xref: /openbmc/linux/drivers/md/raid5-cache.c (revision 462eb7d8)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include "md.h"
24 #include "raid5.h"
25 #include "bitmap.h"
26 
27 /*
28  * metadata/data stored in disk with 4k size unit (a block) regardless
29  * underneath hardware sector size. only works with PAGE_SIZE == 4096
30  */
31 #define BLOCK_SECTORS (8)
32 
33 /*
34  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
35  *
36  * In write through mode, the reclaim runs every log->max_free_space.
37  * This can prevent the recovery scans for too long
38  */
39 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
40 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
41 
42 /* wake up reclaim thread periodically */
43 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
44 /* start flush with these full stripes */
45 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
46 /* reclaim stripes in groups */
47 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
48 
49 /*
50  * We only need 2 bios per I/O unit to make progress, but ensure we
51  * have a few more available to not get too tight.
52  */
53 #define R5L_POOL_SIZE	4
54 
55 /*
56  * r5c journal modes of the array: write-back or write-through.
57  * write-through mode has identical behavior as existing log only
58  * implementation.
59  */
60 enum r5c_journal_mode {
61 	R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
62 	R5C_JOURNAL_MODE_WRITE_BACK = 1,
63 };
64 
65 static char *r5c_journal_mode_str[] = {"write-through",
66 				       "write-back"};
67 /*
68  * raid5 cache state machine
69  *
70  * With rhe RAID cache, each stripe works in two phases:
71  *	- caching phase
72  *	- writing-out phase
73  *
74  * These two phases are controlled by bit STRIPE_R5C_CACHING:
75  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
76  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
77  *
78  * When there is no journal, or the journal is in write-through mode,
79  * the stripe is always in writing-out phase.
80  *
81  * For write-back journal, the stripe is sent to caching phase on write
82  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
83  * the write-out phase by clearing STRIPE_R5C_CACHING.
84  *
85  * Stripes in caching phase do not write the raid disks. Instead, all
86  * writes are committed from the log device. Therefore, a stripe in
87  * caching phase handles writes as:
88  *	- write to log device
89  *	- return IO
90  *
91  * Stripes in writing-out phase handle writes as:
92  *	- calculate parity
93  *	- write pending data and parity to journal
94  *	- write data and parity to raid disks
95  *	- return IO for pending writes
96  */
97 
98 struct r5l_log {
99 	struct md_rdev *rdev;
100 
101 	u32 uuid_checksum;
102 
103 	sector_t device_size;		/* log device size, round to
104 					 * BLOCK_SECTORS */
105 	sector_t max_free_space;	/* reclaim run if free space is at
106 					 * this size */
107 
108 	sector_t last_checkpoint;	/* log tail. where recovery scan
109 					 * starts from */
110 	u64 last_cp_seq;		/* log tail sequence */
111 
112 	sector_t log_start;		/* log head. where new data appends */
113 	u64 seq;			/* log head sequence */
114 
115 	sector_t next_checkpoint;
116 	u64 next_cp_seq;
117 
118 	struct mutex io_mutex;
119 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
120 
121 	spinlock_t io_list_lock;
122 	struct list_head running_ios;	/* io_units which are still running,
123 					 * and have not yet been completely
124 					 * written to the log */
125 	struct list_head io_end_ios;	/* io_units which have been completely
126 					 * written to the log but not yet written
127 					 * to the RAID */
128 	struct list_head flushing_ios;	/* io_units which are waiting for log
129 					 * cache flush */
130 	struct list_head finished_ios;	/* io_units which settle down in log disk */
131 	struct bio flush_bio;
132 
133 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
134 
135 	struct kmem_cache *io_kc;
136 	mempool_t *io_pool;
137 	struct bio_set *bs;
138 	mempool_t *meta_pool;
139 
140 	struct md_thread *reclaim_thread;
141 	unsigned long reclaim_target;	/* number of space that need to be
142 					 * reclaimed.  if it's 0, reclaim spaces
143 					 * used by io_units which are in
144 					 * IO_UNIT_STRIPE_END state (eg, reclaim
145 					 * dones't wait for specific io_unit
146 					 * switching to IO_UNIT_STRIPE_END
147 					 * state) */
148 	wait_queue_head_t iounit_wait;
149 
150 	struct list_head no_space_stripes; /* pending stripes, log has no space */
151 	spinlock_t no_space_stripes_lock;
152 
153 	bool need_cache_flush;
154 
155 	/* for r5c_cache */
156 	enum r5c_journal_mode r5c_journal_mode;
157 
158 	/* all stripes in r5cache, in the order of seq at sh->log_start */
159 	struct list_head stripe_in_journal_list;
160 
161 	spinlock_t stripe_in_journal_lock;
162 	atomic_t stripe_in_journal_count;
163 
164 	/* to submit async io_units, to fulfill ordering of flush */
165 	struct work_struct deferred_io_work;
166 };
167 
168 /*
169  * an IO range starts from a meta data block and end at the next meta data
170  * block. The io unit's the meta data block tracks data/parity followed it. io
171  * unit is written to log disk with normal write, as we always flush log disk
172  * first and then start move data to raid disks, there is no requirement to
173  * write io unit with FLUSH/FUA
174  */
175 struct r5l_io_unit {
176 	struct r5l_log *log;
177 
178 	struct page *meta_page;	/* store meta block */
179 	int meta_offset;	/* current offset in meta_page */
180 
181 	struct bio *current_bio;/* current_bio accepting new data */
182 
183 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
184 	u64 seq;		/* seq number of the metablock */
185 	sector_t log_start;	/* where the io_unit starts */
186 	sector_t log_end;	/* where the io_unit ends */
187 	struct list_head log_sibling; /* log->running_ios */
188 	struct list_head stripe_list; /* stripes added to the io_unit */
189 
190 	int state;
191 	bool need_split_bio;
192 	struct bio *split_bio;
193 
194 	unsigned int has_flush:1;      /* include flush request */
195 	unsigned int has_fua:1;        /* include fua request */
196 	unsigned int has_null_flush:1; /* include empty flush request */
197 	/*
198 	 * io isn't sent yet, flush/fua request can only be submitted till it's
199 	 * the first IO in running_ios list
200 	 */
201 	unsigned int io_deferred:1;
202 
203 	struct bio_list flush_barriers;   /* size == 0 flush bios */
204 };
205 
206 /* r5l_io_unit state */
207 enum r5l_io_unit_state {
208 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
209 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
210 				 * don't accepting new bio */
211 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
212 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
213 };
214 
215 bool r5c_is_writeback(struct r5l_log *log)
216 {
217 	return (log != NULL &&
218 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
219 }
220 
221 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
222 {
223 	start += inc;
224 	if (start >= log->device_size)
225 		start = start - log->device_size;
226 	return start;
227 }
228 
229 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
230 				  sector_t end)
231 {
232 	if (end >= start)
233 		return end - start;
234 	else
235 		return end + log->device_size - start;
236 }
237 
238 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
239 {
240 	sector_t used_size;
241 
242 	used_size = r5l_ring_distance(log, log->last_checkpoint,
243 					log->log_start);
244 
245 	return log->device_size > used_size + size;
246 }
247 
248 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
249 				    enum r5l_io_unit_state state)
250 {
251 	if (WARN_ON(io->state >= state))
252 		return;
253 	io->state = state;
254 }
255 
256 static void
257 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
258 			      struct bio_list *return_bi)
259 {
260 	struct bio *wbi, *wbi2;
261 
262 	wbi = dev->written;
263 	dev->written = NULL;
264 	while (wbi && wbi->bi_iter.bi_sector <
265 	       dev->sector + STRIPE_SECTORS) {
266 		wbi2 = r5_next_bio(wbi, dev->sector);
267 		if (!raid5_dec_bi_active_stripes(wbi)) {
268 			md_write_end(conf->mddev);
269 			bio_list_add(return_bi, wbi);
270 		}
271 		wbi = wbi2;
272 	}
273 }
274 
275 void r5c_handle_cached_data_endio(struct r5conf *conf,
276 	  struct stripe_head *sh, int disks, struct bio_list *return_bi)
277 {
278 	int i;
279 
280 	for (i = sh->disks; i--; ) {
281 		if (sh->dev[i].written) {
282 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
283 			r5c_return_dev_pending_writes(conf, &sh->dev[i],
284 						      return_bi);
285 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
286 					STRIPE_SECTORS,
287 					!test_bit(STRIPE_DEGRADED, &sh->state),
288 					0);
289 		}
290 	}
291 }
292 
293 /* Check whether we should flush some stripes to free up stripe cache */
294 void r5c_check_stripe_cache_usage(struct r5conf *conf)
295 {
296 	int total_cached;
297 
298 	if (!r5c_is_writeback(conf->log))
299 		return;
300 
301 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
302 		atomic_read(&conf->r5c_cached_full_stripes);
303 
304 	/*
305 	 * The following condition is true for either of the following:
306 	 *   - stripe cache pressure high:
307 	 *          total_cached > 3/4 min_nr_stripes ||
308 	 *          empty_inactive_list_nr > 0
309 	 *   - stripe cache pressure moderate:
310 	 *          total_cached > 1/2 min_nr_stripes
311 	 */
312 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
313 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
314 		r5l_wake_reclaim(conf->log, 0);
315 }
316 
317 /*
318  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
319  * stripes in the cache
320  */
321 void r5c_check_cached_full_stripe(struct r5conf *conf)
322 {
323 	if (!r5c_is_writeback(conf->log))
324 		return;
325 
326 	/*
327 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
328 	 * or a full stripe (chunk size / 4k stripes).
329 	 */
330 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
331 	    min(R5C_FULL_STRIPE_FLUSH_BATCH,
332 		conf->chunk_sectors >> STRIPE_SHIFT))
333 		r5l_wake_reclaim(conf->log, 0);
334 }
335 
336 /*
337  * Total log space (in sectors) needed to flush all data in cache
338  *
339  * Currently, writing-out phase automatically includes all pending writes
340  * to the same sector. So the reclaim of each stripe takes up to
341  * (conf->raid_disks + 1) pages of log space.
342  *
343  * To totally avoid deadlock due to log space, the code reserves
344  * (conf->raid_disks + 1) pages for each stripe in cache, which is not
345  * necessary in most cases.
