xref: /openbmc/linux/drivers/md/raid5-cache.c (revision 4da722ca)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "bitmap.h"
27 #include "raid5-log.h"
28 
29 /*
30  * metadata/data stored in disk with 4k size unit (a block) regardless
31  * underneath hardware sector size. only works with PAGE_SIZE == 4096
32  */
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
35 
36 /*
37  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
38  *
39  * In write through mode, the reclaim runs every log->max_free_space.
40  * This can prevent the recovery scans for too long
41  */
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
44 
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
51 
52 /*
53  * We only need 2 bios per I/O unit to make progress, but ensure we
54  * have a few more available to not get too tight.
55  */
56 #define R5L_POOL_SIZE	4
57 
58 static char *r5c_journal_mode_str[] = {"write-through",
59 				       "write-back"};
60 /*
61  * raid5 cache state machine
62  *
63  * With the RAID cache, each stripe works in two phases:
64  *	- caching phase
65  *	- writing-out phase
66  *
67  * These two phases are controlled by bit STRIPE_R5C_CACHING:
68  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
70  *
71  * When there is no journal, or the journal is in write-through mode,
72  * the stripe is always in writing-out phase.
73  *
74  * For write-back journal, the stripe is sent to caching phase on write
75  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76  * the write-out phase by clearing STRIPE_R5C_CACHING.
77  *
78  * Stripes in caching phase do not write the raid disks. Instead, all
79  * writes are committed from the log device. Therefore, a stripe in
80  * caching phase handles writes as:
81  *	- write to log device
82  *	- return IO
83  *
84  * Stripes in writing-out phase handle writes as:
85  *	- calculate parity
86  *	- write pending data and parity to journal
87  *	- write data and parity to raid disks
88  *	- return IO for pending writes
89  */
90 
91 struct r5l_log {
92 	struct md_rdev *rdev;
93 
94 	u32 uuid_checksum;
95 
96 	sector_t device_size;		/* log device size, round to
97 					 * BLOCK_SECTORS */
98 	sector_t max_free_space;	/* reclaim run if free space is at
99 					 * this size */
100 
101 	sector_t last_checkpoint;	/* log tail. where recovery scan
102 					 * starts from */
103 	u64 last_cp_seq;		/* log tail sequence */
104 
105 	sector_t log_start;		/* log head. where new data appends */
106 	u64 seq;			/* log head sequence */
107 
108 	sector_t next_checkpoint;
109 
110 	struct mutex io_mutex;
111 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
112 
113 	spinlock_t io_list_lock;
114 	struct list_head running_ios;	/* io_units which are still running,
115 					 * and have not yet been completely
116 					 * written to the log */
117 	struct list_head io_end_ios;	/* io_units which have been completely
118 					 * written to the log but not yet written
119 					 * to the RAID */
120 	struct list_head flushing_ios;	/* io_units which are waiting for log
121 					 * cache flush */
122 	struct list_head finished_ios;	/* io_units which settle down in log disk */
123 	struct bio flush_bio;
124 
125 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
126 
127 	struct kmem_cache *io_kc;
128 	mempool_t *io_pool;
129 	struct bio_set *bs;
130 	mempool_t *meta_pool;
131 
132 	struct md_thread *reclaim_thread;
133 	unsigned long reclaim_target;	/* number of space that need to be
134 					 * reclaimed.  if it's 0, reclaim spaces
135 					 * used by io_units which are in
136 					 * IO_UNIT_STRIPE_END state (eg, reclaim
137 					 * dones't wait for specific io_unit
138 					 * switching to IO_UNIT_STRIPE_END
139 					 * state) */
140 	wait_queue_head_t iounit_wait;
141 
142 	struct list_head no_space_stripes; /* pending stripes, log has no space */
143 	spinlock_t no_space_stripes_lock;
144 
145 	bool need_cache_flush;
146 
147 	/* for r5c_cache */
148 	enum r5c_journal_mode r5c_journal_mode;
149 
150 	/* all stripes in r5cache, in the order of seq at sh->log_start */
151 	struct list_head stripe_in_journal_list;
152 
153 	spinlock_t stripe_in_journal_lock;
154 	atomic_t stripe_in_journal_count;
155 
156 	/* to submit async io_units, to fulfill ordering of flush */
157 	struct work_struct deferred_io_work;
158 	/* to disable write back during in degraded mode */
159 	struct work_struct disable_writeback_work;
160 
161 	/* to for chunk_aligned_read in writeback mode, details below */
162 	spinlock_t tree_lock;
163 	struct radix_tree_root big_stripe_tree;
164 };
165 
166 /*
167  * Enable chunk_aligned_read() with write back cache.
168  *
169  * Each chunk may contain more than one stripe (for example, a 256kB
170  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172  * For each big_stripe, we count how many stripes of this big_stripe
173  * are in the write back cache. These data are tracked in a radix tree
174  * (big_stripe_tree). We use radix_tree item pointer as the counter.
175  * r5c_tree_index() is used to calculate keys for the radix tree.
176  *
177  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178  * big_stripe of each chunk in the tree. If this big_stripe is in the
179  * tree, chunk_aligned_read() aborts. This look up is protected by
180  * rcu_read_lock().
181  *
182  * It is necessary to remember whether a stripe is counted in
183  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185  * two flags are set, the stripe is counted in big_stripe_tree. This
186  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187  * r5c_try_caching_write(); and moving clear_bit of
188  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189  * r5c_finish_stripe_write_out().
190  */
191 
192 /*
193  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194  * So it is necessary to left shift the counter by 2 bits before using it
195  * as data pointer of the tree.
196  */
197 #define R5C_RADIX_COUNT_SHIFT 2
198 
199 /*
200  * calculate key for big_stripe_tree
201  *
202  * sect: align_bi->bi_iter.bi_sector or sh->sector
203  */
204 static inline sector_t r5c_tree_index(struct r5conf *conf,
205 				      sector_t sect)
206 {
207 	sector_t offset;
208 
209 	offset = sector_div(sect, conf->chunk_sectors);
210 	return sect;
211 }
212 
213 /*
214  * an IO range starts from a meta data block and end at the next meta data
215  * block. The io unit's the meta data block tracks data/parity followed it. io
216  * unit is written to log disk with normal write, as we always flush log disk
217  * first and then start move data to raid disks, there is no requirement to
218  * write io unit with FLUSH/FUA
219  */
220 struct r5l_io_unit {
221 	struct r5l_log *log;
222 
223 	struct page *meta_page;	/* store meta block */
224 	int meta_offset;	/* current offset in meta_page */
225 
226 	struct bio *current_bio;/* current_bio accepting new data */
227 
228 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
229 	u64 seq;		/* seq number of the metablock */
230 	sector_t log_start;	/* where the io_unit starts */
231 	sector_t log_end;	/* where the io_unit ends */
232 	struct list_head log_sibling; /* log->running_ios */
233 	struct list_head stripe_list; /* stripes added to the io_unit */
234 
235 	int state;
236 	bool need_split_bio;
237 	struct bio *split_bio;
238 
239 	unsigned int has_flush:1;      /* include flush request */
240 	unsigned int has_fua:1;        /* include fua request */
241 	unsigned int has_null_flush:1; /* include empty flush request */
242 	/*
243 	 * io isn't sent yet, flush/fua request can only be submitted till it's
244 	 * the first IO in running_ios list
245 	 */
246 	unsigned int io_deferred:1;
247 
248 	struct bio_list flush_barriers;   /* size == 0 flush bios */
249 };
250 
251 /* r5l_io_unit state */
252 enum r5l_io_unit_state {
253 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
254 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
255 				 * don't accepting new bio */
256 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
257 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
258 };
259 
260 bool r5c_is_writeback(struct r5l_log *log)
261 {
262 	return (log != NULL &&
263 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
264 }
265 
266 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
267 {
268 	start += inc;
269 	if (start >= log->device_size)
270 		start = start - log->device_size;
271 	return start;
272 }
273 
274 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
275 				  sector_t end)
276 {
277 	if (end >= start)
278 		return end - start;
279 	else
280 		return end + log->device_size - start;
281 }
282 
283 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
284 {
285 	sector_t used_size;
286 
287 	used_size = r5l_ring_distance(log, log->last_checkpoint,
288 					log->log_start);
289 
290 	return log->device_size > used_size + size;
291 }
292 
293 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
294 				    enum r5l_io_unit_state state)
295 {
296 	if (WARN_ON(io->state >= state))
297 		return;
298 	io->state = state;
299 }
300 
301 static void
302 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
303 {
304 	struct bio *wbi, *wbi2;
305 
306 	wbi = dev->written;
307 	dev->written = NULL;
308 	while (wbi && wbi->bi_iter.bi_sector <
309 	       dev->sector + STRIPE_SECTORS) {
310 		wbi2 = r5_next_bio(wbi, dev->sector);
311 		md_write_end(conf->mddev);
312 		bio_endio(wbi);
313 		wbi = wbi2;
314 	}
315 }
316 
317 void r5c_handle_cached_data_endio(struct r5conf *conf,
318 				  struct stripe_head *sh, int disks)
319 {
320 	int i;
321 
322 	for (i = sh->disks; i--; ) {
323 		if (sh->dev[i].written) {
324 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
325 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
326 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
327 					STRIPE_SECTORS,
328 					!test_bit(STRIPE_DEGRADED, &sh->state),
329 					0);
330 		}
331 	}
332 }
333 
334 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
335 
336 /* Check whether we should flush some stripes to free up stripe cache */
337 void r5c_check_stripe_cache_usage(struct r5conf *conf)
338 {
339 	int total_cached;
340 
341 	if (!r5c_is_writeback(conf->log))
342 		return;
343 
344 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
345 		atomic_read(&conf->r5c_cached_full_stripes);
346 
347 	/*
348 	 * The following condition is true for either of the following:
349 	 *   - stripe cache pressure high:
350 	 *          total_cached > 3/4 min_nr_stripes ||
351 	 *          empty_inactive_list_nr > 0
352 	 *   - stripe cache pressure moderate:
353 	 *          total_cached > 1/2 min_nr_stripes
354 	 */
355 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
356 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
357 		r5l_wake_reclaim(conf->log, 0);
358 }
359 
360 /*
361  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
362  * stripes in the cache
363  */
364 void r5c_check_cached_full_stripe(struct r5conf *conf)
365 {
366 	if (!r5c_is_writeback(conf->log))
367 		return;
368 
369 	/*
370 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
371 	 * or a full stripe (chunk size / 4k stripes).
372 	 */
373 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
374 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
375 		conf->chunk_sectors >> STRIPE_SHIFT))
376 		r5l_wake_reclaim(conf->log, 0);
377 }
378 
379 /*
380  * Total log space (in sectors) needed to flush all data in cache
381  *
382  * To avoid deadlock due to log space, it is necessary to reserve log
383  * space to flush critical stripes (stripes that occupying log space near
384  * last_checkpoint). This function helps check how much log space is
385  * required to flush all cached stripes.
386  *
387  * To reduce log space requirements, two mechanisms are used to give cache
388  * flush higher priorities:
389  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
390  *       stripes ALREADY in journal can be flushed w/o pending writes;
391  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
392  *       can be delayed (r5l_add_no_space_stripe).
393  *
394  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
395  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
396  * pages of journal space. For stripes that has not passed 1, flushing it
397  * requires (conf->raid_disks + 1) pages of journal space. There are at
398  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
399  * required to flush all cached stripes (in pages) is:
400  *
401  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
402  *     (group_cnt + 1) * (raid_disks + 1)
403  * or
404  *     (stripe_in_journal_count) * (max_degraded + 1) +
405  *     (group_cnt + 1) * (raid_disks - max_degraded)
406  */
407 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
408 {
409 	struct r5l_log *log = conf->log;
410 
411 	if (!r5c_is_writeback(log))
412 		return 0;
413 
414 	return BLOCK_SECTORS *
415 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
416 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
417 }
418 
419 /*
420  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
421  *
422  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
423  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
424  * device is less than 2x of reclaim_required_space.
