix tree 174 * (big_stripe_tree). We use radix_tree item pointer as the counter. 175 * r5c_tree_index() is used to calculate keys for the radix tree. 176 * 177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up 178 * big_stripe of each chunk in the tree. If this big_stripe is in the 179 * tree, chunk_aligned_read() aborts. This look up is protected by 180 * rcu_read_lock(). 181 * 182 * It is necessary to remember whether a stripe is counted in 183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags: 184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these 185 * two flags are set, the stripe is counted in big_stripe_tree. This 186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to 187 * r5c_try_caching_write(); and moving clear_bit of 188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to 189 * r5c_finish_stripe_write_out(). 190 */ 191 192 /* 193 * radix tree requests lowest 2 bits of data pointer to be 2b'00. 194 * So it is necessary to left shift the counter by 2 bits before using it 195 * as data pointer of the tree. 196 */ 197 #define R5C_RADIX_COUNT_SHIFT 2 198 199 /* 200 * calculate key for big_stripe_tree 201 * 202 * sect: align_bi->bi_iter.bi_sector or sh->sector 203 */ 204 static inline sector_t r5c_tree_index(struct r5conf *conf, 205 sector_t sect) 206 { 207 sector_t offset; 208 209 offset = sector_div(sect, conf->chunk_sectors); 210 return sect; 211 } 212 213 /* 214 * an IO range starts from a meta data block and end at the next meta data 215 * block. The io unit's the meta data block tracks data/parity followed it. io 216 * unit is written to log disk with normal write, as we always flush log disk 217 * first and then start move data to raid disks, there is no requirement to 218 * write io unit with FLUSH/FUA 219 */ 220 struct r5l_io_unit { 221 struct r5l_log *log; 222 223 struct page *meta_page; /* store meta block */ 224 int meta_offset; /* current offset in meta_page */ 225 226 struct bio *current_bio;/* current_bio accepting new data */ 227 228 atomic_t pending_stripe;/* how many stripes not flushed to raid */ 229 u64 seq; /* seq number of the metablock */ 230 sector_t log_start; /* where the io_unit starts */ 231 sector_t log_end; /* where the io_unit ends */ 232 struct list_head log_sibling; /* log->running_ios */ 233 struct list_head stripe_list; /* stripes added to the io_unit */ 234 235 int state; 236 bool need_split_bio; 237 struct bio *split_bio; 238 239 unsigned int has_flush:1; /* include flush request */ 240 unsigned int has_fua:1; /* include fua request */ 241 unsigned int has_null_flush:1; /* include empty flush request */ 242 /* 243 * io isn't sent yet, flush/fua request can only be submitted till it's 244 * the first IO in running_ios list 245 */ 246 unsigned int io_deferred:1; 247 248 struct bio_list flush_barriers; /* size == 0 flush bios */ 249 }; 250 251 /* r5l_io_unit state */ 252 enum r5l_io_unit_state { 253 IO_UNIT_RUNNING = 0, /* accepting new IO */ 254 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log, 255 * don't accepting new bio */ 256 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */ 257 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */ 258 }; 259 260 bool r5c_is_writeback(struct r5l_log *log) 261 { 262 return (log != NULL && 263 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK); 264 } 265 266 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc) 267 { 268 start += inc; 269 if (start >= log->device_size) 270 start = start - log->device_size; 271 return start; 272 } 273 274 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start, 275 sector_t end) 276 { 277 if (end >= start) 278 return end - start; 279 else 280 return end + log->device_size - start; 281 } 282 283 static bool r5l_has_free_space(struct r5l_log *log, sector_t size) 284 { 285 sector_t used_size; 286 287 used_size = r5l_ring_distance(log, log->last_checkpoint, 288 log->log_start); 289 290 return log->device_size > used_size + size; 291 } 292 293 static void __r5l_set_io_unit_state(struct r5l_io_unit *io, 294 enum r5l_io_unit_state state) 295 { 296 if (WARN_ON(io->state >= state)) 297 return; 298 io->state = state; 299 } 300 301 static void 302 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev) 303 { 304 struct bio *wbi, *wbi2; 305 306 wbi = dev->written; 307 dev->written = NULL; 308 while (wbi && wbi->bi_iter.bi_sector < 309 dev->sector + STRIPE_SECTORS) { 310 wbi2 = r5_next_bio(wbi, dev->sector); 311 md_write_end(conf->mddev); 312 bio_endio(wbi); 313 wbi = wbi2; 314 } 315 } 316 317 void r5c_handle_cached_data_endio(struct r5conf *conf, 318 struct stripe_head *sh, int disks) 319 { 320 int i; 321 322 for (i = sh->disks; i--; ) { 323 if (sh->dev[i].written) { 324 set_bit(R5_UPTODATE, &sh->dev[i].flags); 325 r5c_return_dev_pending_writes(conf, &sh->dev[i]); 326 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 327 STRIPE_SECTORS, 328 !test_bit(STRIPE_DEGRADED, &sh->state), 329 0); 330 } 331 } 332 } 333 334 void r5l_wake_reclaim(struct r5l_log *log, sector_t space); 335 336 /* Check whether we should flush some stripes to free up stripe cache */ 337 void r5c_check_stripe_cache_usage(struct r5conf *conf) 338 { 339 int total_cached; 340 341 if (!r5c_is_writeback(conf->log)) 342 return; 343 344 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 345 atomic_read(&conf->r5c_cached_full_stripes); 346 347 /* 348 * The following condition is true for either of the following: 349 * - stripe cache pressure high: 350 * total_cached > 3/4 min_nr_stripes || 351 * empty_inactive_list_nr > 0 352 * - stripe cache pressure moderate: 353 * total_cached > 1/2 min_nr_stripes 354 */ 355 if (total_cached > conf->min_nr_stripes * 1 / 2 || 356 atomic_read(&conf->empty_inactive_list_nr) > 0) 357 r5l_wake_reclaim(conf->log, 0); 358 } 359 360 /* 361 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full 362 * stripes in the cache 363 */ 364 void r5c_check_cached_full_stripe(struct r5conf *conf) 365 { 366 if (!r5c_is_writeback(conf->log)) 367 return; 368 369 /* 370 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes 371 * or a full stripe (chunk size / 4k stripes). 372 */ 373 if (atomic_read(&conf->r5c_cached_full_stripes) >= 374 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf), 375 conf->chunk_sectors >> STRIPE_SHIFT)) 376 r5l_wake_reclaim(conf->log, 0); 377 } 378 379 /* 380 * Total log space (in sectors) needed to flush all data in cache 381 * 382 * To avoid deadlock due to log space, it is necessary to reserve log 383 * space to flush critical stripes (stripes that occupying log space near 384 * last_checkpoint). This function helps check how much log space is 385 * required to flush all cached stripes. 386 * 387 * To reduce log space requirements, two mechanisms are used to give cache 388 * flush higher priorities: 389 * 1. In handle_stripe_dirtying() and schedule_reconstruction(), 390 * stripes ALREADY in journal can be flushed w/o pending writes; 391 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal 392 * can be delayed (r5l_add_no_space_stripe). 393 * 394 * In cache flush, the stripe goes through 1 and then 2. For a stripe that 395 * already passed 1, flushing it requires at most (conf->max_degraded + 1) 396 * pages of journal space. For stripes that has not passed 1, flushing it 397 * requires (conf->raid_disks + 1) pages of journal space. There are at 398 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space 399 * required to flush all cached stripes (in pages) is: 400 * 401 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) + 402 * (group_cnt + 1) * (raid_disks + 1) 403 * or 404 * (stripe_in_journal_count) * (max_degraded + 1) + 405 * (group_cnt + 1) * (raid_disks - max_degraded) 406 */ 407 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf) 408 { 409 struct r5l_log *log = conf->log; 410 411 if (!r5c_is_writeback(log)) 412 return 0; 413 414 return BLOCK_SECTORS * 415 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) + 416 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1)); 417 } 418 419 /* 420 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL 421 * 422 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of 423 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log 424 * device is less than 2x of reclaim_required_space. 425 */ 426 static inline void r5c_update_log_state(struct r5l_log *log) 427 { 428 struct r5conf *conf = log->rdev->mddev->private; 429 sector_t free_space; 430 sector_t reclaim_space; 431 bool wake_reclaim = false; 432 433 if (!r5c_is_writeback(log)) 434 return; 435 436 free_space = r5l_ring_distance(log, log->log_start, 437 log->last_checkpoint); 438 reclaim_space = r5c_log_required_to_flush_cache(conf); 439 if (free_space < 2 * reclaim_space) 440 set_bit(R5C_LOG_CRITICAL, &conf->cache_state); 441 else { 442 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 443 wake_reclaim = true; 444 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state); 445 } 446 if (free_space < 3 * reclaim_space) 447 set_bit(R5C_LOG_TIGHT, &conf->cache_state); 448 else 449 clear_bit(R5C_LOG_TIGHT, &conf->cache_state); 450 451 if (wake_reclaim) 452 r5l_wake_reclaim(log, 0); 453 } 454 455 /* 456 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING. 457 * This function should only be called in write-back mode. 458 */ 459 void r5c_make_stripe_write_out(struct stripe_head *sh) 460 { 461 struct r5conf *conf = sh->raid_conf; 462 struct r5l_log *log = conf->log; 463 464 BUG_ON(!r5c_is_writeback(log)); 465 466 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 467 clear_bit(STRIPE_R5C_CACHING, &sh->state); 468 469 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 470 atomic_inc(&conf->preread_active_stripes); 471 } 472 473 static void r5c_handle_data_cached(struct stripe_head *sh) 474 { 475 int i; 476 477 for (i = sh->disks; i--; ) 478 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 479 set_bit(R5_InJournal, &sh->dev[i].flags); 480 clear_bit(R5_LOCKED, &sh->dev[i].flags); 481 } 482 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 483 } 484 485 /* 486 * this journal write must contain full parity, 487 * it may also contain some data pages 488 */ 489 static void r5c_handle_parity_cached(struct stripe_head *sh) 490 { 491 int i; 492 493 for (i = sh->disks; i--; ) 494 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 495 set_bit(R5_Wantwrite, &sh->dev[i].flags); 496 } 497 498 /* 499 * Setting proper flags after writing (or flushing) data and/or parity to the 500 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio(). 501 */ 502 static void r5c_finish_cache_stripe(struct stripe_head *sh) 503 { 504 struct r5l_log *log = sh->raid_conf->log; 505 506 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 507 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 508 /* 509 * Set R5_InJournal for parity dev[pd_idx]. This means 510 * all data AND parity in the journal. For RAID 6, it is 511 * NOT necessary to set the flag for dev[qd_idx], as the 512 * two parities are written out together. 