346  *
347  * To improve this, we will need writing-out phase to be able to NOT include
348  * pending writes, which will reduce the requirement to
349  * (conf->max_degraded + 1) pages per stripe in cache.
350  */
351 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
352 {
353 	struct r5l_log *log = conf->log;
354 
355 	if (!r5c_is_writeback(log))
356 		return 0;
357 
358 	return BLOCK_SECTORS * (conf->raid_disks + 1) *
359 		atomic_read(&log->stripe_in_journal_count);
360 }
361 
362 /*
363  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
364  *
365  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
366  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
367  * device is less than 2x of reclaim_required_space.
368  */
369 static inline void r5c_update_log_state(struct r5l_log *log)
370 {
371 	struct r5conf *conf = log->rdev->mddev->private;
372 	sector_t free_space;
373 	sector_t reclaim_space;
374 
375 	if (!r5c_is_writeback(log))
376 		return;
377 
378 	free_space = r5l_ring_distance(log, log->log_start,
379 				       log->last_checkpoint);
380 	reclaim_space = r5c_log_required_to_flush_cache(conf);
381 	if (free_space < 2 * reclaim_space)
382 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
383 	else
384 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
385 	if (free_space < 3 * reclaim_space)
386 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
387 	else
388 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
389 }
390 
391 /*
392  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
393  * This function should only be called in write-back mode.
394  */
395 void r5c_make_stripe_write_out(struct stripe_head *sh)
396 {
397 	struct r5conf *conf = sh->raid_conf;
398 	struct r5l_log *log = conf->log;
399 
400 	BUG_ON(!r5c_is_writeback(log));
401 
402 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
403 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
404 
405 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
406 		atomic_inc(&conf->preread_active_stripes);
407 
408 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
409 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
410 		atomic_dec(&conf->r5c_cached_partial_stripes);
411 	}
412 
413 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
414 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
415 		atomic_dec(&conf->r5c_cached_full_stripes);
416 	}
417 }
418 
419 static void r5c_handle_data_cached(struct stripe_head *sh)
420 {
421 	int i;
422 
423 	for (i = sh->disks; i--; )
424 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
425 			set_bit(R5_InJournal, &sh->dev[i].flags);
426 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
427 		}
428 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
429 }
430 
431 /*
432  * this journal write must contain full parity,
433  * it may also contain some data pages
434  */
435 static void r5c_handle_parity_cached(struct stripe_head *sh)
436 {
437 	int i;
438 
439 	for (i = sh->disks; i--; )
440 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
441 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
442 }
443 
444 /*
445  * Setting proper flags after writing (or flushing) data and/or parity to the
446  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
447  */
448 static void r5c_finish_cache_stripe(struct stripe_head *sh)
449 {
450 	struct r5l_log *log = sh->raid_conf->log;
451 
452 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
453 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
454 		/*
455 		 * Set R5_InJournal for parity dev[pd_idx]. This means
456 		 * all data AND parity in the journal. For RAID 6, it is
457 		 * NOT necessary to set the flag for dev[qd_idx], as the
458 		 * two parities are written out together.
459 		 */
460 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
461 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
462 		r5c_handle_data_cached(sh);
463 	} else {
464 		r5c_handle_parity_cached(sh);
465 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
466 	}
467 }
468 
469 static void r5l_io_run_stripes(struct r5l_io_unit *io)
470 {
471 	struct stripe_head *sh, *next;
472 
473 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
474 		list_del_init(&sh->log_list);
475 
476 		r5c_finish_cache_stripe(sh);
477 
478 		set_bit(STRIPE_HANDLE, &sh->state);
479 		raid5_release_stripe(sh);
480 	}
481 }
482 
483 static void r5l_log_run_stripes(struct r5l_log *log)
484 {
485 	struct r5l_io_unit *io, *next;
486 
487 	assert_spin_locked(&log->io_list_lock);
488 
489 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
490 		/* don't change list order */
491 		if (io->state < IO_UNIT_IO_END)
492 			break;
493 
494 		list_move_tail(&io->log_sibling, &log->finished_ios);
495 		r5l_io_run_stripes(io);
496 	}
497 }
498 
499 static void r5l_move_to_end_ios(struct r5l_log *log)
500 {
501 	struct r5l_io_unit *io, *next;
502 
503 	assert_spin_locked(&log->io_list_lock);
504 
505 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
506 		/* don't change list order */
507 		if (io->state < IO_UNIT_IO_END)
508 			break;
509 		list_move_tail(&io->log_sibling, &log->io_end_ios);
510 	}
511 }
512 
513 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
514 static void r5l_log_endio(struct bio *bio)
515 {
516 	struct r5l_io_unit *io = bio->bi_private;
517 	struct r5l_io_unit *io_deferred;
518 	struct r5l_log *log = io->log;
519 	unsigned long flags;
520 
521 	if (bio->bi_error)
522 		md_error(log->rdev->mddev, log->rdev);
523 
524 	bio_put(bio);
525 	mempool_free(io->meta_page, log->meta_pool);
526 
527 	spin_lock_irqsave(&log->io_list_lock, flags);
528 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
529 	if (log->need_cache_flush)
530 		r5l_move_to_end_ios(log);
531 	else
532 		r5l_log_run_stripes(log);
533 	if (!list_empty(&log->running_ios)) {
534 		/*
535 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
536 		 * can dispatch it
537 		 */
538 		io_deferred = list_first_entry(&log->running_ios,
539 					       struct r5l_io_unit, log_sibling);
540 		if (io_deferred->io_deferred)
541 			schedule_work(&log->deferred_io_work);
542 	}
543 
544 	spin_unlock_irqrestore(&log->io_list_lock, flags);
545 
546 	if (log->need_cache_flush)
547 		md_wakeup_thread(log->rdev->mddev->thread);
548 
549 	if (io->has_null_flush) {
550 		struct bio *bi;
551 
552 		WARN_ON(bio_list_empty(&io->flush_barriers));
553 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
554 			bio_endio(bi);
555 			atomic_dec(&io->pending_stripe);
556 		}
557 		if (atomic_read(&io->pending_stripe) == 0)
558 			__r5l_stripe_write_finished(io);
559 	}
560 }
561 
562 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
563 {
564 	unsigned long flags;
565 
566 	spin_lock_irqsave(&log->io_list_lock, flags);
567 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
568 	spin_unlock_irqrestore(&log->io_list_lock, flags);
569 
570 	if (io->has_flush)
571 		bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FLUSH);
572 	if (io->has_fua)
573 		bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FUA);
574 	submit_bio(io->current_bio);
575 
576 	if (!io->split_bio)
577 		return;
578 
579 	if (io->has_flush)
580 		bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FLUSH);
581 	if (io->has_fua)
582 		bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FUA);
583 	submit_bio(io->split_bio);
584 }
585 
586 /* deferred io_unit will be dispatched here */
587 static void r5l_submit_io_async(struct work_struct *work)
588 {
589 	struct r5l_log *log = container_of(work, struct r5l_log,
590 					   deferred_io_work);
591 	struct r5l_io_unit *io = NULL;
592 	unsigned long flags;
593 
594 	spin_lock_irqsave(&log->io_list_lock, flags);
595 	if (!list_empty(&log->running_ios)) {
596 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
597 				      log_sibling);
598 		if (!io->io_deferred)
599 			io = NULL;
600 		else
601 			io->io_deferred = 0;
602 	}
603 	spin_unlock_irqrestore(&log->io_list_lock, flags);
604 	if (io)
605 		r5l_do_submit_io(log, io);
606 }
607 
608 static void r5l_submit_current_io(struct r5l_log *log)
609 {
610 	struct r5l_io_unit *io = log->current_io;
611 	struct bio *bio;
612 	struct r5l_meta_block *block;
613 	unsigned long flags;
614 	u32 crc;
615 	bool do_submit = true;
616 
617 	if (!io)
618 		return;
619 
620 	block = page_address(io->meta_page);
621 	block->meta_size = cpu_to_le32(io->meta_offset);
622 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
623 	block->checksum = cpu_to_le32(crc);
624 	bio = io->current_bio;
625 
626 	log->current_io = NULL;
627 	spin_lock_irqsave(&log->io_list_lock, flags);
628 	if (io->has_flush || io->has_fua) {
629 		if (io != list_first_entry(&log->running_ios,
630 					   struct r5l_io_unit, log_sibling)) {
631 			io->io_deferred = 1;
632 			do_submit = false;
633 		}
634 	}
635 	spin_unlock_irqrestore(&log->io_list_lock, flags);
636 	if (do_submit)
637 		r5l_do_submit_io(log, io);
638 }
639 
640 static struct bio *r5l_bio_alloc(struct r5l_log *log)
641 {
642 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
643 
644 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
645 	bio->bi_bdev = log->rdev->bdev;
646 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
647 
648 	return bio;
649 }
650 
651 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
652 {
653 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
654 
655 	r5c_update_log_state(log);
656 	/*
657 	 * If we filled up the log device start from the beginning again,
658 	 * which will require a new bio.
659 	 *
660 	 * Note: for this to work properly the log size needs to me a multiple
661 	 * of BLOCK_SECTORS.