425  */
426 static inline void r5c_update_log_state(struct r5l_log *log)
427 {
428 	struct r5conf *conf = log->rdev->mddev->private;
429 	sector_t free_space;
430 	sector_t reclaim_space;
431 	bool wake_reclaim = false;
432 
433 	if (!r5c_is_writeback(log))
434 		return;
435 
436 	free_space = r5l_ring_distance(log, log->log_start,
437 				       log->last_checkpoint);
438 	reclaim_space = r5c_log_required_to_flush_cache(conf);
439 	if (free_space < 2 * reclaim_space)
440 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
441 	else {
442 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
443 			wake_reclaim = true;
444 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
445 	}
446 	if (free_space < 3 * reclaim_space)
447 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
448 	else
449 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
450 
451 	if (wake_reclaim)
452 		r5l_wake_reclaim(log, 0);
453 }
454 
455 /*
456  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
457  * This function should only be called in write-back mode.
458  */
459 void r5c_make_stripe_write_out(struct stripe_head *sh)
460 {
461 	struct r5conf *conf = sh->raid_conf;
462 	struct r5l_log *log = conf->log;
463 
464 	BUG_ON(!r5c_is_writeback(log));
465 
466 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
467 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
468 
469 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
470 		atomic_inc(&conf->preread_active_stripes);
471 }
472 
473 static void r5c_handle_data_cached(struct stripe_head *sh)
474 {
475 	int i;
476 
477 	for (i = sh->disks; i--; )
478 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
479 			set_bit(R5_InJournal, &sh->dev[i].flags);
480 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
481 		}
482 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
483 }
484 
485 /*
486  * this journal write must contain full parity,
487  * it may also contain some data pages
488  */
489 static void r5c_handle_parity_cached(struct stripe_head *sh)
490 {
491 	int i;
492 
493 	for (i = sh->disks; i--; )
494 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
495 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
496 }
497 
498 /*
499  * Setting proper flags after writing (or flushing) data and/or parity to the
500  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
501  */
502 static void r5c_finish_cache_stripe(struct stripe_head *sh)
503 {
504 	struct r5l_log *log = sh->raid_conf->log;
505 
506 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
507 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
508 		/*
509 		 * Set R5_InJournal for parity dev[pd_idx]. This means
510 		 * all data AND parity in the journal. For RAID 6, it is
511 		 * NOT necessary to set the flag for dev[qd_idx], as the
512 		 * two parities are written out together.
513 		 */
514 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
515 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
516 		r5c_handle_data_cached(sh);
517 	} else {
518 		r5c_handle_parity_cached(sh);
519 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
520 	}
521 }
522 
523 static void r5l_io_run_stripes(struct r5l_io_unit *io)
524 {
525 	struct stripe_head *sh, *next;
526 
527 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
528 		list_del_init(&sh->log_list);
529 
530 		r5c_finish_cache_stripe(sh);
531 
532 		set_bit(STRIPE_HANDLE, &sh->state);
533 		raid5_release_stripe(sh);
534 	}
535 }
536 
537 static void r5l_log_run_stripes(struct r5l_log *log)
538 {
539 	struct r5l_io_unit *io, *next;
540 
541 	assert_spin_locked(&log->io_list_lock);
542 
543 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
544 		/* don't change list order */
545 		if (io->state < IO_UNIT_IO_END)
546 			break;
547 
548 		list_move_tail(&io->log_sibling, &log->finished_ios);
549 		r5l_io_run_stripes(io);
550 	}
551 }
552 
553 static void r5l_move_to_end_ios(struct r5l_log *log)
554 {
555 	struct r5l_io_unit *io, *next;
556 
557 	assert_spin_locked(&log->io_list_lock);
558 
559 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
560 		/* don't change list order */
561 		if (io->state < IO_UNIT_IO_END)
562 			break;
563 		list_move_tail(&io->log_sibling, &log->io_end_ios);
564 	}
565 }
566 
567 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
568 static void r5l_log_endio(struct bio *bio)
569 {
570 	struct r5l_io_unit *io = bio->bi_private;
571 	struct r5l_io_unit *io_deferred;
572 	struct r5l_log *log = io->log;
573 	unsigned long flags;
574 
575 	if (bio->bi_status)
576 		md_error(log->rdev->mddev, log->rdev);
577 
578 	bio_put(bio);
579 	mempool_free(io->meta_page, log->meta_pool);
580 
581 	spin_lock_irqsave(&log->io_list_lock, flags);
582 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
583 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
584 		r5l_move_to_end_ios(log);
585 	else
586 		r5l_log_run_stripes(log);
587 	if (!list_empty(&log->running_ios)) {
588 		/*
589 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
590 		 * can dispatch it
591 		 */
592 		io_deferred = list_first_entry(&log->running_ios,
593 					       struct r5l_io_unit, log_sibling);
594 		if (io_deferred->io_deferred)
595 			schedule_work(&log->deferred_io_work);
596 	}
597 
598 	spin_unlock_irqrestore(&log->io_list_lock, flags);
599 
600 	if (log->need_cache_flush)
601 		md_wakeup_thread(log->rdev->mddev->thread);
602 
603 	if (io->has_null_flush) {
604 		struct bio *bi;
605 
606 		WARN_ON(bio_list_empty(&io->flush_barriers));
607 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
608 			bio_endio(bi);
609 			atomic_dec(&io->pending_stripe);
610 		}
611 	}
612 
613 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
614 	if (atomic_read(&io->pending_stripe) == 0)
615 		__r5l_stripe_write_finished(io);
616 }
617 
618 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&log->io_list_lock, flags);
623 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
624 	spin_unlock_irqrestore(&log->io_list_lock, flags);
625 
626 	/*
627 	 * In case of journal device failures, submit_bio will get error
628 	 * and calls endio, then active stripes will continue write
629 	 * process. Therefore, it is not necessary to check Faulty bit
630 	 * of journal device here.
631 	 *
632 	 * We can't check split_bio after current_bio is submitted. If
633 	 * io->split_bio is null, after current_bio is submitted, current_bio
634 	 * might already be completed and the io_unit is freed. We submit
635 	 * split_bio first to avoid the issue.
636 	 */
637 	if (io->split_bio) {
638 		if (io->has_flush)
639 			io->split_bio->bi_opf |= REQ_PREFLUSH;
640 		if (io->has_fua)
641 			io->split_bio->bi_opf |= REQ_FUA;
642 		submit_bio(io->split_bio);
643 	}
644 
645 	if (io->has_flush)
646 		io->current_bio->bi_opf |= REQ_PREFLUSH;
647 	if (io->has_fua)
648 		io->current_bio->bi_opf |= REQ_FUA;
649 	submit_bio(io->current_bio);
650 }
651 
652 /* deferred io_unit will be dispatched here */
653 static void r5l_submit_io_async(struct work_struct *work)
654 {
655 	struct r5l_log *log = container_of(work, struct r5l_log,
656 					   deferred_io_work);
657 	struct r5l_io_unit *io = NULL;
658 	unsigned long flags;
659 
660 	spin_lock_irqsave(&log->io_list_lock, flags);
661 	if (!list_empty(&log->running_ios)) {
662 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
663 				      log_sibling);
664 		if (!io->io_deferred)
665 			io = NULL;
666 		else
667 			io->io_deferred = 0;
668 	}
669 	spin_unlock_irqrestore(&log->io_list_lock, flags);
670 	if (io)
671 		r5l_do_submit_io(log, io);
672 }
673 
674 static void r5c_disable_writeback_async(struct work_struct *work)
675 {
676 	struct r5l_log *log = container_of(work, struct r5l_log,
677 					   disable_writeback_work);
678 	struct mddev *mddev = log->rdev->mddev;
679 
680 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
681 		return;
682 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
683 		mdname(mddev));
684 
685 	/* wait superblock change before suspend */
686 	wait_event(mddev->sb_wait,
687 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
688 
689 	mddev_suspend(mddev);
690 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
691 	mddev_resume(mddev);
692 }
693 
694 static void r5l_submit_current_io(struct r5l_log *log)
695 {
696 	struct r5l_io_unit *io = log->current_io;
697 	struct bio *bio;
698 	struct r5l_meta_block *block;
699 	unsigned long flags;
700 	u32 crc;
701 	bool do_submit = true;
702 
703 	if (!io)
704 		return;
705 
706 	block = page_address(io->meta_page);
707 	block->meta_size = cpu_to_le32(io->meta_offset);
708 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
709 	block->checksum = cpu_to_le32(crc);
710 	bio = io->current_bio;
711 
712 	log->current_io = NULL;
713 	spin_lock_irqsave(&log->io_list_lock, flags);
714 	if (io->has_flush || io->has_fua) {
715 		if (io != list_first_entry(&log->running_ios,
716 					   struct r5l_io_unit, log_sibling)) {
717 			io->io_deferred = 1;
718 			do_submit = false;
719 		}
720 	}
721 	spin_unlock_irqrestore(&log->io_list_lock, flags);
722 	if (do_submit)
723 		r5l_do_submit_io(log, io);
724 }
725 
726 static struct bio *r5l_bio_alloc(struct r5l_log *log)
727 {
728 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
729 
730 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
731 	bio->bi_bdev = log->rdev->bdev;
732 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
733 
734 	return bio;
735 }
736 
737 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
738 {
739 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
740 
741 	r5c_update_log_state(log);
742 	/*
743 	 * If we filled up the log device start from the beginning again,
744 	 * which will require a new bio.
745 	 *
746 	 * Note: for this to work properly the log size needs to me a multiple
747 	 * of BLOCK_SECTORS.
748 	 */
749 	if (log->log_start == 0)
750 		io->need_split_bio = true;
751 
752 	io->log_end = log->log_start;
753 }
754 
755 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
756 {
757 	struct r5l_io_unit *io;
758 	struct r5l_meta_block *block;
759 
760 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
761 	if (!io)
762 		return NULL;
763 	memset(io, 0, sizeof(*io));
764 
765 	io->log = log;
766 	INIT_LIST_HEAD(&io->log_sibling);
767 	INIT_LIST_HEAD(&io->stripe_list);
768 	bio_list_init(&io->flush_barriers);
769 	io->state = IO_UNIT_RUNNING;
770 
771 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
772 	block = page_address(io->meta_page);
773 	clear_page(block);
774 	block->magic = cpu_to_le32(R5LOG_MAGIC);
775 	block->version = R5LOG_VERSION;
776 	block->seq = cpu_to_le64(log->seq);
777 	block->position = cpu_to_le64(log->log_start);
778 
779 	io->log_start = log->log_start;
780 	io->meta_offset = sizeof(struct r5l_meta_block);
781 	io->seq = log->seq++;
782 
783 	io->current_bio = r5l_bio_alloc(log);
784 	io->current_bio->bi_end_io = r5l_log_endio;
785 	io->current_bio->bi_private = io;
786 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
787 
788 	r5_reserve_log_entry(log, io);
789 
790 	spin_lock_irq(&log->io_list_lock);
791 	list_add_tail(&io->log_sibling, &log->running_ios);
792 	spin_unlock_irq(&log->io_list_lock);
793 
794 	return io;
795 }
796 
797 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
798 {
799 	if (log->current_io &&
800 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
801 		r5l_submit_current_io(log);
802 
803 	if (!log->current_io) {
804 		log->current_io = r5l_new_meta(log);
805 		if (!log->current_io)
806 			return -ENOMEM;
807 	}
808 
809 	return 0;
810 }
811 
812 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
813 				    sector_t location,
814 				    u32 checksum1, u32 checksum2,
815 				    bool checksum2_valid)
816 {
817 	struct r5l_io_unit *io = log->current_io;
818 	struct r5l_payload_data_parity *payload;
819 
820 	payload = page_address(io->meta_page) + io->meta_offset;
821 	payload->header.type = cpu_to_le16(type);
822 	payload->header.flags = cpu_to_le16(0);
823 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
824 				    (PAGE_SHIFT - 9));
825 	payload->location = cpu_to_le64(location);
826 	payload->checksum[0] = cpu_to_le32(checksum1);
827 	if (checksum2_valid)
828 		payload->checksum[1] = cpu_to_le32(checksum2);
829 
830 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
831 		sizeof(__le32) * (1 + !!checksum2_valid);
832 }
833 
834 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
835 {
836 	struct r5l_io_unit *io = log->current_io;
837 
838 	if (io->need_split_bio) {
839 		BUG_ON(io->split_bio);
840 		io->split_bio = io->current_bio;
841 		io->current_bio = r5l_bio_alloc(log);
842 		bio_chain(io->current_bio, io->split_bio);
843 		io->need_split_bio = false;
844 	}
845 
846 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
847 		BUG();
848 
849 	r5_reserve_log_entry(log, io);
850 }
851 
852 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
853 {
854 	struct mddev *mddev = log->rdev->mddev;
855 	struct r5conf *conf = mddev->private;
856 	struct r5l_io_unit *io;
857 	struct r5l_payload_flush *payload;
858 	int meta_size;
859 
860 	/*
861 	 * payload_flush requires extra writes to the journal.