513 */ 514 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 515 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) { 516 r5c_handle_data_cached(sh); 517 } else { 518 r5c_handle_parity_cached(sh); 519 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 520 } 521 } 522 523 static void r5l_io_run_stripes(struct r5l_io_unit *io) 524 { 525 struct stripe_head *sh, *next; 526 527 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { 528 list_del_init(&sh->log_list); 529 530 r5c_finish_cache_stripe(sh); 531 532 set_bit(STRIPE_HANDLE, &sh->state); 533 raid5_release_stripe(sh); 534 } 535 } 536 537 static void r5l_log_run_stripes(struct r5l_log *log) 538 { 539 struct r5l_io_unit *io, *next; 540 541 assert_spin_locked(&log->io_list_lock); 542 543 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 544 /* don't change list order */ 545 if (io->state < IO_UNIT_IO_END) 546 break; 547 548 list_move_tail(&io->log_sibling, &log->finished_ios); 549 r5l_io_run_stripes(io); 550 } 551 } 552 553 static void r5l_move_to_end_ios(struct r5l_log *log) 554 { 555 struct r5l_io_unit *io, *next; 556 557 assert_spin_locked(&log->io_list_lock); 558 559 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) { 560 /* don't change list order */ 561 if (io->state < IO_UNIT_IO_END) 562 break; 563 list_move_tail(&io->log_sibling, &log->io_end_ios); 564 } 565 } 566 567 static void __r5l_stripe_write_finished(struct r5l_io_unit *io); 568 static void r5l_log_endio(struct bio *bio) 569 { 570 struct r5l_io_unit *io = bio->bi_private; 571 struct r5l_io_unit *io_deferred; 572 struct r5l_log *log = io->log; 573 unsigned long flags; 574 575 if (bio->bi_status) 576 md_error(log->rdev->mddev, log->rdev); 577 578 bio_put(bio); 579 mempool_free(io->meta_page, log->meta_pool); 580 581 spin_lock_irqsave(&log->io_list_lock, flags); 582 __r5l_set_io_unit_state(io, IO_UNIT_IO_END); 583 if (log->need_cache_flush && !list_empty(&io->stripe_list)) 584 r5l_move_to_end_ios(log); 585 else 586 r5l_log_run_stripes(log); 587 if (!list_empty(&log->running_ios)) { 588 /* 589 * FLUSH/FUA io_unit is deferred because of ordering, now we 590 * can dispatch it 591 */ 592 io_deferred = list_first_entry(&log->running_ios, 593 struct r5l_io_unit, log_sibling); 594 if (io_deferred->io_deferred) 595 schedule_work(&log->deferred_io_work); 596 } 597 598 spin_unlock_irqrestore(&log->io_list_lock, flags); 599 600 if (log->need_cache_flush) 601 md_wakeup_thread(log->rdev->mddev->thread); 602 603 if (io->has_null_flush) { 604 struct bio *bi; 605 606 WARN_ON(bio_list_empty(&io->flush_barriers)); 607 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) { 608 bio_endio(bi); 609 atomic_dec(&io->pending_stripe); 610 } 611 } 612 613 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */ 614 if (atomic_read(&io->pending_stripe) == 0) 615 __r5l_stripe_write_finished(io); 616 } 617 618 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io) 619 { 620 unsigned long flags; 621 622 spin_lock_irqsave(&log->io_list_lock, flags); 623 __r5l_set_io_unit_state(io, IO_UNIT_IO_START); 624 spin_unlock_irqrestore(&log->io_list_lock, flags); 625 626 /* 627 * In case of journal device failures, submit_bio will get error 628 * and calls endio, then active stripes will continue write 629 * process. Therefore, it is not necessary to check Faulty bit 630 * of journal device here. 631 * 632 * We can't check split_bio after current_bio is submitted. If 633 * io->split_bio is null, after current_bio is submitted, current_bio 634 * might already be completed and the io_unit is freed. We submit 635 * split_bio first to avoid the issue. 636 */ 637 if (io->split_bio) { 638 if (io->has_flush) 639 io->split_bio->bi_opf |= REQ_PREFLUSH; 640 if (io->has_fua) 641 io->split_bio->bi_opf |= REQ_FUA; 642 submit_bio(io->split_bio); 643 } 644 645 if (io->has_flush) 646 io->current_bio->bi_opf |= REQ_PREFLUSH; 647 if (io->has_fua) 648 io->current_bio->bi_opf |= REQ_FUA; 649 submit_bio(io->current_bio); 650 } 651 652 /* deferred io_unit will be dispatched here */ 653 static void r5l_submit_io_async(struct work_struct *work) 654 { 655 struct r5l_log *log = container_of(work, struct r5l_log, 656 deferred_io_work); 657 struct r5l_io_unit *io = NULL; 658 unsigned long flags; 659 660 spin_lock_irqsave(&log->io_list_lock, flags); 661 if (!list_empty(&log->running_ios)) { 662 io = list_first_entry(&log->running_ios, struct r5l_io_unit, 663 log_sibling); 664 if (!io->io_deferred) 665 io = NULL; 666 else 667 io->io_deferred = 0; 668 } 669 spin_unlock_irqrestore(&log->io_list_lock, flags); 670 if (io) 671 r5l_do_submit_io(log, io); 672 } 673 674 static void r5c_disable_writeback_async(struct work_struct *work) 675 { 676 struct r5l_log *log = container_of(work, struct r5l_log, 677 disable_writeback_work); 678 struct mddev *mddev = log->rdev->mddev; 679 680 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 681 return; 682 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n", 683 mdname(mddev)); 684 685 /* wait superblock change before suspend */ 686 wait_event(mddev->sb_wait, 687 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 688 689 mddev_suspend(mddev); 690 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 691 mddev_resume(mddev); 692 } 693 694 static void r5l_submit_current_io(struct r5l_log *log) 695 { 696 struct r5l_io_unit *io = log->current_io; 697 struct bio *bio; 698 struct r5l_meta_block *block; 699 unsigned long flags; 700 u32 crc; 701 bool do_submit = true; 702 703 if (!io) 704 return; 705 706 block = page_address(io->meta_page); 707 block->meta_size = cpu_to_le32(io->meta_offset); 708 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE); 709 block->checksum = cpu_to_le32(crc); 710 bio = io->current_bio; 711 712 log->current_io = NULL; 713 spin_lock_irqsave(&log->io_list_lock, flags); 714 if (io->has_flush || io->has_fua) { 715 if (io != list_first_entry(&log->running_ios, 716 struct r5l_io_unit, log_sibling)) { 717 io->io_deferred = 1; 718 do_submit = false; 719 } 720 } 721 spin_unlock_irqrestore(&log->io_list_lock, flags); 722 if (do_submit) 723 r5l_do_submit_io(log, io); 724 } 725 726 static struct bio *r5l_bio_alloc(struct r5l_log *log) 727 { 728 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs); 729 730 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 731 bio->bi_bdev = log->rdev->bdev; 732 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start; 733 734 return bio; 735 } 736 737 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io) 738 { 739 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS); 740 741 r5c_update_log_state(log); 742 /* 743 * If we filled up the log device start from the beginning again, 744 * which will require a new bio. 745 * 746 * Note: for this to work properly the log size needs to me a multiple 747 * of BLOCK_SECTORS. 748 */ 749 if (log->log_start == 0) 750 io->need_split_bio = true; 751 752 io->log_end = log->log_start; 753 } 754 755 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log) 756 { 757 struct r5l_io_unit *io; 758 struct r5l_meta_block *block; 759 760 io = mempool_alloc(log->io_pool, GFP_ATOMIC); 761 if (!io) 762 return NULL; 763 memset(io, 0, sizeof(*io)); 764 765 io->log = log; 766 INIT_LIST_HEAD(&io->log_sibling); 767 INIT_LIST_HEAD(&io->stripe_list); 768 bio_list_init(&io->flush_barriers); 769 io->state = IO_UNIT_RUNNING; 770 771 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO); 772 block = page_address(io->meta_page); 773 clear_page(block); 774 block->magic = cpu_to_le32(R5LOG_MAGIC); 775 block->version = R5LOG_VERSION; 776 block->seq = cpu_to_le64(log->seq); 777 block->position = cpu_to_le64(log->log_start); 778 779 io->log_start = log->log_start; 780 io->meta_offset = sizeof(struct r5l_meta_block); 781 io->seq = log->seq++; 782 783 io->current_bio = r5l_bio_alloc(log); 784 io->current_bio->bi_end_io = r5l_log_endio; 785 io->current_bio->bi_private = io; 786 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0); 787 788 r5_reserve_log_entry(log, io); 789 790 spin_lock_irq(&log->io_list_lock); 791 list_add_tail(&io->log_sibling, &log->running_ios); 792 spin_unlock_irq(&log->io_list_lock); 793 794 return io; 795 } 796 797 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size) 798 { 799 if (log->current_io && 800 log->current_io->meta_offset + payload_size > PAGE_SIZE) 801 r5l_submit_current_io(log); 802 803 if (!log->current_io) { 804 log->current_io = r5l_new_meta(log); 805 if (!log->current_io) 806 return -ENOMEM; 807 } 808 809 return 0; 810 } 811 812 static void r5l_append_payload_meta(struct r5l_log *log, u16 type, 813 sector_t location, 814 u32 checksum1, u32 checksum2, 815 bool checksum2_valid) 816 { 817 struct r5l_io_unit *io = log->current_io; 818 struct r5l_payload_data_parity *payload; 819 820 payload = page_address(io->meta_page) + io->meta_offset; 821 payload->header.type = cpu_to_le16(type); 822 payload->header.flags = cpu_to_le16(0); 823 payload->size = cpu_to_le32((1 + !!checksum2_valid) << 824 (PAGE_SHIFT - 9)); 825 payload->location = cpu_to_le64(location); 826 payload->checksum[0] = cpu_to_le32(checksum1); 827 if (checksum2_valid) 828 payload->checksum[1] = cpu_to_le32(checksum2); 829 830 io->meta_offset += sizeof(struct r5l_payload_data_parity) + 831 sizeof(__le32) * (1 + !!checksum2_valid); 832 } 833 834 static void r5l_append_payload_page(struct r5l_log *log, struct page *page) 835 { 836 struct r5l_io_unit *io = log->current_io; 837 838 if (io->need_split_bio) { 839 BUG_ON(io->split_bio); 840 io->split_bio = io->current_bio; 841 io->current_bio = r5l_bio_alloc(log); 842 bio_chain(io->current_bio, io->split_bio); 843 io->need_split_bio = false; 844 } 845 846 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) 847 BUG(); 848 849 r5_reserve_log_entry(log, io); 850 } 851 852 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect) 853 { 854 struct mddev *mddev = log->rdev->mddev; 855 struct r5conf *conf = mddev->private; 856 struct r5l_io_unit *io; 857 struct r5l_payload_flush *payload; 858 int meta_size; 859 860 /* 861 * payload_flush requires extra writes to the journal. 