662 	 */
663 	if (log->log_start == 0)
664 		io->need_split_bio = true;
665 
666 	io->log_end = log->log_start;
667 }
668 
669 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
670 {
671 	struct r5l_io_unit *io;
672 	struct r5l_meta_block *block;
673 
674 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
675 	if (!io)
676 		return NULL;
677 	memset(io, 0, sizeof(*io));
678 
679 	io->log = log;
680 	INIT_LIST_HEAD(&io->log_sibling);
681 	INIT_LIST_HEAD(&io->stripe_list);
682 	bio_list_init(&io->flush_barriers);
683 	io->state = IO_UNIT_RUNNING;
684 
685 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
686 	block = page_address(io->meta_page);
687 	clear_page(block);
688 	block->magic = cpu_to_le32(R5LOG_MAGIC);
689 	block->version = R5LOG_VERSION;
690 	block->seq = cpu_to_le64(log->seq);
691 	block->position = cpu_to_le64(log->log_start);
692 
693 	io->log_start = log->log_start;
694 	io->meta_offset = sizeof(struct r5l_meta_block);
695 	io->seq = log->seq++;
696 
697 	io->current_bio = r5l_bio_alloc(log);
698 	io->current_bio->bi_end_io = r5l_log_endio;
699 	io->current_bio->bi_private = io;
700 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
701 
702 	r5_reserve_log_entry(log, io);
703 
704 	spin_lock_irq(&log->io_list_lock);
705 	list_add_tail(&io->log_sibling, &log->running_ios);
706 	spin_unlock_irq(&log->io_list_lock);
707 
708 	return io;
709 }
710 
711 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
712 {
713 	if (log->current_io &&
714 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
715 		r5l_submit_current_io(log);
716 
717 	if (!log->current_io) {
718 		log->current_io = r5l_new_meta(log);
719 		if (!log->current_io)
720 			return -ENOMEM;
721 	}
722 
723 	return 0;
724 }
725 
726 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
727 				    sector_t location,
728 				    u32 checksum1, u32 checksum2,
729 				    bool checksum2_valid)
730 {
731 	struct r5l_io_unit *io = log->current_io;
732 	struct r5l_payload_data_parity *payload;
733 
734 	payload = page_address(io->meta_page) + io->meta_offset;
735 	payload->header.type = cpu_to_le16(type);
736 	payload->header.flags = cpu_to_le16(0);
737 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
738 				    (PAGE_SHIFT - 9));
739 	payload->location = cpu_to_le64(location);
740 	payload->checksum[0] = cpu_to_le32(checksum1);
741 	if (checksum2_valid)
742 		payload->checksum[1] = cpu_to_le32(checksum2);
743 
744 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
745 		sizeof(__le32) * (1 + !!checksum2_valid);
746 }
747 
748 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
749 {
750 	struct r5l_io_unit *io = log->current_io;
751 
752 	if (io->need_split_bio) {
753 		BUG_ON(io->split_bio);
754 		io->split_bio = io->current_bio;
755 		io->current_bio = r5l_bio_alloc(log);
756 		bio_chain(io->current_bio, io->split_bio);
757 		io->need_split_bio = false;
758 	}
759 
760 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
761 		BUG();
762 
763 	r5_reserve_log_entry(log, io);
764 }
765 
766 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
767 			   int data_pages, int parity_pages)
768 {
769 	int i;
770 	int meta_size;
771 	int ret;
772 	struct r5l_io_unit *io;
773 
774 	meta_size =
775 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
776 		 * data_pages) +
777 		sizeof(struct r5l_payload_data_parity) +
778 		sizeof(__le32) * parity_pages;
779 
780 	ret = r5l_get_meta(log, meta_size);
781 	if (ret)
782 		return ret;
783 
784 	io = log->current_io;
785 
786 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
787 		io->has_flush = 1;
788 
789 	for (i = 0; i < sh->disks; i++) {
790 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
791 		    test_bit(R5_InJournal, &sh->dev[i].flags))
792 			continue;
793 		if (i == sh->pd_idx || i == sh->qd_idx)
794 			continue;
795 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
796 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
797 			io->has_fua = 1;
798 			/*
799 			 * we need to flush journal to make sure recovery can
800 			 * reach the data with fua flag
801 			 */
802 			io->has_flush = 1;
803 		}
804 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
805 					raid5_compute_blocknr(sh, i, 0),
806 					sh->dev[i].log_checksum, 0, false);
807 		r5l_append_payload_page(log, sh->dev[i].page);
808 	}
809 
810 	if (parity_pages == 2) {
811 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
812 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
813 					sh->dev[sh->qd_idx].log_checksum, true);
814 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
815 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
816 	} else if (parity_pages == 1) {
817 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
818 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
819 					0, false);
820 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
821 	} else  /* Just writing data, not parity, in caching phase */
822 		BUG_ON(parity_pages != 0);
823 
824 	list_add_tail(&sh->log_list, &io->stripe_list);
825 	atomic_inc(&io->pending_stripe);
826 	sh->log_io = io;
827 
828 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
829 		return 0;
830 
831 	if (sh->log_start == MaxSector) {
832 		BUG_ON(!list_empty(&sh->r5c));
833 		sh->log_start = io->log_start;
834 		spin_lock_irq(&log->stripe_in_journal_lock);
835 		list_add_tail(&sh->r5c,
836 			      &log->stripe_in_journal_list);
837 		spin_unlock_irq(&log->stripe_in_journal_lock);
838 		atomic_inc(&log->stripe_in_journal_count);
839 	}
840 	return 0;
841 }
842 
843 /* add stripe to no_space_stripes, and then wake up reclaim */
844 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
845 					   struct stripe_head *sh)
846 {
847 	spin_lock(&log->no_space_stripes_lock);
848 	list_add_tail(&sh->log_list, &log->no_space_stripes);
849 	spin_unlock(&log->no_space_stripes_lock);
850 }
851 
852 /*
853  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
854  * data from log to raid disks), so we shouldn't wait for reclaim here
855  */
856 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
857 {
858 	struct r5conf *conf = sh->raid_conf;
859 	int write_disks = 0;
860 	int data_pages, parity_pages;
861 	int reserve;
862 	int i;
863 	int ret = 0;
864 	bool wake_reclaim = false;
865 
866 	if (!log)
867 		return -EAGAIN;
868 	/* Don't support stripe batch */
869 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
870 	    test_bit(STRIPE_SYNCING, &sh->state)) {
871 		/* the stripe is written to log, we start writing it to raid */
872 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
873 		return -EAGAIN;
874 	}
875 
876 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
877 
878 	for (i = 0; i < sh->disks; i++) {
879 		void *addr;
880 
881 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
882 		    test_bit(R5_InJournal, &sh->dev[i].flags))
883 			continue;
884 
885 		write_disks++;
886 		/* checksum is already calculated in last run */
887 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
888 			continue;
889 		addr = kmap_atomic(sh->dev[i].page);
890 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
891 						    addr, PAGE_SIZE);
892 		kunmap_atomic(addr);
893 	}
894 	parity_pages = 1 + !!(sh->qd_idx >= 0);
895 	data_pages = write_disks - parity_pages;
896 
897 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
898 	/*
899 	 * The stripe must enter state machine again to finish the write, so
900 	 * don't delay.
901 	 */
902 	clear_bit(STRIPE_DELAYED, &sh->state);
903 	atomic_inc(&sh->count);
904 
905 	mutex_lock(&log->io_mutex);
906 	/* meta + data */
907 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
908 
909 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
910 		if (!r5l_has_free_space(log, reserve)) {
911 			r5l_add_no_space_stripe(log, sh);
912 			wake_reclaim = true;
913 		} else {
914 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
915 			if (ret) {
916 				spin_lock_irq(&log->io_list_lock);
917 				list_add_tail(&sh->log_list,
918 					      &log->no_mem_stripes);
919 				spin_unlock_irq(&log->io_list_lock);
920 			}
921 		}
922 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
923 		/*
924 		 * log space critical, do not process stripes that are
925 		 * not in cache yet (sh->log_start == MaxSector).
926 		 */
927 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
928 		    sh->log_start == MaxSector) {
929 			r5l_add_no_space_stripe(log, sh);
930 			wake_reclaim = true;
931 			reserve = 0;
932 		} else if (!r5l_has_free_space(log, reserve)) {
933 			if (sh->log_start == log->last_checkpoint)
934 				BUG();
935 			else
936 				r5l_add_no_space_stripe(log, sh);
937 		} else {
938 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
939 			if (ret) {
940 				spin_lock_irq(&log->io_list_lock);
941 				list_add_tail(&sh->log_list,
942 					      &log->no_mem_stripes);
943 				spin_unlock_irq(&log->io_list_lock);
944 			}
945 		}
946 	}
947 
948 	mutex_unlock(&log->io_mutex);
949 	if (wake_reclaim)
950 		r5l_wake_reclaim(log, reserve);
951 	return 0;
952 }
953 
954 void r5l_write_stripe_run(struct r5l_log *log)
955 {
956 	if (!log)
957 		return;
958 	mutex_lock(&log->io_mutex);
959 	r5l_submit_current_io(log);
960 	mutex_unlock(&log->io_mutex);
961 }
962 
963 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
964 {
965 	if (!log)
966 		return -ENODEV;
967 
968 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
969 		/*
970 		 * in write through (journal only)
971 		 * we flush log disk cache first, then write stripe data to
972 		 * raid disks. So if bio is finished, the log disk cache is
973 		 * flushed already. The recovery guarantees we can recovery
974 		 * the bio from log disk, so we don't need to flush again
975 		 */
976 		if (bio->bi_iter.bi_size == 0) {
977 			bio_endio(bio);
978 			return 0;
979 		}
980 		bio->bi_opf &= ~REQ_PREFLUSH;
981 	} else {
982 		/* write back (with cache) */
983 		if (bio->bi_iter.bi_size == 0) {
984 			mutex_lock(&log->io_mutex);
985 			r5l_get_meta(log, 0);
986 			bio_list_add(&log->current_io->flush_barriers, bio);
987 			log->current_io->has_flush = 1;
988 			log->current_io->has_null_flush = 1;
989 			atomic_inc(&log->current_io->pending_stripe);
990 			r5l_submit_current_io(log);
991 			mutex_unlock(&log->io_mutex);
992 			return 0;
993 		}
994 	}
995 	return -EAGAIN;
996 }
997 
998 /* This will run after log space is reclaimed */
999 static void r5l_run_no_space_stripes(struct r5l_log *log)
1000 {
1001 	struct stripe_head *sh;
1002 
1003 	spin_lock(&log->no_space_stripes_lock);
1004 	while (!list_empty(&log->no_space_stripes)) {
1005 		sh = list_first_entry(&log->no_space_stripes,
1006 				      struct stripe_head, log_list);
1007 		list_del_init(&sh->log_list);
1008 		set_bit(STRIPE_HANDLE, &sh->state);
1009 		raid5_release_stripe(sh);
1010 	}
1011 	spin_unlock(&log->no_space_stripes_lock);
1012 }
1013 
1014 /*
1015  * calculate new last_checkpoint
1016  * for write through mode, returns log->next_checkpoint
1017  * for write back, returns log_start of first sh in stripe_in_journal_list
1018  */
1019 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1020 {
1021 	struct stripe_head *sh;
1022 	struct r5l_log *log = conf->log;
1023 	sector_t new_cp;
1024 	unsigned long flags;
1025 