862 	 * To avoid handling the extra IO in quiesce, just skip
863 	 * flush_payload
864 	 */
865 	if (conf->quiesce)
866 		return;
867 
868 	mutex_lock(&log->io_mutex);
869 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
870 
871 	if (r5l_get_meta(log, meta_size)) {
872 		mutex_unlock(&log->io_mutex);
873 		return;
874 	}
875 
876 	/* current implementation is one stripe per flush payload */
877 	io = log->current_io;
878 	payload = page_address(io->meta_page) + io->meta_offset;
879 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
880 	payload->header.flags = cpu_to_le16(0);
881 	payload->size = cpu_to_le32(sizeof(__le64));
882 	payload->flush_stripes[0] = cpu_to_le64(sect);
883 	io->meta_offset += meta_size;
884 	mutex_unlock(&log->io_mutex);
885 }
886 
887 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
888 			   int data_pages, int parity_pages)
889 {
890 	int i;
891 	int meta_size;
892 	int ret;
893 	struct r5l_io_unit *io;
894 
895 	meta_size =
896 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
897 		 * data_pages) +
898 		sizeof(struct r5l_payload_data_parity) +
899 		sizeof(__le32) * parity_pages;
900 
901 	ret = r5l_get_meta(log, meta_size);
902 	if (ret)
903 		return ret;
904 
905 	io = log->current_io;
906 
907 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
908 		io->has_flush = 1;
909 
910 	for (i = 0; i < sh->disks; i++) {
911 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
912 		    test_bit(R5_InJournal, &sh->dev[i].flags))
913 			continue;
914 		if (i == sh->pd_idx || i == sh->qd_idx)
915 			continue;
916 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
917 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
918 			io->has_fua = 1;
919 			/*
920 			 * we need to flush journal to make sure recovery can
921 			 * reach the data with fua flag
922 			 */
923 			io->has_flush = 1;
924 		}
925 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
926 					raid5_compute_blocknr(sh, i, 0),
927 					sh->dev[i].log_checksum, 0, false);
928 		r5l_append_payload_page(log, sh->dev[i].page);
929 	}
930 
931 	if (parity_pages == 2) {
932 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
933 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
934 					sh->dev[sh->qd_idx].log_checksum, true);
935 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
936 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
937 	} else if (parity_pages == 1) {
938 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
939 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
940 					0, false);
941 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
942 	} else  /* Just writing data, not parity, in caching phase */
943 		BUG_ON(parity_pages != 0);
944 
945 	list_add_tail(&sh->log_list, &io->stripe_list);
946 	atomic_inc(&io->pending_stripe);
947 	sh->log_io = io;
948 
949 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
950 		return 0;
951 
952 	if (sh->log_start == MaxSector) {
953 		BUG_ON(!list_empty(&sh->r5c));
954 		sh->log_start = io->log_start;
955 		spin_lock_irq(&log->stripe_in_journal_lock);
956 		list_add_tail(&sh->r5c,
957 			      &log->stripe_in_journal_list);
958 		spin_unlock_irq(&log->stripe_in_journal_lock);
959 		atomic_inc(&log->stripe_in_journal_count);
960 	}
961 	return 0;
962 }
963 
964 /* add stripe to no_space_stripes, and then wake up reclaim */
965 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
966 					   struct stripe_head *sh)
967 {
968 	spin_lock(&log->no_space_stripes_lock);
969 	list_add_tail(&sh->log_list, &log->no_space_stripes);
970 	spin_unlock(&log->no_space_stripes_lock);
971 }
972 
973 /*
974  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
975  * data from log to raid disks), so we shouldn't wait for reclaim here
976  */
977 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
978 {
979 	struct r5conf *conf = sh->raid_conf;
980 	int write_disks = 0;
981 	int data_pages, parity_pages;
982 	int reserve;
983 	int i;
984 	int ret = 0;
985 	bool wake_reclaim = false;
986 
987 	if (!log)
988 		return -EAGAIN;
989 	/* Don't support stripe batch */
990 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
991 	    test_bit(STRIPE_SYNCING, &sh->state)) {
992 		/* the stripe is written to log, we start writing it to raid */
993 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
994 		return -EAGAIN;
995 	}
996 
997 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
998 
999 	for (i = 0; i < sh->disks; i++) {
1000 		void *addr;
1001 
1002 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1003 		    test_bit(R5_InJournal, &sh->dev[i].flags))
1004 			continue;
1005 
1006 		write_disks++;
1007 		/* checksum is already calculated in last run */
1008 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1009 			continue;
1010 		addr = kmap_atomic(sh->dev[i].page);
1011 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1012 						    addr, PAGE_SIZE);
1013 		kunmap_atomic(addr);
1014 	}
1015 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1016 	data_pages = write_disks - parity_pages;
1017 
1018 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1019 	/*
1020 	 * The stripe must enter state machine again to finish the write, so
1021 	 * don't delay.
1022 	 */
1023 	clear_bit(STRIPE_DELAYED, &sh->state);
1024 	atomic_inc(&sh->count);
1025 
1026 	mutex_lock(&log->io_mutex);
1027 	/* meta + data */
1028 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1029 
1030 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1031 		if (!r5l_has_free_space(log, reserve)) {
1032 			r5l_add_no_space_stripe(log, sh);
1033 			wake_reclaim = true;
1034 		} else {
1035 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1036 			if (ret) {
1037 				spin_lock_irq(&log->io_list_lock);
1038 				list_add_tail(&sh->log_list,
1039 					      &log->no_mem_stripes);
1040 				spin_unlock_irq(&log->io_list_lock);
1041 			}
1042 		}
1043 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1044 		/*
1045 		 * log space critical, do not process stripes that are
1046 		 * not in cache yet (sh->log_start == MaxSector).
1047 		 */
1048 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1049 		    sh->log_start == MaxSector) {
1050 			r5l_add_no_space_stripe(log, sh);
1051 			wake_reclaim = true;
1052 			reserve = 0;
1053 		} else if (!r5l_has_free_space(log, reserve)) {
1054 			if (sh->log_start == log->last_checkpoint)
1055 				BUG();
1056 			else
1057 				r5l_add_no_space_stripe(log, sh);
1058 		} else {
1059 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1060 			if (ret) {
1061 				spin_lock_irq(&log->io_list_lock);
1062 				list_add_tail(&sh->log_list,
1063 					      &log->no_mem_stripes);
1064 				spin_unlock_irq(&log->io_list_lock);
1065 			}
1066 		}
1067 	}
1068 
1069 	mutex_unlock(&log->io_mutex);
1070 	if (wake_reclaim)
1071 		r5l_wake_reclaim(log, reserve);
1072 	return 0;
1073 }
1074 
1075 void r5l_write_stripe_run(struct r5l_log *log)
1076 {
1077 	if (!log)
1078 		return;
1079 	mutex_lock(&log->io_mutex);
1080 	r5l_submit_current_io(log);
1081 	mutex_unlock(&log->io_mutex);
1082 }
1083 
1084 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1085 {
1086 	if (!log)
1087 		return -ENODEV;
1088 
1089 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1090 		/*
1091 		 * in write through (journal only)
1092 		 * we flush log disk cache first, then write stripe data to
1093 		 * raid disks. So if bio is finished, the log disk cache is
1094 		 * flushed already. The recovery guarantees we can recovery
1095 		 * the bio from log disk, so we don't need to flush again
1096 		 */
1097 		if (bio->bi_iter.bi_size == 0) {
1098 			bio_endio(bio);
1099 			return 0;
1100 		}
1101 		bio->bi_opf &= ~REQ_PREFLUSH;
1102 	} else {
1103 		/* write back (with cache) */
1104 		if (bio->bi_iter.bi_size == 0) {
1105 			mutex_lock(&log->io_mutex);
1106 			r5l_get_meta(log, 0);
1107 			bio_list_add(&log->current_io->flush_barriers, bio);
1108 			log->current_io->has_flush = 1;
1109 			log->current_io->has_null_flush = 1;
1110 			atomic_inc(&log->current_io->pending_stripe);
1111 			r5l_submit_current_io(log);
1112 			mutex_unlock(&log->io_mutex);
1113 			return 0;
1114 		}
1115 	}
1116 	return -EAGAIN;
1117 }
1118 
1119 /* This will run after log space is reclaimed */
1120 static void r5l_run_no_space_stripes(struct r5l_log *log)
1121 {
1122 	struct stripe_head *sh;
1123 
1124 	spin_lock(&log->no_space_stripes_lock);
1125 	while (!list_empty(&log->no_space_stripes)) {
1126 		sh = list_first_entry(&log->no_space_stripes,
1127 				      struct stripe_head, log_list);
1128 		list_del_init(&sh->log_list);
1129 		set_bit(STRIPE_HANDLE, &sh->state);
1130 		raid5_release_stripe(sh);
1131 	}
1132 	spin_unlock(&log->no_space_stripes_lock);
1133 }
1134 
1135 /*
1136  * calculate new last_checkpoint
1137  * for write through mode, returns log->next_checkpoint
1138  * for write back, returns log_start of first sh in stripe_in_journal_list
1139  */
1140 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1141 {
1142 	struct stripe_head *sh;
1143 	struct r5l_log *log = conf->log;
1144 	sector_t new_cp;
1145 	unsigned long flags;
1146 
1147 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1148 		return log->next_checkpoint;
1149 
1150 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1151 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1152 		/* all stripes flushed */
1153 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1154 		return log->next_checkpoint;
1155 	}
1156 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1157 			      struct stripe_head, r5c);
1158 	new_cp = sh->log_start;
1159 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1160 	return new_cp;
1161 }
1162 
1163 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1164 {
1165 	struct r5conf *conf = log->rdev->mddev->private;
1166 
1167 	return r5l_ring_distance(log, log->last_checkpoint,
1168 				 r5c_calculate_new_cp(conf));
1169 }
1170 
1171 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1172 {
1173 	struct stripe_head *sh;
1174 
1175 	assert_spin_locked(&log->io_list_lock);
1176 
1177 	if (!list_empty(&log->no_mem_stripes)) {
1178 		sh = list_first_entry(&log->no_mem_stripes,
1179 				      struct stripe_head, log_list);
1180 		list_del_init(&sh->log_list);
1181 		set_bit(STRIPE_HANDLE, &sh->state);
1182 		raid5_release_stripe(sh);
1183 	}
1184 }
1185 
1186 static bool r5l_complete_finished_ios(struct r5l_log *log)
1187 {
1188 	struct r5l_io_unit *io, *next;
1189 	bool found = false;
1190 
1191 	assert_spin_locked(&log->io_list_lock);
1192 
1193 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1194 		/* don't change list order */
1195 		if (io->state < IO_UNIT_STRIPE_END)
1196 			break;
1197 
1198 		log->next_checkpoint = io->log_start;
1199 
1200 		list_del(&io->log_sibling);
1201 		mempool_free(io, log->io_pool);
1202 		r5l_run_no_mem_stripe(log);
1203 
1204 		found = true;
1205 	}
1206 
1207 	return found;
1208 }
1209 
1210 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1211 {
1212 	struct r5l_log *log = io->log;
1213 	struct r5conf *conf = log->rdev->mddev->private;
1214 	unsigned long flags;
1215 
1216 	spin_lock_irqsave(&log->io_list_lock, flags);
1217 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1218 
1219 	if (!r5l_complete_finished_ios(log)) {
1220 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1221 		return;
1222 	}
1223 
1224 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1225 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1226 		r5l_wake_reclaim(log, 0);
1227 
1228 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1229 	wake_up(&log->iounit_wait);
1230 }
1231 
1232 void r5l_stripe_write_finished(struct stripe_head *sh)
1233 {
1234 	struct r5l_io_unit *io;
1235 
1236 	io = sh->log_io;
1237 	sh->log_io = NULL;
1238 
1239 	if (io && atomic_dec_and_test(&io->pending_stripe))
1240 		__r5l_stripe_write_finished(io);
1241 }
1242 
1243 static void r5l_log_flush_endio(struct bio *bio)
1244 {
1245 	struct r5l_log *log = container_of(bio, struct r5l_log,
1246 		flush_bio);
1247 	unsigned long flags;
1248 	struct r5l_io_unit *io;
1249 
1250 	if (bio->bi_status)
1251 		md_error(log->rdev->mddev, log->rdev);
1252 
1253 	spin_lock_irqsave(&log->io_list_lock, flags);
1254 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1255 		r5l_io_run_stripes(io);
1256 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1257 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1258 }
1259 
1260 /*
1261  * Starting dispatch IO to raid.