862 * To avoid handling the extra IO in quiesce, just skip 863 * flush_payload 864 */ 865 if (conf->quiesce) 866 return; 867 868 mutex_lock(&log->io_mutex); 869 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64); 870 871 if (r5l_get_meta(log, meta_size)) { 872 mutex_unlock(&log->io_mutex); 873 return; 874 } 875 876 /* current implementation is one stripe per flush payload */ 877 io = log->current_io; 878 payload = page_address(io->meta_page) + io->meta_offset; 879 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH); 880 payload->header.flags = cpu_to_le16(0); 881 payload->size = cpu_to_le32(sizeof(__le64)); 882 payload->flush_stripes[0] = cpu_to_le64(sect); 883 io->meta_offset += meta_size; 884 mutex_unlock(&log->io_mutex); 885 } 886 887 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh, 888 int data_pages, int parity_pages) 889 { 890 int i; 891 int meta_size; 892 int ret; 893 struct r5l_io_unit *io; 894 895 meta_size = 896 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) 897 * data_pages) + 898 sizeof(struct r5l_payload_data_parity) + 899 sizeof(__le32) * parity_pages; 900 901 ret = r5l_get_meta(log, meta_size); 902 if (ret) 903 return ret; 904 905 io = log->current_io; 906 907 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state)) 908 io->has_flush = 1; 909 910 for (i = 0; i < sh->disks; i++) { 911 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 912 test_bit(R5_InJournal, &sh->dev[i].flags)) 913 continue; 914 if (i == sh->pd_idx || i == sh->qd_idx) 915 continue; 916 if (test_bit(R5_WantFUA, &sh->dev[i].flags) && 917 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) { 918 io->has_fua = 1; 919 /* 920 * we need to flush journal to make sure recovery can 921 * reach the data with fua flag 922 */ 923 io->has_flush = 1; 924 } 925 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA, 926 raid5_compute_blocknr(sh, i, 0), 927 sh->dev[i].log_checksum, 0, false); 928 r5l_append_payload_page(log, sh->dev[i].page); 929 } 930 931 if (parity_pages == 2) { 932 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 933 sh->sector, sh->dev[sh->pd_idx].log_checksum, 934 sh->dev[sh->qd_idx].log_checksum, true); 935 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 936 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page); 937 } else if (parity_pages == 1) { 938 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY, 939 sh->sector, sh->dev[sh->pd_idx].log_checksum, 940 0, false); 941 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page); 942 } else /* Just writing data, not parity, in caching phase */ 943 BUG_ON(parity_pages != 0); 944 945 list_add_tail(&sh->log_list, &io->stripe_list); 946 atomic_inc(&io->pending_stripe); 947 sh->log_io = io; 948 949 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 950 return 0; 951 952 if (sh->log_start == MaxSector) { 953 BUG_ON(!list_empty(&sh->r5c)); 954 sh->log_start = io->log_start; 955 spin_lock_irq(&log->stripe_in_journal_lock); 956 list_add_tail(&sh->r5c, 957 &log->stripe_in_journal_list); 958 spin_unlock_irq(&log->stripe_in_journal_lock); 959 atomic_inc(&log->stripe_in_journal_count); 960 } 961 return 0; 962 } 963 964 /* add stripe to no_space_stripes, and then wake up reclaim */ 965 static inline void r5l_add_no_space_stripe(struct r5l_log *log, 966 struct stripe_head *sh) 967 { 968 spin_lock(&log->no_space_stripes_lock); 969 list_add_tail(&sh->log_list, &log->no_space_stripes); 970 spin_unlock(&log->no_space_stripes_lock); 971 } 972 973 /* 974 * running in raid5d, where reclaim could wait for raid5d too (when it flushes 975 * data from log to raid disks), so we shouldn't wait for reclaim here 976 */ 977 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh) 978 { 979 struct r5conf *conf = sh->raid_conf; 980 int write_disks = 0; 981 int data_pages, parity_pages; 982 int reserve; 983 int i; 984 int ret = 0; 985 bool wake_reclaim = false; 986 987 if (!log) 988 return -EAGAIN; 989 /* Don't support stripe batch */ 990 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || 991 test_bit(STRIPE_SYNCING, &sh->state)) { 992 /* the stripe is written to log, we start writing it to raid */ 993 clear_bit(STRIPE_LOG_TRAPPED, &sh->state); 994 return -EAGAIN; 995 } 996 997 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 998 999 for (i = 0; i < sh->disks; i++) { 1000 void *addr; 1001 1002 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) || 1003 test_bit(R5_InJournal, &sh->dev[i].flags)) 1004 continue; 1005 1006 write_disks++; 1007 /* checksum is already calculated in last run */ 1008 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 1009 continue; 1010 addr = kmap_atomic(sh->dev[i].page); 1011 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 1012 addr, PAGE_SIZE); 1013 kunmap_atomic(addr); 1014 } 1015 parity_pages = 1 + !!(sh->qd_idx >= 0); 1016 data_pages = write_disks - parity_pages; 1017 1018 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 1019 /* 1020 * The stripe must enter state machine again to finish the write, so 1021 * don't delay. 1022 */ 1023 clear_bit(STRIPE_DELAYED, &sh->state); 1024 atomic_inc(&sh->count); 1025 1026 mutex_lock(&log->io_mutex); 1027 /* meta + data */ 1028 reserve = (1 + write_disks) << (PAGE_SHIFT - 9); 1029 1030 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1031 if (!r5l_has_free_space(log, reserve)) { 1032 r5l_add_no_space_stripe(log, sh); 1033 wake_reclaim = true; 1034 } else { 1035 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1036 if (ret) { 1037 spin_lock_irq(&log->io_list_lock); 1038 list_add_tail(&sh->log_list, 1039 &log->no_mem_stripes); 1040 spin_unlock_irq(&log->io_list_lock); 1041 } 1042 } 1043 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */ 1044 /* 1045 * log space critical, do not process stripes that are 1046 * not in cache yet (sh->log_start == MaxSector). 1047 */ 1048 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 1049 sh->log_start == MaxSector) { 1050 r5l_add_no_space_stripe(log, sh); 1051 wake_reclaim = true; 1052 reserve = 0; 1053 } else if (!r5l_has_free_space(log, reserve)) { 1054 if (sh->log_start == log->last_checkpoint) 1055 BUG(); 1056 else 1057 r5l_add_no_space_stripe(log, sh); 1058 } else { 1059 ret = r5l_log_stripe(log, sh, data_pages, parity_pages); 1060 if (ret) { 1061 spin_lock_irq(&log->io_list_lock); 1062 list_add_tail(&sh->log_list, 1063 &log->no_mem_stripes); 1064 spin_unlock_irq(&log->io_list_lock); 1065 } 1066 } 1067 } 1068 1069 mutex_unlock(&log->io_mutex); 1070 if (wake_reclaim) 1071 r5l_wake_reclaim(log, reserve); 1072 return 0; 1073 } 1074 1075 void r5l_write_stripe_run(struct r5l_log *log) 1076 { 1077 if (!log) 1078 return; 1079 mutex_lock(&log->io_mutex); 1080 r5l_submit_current_io(log); 1081 mutex_unlock(&log->io_mutex); 1082 } 1083 1084 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio) 1085 { 1086 if (!log) 1087 return -ENODEV; 1088 1089 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) { 1090 /* 1091 * in write through (journal only) 1092 * we flush log disk cache first, then write stripe data to 1093 * raid disks. So if bio is finished, the log disk cache is 1094 * flushed already. The recovery guarantees we can recovery 1095 * the bio from log disk, so we don't need to flush again 1096 */ 1097 if (bio->bi_iter.bi_size == 0) { 1098 bio_endio(bio); 1099 return 0; 1100 } 1101 bio->bi_opf &= ~REQ_PREFLUSH; 1102 } else { 1103 /* write back (with cache) */ 1104 if (bio->bi_iter.bi_size == 0) { 1105 mutex_lock(&log->io_mutex); 1106 r5l_get_meta(log, 0); 1107 bio_list_add(&log->current_io->flush_barriers, bio); 1108 log->current_io->has_flush = 1; 1109 log->current_io->has_null_flush = 1; 1110 atomic_inc(&log->current_io->pending_stripe); 1111 r5l_submit_current_io(log); 1112 mutex_unlock(&log->io_mutex); 1113 return 0; 1114 } 1115 } 1116 return -EAGAIN; 1117 } 1118 1119 /* This will run after log space is reclaimed */ 1120 static void r5l_run_no_space_stripes(struct r5l_log *log) 1121 { 1122 struct stripe_head *sh; 1123 1124 spin_lock(&log->no_space_stripes_lock); 1125 while (!list_empty(&log->no_space_stripes)) { 1126 sh = list_first_entry(&log->no_space_stripes, 1127 struct stripe_head, log_list); 1128 list_del_init(&sh->log_list); 1129 set_bit(STRIPE_HANDLE, &sh->state); 1130 raid5_release_stripe(sh); 1131 } 1132 spin_unlock(&log->no_space_stripes_lock); 1133 } 1134 1135 /* 1136 * calculate new last_checkpoint 1137 * for write through mode, returns log->next_checkpoint 1138 * for write back, returns log_start of first sh in stripe_in_journal_list 1139 */ 1140 static sector_t r5c_calculate_new_cp(struct r5conf *conf) 1141 { 1142 struct stripe_head *sh; 1143 struct r5l_log *log = conf->log; 1144 sector_t new_cp; 1145 unsigned long flags; 1146 1147 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 1148 return log->next_checkpoint; 1149 1150 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1151 if (list_empty(&conf->log->stripe_in_journal_list)) { 1152 /* all stripes flushed */ 1153 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1154 return log->next_checkpoint; 1155 } 1156 sh = list_first_entry(&conf->log->stripe_in_journal_list, 1157 struct stripe_head, r5c); 1158 new_cp = sh->log_start; 1159 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1160 return new_cp; 1161 } 1162 1163 static sector_t r5l_reclaimable_space(struct r5l_log *log) 1164 { 1165 struct r5conf *conf = log->rdev->mddev->private; 1166 1167 return r5l_ring_distance(log, log->last_checkpoint, 1168 r5c_calculate_new_cp(conf)); 1169 } 1170 1171 static void r5l_run_no_mem_stripe(struct r5l_log *log) 1172 { 1173 struct stripe_head *sh; 1174 1175 assert_spin_locked(&log->io_list_lock); 1176 1177 if (!list_empty(&log->no_mem_stripes)) { 1178 sh = list_first_entry(&log->no_mem_stripes, 1179 struct stripe_head, log_list); 1180 list_del_init(&sh->log_list); 1181 set_bit(STRIPE_HANDLE, &sh->state); 1182 raid5_release_stripe(sh); 1183 } 1184 } 1185 1186 static bool r5l_complete_finished_ios(struct r5l_log *log) 1187 { 1188 struct r5l_io_unit *io, *next; 1189 bool found = false; 1190 1191 assert_spin_locked(&log->io_list_lock); 1192 1193 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) { 1194 /* don't change list order */ 1195 if (io->state < IO_UNIT_STRIPE_END) 1196 break; 1197 1198 log->next_checkpoint = io->log_start; 1199 1200 list_del(&io->log_sibling); 1201 mempool_free(io, log->io_pool); 1202 r5l_run_no_mem_stripe(log); 1203 1204 found = true; 1205 } 1206 1207 return found; 1208 } 1209 1210 static void __r5l_stripe_write_finished(struct r5l_io_unit *io) 1211 { 1212 struct r5l_log *log = io->log; 1213 struct r5conf *conf = log->rdev->mddev->private; 1214 unsigned long flags; 1215 1216 spin_lock_irqsave(&log->io_list_lock, flags); 1217 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END); 1218 1219 if (!r5l_complete_finished_ios(log)) { 1220 spin_unlock_irqrestore(&log->io_list_lock, flags); 1221 return; 1222 } 1223 1224 if (r5l_reclaimable_space(log) > log->max_free_space || 1225 test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 1226 r5l_wake_reclaim(log, 0); 1227 1228 spin_unlock_irqrestore(&log->io_list_lock, flags); 1229 wake_up(&log->iounit_wait); 1230 } 1231 1232 void r5l_stripe_write_finished(struct stripe_head *sh) 1233 { 1234 struct r5l_io_unit *io; 1235 1236 io = sh->log_io; 1237 sh->log_io = NULL; 1238 1239 if (io && atomic_dec_and_test(&io->pending_stripe)) 1240 __r5l_stripe_write_finished(io); 1241 } 1242 1243 static void r5l_log_flush_endio(struct bio *bio) 1244 { 1245 struct r5l_log *log = container_of(bio, struct r5l_log, 1246 flush_bio); 1247 unsigned long flags; 1248 struct r5l_io_unit *io; 1249 1250 if (bio->bi_status) 1251 md_error(log->rdev->mddev, log->rdev); 1252 1253 spin_lock_irqsave(&log->io_list_lock, flags); 1254 list_for_each_entry(io, &log->flushing_ios, log_sibling) 1255 r5l_io_run_stripes(io); 1256 list_splice_tail_init(&log->flushing_ios, &log->finished_ios); 1257 spin_unlock_irqrestore(&log->io_list_lock, flags); 1258 } 1259 1260 /* 1261 * Starting dispatch IO to raid. 1262 * io_unit(meta) consists of a log. There is one situation we want to avoid. A 1263 * broken meta in the middle of a log causes recovery can't find meta at the 1264 * head of log. If operations require meta at the head persistent in log, we 1265 * must make sure meta before it persistent in log too. A case is: 1266 * 1267 * stripe data/parity is in log, we start write stripe to raid disks. stripe 1268 * data/parity must be persistent in log before we do the write to raid disks. 