1026 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1027 		return log->next_checkpoint;
1028 
1029 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1030 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1031 		/* all stripes flushed */
1032 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1033 		return log->next_checkpoint;
1034 	}
1035 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1036 			      struct stripe_head, r5c);
1037 	new_cp = sh->log_start;
1038 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1039 	return new_cp;
1040 }
1041 
1042 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1043 {
1044 	struct r5conf *conf = log->rdev->mddev->private;
1045 
1046 	return r5l_ring_distance(log, log->last_checkpoint,
1047 				 r5c_calculate_new_cp(conf));
1048 }
1049 
1050 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1051 {
1052 	struct stripe_head *sh;
1053 
1054 	assert_spin_locked(&log->io_list_lock);
1055 
1056 	if (!list_empty(&log->no_mem_stripes)) {
1057 		sh = list_first_entry(&log->no_mem_stripes,
1058 				      struct stripe_head, log_list);
1059 		list_del_init(&sh->log_list);
1060 		set_bit(STRIPE_HANDLE, &sh->state);
1061 		raid5_release_stripe(sh);
1062 	}
1063 }
1064 
1065 static bool r5l_complete_finished_ios(struct r5l_log *log)
1066 {
1067 	struct r5l_io_unit *io, *next;
1068 	bool found = false;
1069 
1070 	assert_spin_locked(&log->io_list_lock);
1071 
1072 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1073 		/* don't change list order */
1074 		if (io->state < IO_UNIT_STRIPE_END)
1075 			break;
1076 
1077 		log->next_checkpoint = io->log_start;
1078 		log->next_cp_seq = io->seq;
1079 
1080 		list_del(&io->log_sibling);
1081 		mempool_free(io, log->io_pool);
1082 		r5l_run_no_mem_stripe(log);
1083 
1084 		found = true;
1085 	}
1086 
1087 	return found;
1088 }
1089 
1090 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1091 {
1092 	struct r5l_log *log = io->log;
1093 	struct r5conf *conf = log->rdev->mddev->private;
1094 	unsigned long flags;
1095 
1096 	spin_lock_irqsave(&log->io_list_lock, flags);
1097 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1098 
1099 	if (!r5l_complete_finished_ios(log)) {
1100 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1101 		return;
1102 	}
1103 
1104 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1105 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1106 		r5l_wake_reclaim(log, 0);
1107 
1108 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1109 	wake_up(&log->iounit_wait);
1110 }
1111 
1112 void r5l_stripe_write_finished(struct stripe_head *sh)
1113 {
1114 	struct r5l_io_unit *io;
1115 
1116 	io = sh->log_io;
1117 	sh->log_io = NULL;
1118 
1119 	if (io && atomic_dec_and_test(&io->pending_stripe))
1120 		__r5l_stripe_write_finished(io);
1121 }
1122 
1123 static void r5l_log_flush_endio(struct bio *bio)
1124 {
1125 	struct r5l_log *log = container_of(bio, struct r5l_log,
1126 		flush_bio);
1127 	unsigned long flags;
1128 	struct r5l_io_unit *io;
1129 
1130 	if (bio->bi_error)
1131 		md_error(log->rdev->mddev, log->rdev);
1132 
1133 	spin_lock_irqsave(&log->io_list_lock, flags);
1134 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1135 		r5l_io_run_stripes(io);
1136 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1137 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1138 }
1139 
1140 /*
1141  * Starting dispatch IO to raid.
1142  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1143  * broken meta in the middle of a log causes recovery can't find meta at the
1144  * head of log. If operations require meta at the head persistent in log, we
1145  * must make sure meta before it persistent in log too. A case is:
1146  *
1147  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1148  * data/parity must be persistent in log before we do the write to raid disks.
1149  *
1150  * The solution is we restrictly maintain io_unit list order. In this case, we
1151  * only write stripes of an io_unit to raid disks till the io_unit is the first
1152  * one whose data/parity is in log.
1153  */
1154 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1155 {
1156 	bool do_flush;
1157 
1158 	if (!log || !log->need_cache_flush)
1159 		return;
1160 
1161 	spin_lock_irq(&log->io_list_lock);
1162 	/* flush bio is running */
1163 	if (!list_empty(&log->flushing_ios)) {
1164 		spin_unlock_irq(&log->io_list_lock);
1165 		return;
1166 	}
1167 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1168 	do_flush = !list_empty(&log->flushing_ios);
1169 	spin_unlock_irq(&log->io_list_lock);
1170 
1171 	if (!do_flush)
1172 		return;
1173 	bio_reset(&log->flush_bio);
1174 	log->flush_bio.bi_bdev = log->rdev->bdev;
1175 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1176 	bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
1177 	submit_bio(&log->flush_bio);
1178 }
1179 
1180 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1181 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1182 	sector_t end)
1183 {
1184 	struct block_device *bdev = log->rdev->bdev;
1185 	struct mddev *mddev;
1186 
1187 	r5l_write_super(log, end);
1188 
1189 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1190 		return;
1191 
1192 	mddev = log->rdev->mddev;
1193 	/*
1194 	 * Discard could zero data, so before discard we must make sure
1195 	 * superblock is updated to new log tail. Updating superblock (either
1196 	 * directly call md_update_sb() or depend on md thread) must hold
1197 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1198 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1199 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1200 	 * thread is calling this function and waitting for reconfig mutex. So
1201 	 * there is a deadlock. We workaround this issue with a trylock.
1202 	 * FIXME: we could miss discard if we can't take reconfig mutex
1203 	 */
1204 	set_mask_bits(&mddev->flags, 0,
1205 		BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1206 	if (!mddev_trylock(mddev))
1207 		return;
1208 	md_update_sb(mddev, 1);
1209 	mddev_unlock(mddev);
1210 
1211 	/* discard IO error really doesn't matter, ignore it */
1212 	if (log->last_checkpoint < end) {
1213 		blkdev_issue_discard(bdev,
1214 				log->last_checkpoint + log->rdev->data_offset,
1215 				end - log->last_checkpoint, GFP_NOIO, 0);
1216 	} else {
1217 		blkdev_issue_discard(bdev,
1218 				log->last_checkpoint + log->rdev->data_offset,
1219 				log->device_size - log->last_checkpoint,
1220 				GFP_NOIO, 0);
1221 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1222 				GFP_NOIO, 0);
1223 	}
1224 }
1225 
1226 /*
1227  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1228  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1229  *
1230  * must hold conf->device_lock
1231  */
1232 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1233 {
1234 	BUG_ON(list_empty(&sh->lru));
1235 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1236 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1237 
1238 	/*
1239 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1240 	 * raid5_release_stripe() while holding conf->device_lock
1241 	 */
1242 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1243 	assert_spin_locked(&conf->device_lock);
1244 
1245 	list_del_init(&sh->lru);
1246 	atomic_inc(&sh->count);
1247 
1248 	set_bit(STRIPE_HANDLE, &sh->state);
1249 	atomic_inc(&conf->active_stripes);
1250 	r5c_make_stripe_write_out(sh);
1251 
1252 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1253 		atomic_inc(&conf->preread_active_stripes);
1254 	raid5_release_stripe(sh);
1255 }
1256 
1257 /*
1258  * if num == 0, flush all full stripes
1259  * if num > 0, flush all full stripes. If less than num full stripes are
1260  *             flushed, flush some partial stripes until totally num stripes are
1261  *             flushed or there is no more cached stripes.
1262  */
1263 void r5c_flush_cache(struct r5conf *conf, int num)
1264 {
1265 	int count;
1266 	struct stripe_head *sh, *next;
1267 
1268 	assert_spin_locked(&conf->device_lock);
1269 	if (!conf->log)
1270 		return;
1271 
1272 	count = 0;
1273 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1274 		r5c_flush_stripe(conf, sh);
1275 		count++;
1276 	}
1277 
1278 	if (count >= num)
1279 		return;
1280 	list_for_each_entry_safe(sh, next,
1281 				 &conf->r5c_partial_stripe_list, lru) {
1282 		r5c_flush_stripe(conf, sh);
1283 		if (++count >= num)
1284 			break;
1285 	}
1286 }
1287 
1288 static void r5c_do_reclaim(struct r5conf *conf)
1289 {
1290 	struct r5l_log *log = conf->log;
1291 	struct stripe_head *sh;
1292 	int count = 0;
1293 	unsigned long flags;
1294 	int total_cached;
1295 	int stripes_to_flush;
1296 
1297 	if (!r5c_is_writeback(log))
1298 		return;
1299 
1300 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1301 		atomic_read(&conf->r5c_cached_full_stripes);
1302 
1303 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1304 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1305 		/*
1306 		 * if stripe cache pressure high, flush all full stripes and
1307 		 * some partial stripes
1308 		 */
1309 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1310 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1311 		 atomic_read(&conf->r5c_cached_full_stripes) >
1312 		 R5C_FULL_STRIPE_FLUSH_BATCH)
1313 		/*
1314 		 * if stripe cache pressure moderate, or if there is many full
1315 		 * stripes,flush all full stripes
1316 		 */
1317 		stripes_to_flush = 0;
1318 	else
1319 		/* no need to flush */
1320 		stripes_to_flush = -1;
1321 
1322 	if (stripes_to_flush >= 0) {
1323 		spin_lock_irqsave(&conf->device_lock, flags);
1324 		r5c_flush_cache(conf, stripes_to_flush);
1325 		spin_unlock_irqrestore(&conf->device_lock, flags);
1326 	}
1327 
1328 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1329 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1330 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1331 		spin_lock(&conf->device_lock);
1332 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1333 			/*
1334 			 * stripes on stripe_in_journal_list could be in any
1335 			 * state of the stripe_cache state machine. In this
1336 			 * case, we only want to flush stripe on
1337 			 * r5c_cached_full/partial_stripes. The following
1338 			 * condition makes sure the stripe is on one of the
1339 			 * two lists.
1340 			 */
1341 			if (!list_empty(&sh->lru) &&
1342 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1343 			    atomic_read(&sh->count) == 0) {
1344 				r5c_flush_stripe(conf, sh);
1345 			}
1346 			if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1347 				break;
1348 		}
1349 		spin_unlock(&conf->device_lock);
1350 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1351 	}
1352 	md_wakeup_thread(conf->mddev->thread);
1353 }
1354 
1355 static void r5l_do_reclaim(struct r5l_log *log)
1356 {
1357 	struct r5conf *conf = log->rdev->mddev->private;
1358 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1359 	sector_t reclaimable;
1360 	sector_t next_checkpoint;
1361 	bool write_super;
1362 
1363 	spin_lock_irq(&log->io_list_lock);
1364 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1365 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1366 	/*
1367 	 * move proper io_unit to reclaim list. We should not change the order.