1262  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1263  * broken meta in the middle of a log causes recovery can't find meta at the
1264  * head of log. If operations require meta at the head persistent in log, we
1265  * must make sure meta before it persistent in log too. A case is:
1266  *
1267  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1268  * data/parity must be persistent in log before we do the write to raid disks.
1269  *
1270  * The solution is we restrictly maintain io_unit list order. In this case, we
1271  * only write stripes of an io_unit to raid disks till the io_unit is the first
1272  * one whose data/parity is in log.
1273  */
1274 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1275 {
1276 	bool do_flush;
1277 
1278 	if (!log || !log->need_cache_flush)
1279 		return;
1280 
1281 	spin_lock_irq(&log->io_list_lock);
1282 	/* flush bio is running */
1283 	if (!list_empty(&log->flushing_ios)) {
1284 		spin_unlock_irq(&log->io_list_lock);
1285 		return;
1286 	}
1287 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1288 	do_flush = !list_empty(&log->flushing_ios);
1289 	spin_unlock_irq(&log->io_list_lock);
1290 
1291 	if (!do_flush)
1292 		return;
1293 	bio_reset(&log->flush_bio);
1294 	log->flush_bio.bi_bdev = log->rdev->bdev;
1295 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1296 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1297 	submit_bio(&log->flush_bio);
1298 }
1299 
1300 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1301 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1302 	sector_t end)
1303 {
1304 	struct block_device *bdev = log->rdev->bdev;
1305 	struct mddev *mddev;
1306 
1307 	r5l_write_super(log, end);
1308 
1309 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1310 		return;
1311 
1312 	mddev = log->rdev->mddev;
1313 	/*
1314 	 * Discard could zero data, so before discard we must make sure
1315 	 * superblock is updated to new log tail. Updating superblock (either
1316 	 * directly call md_update_sb() or depend on md thread) must hold
1317 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1318 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1319 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1320 	 * thread is calling this function and waitting for reconfig mutex. So
1321 	 * there is a deadlock. We workaround this issue with a trylock.
1322 	 * FIXME: we could miss discard if we can't take reconfig mutex
1323 	 */
1324 	set_mask_bits(&mddev->sb_flags, 0,
1325 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1326 	if (!mddev_trylock(mddev))
1327 		return;
1328 	md_update_sb(mddev, 1);
1329 	mddev_unlock(mddev);
1330 
1331 	/* discard IO error really doesn't matter, ignore it */
1332 	if (log->last_checkpoint < end) {
1333 		blkdev_issue_discard(bdev,
1334 				log->last_checkpoint + log->rdev->data_offset,
1335 				end - log->last_checkpoint, GFP_NOIO, 0);
1336 	} else {
1337 		blkdev_issue_discard(bdev,
1338 				log->last_checkpoint + log->rdev->data_offset,
1339 				log->device_size - log->last_checkpoint,
1340 				GFP_NOIO, 0);
1341 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1342 				GFP_NOIO, 0);
1343 	}
1344 }
1345 
1346 /*
1347  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1348  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1349  *
1350  * must hold conf->device_lock
1351  */
1352 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1353 {
1354 	BUG_ON(list_empty(&sh->lru));
1355 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1356 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1357 
1358 	/*
1359 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1360 	 * raid5_release_stripe() while holding conf->device_lock
1361 	 */
1362 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1363 	assert_spin_locked(&conf->device_lock);
1364 
1365 	list_del_init(&sh->lru);
1366 	atomic_inc(&sh->count);
1367 
1368 	set_bit(STRIPE_HANDLE, &sh->state);
1369 	atomic_inc(&conf->active_stripes);
1370 	r5c_make_stripe_write_out(sh);
1371 
1372 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1373 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1374 	else
1375 		atomic_inc(&conf->r5c_flushing_full_stripes);
1376 	raid5_release_stripe(sh);
1377 }
1378 
1379 /*
1380  * if num == 0, flush all full stripes
1381  * if num > 0, flush all full stripes. If less than num full stripes are
1382  *             flushed, flush some partial stripes until totally num stripes are
1383  *             flushed or there is no more cached stripes.
1384  */
1385 void r5c_flush_cache(struct r5conf *conf, int num)
1386 {
1387 	int count;
1388 	struct stripe_head *sh, *next;
1389 
1390 	assert_spin_locked(&conf->device_lock);
1391 	if (!conf->log)
1392 		return;
1393 
1394 	count = 0;
1395 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1396 		r5c_flush_stripe(conf, sh);
1397 		count++;
1398 	}
1399 
1400 	if (count >= num)
1401 		return;
1402 	list_for_each_entry_safe(sh, next,
1403 				 &conf->r5c_partial_stripe_list, lru) {
1404 		r5c_flush_stripe(conf, sh);
1405 		if (++count >= num)
1406 			break;
1407 	}
1408 }
1409 
1410 static void r5c_do_reclaim(struct r5conf *conf)
1411 {
1412 	struct r5l_log *log = conf->log;
1413 	struct stripe_head *sh;
1414 	int count = 0;
1415 	unsigned long flags;
1416 	int total_cached;
1417 	int stripes_to_flush;
1418 	int flushing_partial, flushing_full;
1419 
1420 	if (!r5c_is_writeback(log))
1421 		return;
1422 
1423 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1424 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1425 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1426 		atomic_read(&conf->r5c_cached_full_stripes) -
1427 		flushing_full - flushing_partial;
1428 
1429 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1430 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1431 		/*
1432 		 * if stripe cache pressure high, flush all full stripes and
1433 		 * some partial stripes
1434 		 */
1435 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1436 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1437 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1438 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1439 		/*
1440 		 * if stripe cache pressure moderate, or if there is many full
1441 		 * stripes,flush all full stripes
1442 		 */
1443 		stripes_to_flush = 0;
1444 	else
1445 		/* no need to flush */
1446 		stripes_to_flush = -1;
1447 
1448 	if (stripes_to_flush >= 0) {
1449 		spin_lock_irqsave(&conf->device_lock, flags);
1450 		r5c_flush_cache(conf, stripes_to_flush);
1451 		spin_unlock_irqrestore(&conf->device_lock, flags);
1452 	}
1453 
1454 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1455 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1456 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1457 		spin_lock(&conf->device_lock);
1458 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1459 			/*
1460 			 * stripes on stripe_in_journal_list could be in any
1461 			 * state of the stripe_cache state machine. In this
1462 			 * case, we only want to flush stripe on
1463 			 * r5c_cached_full/partial_stripes. The following
1464 			 * condition makes sure the stripe is on one of the
1465 			 * two lists.
1466 			 */
1467 			if (!list_empty(&sh->lru) &&
1468 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1469 			    atomic_read(&sh->count) == 0) {
1470 				r5c_flush_stripe(conf, sh);
1471 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1472 					break;
1473 			}
1474 		}
1475 		spin_unlock(&conf->device_lock);
1476 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1477 	}
1478 
1479 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1480 		r5l_run_no_space_stripes(log);
1481 
1482 	md_wakeup_thread(conf->mddev->thread);
1483 }
1484 
1485 static void r5l_do_reclaim(struct r5l_log *log)
1486 {
1487 	struct r5conf *conf = log->rdev->mddev->private;
1488 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1489 	sector_t reclaimable;
1490 	sector_t next_checkpoint;
1491 	bool write_super;
1492 
1493 	spin_lock_irq(&log->io_list_lock);
1494 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1495 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1496 	/*
1497 	 * move proper io_unit to reclaim list. We should not change the order.
1498 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1499 	 * shouldn't reuse space of an unreclaimable io_unit
1500 	 */
1501 	while (1) {
1502 		reclaimable = r5l_reclaimable_space(log);
1503 		if (reclaimable >= reclaim_target ||
1504 		    (list_empty(&log->running_ios) &&
1505 		     list_empty(&log->io_end_ios) &&
1506 		     list_empty(&log->flushing_ios) &&
1507 		     list_empty(&log->finished_ios)))
1508 			break;
1509 
1510 		md_wakeup_thread(log->rdev->mddev->thread);
1511 		wait_event_lock_irq(log->iounit_wait,
1512 				    r5l_reclaimable_space(log) > reclaimable,
1513 				    log->io_list_lock);
1514 	}
1515 
1516 	next_checkpoint = r5c_calculate_new_cp(conf);
1517 	spin_unlock_irq(&log->io_list_lock);
1518 
1519 	if (reclaimable == 0 || !write_super)
1520 		return;
1521 
1522 	/*
1523 	 * write_super will flush cache of each raid disk. We must write super
1524 	 * here, because the log area might be reused soon and we don't want to
1525 	 * confuse recovery
1526 	 */
1527 	r5l_write_super_and_discard_space(log, next_checkpoint);
1528 
1529 	mutex_lock(&log->io_mutex);
1530 	log->last_checkpoint = next_checkpoint;
1531 	r5c_update_log_state(log);
1532 	mutex_unlock(&log->io_mutex);
1533 
1534 	r5l_run_no_space_stripes(log);
1535 }
1536 
1537 static void r5l_reclaim_thread(struct md_thread *thread)
1538 {
1539 	struct mddev *mddev = thread->mddev;
1540 	struct r5conf *conf = mddev->private;
1541 	struct r5l_log *log = conf->log;
1542 
1543 	if (!log)
1544 		return;
1545 	r5c_do_reclaim(conf);
1546 	r5l_do_reclaim(log);
1547 }
1548 
1549 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1550 {
1551 	unsigned long target;
1552 	unsigned long new = (unsigned long)space; /* overflow in theory */
1553 
1554 	if (!log)
1555 		return;
1556 	do {
1557 		target = log->reclaim_target;
1558 		if (new < target)
1559 			return;
1560 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1561 	md_wakeup_thread(log->reclaim_thread);
1562 }
1563 
1564 void r5l_quiesce(struct r5l_log *log, int state)
1565 {
1566 	struct mddev *mddev;
1567 	if (!log || state == 2)
1568 		return;
1569 	if (state == 0)
1570 		kthread_unpark(log->reclaim_thread->tsk);
1571 	else if (state == 1) {
1572 		/* make sure r5l_write_super_and_discard_space exits */
1573 		mddev = log->rdev->mddev;
1574 		wake_up(&mddev->sb_wait);
1575 		kthread_park(log->reclaim_thread->tsk);
1576 		r5l_wake_reclaim(log, MaxSector);
1577 		r5l_do_reclaim(log);
1578 	}
1579 }
1580 
1581 bool r5l_log_disk_error(struct r5conf *conf)
1582 {
1583 	struct r5l_log *log;
1584 	bool ret;
1585 	/* don't allow write if journal disk is missing */
1586 	rcu_read_lock();
1587 	log = rcu_dereference(conf->log);
1588 
1589 	if (!log)
1590 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1591 	else
1592 		ret = test_bit(Faulty, &log->rdev->flags);
1593 	rcu_read_unlock();
1594 	return ret;
1595 }
1596 
1597 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1598 
1599 struct r5l_recovery_ctx {
1600 	struct page *meta_page;		/* current meta */
1601 	sector_t meta_total_blocks;	/* total size of current meta and data */
1602 	sector_t pos;			/* recovery position */
1603 	u64 seq;			/* recovery position seq */
1604 	int data_parity_stripes;	/* number of data_parity stripes */
1605 	int data_only_stripes;		/* number of data_only stripes */
1606 	struct list_head cached_list;
1607 
1608 	/*
1609 	 * read ahead page pool (ra_pool)
1610 	 * in recovery, log is read sequentially. It is not efficient to
1611 	 * read every page with sync_page_io(). The read ahead page pool
1612 	 * reads multiple pages with one IO, so further log read can
1613 	 * just copy data from the pool.