1269 * 1270 * The solution is we restrictly maintain io_unit list order. In this case, we 1271 * only write stripes of an io_unit to raid disks till the io_unit is the first 1272 * one whose data/parity is in log. 1273 */ 1274 void r5l_flush_stripe_to_raid(struct r5l_log *log) 1275 { 1276 bool do_flush; 1277 1278 if (!log || !log->need_cache_flush) 1279 return; 1280 1281 spin_lock_irq(&log->io_list_lock); 1282 /* flush bio is running */ 1283 if (!list_empty(&log->flushing_ios)) { 1284 spin_unlock_irq(&log->io_list_lock); 1285 return; 1286 } 1287 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios); 1288 do_flush = !list_empty(&log->flushing_ios); 1289 spin_unlock_irq(&log->io_list_lock); 1290 1291 if (!do_flush) 1292 return; 1293 bio_reset(&log->flush_bio); 1294 log->flush_bio.bi_bdev = log->rdev->bdev; 1295 log->flush_bio.bi_end_io = r5l_log_flush_endio; 1296 log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1297 submit_bio(&log->flush_bio); 1298 } 1299 1300 static void r5l_write_super(struct r5l_log *log, sector_t cp); 1301 static void r5l_write_super_and_discard_space(struct r5l_log *log, 1302 sector_t end) 1303 { 1304 struct block_device *bdev = log->rdev->bdev; 1305 struct mddev *mddev; 1306 1307 r5l_write_super(log, end); 1308 1309 if (!blk_queue_discard(bdev_get_queue(bdev))) 1310 return; 1311 1312 mddev = log->rdev->mddev; 1313 /* 1314 * Discard could zero data, so before discard we must make sure 1315 * superblock is updated to new log tail. Updating superblock (either 1316 * directly call md_update_sb() or depend on md thread) must hold 1317 * reconfig mutex. On the other hand, raid5_quiesce is called with 1318 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting 1319 * for all IO finish, hence waitting for reclaim thread, while reclaim 1320 * thread is calling this function and waitting for reconfig mutex. So 1321 * there is a deadlock. We workaround this issue with a trylock. 1322 * FIXME: we could miss discard if we can't take reconfig mutex 1323 */ 1324 set_mask_bits(&mddev->sb_flags, 0, 1325 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1326 if (!mddev_trylock(mddev)) 1327 return; 1328 md_update_sb(mddev, 1); 1329 mddev_unlock(mddev); 1330 1331 /* discard IO error really doesn't matter, ignore it */ 1332 if (log->last_checkpoint < end) { 1333 blkdev_issue_discard(bdev, 1334 log->last_checkpoint + log->rdev->data_offset, 1335 end - log->last_checkpoint, GFP_NOIO, 0); 1336 } else { 1337 blkdev_issue_discard(bdev, 1338 log->last_checkpoint + log->rdev->data_offset, 1339 log->device_size - log->last_checkpoint, 1340 GFP_NOIO, 0); 1341 blkdev_issue_discard(bdev, log->rdev->data_offset, end, 1342 GFP_NOIO, 0); 1343 } 1344 } 1345 1346 /* 1347 * r5c_flush_stripe moves stripe from cached list to handle_list. When called, 1348 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes. 1349 * 1350 * must hold conf->device_lock 1351 */ 1352 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh) 1353 { 1354 BUG_ON(list_empty(&sh->lru)); 1355 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 1356 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 1357 1358 /* 1359 * The stripe is not ON_RELEASE_LIST, so it is safe to call 1360 * raid5_release_stripe() while holding conf->device_lock 1361 */ 1362 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 1363 assert_spin_locked(&conf->device_lock); 1364 1365 list_del_init(&sh->lru); 1366 atomic_inc(&sh->count); 1367 1368 set_bit(STRIPE_HANDLE, &sh->state); 1369 atomic_inc(&conf->active_stripes); 1370 r5c_make_stripe_write_out(sh); 1371 1372 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 1373 atomic_inc(&conf->r5c_flushing_partial_stripes); 1374 else 1375 atomic_inc(&conf->r5c_flushing_full_stripes); 1376 raid5_release_stripe(sh); 1377 } 1378 1379 /* 1380 * if num == 0, flush all full stripes 1381 * if num > 0, flush all full stripes. If less than num full stripes are 1382 * flushed, flush some partial stripes until totally num stripes are 1383 * flushed or there is no more cached stripes. 1384 */ 1385 void r5c_flush_cache(struct r5conf *conf, int num) 1386 { 1387 int count; 1388 struct stripe_head *sh, *next; 1389 1390 assert_spin_locked(&conf->device_lock); 1391 if (!conf->log) 1392 return; 1393 1394 count = 0; 1395 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) { 1396 r5c_flush_stripe(conf, sh); 1397 count++; 1398 } 1399 1400 if (count >= num) 1401 return; 1402 list_for_each_entry_safe(sh, next, 1403 &conf->r5c_partial_stripe_list, lru) { 1404 r5c_flush_stripe(conf, sh); 1405 if (++count >= num) 1406 break; 1407 } 1408 } 1409 1410 static void r5c_do_reclaim(struct r5conf *conf) 1411 { 1412 struct r5l_log *log = conf->log; 1413 struct stripe_head *sh; 1414 int count = 0; 1415 unsigned long flags; 1416 int total_cached; 1417 int stripes_to_flush; 1418 int flushing_partial, flushing_full; 1419 1420 if (!r5c_is_writeback(log)) 1421 return; 1422 1423 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes); 1424 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes); 1425 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) + 1426 atomic_read(&conf->r5c_cached_full_stripes) - 1427 flushing_full - flushing_partial; 1428 1429 if (total_cached > conf->min_nr_stripes * 3 / 4 || 1430 atomic_read(&conf->empty_inactive_list_nr) > 0) 1431 /* 1432 * if stripe cache pressure high, flush all full stripes and 1433 * some partial stripes 1434 */ 1435 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP; 1436 else if (total_cached > conf->min_nr_stripes * 1 / 2 || 1437 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full > 1438 R5C_FULL_STRIPE_FLUSH_BATCH(conf)) 1439 /* 1440 * if stripe cache pressure moderate, or if there is many full 1441 * stripes,flush all full stripes 1442 */ 1443 stripes_to_flush = 0; 1444 else 1445 /* no need to flush */ 1446 stripes_to_flush = -1; 1447 1448 if (stripes_to_flush >= 0) { 1449 spin_lock_irqsave(&conf->device_lock, flags); 1450 r5c_flush_cache(conf, stripes_to_flush); 1451 spin_unlock_irqrestore(&conf->device_lock, flags); 1452 } 1453 1454 /* if log space is tight, flush stripes on stripe_in_journal_list */ 1455 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) { 1456 spin_lock_irqsave(&log->stripe_in_journal_lock, flags); 1457 spin_lock(&conf->device_lock); 1458 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) { 1459 /* 1460 * stripes on stripe_in_journal_list could be in any 1461 * state of the stripe_cache state machine. In this 1462 * case, we only want to flush stripe on 1463 * r5c_cached_full/partial_stripes. The following 1464 * condition makes sure the stripe is on one of the 1465 * two lists. 1466 */ 1467 if (!list_empty(&sh->lru) && 1468 !test_bit(STRIPE_HANDLE, &sh->state) && 1469 atomic_read(&sh->count) == 0) { 1470 r5c_flush_stripe(conf, sh); 1471 if (count++ >= R5C_RECLAIM_STRIPE_GROUP) 1472 break; 1473 } 1474 } 1475 spin_unlock(&conf->device_lock); 1476 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags); 1477 } 1478 1479 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state)) 1480 r5l_run_no_space_stripes(log); 1481 1482 md_wakeup_thread(conf->mddev->thread); 1483 } 1484 1485 static void r5l_do_reclaim(struct r5l_log *log) 1486 { 1487 struct r5conf *conf = log->rdev->mddev->private; 1488 sector_t reclaim_target = xchg(&log->reclaim_target, 0); 1489 sector_t reclaimable; 1490 sector_t next_checkpoint; 1491 bool write_super; 1492 1493 spin_lock_irq(&log->io_list_lock); 1494 write_super = r5l_reclaimable_space(log) > log->max_free_space || 1495 reclaim_target != 0 || !list_empty(&log->no_space_stripes); 1496 /* 1497 * move proper io_unit to reclaim list. We should not change the order. 1498 * reclaimable/unreclaimable io_unit can be mixed in the list, we 1499 * shouldn't reuse space of an unreclaimable io_unit 1500 */ 1501 while (1) { 1502 reclaimable = r5l_reclaimable_space(log); 1503 if (reclaimable >= reclaim_target || 1504 (list_empty(&log->running_ios) && 1505 list_empty(&log->io_end_ios) && 1506 list_empty(&log->flushing_ios) && 1507 list_empty(&log->finished_ios))) 1508 break; 1509 1510 md_wakeup_thread(log->rdev->mddev->thread); 1511 wait_event_lock_irq(log->iounit_wait, 1512 r5l_reclaimable_space(log) > reclaimable, 1513 log->io_list_lock); 1514 } 1515 1516 next_checkpoint = r5c_calculate_new_cp(conf); 1517 spin_unlock_irq(&log->io_list_lock); 1518 1519 if (reclaimable == 0 || !write_super) 1520 return; 1521 1522 /* 1523 * write_super will flush cache of each raid disk. We must write super 1524 * here, because the log area might be reused soon and we don't want to 1525 * confuse recovery 1526 */ 1527 r5l_write_super_and_discard_space(log, next_checkpoint); 1528 1529 mutex_lock(&log->io_mutex); 1530 log->last_checkpoint = next_checkpoint; 1531 r5c_update_log_state(log); 1532 mutex_unlock(&log->io_mutex); 1533 1534 r5l_run_no_space_stripes(log); 1535 } 1536 1537 static void r5l_reclaim_thread(struct md_thread *thread) 1538 { 1539 struct mddev *mddev = thread->mddev; 1540 struct r5conf *conf = mddev->private; 1541 struct r5l_log *log = conf->log; 1542 1543 if (!log) 1544 return; 1545 r5c_do_reclaim(conf); 1546 r5l_do_reclaim(log); 1547 } 1548 1549 void r5l_wake_reclaim(struct r5l_log *log, sector_t space) 1550 { 1551 unsigned long target; 1552 unsigned long new = (unsigned long)space; /* overflow in theory */ 1553 1554 if (!log) 1555 return; 1556 do { 1557 target = log->reclaim_target; 1558 if (new < target) 1559 return; 1560 } while (cmpxchg(&log->reclaim_target, target, new) != target); 1561 md_wakeup_thread(log->reclaim_thread); 1562 } 1563 1564 void r5l_quiesce(struct r5l_log *log, int state) 1565 { 1566 struct mddev *mddev; 1567 if (!log || state == 2) 1568 return; 1569 if (state == 0) 1570 kthread_unpark(log->reclaim_thread->tsk); 1571 else if (state == 1) { 1572 /* make sure r5l_write_super_and_discard_space exits */ 1573 mddev = log->rdev->mddev; 1574 wake_up(&mddev->sb_wait); 1575 kthread_park(log->reclaim_thread->tsk); 1576 r5l_wake_reclaim(log, MaxSector); 1577 r5l_do_reclaim(log); 1578 } 1579 } 1580 1581 bool r5l_log_disk_error(struct r5conf *conf) 1582 { 1583 struct r5l_log *log; 1584 bool ret; 1585 /* don't allow write if journal disk is missing */ 1586 rcu_read_lock(); 1587 log = rcu_dereference(conf->log); 1588 1589 if (!log) 1590 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 1591 else 1592 ret = test_bit(Faulty, &log->rdev->flags); 1593 rcu_read_unlock(); 1594 return ret; 1595 } 1596 1597 #define R5L_RECOVERY_PAGE_POOL_SIZE 256 1598 1599 struct r5l_recovery_ctx { 1600 struct page *meta_page; /* current meta */ 1601 sector_t meta_total_blocks; /* total size of current meta and data */ 1602 sector_t pos; /* recovery position */ 1603 u64 seq; /* recovery position seq */ 1604 int data_parity_stripes; /* number of data_parity stripes */ 1605 int data_only_stripes; /* number of data_only stripes */ 1606 struct list_head cached_list; 1607 1608 /* 1609 * read ahead page pool (ra_pool) 1610 * in recovery, log is read sequentially. It is not efficient to 1611 * read every page with sync_page_io(). The read ahead page pool 1612 * reads multiple pages with one IO, so further log read can 1613 * just copy data from the pool. 1614 */ 1615 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE]; 1616 sector_t pool_offset; /* offset of first page in the pool */ 1617 int total_pages; /* total allocated pages */ 1618 int valid_pages; /* pages with valid data */ 1619 struct bio *ra_bio; /* bio to do the read ahead */ 1620 }; 1621 1622 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log, 1623 struct r5l_recovery_ctx *ctx) 1624 { 1625 struct page *page; 1626 1627 ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs); 1628 if (!ctx->ra_bio) 1629 return -ENOMEM; 1630 1631 ctx->valid_pages = 0; 1632 ctx->total_pages = 0; 1633 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) { 1634 page = alloc_page(GFP_KERNEL); 1635 1636 if (!page) 1637 break; 1638 ctx->ra_pool[ctx->total_pages] = page; 1639 ctx->total_pages += 1; 1640 } 1641 1642 if (ctx->total_pages == 0) { 1643 bio_put(ctx->ra_bio); 1644 return -ENOMEM; 1645 } 1646 1647 ctx->pool_offset = 0; 1648 return 0; 1649 } 1650 1651 static void r5l_recovery_free_ra_pool(struct r5l_log *log, 1652 struct r5l_recovery_ctx *ctx) 1653 { 1654 int i; 1655 1656 for (i = 0; i < ctx->total_pages; ++i) 1657 put_page(ctx->ra_pool[i]); 1658 bio_put(ctx->ra_bio); 1659 } 1660 1661 /* 1662 * fetch ctx->valid_pages pages from offset 1663 * In normal cases, ctx->valid_pages == ctx->total_pages after the call. 1664 * However, if the offset is close to the end of the journal device, 1665 * ctx->valid_pages could be smaller than ctx->total_pages 1666 */ 1667 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log, 1668 struct r5l_recovery_ctx *ctx, 1669 sector_t offset) 1670 { 1671 bio_reset(ctx->ra_bio); 1672 ctx->ra_bio->bi_bdev = log->rdev->bdev; 1673 bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0); 1674 ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset; 1675 1676 ctx->valid_pages = 0; 1677 ctx->pool_offset = offset; 1678 1679 while (ctx->valid_pages < ctx->total_pages) { 1680 bio_add_page(ctx->ra_bio, 1681 ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0); 1682 ctx->valid_pages += 1; 1683 1684 offset = r5l_ring_add(log, offset, BLOCK_SECTORS); 1685 1686 if (offset == 0) /* reached end of the device */ 1687 break; 1688 } 1689 1690 return submit_bio_wait(ctx->ra_bio); 1691 } 1692 1693 /* 1694 * try read a page from the read ahead page pool, if the page is not in the 1695 * pool, call r5l_recovery_fetch_ra_pool 1696 */ 1697 static int r5l_recovery_read_page(struct r5l_log *log, 1698 struct r5l_recovery_ctx *ctx, 1699 struct page *page, 1700 sector_t offset) 1701 { 1702 int ret; 1703 1704 if (offset < ctx->pool_offset || 1705 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) { 1706 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset); 1707 if (ret) 1708 return ret; 1709 } 1710 1711 BUG_ON(offset < ctx->pool_offset || 1712 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS); 1713 1714 memcpy(page_address(page), 1715 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >> 1716 BLOCK_SECTOR_SHIFT]), 1717 PAGE_SIZE); 1718 return 0; 1719 } 1720 1721 static int r5l_recovery_read_meta_block(struct r5l_log *log, 1722 struct r5l_recovery_ctx *ctx) 1723 { 1724 struct page *page = ctx->meta_page; 1725 struct r5l_meta_block *mb; 1726 u32 crc, stored_crc; 1727 int ret; 1728 1729 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos); 1730 if (ret != 0) 1731 return ret; 1732 1733 mb = page_address(page); 1734 stored_crc = le32_to_cpu(mb->checksum); 1735 mb->checksum = 0; 1736 1737 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 1738 le64_to_cpu(mb->seq) != ctx->seq || 1739 mb->version != R5LOG_VERSION || 1740 le64_to_cpu(mb->position) != ctx->pos) 1741 return -EINVAL; 1742 1743 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 1744 if (stored_crc != crc) 1745 return -EINVAL; 1746 1747 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE) 1748 return -EINVAL; 1749 1750 ctx->meta_total_blocks = BLOCK_SECTORS; 1751 1752 return 0; 1753 } 1754 1755 static void 1756 r5l_recovery_create_empty_meta_block(struct r5l_log *log, 1757 struct page *page, 1758 sector_t pos, u64 seq) 1759 { 1760 struct r5l_meta_block *mb; 1761 1762 mb = page_address(page); 1763 clear_page(mb); 1764 mb->magic = cpu_to_le32(R5LOG_MAGIC); 1765 mb->version = R5LOG_VERSION; 1766 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block)); 1767 mb->seq = cpu_to_le64(seq); 1768 mb->position = cpu_to_le64(pos); 1769 } 1770 1771 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos, 1772 u64 seq) 1773 { 1774 struct page *page; 1775 struct r5l_meta_block *mb; 1776 1777 page = alloc_page(GFP_KERNEL); 1778 if (!page) 1779 return -ENOMEM; 1780 r5l_recovery_create_empty_meta_block(log, page, pos, seq); 1781 mb = page_address(page); 1782 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 1783 mb, PAGE_SIZE)); 1784 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE, 1785 REQ_SYNC | REQ_FUA, false)) { 1786 __free_page(page); 1787 return -EIO; 1788 } 1789 __free_page(page); 1790 return 0; 1791 } 1792 1793 /* 1794 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite 1795 * to mark valid (potentially not flushed) data in the journal. 1796 * 1797 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb, 1798 * so there should not be any mismatch here. 1799 */ 1800 static void r5l_recovery_load_data(struct r5l_log *log, 1801 struct stripe_head *sh, 1802 struct r5l_recovery_ctx *ctx, 1803 struct r5l_payload_data_parity *payload, 1804 sector_t log_offset) 1805 { 1806 struct mddev *mddev = log->rdev->mddev; 1807 struct r5conf *conf = mddev->private; 1808 int dd_idx; 1809 1810 raid5_compute_sector(conf, 1811 le64_to_cpu(payload->location), 0, 1812 &dd_idx, sh); 1813 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset); 1814 sh->dev[dd_idx].log_checksum = 1815 le32_to_cpu(payload->checksum[0]); 1816 ctx->meta_total_blocks += BLOCK_SECTORS; 1817 1818 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags); 1819 set_bit(STRIPE_R5C_CACHING, &sh->state); 1820 } 1821 1822 static void r5l_recovery_load_parity(struct r5l_log *log, 1823 struct stripe_head *sh, 1824 struct r5l_recovery_ctx *ctx, 1825 struct r5l_payload_data_parity *payload, 1826 sector_t log_offset) 1827 { 1828 struct mddev *mddev = log->rdev->mddev; 1829 struct r5conf *conf = mddev->private; 1830 1831 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded; 1832 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset); 1833 sh->dev[sh->pd_idx].log_checksum = 1834 le32_to_cpu(payload->checksum[0]); 1835 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags); 1836 1837 if (sh->qd_idx >= 0) { 1838 r5l_recovery_read_page( 1839 log, ctx, sh->dev[sh->qd_idx].page, 1840 r5l_ring_add(log, log_offset, BLOCK_SECTORS)); 1841 sh->dev[sh->qd_idx].log_checksum = 1842 le32_to_cpu(payload->checksum[1]); 1843 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags); 1844 } 1845 clear_bit(STRIPE_R5C_CACHING, &sh->state); 1846 } 1847 1848 static void r5l_recovery_reset_stripe(struct stripe_head *sh) 1849 { 1850 int i; 1851 1852 sh->state = 0; 1853 sh->log_start = MaxSector; 1854 for (i = sh->disks; i--; ) 1855 sh->dev[i].flags = 0; 1856 } 1857 1858 static void 1859 r5l_recovery_replay_one_stripe(struct r5conf *conf, 1860 struct stripe_head *sh, 1861 struct r5l_recovery_ctx *ctx) 1862 { 1863 struct md_rdev *rdev, *rrdev; 1864 int disk_index; 1865 int data_count = 0; 1866 1867 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1868 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1869 continue; 1870 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx) 1871 continue; 1872 data_count++; 1873 } 1874 1875 /* 1876 * stripes that only have parity must have been flushed 1877 * before the crash that we are now recovering from, so 1878 * there is nothing more to recovery. 1879 */ 1880 if (data_count == 0) 1881 goto out; 1882 1883 for (disk_index = 0; disk_index < sh->disks; disk_index++) { 1884 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags)) 1885 continue; 1886 1887 /* in case device is broken */ 1888 rcu_read_lock(); 1889 rdev = rcu_dereference(conf->disks[disk_index].rdev); 1890 if (rdev) { 1891 atomic_inc(&rdev->nr_pending); 1892 rcu_read_unlock(); 1893 sync_page_io(rdev, sh->sector, PAGE_SIZE, 1894 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1895 false); 1896 rdev_dec_pending(rdev, rdev->mddev); 1897 rcu_read_lock(); 1898 } 1899 rrdev = rcu_dereference(conf->disks[disk_index].replacement); 1900 if (rrdev) { 1901 atomic_inc(&rrdev->nr_pending); 1902 rcu_read_unlock(); 1903 sync_page_io(rrdev, sh->sector, PAGE_SIZE, 1904 sh->dev[disk_index].page, REQ_OP_WRITE, 0, 1905 false); 1906 rdev_dec_pending(rrdev, rrdev->mddev); 1907 rcu_read_lock(); 1908 } 1909 rcu_read_unlock(); 1910 } 1911 ctx->data_parity_stripes++; 1912 out: 1913 r5l_recovery_reset_stripe(sh); 1914 } 1915 1916 static struct stripe_head * 1917 r5c_recovery_alloc_stripe(struct r5conf *conf, 1918 sector_t stripe_sect) 1919 { 1920 struct stripe_head *sh; 1921 1922 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0); 1923 if (!sh) 1924 return NULL; /* no more stripe available */ 1925 1926 r5l_recovery_reset_stripe(sh); 1927 1928 return sh; 1929 } 1930 1931 static struct stripe_head * 1932 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect) 1933 { 1934 struct stripe_head *sh; 1935 1936 list_for_each_entry(sh, list, lru) 1937 if (sh->sector == sect) 1938 return sh; 1939 return NULL; 1940 } 1941 1942 static void 1943 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list, 1944 struct r5l_recovery_ctx *ctx) 1945 { 1946 struct stripe_head *sh, *next; 1947 1948 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) { 1949 r5l_recovery_reset_stripe(sh); 1950 list_del_init(&sh->lru); 1951 raid5_release_stripe(sh); 1952 } 1953 } 1954 1955 static void 1956 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list, 1957 struct r5l_recovery_ctx *ctx) 1958 { 1959 struct stripe_head *sh, *next; 1960 1961 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) 1962 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 1963 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx); 1964 list_del_init(&sh->lru); 1965 raid5_release_stripe(sh); 1966 } 1967 } 1968 1969 /* if matches return 0; otherwise return -EINVAL */ 1970 static int 1971 r5l_recovery_verify_data_checksum(struct r5l_log *log, 1972 struct r5l_recovery_ctx *ctx, 1973 struct page *page, 1974 sector_t log_offset, __le32 log_checksum) 1975 { 1976 void *addr; 1977 u32 checksum; 1978 1979 r5l_recovery_read_page(log, ctx, page, log_offset); 1980 addr = kmap_atomic(page); 1981 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE); 1982 kunmap_atomic(addr); 1983 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL; 1984 } 1985 1986 /* 1987 * before loading data to stripe cache, we need verify checksum for all data, 1988 * if there is mismatch for any data page, we drop all data in the mata block 1989 */ 1990 static int 1991 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log, 1992 struct r5l_recovery_ctx *ctx) 1993 { 1994 struct mddev *mddev = log->rdev->mddev; 1995 struct r5conf *conf = mddev->private; 1996 struct r5l_meta_block *mb = page_address(ctx->meta_page); 1997 sector_t mb_offset = sizeof(struct r5l_meta_block); 1998 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 1999 struct page *page; 2000 struct r5l_payload_data_parity *payload; 2001 struct r5l_payload_flush *payload_flush; 2002 2003 page = alloc_page(GFP_KERNEL); 2004 if (!page) 2005 return -ENOMEM; 2006 2007 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2008 payload = (void *)mb + mb_offset; 2009 payload_flush = (void *)mb + mb_offset; 2010 2011 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2012 if (r5l_recovery_verify_data_checksum( 2013 log, ctx, page, log_offset, 2014 