1368 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1369 	 * shouldn't reuse space of an unreclaimable io_unit
1370 	 */
1371 	while (1) {
1372 		reclaimable = r5l_reclaimable_space(log);
1373 		if (reclaimable >= reclaim_target ||
1374 		    (list_empty(&log->running_ios) &&
1375 		     list_empty(&log->io_end_ios) &&
1376 		     list_empty(&log->flushing_ios) &&
1377 		     list_empty(&log->finished_ios)))
1378 			break;
1379 
1380 		md_wakeup_thread(log->rdev->mddev->thread);
1381 		wait_event_lock_irq(log->iounit_wait,
1382 				    r5l_reclaimable_space(log) > reclaimable,
1383 				    log->io_list_lock);
1384 	}
1385 
1386 	next_checkpoint = r5c_calculate_new_cp(conf);
1387 	spin_unlock_irq(&log->io_list_lock);
1388 
1389 	BUG_ON(reclaimable < 0);
1390 
1391 	if (reclaimable == 0 || !write_super)
1392 		return;
1393 
1394 	/*
1395 	 * write_super will flush cache of each raid disk. We must write super
1396 	 * here, because the log area might be reused soon and we don't want to
1397 	 * confuse recovery
1398 	 */
1399 	r5l_write_super_and_discard_space(log, next_checkpoint);
1400 
1401 	mutex_lock(&log->io_mutex);
1402 	log->last_checkpoint = next_checkpoint;
1403 	r5c_update_log_state(log);
1404 	mutex_unlock(&log->io_mutex);
1405 
1406 	r5l_run_no_space_stripes(log);
1407 }
1408 
1409 static void r5l_reclaim_thread(struct md_thread *thread)
1410 {
1411 	struct mddev *mddev = thread->mddev;
1412 	struct r5conf *conf = mddev->private;
1413 	struct r5l_log *log = conf->log;
1414 
1415 	if (!log)
1416 		return;
1417 	r5c_do_reclaim(conf);
1418 	r5l_do_reclaim(log);
1419 }
1420 
1421 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1422 {
1423 	unsigned long target;
1424 	unsigned long new = (unsigned long)space; /* overflow in theory */
1425 
1426 	if (!log)
1427 		return;
1428 	do {
1429 		target = log->reclaim_target;
1430 		if (new < target)
1431 			return;
1432 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1433 	md_wakeup_thread(log->reclaim_thread);
1434 }
1435 
1436 void r5l_quiesce(struct r5l_log *log, int state)
1437 {
1438 	struct mddev *mddev;
1439 	if (!log || state == 2)
1440 		return;
1441 	if (state == 0)
1442 		kthread_unpark(log->reclaim_thread->tsk);
1443 	else if (state == 1) {
1444 		/* make sure r5l_write_super_and_discard_space exits */
1445 		mddev = log->rdev->mddev;
1446 		wake_up(&mddev->sb_wait);
1447 		kthread_park(log->reclaim_thread->tsk);
1448 		r5l_wake_reclaim(log, MaxSector);
1449 		r5l_do_reclaim(log);
1450 	}
1451 }
1452 
1453 bool r5l_log_disk_error(struct r5conf *conf)
1454 {
1455 	struct r5l_log *log;
1456 	bool ret;
1457 	/* don't allow write if journal disk is missing */
1458 	rcu_read_lock();
1459 	log = rcu_dereference(conf->log);
1460 
1461 	if (!log)
1462 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1463 	else
1464 		ret = test_bit(Faulty, &log->rdev->flags);
1465 	rcu_read_unlock();
1466 	return ret;
1467 }
1468 
1469 struct r5l_recovery_ctx {
1470 	struct page *meta_page;		/* current meta */
1471 	sector_t meta_total_blocks;	/* total size of current meta and data */
1472 	sector_t pos;			/* recovery position */
1473 	u64 seq;			/* recovery position seq */
1474 	int data_parity_stripes;	/* number of data_parity stripes */
1475 	int data_only_stripes;		/* number of data_only stripes */
1476 	struct list_head cached_list;
1477 };
1478 
1479 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1480 					struct r5l_recovery_ctx *ctx)
1481 {
1482 	struct page *page = ctx->meta_page;
1483 	struct r5l_meta_block *mb;
1484 	u32 crc, stored_crc;
1485 
1486 	if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1487 			  false))
1488 		return -EIO;
1489 
1490 	mb = page_address(page);
1491 	stored_crc = le32_to_cpu(mb->checksum);
1492 	mb->checksum = 0;
1493 
1494 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1495 	    le64_to_cpu(mb->seq) != ctx->seq ||
1496 	    mb->version != R5LOG_VERSION ||
1497 	    le64_to_cpu(mb->position) != ctx->pos)
1498 		return -EINVAL;
1499 
1500 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1501 	if (stored_crc != crc)
1502 		return -EINVAL;
1503 
1504 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1505 		return -EINVAL;
1506 
1507 	ctx->meta_total_blocks = BLOCK_SECTORS;
1508 
1509 	return 0;
1510 }
1511 
1512 static void
1513 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1514 				     struct page *page,
1515 				     sector_t pos, u64 seq)
1516 {
1517 	struct r5l_meta_block *mb;
1518 	u32 crc;
1519 
1520 	mb = page_address(page);
1521 	clear_page(mb);
1522 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1523 	mb->version = R5LOG_VERSION;
1524 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1525 	mb->seq = cpu_to_le64(seq);
1526 	mb->position = cpu_to_le64(pos);
1527 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1528 	mb->checksum = cpu_to_le32(crc);
1529 }
1530 
1531 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1532 					  u64 seq)
1533 {
1534 	struct page *page;
1535 
1536 	page = alloc_page(GFP_KERNEL);
1537 	if (!page)
1538 		return -ENOMEM;
1539 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1540 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1541 			  WRITE_FUA, false)) {
1542 		__free_page(page);
1543 		return -EIO;
1544 	}
1545 	__free_page(page);
1546 	return 0;
1547 }
1548 
1549 /*
1550  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1551  * to mark valid (potentially not flushed) data in the journal.
1552  *
1553  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1554  * so there should not be any mismatch here.
1555  */
1556 static void r5l_recovery_load_data(struct r5l_log *log,
1557 				   struct stripe_head *sh,
1558 				   struct r5l_recovery_ctx *ctx,
1559 				   struct r5l_payload_data_parity *payload,
1560 				   sector_t log_offset)
1561 {
1562 	struct mddev *mddev = log->rdev->mddev;
1563 	struct r5conf *conf = mddev->private;
1564 	int dd_idx;
1565 
1566 	raid5_compute_sector(conf,
1567 			     le64_to_cpu(payload->location), 0,
1568 			     &dd_idx, sh);
1569 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1570 		     sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1571 	sh->dev[dd_idx].log_checksum =
1572 		le32_to_cpu(payload->checksum[0]);
1573 	ctx->meta_total_blocks += BLOCK_SECTORS;
1574 
1575 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1576 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1577 }
1578 
1579 static void r5l_recovery_load_parity(struct r5l_log *log,
1580 				     struct stripe_head *sh,
1581 				     struct r5l_recovery_ctx *ctx,
1582 				     struct r5l_payload_data_parity *payload,
1583 				     sector_t log_offset)
1584 {
1585 	struct mddev *mddev = log->rdev->mddev;
1586 	struct r5conf *conf = mddev->private;
1587 
1588 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1589 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1590 		     sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1591 	sh->dev[sh->pd_idx].log_checksum =
1592 		le32_to_cpu(payload->checksum[0]);
1593 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1594 
1595 	if (sh->qd_idx >= 0) {
1596 		sync_page_io(log->rdev,
1597 			     r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1598 			     PAGE_SIZE, sh->dev[sh->qd_idx].page,
1599 			     REQ_OP_READ, 0, false);
1600 		sh->dev[sh->qd_idx].log_checksum =
1601 			le32_to_cpu(payload->checksum[1]);
1602 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1603 	}
1604 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1605 }
1606 
1607 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1608 {
1609 	int i;
1610 
1611 	sh->state = 0;
1612 	sh->log_start = MaxSector;
1613 	for (i = sh->disks; i--; )
1614 		sh->dev[i].flags = 0;
1615 }
1616 
1617 static void
1618 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1619 			       struct stripe_head *sh,
1620 			       struct r5l_recovery_ctx *ctx)
1621 {
1622 	struct md_rdev *rdev, *rrdev;
1623 	int disk_index;
1624 	int data_count = 0;
1625 
1626 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1627 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1628 			continue;
1629 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1630 			continue;
1631 		data_count++;
1632 	}
1633 
1634 	/*
1635 	 * stripes that only have parity must have been flushed
1636 	 * before the crash that we are now recovering from, so
1637 	 * there is nothing more to recovery.