1614 	 */
1615 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1616 	sector_t pool_offset;	/* offset of first page in the pool */
1617 	int total_pages;	/* total allocated pages */
1618 	int valid_pages;	/* pages with valid data */
1619 	struct bio *ra_bio;	/* bio to do the read ahead */
1620 };
1621 
1622 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1623 					    struct r5l_recovery_ctx *ctx)
1624 {
1625 	struct page *page;
1626 
1627 	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1628 	if (!ctx->ra_bio)
1629 		return -ENOMEM;
1630 
1631 	ctx->valid_pages = 0;
1632 	ctx->total_pages = 0;
1633 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1634 		page = alloc_page(GFP_KERNEL);
1635 
1636 		if (!page)
1637 			break;
1638 		ctx->ra_pool[ctx->total_pages] = page;
1639 		ctx->total_pages += 1;
1640 	}
1641 
1642 	if (ctx->total_pages == 0) {
1643 		bio_put(ctx->ra_bio);
1644 		return -ENOMEM;
1645 	}
1646 
1647 	ctx->pool_offset = 0;
1648 	return 0;
1649 }
1650 
1651 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1652 					struct r5l_recovery_ctx *ctx)
1653 {
1654 	int i;
1655 
1656 	for (i = 0; i < ctx->total_pages; ++i)
1657 		put_page(ctx->ra_pool[i]);
1658 	bio_put(ctx->ra_bio);
1659 }
1660 
1661 /*
1662  * fetch ctx->valid_pages pages from offset
1663  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1664  * However, if the offset is close to the end of the journal device,
1665  * ctx->valid_pages could be smaller than ctx->total_pages
1666  */
1667 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1668 				      struct r5l_recovery_ctx *ctx,
1669 				      sector_t offset)
1670 {
1671 	bio_reset(ctx->ra_bio);
1672 	ctx->ra_bio->bi_bdev = log->rdev->bdev;
1673 	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1674 	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1675 
1676 	ctx->valid_pages = 0;
1677 	ctx->pool_offset = offset;
1678 
1679 	while (ctx->valid_pages < ctx->total_pages) {
1680 		bio_add_page(ctx->ra_bio,
1681 			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1682 		ctx->valid_pages += 1;
1683 
1684 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1685 
1686 		if (offset == 0)  /* reached end of the device */
1687 			break;
1688 	}
1689 
1690 	return submit_bio_wait(ctx->ra_bio);
1691 }
1692 
1693 /*
1694  * try read a page from the read ahead page pool, if the page is not in the
1695  * pool, call r5l_recovery_fetch_ra_pool
1696  */
1697 static int r5l_recovery_read_page(struct r5l_log *log,
1698 				  struct r5l_recovery_ctx *ctx,
1699 				  struct page *page,
1700 				  sector_t offset)
1701 {
1702 	int ret;
1703 
1704 	if (offset < ctx->pool_offset ||
1705 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1706 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1707 		if (ret)
1708 			return ret;
1709 	}
1710 
1711 	BUG_ON(offset < ctx->pool_offset ||
1712 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1713 
1714 	memcpy(page_address(page),
1715 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1716 					 BLOCK_SECTOR_SHIFT]),
1717 	       PAGE_SIZE);
1718 	return 0;
1719 }
1720 
1721 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1722 					struct r5l_recovery_ctx *ctx)
1723 {
1724 	struct page *page = ctx->meta_page;
1725 	struct r5l_meta_block *mb;
1726 	u32 crc, stored_crc;
1727 	int ret;
1728 
1729 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1730 	if (ret != 0)
1731 		return ret;
1732 
1733 	mb = page_address(page);
1734 	stored_crc = le32_to_cpu(mb->checksum);
1735 	mb->checksum = 0;
1736 
1737 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1738 	    le64_to_cpu(mb->seq) != ctx->seq ||
1739 	    mb->version != R5LOG_VERSION ||
1740 	    le64_to_cpu(mb->position) != ctx->pos)
1741 		return -EINVAL;
1742 
1743 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1744 	if (stored_crc != crc)
1745 		return -EINVAL;
1746 
1747 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1748 		return -EINVAL;
1749 
1750 	ctx->meta_total_blocks = BLOCK_SECTORS;
1751 
1752 	return 0;
1753 }
1754 
1755 static void
1756 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1757 				     struct page *page,
1758 				     sector_t pos, u64 seq)
1759 {
1760 	struct r5l_meta_block *mb;
1761 
1762 	mb = page_address(page);
1763 	clear_page(mb);
1764 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1765 	mb->version = R5LOG_VERSION;
1766 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1767 	mb->seq = cpu_to_le64(seq);
1768 	mb->position = cpu_to_le64(pos);
1769 }
1770 
1771 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1772 					  u64 seq)
1773 {
1774 	struct page *page;
1775 	struct r5l_meta_block *mb;
1776 
1777 	page = alloc_page(GFP_KERNEL);
1778 	if (!page)
1779 		return -ENOMEM;
1780 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1781 	mb = page_address(page);
1782 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1783 					     mb, PAGE_SIZE));
1784 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1785 			  REQ_SYNC | REQ_FUA, false)) {
1786 		__free_page(page);
1787 		return -EIO;
1788 	}
1789 	__free_page(page);
1790 	return 0;
1791 }
1792 
1793 /*
1794  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1795  * to mark valid (potentially not flushed) data in the journal.
1796  *
1797  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1798  * so there should not be any mismatch here.
1799  */
1800 static void r5l_recovery_load_data(struct r5l_log *log,
1801 				   struct stripe_head *sh,
1802 				   struct r5l_recovery_ctx *ctx,
1803 				   struct r5l_payload_data_parity *payload,
1804 				   sector_t log_offset)
1805 {
1806 	struct mddev *mddev = log->rdev->mddev;
1807 	struct r5conf *conf = mddev->private;
1808 	int dd_idx;
1809 
1810 	raid5_compute_sector(conf,
1811 			     le64_to_cpu(payload->location), 0,
1812 			     &dd_idx, sh);
1813 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1814 	sh->dev[dd_idx].log_checksum =
1815 		le32_to_cpu(payload->checksum[0]);
1816 	ctx->meta_total_blocks += BLOCK_SECTORS;
1817 
1818 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1819 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1820 }
1821 
1822 static void r5l_recovery_load_parity(struct r5l_log *log,
1823 				     struct stripe_head *sh,
1824 				     struct r5l_recovery_ctx *ctx,
1825 				     struct r5l_payload_data_parity *payload,
1826 				     sector_t log_offset)
1827 {
1828 	struct mddev *mddev = log->rdev->mddev;
1829 	struct r5conf *conf = mddev->private;
1830 
1831 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1832 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1833 	sh->dev[sh->pd_idx].log_checksum =
1834 		le32_to_cpu(payload->checksum[0]);
1835 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1836 
1837 	if (sh->qd_idx >= 0) {
1838 		r5l_recovery_read_page(
1839 			log, ctx, sh->dev[sh->qd_idx].page,
1840 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1841 		sh->dev[sh->qd_idx].log_checksum =
1842 			le32_to_cpu(payload->checksum[1]);
1843 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1844 	}
1845 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1846 }
1847 
1848 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1849 {
1850 	int i;
1851 
1852 	sh->state = 0;
1853 	sh->log_start = MaxSector;
1854 	for (i = sh->disks; i--; )
1855 		sh->dev[i].flags = 0;
1856 }
1857 
1858 static void
1859 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1860 			       struct stripe_head *sh,
1861 			       struct r5l_recovery_ctx *ctx)
1862 {
1863 	struct md_rdev *rdev, *rrdev;
1864 	int disk_index;
1865 	int data_count = 0;
1866 
1867 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1868 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1869 			continue;
1870 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1871 			continue;
1872 		data_count++;
1873 	}
1874 
1875 	/*
1876 	 * stripes that only have parity must have been flushed
1877 	 * before the crash that we are now recovering from, so
1878 	 * there is nothing more to recovery.