payload->checksum[0]) < 0) 2015 goto mismatch; 2016 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) { 2017 if (r5l_recovery_verify_data_checksum( 2018 log, ctx, page, log_offset, 2019 payload->checksum[0]) < 0) 2020 goto mismatch; 2021 if (conf->max_degraded == 2 && /* q for RAID 6 */ 2022 r5l_recovery_verify_data_checksum( 2023 log, ctx, page, 2024 r5l_ring_add(log, log_offset, 2025 BLOCK_SECTORS), 2026 payload->checksum[1]) < 0) 2027 goto mismatch; 2028 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2029 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */ 2030 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */ 2031 goto mismatch; 2032 2033 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2034 mb_offset += sizeof(struct r5l_payload_flush) + 2035 le32_to_cpu(payload_flush->size); 2036 } else { 2037 /* DATA or PARITY payload */ 2038 log_offset = r5l_ring_add(log, log_offset, 2039 le32_to_cpu(payload->size)); 2040 mb_offset += sizeof(struct r5l_payload_data_parity) + 2041 sizeof(__le32) * 2042 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2043 } 2044 2045 } 2046 2047 put_page(page); 2048 return 0; 2049 2050 mismatch: 2051 put_page(page); 2052 return -EINVAL; 2053 } 2054 2055 /* 2056 * Analyze all data/parity pages in one meta block 2057 * Returns: 2058 * 0 for success 2059 * -EINVAL for unknown playload type 2060 * -EAGAIN for checksum mismatch of data page 2061 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes) 2062 */ 2063 static int 2064 r5c_recovery_analyze_meta_block(struct r5l_log *log, 2065 struct r5l_recovery_ctx *ctx, 2066 struct list_head *cached_stripe_list) 2067 { 2068 struct mddev *mddev = log->rdev->mddev; 2069 struct r5conf *conf = mddev->private; 2070 struct r5l_meta_block *mb; 2071 struct r5l_payload_data_parity *payload; 2072 struct r5l_payload_flush *payload_flush; 2073 int mb_offset; 2074 sector_t log_offset; 2075 sector_t stripe_sect; 2076 struct stripe_head *sh; 2077 int ret; 2078 2079 /* 2080 * for mismatch in data blocks, we will drop all data in this mb, but 2081 * we will still read next mb for other data with FLUSH flag, as 2082 * io_unit could finish out of order. 2083 */ 2084 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx); 2085 if (ret == -EINVAL) 2086 return -EAGAIN; 2087 else if (ret) 2088 return ret; /* -ENOMEM duo to alloc_page() failed */ 2089 2090 mb = page_address(ctx->meta_page); 2091 mb_offset = sizeof(struct r5l_meta_block); 2092 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2093 2094 while (mb_offset < le32_to_cpu(mb->meta_size)) { 2095 int dd; 2096 2097 payload = (void *)mb + mb_offset; 2098 payload_flush = (void *)mb + mb_offset; 2099 2100 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) { 2101 int i, count; 2102 2103 count = le32_to_cpu(payload_flush->size) / sizeof(__le64); 2104 for (i = 0; i < count; ++i) { 2105 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]); 2106 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2107 stripe_sect); 2108 if (sh) { 2109 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2110 r5l_recovery_reset_stripe(sh); 2111 list_del_init(&sh->lru); 2112 raid5_release_stripe(sh); 2113 } 2114 } 2115 2116 mb_offset += sizeof(struct r5l_payload_flush) + 2117 le32_to_cpu(payload_flush->size); 2118 continue; 2119 } 2120 2121 /* DATA or PARITY payload */ 2122 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ? 2123 raid5_compute_sector( 2124 conf, le64_to_cpu(payload->location), 0, &dd, 2125 NULL) 2126 : le64_to_cpu(payload->location); 2127 2128 sh = r5c_recovery_lookup_stripe(cached_stripe_list, 2129 stripe_sect); 2130 2131 if (!sh) { 2132 sh = r5c_recovery_alloc_stripe(conf, stripe_sect); 2133 /* 2134 * cannot get stripe from raid5_get_active_stripe 2135 * try replay some stripes 2136 */ 2137 if (!sh) { 2138 r5c_recovery_replay_stripes( 2139 cached_stripe_list, ctx); 2140 sh = r5c_recovery_alloc_stripe( 2141 conf, stripe_sect); 2142 } 2143 if (!sh) { 2144 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n", 2145 mdname(mddev), 2146 conf->min_nr_stripes * 2); 2147 raid5_set_cache_size(mddev, 2148 conf->min_nr_stripes * 2); 2149 sh = r5c_recovery_alloc_stripe(conf, 2150 stripe_sect); 2151 } 2152 if (!sh) { 2153 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n", 2154 mdname(mddev)); 2155 return -ENOMEM; 2156 } 2157 list_add_tail(&sh->lru, cached_stripe_list); 2158 } 2159 2160 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) { 2161 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 2162 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) { 2163 r5l_recovery_replay_one_stripe(conf, sh, ctx); 2164 list_move_tail(&sh->lru, cached_stripe_list); 2165 } 2166 r5l_recovery_load_data(log, sh, ctx, payload, 2167 log_offset); 2168 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) 2169 r5l_recovery_load_parity(log, sh, ctx, payload, 2170 log_offset); 2171 else 2172 return -EINVAL; 2173 2174 log_offset = r5l_ring_add(log, log_offset, 2175 le32_to_cpu(payload->size)); 2176 2177 mb_offset += sizeof(struct r5l_payload_data_parity) + 2178 sizeof(__le32) * 2179 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9)); 2180 } 2181 2182 return 0; 2183 } 2184 2185 /* 2186 * Load the stripe into cache. The stripe will be written out later by 2187 * the stripe cache state machine. 2188 */ 2189 static void r5c_recovery_load_one_stripe(struct r5l_log *log, 2190 struct stripe_head *sh) 2191 { 2192 struct r5dev *dev; 2193 int i; 2194 2195 for (i = sh->disks; i--; ) { 2196 dev = sh->dev + i; 2197 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) { 2198 set_bit(R5_InJournal, &dev->flags); 2199 set_bit(R5_UPTODATE, &dev->flags); 2200 } 2201 } 2202 } 2203 2204 /* 2205 * Scan through the log for all to-be-flushed data 2206 * 2207 * For stripes with data and parity, namely Data-Parity stripe 2208 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes. 2209 * 2210 * For stripes with only data, namely Data-Only stripe 2211 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine. 2212 * 2213 * For a stripe, if we see data after parity, we should discard all previous 2214 * data and parity for this stripe, as these data are already flushed to 2215 * the array. 2216 * 2217 * At the end of the scan, we return the new journal_tail, which points to 2218 * first data-only stripe on the journal device, or next invalid meta block. 2219 */ 2220 static int r5c_recovery_flush_log(struct r5l_log *log, 2221 struct r5l_recovery_ctx *ctx) 2222 { 2223 struct stripe_head *sh; 2224 int ret = 0; 2225 2226 /* scan through the log */ 2227 while (1) { 2228 if (r5l_recovery_read_meta_block(log, ctx)) 2229 break; 2230 2231 ret = r5c_recovery_analyze_meta_block(log, ctx, 2232 &ctx->cached_list); 2233 /* 2234 * -EAGAIN means mismatch in data block, in this case, we still 2235 * try scan the next metablock 2236 */ 2237 if (ret && ret != -EAGAIN) 2238 break; /* ret == -EINVAL or -ENOMEM */ 2239 ctx->seq++; 2240 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks); 2241 } 2242 2243 if (ret == -ENOMEM) { 2244 r5c_recovery_drop_stripes(&ctx->cached_list, ctx); 2245 return ret; 2246 } 2247 2248 /* replay data-parity stripes */ 2249 r5c_recovery_replay_stripes(&ctx->cached_list, ctx); 2250 2251 /* load data-only stripes to stripe cache */ 2252 list_for_each_entry(sh, &ctx->cached_list, lru) { 2253 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2254 r5c_recovery_load_one_stripe(log, sh); 2255 ctx->data_only_stripes++; 2256 } 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * we did a recovery. Now ctx.pos points to an invalid meta block. New 2263 * log will start here. but we can't let superblock point to last valid 2264 * meta block. The log might looks like: 2265 * | meta 1| meta 2| meta 3| 2266 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If 2267 * superblock points to meta 1, we write a new valid meta 2n. if crash 2268 * happens again, new recovery will start from meta 1. Since meta 2n is 2269 * valid now, recovery will think meta 3 is valid, which is wrong. 2270 * The solution is we create a new meta in meta2 with its seq == meta 2271 * 1's seq + 10000 and let superblock points to meta2. The same recovery 2272 * will not think meta 3 is a valid meta, because its seq doesn't match 2273 */ 2274 2275 /* 2276 * Before recovery, the log looks like the following 2277 * 2278 * --------------------------------------------- 2279 * | valid log | invalid log | 2280 * --------------------------------------------- 2281 * ^ 2282 * |- log->last_checkpoint 2283 * |- log->last_cp_seq 2284 * 2285 * Now we scan through the log until we see invalid entry 2286 * 2287 * --------------------------------------------- 2288 * | valid log | invalid log | 2289 * --------------------------------------------- 2290 * ^ ^ 2291 * |- log->last_checkpoint |- ctx->pos 2292 * |- log->last_cp_seq |- ctx->seq 2293 * 2294 * From this point, we need to increase seq number by 10 to avoid 2295 * confusing next recovery. 2296 * 2297 * --------------------------------------------- 2298 * | valid log | invalid log | 2299 * --------------------------------------------- 2300 * ^ ^ 2301 * |- log->last_checkpoint |- ctx->pos+1 2302 * |- log->last_cp_seq |- ctx->seq+10001 2303 * 2304 * However, it is not safe to start the state machine yet, because data only 2305 * parities are not yet secured in RAID. To save these data only parities, we 2306 * rewrite them from seq+11. 2307 * 2308 * ----------------------------------------------------------------- 2309 * | valid log | data only stripes | invalid log | 2310 * ----------------------------------------------------------------- 2311 * ^ ^ 2312 * |- log->last_checkpoint |- ctx->pos+n 2313 * |- log->last_cp_seq |- ctx->seq+10000+n 2314 * 2315 * If failure happens again during this process, the recovery can safe start 2316 * again from log->last_checkpoint. 2317 * 2318 * Once data only stripes are rewritten to journal, we move log_tail 2319 * 2320 * ----------------------------------------------------------------- 2321 * | old log | data only stripes | invalid log | 2322 * ----------------------------------------------------------------- 2323 * ^ ^ 2324 * |- log->last_checkpoint |- ctx->pos+n 2325 * |- log->last_cp_seq |- ctx->seq+10000+n 2326 * 2327 * Then we can safely start the state machine. If failure happens from this 2328 * point on, the recovery will start from new log->last_checkpoint. 