1638 	 */
1639 	if (data_count == 0)
1640 		goto out;
1641 
1642 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1643 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1644 			continue;
1645 
1646 		/* in case device is broken */
1647 		rcu_read_lock();
1648 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1649 		if (rdev) {
1650 			atomic_inc(&rdev->nr_pending);
1651 			rcu_read_unlock();
1652 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1653 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1654 				     false);
1655 			rdev_dec_pending(rdev, rdev->mddev);
1656 			rcu_read_lock();
1657 		}
1658 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1659 		if (rrdev) {
1660 			atomic_inc(&rrdev->nr_pending);
1661 			rcu_read_unlock();
1662 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1663 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1664 				     false);
1665 			rdev_dec_pending(rrdev, rrdev->mddev);
1666 			rcu_read_lock();
1667 		}
1668 		rcu_read_unlock();
1669 	}
1670 	ctx->data_parity_stripes++;
1671 out:
1672 	r5l_recovery_reset_stripe(sh);
1673 }
1674 
1675 static struct stripe_head *
1676 r5c_recovery_alloc_stripe(struct r5conf *conf,
1677 			  struct list_head *recovery_list,
1678 			  sector_t stripe_sect,
1679 			  sector_t log_start)
1680 {
1681 	struct stripe_head *sh;
1682 
1683 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1684 	if (!sh)
1685 		return NULL;  /* no more stripe available */
1686 
1687 	r5l_recovery_reset_stripe(sh);
1688 	sh->log_start = log_start;
1689 
1690 	return sh;
1691 }
1692 
1693 static struct stripe_head *
1694 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1695 {
1696 	struct stripe_head *sh;
1697 
1698 	list_for_each_entry(sh, list, lru)
1699 		if (sh->sector == sect)
1700 			return sh;
1701 	return NULL;
1702 }
1703 
1704 static void
1705 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1706 			  struct r5l_recovery_ctx *ctx)
1707 {
1708 	struct stripe_head *sh, *next;
1709 
1710 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1711 		r5l_recovery_reset_stripe(sh);
1712 		list_del_init(&sh->lru);
1713 		raid5_release_stripe(sh);
1714 	}
1715 }
1716 
1717 static void
1718 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1719 			    struct r5l_recovery_ctx *ctx)
1720 {
1721 	struct stripe_head *sh, *next;
1722 
1723 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1724 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1725 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1726 			list_del_init(&sh->lru);
1727 			raid5_release_stripe(sh);
1728 		}
1729 }
1730 
1731 /* if matches return 0; otherwise return -EINVAL */
1732 static int
1733 r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1734 				  sector_t log_offset, __le32 log_checksum)
1735 {
1736 	void *addr;
1737 	u32 checksum;
1738 
1739 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1740 		     page, REQ_OP_READ, 0, false);
1741 	addr = kmap_atomic(page);
1742 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1743 	kunmap_atomic(addr);
1744 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1745 }
1746 
1747 /*
1748  * before loading data to stripe cache, we need verify checksum for all data,
1749  * if there is mismatch for any data page, we drop all data in the mata block
1750  */
1751 static int
1752 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1753 					 struct r5l_recovery_ctx *ctx)
1754 {
1755 	struct mddev *mddev = log->rdev->mddev;
1756 	struct r5conf *conf = mddev->private;
1757 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1758 	sector_t mb_offset = sizeof(struct r5l_meta_block);
1759 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1760 	struct page *page;
1761 	struct r5l_payload_data_parity *payload;
1762 
1763 	page = alloc_page(GFP_KERNEL);
1764 	if (!page)
1765 		return -ENOMEM;
1766 
1767 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
1768 		payload = (void *)mb + mb_offset;
1769 
1770 		if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1771 			if (r5l_recovery_verify_data_checksum(
1772 				    log, page, log_offset,
1773 				    payload->checksum[0]) < 0)
1774 				goto mismatch;
1775 		} else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1776 			if (r5l_recovery_verify_data_checksum(
1777 				    log, page, log_offset,
1778 				    payload->checksum[0]) < 0)
1779 				goto mismatch;
1780 			if (conf->max_degraded == 2 && /* q for RAID 6 */
1781 			    r5l_recovery_verify_data_checksum(
1782 				    log, page,
1783 				    r5l_ring_add(log, log_offset,
1784 						 BLOCK_SECTORS),
1785 				    payload->checksum[1]) < 0)
1786 				goto mismatch;
1787 		} else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1788 			goto mismatch;
1789 
1790 		log_offset = r5l_ring_add(log, log_offset,
1791 					  le32_to_cpu(payload->size));
1792 
1793 		mb_offset += sizeof(struct r5l_payload_data_parity) +
1794 			sizeof(__le32) *
1795 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1796 	}
1797 
1798 	put_page(page);
1799 	return 0;
1800 
1801 mismatch:
1802 	put_page(page);
1803 	return -EINVAL;
1804 }
1805 
1806 /*
1807  * Analyze all data/parity pages in one meta block
1808  * Returns:
1809  * 0 for success
1810  * -EINVAL for unknown playload type
1811  * -EAGAIN for checksum mismatch of data page
1812  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1813  */
1814 static int
1815 r5c_recovery_analyze_meta_block(struct r5l_log *log,
1816 				struct r5l_recovery_ctx *ctx,
1817 				struct list_head *cached_stripe_list)
1818 {
1819 	struct mddev *mddev = log->rdev->mddev;
1820 	struct r5conf *conf = mddev->private;
1821 	struct r5l_meta_block *mb;
1822 	struct r5l_payload_data_parity *payload;
1823 	int mb_offset;
1824 	sector_t log_offset;
1825 	sector_t stripe_sect;
1826 	struct stripe_head *sh;
1827 	int ret;
1828 
1829 	/*
1830 	 * for mismatch in data blocks, we will drop all data in this mb, but
1831 	 * we will still read next mb for other data with FLUSH flag, as
1832 	 * io_unit could finish out of order.
1833 	 */
1834 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1835 	if (ret == -EINVAL)
1836 		return -EAGAIN;
1837 	else if (ret)
1838 		return ret;   /* -ENOMEM duo to alloc_page() failed */
1839 
1840 	mb = page_address(ctx->meta_page);
1841 	mb_offset = sizeof(struct r5l_meta_block);
1842 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1843 
1844 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
1845 		int dd;
1846 
1847 		payload = (void *)mb + mb_offset;
1848 		stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1849 			raid5_compute_sector(
1850 				conf, le64_to_cpu(payload->location), 0, &dd,
1851 				NULL)
1852 			: le64_to_cpu(payload->location);
1853 
1854 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1855 						stripe_sect);
1856 
1857 		if (!sh) {
1858 			sh = r5c_recovery_alloc_stripe(conf, cached_stripe_list,
1859 						       stripe_sect, ctx->pos);
1860 			/*
1861 			 * cannot get stripe from raid5_get_active_stripe
1862 			 * try replay some stripes
1863 			 */
1864 			if (!sh) {
1865 				r5c_recovery_replay_stripes(
1866 					cached_stripe_list, ctx);
1867 				sh = r5c_recovery_alloc_stripe(
1868 					conf, cached_stripe_list,
1869 					stripe_sect, ctx->pos);
1870 			}
1871 			if (!sh) {
1872 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1873 					mdname(mddev),
1874 					conf->min_nr_stripes * 2);
1875 				raid5_set_cache_size(mddev,
1876 						     conf->min_nr_stripes * 2);
1877 				sh = r5c_recovery_alloc_stripe(
1878 					conf, cached_stripe_list, stripe_sect,
1879 					ctx->pos);
1880 			}
1881 			if (!sh) {
1882 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1883 				       mdname(mddev));
1884 				return -ENOMEM;
1885 			}
1886 			list_add_tail(&sh->lru, cached_stripe_list);
1887 		}
1888 
1889 		if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1890 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
1891 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
1892 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
1893 				sh->log_start = ctx->pos;
1894 				list_move_tail(&sh->lru, cached_stripe_list);
1895 			}
1896 			r5l_recovery_load_data(log, sh, ctx, payload,
1897 					       log_offset);
1898 		} else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1899 			r5l_recovery_load_parity(log, sh, ctx, payload,
1900 						 log_offset);
1901 		else
1902 			return -EINVAL;
1903 
1904 		log_offset = r5l_ring_add(log, log_offset,
1905 					  le32_to_cpu(payload->size));
1906 
1907 		mb_offset += sizeof(struct r5l_payload_data_parity) +
1908 			sizeof(__le32) *
1909 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 /*
1916  * Load the stripe into cache. The stripe will be written out later by
1917  * the stripe cache state machine.
1918  */
1919 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
1920 					 struct stripe_head *sh)
1921 {
1922 	struct r5dev *dev;
1923 	int i;
1924 
1925 	for (i = sh->disks; i--; ) {
1926 		dev = sh->dev + i;
1927 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
1928 			set_bit(R5_InJournal, &dev->flags);
1929 			set_bit(R5_UPTODATE, &dev->flags);
1930 		}
1931 	}
1932 	list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
1933 	atomic_inc(&log->stripe_in_journal_count);
1934 }
1935 
1936 /*
1937  * Scan through the log for all to-be-flushed data
1938  *
1939  * For stripes with data and parity, namely Data-Parity stripe
1940  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1941  *
1942  * For stripes with only data, namely Data-Only stripe
1943  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1944  *
1945  * For a stripe, if we see data after parity, we should discard all previous
1946  * data and parity for this stripe, as these data are already flushed to
1947  * the array.
1948  *
1949  * At the end of the scan, we return the new journal_tail, which points to
1950  * first data-only stripe on the journal device, or next invalid meta block.
1951  */
1952 static int r5c_recovery_flush_log(struct r5l_log *log,
1953 				  struct r5l_recovery_ctx *ctx)
1954 {
1955 	struct stripe_head *sh, *next;
1956 	int ret = 0;
1957 
1958 	/* scan through the log */
1959 	while (1) {
1960 		if (r5l_recovery_read_meta_block(log, ctx))
1961 			break;
1962 
1963 		ret = r5c_recovery_analyze_meta_block(log, ctx,
1964 						      &ctx->cached_list);
1965 		/*
1966 		 * -EAGAIN means mismatch in data block, in this case, we still
1967 		 * try scan the next metablock
1968 		 */
1969 		if (ret && ret != -EAGAIN)
1970 			break;   /* ret == -EINVAL or -ENOMEM */
1971 		ctx->seq++;
1972 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1973 	}
1974 
1975 	if (ret == -ENOMEM) {
1976 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
1977 		return ret;
1978 	}
1979 
1980 	/* replay data-parity stripes */
1981 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
1982 
1983 	/* load data-only stripes to stripe cache */
1984 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
1985 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1986 		r5c_recovery_load_one_stripe(log, sh);
1987 		list_del_init(&sh->lru);
1988 		raid5_release_stripe(sh);
1989 		ctx->data_only_stripes++;
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /*
1996  * we did a recovery. Now ctx.pos points to an invalid meta block. New
1997  * log will start here. but we can't let superblock point to last valid
1998  * meta block. The log might looks like:
1999  * | meta 1| meta 2| meta 3|
2000  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2001  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2002  * happens again, new recovery will start from meta 1. Since meta 2n is
2003  * valid now, recovery will think meta 3 is valid, which is wrong.