1879 	 */
1880 	if (data_count == 0)
1881 		goto out;
1882 
1883 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1884 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1885 			continue;
1886 
1887 		/* in case device is broken */
1888 		rcu_read_lock();
1889 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1890 		if (rdev) {
1891 			atomic_inc(&rdev->nr_pending);
1892 			rcu_read_unlock();
1893 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1894 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1895 				     false);
1896 			rdev_dec_pending(rdev, rdev->mddev);
1897 			rcu_read_lock();
1898 		}
1899 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1900 		if (rrdev) {
1901 			atomic_inc(&rrdev->nr_pending);
1902 			rcu_read_unlock();
1903 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1904 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1905 				     false);
1906 			rdev_dec_pending(rrdev, rrdev->mddev);
1907 			rcu_read_lock();
1908 		}
1909 		rcu_read_unlock();
1910 	}
1911 	ctx->data_parity_stripes++;
1912 out:
1913 	r5l_recovery_reset_stripe(sh);
1914 }
1915 
1916 static struct stripe_head *
1917 r5c_recovery_alloc_stripe(struct r5conf *conf,
1918 			  sector_t stripe_sect)
1919 {
1920 	struct stripe_head *sh;
1921 
1922 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1923 	if (!sh)
1924 		return NULL;  /* no more stripe available */
1925 
1926 	r5l_recovery_reset_stripe(sh);
1927 
1928 	return sh;
1929 }
1930 
1931 static struct stripe_head *
1932 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1933 {
1934 	struct stripe_head *sh;
1935 
1936 	list_for_each_entry(sh, list, lru)
1937 		if (sh->sector == sect)
1938 			return sh;
1939 	return NULL;
1940 }
1941 
1942 static void
1943 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1944 			  struct r5l_recovery_ctx *ctx)
1945 {
1946 	struct stripe_head *sh, *next;
1947 
1948 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1949 		r5l_recovery_reset_stripe(sh);
1950 		list_del_init(&sh->lru);
1951 		raid5_release_stripe(sh);
1952 	}
1953 }
1954 
1955 static void
1956 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1957 			    struct r5l_recovery_ctx *ctx)
1958 {
1959 	struct stripe_head *sh, *next;
1960 
1961 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1962 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1963 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1964 			list_del_init(&sh->lru);
1965 			raid5_release_stripe(sh);
1966 		}
1967 }
1968 
1969 /* if matches return 0; otherwise return -EINVAL */
1970 static int
1971 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1972 				  struct r5l_recovery_ctx *ctx,
1973 				  struct page *page,
1974 				  sector_t log_offset, __le32 log_checksum)
1975 {
1976 	void *addr;
1977 	u32 checksum;
1978 
1979 	r5l_recovery_read_page(log, ctx, page, log_offset);
1980 	addr = kmap_atomic(page);
1981 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1982 	kunmap_atomic(addr);
1983 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1984 }
1985 
1986 /*
1987  * before loading data to stripe cache, we need verify checksum for all data,
1988  * if there is mismatch for any data page, we drop all data in the mata block
1989  */
1990 static int
1991 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1992 					 struct r5l_recovery_ctx *ctx)
1993 {
1994 	struct mddev *mddev = log->rdev->mddev;
1995 	struct r5conf *conf = mddev->private;
1996 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1997 	sector_t mb_offset = sizeof(struct r5l_meta_block);
1998 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1999 	struct page *page;
2000 	struct r5l_payload_data_parity *payload;
2001 	struct r5l_payload_flush *payload_flush;
2002 
2003 	page = alloc_page(GFP_KERNEL);
2004 	if (!page)
2005 		return -ENOMEM;
2006 
2007 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2008 		payload = (void *)mb + mb_offset;
2009 		payload_flush = (void *)mb + mb_offset;
2010 
2011 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2012 			if (r5l_recovery_verify_data_checksum(
2013 				    log, ctx, page, log_offset,
2014 				    payload->checksum[0]) < 0)
2015 				goto mismatch;
2016 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2017 			if (r5l_recovery_verify_data_checksum(
2018 				    log, ctx, page, log_offset,
2019 				    payload->checksum[0]) < 0)
2020 				goto mismatch;
2021 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2022 			    r5l_recovery_verify_data_checksum(
2023 				    log, ctx, page,
2024 				    r5l_ring_add(log, log_offset,
2025 						 BLOCK_SECTORS),
2026 				    payload->checksum[1]) < 0)
2027 				goto mismatch;
2028 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2029 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2030 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2031 			goto mismatch;
2032 
2033 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2034 			mb_offset += sizeof(struct r5l_payload_flush) +
2035 				le32_to_cpu(payload_flush->size);
2036 		} else {
2037 			/* DATA or PARITY payload */
2038 			log_offset = r5l_ring_add(log, log_offset,
2039 						  le32_to_cpu(payload->size));
2040 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2041 				sizeof(__le32) *
2042 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2043 		}
2044 
2045 	}
2046 
2047 	put_page(page);
2048 	return 0;
2049 
2050 mismatch:
2051 	put_page(page);
2052 	return -EINVAL;
2053 }
2054 
2055 /*
2056  * Analyze all data/parity pages in one meta block
2057  * Returns:
2058  * 0 for success
2059  * -EINVAL for unknown playload type
2060  * -EAGAIN for checksum mismatch of data page
2061  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2062  */
2063 static int
2064 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2065 				struct r5l_recovery_ctx *ctx,
2066 				struct list_head *cached_stripe_list)
2067 {
2068 	struct mddev *mddev = log->rdev->mddev;
2069 	struct r5conf *conf = mddev->private;
2070 	struct r5l_meta_block *mb;
2071 	struct r5l_payload_data_parity *payload;
2072 	struct r5l_payload_flush *payload_flush;
2073 	int mb_offset;
2074 	sector_t log_offset;
2075 	sector_t stripe_sect;
2076 	struct stripe_head *sh;
2077 	int ret;
2078 
2079 	/*
2080 	 * for mismatch in data blocks, we will drop all data in this mb, but
2081 	 * we will still read next mb for other data with FLUSH flag, as
2082 	 * io_unit could finish out of order.
2083 	 */
2084 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2085 	if (ret == -EINVAL)
2086 		return -EAGAIN;
2087 	else if (ret)
2088 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2089 
2090 	mb = page_address(ctx->meta_page);
2091 	mb_offset = sizeof(struct r5l_meta_block);
2092 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2093 
2094 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2095 		int dd;
2096 
2097 		payload = (void *)mb + mb_offset;
2098 		payload_flush = (void *)mb + mb_offset;
2099 
2100 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2101 			int i, count;
2102 
2103 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2104 			for (i = 0; i < count; ++i) {
2105 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2106 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2107 								stripe_sect);
2108 				if (sh) {
2109 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2110 					r5l_recovery_reset_stripe(sh);
2111 					list_del_init(&sh->lru);
2112 					raid5_release_stripe(sh);
2113 				}
2114 			}
2115 
2116 			mb_offset += sizeof(struct r5l_payload_flush) +
2117 				le32_to_cpu(payload_flush->size);
2118 			continue;
2119 		}
2120 
2121 		/* DATA or PARITY payload */
2122 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2123 			raid5_compute_sector(
2124 				conf, le64_to_cpu(payload->location), 0, &dd,
2125 				NULL)
2126 			: le64_to_cpu(payload->location);
2127 
2128 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2129 						stripe_sect);
2130 
2131 		if (!sh) {
2132 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2133 			/*
2134 			 * cannot get stripe from raid5_get_active_stripe
2135 			 * try replay some stripes
2136 			 */
2137 			if (!sh) {
2138 				r5c_recovery_replay_stripes(
2139 					cached_stripe_list, ctx);
2140 				sh = r5c_recovery_alloc_stripe(
2141 					conf, stripe_sect);
2142 			}
2143 			if (!sh) {
2144 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2145 					mdname(mddev),
2146 					conf->min_nr_stripes * 2);
2147 				raid5_set_cache_size(mddev,
2148 						     conf->min_nr_stripes * 2);
2149 				sh = r5c_recovery_alloc_stripe(conf,
2150 							       stripe_sect);
2151 			}
2152 			if (!sh) {
2153 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2154 				       mdname(mddev));
2155 				return -ENOMEM;
2156 			}
2157 			list_add_tail(&sh->lru, cached_stripe_list);
2158 		}
2159 
2160 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2161 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2162 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2163 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2164 				list_move_tail(&sh->lru, cached_stripe_list);
2165 			}
2166 			r5l_recovery_load_data(log, sh, ctx, payload,
2167 					       log_offset);
2168 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2169 			r5l_recovery_load_parity(log, sh, ctx, payload,
2170 						 log_offset);
2171 		else
2172 			return -EINVAL;
2173 
2174 		log_offset = r5l_ring_add(log, log_offset,
2175 					  le32_to_cpu(payload->size));
2176 
2177 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2178 			sizeof(__le32) *
2179 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 /*
2186  * Load the stripe into cache. The stripe will be written out later by
2187  * the stripe cache state machine.
2188  */
2189 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2190 					 struct stripe_head *sh)
2191 {
2192 	struct r5dev *dev;
2193 	int i;
2194 
2195 	for (i = sh->disks; i--; ) {
2196 		dev = sh->dev + i;
2197 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2198 			set_bit(R5_InJournal, &dev->flags);
2199 			set_bit(R5_UPTODATE, &dev->flags);
2200 		}
2201 	}
2202 }
2203 
2204 /*
2205  * Scan through the log for all to-be-flushed data
2206  *
2207  * For stripes with data and parity, namely Data-Parity stripe
2208  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2209  *
2210  * For stripes with only data, namely Data-Only stripe
2211  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2212  *
2213  * For a stripe, if we see data after parity, we should discard all previous
2214  * data and parity for this stripe, as these data are already flushed to
2215  * the array.
2216  *
2217  * At the end of the scan, we return the new journal_tail, which points to
2218  * first data-only stripe on the journal device, or next invalid meta block.
2219  */
2220 static int r5c_recovery_flush_log(struct r5l_log *log,
2221 				  struct r5l_recovery_ctx *ctx)
2222 {
2223 	struct stripe_head *sh;
2224 	int ret = 0;
2225 
2226 	/* scan through the log */
2227 	while (1) {
2228 		if (r5l_recovery_read_meta_block(log, ctx))
2229 			break;
2230 
2231 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2232 						      &ctx->cached_list);
2233 		/*
2234 		 * -EAGAIN means mismatch in data block, in this case, we still
2235 		 * try scan the next metablock
2236 		 */
2237 		if (ret && ret != -EAGAIN)
2238 			break;   /* ret == -EINVAL or -ENOMEM */
2239 		ctx->seq++;
2240 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2241 	}
2242 
2243 	if (ret == -ENOMEM) {
2244 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2245 		return ret;
2246 	}
2247 
2248 	/* replay data-parity stripes */
2249 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2250 
2251 	/* load data-only stripes to stripe cache */
2252 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2253 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2254 		r5c_recovery_load_one_stripe(log, sh);
2255 		ctx->data_only_stripes++;
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 /*
2262  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2263  * log will start here. but we can't let superblock point to last valid
2264  * meta block. The log might looks like:
2265  * | meta 1| meta 2| meta 3|
2266  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2267  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2268  * happens again, new recovery will start from meta 1. Since meta 2n is
2269  * valid now, recovery will think meta 3 is valid, which is wrong.
2270  * The solution is we create a new meta in meta2 with its seq == meta
2271  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2272  * will not think meta 3 is a valid meta, because its seq doesn't match
2273  */
2274 
2275 /*
2276  * Before recovery, the log looks like the following
2277  *
2278  *   ---------------------------------------------
2279  *   |           valid log        | invalid log  |
2280  *   ---------------------------------------------
2281  *   ^
2282  *   |- log->last_checkpoint
2283  *   |- log->last_cp_seq
2284  *
2285  * Now we scan through the log until we see invalid entry
2286  *
2287  *   ---------------------------------------------
2288  *   |           valid log        | invalid log  |
2289  *   ---------------------------------------------
2290  *   ^                            ^
2291  *   |- log->last_checkpoint      |- ctx->pos
2292  *   |- log->last_cp_seq          |- ctx->seq
2293  *
2294  * From this point, we need to increase seq number by 10 to avoid
2295  * confusing next recovery.
2296  *
2297  *   ---------------------------------------------
2298  *   |           valid log        | invalid log  |
2299  *   ---------------------------------------------
2300  *   ^                              ^
2301  *   |- log->last_checkpoint        |- ctx->pos+1
2302  *   |- log->last_cp_seq            |- ctx->seq+10001
2303  *
2304  * However, it is not safe to start the state machine yet, because data only
2305  * parities are not yet secured in RAID. To save these data only parities, we
2306  * rewrite them from seq+11.
2307  *
2308  *   -----------------------------------------------------------------
2309  *   |           valid log        | data only stripes | invalid log  |
2310  *   -----------------------------------------------------------------
2311  *   ^                                                ^
2312  *   |- log->last_checkpoint                          |- ctx->pos+n
2313  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2314  *
2315  * If failure happens again during this process, the recovery can safe start
2316  * again from log->last_checkpoint.
2317  *
2318  * Once data only stripes are rewritten to journal, we move log_tail
2319  *
2320  *   -----------------------------------------------------------------
2321  *   |     old log        |    data only stripes    | invalid log  |
2322  *   -----------------------------------------------------------------
2323  *                        ^                         ^
2324  *                        |- log->last_checkpoint   |- ctx->pos+n
2325  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2326  *
2327  * Then we can safely start the state machine. If failure happens from this
2328  * point on, the recovery will start from new log->last_checkpoint.