2329 */ 2330 static int 2331 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log, 2332 struct r5l_recovery_ctx *ctx) 2333 { 2334 struct stripe_head *sh; 2335 struct mddev *mddev = log->rdev->mddev; 2336 struct page *page; 2337 sector_t next_checkpoint = MaxSector; 2338 2339 page = alloc_page(GFP_KERNEL); 2340 if (!page) { 2341 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n", 2342 mdname(mddev)); 2343 return -ENOMEM; 2344 } 2345 2346 WARN_ON(list_empty(&ctx->cached_list)); 2347 2348 list_for_each_entry(sh, &ctx->cached_list, lru) { 2349 struct r5l_meta_block *mb; 2350 int i; 2351 int offset; 2352 sector_t write_pos; 2353 2354 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state)); 2355 r5l_recovery_create_empty_meta_block(log, page, 2356 ctx->pos, ctx->seq); 2357 mb = page_address(page); 2358 offset = le32_to_cpu(mb->meta_size); 2359 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2360 2361 for (i = sh->disks; i--; ) { 2362 struct r5dev *dev = &sh->dev[i]; 2363 struct r5l_payload_data_parity *payload; 2364 void *addr; 2365 2366 if (test_bit(R5_InJournal, &dev->flags)) { 2367 payload = (void *)mb + offset; 2368 payload->header.type = cpu_to_le16( 2369 R5LOG_PAYLOAD_DATA); 2370 payload->size = cpu_to_le32(BLOCK_SECTORS); 2371 payload->location = cpu_to_le64( 2372 raid5_compute_blocknr(sh, i, 0)); 2373 addr = kmap_atomic(dev->page); 2374 payload->checksum[0] = cpu_to_le32( 2375 crc32c_le(log->uuid_checksum, addr, 2376 PAGE_SIZE)); 2377 kunmap_atomic(addr); 2378 sync_page_io(log->rdev, write_pos, PAGE_SIZE, 2379 dev->page, REQ_OP_WRITE, 0, false); 2380 write_pos = r5l_ring_add(log, write_pos, 2381 BLOCK_SECTORS); 2382 offset += sizeof(__le32) + 2383 sizeof(struct r5l_payload_data_parity); 2384 2385 } 2386 } 2387 mb->meta_size = cpu_to_le32(offset); 2388 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum, 2389 mb, PAGE_SIZE)); 2390 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, 2391 REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false); 2392 sh->log_start = ctx->pos; 2393 list_add_tail(&sh->r5c, &log->stripe_in_journal_list); 2394 atomic_inc(&log->stripe_in_journal_count); 2395 ctx->pos = write_pos; 2396 ctx->seq += 1; 2397 next_checkpoint = sh->log_start; 2398 } 2399 log->next_checkpoint = next_checkpoint; 2400 __free_page(page); 2401 return 0; 2402 } 2403 2404 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log, 2405 struct r5l_recovery_ctx *ctx) 2406 { 2407 struct mddev *mddev = log->rdev->mddev; 2408 struct r5conf *conf = mddev->private; 2409 struct stripe_head *sh, *next; 2410 2411 if (ctx->data_only_stripes == 0) 2412 return; 2413 2414 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK; 2415 2416 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) { 2417 r5c_make_stripe_write_out(sh); 2418 set_bit(STRIPE_HANDLE, &sh->state); 2419 list_del_init(&sh->lru); 2420 raid5_release_stripe(sh); 2421 } 2422 2423 md_wakeup_thread(conf->mddev->thread); 2424 /* reuse conf->wait_for_quiescent in recovery */ 2425 wait_event(conf->wait_for_quiescent, 2426 atomic_read(&conf->active_stripes) == 0); 2427 2428 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 2429 } 2430 2431 static int r5l_recovery_log(struct r5l_log *log) 2432 { 2433 struct mddev *mddev = log->rdev->mddev; 2434 struct r5l_recovery_ctx *ctx; 2435 int ret; 2436 sector_t pos; 2437 2438 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2439 if (!ctx) 2440 return -ENOMEM; 2441 2442 ctx->pos = log->last_checkpoint; 2443 ctx->seq = log->last_cp_seq; 2444 INIT_LIST_HEAD(&ctx->cached_list); 2445 ctx->meta_page = alloc_page(GFP_KERNEL); 2446 2447 if (!ctx->meta_page) { 2448 ret = -ENOMEM; 2449 goto meta_page; 2450 } 2451 2452 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) { 2453 ret = -ENOMEM; 2454 goto ra_pool; 2455 } 2456 2457 ret = r5c_recovery_flush_log(log, ctx); 2458 2459 if (ret) 2460 goto error; 2461 2462 pos = ctx->pos; 2463 ctx->seq += 10000; 2464 2465 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0)) 2466 pr_debug("md/raid:%s: starting from clean shutdown\n", 2467 mdname(mddev)); 2468 else 2469 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n", 2470 mdname(mddev), ctx->data_only_stripes, 2471 ctx->data_parity_stripes); 2472 2473 if (ctx->data_only_stripes == 0) { 2474 log->next_checkpoint = ctx->pos; 2475 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++); 2476 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS); 2477 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) { 2478 pr_err("md/raid:%s: failed to rewrite stripes to journal\n", 2479 mdname(mddev)); 2480 ret = -EIO; 2481 goto error; 2482 } 2483 2484 log->log_start = ctx->pos; 2485 log->seq = ctx->seq; 2486 log->last_checkpoint = pos; 2487 r5l_write_super(log, pos); 2488 2489 r5c_recovery_flush_data_only_stripes(log, ctx); 2490 ret = 0; 2491 error: 2492 r5l_recovery_free_ra_pool(log, ctx); 2493 ra_pool: 2494 __free_page(ctx->meta_page); 2495 meta_page: 2496 kfree(ctx); 2497 return ret; 2498 } 2499 2500 static void r5l_write_super(struct r5l_log *log, sector_t cp) 2501 { 2502 struct mddev *mddev = log->rdev->mddev; 2503 2504 log->rdev->journal_tail = cp; 2505 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2506 } 2507 2508 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page) 2509 { 2510 struct r5conf *conf = mddev->private; 2511 int ret; 2512 2513 if (!conf->log) 2514 return 0; 2515 2516 switch (conf->log->r5c_journal_mode) { 2517 case R5C_JOURNAL_MODE_WRITE_THROUGH: 2518 ret = snprintf( 2519 page, PAGE_SIZE, "[%s] %s\n", 2520 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2521 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2522 break; 2523 case R5C_JOURNAL_MODE_WRITE_BACK: 2524 ret = snprintf( 2525 page, PAGE_SIZE, "%s [%s]\n", 2526 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH], 2527 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]); 2528 break; 2529 default: 2530 ret = 0; 2531 } 2532 return ret; 2533 } 2534 2535 /* 2536 * Set journal cache mode on @mddev (external API initially needed by dm-raid). 2537 * 2538 * @mode as defined in 'enum r5c_journal_mode'. 2539 * 2540 */ 2541 int r5c_journal_mode_set(struct mddev *mddev, int mode) 2542 { 2543 struct r5conf *conf = mddev->private; 2544 struct r5l_log *log = conf->log; 2545 2546 if (!log) 2547 return -ENODEV; 2548 2549 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH || 2550 mode > R5C_JOURNAL_MODE_WRITE_BACK) 2551 return -EINVAL; 2552 2553 if (raid5_calc_degraded(conf) > 0 && 2554 mode == R5C_JOURNAL_MODE_WRITE_BACK) 2555 return -EINVAL; 2556 2557 mddev_suspend(mddev); 2558 conf->log->r5c_journal_mode = mode; 2559 mddev_resume(mddev); 2560 2561 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n", 2562 mdname(mddev), mode, r5c_journal_mode_str[mode]); 2563 return 0; 2564 } 2565 EXPORT_SYMBOL(r5c_journal_mode_set); 2566 2567 static ssize_t r5c_journal_mode_store(struct mddev *mddev, 2568 const char *page, size_t length) 2569 { 2570 int mode = ARRAY_SIZE(r5c_journal_mode_str); 2571 size_t len = length; 2572 2573 if (len < 2) 2574 return -EINVAL; 2575 2576 if (page[len - 1] == '\n') 2577 len--; 2578 2579 while (mode--) 2580 if (strlen(r5c_journal_mode_str[mode]) == len && 2581 !strncmp(page, r5c_journal_mode_str[mode], len)) 2582 break; 2583 2584 return r5c_journal_mode_set(mddev, mode) ?: length; 2585 } 2586 2587 struct md_sysfs_entry 2588 r5c_journal_mode = __ATTR(journal_mode, 0644, 2589 r5c_journal_mode_show, r5c_journal_mode_store); 2590 2591 /* 2592 * Try handle write operation in caching phase. This function should only 2593 * be called in write-back mode. 2594 * 2595 * If all outstanding writes can be handled in caching phase, returns 0 2596 * If writes requires write-out phase, call r5c_make_stripe_write_out() 2597 * and returns -EAGAIN 2598 */ 2599 int r5c_try_caching_write(struct r5conf *conf, 2600 struct stripe_head *sh, 2601 struct stripe_head_state *s, 2602 int disks) 2603 { 2604 struct r5l_log *log = conf->log; 2605 int i; 2606 struct r5dev *dev; 2607 int to_cache = 0; 2608 void **pslot; 2609 sector_t tree_index; 2610 int ret; 2611 uintptr_t refcount; 2612 2613 BUG_ON(!r5c_is_writeback(log)); 2614 2615 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 2616 /* 2617 * There are two different scenarios here: 2618 * 1. The stripe has some data cached, and it is sent to 2619 * write-out phase for reclaim 2620 * 2. The stripe is clean, and this is the first write 2621 * 2622 * For 1, return -EAGAIN, so we continue with 2623 * handle_stripe_dirtying(). 2624 * 2625 * For 2, set STRIPE_R5C_CACHING and continue with caching 2626 * write. 2627 */ 2628 2629 /* case 1: anything injournal or anything in written */ 2630 if (s->injournal > 0 || s->written > 0) 2631 return -EAGAIN; 2632 /* case 2 */ 2633 set_bit(STRIPE_R5C_CACHING, &sh->state); 2634 } 2635 2636 /* 2637 * When run in degraded mode, array is set to write-through mode. 2638 * This check helps drain pending write safely in the transition to 2639 * write-through mode. 2640 * 2641 * When a stripe is syncing, the write is also handled in write 2642 * through mode. 2643 */ 2644 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) { 2645 r5c_make_stripe_write_out(sh); 2646 return -EAGAIN; 2647 } 2648 2649 for (i = disks; i--; ) { 2650 dev = &sh->dev[i]; 2651 /* if non-overwrite, use writing-out phase */ 2652 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) && 2653 !test_bit(R5_InJournal, &dev->flags)) { 2654 r5c_make_stripe_write_out(sh); 2655 return -EAGAIN; 2656 } 2657 } 2658 2659 /* if the stripe is not counted in big_stripe_tree, add it now */ 2660 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 2661 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2662 tree_index = r5c_tree_index(conf, sh->sector); 2663 spin_lock(&log->tree_lock); 2664 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2665 tree_index); 2666 if (pslot) { 2667 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2668 pslot, &log->tree_lock) >> 2669 R5C_RADIX_COUNT_SHIFT; 2670 radix_tree_replace_slot( 2671 &log->big_stripe_tree, pslot, 2672 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT)); 2673 } else { 2674 /* 2675 * this radix_tree_insert can fail safely, so no 2676 * need to call radix_tree_preload() 2677 */ 2678 ret = radix_tree_insert( 2679 &log->big_stripe_tree, tree_index, 2680 (void *)(1 << R5C_RADIX_COUNT_SHIFT)); 2681 if (ret) { 2682 spin_unlock(&log->tree_lock); 2683 r5c_make_stripe_write_out(sh); 2684 return -EAGAIN; 2685 } 2686 } 2687 spin_unlock(&log->tree_lock); 2688 2689 /* 2690 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is 2691 * counted in the radix tree 2692 */ 2693 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state); 2694 atomic_inc(&conf->r5c_cached_partial_stripes); 2695 } 2696 2697 for (i = disks; i--; ) { 2698 dev = &sh->dev[i]; 2699 if (dev->towrite) { 2700 set_bit(R5_Wantwrite, &dev->flags); 2701 set_bit(R5_Wantdrain, &dev->flags); 2702 set_bit(R5_LOCKED, &dev->flags); 2703 to_cache++; 2704 } 2705 } 2706 2707 if (to_cache) { 2708 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2709 /* 2710 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data() 2711 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in 2712 * r5c_handle_data_cached() 2713 */ 2714 set_bit(STRIPE_LOG_TRAPPED, &sh->state); 2715 } 2716 2717 return 0; 2718 } 2719 2720 /* 2721 * free extra pages (orig_page) we allocated for prexor 2722 */ 2723 void r5c_release_extra_page(struct stripe_head *sh) 2724 { 2725 struct r5conf *conf = sh->raid_conf; 2726 int i; 2727 bool using_disk_info_extra_page; 2728 2729 using_disk_info_extra_page = 2730 sh->dev[0].orig_page == conf->disks[0].extra_page; 2731 2732 for (i = sh->disks; i--; ) 2733 if (sh->dev[i].page != sh->dev[i].orig_page) { 2734 struct page *p = sh->dev[i].orig_page; 2735 2736 sh->dev[i].orig_page = sh->dev[i].page; 2737 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2738 2739 if (!using_disk_info_extra_page) 2740 put_page(p); 2741 } 2742 2743 if (using_disk_info_extra_page) { 2744 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state); 2745 md_wakeup_thread(conf->mddev->thread); 2746 } 2747 } 2748 2749 void r5c_use_extra_page(struct stripe_head *sh) 2750 { 2751 struct r5conf *conf = sh->raid_conf; 2752 int i; 2753 struct r5dev *dev; 2754 2755 for (i = sh->disks; i--; ) { 2756 dev = &sh->dev[i]; 2757 if (dev->orig_page != dev->page) 2758 put_page(dev->orig_page); 2759 dev->orig_page = conf->disks[i].extra_page; 2760 } 2761 } 2762 2763 /* 2764 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the 2765 * stripe is committed to RAID disks. 