2004  * The solution is we create a new meta in meta2 with its seq == meta
2005  * 1's seq + 10 and let superblock points to meta2. The same recovery will
2006  * not think meta 3 is a valid meta, because its seq doesn't match
2007  */
2008 
2009 /*
2010  * Before recovery, the log looks like the following
2011  *
2012  *   ---------------------------------------------
2013  *   |           valid log        | invalid log  |
2014  *   ---------------------------------------------
2015  *   ^
2016  *   |- log->last_checkpoint
2017  *   |- log->last_cp_seq
2018  *
2019  * Now we scan through the log until we see invalid entry
2020  *
2021  *   ---------------------------------------------
2022  *   |           valid log        | invalid log  |
2023  *   ---------------------------------------------
2024  *   ^                            ^
2025  *   |- log->last_checkpoint      |- ctx->pos
2026  *   |- log->last_cp_seq          |- ctx->seq
2027  *
2028  * From this point, we need to increase seq number by 10 to avoid
2029  * confusing next recovery.
2030  *
2031  *   ---------------------------------------------
2032  *   |           valid log        | invalid log  |
2033  *   ---------------------------------------------
2034  *   ^                              ^
2035  *   |- log->last_checkpoint        |- ctx->pos+1
2036  *   |- log->last_cp_seq            |- ctx->seq+11
2037  *
2038  * However, it is not safe to start the state machine yet, because data only
2039  * parities are not yet secured in RAID. To save these data only parities, we
2040  * rewrite them from seq+11.
2041  *
2042  *   -----------------------------------------------------------------
2043  *   |           valid log        | data only stripes | invalid log  |
2044  *   -----------------------------------------------------------------
2045  *   ^                                                ^
2046  *   |- log->last_checkpoint                          |- ctx->pos+n
2047  *   |- log->last_cp_seq                              |- ctx->seq+10+n
2048  *
2049  * If failure happens again during this process, the recovery can safe start
2050  * again from log->last_checkpoint.
2051  *
2052  * Once data only stripes are rewritten to journal, we move log_tail
2053  *
2054  *   -----------------------------------------------------------------
2055  *   |     old log        |    data only stripes    | invalid log  |
2056  *   -----------------------------------------------------------------
2057  *                        ^                         ^
2058  *                        |- log->last_checkpoint   |- ctx->pos+n
2059  *                        |- log->last_cp_seq       |- ctx->seq+10+n
2060  *
2061  * Then we can safely start the state machine. If failure happens from this
2062  * point on, the recovery will start from new log->last_checkpoint.
2063  */
2064 static int
2065 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2066 				       struct r5l_recovery_ctx *ctx)
2067 {
2068 	struct stripe_head *sh;
2069 	struct mddev *mddev = log->rdev->mddev;
2070 	struct page *page;
2071 
2072 	page = alloc_page(GFP_KERNEL);
2073 	if (!page) {
2074 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2075 		       mdname(mddev));
2076 		return -ENOMEM;
2077 	}
2078 
2079 	ctx->seq += 10;
2080 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2081 		struct r5l_meta_block *mb;
2082 		int i;
2083 		int offset;
2084 		sector_t write_pos;
2085 
2086 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2087 		r5l_recovery_create_empty_meta_block(log, page,
2088 						     ctx->pos, ctx->seq);
2089 		mb = page_address(page);
2090 		offset = le32_to_cpu(mb->meta_size);
2091 		write_pos = ctx->pos + BLOCK_SECTORS;
2092 
2093 		for (i = sh->disks; i--; ) {
2094 			struct r5dev *dev = &sh->dev[i];
2095 			struct r5l_payload_data_parity *payload;
2096 			void *addr;
2097 
2098 			if (test_bit(R5_InJournal, &dev->flags)) {
2099 				payload = (void *)mb + offset;
2100 				payload->header.type = cpu_to_le16(
2101 					R5LOG_PAYLOAD_DATA);
2102 				payload->size = BLOCK_SECTORS;
2103 				payload->location = cpu_to_le64(
2104 					raid5_compute_blocknr(sh, i, 0));
2105 				addr = kmap_atomic(dev->page);
2106 				payload->checksum[0] = cpu_to_le32(
2107 					crc32c_le(log->uuid_checksum, addr,
2108 						  PAGE_SIZE));
2109 				kunmap_atomic(addr);
2110 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2111 					     dev->page, REQ_OP_WRITE, 0, false);
2112 				write_pos = r5l_ring_add(log, write_pos,
2113 							 BLOCK_SECTORS);
2114 				offset += sizeof(__le32) +
2115 					sizeof(struct r5l_payload_data_parity);
2116 
2117 			}
2118 		}
2119 		mb->meta_size = cpu_to_le32(offset);
2120 		mb->checksum = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2121 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2122 			     REQ_OP_WRITE, WRITE_FUA, false);
2123 		sh->log_start = ctx->pos;
2124 		ctx->pos = write_pos;
2125 		ctx->seq += 1;
2126 	}
2127 	__free_page(page);
2128 	return 0;
2129 }
2130 
2131 static int r5l_recovery_log(struct r5l_log *log)
2132 {
2133 	struct mddev *mddev = log->rdev->mddev;
2134 	struct r5l_recovery_ctx ctx;
2135 	int ret;
2136 
2137 	ctx.pos = log->last_checkpoint;
2138 	ctx.seq = log->last_cp_seq;
2139 	ctx.meta_page = alloc_page(GFP_KERNEL);
2140 	ctx.data_only_stripes = 0;
2141 	ctx.data_parity_stripes = 0;
2142 	INIT_LIST_HEAD(&ctx.cached_list);
2143 
2144 	if (!ctx.meta_page)
2145 		return -ENOMEM;
2146 
2147 	ret = r5c_recovery_flush_log(log, &ctx);
2148 	__free_page(ctx.meta_page);
2149 
2150 	if (ret)
2151 		return ret;
2152 
2153 	if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2154 		pr_debug("md/raid:%s: starting from clean shutdown\n",
2155 			 mdname(mddev));
2156 	else {
2157 		pr_debug("md/raid:%s: recoverying %d data-only stripes and %d data-parity stripes\n",
2158 			 mdname(mddev), ctx.data_only_stripes,
2159 			 ctx.data_parity_stripes);
2160 
2161 		if (ctx.data_only_stripes > 0)
2162 			if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2163 				pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2164 				       mdname(mddev));
2165 				return -EIO;
2166 			}
2167 	}
2168 
2169 	log->log_start = ctx.pos;
2170 	log->next_checkpoint = ctx.pos;
2171 	log->seq = ctx.seq;
2172 	r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq);
2173 	r5l_write_super(log, ctx.pos);
2174 	return 0;
2175 }
2176 
2177 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2178 {
2179 	struct mddev *mddev = log->rdev->mddev;
2180 
2181 	log->rdev->journal_tail = cp;
2182 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2183 }
2184 
2185 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2186 {
2187 	struct r5conf *conf = mddev->private;
2188 	int ret;
2189 
2190 	if (!conf->log)
2191 		return 0;
2192 
2193 	switch (conf->log->r5c_journal_mode) {
2194 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2195 		ret = snprintf(
2196 			page, PAGE_SIZE, "[%s] %s\n",
2197 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2198 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2199 		break;
2200 	case R5C_JOURNAL_MODE_WRITE_BACK:
2201 		ret = snprintf(
2202 			page, PAGE_SIZE, "%s [%s]\n",
2203 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2204 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2205 		break;
2206 	default:
2207 		ret = 0;
2208 	}
2209 	return ret;
2210 }
2211 
2212 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2213 				      const char *page, size_t length)
2214 {
2215 	struct r5conf *conf = mddev->private;
2216 	struct r5l_log *log = conf->log;
2217 	int val = -1, i;
2218 	int len = length;
2219 
2220 	if (!log)
2221 		return -ENODEV;
2222 
2223 	if (len && page[len - 1] == '\n')
2224 		len -= 1;
2225 	for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2226 		if (strlen(r5c_journal_mode_str[i]) == len &&
2227 		    strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2228 			val = i;
2229 			break;
2230 		}
2231 	if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2232 	    val > R5C_JOURNAL_MODE_WRITE_BACK)
2233 		return -EINVAL;
2234 
2235 	mddev_suspend(mddev);
2236 	conf->log->r5c_journal_mode = val;
2237 	mddev_resume(mddev);
2238 
2239 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2240 		 mdname(mddev), val, r5c_journal_mode_str[val]);
2241 	return length;
2242 }
2243 
2244 struct md_sysfs_entry
2245 r5c_journal_mode = __ATTR(journal_mode, 0644,
2246 			  r5c_journal_mode_show, r5c_journal_mode_store);
2247 
2248 /*
2249  * Try handle write operation in caching phase. This function should only
2250  * be called in write-back mode.
2251  *
2252  * If all outstanding writes can be handled in caching phase, returns 0
2253  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2254  * and returns -EAGAIN
2255  */
2256 int r5c_try_caching_write(struct r5conf *conf,
2257 			  struct stripe_head *sh,
2258 			  struct stripe_head_state *s,
2259 			  int disks)
2260 {
2261 	struct r5l_log *log = conf->log;
2262 	int i;
2263 	struct r5dev *dev;
2264 	int to_cache = 0;
2265 
2266 	BUG_ON(!r5c_is_writeback(log));
2267 
2268 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2269 		/*
2270 		 * There are two different scenarios here:
2271 		 *  1. The stripe has some data cached, and it is sent to
2272 		 *     write-out phase for reclaim
2273 		 *  2. The stripe is clean, and this is the first write
2274 		 *
2275 		 * For 1, return -EAGAIN, so we continue with
2276 		 * handle_stripe_dirtying().
2277 		 *
2278 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2279 		 * write.