2329  */
2330 static int
2331 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2332 				       struct r5l_recovery_ctx *ctx)
2333 {
2334 	struct stripe_head *sh;
2335 	struct mddev *mddev = log->rdev->mddev;
2336 	struct page *page;
2337 	sector_t next_checkpoint = MaxSector;
2338 
2339 	page = alloc_page(GFP_KERNEL);
2340 	if (!page) {
2341 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2342 		       mdname(mddev));
2343 		return -ENOMEM;
2344 	}
2345 
2346 	WARN_ON(list_empty(&ctx->cached_list));
2347 
2348 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2349 		struct r5l_meta_block *mb;
2350 		int i;
2351 		int offset;
2352 		sector_t write_pos;
2353 
2354 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2355 		r5l_recovery_create_empty_meta_block(log, page,
2356 						     ctx->pos, ctx->seq);
2357 		mb = page_address(page);
2358 		offset = le32_to_cpu(mb->meta_size);
2359 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2360 
2361 		for (i = sh->disks; i--; ) {
2362 			struct r5dev *dev = &sh->dev[i];
2363 			struct r5l_payload_data_parity *payload;
2364 			void *addr;
2365 
2366 			if (test_bit(R5_InJournal, &dev->flags)) {
2367 				payload = (void *)mb + offset;
2368 				payload->header.type = cpu_to_le16(
2369 					R5LOG_PAYLOAD_DATA);
2370 				payload->size = cpu_to_le32(BLOCK_SECTORS);
2371 				payload->location = cpu_to_le64(
2372 					raid5_compute_blocknr(sh, i, 0));
2373 				addr = kmap_atomic(dev->page);
2374 				payload->checksum[0] = cpu_to_le32(
2375 					crc32c_le(log->uuid_checksum, addr,
2376 						  PAGE_SIZE));
2377 				kunmap_atomic(addr);
2378 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2379 					     dev->page, REQ_OP_WRITE, 0, false);
2380 				write_pos = r5l_ring_add(log, write_pos,
2381 							 BLOCK_SECTORS);
2382 				offset += sizeof(__le32) +
2383 					sizeof(struct r5l_payload_data_parity);
2384 
2385 			}
2386 		}
2387 		mb->meta_size = cpu_to_le32(offset);
2388 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2389 						     mb, PAGE_SIZE));
2390 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2391 			     REQ_OP_WRITE, REQ_SYNC | REQ_FUA, false);
2392 		sh->log_start = ctx->pos;
2393 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2394 		atomic_inc(&log->stripe_in_journal_count);
2395 		ctx->pos = write_pos;
2396 		ctx->seq += 1;
2397 		next_checkpoint = sh->log_start;
2398 	}
2399 	log->next_checkpoint = next_checkpoint;
2400 	__free_page(page);
2401 	return 0;
2402 }
2403 
2404 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2405 						 struct r5l_recovery_ctx *ctx)
2406 {
2407 	struct mddev *mddev = log->rdev->mddev;
2408 	struct r5conf *conf = mddev->private;
2409 	struct stripe_head *sh, *next;
2410 
2411 	if (ctx->data_only_stripes == 0)
2412 		return;
2413 
2414 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2415 
2416 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2417 		r5c_make_stripe_write_out(sh);
2418 		set_bit(STRIPE_HANDLE, &sh->state);
2419 		list_del_init(&sh->lru);
2420 		raid5_release_stripe(sh);
2421 	}
2422 
2423 	md_wakeup_thread(conf->mddev->thread);
2424 	/* reuse conf->wait_for_quiescent in recovery */
2425 	wait_event(conf->wait_for_quiescent,
2426 		   atomic_read(&conf->active_stripes) == 0);
2427 
2428 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2429 }
2430 
2431 static int r5l_recovery_log(struct r5l_log *log)
2432 {
2433 	struct mddev *mddev = log->rdev->mddev;
2434 	struct r5l_recovery_ctx *ctx;
2435 	int ret;
2436 	sector_t pos;
2437 
2438 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2439 	if (!ctx)
2440 		return -ENOMEM;
2441 
2442 	ctx->pos = log->last_checkpoint;
2443 	ctx->seq = log->last_cp_seq;
2444 	INIT_LIST_HEAD(&ctx->cached_list);
2445 	ctx->meta_page = alloc_page(GFP_KERNEL);
2446 
2447 	if (!ctx->meta_page) {
2448 		ret =  -ENOMEM;
2449 		goto meta_page;
2450 	}
2451 
2452 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2453 		ret = -ENOMEM;
2454 		goto ra_pool;
2455 	}
2456 
2457 	ret = r5c_recovery_flush_log(log, ctx);
2458 
2459 	if (ret)
2460 		goto error;
2461 
2462 	pos = ctx->pos;
2463 	ctx->seq += 10000;
2464 
2465 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2466 		pr_debug("md/raid:%s: starting from clean shutdown\n",
2467 			 mdname(mddev));
2468 	else
2469 		pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2470 			 mdname(mddev), ctx->data_only_stripes,
2471 			 ctx->data_parity_stripes);
2472 
2473 	if (ctx->data_only_stripes == 0) {
2474 		log->next_checkpoint = ctx->pos;
2475 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2476 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2477 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2478 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2479 		       mdname(mddev));
2480 		ret =  -EIO;
2481 		goto error;
2482 	}
2483 
2484 	log->log_start = ctx->pos;
2485 	log->seq = ctx->seq;
2486 	log->last_checkpoint = pos;
2487 	r5l_write_super(log, pos);
2488 
2489 	r5c_recovery_flush_data_only_stripes(log, ctx);
2490 	ret = 0;
2491 error:
2492 	r5l_recovery_free_ra_pool(log, ctx);
2493 ra_pool:
2494 	__free_page(ctx->meta_page);
2495 meta_page:
2496 	kfree(ctx);
2497 	return ret;
2498 }
2499 
2500 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2501 {
2502 	struct mddev *mddev = log->rdev->mddev;
2503 
2504 	log->rdev->journal_tail = cp;
2505 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2506 }
2507 
2508 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2509 {
2510 	struct r5conf *conf = mddev->private;
2511 	int ret;
2512 
2513 	if (!conf->log)
2514 		return 0;
2515 
2516 	switch (conf->log->r5c_journal_mode) {
2517 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2518 		ret = snprintf(
2519 			page, PAGE_SIZE, "[%s] %s\n",
2520 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2521 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2522 		break;
2523 	case R5C_JOURNAL_MODE_WRITE_BACK:
2524 		ret = snprintf(
2525 			page, PAGE_SIZE, "%s [%s]\n",
2526 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2527 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2528 		break;
2529 	default:
2530 		ret = 0;
2531 	}
2532 	return ret;
2533 }
2534 
2535 /*
2536  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2537  *
2538  * @mode as defined in 'enum r5c_journal_mode'.
2539  *
2540  */
2541 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2542 {
2543 	struct r5conf *conf = mddev->private;
2544 	struct r5l_log *log = conf->log;
2545 
2546 	if (!log)
2547 		return -ENODEV;
2548 
2549 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2550 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2551 		return -EINVAL;
2552 
2553 	if (raid5_calc_degraded(conf) > 0 &&
2554 	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2555 		return -EINVAL;
2556 
2557 	mddev_suspend(mddev);
2558 	conf->log->r5c_journal_mode = mode;
2559 	mddev_resume(mddev);
2560 
2561 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2562 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2563 	return 0;
2564 }
2565 EXPORT_SYMBOL(r5c_journal_mode_set);
2566 
2567 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2568 				      const char *page, size_t length)
2569 {
2570 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2571 	size_t len = length;
2572 
2573 	if (len < 2)
2574 		return -EINVAL;
2575 
2576 	if (page[len - 1] == '\n')
2577 		len--;
2578 
2579 	while (mode--)
2580 		if (strlen(r5c_journal_mode_str[mode]) == len &&
2581 		    !strncmp(page, r5c_journal_mode_str[mode], len))
2582 			break;
2583 
2584 	return r5c_journal_mode_set(mddev, mode) ?: length;
2585 }
2586 
2587 struct md_sysfs_entry
2588 r5c_journal_mode = __ATTR(journal_mode, 0644,
2589 			  r5c_journal_mode_show, r5c_journal_mode_store);
2590 
2591 /*
2592  * Try handle write operation in caching phase. This function should only
2593  * be called in write-back mode.
2594  *
2595  * If all outstanding writes can be handled in caching phase, returns 0
2596  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2597  * and returns -EAGAIN
2598  */
2599 int r5c_try_caching_write(struct r5conf *conf,
2600 			  struct stripe_head *sh,
2601 			  struct stripe_head_state *s,
2602 			  int disks)
2603 {
2604 	struct r5l_log *log = conf->log;
2605 	int i;
2606 	struct r5dev *dev;
2607 	int to_cache = 0;
2608 	void **pslot;
2609 	sector_t tree_index;
2610 	int ret;
2611 	uintptr_t refcount;
2612 
2613 	BUG_ON(!r5c_is_writeback(log));
2614 
2615 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2616 		/*
2617 		 * There are two different scenarios here:
2618 		 *  1. The stripe has some data cached, and it is sent to
2619 		 *     write-out phase for reclaim
2620 		 *  2. The stripe is clean, and this is the first write
2621 		 *
2622 		 * For 1, return -EAGAIN, so we continue with
2623 		 * handle_stripe_dirtying().
2624 		 *
2625 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2626 		 * write.
2627 		 */
2628 
2629 		/* case 1: anything injournal or anything in written */
2630 		if (s->injournal > 0 || s->written > 0)
2631 			return -EAGAIN;
2632 		/* case 2 */
2633 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2634 	}
2635 
2636 	/*
2637 	 * When run in degraded mode, array is set to write-through mode.
2638 	 * This check helps drain pending write safely in the transition to
2639 	 * write-through mode.
2640 	 *
2641 	 * When a stripe is syncing, the write is also handled in write
2642 	 * through mode.
2643 	 */
2644 	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2645 		r5c_make_stripe_write_out(sh);
2646 		return -EAGAIN;
2647 	}
2648 
2649 	for (i = disks; i--; ) {
2650 		dev = &sh->dev[i];
2651 		/* if non-overwrite, use writing-out phase */
2652 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2653 		    !test_bit(R5_InJournal, &dev->flags)) {
2654 			r5c_make_stripe_write_out(sh);
2655 			return -EAGAIN;
2656 		}
2657 	}
2658 
2659 	/* if the stripe is not counted in big_stripe_tree, add it now */
2660 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2661 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2662 		tree_index = r5c_tree_index(conf, sh->sector);
2663 		spin_lock(&log->tree_lock);
2664 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2665 					       tree_index);
2666 		if (pslot) {
2667 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2668 				pslot, &log->tree_lock) >>
2669 				R5C_RADIX_COUNT_SHIFT;
2670 			radix_tree_replace_slot(
2671 				&log->big_stripe_tree, pslot,
2672 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2673 		} else {
2674 			/*
2675 			 * this radix_tree_insert can fail safely, so no
2676 			 * need to call radix_tree_preload()
2677 			 */
2678 			ret = radix_tree_insert(
2679 				&log->big_stripe_tree, tree_index,
2680 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2681 			if (ret) {
2682 				spin_unlock(&log->tree_lock);
2683 				r5c_make_stripe_write_out(sh);
2684 				return -EAGAIN;
2685 			}
2686 		}
2687 		spin_unlock(&log->tree_lock);
2688 
2689 		/*
2690 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2691 		 * counted in the radix tree
2692 		 */
2693 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2694 		atomic_inc(&conf->r5c_cached_partial_stripes);
2695 	}
2696 
2697 	for (i = disks; i--; ) {
2698 		dev = &sh->dev[i];
2699 		if (dev->towrite) {
2700 			set_bit(R5_Wantwrite, &dev->flags);
2701 			set_bit(R5_Wantdrain, &dev->flags);
2702 			set_bit(R5_LOCKED, &dev->flags);
2703 			to_cache++;
2704 		}
2705 	}
2706 
2707 	if (to_cache) {
2708 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2709 		/*
2710 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2711 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2712 		 * r5c_handle_data_cached()
2713 		 */
2714 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 /*
2721  * free extra pages (orig_page) we allocated for prexor
2722  */
2723 void r5c_release_extra_page(struct stripe_head *sh)
2724 {
2725 	struct r5conf *conf = sh->raid_conf;
2726 	int i;
2727 	bool using_disk_info_extra_page;
2728 
2729 	using_disk_info_extra_page =
2730 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2731 
2732 	for (i = sh->disks; i--; )
2733 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2734 			struct page *p = sh->dev[i].orig_page;
2735 
2736 			sh->dev[i].orig_page = sh->dev[i].page;
2737 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2738 
2739 			if (!using_disk_info_extra_page)
2740 				put_page(p);
2741 		}
2742 
2743 	if (using_disk_info_extra_page) {
2744 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2745 		md_wakeup_thread(conf->mddev->thread);
2746 	}
2747 }
2748 
2749 void r5c_use_extra_page(struct stripe_head *sh)
2750 {
2751 	struct r5conf *conf = sh->raid_conf;
2752 	int i;
2753 	struct r5dev *dev;
2754 
2755 	for (i = sh->disks; i--; ) {
2756 		dev = &sh->dev[i];
2757 		if (dev->orig_page != dev->page)
2758 			put_page(dev->orig_page);
2759 		dev->orig_page = conf->disks[i].extra_page;
2760 	}
2761 }
2762 
2763 /*
2764  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2765  * stripe is committed to RAID disks.