2766 */ 2767 void r5c_finish_stripe_write_out(struct r5conf *conf, 2768 struct stripe_head *sh, 2769 struct stripe_head_state *s) 2770 { 2771 struct r5l_log *log = conf->log; 2772 int i; 2773 int do_wakeup = 0; 2774 sector_t tree_index; 2775 void **pslot; 2776 uintptr_t refcount; 2777 2778 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)) 2779 return; 2780 2781 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state)); 2782 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags); 2783 2784 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) 2785 return; 2786 2787 for (i = sh->disks; i--; ) { 2788 clear_bit(R5_InJournal, &sh->dev[i].flags); 2789 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2790 do_wakeup = 1; 2791 } 2792 2793 /* 2794 * analyse_stripe() runs before r5c_finish_stripe_write_out(), 2795 * We updated R5_InJournal, so we also update s->injournal. 2796 */ 2797 s->injournal = 0; 2798 2799 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2800 if (atomic_dec_and_test(&conf->pending_full_writes)) 2801 md_wakeup_thread(conf->mddev->thread); 2802 2803 if (do_wakeup) 2804 wake_up(&conf->wait_for_overlap); 2805 2806 spin_lock_irq(&log->stripe_in_journal_lock); 2807 list_del_init(&sh->r5c); 2808 spin_unlock_irq(&log->stripe_in_journal_lock); 2809 sh->log_start = MaxSector; 2810 2811 atomic_dec(&log->stripe_in_journal_count); 2812 r5c_update_log_state(log); 2813 2814 /* stop counting this stripe in big_stripe_tree */ 2815 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) || 2816 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2817 tree_index = r5c_tree_index(conf, sh->sector); 2818 spin_lock(&log->tree_lock); 2819 pslot = radix_tree_lookup_slot(&log->big_stripe_tree, 2820 tree_index); 2821 BUG_ON(pslot == NULL); 2822 refcount = (uintptr_t)radix_tree_deref_slot_protected( 2823 pslot, &log->tree_lock) >> 2824 R5C_RADIX_COUNT_SHIFT; 2825 if (refcount == 1) 2826 radix_tree_delete(&log->big_stripe_tree, tree_index); 2827 else 2828 radix_tree_replace_slot( 2829 &log->big_stripe_tree, pslot, 2830 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT)); 2831 spin_unlock(&log->tree_lock); 2832 } 2833 2834 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) { 2835 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0); 2836 atomic_dec(&conf->r5c_flushing_partial_stripes); 2837 atomic_dec(&conf->r5c_cached_partial_stripes); 2838 } 2839 2840 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) { 2841 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0); 2842 atomic_dec(&conf->r5c_flushing_full_stripes); 2843 atomic_dec(&conf->r5c_cached_full_stripes); 2844 } 2845 2846 r5l_append_flush_payload(log, sh->sector); 2847 /* stripe is flused to raid disks, we can do resync now */ 2848 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2849 set_bit(STRIPE_HANDLE, &sh->state); 2850 } 2851 2852 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh) 2853 { 2854 struct r5conf *conf = sh->raid_conf; 2855 int pages = 0; 2856 int reserve; 2857 int i; 2858 int ret = 0; 2859 2860 BUG_ON(!log); 2861 2862 for (i = 0; i < sh->disks; i++) { 2863 void *addr; 2864 2865 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags)) 2866 continue; 2867 addr = kmap_atomic(sh->dev[i].page); 2868 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum, 2869 addr, PAGE_SIZE); 2870 kunmap_atomic(addr); 2871 pages++; 2872 } 2873 WARN_ON(pages == 0); 2874 2875 /* 2876 * The stripe must enter state machine again to call endio, so 2877 * don't delay. 2878 */ 2879 clear_bit(STRIPE_DELAYED, &sh->state); 2880 atomic_inc(&sh->count); 2881 2882 mutex_lock(&log->io_mutex); 2883 /* meta + data */ 2884 reserve = (1 + pages) << (PAGE_SHIFT - 9); 2885 2886 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2887 sh->log_start == MaxSector) 2888 r5l_add_no_space_stripe(log, sh); 2889 else if (!r5l_has_free_space(log, reserve)) { 2890 if (sh->log_start == log->last_checkpoint) 2891 BUG(); 2892 else 2893 r5l_add_no_space_stripe(log, sh); 2894 } else { 2895 ret = r5l_log_stripe(log, sh, pages, 0); 2896 if (ret) { 2897 spin_lock_irq(&log->io_list_lock); 2898 list_add_tail(&sh->log_list, &log->no_mem_stripes); 2899 spin_unlock_irq(&log->io_list_lock); 2900 } 2901 } 2902 2903 mutex_unlock(&log->io_mutex); 2904 return 0; 2905 } 2906 2907 /* check whether this big stripe is in write back cache. */ 2908 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect) 2909 { 2910 struct r5l_log *log = conf->log; 2911 sector_t tree_index; 2912 void *slot; 2913 2914 if (!log) 2915 return false; 2916 2917 WARN_ON_ONCE(!rcu_read_lock_held()); 2918 tree_index = r5c_tree_index(conf, sect); 2919 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index); 2920 return slot != NULL; 2921 } 2922 2923 static int r5l_load_log(struct r5l_log *log) 2924 { 2925 struct md_rdev *rdev = log->rdev; 2926 struct page *page; 2927 struct r5l_meta_block *mb; 2928 sector_t cp = log->rdev->journal_tail; 2929 u32 stored_crc, expected_crc; 2930 bool create_super = false; 2931 int ret = 0; 2932 2933 /* Make sure it's valid */ 2934 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp) 2935 cp = 0; 2936 page = alloc_page(GFP_KERNEL); 2937 if (!page) 2938 return -ENOMEM; 2939 2940 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { 2941 ret = -EIO; 2942 goto ioerr; 2943 } 2944 mb = page_address(page); 2945 2946 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC || 2947 mb->version != R5LOG_VERSION) { 2948 create_super = true; 2949 goto create; 2950 } 2951 stored_crc = le32_to_cpu(mb->checksum); 2952 mb->checksum = 0; 2953 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE); 2954 if (stored_crc != expected_crc) { 2955 create_super = true; 2956 goto create; 2957 } 2958 if (le64_to_cpu(mb->position) != cp) { 2959 create_super = true; 2960 goto create; 2961 } 2962 create: 2963 if (create_super) { 2964 log->last_cp_seq = prandom_u32(); 2965 cp = 0; 2966 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq); 2967 /* 2968 * Make sure super points to correct address. Log might have 2969 * data very soon. If super hasn't correct log tail address, 2970 * recovery can't find the log 2971 */ 2972 r5l_write_super(log, cp); 2973 } else 2974 log->last_cp_seq = le64_to_cpu(mb->seq); 2975 2976 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS); 2977 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT; 2978 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE) 2979 log->max_free_space = RECLAIM_MAX_FREE_SPACE; 2980 log->last_checkpoint = cp; 2981 2982 __free_page(page); 2983 2984 if (create_super) { 2985 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS); 2986 log->seq = log->last_cp_seq + 1; 2987 log->next_checkpoint = cp; 2988 } else 2989 ret = r5l_recovery_log(log); 2990 2991 r5c_update_log_state(log); 2992 return ret; 2993 ioerr: 2994 __free_page(page); 2995 return ret; 2996 } 2997 2998 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev) 2999 { 3000 struct r5conf *conf = mddev->private; 3001 struct r5l_log *log = conf->log; 3002 3003 if (!log) 3004 return; 3005 3006 if ((raid5_calc_degraded(conf) > 0 || 3007 test_bit(Journal, &rdev->flags)) && 3008 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) 3009 schedule_work(&log->disable_writeback_work); 3010 } 3011 3012 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev) 3013 { 3014 struct request_queue *q = bdev_get_queue(rdev->bdev); 3015 struct r5l_log *log; 3016 char b[BDEVNAME_SIZE]; 3017 3018 pr_debug("md/raid:%s: using device %s as journal\n", 3019 mdname(conf->mddev), bdevname(rdev->bdev, b)); 3020 3021 if (PAGE_SIZE != 4096) 3022 return -EINVAL; 3023 3024 /* 3025 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and 3026 * raid_disks r5l_payload_data_parity. 3027 * 3028 * Write journal and cache does not work for very big array 3029 * (raid_disks > 203) 3030 */ 3031 if (sizeof(struct r5l_meta_block) + 3032 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) * 3033 conf->raid_disks) > PAGE_SIZE) { 3034 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n", 3035 mdname(conf->mddev), conf->raid_disks); 3036 return -EINVAL; 3037 } 3038 3039 log = kzalloc(sizeof(*log), GFP_KERNEL); 3040 if (!log) 3041 return -ENOMEM; 3042 log->rdev = rdev; 3043 3044 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0; 3045 3046 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid, 3047 sizeof(rdev->mddev->uuid)); 3048 3049 mutex_init(&log->io_mutex); 3050 3051 spin_lock_init(&log->io_list_lock); 3052 INIT_LIST_HEAD(&log->running_ios); 3053 INIT_LIST_HEAD(&log->io_end_ios); 3054 INIT_LIST_HEAD(&log->flushing_ios); 3055 INIT_LIST_HEAD(&log->finished_ios); 3056 bio_init(&log->flush_bio, NULL, 0); 3057 3058 log->io_kc = KMEM_CACHE(r5l_io_unit, 0); 3059 if (!log->io_kc) 3060 goto io_kc; 3061 3062 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc); 3063 if (!log->io_pool) 3064 goto io_pool; 3065 3066 log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS); 3067 if (!log->bs) 3068 goto io_bs; 3069 3070 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0); 3071 if (!log->meta_pool) 3072 goto out_mempool; 3073 3074 spin_lock_init(&log->tree_lock); 3075 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN); 3076 3077 log->reclaim_thread = md_register_thread(r5l_reclaim_thread, 3078 log->rdev->mddev, "reclaim"); 3079 if (!log->reclaim_thread) 3080 goto reclaim_thread; 3081 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL; 3082 3083 init_waitqueue_head(&log->iounit_wait); 3084 3085 INIT_LIST_HEAD(&log->no_mem_stripes); 3086 3087 INIT_LIST_HEAD(&log->no_space_stripes); 3088 spin_lock_init(&log->no_space_stripes_lock); 3089 3090 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async); 3091 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async); 3092 3093 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH; 3094 INIT_LIST_HEAD(&log->stripe_in_journal_list); 3095 spin_lock_init(&log->stripe_in_journal_lock); 3096 atomic_set(&log->stripe_in_journal_count, 0); 3097 3098 rcu_assign_pointer(conf->log, log); 3099 3100 if (r5l_load_log(log)) 3101 goto error; 3102 3103 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags); 3104 return 0; 3105 3106 error: 3107 rcu_assign_pointer(conf->log, NULL); 3108 md_unregister_thread(&log->reclaim_thread); 3109 reclaim_thread: 3110 mempool_destroy(log->meta_pool); 3111 out_mempool: 3112 bioset_free(log->bs); 3113 io_bs: 3114 mempool_destroy(log->io_pool); 3115 io_pool: 3116 kmem_cache_destroy(log->io_kc); 3117 io_kc: 3118 kfree(log); 3119 return -EINVAL; 3120 } 3121 3122 void r5l_exit_log(struct r5conf *conf) 3123 { 3124 struct r5l_log *log = conf->log; 3125 3126 conf->log = NULL; 3127 synchronize_rcu(); 3128 3129 flush_work(&log->disable_writeback_work); 3130 md_unregister_thread(&log->reclaim_thread); 3131 mempool_destroy(log->meta_pool); 3132 bioset_free(log->bs); 3133 mempool_destroy(log->io_pool); 3134 kmem_cache_destroy(log->io_kc); 3135 kfree(log); 3136 } 3137