2280 		 */
2281 
2282 		/* case 1: anything injournal or anything in written */
2283 		if (s->injournal > 0 || s->written > 0)
2284 			return -EAGAIN;
2285 		/* case 2 */
2286 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2287 	}
2288 
2289 	for (i = disks; i--; ) {
2290 		dev = &sh->dev[i];
2291 		/* if non-overwrite, use writing-out phase */
2292 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2293 		    !test_bit(R5_InJournal, &dev->flags)) {
2294 			r5c_make_stripe_write_out(sh);
2295 			return -EAGAIN;
2296 		}
2297 	}
2298 
2299 	for (i = disks; i--; ) {
2300 		dev = &sh->dev[i];
2301 		if (dev->towrite) {
2302 			set_bit(R5_Wantwrite, &dev->flags);
2303 			set_bit(R5_Wantdrain, &dev->flags);
2304 			set_bit(R5_LOCKED, &dev->flags);
2305 			to_cache++;
2306 		}
2307 	}
2308 
2309 	if (to_cache) {
2310 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2311 		/*
2312 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2313 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2314 		 * r5c_handle_data_cached()
2315 		 */
2316 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 /*
2323  * free extra pages (orig_page) we allocated for prexor
2324  */
2325 void r5c_release_extra_page(struct stripe_head *sh)
2326 {
2327 	struct r5conf *conf = sh->raid_conf;
2328 	int i;
2329 	bool using_disk_info_extra_page;
2330 
2331 	using_disk_info_extra_page =
2332 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2333 
2334 	for (i = sh->disks; i--; )
2335 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2336 			struct page *p = sh->dev[i].orig_page;
2337 
2338 			sh->dev[i].orig_page = sh->dev[i].page;
2339 			if (!using_disk_info_extra_page)
2340 				put_page(p);
2341 		}
2342 
2343 	if (using_disk_info_extra_page) {
2344 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2345 		md_wakeup_thread(conf->mddev->thread);
2346 	}
2347 }
2348 
2349 void r5c_use_extra_page(struct stripe_head *sh)
2350 {
2351 	struct r5conf *conf = sh->raid_conf;
2352 	int i;
2353 	struct r5dev *dev;
2354 
2355 	for (i = sh->disks; i--; ) {
2356 		dev = &sh->dev[i];
2357 		if (dev->orig_page != dev->page)
2358 			put_page(dev->orig_page);
2359 		dev->orig_page = conf->disks[i].extra_page;
2360 	}
2361 }
2362 
2363 /*
2364  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2365  * stripe is committed to RAID disks.
2366  */
2367 void r5c_finish_stripe_write_out(struct r5conf *conf,
2368 				 struct stripe_head *sh,
2369 				 struct stripe_head_state *s)
2370 {
2371 	int i;
2372 	int do_wakeup = 0;
2373 
2374 	if (!conf->log ||
2375 	    !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2376 		return;
2377 
2378 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2379 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2380 
2381 	if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2382 		return;
2383 
2384 	for (i = sh->disks; i--; ) {
2385 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2386 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2387 			do_wakeup = 1;
2388 	}
2389 
2390 	/*
2391 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2392 	 * We updated R5_InJournal, so we also update s->injournal.
2393 	 */
2394 	s->injournal = 0;
2395 
2396 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2397 		if (atomic_dec_and_test(&conf->pending_full_writes))
2398 			md_wakeup_thread(conf->mddev->thread);
2399 
2400 	if (do_wakeup)
2401 		wake_up(&conf->wait_for_overlap);
2402 
2403 	if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2404 		return;
2405 
2406 	spin_lock_irq(&conf->log->stripe_in_journal_lock);
2407 	list_del_init(&sh->r5c);
2408 	spin_unlock_irq(&conf->log->stripe_in_journal_lock);
2409 	sh->log_start = MaxSector;
2410 	atomic_dec(&conf->log->stripe_in_journal_count);
2411 }
2412 
2413 int
2414 r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2415 	       struct stripe_head_state *s)
2416 {
2417 	struct r5conf *conf = sh->raid_conf;
2418 	int pages = 0;
2419 	int reserve;
2420 	int i;
2421 	int ret = 0;
2422 
2423 	BUG_ON(!log);
2424 
2425 	for (i = 0; i < sh->disks; i++) {
2426 		void *addr;
2427 
2428 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2429 			continue;
2430 		addr = kmap_atomic(sh->dev[i].page);
2431 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2432 						    addr, PAGE_SIZE);
2433 		kunmap_atomic(addr);
2434 		pages++;
2435 	}
2436 	WARN_ON(pages == 0);
2437 
2438 	/*
2439 	 * The stripe must enter state machine again to call endio, so
2440 	 * don't delay.
2441 	 */
2442 	clear_bit(STRIPE_DELAYED, &sh->state);
2443 	atomic_inc(&sh->count);
2444 
2445 	mutex_lock(&log->io_mutex);
2446 	/* meta + data */
2447 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2448 
2449 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2450 	    sh->log_start == MaxSector)
2451 		r5l_add_no_space_stripe(log, sh);
2452 	else if (!r5l_has_free_space(log, reserve)) {
2453 		if (sh->log_start == log->last_checkpoint)
2454 			BUG();
2455 		else
2456 			r5l_add_no_space_stripe(log, sh);
2457 	} else {
2458 		ret = r5l_log_stripe(log, sh, pages, 0);
2459 		if (ret) {
2460 			spin_lock_irq(&log->io_list_lock);
2461 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2462 			spin_unlock_irq(&log->io_list_lock);
2463 		}
2464 	}
2465 
2466 	mutex_unlock(&log->io_mutex);
2467 	return 0;
2468 }
2469 
2470 static int r5l_load_log(struct r5l_log *log)
2471 {
2472 	struct md_rdev *rdev = log->rdev;
2473 	struct page *page;
2474 	struct r5l_meta_block *mb;
2475 	sector_t cp = log->rdev->journal_tail;
2476 	u32 stored_crc, expected_crc;
2477 	bool create_super = false;
2478 	int ret;
2479 
2480 	/* Make sure it's valid */
2481 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2482 		cp = 0;
2483 	page = alloc_page(GFP_KERNEL);
2484 	if (!page)
2485 		return -ENOMEM;
2486 
2487 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2488 		ret = -EIO;
2489 		goto ioerr;
2490 	}
2491 	mb = page_address(page);
2492 
2493 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2494 	    mb->version != R5LOG_VERSION) {
2495 		create_super = true;
2496 		goto create;
2497 	}
2498 	stored_crc = le32_to_cpu(mb->checksum);
2499 	mb->checksum = 0;
2500 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2501 	if (stored_crc != expected_crc) {
2502 		create_super = true;
2503 		goto create;
2504 	}
2505 	if (le64_to_cpu(mb->position) != cp) {
2506 		create_super = true;
2507 		goto create;
2508 	}
2509 create:
2510 	if (create_super) {
2511 		log->last_cp_seq = prandom_u32();
2512 		cp = 0;
2513 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2514 		/*
2515 		 * Make sure super points to correct address. Log might have
2516 		 * data very soon. If super hasn't correct log tail address,
2517 		 * recovery can't find the log
2518 		 */
2519 		r5l_write_super(log, cp);
2520 	} else
2521 		log->last_cp_seq = le64_to_cpu(mb->seq);
2522 
2523 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2524 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2525 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2526 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2527 	log->last_checkpoint = cp;
2528 	log->next_checkpoint = cp;
2529 	mutex_lock(&log->io_mutex);
2530 	r5c_update_log_state(log);
2531 	mutex_unlock(&log->io_mutex);
2532 
2533 	__free_page(page);
2534 
2535 	return r5l_recovery_log(log);
2536 ioerr:
2537 	__free_page(page);
2538 	return ret;
2539 }
2540 
2541 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2542 {
2543 	struct request_queue *q = bdev_get_queue(rdev->bdev);
2544 	struct r5l_log *log;
2545 
2546 	if (PAGE_SIZE != 4096)
2547 		return -EINVAL;
2548 
2549 	/*
2550 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2551 	 * raid_disks r5l_payload_data_parity.
2552 	 *
2553 	 * Write journal and cache does not work for very big array
2554 	 * (raid_disks > 203)
2555 	 */
2556 	if (sizeof(struct r5l_meta_block) +
2557 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2558 	     conf->raid_disks) > PAGE_SIZE) {
2559 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2560 		       mdname(conf->mddev), conf->raid_disks);
2561 		return -EINVAL;
2562 	}
2563 
2564 	log = kzalloc(sizeof(*log), GFP_KERNEL);
2565 	if (!log)
2566 		return -ENOMEM;
2567 	log->rdev = rdev;
2568 
2569 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
2570 
2571 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2572 				       sizeof(rdev->mddev->uuid));
2573 
2574 	mutex_init(&log->io_mutex);
2575 
2576 	spin_lock_init(&log->io_list_lock);
2577 	INIT_LIST_HEAD(&log->running_ios);
2578 	INIT_LIST_HEAD(&log->io_end_ios);
2579 	INIT_LIST_HEAD(&log->flushing_ios);
2580 	INIT_LIST_HEAD(&log->finished_ios);
2581 	bio_init(&log->flush_bio);
2582 
2583 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2584 	if (!log->io_kc)
2585 		goto io_kc;
2586 
2587 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2588 	if (!log->io_pool)
2589 		goto io_pool;
2590 
2591 	log->bs = bioset_create(R5L_POOL_SIZE, 0);
2592 	if (!log->bs)
2593 		goto io_bs;
2594 
2595 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2596 	if (!log->meta_pool)
2597 		goto out_mempool;
2598 
2599 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2600 						 log->rdev->mddev, "reclaim");
2601 	if (!log->reclaim_thread)
2602 		goto reclaim_thread;
2603 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2604 
2605 	init_waitqueue_head(&log->iounit_wait);
2606 
2607 	INIT_LIST_HEAD(&log->no_mem_stripes);
2608 
2609 	INIT_LIST_HEAD(&log->no_space_stripes);
2610 	spin_lock_init(&log->no_space_stripes_lock);
2611 
2612 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2613 
2614 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2615 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
2616 	spin_lock_init(&log->stripe_in_journal_lock);
2617 	atomic_set(&log->stripe_in_journal_count, 0);
2618 
2619 	if (r5l_load_log(log))
2620 		goto error;
2621 
2622 	rcu_assign_pointer(conf->log, log);
2623 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
2624 	return 0;
2625 
2626 error:
2627 	md_unregister_thread(&log->reclaim_thread);
2628 reclaim_thread:
2629 	mempool_destroy(log->meta_pool);
2630 out_mempool:
2631 	bioset_free(log->bs);
2632 io_bs:
2633 	mempool_destroy(log->io_pool);
2634 io_pool:
2635 	kmem_cache_destroy(log->io_kc);
2636 io_kc:
2637 	kfree(log);
2638 	return -EINVAL;
2639 }
2640 
2641 void r5l_exit_log(struct r5l_log *log)
2642 {
2643 	md_unregister_thread(&log->reclaim_thread);
2644 	mempool_destroy(log->meta_pool);
2645 	bioset_free(log->bs);
2646 	mempool_destroy(log->io_pool);
2647 	kmem_cache_destroy(log->io_kc);
2648 	kfree(log);
2649 }
2650