2766  */
2767 void r5c_finish_stripe_write_out(struct r5conf *conf,
2768 				 struct stripe_head *sh,
2769 				 struct stripe_head_state *s)
2770 {
2771 	struct r5l_log *log = conf->log;
2772 	int i;
2773 	int do_wakeup = 0;
2774 	sector_t tree_index;
2775 	void **pslot;
2776 	uintptr_t refcount;
2777 
2778 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2779 		return;
2780 
2781 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2782 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2783 
2784 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2785 		return;
2786 
2787 	for (i = sh->disks; i--; ) {
2788 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2789 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2790 			do_wakeup = 1;
2791 	}
2792 
2793 	/*
2794 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2795 	 * We updated R5_InJournal, so we also update s->injournal.
2796 	 */
2797 	s->injournal = 0;
2798 
2799 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2800 		if (atomic_dec_and_test(&conf->pending_full_writes))
2801 			md_wakeup_thread(conf->mddev->thread);
2802 
2803 	if (do_wakeup)
2804 		wake_up(&conf->wait_for_overlap);
2805 
2806 	spin_lock_irq(&log->stripe_in_journal_lock);
2807 	list_del_init(&sh->r5c);
2808 	spin_unlock_irq(&log->stripe_in_journal_lock);
2809 	sh->log_start = MaxSector;
2810 
2811 	atomic_dec(&log->stripe_in_journal_count);
2812 	r5c_update_log_state(log);
2813 
2814 	/* stop counting this stripe in big_stripe_tree */
2815 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2816 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2817 		tree_index = r5c_tree_index(conf, sh->sector);
2818 		spin_lock(&log->tree_lock);
2819 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2820 					       tree_index);
2821 		BUG_ON(pslot == NULL);
2822 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2823 			pslot, &log->tree_lock) >>
2824 			R5C_RADIX_COUNT_SHIFT;
2825 		if (refcount == 1)
2826 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2827 		else
2828 			radix_tree_replace_slot(
2829 				&log->big_stripe_tree, pslot,
2830 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2831 		spin_unlock(&log->tree_lock);
2832 	}
2833 
2834 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2835 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2836 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2837 		atomic_dec(&conf->r5c_cached_partial_stripes);
2838 	}
2839 
2840 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2841 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2842 		atomic_dec(&conf->r5c_flushing_full_stripes);
2843 		atomic_dec(&conf->r5c_cached_full_stripes);
2844 	}
2845 
2846 	r5l_append_flush_payload(log, sh->sector);
2847 	/* stripe is flused to raid disks, we can do resync now */
2848 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2849 		set_bit(STRIPE_HANDLE, &sh->state);
2850 }
2851 
2852 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2853 {
2854 	struct r5conf *conf = sh->raid_conf;
2855 	int pages = 0;
2856 	int reserve;
2857 	int i;
2858 	int ret = 0;
2859 
2860 	BUG_ON(!log);
2861 
2862 	for (i = 0; i < sh->disks; i++) {
2863 		void *addr;
2864 
2865 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2866 			continue;
2867 		addr = kmap_atomic(sh->dev[i].page);
2868 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2869 						    addr, PAGE_SIZE);
2870 		kunmap_atomic(addr);
2871 		pages++;
2872 	}
2873 	WARN_ON(pages == 0);
2874 
2875 	/*
2876 	 * The stripe must enter state machine again to call endio, so
2877 	 * don't delay.
2878 	 */
2879 	clear_bit(STRIPE_DELAYED, &sh->state);
2880 	atomic_inc(&sh->count);
2881 
2882 	mutex_lock(&log->io_mutex);
2883 	/* meta + data */
2884 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2885 
2886 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2887 	    sh->log_start == MaxSector)
2888 		r5l_add_no_space_stripe(log, sh);
2889 	else if (!r5l_has_free_space(log, reserve)) {
2890 		if (sh->log_start == log->last_checkpoint)
2891 			BUG();
2892 		else
2893 			r5l_add_no_space_stripe(log, sh);
2894 	} else {
2895 		ret = r5l_log_stripe(log, sh, pages, 0);
2896 		if (ret) {
2897 			spin_lock_irq(&log->io_list_lock);
2898 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2899 			spin_unlock_irq(&log->io_list_lock);
2900 		}
2901 	}
2902 
2903 	mutex_unlock(&log->io_mutex);
2904 	return 0;
2905 }
2906 
2907 /* check whether this big stripe is in write back cache. */
2908 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2909 {
2910 	struct r5l_log *log = conf->log;
2911 	sector_t tree_index;
2912 	void *slot;
2913 
2914 	if (!log)
2915 		return false;
2916 
2917 	WARN_ON_ONCE(!rcu_read_lock_held());
2918 	tree_index = r5c_tree_index(conf, sect);
2919 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2920 	return slot != NULL;
2921 }
2922 
2923 static int r5l_load_log(struct r5l_log *log)
2924 {
2925 	struct md_rdev *rdev = log->rdev;
2926 	struct page *page;
2927 	struct r5l_meta_block *mb;
2928 	sector_t cp = log->rdev->journal_tail;
2929 	u32 stored_crc, expected_crc;
2930 	bool create_super = false;
2931 	int ret = 0;
2932 
2933 	/* Make sure it's valid */
2934 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2935 		cp = 0;
2936 	page = alloc_page(GFP_KERNEL);
2937 	if (!page)
2938 		return -ENOMEM;
2939 
2940 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2941 		ret = -EIO;
2942 		goto ioerr;
2943 	}
2944 	mb = page_address(page);
2945 
2946 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2947 	    mb->version != R5LOG_VERSION) {
2948 		create_super = true;
2949 		goto create;
2950 	}
2951 	stored_crc = le32_to_cpu(mb->checksum);
2952 	mb->checksum = 0;
2953 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2954 	if (stored_crc != expected_crc) {
2955 		create_super = true;
2956 		goto create;
2957 	}
2958 	if (le64_to_cpu(mb->position) != cp) {
2959 		create_super = true;
2960 		goto create;
2961 	}
2962 create:
2963 	if (create_super) {
2964 		log->last_cp_seq = prandom_u32();
2965 		cp = 0;
2966 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2967 		/*
2968 		 * Make sure super points to correct address. Log might have
2969 		 * data very soon. If super hasn't correct log tail address,
2970 		 * recovery can't find the log
2971 		 */
2972 		r5l_write_super(log, cp);
2973 	} else
2974 		log->last_cp_seq = le64_to_cpu(mb->seq);
2975 
2976 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2977 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2978 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2979 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2980 	log->last_checkpoint = cp;
2981 
2982 	__free_page(page);
2983 
2984 	if (create_super) {
2985 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2986 		log->seq = log->last_cp_seq + 1;
2987 		log->next_checkpoint = cp;
2988 	} else
2989 		ret = r5l_recovery_log(log);
2990 
2991 	r5c_update_log_state(log);
2992 	return ret;
2993 ioerr:
2994 	__free_page(page);
2995 	return ret;
2996 }
2997 
2998 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
2999 {
3000 	struct r5conf *conf = mddev->private;
3001 	struct r5l_log *log = conf->log;
3002 
3003 	if (!log)
3004 		return;
3005 
3006 	if ((raid5_calc_degraded(conf) > 0 ||
3007 	     test_bit(Journal, &rdev->flags)) &&
3008 	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3009 		schedule_work(&log->disable_writeback_work);
3010 }
3011 
3012 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3013 {
3014 	struct request_queue *q = bdev_get_queue(rdev->bdev);
3015 	struct r5l_log *log;
3016 	char b[BDEVNAME_SIZE];
3017 
3018 	pr_debug("md/raid:%s: using device %s as journal\n",
3019 		 mdname(conf->mddev), bdevname(rdev->bdev, b));
3020 
3021 	if (PAGE_SIZE != 4096)
3022 		return -EINVAL;
3023 
3024 	/*
3025 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3026 	 * raid_disks r5l_payload_data_parity.
3027 	 *
3028 	 * Write journal and cache does not work for very big array
3029 	 * (raid_disks > 203)
3030 	 */
3031 	if (sizeof(struct r5l_meta_block) +
3032 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3033 	     conf->raid_disks) > PAGE_SIZE) {
3034 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3035 		       mdname(conf->mddev), conf->raid_disks);
3036 		return -EINVAL;
3037 	}
3038 
3039 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3040 	if (!log)
3041 		return -ENOMEM;
3042 	log->rdev = rdev;
3043 
3044 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3045 
3046 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3047 				       sizeof(rdev->mddev->uuid));
3048 
3049 	mutex_init(&log->io_mutex);
3050 
3051 	spin_lock_init(&log->io_list_lock);
3052 	INIT_LIST_HEAD(&log->running_ios);
3053 	INIT_LIST_HEAD(&log->io_end_ios);
3054 	INIT_LIST_HEAD(&log->flushing_ios);
3055 	INIT_LIST_HEAD(&log->finished_ios);
3056 	bio_init(&log->flush_bio, NULL, 0);
3057 
3058 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3059 	if (!log->io_kc)
3060 		goto io_kc;
3061 
3062 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3063 	if (!log->io_pool)
3064 		goto io_pool;
3065 
3066 	log->bs = bioset_create(R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3067 	if (!log->bs)
3068 		goto io_bs;
3069 
3070 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3071 	if (!log->meta_pool)
3072 		goto out_mempool;
3073 
3074 	spin_lock_init(&log->tree_lock);
3075 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3076 
3077 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3078 						 log->rdev->mddev, "reclaim");
3079 	if (!log->reclaim_thread)
3080 		goto reclaim_thread;
3081 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3082 
3083 	init_waitqueue_head(&log->iounit_wait);
3084 
3085 	INIT_LIST_HEAD(&log->no_mem_stripes);
3086 
3087 	INIT_LIST_HEAD(&log->no_space_stripes);
3088 	spin_lock_init(&log->no_space_stripes_lock);
3089 
3090 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3091 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3092 
3093 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3094 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3095 	spin_lock_init(&log->stripe_in_journal_lock);
3096 	atomic_set(&log->stripe_in_journal_count, 0);
3097 
3098 	rcu_assign_pointer(conf->log, log);
3099 
3100 	if (r5l_load_log(log))
3101 		goto error;
3102 
3103 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3104 	return 0;
3105 
3106 error:
3107 	rcu_assign_pointer(conf->log, NULL);
3108 	md_unregister_thread(&log->reclaim_thread);
3109 reclaim_thread:
3110 	mempool_destroy(log->meta_pool);
3111 out_mempool:
3112 	bioset_free(log->bs);
3113 io_bs:
3114 	mempool_destroy(log->io_pool);
3115 io_pool:
3116 	kmem_cache_destroy(log->io_kc);
3117 io_kc:
3118 	kfree(log);
3119 	return -EINVAL;
3120 }
3121 
3122 void r5l_exit_log(struct r5conf *conf)
3123 {
3124 	struct r5l_log *log = conf->log;
3125 
3126 	conf->log = NULL;
3127 	synchronize_rcu();
3128 
3129 	flush_work(&log->disable_writeback_work);
3130 	md_unregister_thread(&log->reclaim_thread);
3131 	mempool_destroy(log->meta_pool);
3132 	bioset_free(log->bs);
3133 	mempool_destroy(log->io_pool);
3134 	kmem_cache_destroy(log->io_kc);
3135 	kfree(log);
3136 }
3137